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Abstract

In this thesis we study the full relativistic and dynamical interaction in (2+1)D
Dirac systems. First, we briefly introduce condensed-matter realizations of such
systems and discuss some of their key properties. After this, following work by
Marino, we project Quantum Electrodynamics (QED) onto a plane, and show
that the (2+1)D Pseudo-QED Lagrangian is equivalent to this projection. The
properties of this Lagrangian are discussed, and it is shown that it describes
unscreened Coulomb interaction in the static limit. A review is made of results of
Pseudo-QED in the literature, focusing on obtaining the transverse conductivity.
We reproduce results in the literature showing that a quantum valley Hall current
may be generated by dynamical interactions for both the massive and massless
case, and a quantum Hall current in the massive case. We then couple massive
Pseudo-QED to a massive scalar field via a quartic interaction to study the effect
on the generated transverse currents. We find that the quantum valley Hall current
obtains a non-universal correction dependent on the ratio of the fermionic and
scalar field masses. We also consider massless Pseudo-QED coupled to a scalar
field and calculate the divergent Feynman diagrams involving the scalar field.
These could be used for a renormalization group (RG) analysis of the system to
investigate how the RG-flow of massless Pseudo-QED changes under the influence
of a scalar field. We end by briefly considering other applications of Pseudo-QED
and other projections of QED in the outlook.
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Introduction

The synthesis of graphene, by Geim and Novoselov in 2005 [1], has brought about a new
paradigm in condensed-matter physics. Consisting of a honeycomb lattice of carbon
atoms, just one atom thick, graphene possesses some remarkable properties: it is the
strongest material ever to be discovered, it is very flexible, light, transparent and is an
extremely good conductor. These properties, together with the abundance of carbon,
hold great promise for the applications of graphene in a wide range of industries.

The electrons in graphene have a linear dispersion relation, and are massless Dirac
fermions that move at a Fermi velocity vF = c/300 [2] that plays the role of the speed
of light. They are thus quasi-relativistic particles, and this makes graphene the first
relativistic system that can be observed in a tabletop experiment, and where some
predictions of relativistic quantum field theories can be tested. Klein tunneling for
example, a paradoxical prediction from relativistic quantum field theory which predicts
electrons can tunnel through arbitrarily high potential barriers, has been observed in
graphene [3] and zitterbewegung, another relativistic effect that causes Dirac electrons
to oscillate very rapidly, has also been predicted for graphene [4].

Initially, it was believed that the electrons in graphene were very weakly interact-
ing. However, the measurement of the fractional Quantum Hall Effect [5] and of the
renormalization of the Fermi velocity [6, 7] have proven that interactions are indeed
important at low temperatures in sufficiently clean samples.

Because of the relativistic nature of graphene, we can treat electron-electron inter-
actions using tools from relativistic quantum field theory, as being mediated by a U(1)

gauge field. Standard Quantum Electrodynamics (QED) in (2+1)D does not suffice,
however, because in graphene the electromagnetic interaction is unscreened, meaning
the electromagnetic gauge field is (3+1)D, while the electrons are confined to a plane.

There is thus a dimensional mismatch, and the (2+1)D effective theory describing
this situation is called Pseudo-QED, because of a pseudo-differential operator appearing
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in the Lagrangian, and it was first described by Marino already in 1993 [8]. With the
discovery of graphene and other two-dimensional materials, there has been renewed
interest in this theory, and its application to condensed-matter systems. Using Pseudo-
QED the longitudinal T = 0 DC-conductivity has been calculated, and an interaction-
induced valley Hall effect has been predicted [9]. The valley g-factor was also calculated
and found to be in agreement with experiments [10].

After the discovery of graphene, many similar two-dimensional materials were pro-
posed and synthesized with atoms different from carbon. Silicene and phosphorene,
for example, also consist of honeycomb lattices, but made of silicon and phosphorus
atoms respectively. The larger ionic radius of these atoms causes the lattice to deform,
which makes it possible to open a gap by applying a perpendicular electric field [11].
Another class of materials that has massive (2+1)D Dirac electrons is Transition Metal
Dichalcogenide Monolayers (TMDM). These materials have an intrinsic gap, and no
inversion symmetry of the lattice, and this makes them particularly suited to observe
the so-called valley degree of freedom in the system. By considering massive electrons,
Pseudo-QED can also describe these massive (2+1)D Dirac systems.

While the full dynamical interactions in these systems is often neglected in favour
of a static Coulomb interaction, recently it has been shown that the full dynamical
description also captures effects that are non-perturbative in vF, and that are thus
missed by a static approximation. More specifically an interaction-induced quantum
valley Hall effect has been predicted in graphene [9], and also in silicene, where a
spontaneous quantum Hall effect is also found [12].

In this thesis we will introduce Dirac materials, derive Pseudo-QED and make a
brief review of the literature on the subject. We then study massive Pseudo-QED
coupled to a massive scalar field, and calculate corrections to the conductivities from
the literature. We also couple massless Pseudo-QED to a scalar field and calculate the
divergent Feynman diagrams resulting from this coupling.

The structure of this thesis is as follows: in Chapter 1 we will briefly introduce
graphene and other two dimensional Dirac systems found in condensed matter. In
Chapter 2 Pseudo-QED is introduced, the formalism to describe relativistic dynamical
interactions in these 2D Dirac systems. In Chapter 3 we review Kubo’s formula, and
reproduce some results from the literature where Kubo’s formula is used together with
Pseudo-QED to calculate conductivities. In chapter 4 we couple Pseudo-QED to a scalar
field and we calculate the Feynman diagrams and conductivity using Kubo’s formula.
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We end with a conclusion and outlook, in which we consider other applications of
Pseudo-QED and different projections of QED.





Chapter 1

Graphene and 2D massive Dirac
systems

Massless Dirac electrons were found for the first time in condensed matter in graphene
in 2005 by Geim and Novoselov [1], for which they received the Nobel prize in 2010.
While a tight-binding description of graphene was already studied in 1947 [13], it was
long believed that a single layer of graphene was unstable. The isolation of graphene
has opened up many new doors in material science, and it is a remarkable material in
itself. It is the best known conductor, the strongest known material and still extremely
flexible. The electrons in graphene are, as we will see, quasi-relativistic. They obey the
Dirac equation, but with a Fermi velocity vF ≈ c/300 replacing the speed of light [2].
This makes it possible to probe relativistic electrons in a tabletop experiment.

After the discovery of graphene, attention quickly turned toward the possibility of
creating monolayers of different materials. Graphene has no gap, and it is difficult to
one. Hence it is perhaps not very well suited to creating field effect transistors, one
of the main components of computers today. Since graphene, many other monolayers
have been theoretically studied and experimentally realized, many of which do feature
a gap.

In this chapter we will first briefly introduce graphene, its tight-binding model and
dispersion relation. We then explain how introducing a sub-lattice potential opens a
gap in the system. This is hard to do in graphene, but possible in silicene, phosphorene
and transition metal dichalcogenides, which have honeycomb lattices that are deformed
in different ways. We will briefly describe these materials and see how a gap can be
opened here.
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Figure 1.1.1: Schematic drawing of the honeycomb lattice of graphene. The A sub-
lattice is denoted by blue dots, the B sublattice by red dots. The vectors a1and a2

denote the primitive lattice vectors, δ1, δ2 and δ3 denote the nearest neighbour vectors
of the A sublattice.

1.1 Graphene

In this section, we will briefly review the basic properties of graphene, and in particular
its band structure and electronic properties. Graphene consists of a honeycomb lattice
of carbon atoms (see Fig. (1.1.1)). An isolated carbon atom has 2 s electrons and 4 p
electrons. In graphene, each carbon atom forms a sp2 bond with its three neighbours,
leaving one free p electron, out of the plane. This free p electron is responsible for the
electronic properties of graphene.

1.1.1 Tight-binding model

To obtain the dispersion relation of graphene we consider a tight-binding model of the
free p electrons with nearest-neighbour hopping, we follow Ref. [2]. The honeycomb
lattice has two primitive lattice vectors (along which there is translation symmetry),

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−
√

3
)
, (1.1)

and, by the relation ai · bj = 2πδij, the reciprocal lattice vectors

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1,−
√

3
)
, (1.2)
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There are two inequivalent sub-lattices which we will call A and B, that is the unit cell
contains two lattice points. The first Brillouin zone is again a hexagon, and has two
inequivalent points at the edge, which we can take to be

K =
2π

3a

(
1, 1/
√

3
)
, K′ =

2π

3a

(
1,−1/

√
3
)
. (1.3)

These K and K′ points are related by time-reversal symmetry, and are also called Dirac
points, for reasons which will become clear shortly.

To set up our tight-binding model we find the nearest neighbour vectors

δ1 = ±a
2

(
1,
√

3
)

δ2 = ±a
2

(
1,−
√

3
)

δ3 = ±a (−1, 0) , (1.4)

with the plus for the A sub-lattice, and the minus for the B sub-lattice, and a ≈
1.42Å the lattice spacing. The tight-binding Hamiltonian takes the form

H = −t
∑
〈i,j〉,σ

(
a†σ,ibσ,j + b†σ,iaσ,j

)
, (1.5)

where a and b are the annihilation operators of electrons on the A and B sub-lattices
respectively, t ≈ 2.8eV [2] is the hopping amplitude, σ denotes the sum over the spins
and 〈i, j〉 denotes the sum over the nearest neighbours. Ignoring spin for now, we obtain
by Fourier transforming the annihilation and creation operators

H = −t
∑
i,j

1

N

ˆ
d2k

ˆ
d2k′

(
a†kbk′ exp (i(k− k′) · xi) exp (−ik · δj) + h.c.

)
= −t

∑
j

ˆ
d2k

(
a†kbk exp (−ik · δj) + h.c.

)
. (1.6)

Denoting ψ† = (a†k, bk), we have

H =

ˆ
d2kψ†

(
0 ∆(k)

∆†(k) 0

)
ψ, (1.7)

with ∆(k) = −t
∑

j exp (−ik · δj). The eigen-energies are therefore

E± = ±t

∣∣∣∣∣∑
j

exp (−ik · δj)

∣∣∣∣∣ . (1.8)
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Figure 1.1.2: The valence (blue) and conduction (orange) bands of graphene considering
only nearest-neighbour hopping. There are six Dirac cones in a hexagonal configuration.

Substituting Eq. (1.4) into Eq. (1.8), we obtain

E±(k) = ±t
∣∣∣exp

[
−ia

2

(
kx +

√
3ky

)]
+ exp

[
−ia

2

(
kx −

√
3ky

)]
+ exp (iakx)

∣∣∣
= ±t

∣∣∣∣∣exp
(
−ia

2
kx

)
2 cos

(
a
√

3

2
ky

)
+ exp (iakx)

∣∣∣∣∣
= ±t

{
4 cos2

(
a
√

3

2
ky

)
+ 1 + 2 cos

(
a
√

3

2
ky

)[
exp

(
−i3a

2
kx

)
+ exp

(
i
3a

2
kx

)]}1/2

= ±t

√√√√1 + 4 cos2

(
a
√

3

2
ky

)
+ 4 cos

(
a
√

3

2
ky

)
cos

(
3a

2
kx

)
. (1.9)

The dispersion relation is plotted in Fig. (1.1.2). Note that we have particle-hole
symmetry; if we include next-nearest neighbour hopping this symmetry will be broken.
At the Dirac points, we have E±(K) = E±(K′) = 0, hence the upper and lower bands
are touching. To find the low-energy behaviour of the system, let us expand ∆(k)
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around the K point by writing k = K + q with q�K,

∆(q) = −t
∑
j

exp (−i (K + q) · δj)

= −t
∑
j

exp (−iK · δj) exp (−iq · δj)

≈ −t
{

exp

(
−i2π

3

)
(1− iq · δ1) + (1− iq · δ2) + exp

(
i
2π

3

)
(1− iq · δ3)

}
= it

a

2

{
exp

(
−i2π

3

)(
qx +

√
3qy

)
+
(
qx −

√
3qy

)
− 2qx exp

(
i
2π

3

)}
= it

a

2

{
qx

[
exp

(
−i2π

3

)
+ 1− 2 exp

(
i
2π

3

)]
+ qy

[
exp

(
−i2π

3

)√
3−
√

3

]}
= it

a

2

{
qx

[(
−1

2
− i
√

3

2

)
+ 1− 2

(
−1

2
+
i
√

3

2

)]
+ qy

[(
−1

2
− i
√

3

2

)
√

3−
√

3

]}
= t

3a

4

{
qx

[√
3 + i

]
+ qy

[
1− i

√
3
]}

. (1.10)

Substituting Eq. (1.10) into Eq. (1.7) , we obtain

HK(q) =

ˆ
d2qψ†

t3a

2

 0
(
√

3+i)
2

(qx − iqy)
(
√

3−i)
2

(qx + iqy) 0

ψ. (1.11)

Performing a unitary transformation of the fields

ψ1 → e−i
π
12ψ1, ψ2 → ei

π
12ψ2,

and defining vF = 3ta/2, we find

HK(q) =

ˆ
d2q ψ†vF

(
0 qx − iqy

qx + iqy 0

)
ψ

=

ˆ
d2q ψ† vF (q·σ)ψ, (1.12)

where σ = (σx, σy) are the Pauli matrices acting in the sub-lattice space (not spin
space). Expanding the full Hamiltonian around K′, we find by a similar calculation

HK′(q) =

ˆ
d2q ψ†vF

(
0 qx + iqy

qx − iqy 0

)
ψ.

=

ˆ
d2q ψ†vF (q·σ∗)ψ, (1.13)
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where σ∗ = (σx,−σy). We see that the valleys are described by the massless 2-
component Dirac equation. The dispersion relation around the Dirac points is

E±(k) = ±vF |k| .

The full low-energy Hamiltonian consists of the sum of the two valleys.

1.2 Massive Dirac systems

A peculiar property of graphene is the absence of a band-gap. While this is one of the
reasons why the carrier mobility in graphene is so high, a band-gap can be desirable,
for example to create a field-effect transistor. We are thus led to ask: can we open
up a band-gap in graphene, and are there other materials similar to graphene with
a band-gap? It turns out that the answer to both questions is yes. In this section
we will first demonstrate how breaking the sub-lattice symmetry leads to a gap in
graphene. After this, we will introduce other materials that share the honeycomb
structure with graphene, but are made of different atoms; namely silicene, phosphorene
and dichalcogenides.

1.2.1 Breaking sub-lattice symmetry

Let us return to the tight-binding model of the previous section, but now introduce an
on-site potential V with a different sign for each of the sub-lattices (we follow Ref. [14]),

Hon−site =
V

2

ˆ
d2k

(
a†σ,iaσ,i − b

†
σ,ibσ,i

)
. (1.14)

Combining this with Eq. (1.7), we find the Hamiltonian to be

H =

ˆ
d2kψ†

(
V
2

∆(k)

∆†(k) −V
2

)
ψ, (1.15)

and the dispersion relation changes to

E±(k) = ±
√
V 2

4
+ ∆(k)∆†(k). (1.16)

We know that ∆(K) = ∆(K′) = 0, and hence

E±(K) = ±V
2
, (1.17)
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Figure 1.2.1: The buckled honeycomb structure of silicene. Figure extracted from
Ref. [15].

By breaking the sub-lattice symmetry we have thus opened up a band-gap of V between
the valence and conduction band. We can again expand around the Dirac points to
obtain the low-energy Hamiltonian

HK(q) =

ˆ
d2qψ†vF

(
V
2

qx − iqy
qx + iqy −V

2

)
ψ

=

ˆ
d2qψ† [vF (q·σ) + σzV ]ψ. (1.18)

1.2.2 Silicene

While we have seen that applying a different on-site potential for each of the two sub-
lattices opens up a gap in graphene, it is not clear how to achieve this in an experimental
setup. Silicene, a honeycomb lattice of silicon atoms, provides an easier way of opening
up a gap. Because of the larger ionic radius of silicon compared to carbon, the lattice
of silicene is buckled (see Fig. 1.2.1)[16]. By applying an out-of-plane electric field we
can introduce a different potential for each of the two sub-lattices, and thus open up a
tunable gap in the spectrum [17]. Another way to achieve the same result is by growing
silicene on a substrate [18]. In the case of applying an electric field we need to add a
term [19]

HE−field =

ˆ
d2kψ† (−lEzσz)ψ, (1.19)

where l = 0.23Å is half the separation between the sub-lattices due to the buckling
of the lattice, Ez the strength of the perpendicular electric field and σz is the z Pauli
matrix acting in sub-lattice space. Notice that Eq. (1.19) has the same structure as
Eq. (1.14), and we thus immediately see that a band-gap proportional to Ez will be
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Figure 1.2.2: a) Schematic side-view of three layers of phosphorene. b) Schematic of
the lattice of phosphorene, top view. Figure extracted from Ref. [23].

opened. Silicene also has a larger spin-orbit coupling that opens an intrinsic gap,
although it is for most purposes still negligible (about 1.55 meV [20]).

Looking at the periodic table of elements, one might wonder what other monolayers
would be possible to create, and which ones are Dirac systems? A first guess would be
elements similar to carbon and silicon. If we look at the same column in the periodic
table, we find: germanium, tin and lead. These elements will have an even larger ionic
radius, and thus even more buckling (and more spin-orbit coupling). Germanene (a
monolayer of germanium) has already been grown on a substrate [21], and tinene (a
monolayer of tin) has been theoretically investigated and is predicted to be a Dirac
system with a buckling of 0.7Å[22], much larger than in silicene.

1.2.3 Phosphorene

A monolayer of phosphor, phosphorene, has also been experimentally realized recently
[24]. In contrast to the previous materials discussed, however, it is not a Dirac system
but has a gap even in the absence of spin-orbit coupling. The reason is that phosphor
has five valence electrons instead of four, and this causes the hexagonal lattice to deform
in a different way. The lattice is not buckled (as it is for silicene and germanene), but
puckered. This means that of a hexagon the leftmost three phosphor atoms lie in a
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different plane than the rightmost three atoms, as can be seen in Fig. (5.1.2). This
breaks inversion times time-reversal symmetry, which is a condition to have a massive
Dirac system.

1.2.4 Transition metal dichalcogenide monolayers

An interesting property of the 2D materials we have discussed so far is that they posses
a valley degree of freedom. This valley degree of freedom behaves similar to spin and
because of this there is the possibility to manipulate this degree of freedom, and thus
analogous to spintronics, to build ’valleytronic devices’. A major challenge is of course
to access this degree of freedom, and it is a topic of ongoing research.

One class of materials that seems to be particularly suited to valley manipulation
is transition metal dichalcogenide monolayers (TMDM). TMDM’s consist of a lattice
of MX2 atoms where M is a transition metal atom (most commonly Mo), and X is
a chalcogen atom (S, Se or Te). The lattice of MoS2 is depicted in Fig. 1.2.3. The
transition metal atom is sandwiched between two layers of the chalcogen atom, and they
form a hexagonal structure when seen from the top. Fig. 1.2.3c shows the dispersion
relation of MoS2, and we see that the low-energy excitations are massive Dirac fermions.

Unlike in graphene, there is no center of inversion in the lattice, which makes access-
ing the valleys of the system possible. In a recent experiment, researchers probed the
valley degree of freedom by circularly polarized photoluminescence [25]. They radiated
a sample of MoS2 monolayer with circularly polarized light, and measured the degree
of circular polarization

η(k) =

∣∣Pcv+ (k)
∣∣2 − ∣∣Pcv− (k)

∣∣2
|Pcv+ (k)|2 + |Pcv− (k)|2

, (1.20)

where Pcv+ is the absorption of left-handed light, and Pcv− that of right-handed light.
η (k) is thus the difference between the absorption of left and right handed light, divided
by the total absorption. The theoretical prediction of η(k) over the Brillouin zone can
be found in Fig. 1.2.3c. One can see a clear valley polarization, that was also measured
[25].
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Figure 1.2.3: a) The surroundings of the Mo atoms (blue) in a MoS2 monolayer. b) The
structure of a MoS2 monolayer as seen from the top. c) The conductance (purple) and
valence (blue) band, and in the middle the degree of circular polarization η(k). Figures
extracted from Ref. [25]



Chapter 2

Pseudo-QED

In the previous chapter we have explored some 2D materials that give rise to massless
and massive Dirac systems. The Dirac electrons in these systems also interact with each
other via the electromagnetic force. In this chapter we will investigate the electron-
electron interactions in these Dirac systems. It was long thought that the electrons in
graphene were very weakly interacting, but the observation of the fractional quantum
Hall effect [5], and the renormalization of the Fermi velocity [7, 6], have shown that in
clean samples and low temperatures, interactions play a crucial role. Electromagnetic
interactions in Dirac systems are usually studied in the static approximation, that is,
an instantaneous Coulomb force between the electrons is considered.

In this chapter, we aim to introduce another formalism, called Pseudo-QED, that
captures the full, relativistic interactions between the electrons. This theory was first
written down by E.C. Marino in 1993 [8], but has attracted renewed attention with
the rise of 2D Dirac systems in condensed matter. The idea is that, since in graphene
and similar materials there is no screening of the electromagnetic field, the photons
mediating the interactions are free to move out of the plane, while the electrons are
confined to the plane. In other words, there is a dimensional mismatch. The electrons
are (2+1)D (they are confined to the plane), and their interactions are mediated by
a U(1) gauge field that is (3+1)D. The way to treat this dimensional mismatch is to
start with QED in (3+1)D, confine the matter current to a plane, and then integrate
out the extra dimension of the gauge field. The effective theory that we obtain by this
procedure is called Pseudo-QED, since the Lagrangian contains a pseudo-differential
operator. It is sometimes also called reduced QED in the literature [26, 27, 28].

In Section 2.1, we will project QED in (3+1)D onto a plane, and obtain the effective

21
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electron-electron interaction in this plane. In Section 2.2, we will show that in the static
limit the effective interaction reduces to the Coulomb interaction, and in Section 2.3
we will derive the effective (2+1)D Lagrangian and show that it captures the same
information as the projection of QED onto the plane. We give the Feynman rules of
this Lagrangian in Section 2.4, and calculate two 1-loop Feynman diagrams to illustrate
how calculations proceed.

2.1 Projecting QED onto a plane

In this section, we will first obtain the effective interaction of electrons for QED in
(3+1)D. We then confine the electrons to a plane and integrate out the extra dimension
of the gauge field. We will see that, contrary to QED in (2+1)D, we are able to describe
the correct unscreened electromagnetic interaction in this way.

The standard QED-Lagrangian in (3+1)D is

LQED = −1

4
F µνFµν + ψ(i/∂ −m)ψ − eAµjµ + LGF , (2.1)

where F µν is the electromagnetic tensor, ψ is the electron field, m is the bare electron
mass, e the electron charge, Aµ the electromagnetic 4-potential, LGF is a gauge-fixing
term and jµ is the conserved matter current

jµ = ψ̄γµψ. (2.2)

Let us now obtain the effective current-current interaction by integrating out the Aµ
field. The generating functional is given by (we follow Ref. [8])

ZQED[jµ] =

ˆ
Dψ̄DψDAµeiS[ψ,ψ,Aµ]. (2.3)

We proceed by completing the square and using the result for a Gaussian integral.
First, we write

S[ψ, ψ,Aµ] =

ˆ
d4z

{
−1

4
F µνFµν + ψ(i/∂ −m)ψ − eAµjµ −

1

2
λ(∂µAµ)2

}
=

ˆ
d4z

{
−1

2
(∂µAν∂

µAν − ∂µAν∂νAµ)− 1

2
λ∂µAµ∂

νAν − eAµjµ

+ ψ
(
i/∂ +m

)
ψ

}
, (2.4)
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where −1
2
(λ∂µAµ)2 is the gauge-fixing term. We now partially integrate the first two

terms to obtain an expression quadratic in Aµ,

S[ψ, ψ,Aµ] =

ˆ
d4z

{
1

2
Aµ(∂α∂

αηµν − (1− λ)∂µ∂ν)Aν − eAµjµ + ψ(i/∂ −m)ψ

}
=

ˆ
d4z

{
1

2
AµG

µνAν − eAµjµ + ψ(i/∂ −m)ψ

}
, (2.5)

where Gµν = (∂α∂
αηµν − (1− λ)∂µ∂ν) is the inverse photon propagator. The first two

terms, which are quadratic and linear in Aµ respectively, can be rewritten by completing
the square

ˆ
d4z

{
1

2
Aµ(Gµν)

−1Aν − eAµjµ
}

=

ˆ
d4z

{
1

2
Ãµ(z)(Gµν)

−1(z)Ãν(z) + i

ˆ
d4z′

e2

2
jµ(z)Gµν(z − z′)jν(z′)

}
, (2.6)

where we used Gµα(z)Gαν(z′) = iδµν δ(z − z′) and made a redefinition Ãµ(z) = Aµ(z) +

i
´
d4z′ejαGαµ, which shifts the field by a constant. Finally, we substitute this result

back into Eq. (2.3) to obtain

ZQED[jµ] =

ˆ
Dψ̄DψDÃµ exp

{
i

ˆ
d4z

[
1

2
Ãµ(Gµν)

−1Ãν + i

ˆ
d4z′

e2

2
jµGµν(z − z′)jν

+ ψ(/∂ +m)ψ

]}
(2.7)

This expression is quadratic in Ãµ, and it is thus a Gaussian integral which can be
promptly solved. The result of this Gaussian integral is a constant proportional to
[det(Gµν)]

−1, which we can absorb into the measure of the path integral. The kinetic
term of the ψ field does not contribute to the effective current-current interaction, since
it does not contain the current so we ignore it. The generating functional then becomes

Zeff
QED =

ˆ
Dψ̄Dψ exp

{
−e

2

2

ˆ
d4zd4z′ [jµ(z)Gµν(z − z′)jν(z′)]

}
=

ˆ
Dψ̄Dψ exp

(
−e

2

2

ˆ
d4zd4z′

{
jµ(z)

[
−�ηµν + (1− 1

λ
)∂µ∂ν

]
1

(−�)2
jν(z′)

})
,

(2.8)

where we used that Gµν =
[
−�ηµν + (1− 1

λ
)∂µ∂ν

]
1

(−�)2
, with � the d’Alembertian

operator, is the photon propagator. Remembering that ∂µjµ = 0, since it is a conserved



24 Pseudo-QED

current, we see that only the first term in Eq. (2.8) contributes and we thus find

Zeff
QED =

ˆ
Dψ̄Dψ exp

[
−e

2

2

ˆ
d4zd4z′jµ(z)

(
ηµν
−�

)
jν(z′)

]
. (2.9)

To see what the effective interaction of (2+1)D electrons coupled to a (3+1)D U(1)
gauge field looks like, we now confine the matter current to a plane by writing [8]

jµ(x0, x1, x2, x3) =

j
µ
2+1(x0, x1, x2)δ(x3) µ = 0, 1, 2

0 µ = 3
. (2.10)

Substituting this into Eq. (2.9) we find (note that from now on µ=0,1,2)

Zeff
PQED =

ˆ
Dψ̄Dψ exp

{
−e

2

2

ˆ
d3zd3z′

[
jµ2+1(z)

ηµν
−�

∣∣∣∣
z3=z′3=0

jν2+1(z′)

]}
. (2.11)

The current-current interaction (the term quadratic in the current) is thus proportional
to the inverse d’Alembertian. We consider its Fourier transform

1

−�
=

ˆ
d4k

(2π)4
e−ik(z−z′) 1

k2
. (2.12)

Since z3 = z′3 = 0, we can calculate the integral over k3 as follows

1

−�

∣∣∣∣
z3=z′3=0

=

ˆ
d3k

(2π)3

dk3

(2π)

e−i[k0(z0−z′0)−k1(z1−z′1)−k2(z2−z′2)]

k2
0 − k2

1 − k2
2 − k2

3

=

ˆ
d3k

(2π)3

iπ

(2π)

e−i[k0(z0−z′0)−k1(z1−z′1)−k2(z2−z′2)]√
k2

0 − k2
1 − k2

2

=

ˆ
d3k

(2π)3

i

2

e−ik(x−y)

√
k2

(2.13)

The effective current-current interaction thus has the form

e2

ˆ
d3k

(2π)3

i

2

e−ik(x−y)

√
k2

(2.14)

2.2 The static limit

To gain some insight into the effective interaction Eq. (2.14), it is helpful to calculate
the static limit, which is obtained by setting j = 0. The continuity equation

∂j0

∂t
+∇ · j = 0, (2.15)
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then tells us that j0 is time-independent. Using this, Eq. (2.11) simplifies to (i = {1, 2})

Zeff
PQED =

ˆ
Dψ̄Dψ exp

[
−ie

2

4

ˆ
d2zd2z′j0(zi)

(ˆ
d3k

(2π)3
dz0dz′0

e−ik(z−z′)
√
k2

)
j0(z′i)

]
=

ˆ
Dψ̄Dψ exp

[
−ie

2

4

ˆ
d2zd2z′j0(zi)

(ˆ
d2k

(2π)2

e−i[−k1(z1−z′1)−k2(z2−z′2)]√
−k2

1 − k2
2

)
j0(z′i)

]

=

ˆ
Dψ̄Dψ exp

[
−1

2

ˆ
d2zd2z′j0(zi)

(ˆ
d2k

(2π)2

e2

2

e−ik(z−z′)
√
k2

)
j0(z′i)

]
, (2.16)

where in the last line k = (k1, k2) is now a 2-component vector. Now the j0 − j0

interaction is in this limit nothing but the static potential V between two electrons.
We can thus calculate

V = e2

ˆ
d2k

(2π)2

1

2

e−ik(z−z′)
√
k2

= e2

ˆ
dk

(2π)2

ˆ 2π

0

dθ
‖k‖
2

e−i‖k‖‖z−z
′‖Cos(θ)

√
k2

= e2

ˆ
dk

(2π)2

ˆ 2π

0

dθ
1

2
e−i‖k‖‖z−z

′‖Cos(θ)

= e2

ˆ
dk

(4π)
J0(‖k‖‖z − z′‖)

=
1

4π

e2

‖z − z′‖
. (2.17)

In the static limit we thus recover the Coulomb interaction between the electrons, as
expected. If we would consider QED in (2+1)D, we would not find this result, but rather
a static potential depending on the logarithm the separation between the electrons [29].
Pseudo-QED is thus the correct description of unscreened electron-electron interactions
in the plane.

2.3 The Pseudo-QED Lagrangian

To facilitate calculations, it would be nice to have an effective Lagrangian that is (2+1)D
from the start that gives us the same correlation functions. This Lagrangian was found
by Marino in 1993 [8], and has the form

LPQED = −1

2
F µν 1

(−�)
1
2

Fµν + ψ(i/∂ −m)ψ − ejµAµ. (2.18)
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Eq. (2.18) is completely (2+1)D, and all indices run from 0 to 2. The difference with
QED2+1 is the (−�)−1/2 in the first term. This is a pseudo-differential operator, and
makes the electromagnetic interactions in the theory non-local. The theory has nev-
ertheless been proven to be causal [30], and unitary [31]. The fact that the theory is
non-local is not a disaster, as it is an effective theory. In the Caldeira-Leggett model, de-
scribing dissipative quantum systems, one also obtains a non-local theory by integrating
out certain degrees of freedom [32].

2.3.1 The equations of motion and symmetries

The electrons in Pseudo-QED satisfy the (2+1)D Dirac equation

(iDµ −m)ψ = 0, (2.19)

where Dµ = ∂µ + iAµ is the covariant derivative, as one can find by varying Eq. 2.18
with respect to ψ. This is of course the same as for QED in (2+1)D. For the gauge
field, things are different. Let us vary the Pseudo-QED Lagrangian with respect to Aµ,
we find

δS =

ˆ
d3x

{
−1

2
(∂µδAν − ∂νδAµ)

1

(−�)
1
2

F µν − 1

2
F µν 1

(−�)
1
2

(∂µδAν − ∂νδAµ)− ejνδAν

}

=

ˆ
d3x

{
δAν

1

(−�)
1
2

∂µF
µν + ∂µF

µν 1

(−�)
1
2

δAν − ejνδAν

}
, (2.20)

where we partially integrated in the second line. Now because the inverse d’Alembertian
is a pseudo-differential operator, we can generically write it in terms of its kernelˆ

d3xG(x)
1√
−�

H(x) =

ˆ
d3y

ˆ
d3xG(x)K(x− y)H(y)

=

ˆ
d3y

ˆ
d3xH(x)K(x− y)G(y),

where K(x−y) is the kernel of the operator. Using this, we see that the first two terms
in Eq. (2.20) are equivalent, and we find

δS =

ˆ
d3x

{
δAν

2

(−�)
1
2

∂µF
µν − ejνδAν

}
. (2.21)

Hence the equation of motion is

2
∂µF

µν

(−�)
1
2

= ejν . (2.22)
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The Pseudo-QED Lagrangian is still gauge-invariant since F µν by itself is already
gauge-invariant and thus the introduction of the pseudo-differential operator does not
break it. If we take the fermions to be massless, the theory also has conformal symmetry.

2.3.2 Equivalence of Pseudo-QED and QED projected onto a

plane

To see that Pseudo-QED is equivalent to QED projected onto a plane (as considered
in the previous section), we will prove that the correlation functions of the two theo-
ries coincide. The correlation functions of a quantum field theory can be obtained in
the path integral formalism by coupling each field to a source and taking functional
derivatives with respect to the sources. Let us briefly review this procedure, and then
compare QED projected onto a plane and Pseudo-QED.

We take our generating functional for QED

ZQED =

ˆ
Dψ̄DψDAµ exp

{
i

[
Sfree + Sint +

ˆ
dz4
(
JµAAµ + Jψψ + J̄ψψ

)]}
, (2.23)

where we have split our action into a free action and the interacting action

Sint = −
ˆ
dz4ejµAµ,

Sfree =

ˆ
dz4

{
−1

4
F µνFµν + ψ(i/∂ −m)ψ

}
.

Note that we have introduced a source term for each field. We can now Taylor expand
exp (iSint) and replace the fields by functional derivatives with respect to the sources.
This means we can pull this term outside of the integral (we exchange the order of
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functional integration and differentiation). We obtain

ZQED =

ˆ
Dψ̄DψDAµ exp {iSint [Aµ, ψ]} exp

{
i

[
Sfree +

ˆ
dz4
(
JµAAµ + Jψψ + J̄ψψ

)]}
=

ˆ
Dψ̄DψDAµ (1 + iSint [Aµ, ψ] + ...) exp

{
i

[
Sfree +

ˆ
dz4
(
JµAAµ + Jψψ + J̄ψψ

)]}
=

ˆ
Dψ̄DψDAµ

(
1 + iSint

[
δ

δJµA
,
δ

δJψ

]
+ ...

)
× exp

{
i

[
Sfree +

ˆ
dz4
(
JµAAµ + Jψψ + J̄ψψ

)]}
=

(
1 + iSint

[
δ

δJµA
,
δ

δJψ

]
+ ...

) ˆ
Dψ̄DψDAµ

× exp

{
i

[
Sfree +

ˆ
dz4
(
JµAAµ + Jψψ + J̄ψψ

)]}
= exp

{
iSint

[
δ

δJµA
,
δ

δJψ

]}ˆ
Dψ̄DψDAµ

× exp

{
i

[
Sfree +

ˆ
dz4
(
JµAAµ + Jψψ + J̄ψψ

)]}
. (2.24)

Note that Sfree is quadratic in the fields. We can thus consider Sfree together with
the source terms, which are linear, and complete the square. In this way we obtain
(following the same steps as in Eq. (2.6))

Sfree + JµAAµ + Jψψ + Jψψ

=

ˆ
d4z

(
1

2
AµG

µν
A Aν +

1

2
ψGψψ + JµAAµ + Jψψ + Jψψ

)
(2.25)

=

ˆ
d4z′
ˆ
d4z

(
Aµ − i

ˆ
d4z′ JρAGAρµ

)
Gµν
A

(
Aν − i

ˆ
d4z′GAναJ

α
A

)
+

(
ψ − i

ˆ
d4z′ JψGψ

)
G−1
ψ

(
ψµ − i

ˆ
d4z′GψJψ

)
− 1

2
JµAGAµνJ

ν
A −

1

2
JψGψJψ

=

ˆ
d4z′
ˆ
d4z

1

2
AµG

µν
A Aν +

1

2
ψG−1

ψ ψ − 1

2
JµAGAµνJ

ν
A −

1

2
JψGψJψ (2.26)

where GAµν and Gψ are the Green’s functions of the Aµ and ψ fields respectively and we
have absorbed i into the Green’s functions. Also, we have made the shifts Aµ → Aµ +

i
´
d4z′ JρA(z′)GAρµ(z′), ψ → ψ+i

´
d4z′ Jψ(z′)Gψ(z′) and ψ → ψ+i

´
d4z′Gψ(z′)Jψ(z′).

Since we have pulled the interaction terms out of the integration, our integrals are now
Gaussian integrals, which will give us constants that we can absorb into the measure.
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We thus find

ZQED = exp

{
iSint

[
δ

δJµA
,
δ

δJψ

]}
exp

{
−1

2
JµAGAµνJ

ν
A −

1

2
JψGψJψ

}
. (2.27)

Calculating correlation functions amounts to taking functional derivatives of Eq. (2.27)
with respect to the sources. Thus, if the free Green’s functions and interaction terms
of two theories are equivalent, then their correlation functions are equivalent and the
theories themselves are equivalent.

We now compare QED projected onto a plane to Pseudo-QED. The first thing we
note is that the kinetic part of the fermions is the same. Both theories simply contain
the Dirac Lagrangian in (2+1)D, hence the fermion propagator will be the same. The
second thing we note is that the interaction terms in both theories are also equivalent,
and are simply

−ejµAµ,

where µ = 0, 1, 2. The final thing we need to show is that the free Green’s functions of
the gauge fields are the same. In the case of QED projected onto a plane, we couple
the Aµ field to a source term Jµ. We thus add a source term of the form

AµJ
µ.

But since the source also couples linearly to the gauge field, like the matter current jµ,
we can follow the exact same steps as in Eqs. (2.4)-(2.8) to find that the quadratic term
in JµA in the action becomes

Sfree =

ˆ
d4z′
ˆ
d4z

{
−1

2
JµA

[
−�ηµν +

(
1− 1

λ

)
∂µ∂ν

]
1

(−�)2
JνA

}
. (2.28)

We now also need to confine this source current to the plane, since the electrons source
the gauge field. We thus write

JµA =

J
µ
A(x0, x1, x2)δ(x3) µ = 0, 1, 2

0 µ = 3
. (2.29)

Let us for simplicity set λ = 1, we can then follow the steps in Eqs. (2.11)-(2.14) to
conclude

Sfree =

ˆ
d4z′
ˆ
d4z

{
−1

2
JµA

(ˆ
d2k

(2π)2

1

2

e−ik(z−z′)
√
k2

)
JνA

}
=

ˆ
d4z′
ˆ
d4z

{
−1

2
JµA

(
1

2

ηµν√
−�

)
JνA

}
. (2.30)
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Starting from the Pseudo-QED Lagrangian, and coupling the gauge field to a source
term JµA, we find (ignoring terms involving the fermions and introducing a gauge-fixing
term with λ = 1)

SPQED =

ˆ
d4z

[
−1

2
F µν 1

(−�)
1
2

Fµν + AµJ
µ
A −

1

2
λ∂µAµ

1

(−�)
1
2

∂µAµ

]

=

ˆ
d4z′
ˆ
d4z

{
−1

2
JµA

(
1

2

ηµν√
−�

)
JνA

}
, (2.31)

where we have completed the square and not written down the term quadratic in Aµ.
We see that the free photon propagators in the two theories also coincide, and we
thus conclude that QED and projected onto a plane is equivalent to the Pseudo-QED
Lagrangian.

2.3.3 Dimensional analysis

Let us briefly examine the mass dimensions of the fields and coupling constants of
Pseudo-QED. We are working in units where [m] = 1 and [dx] = −1. Since in the gen-
erating function the action appears in the exponent, the action must be a dimensionless
quantity. The action has the form

S =

ˆ
d3xL,

and thus for the action to be dimensionless we require

[L] = 3.

By looking at Eq. (2.18), we deduce from the fermion term

[ψ][m][ψ] = 3

[ψ] = 1.

For the kinetic term of the electromagnetic field we have

[∂µ][Aµ][�−1/2][∂µ][Aµ] = 3

[Aµ][�−1/2][Aµ] = 1

[Aµ] = 1,
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where we have used that [∂µ] = 1 and [�−1/2] = −1. We can now deduce the dimension
of the coupling constant e by considering the coupling term

[e][ψ][ψ][Aµ] = 3

[e] = 0.

We see that the electric charge e is a dimensionless quantity in Pseudo-QED. This means
that the theory is strictly re-normalizable, it can be re-normalized order-by-order. For
QED in (2+1)D the electric charge has dimension one, and this theory is thus super
re-normalizable, requiring only a finite amount of counter-terms to make the theory
finite. QED in (3+1)D also has a dimensionless electric charge, and by projecting the
theory onto a plane we see that the dimension of the coupling constant remains the
same. As we will see in the outlook, this is a general feature of projecting out one
dimension.

2.3.4 The anisotropic case

In the previous sections, we have derived Pseudo-QED for fully relativistic fermions. As
we have seen in Chapter 1, however, the Dirac fermions in condensed-matter systems
are quasi-relativistic. This means that they have a Fermi velocity vF that plays the role
of the speed of light c. The kinetic term of the fermions will thus become

ψ
(
iγ0∂0 + vFiγ

i∂i −m
)
ψ. (2.32)

To couple the fermions to the gauge field, we replace the partial derivatives by covariant
derivatives

Dµ = ∂µ − ieAµ, (2.33)

which ensures a local U(1) gauge symmetry. Inserting the covariant derivatives and
adding the kinetic term of the Aµ field, we obtain the Lagrangian for anisotropic Pseudo-
QED

L =− 1

2
F µν 1

(−�)
1
2

Fµν + ψ
(
iγ0∂0 + vFiγ

i∂i −m
)
ψ − eψγ0ψA0 − evFψγ

iψAi. (2.34)

Since we are concerned with applications to condensed-matter systems, we will mainly
use anisotropic Pseudo-QED in the rest of this thesis. The isotropic case can easily be
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obtained by setting vF = 1. If we take vF � c we obtain the static case again, since the
interaction term of Eq. (2.34) becomes

−eψγ0ψA0 − e
vF

c
ψγiψAi ≈ −eψγ0ψA0 = −ej0A0, (2.35)

where we restored c. Thus we see there is only a j0 interaction left, which is exactly
the case we investigated in Sec. (2.2). The value of the Fermi velocity in graphene is
vF ≈ c/300, and therefore it is tempting to consider only the static case since vF is still
quite small compared to c. As we will see however, there are effects which we can only
find by taking into account the full interaction, and they may even become independent
of vF in certain limits. If we consider renormalization group flow, one can find that for
the Fermi velocity, there is one stable point which is vF = c [10].

2.4 1-loop diagrams

The Feynman rules of anisotropic Pseudo-QED, corresponding to the Lagrangian in
Eq. (2.34), can be found in Table 2.1. The difference with regular QED lies in the
photon propagator. In Pseudo-QED, the photon propagator is proportional to ∼ |p|−1,
while in regular QED the photon propagator is proportional to ∼ p−2.

In this section, we will compute the polarization tensor and electron self-energy to
one-loop order. As we will see, the polarization tensor one-loop diagram is equivalent
to that of anisotropic QED, because there are no internal photon propagators. We
will use dimensional regularization to regularize the diagrams, and this has the nice
property that in odd dimensions it may make the diagrams finite. For the polarization
tensor, there is a big difference between choosing two-component and four-component
spinors. As we have seen in Chapter 1, the most natural choice for graphene is the
two-component representation. To illustrate the calculational techniques involved, we
will use the four-component representation in this chapter, and in the next chapter we
will examine the consequence of choosing the two-component representation.



2.4. 1-loop diagrams 33

i(γ0p0 + vFγ
ipi)

p2
0 − v2

Fp
2

i

p2 −m2

−igµν√
p2

ieγµ =

{
−ieγ0 µ = 0

−ievFγ
i µ = i

ig

Table 2.1: Feynman rules corresponding to the Pseudo-QED Lagrangian Eq. (2.34)

p

q

p+ q p

Figure 2.4.1: 1-loop electron self-energy diagram
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2.4.1 Electron self-energy

The one-loop diagram contributing to the electron self-energy is depicted in Fig. 2.4.1,
the full expression is

−iΣ = (ie)2

ˆ
d3q

(2π)3γ
µSF (p− q)γν−igµν√

q2

= (ie)2

ˆ
d3q

(2π)3γ
µ [γα (p− q)][

(q0 − p0)2 − v2
F (q− p)2]γµ 1√

q2
. (2.36)

First, we need to calculate the product of the gamma matrices, we rewrite

γµγ0γµ = γ0γ0γ0 + v2
Fγ

iγ0γi

= γ0 − v2
Fγ

0γiγi

= γ0
(
1− 2v2

F

)
, (2.37)

γµγiγµ = γ0γiγ0 + v2
Fγ

jγiγj

= −γi + v2
F

(
2gijγj − γiγjγj

)
= −γi + v2

F

(
2γi − 2γi

)
= −γi, (2.38)

where we repeatedly used the anti-commutation relation

{γµ, γν} = 2gµν . (2.39)

Substituting Eqs. (2.37) and (2.38) into Eq. (2.36), we obtain

−iΣ = (ie)2

ˆ
d3q

(2π)3

[γ0 (1− 2v2
F) (p0 − q0)− γivF (pi − qi)][

(q0 − p0)2 − v2
F (q− p)2] 1√

q2
. (2.40)

The next step is to combine the denominators using the Feynman trick

1

AB
1
2

=
1

2

1ˆ

0

dx
(1− x)−

1
2

[Ax+B(1− x)]
3
2

. (2.41)
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The denominator becomes

Ax+B(1− x) = (q0 − p0)2 − v2
F (q− p)2 + x

[
q2

0 − q2 − (q0 − p0)2 + v2
F (q− p)2]

= q2
0 + p2

0 − 2p0q0 − v2
F

[
q2 + p2 − 2pq

]
+ x

[
−q2

(
1− v2

F

)
− p2

0 + 2p0q0 + v2
F

(
p2 + 2pq

)]
= q2

0 − 2p0q0 (1− x) +
[
−x− v2

F(1− x)
]
q2 + 2v2

Fpq (1− x)

+
(
p2

0 − v2
Fp

2
)

(1− x)

= [q0 + p0(1− x)]2 − p2
0 (1− x)2 +

[
−x− v2

F(1− x)
]︸ ︷︷ ︸

≡α

q2

+ 2v2
Fpq (1− x) +

(
p2

0 − v2
Fp

2
)

(1− x)

= [q0 − p0(1− x)]2 − p2
0 (1− x)2 + α

[
q + p

v2
F

α
(1− x)

]2

− p2v
4
F

α
(1− x)2 +

(
p2

0 − v2
Fp

2
)

(1− x)

= [q0 − p0(1− x)]2 + α

[
q + p

v2
F

α
(1− x)

]2

+ p2
0x(1− x)

− v2
Fp

2(1− x)

[
1 + (1− x)

v2
F

α

]
= [q0 − p0(1− x)]2 + α

[
q + p

v2
F

α
(1− x)

]2

−∆1, (2.42)

where
∆1 = −p2

0x(1− x) + v2
Fp

2(1− x)

[
1 + (1− x)

v2
F

α

]
.

We now substitute Eq. (2.42) into Eq. (2.40) to find

−iΣ = (ie)2 1

2

1ˆ

0

dx (1− x)−
1
2

ˆ
d3q

(2π)3

γ0 (1− 2v2
F) (p0 − q0)− γivF (pi − qi)[

[q0 − p0(1− x)]2 + α
[
q + p

v2F
α

(1− x)
]2

−∆1

]3/2

= (ie)2 1

2

1ˆ

0

dx (1− x)−
1
2

ˆ
d3q

(2π)3

γ0 (1− 2v2
F)xp0 − γivFpi

[
1 +

v2F
α

(1− x)
]

[q2
0 + αq2 −∆1]

3/2
,

(2.43)

where the terms odd in q do not contribute. The q0 integral has the formˆ
dq0

2π

1

(q2
0 −M)

3/2
=

2

−M
1

2π
, (2.44)
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using this we find

−iΣ = (ie)2 1

2π

1ˆ

0

dx (1− x)−
1
2

ˆ
d2q

(2π)2

γ0 (1− 2v2
F)xp0 − γivFpi

[
1 +

v2F
α

(1− x)
]

(αq2 −∆1)

= (ie)2 1

2π

1ˆ

0

dx (1− x)−
1
2

ˆ
d2q

(2π)2

γ0 (1− 2v2
F)xp0 − γivFpi

[
1 +

v2F
α

(1− x)
]

α
(
q2 − ∆1

α

) .

(2.45)

The remaining integral over q is linearly divergent, and we employ dimensional regu-
larization to extract the divergence. For details on this procedure see Appendix A. The
diverging part of the integral is

ˆ
dnq

1

(q2 −∆)
= −2π

ε
, (2.46)

Substituting Eq. (2.46) into Eq. (2.45), we obtain

−iΣ = − (ie)2 1

ε

1

(2π)2

1ˆ

0

dx (1− x)−
1
2

γ0 (1− 2v2
F)xp0 − γivFpi

[
1 +

v2F
α

(1− x)
]

α
.

(2.47)

All that is left to do now is the parametric integral. We compute

1ˆ

0

dx
(1− x)−

1
2 x

−x− v2
F(1− x)

= 2

 1

v2
F − 1

+
v2

F arctan
(√

v2
F − 1

)
(v2

F − 1)
3/2


≡ F1, (2.48)

1ˆ

0

dx
(1− x)−

1
2

[
1 +

v2F
α

(1− x)
]

−x− v2
F(1− x)

=

1ˆ

0

dx
(1− x)−

1
2 +

v2F
α

(1− x)
1
2

−x− v2
F(1− x)

=
1

v2
F − 1

[
−1− (v2

F − 2)√
v2

F − 1
arcsin

(√
v2

F − 1

vF

)]
= F2. (2.49)

Using these integrals, the final result is

−iΣ = e2 1

ε

1

(2π)2

[
γ0
(
1− 2v2

F

)
F1p0 − γiF2vFpi

]
. (2.50)
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p

p+ q

p

q

Figure 2.4.2: 1-loop diagram contributing to the polarization tensor

2.4.2 Polarization tensor

The 1-loop diagram contributing to the polarization tensor is shown in Fig. 2.4.2. The
full expression is

iΠµν = −(ie)2

ˆ
d3q

(2π)3
Tr [γµSF (p+ q)γνSF (q)]

= (ie)2

ˆ
d3q

(2π)3

Tr
[
γµγαγνγβ

]
qβ (q + p)α[

(p0 + q0)2 − v2
F (q + p)2] (q2

0 − v2
Fq)

. (2.51)

Because the Lorentz symmetry is broken by the Fermi velocity, it is most convenient
to consider the components of the polarization tensor separately. We will compute the
spatial component here, where µ = i, ν = j. The trace then becomes

Tr
[
γiγαγjγβ

]
= 4

(
giαgjβ − gijgαβ + giβgjα

)
. (2.52)

Using this we find

iΠij = (ie)2 v2
F4

ˆ
d3q

(2π)3

(
giαgjβ − gijgαβ + giβgjα

)
qβ (q + p)α[

(p0 + q0)2 − v2
F (p + q)2] (q2

0 − v2
Fq

2)

= (ie)2 v2
F4

ˆ
d3q

(2π)3

[
v2

F (q + p)i qj − gijqα (q + p)α + v2
F (q + p)j qi

]
[
(p0 + q0)2 − v2

F (p + q)2] (q2
0 − v2

Fq
2)

. (2.53)

We now again combine the denominators using the Feynman trick in the form

1

AB
=

ˆ 1

0

dx
1

[Ax+B(1− x)]2
. (2.54)
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The denominator becomes

Ax+B(1− x) = q2
0 − v2

Fq
2 + x

[
(p0 + q0)2 − v2

F (p + q)2 − q2
0 + v2

Fq
2
]

= q2
0 − v2

Fq
2 + x

[
p2

0 + 2p0q0 − v2
Fp

2 − 2v2
Fpq

]
= (q0 + xp0)2 − v2

F (q + xp)2 + x (1− x)
[
p2

0 − v2
Fp

2
]
. (2.55)

Substituting Eq. (2.55) into Eq. (2.53) we find

iΠij = (ie)2 v2
F4

ˆ 1

0

dx

ˆ
d3q

(2π)3

[
v2

F (q + p)i qj − gijqα (q + p)α + v2
F (q + p)j qi

]
[
(q0 + xp0)2 − v2

F (q + xp)2 + x (1− x) (p2
0 − v2

Fp
2)
]2 .

(2.56)

We shift q0 → q0 − xp0 and q→ q− xp, the terms odd in q do not contribute and we
find

iΠij = (ie)2 v2
F4

ˆ 1

0

dx

ˆ
d3q

(2π)3

[2v2
F (qiqj − x(1− x)pipj)− gijq2 + gijx(1− x) (p2

0 − v2
Fp

2)]

[q2
0 − v2

Fq
2 + x (1− x) (p2

0 − v2
Fp

2)]
2 .

(2.57)

We can use Lorentz invariance to find
ˆ
d2q

qiqj

F (q2)
= −g

ij

2

ˆ
d2q

q2

F (q2)
, (2.58)

where F (p2) is any (nice enough) denominator. Using this identity two terms cancel in
Eq. (2.57), and we obtain

iΠij = (ie)2 v2
F4

ˆ 1

0

dx

ˆ
d3q

(2π)3

[−2v2
Fx(1− x)pipj − gijq2

0 + gijx(1− x) (p2
0 − v2

Fp
2)]

[q2
0 − v2

Fq
2 + x (1− x) (p2

0 − v2
Fp

2)]
2 .

(2.59)

We now compute the q0 integral using

ˆ
dq0

2π

1

(q2
0 −∆)

2 =
iπ

2 (∆)3/2
,

ˆ
dq0

2π

q2
0

(q2
0 −∆)

2 =
iπ

2
√

∆
. (2.60)



2.4. 1-loop diagrams 39

We obtain

iΠij = (ie)2 v2
Fi

ˆ 1

0

dx

ˆ
d2q

(2π)2

{
[−2v2

Fx(1− x)pipj + gijx(1− x) (p2
0 − v2

Fp
2)]

[v2
Fq

2 − x (1− x) (p2
0 − v2

Fp
2)]

3/2

+
−gij

[v2
Fq

2 − x (1− x) (p2
0 − v2

Fp
2)]

1/2

}

= (ie)2 v2
Fi

ˆ 1

0

dx

ˆ
d2q

(2π)2

{
[−2v2

Fx(1− x)pipj + gijx(1− x) (p2
0 − v2

Fp
2)]

v3
F [q2 −∆1]3/2

+
−gij

vF [q2 −∆1]1/2

}
, (2.61)

where we defined
∆1 =

x (1− x)

v2
F

(
p2

0 − v2
Fp

2
)
.

The q integrals we can calculate using dimensional regularization, and we obtainˆ
d2q

1

[q2 −∆1]1/2
= 2π (−∆1)1/2 ,

ˆ
d2q

1

[q2 −∆1]3/2
= 2π (−∆1)−1/2 .

Evaluating the q integrals the polarization tensor becomes

iΠij = (ie)2 v2
Fi

ˆ 1

0

dx
1

2π

{
x(1− x) [gij (p2

0 − v2
Fp

2)− 2v2
Fp

ipj]

v2
F [−x (1− x) (p2

0 − v2
Fp

2)]
1/2

+
−gij

v2
F

(
−x (1− x)

(
p2

0 − v2
Fp

2
))1/2

}
. (2.62)

The parametric integrals have the formˆ 1

0

dx
√
x(1− x) =

π

8
,

so the result for the polarization tensor is

iΠij = −e2i
1

16

{
[gij (p2

0 − v2
Fp

2)− 2v2
Fp

ipj]

(v2
Fp

2 − p2
0)

1/2

−gij
(
v2

Fp
2 − p2

0

)1/2
}
.

= −e2i
1

8

{
gij (p2

0 − v2
Fp

2)− v2
Fp

ipj

(v2
Fp

2 − p2
0)

1/2

}
. (2.63)

The other components of the polarization tensor follow by a similar calculation.





Chapter 3

Calculating transport properties using
Pseudo-QED

Now that we have derived the Feynman rules of Pseudo-QED and examined how calcu-
lations can be done within this formalism, we are ready to turn to actually calculating
physical observables. In this Chapter we will focus on transport properties of Pseudo-
QED. First, we will briefly review the theory of linear response theory and in particular
Kubo’s formula for conductivity. After this, we will apply linear response theory to
Pseudo-QED and introduce the notion of valley conductivity, which arises due to the
valley degree of freedom in graphene-like systems. We will then review the results of
Ref. [9], where an interaction-driven quantum valley Hall effect is found in massless
Dirac systems, and those of Ref. [12], where the authors found an interaction-driven
quantum Hall effect in massive Dirac systems, in addition to a quantum valley Hall
effect.

3.1 Kubo’s formula

In this section we will derive Kubo’s formula for the electrical conductivity, following
Refs. [33, 34]. Kubo’s formula gives us the response function of a perturbation to
a given system. The idea is that we consider a system in equilibrium, and then at
a certain time turn on the perturbation. We are then interested in the response of
this system to the perturbation. For example, if we apply a potential to a system
in equilibrium, a current may flow through this system as a response. The response
functions characterize the transport properties of a system, and are thus important

41
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quantities to calculate. In general it is very hard to predict how a system will respond
to a perturbation, but making the assumption that the perturbation is small, and thus
linearly coupled to the response, simplifies the problem a lot. In the case of QED (and
Pseudo-QED), the electrons are coupled linearly to the Aµ field, and linear-response
theory is thus enough to calculate the conductivity.

Let us assume that we have a linear perturbation of our Hamiltonian of the form
(again we follow Ref. [34])

Hint(t) =

ˆ
dd−1xφj(x, t)Oj(x, t), (3.1)

where φ is the source term and O is the observable being perturbed. The question is
now, how does the expectation value of the observable change under the perturbation?
This can be expressed as

δ 〈Oi (x, t)〉 =

ˆ
dd−1x′dt′χij (x− x′, t− t′)φj (x′, t′) , (3.2)

where χij is the response function, and where we have assumed space- and time-
translational invariance. To identify χij, we compute the expectation value of the
operator defined as

〈Oi (x, t)〉 = Tr [ρ(x, t)Oi(x, t)] , (3.3)

where ρ is the density matrix. If we work in the interaction picture (see Ref. [35]), the
time-evolution operator is given by

U(t, t0) = T

exp

−i tˆ

t0

Hint(t
′)dt′

 , (3.4)

where T is the time-ordering operator. If we let ρ0(x) denote the density matrix at
time t = −∞, and define U(t) = U(t,−∞), we can write

ρ(x, t) = U(t)ρ0(x)U−1(t). (3.5)
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Substituting Eq. (3.5) into Eq. (3.3), we obtain

〈Oi (x, t)〉 = Tr
[
ρ0(x)U−1(t)Oi(x, t)U(t)

]
= Tr

ρ0(x)

Oi(x, t) + i

tˆ

−∞

dt′ [Hint(t
′),Oi(x, t)] + . . .


≈ 〈Oi (x, t)〉 |φ=0 + i

tˆ

−∞

dt′ 〈[Hint(t
′),Oi(x, t)]〉

= 〈Oi (x, t)〉 |φ=0 + δ 〈Oi (x, t)〉 , (3.6)

where we expanded the exponential in the time-evolution operator up to first order. We
thus see that turning on the source term gives the following change in the expectation
value of the operator

δ 〈Oi (x, t)〉 = i

tˆ

−∞

dt′ 〈[Hint(t
′),Oi(x, t)]〉

= i

tˆ

−∞

dt′
ˆ
dd−1x 〈[Oj(x′, t′),Oi(x, t)]〉φj(x′, t′)

= i

+∞ˆ

−∞

dt′
ˆ
dd−1x θ(t− t′) 〈[Oj(x′, t′),Oi(x, t)]〉φj(x′, t′), (3.7)

where θ is the Heaviside step function. Comparing Eq. (3.7) to Eq. (3.2), we find that
the response function is

χij (x− x′, t− t′) = −iθ(t− t′) 〈[Oi(x, t),Oj(x′, t′)]〉 . (3.8)

This is the Kubo formula in its general form.

3.1.1 Conductivity

Let us now apply the Kubo formula of Eq. (3.8) to the specific case of electrical con-
ductivity. The perturbation term of the Hamiltonian is in this case

Hint(t) = e

ˆ
dd−1xAµj

µ (3.9)
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We can write the response of the system to the perturbation as

δ 〈ji (k, ω)〉 = σij(k, ω)Ej(k, ω), (3.10)

where σij is the conductivity and Ej is the electric field. Eq. (3.10) is Ohm’s law restated
in the language of quantum field theory. Let us pick the gauge A0 = 0 for simplicity.
In this case Ei = −∂0Ai, or in Fourier space

Ai(k, ω) =
Ei(k, ω)

iω
. (3.11)

Combining Eqs. (3.11) and (3.10) with (3.2) we obtain

δ 〈ji (k, ω)〉 = e2χij(k, ω)

iω
Ai(k, ω), (3.12)

and we thus read off

σij(k, ω) = e2χij(k, ω)

iω
. (3.13)

Considering the Kubo formula in momentum space now yields

χij(k, ω) = −i
ˆ
dxdtei(ωt−kx)θ(t) 〈[ji(x, t), jj(0, 0)]〉 .

= 〈jijj〉 ret(k, ω), (3.14)

which is the retarded Green’s function of the current. At T = 0 and ω = 0, which are
the cases we will consider here, this Green’s function coincides with time-ordered (Feyn-
man) Green’s function, which is the quantity we compute in a quantum field theory.
Substituting Eq. (3.14) into Eq. (3.13), we obtain the expression for the conductivity

σij(k, ω) = −e2 i 〈jijj〉
ω

, (3.15)

where 〈jijj〉 is now the time-ordered correlation function.
The current-current correlation function is defined in the path-integral formalism as

〈jijj〉 = N

ˆ
DψDψDAµjijjei

´
d3xSfree−eAµjµ , (3.16)

whereN is the proper normalization factor and Sfree is the quadratic part of the Pseudo-
QED Lagrangian. We can now replace the currents in this expression with functional
derivatives with respect to Aµto find

〈jijj〉 = − 1

e2
N

ˆ
DψDψDAµ

δ

δAi
|j=0

δ

δAi
|i=0 ei

´
d3xSfree−eAµjµ , (3.17)
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but this is the 2-point function of the Aµfield, or in other words the polarization tensor
Πij. We can thus rewrite the Kubo formula as

σij(k, ω) = −e2 i 〈jijj〉
ω

=
iΠij

ω
, (3.18)

where Πij is the polarization tensor. We will be interested in the zero frequency and
momentum limit (the DC-conductivity), which we denote

σij = lim
ω→0,k→0

iΠij

ω
. (3.19)

3.2 Conductivity in Dirac systems

In graphene-like systems we a have a valley degree of freedom. This arises because of
the lattice structure, and, as we have seen in Chapter 1, it can be seen as a ’pseudo-spin’
degree of freedom. The two valleys in the system are related by time-reversal symmetry,
and there are two valley currents. This allows us to define the total conductivity

σijtot = lim
ω→0,p→0

{
i 〈jijj〉
ω

+
i 〈jijj〉T

ω

}
= σtotxx δ

ij + σtotxy ε
ij, (3.20)

which is the sum of the two valley currents, and the valley conductivity,

σijval = lim
ω→0,p→0

{
i 〈jijj〉
ω

− i 〈jijj〉T

ω

}
= σvalxx δ

ij + σvalxy ε
ij, (3.21)

which is the difference of the two valley currents, where εij is the Levi-Civita symbol
and we have split the conductivities into a longitudinal and a transverse part. The
valley conductivity is analogous to the spin conductivity, which is a measure of the spin
current. One key difference to keep in mind between spin and valley, is that valley is
a degree of freedom coming from the geometry of the lattice, and thus does not exist
outside of the lattice (unlike spin).

In this section we will calculate the longitudinal and transverse conductivities of
graphene (following Ref. [9]), and calculate the transverse conductivity of massive Dirac
systems (following Ref. [12]), all at T = 0 and using Pseudo-QED.

3.2.1 Conductivity in graphene

We now apply the Kubo formula for conductivity, Eq. (3.19), to massless electrons
to study the conductivity of graphene using the Pseudo-QED formalism. We follow
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Ref. [9] in this section. As we have seen in Sec. 3.1.1, to obtain the conductivity, we
need to compute the polarization tensor of the theory.

The one-loop diagram of the polarization tensor is shown in Fig.2.4.2, and it is in fact
equal to the result from QED in (2+1)D. This is because there are no internal photon
lines, and the fermion propagators of the two theories coincide. We can thus use the
result from QED in (2+1)D for the 1-loop diagram. We will use the 2-component spinor
representation, as this arises naturally out of the tight-binding description in graphene
(see Chapter 1). In this representation the result for the polarization tensor is different
from the one that we have calculated in Chapter 2. The 2-component diagram has
already been calculated a while ago by Coste and Lüscher [36], and the result is

Π
(1)
ij (p) = −ie2A(p)Pij − e2iBεij0p

0, (3.22)

where A(p) =
√
p2

0 − v2
Fp

2/16, B = (1/2π)(n + 1/2) with n integer and Pµν = ηµν −
v2

Fpµpν/
√
p2

0 − v2
Fp

2, which is the transverse projection operator. The second term in
Eq. (3.22) is a topological term (it does not depend on the specifics of our metric), and
gives a topological mass to the photon. This effect is specific to QED in (2+1)D and
only arises when choosing a two-component spinor representation, and it is referred
to in the literature as a Chern-Simons term, or a ’toplogical mass’ term. Coste and
Lüscher found this result using lattice regularization, and found the integer n to be the
winding number of the free fermion propagator. Using other regularization methods
produces the expression only for a specific n, and Eq. (3.22) is thus the most general
result.

The 2-loop result is specific to Pseudo-QED, as the diagrams include internal photon
lines. It was calculated in Ref. [37], and found to be

Π
(2)
ij (p) = −ie2

√
p2

0 − v2
Fp

2

16
CααgPµν , (3.23)

with Cα = (92− 9π2) /18π and αg ≈ 300/137. The topological term does not receive
any corrections from the 2-loop diagrams, and in fact does not receive any corrections
at all according to the Coleman-Hill theorem [38]. We now have the polarization tensor
up to 2-loop order, and we can thus calculate the total and valley DC-conductivities
using Eqs. (3.20) and (3.21).
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3.2.1.1 Longitudinal conductivity

Let us start with the longitudinal component of the total conductivity. We combine
the longitudinal parts of Eq. (3.23) and (3.22) to find

iΠlongitudinal
ij =

{
e2
√
p2

0 − v2
Fp

2Pij
16ω

[
1 +

(92− 9π2)

18π
αg

]}
. (3.24)

We now have to take the zero momentum and frequency limit, and the order is quite
important [39] (the momentum limit should be taken first). We note that in the zero
momentum limit Pij → ηij. Under time reversal (i→ −i, p0 → p0, p→ −p), Eq. (3.24)
does not change and thus the two valleys contribute evenly. Taking also into account
a factor of two for the spins, and restoring factors of ~, we find by replacing Eq. (3.24)
into Eq. (3.20)

σtotxx δij = lim
ω→0,p→0

{
4e2
√
p2

0 − v2
Fp

2Pij
~16ω

[
1 +

(92− 9π2)

18π
αg

]}

= lim
ω→0

{
4e2
√
p2

0δij
~16ω

[
1 +

(92− 9π2)

18π
αg

]}

= δij

(
2e2

πh

)[
1 +

(92− 9π2)

18π
αg

]
. (3.25)

Thus the longitudinal total conductivity is

σtotxx =

(
2e2

πh

)[
1 +

(92− 9π2)

18π
αg

]
≈ 1.76

e2

h
. (3.26)

The experimental result for the conductivity, extrapolated to zero temperature is σtotxx =

2.16e2/h. This indicates that there are other factors not included in this model, that
also contribute to conductivity. A big assumption in the model here is that it is a
perfect lattice, and perhaps including disorder would improve the result [9].

Looking at the definition of the valley conductivity Eq. (3.21) and the result Eq. (3.24),
we can immediately see that the longitudinal valley conductivity vanishes, since the lon-
gitudinal part of the polarization tensor is invariant under time-reversal, and thus the
contributions from the two valleys will cancel each other.
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3.2.1.2 Transverse conductivity

As we can read off from Eqs. (3.20) and (3.21), the transverse conductivity will be
proportional the Levi-Civita symbol εij. We have already seen that such a term can
only come from the 1-loop diagram, and its expression is

Πtransverse
ij = −i e

2

2π
(n+

1

2
)εij0p

0. (3.27)

This expression is not invariant under time reversal symmetry, but changes sign. We
can thus conclude that there is no total transverse conductivity, since the contributions
from the two valleys will cancel each other out. There is, however, a transverse valley
conductivity. Substituting Eq. (3.27) into Eq. (3.21), taking into account a factor of
two for the spins and restoring ~, we obtain

σtotxy ε
ij = lim

ω→0,p→0

{
2e2

~π
(n+

1

2
)εij

p0

ω

}
=

4e2

h
(n+

1

2
)εij. (3.28)

Hence one obtains a universal, quantized, transverse valley current. This is thus a
quantum valley Hall effect, induced by the electromagnetic interactions in graphene.

3.2.2 Conductivity in massive Dirac systems

Let us now turn to massive Dirac systems. This section follows Ref. [12]. We now add
a mass term to the electrons such that the Lagrangian becomes

L = −1

2
F µν 1

(−�)
1
2

Fµν + ψ(i/∂ −mψ)ψ − ejµAµ, (3.29)

we define mψ = ξm0, with m0 > 0 and ξ = ±1 depending on the valley we are
considering.

Our goal is now to apply the analysis from the previous section to massive Dirac
systems. For this we need the result for the 1-loop polarization tensor diagram at finite
mass, this was also calculated by Coste and Lüscher and reads

Πij = e2A(p, ω)Pij − e2iB(p, ω)εijp
0, (3.30)
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where now

A(p, ω,∆) =
1

2π

1ˆ

0

dt
t(1− t) (p2

0 − v2
Fp

2)√
m2
ψ − t(1− t) (p2

0 − v2
Fp

2)
,

B(p, ω,∆) =
n

2π
+

1

4π

1ˆ

0

dt

1 +
mψ√

m2
ψ − t(1− t) (p2

0 − v2
Fp

2)

 . (3.31)

Since the valleys are related by time-reversal symmetry, the way we introduced the mass
in Eq. (3.29) make it so that the mass flips sign under this transformation. We see that
A(p, ω) is invariant under time-reversal, while B(p, ω) is not, due to the presence of
the mψ. We now compute the parametric integrals to find

lim
ω→0,p→0

A(p, ω,mψ) = 0,

lim
ω→0,p→0

B(p, ω,mψ) =

 1
2π

(n+ 1) mψ > 0

1
2π
n mψ < 0

. (3.32)

Since A(p, ω) is zero, the longitudinal conductivity will be zero. To find the transverse
conductivity we follow the same procedure as for the massless case. The transverse part
of the polarization tensor is

Πtransverse
ij = −iεijp0B(mψ), (3.33)

and its time-reversal is (
Πtransverse
ij

)T
= iεijp

0B(−mψ).

Substituting this into Eqs. (3.20) and (3.21), taking into account a factor of two for the
spins and reintroducing ~, we obtain

σtotxy =
4πe2

h
[B(mψ)−B(−mψ)]

= 2
e2

h
, (3.34)

and

σvalxy =
4πe2

h
[B(mψ) +B(−mψ)]

=
4e2

h
(n+

1

2
). (3.35)
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We thus find the same quantum valley Hall effect as in the massless case, but now there
is also a quantum Hall effect. This quantum Hall effect is again universal, and is found
in the absence of any magnetic field whatsoever.



Chapter 4

Coupling massive Pseudo-QED to a
scalar field

In this chapter, we investigate the change of the QHE and QVHE in massive Dirac
systems described in the previous chapter, in the presence of a massive scalar field σ,
which we couple to the fermions via a quartic interaction. The Lagrangian takes the
form

L = −1

2

(F µν)2

√
−�

+ ψ̄(iγ0∂0 + ivFγ
i∂i−mψ)ψ+

1

2
∂µσ∂µσ−

1

2
m2
σσ

2− eψ̄γµψAµ + gψ̄ψσ2,

(4.1)
where F µν is the electromagnetic tensor, ψ is the electron field, σ the scalar field, mψ

the electron mass, mσ the scalar field mass, g the new coupling between electrons and
the scalar field, e the electron charge and Aµ the electromagnetic 4-potential.

In addition to standard anisotropic Pseudo-QED, as considered in the previous
chapters, there are now two extra Feynman rules, depicted in Table 4.1. We now
have two dimensionless coupling constants, the electric charge e and the new coupling
constant g governing the interaction between the electrons and the new scalar field.
Since [g] = [e] = 0, i.e. the coupling constants are dimensionless, our theory is still
renormalizable.

51



52 Coupling massive Pseudo-QED to a scalar field

i

p2 −m2

ig

Table 4.1: Feynman rules involving the scalar field corresponding to Lagrangian
Eq. (4.1)

p
q

k
q

p

q − p

Figure 4.1.1: Two loop diagram involving the scalar field contributing to the polarization
tensor

4.1 Transverse conductivity

We calculate the contribution to the transverse current to lowest order in g. There is one
Feynman diagram contributing, which is depicted in Fig. (4.1.1). The full expression is

iΠij = −2(ie)2(ig)v2
F

ˆ
d3k

(2π)3

d3q

(2π)3

{
i

k2 −m2
σ

Tr
[
γiSF (q)2γjSF (q − p)

]}
, (4.2)

where we put a minus sign for the fermion loop and a symmetry factor of 2. Since the
momentum of the bosonic loop does not mix with anything else, we can immediately
calculate the integral

ˆ
d3k

(2π)3

i

k2 −m2
=
−2
√
π

(4π)3/2
mσ

= −mσ

4π
, (4.3)
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using dimensional regularization. Substituting Eq. (4.3) into Eq. (4.41) we find

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

) ˆ
d3q

(2π)3

{
Tr
[
γiSF (q)2γjSF (q − p)

]}
. (4.4)

We again consider the two-component representation of the spinors, in which we take
the gamma matrices to equal the Pauli matrices. We then have

Tr [γµγνγρ] = 2iεµνρ. (4.5)

Our full expression is thus (we use the notation qp = q0p0 − v2
Fqp and q = (q0, vFq)

again),

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)

ˆ
d3q

(2π)3

{
Tr
[
γi (γαqα +mψ) 2γj

(
γβ(q − p)β +mψ

)](
q2 −m2

ψ

)2 [
(q − p)2 −m2

ψ

] }
.

(4.6)

Now the transverse conductivity will be proportional to εij0p0, terms like this will in
our case only arise from terms with 3 or 5 gamma matrices. We only consider these
terms, since we are interested in the transverse conductivity. The terms with 3 gamma
matrices are

2m2
ψTr

[
γiγ0γj

]
q0 +m2

ψTr
[
γiγjγ0

]
(q0 − p0)

=2m2
ψTr

[
γiγ0γj

]
q0 −m2

ψTr
[
γiγ0γj

]
(q0 − p0)

=m2
ψTr

[
γiγ0γj

]
(q0 + p0)

=2m2
ψiε

i0j (q0 + p0) . (4.7)

The term with 5 gamma matrices is

Tr
[
γiγαγβγjγδ

]
qαqβ (q − p)δ

=− Tr
[
γiγβγαγjγδ

]
qαqβ (q − p)δ + 2gαβTr

[
γiγjγδ

]
qαqβ(q − p)δ

=− Tr
[
γiγαγβγjγδ

]
qαqβ (q − p)δ + 4iεij0q2(q0 − p0). (4.8)

Here we have used the fact that q commutes with itself and renamed the dummy indices.
It follows that

Tr
[
γiγαγβγjγδ

]
qαqβ (q − p)δ = 2iεij0q2 (q0 − p0) (4.9)
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So our complete expression, keeping only the terms contributing to the transverse con-
ductivity, becomes

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)

ˆ
d3q

(2π)3

{
2iεij0

[
q2(q0 − p0)−m2

ψ(q0 + p0)
](

q2 −m2
ψ

)2 [
(q − p)2 −m2

ψ

] }
.

(4.10)

The next step is to combine the denominators, we use the Feynman trick

1

A2B
=

Γ(3)

Γ(2)Γ(1)

1ˆ

0

dydx
yδ (1− x− y)

(yA+ xB)3

= 2

1ˆ

0

dx
(1− x)

[(1− x)A+ xB]3
. (4.11)

The denominator then becomes

(1− x)A+ xB = (1− x)
[
q2

0 − v2
Fq

2 −m2
ψ

]
+ x

[
(q0 − p0)2 − vF (q− p)2 −m2

ψ

]
= q2

0 − v2
Fq

2 −m2
ψ + x

[
p2

0 − 2p0q0 − v2
Fp

2 + 2v2
Fpq

]
= q2

0 − 2xp0q0 − v2
Fq

2 −m2
ψ + x

[
p2

0 − v2
Fp

2 + 2v2
Fpq

]
= (q0 − xp0)2 + x(1− x)p2

0 − v2
Fq

2 −m2
ψ + x

[
−v2

Fp
2 + 2v2

Fpq
]

= q2
0 −∆1, (4.12)

where ∆1 = −x(1 − x)p2
0 + v2

Fq
2 + m2

ψ + x [v2
Fp

2 − 2v2
Fpq]. We have made a shift

q0 → q0 + xp0, we also have to do this in the numerator. Substituting everything our
full expression is then

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)2

1ˆ

0

dx

ˆ
d3q

(2π)3

×

{
2iεij0

[
q2(q0 − p0)−m2

ψ(q0 + p0)
]

(1− x)[
(q0 − xp0)2 −∆1

]3
}

(4.13)
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We now have to make the shift q0 → q0 + xp0. This makes the denominator even in q0,
hence odd terms in q0 in the numerator do not contribute. The numerator becomes

q2(q0 − p0)−m2
ψ(q0 + p0)→

[
(q0 + xp0)2 − v2

Fq
2
]

(q0 + (x− 1)p0)−m2
ψ [q0 + (1 + x)p0]

= q2
0(x− 1)p0 + 2xp0q

2
0 + x2(x− 1)p3

0 − v2
Fq

2(x− 1)p0

−m2
ψ(1 + x)p0

= q2
0 [(x− 1)p0 + 2xp0] + x2(x− 1)p3

0 − v2
Fq

2(x− 1)p0

−m2
ψ(1 + x)p0

= q2
0C +D, (4.14)

where

C ≡ (x− 1)p0 + 2xp0

D ≡ x2(x− 1)p3
0 − v2

Fq
2(x− 1)p0 −m2

ψ(1 + x)p0. (4.15)

Using this notation our full expression becomes

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)2

1ˆ

0

dx

ˆ
d3q

(2π)3

{
2iεij0 [q2

0C +D] (1− x)

[q2
0 −∆1]

3

}
.

(4.16)

We can now calculate the q0 integrals using

ˆ
dq0

(2π)

q2
0

(q2
0 −∆1)

3 =
−i
16

∆
−3/2
1 ,

ˆ
dq0

(2π)

1

(q2
0 −∆1)

3 = i
3

16
∆
−5/2
1 . (4.17)

Substituting the integrals into Eq. (4.16) leads to

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)2

1ˆ

0

dx

ˆ
d2q

(2π)2

{
−2iεij0C(1− x)

∆
3/2
1

i

16

+
2iεij0D(1− x)

∆
5/2
1

3i

16

}
. (4.18)
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We proceed by rewriting

∆1 = −x(1− x)p2
0 + v2

Fq
2 +m2

ψ + x
[
v2

Fp
2 − 2v2

Fpq
]

= v2
F

[
q2 − 2xpq + xp2 +

m2
ψ

v2
F

− x(1− x)p2
0

1

v2
F

]
= v2

F

[
(q− xp)2 + x(1− x)p2 +

m2
ψ

v2
F

− x(1− x)p2
0

1

v2
F

]
= v2

F

[
(q− xp)2 −∆2

]
, (4.19)

where

∆2 ≡ −x(1− x)p2 −
m2
ψ

v2
F

+ x(1− x)p2
0

1

v2
F

.

We now have to shift q→ q + xp. This also affects the numerator. Note that C is
independent of q. D becomes

D → x2(x− 1)p3
0 − v2

Fx
2p2(x− 1)p0 −m2

ψ(1 + x)p0 − v2
Fq

2(x− 1)p0,

= E − v2
Fq

2(x− 1)p0 (4.20)

where E = x2(x− 1)p3
0 − v2

Fx
2p2(x− 1)p0 −m2

ψ(1 + x)p0, and where the terms odd in
q do not contribute. Our full expression after the shift is

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)2

1ˆ

0

dx

ˆ
d2q

(2π)2

{
−2iεij0C(1− x)

v3
F (q2 −∆2)3/2

i

16

+
2iεij0 (E − v2

Fq
2(x− 1)p0) (1− x)

v5
F (q2 −∆2)5/2

3i

16

}
. (4.21)

The q integrals are

ˆ
d2q

(2π)2

1

(q2 −∆2)3/2
=
−i
2π

1√
∆2ˆ

d2q

(2π)2

q2

(q2 −∆2)5/2
=
−i2
2π

1

3

1√
∆2ˆ

d2q

(2π)2

1

(q2 −∆2)5/2
=

i

2π

1

3

1

(∆2)3/2
. (4.22)
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Substituting Eq. (4.22) into Eq. (4.21), we obtain

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)2 1

2π

1

16

1ˆ

0

dx


2iεij0 [−C − 2(x− 1)p0] (1− x)

v3
F (∆2)1/2︸ ︷︷ ︸

I1

− 2iεij0E(1− x)

v5
F (∆2)3/2︸ ︷︷ ︸

I2

 . (4.23)

Let us first compute integral I1,

1ˆ

0

dx
2iεij0 [−C − 2(x− 1)p0] (1− x)

v3
F (∆2)1/2

= 2iεij0
1

v2
F

1ˆ

0

dx
[(1− 3x) + 2(1− x)] (1− x)p0[
x(1− x) (p2

0 − v2
Fp

2)−m2
ψ

]1/2
= 2iεij0p0

1

v2
F

1ˆ

0

dx
(3− 5x)(1− x)[

x(1− x)p2 −m2
ψ

]1/2 . (4.24)

Calculating the integral we find

I1 = 2iεij0p0
1

v2
F

{
−i20

8

|mψ|
p2 − i

(
20m2

ψ − 7p2
)

8p3

[
ln
(

2
√
−m2

ψ − ip
)
− ln

(
2
√
−m2

ψ + ip
)]}

= 2iεij0p0
1

v2
F

{
−i20

8

|mψ|
p2 − i

(
20m2

ψ − 7p2
)

8p3 ln

(
2 |mψ| − p
2 |mψ|+ p

)}
= 2iεij0p0

1

v2
F

F1(mψ, p), (4.25)

with

F1(M, p) = −i20

8

|mψ|
p2 − i

(
20m2

ψ − 7p2
)

8p3 ln

(
2 |mψ| − p
2 |mψ|+ p

)
. (4.26)
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The second integral becomes

I2 =

1ˆ

0

dx
2iεij0E(1− x)

v5
F (∆2)3/2

= 2iεij0
1

v5
F

1ˆ

0

dx(1− x)

[
x2(x− 1)p3

0 − v2
Fx

2p2(x− 1)p0 −m2
ψ(1 + x)p0

]
(∆2)3/2

= 2iεij0
1

v2
F

1ˆ

0

dx(1− x)

[
x2(x− 1)p3

0 − v2
Fx

2p2(x− 1)p0 −m2
ψ(1 + x)p0

][
−x(1− x)p2v2

F −m2
ψ + x(1− x)p2

0

]3/2
= 2iεij0

1

v2
F

1ˆ

0

dx

[
−x2(1− x)2 (p2

0 − v2
Fp

2) p0 −m2
ψ(1− x2)p0

][
x(1− x) (p2

0 − p2v2
F)−m2

ψ

]3/2

= 2iεij0
1

v2
F

1ˆ

0

dx

 I2A︷ ︸︸ ︷
−x2(1− x)2p2p0−

I2B︷ ︸︸ ︷
m2
ψ(1− x2)p0


[
x(1− x)p2 −m2

ψ

]3/2 . (4.27)

Doing the two terms I2A and I2B separately, we find

I2A =

1ˆ

0

dx
−x2(1− x)2p2p0[
x(1− x)p2 −m2

ψ

]3/2
=

−1

4m4
ψp

3 −m2
ψp

5

{
2i |mψ| p(2m2

ψ + p2) + im2
ψ(4m2

ψ − p2) ln

[
2 |mψ| − p
2 |mψ|+ p

]}
p2p0

= F2A(mψ, p)p
2p0, (4.28)

and

I2B =

1ˆ

0

dx
−(1− x2)m2

ψp0[
x(1− x)p2 −m2

ψ

]3/2
=

−1

8p5(−4m2
ψ + p2)

{
4i |mψ| p

(
−12m2

ψ + p2
)
− i
(
48m4

ψ − 8m2
ψp

2 − p4
)

× ln

[
2 |mψ| − p
2 |mψ|+ p

]
m2
ψp0

}
= F2B(mψ, p)m

2
ψp0, (4.29)
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where

F2A(mψ, p) =
−1

4m4
ψp

3 −m2
ψp

5

{
2i |mψ| p(2m2

ψ + p2) + im2
ψ(4m2

ψ − p2) ln

[
2 |mψ| − p
2 |mψ|+ p

]}
,

F2B(mψ, p) =
−1

8p5(−4m2
ψ + p2)

{
4i |mψ| p

(
−12m2

ψ + p2
)
− i
(
48m4

ψ − 8m2
ψp

2 − p4
)

× ln

[
2 |mψ| − p
2 |mψ|+ p

]}
. (4.30)

Putting everything together we find

iΠij = − e2g

32π2
mσ2iεij0p0

[
F1(mψ, p) + F2A(mψ, p)p

2 + F2B(mψ, p)m
2
ψ

]
= −mσe

2g

(4π)2
iεij0p0

[
F1(mψ, p) + F2A(mψ, p)p

2 + F2B(mψ, p)m
2
ψ

]
. (4.31)

In order to calculate the contribution to the transverse conductivity of this diagram we
apply the Kubo formula, for which we have to calculate

lim
p0→0,p→0

Πij

p0

= lim
p0→0,p→0

−mσe
2g

(4π)2
εij0
[
F1(mψ, p) + F2A(mψ, p)p

2 + F2B(mψ, p)m
2
ψ

]
= lim

p0→0
−mσe

2g

(4π)2
εij0
[
F1(mψ, p) + F2A(mψ, p)p

2 + F2B(mψ, p)m
2
ψ

]
It turns out that the limit p→ 0 is finite for each term separately, so we can calculate
the limit term by term. To correctly take the limit, we have to Taylor expand the
logarithm around p0 = 0 . This will provide terms that cancel the divergences. A
Taylor expansion gives

ln

[
2 |mψ| − p
2 |mψ|+ p

]
= − p0

|mψ|
− 1

12

p3
0

|mψ|3
− 1

80

p5
0

|mψ|5
+O

(
p6

0

)
. (4.32)

Using this we can now calculate the limit p0 → 0. The first term becomes

lim
p0→0

F1(mψ, p0) = lim
p0→0
−i20

8

|mψ|
p2

0

− i
(
20m2

ψ − 7p2
)

8p3 ln

(
2 |mψ| − p
2 |mψ|+ p

)
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p0→0
−i20

8

|mψ|
p2

0

− i
(
20m2

ψ − 7p2
)

8p3

(
− p0

|mψ|
− 1

12

p3
0

|mψ|3

)
+O(p0)

= lim
p0→0
−i20

8

|mψ|
p2

0

+ i
20

8

|mψ|
p2

0

+
5

24

i

|mψ|
− 7

8

i

|mψ|
+O(p0)

= lim
p0→0
−16

24

i

|mψ|

= −2

3

i

|mψ|
(4.33)
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The second term gives

lim
p0→0

F2A(mψ, p0)p2
0 =

−1

4m4
ψp

3 −m2
ψp

5

{
2i |mψ| p(2m2

ψ + p2) + im2
ψ(4m2

ψ − p2) ln

[
2 |mψ| − p
2 |mψ|+ p

]}
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−p2
0

m2
ψp

3
0

(
4m2
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0

) {4i |mψ|3 p0 + 2i |mψ| p3
0 + im2

ψ(4m2
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[
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−4i |mψ|(
4m2
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0
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0
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(
4m2
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0

) − i
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(
− p0

|mψ|

)
+O(p0)

=
−4i |mψ|

4m2
ψ

+
i

|mψ|

= 0. (4.34)

The final term yields

F2B(mψ, p) =
−1

8p5(−4m2
ψ + p2)

{
4i |mψ| p

(
−12m2

ψ + p2
)
− i
(
48m4

ψ − 8m2
ψp
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)
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[
2 |mψ| − p
2 |mψ|+ p

]}
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−
[
4i |mψ|

(
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0 − 12m2
ψ

)]
m2
ψ

8p4
0(−4m2
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0)

+
i
(
48m4
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ψp

2
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0

)
m2
ψ

8p5
0(−4m2
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[
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2 |mψ|+ p

]
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−4im3
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+
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ψ
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+
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ψ
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−
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]
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p3
0
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0
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)
+O(p0)
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−4im3
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−
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−
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ψ

12p2
0(p2

0 − 4m2
ψ)

− i6 |mψ|
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0 − 4m2
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+
im3

ψ
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0(p2

0 − 4m2
ψ)

+
i |mψ|

12(p2
0 − 4m2

ψ)
+

i |mψ|
8(p2

0 − 4m2
ψ)

+O(p0)
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i |mψ|
12(p2

0 − 4m2
ψ)

+
i |mψ|

8(p2
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− i6 |mψ|

80(p2
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2i |mψ|
15(p2

0 − 4m2
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+O(p0)

= − 1

30

i

|mψ|
(4.35)
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Adding up all of the contributions we obtain

lim
p0→0,p→0

Πij

p0

= lim
p0→0
−mσe

2g

(4π)2
εij0
[
F1(mψ, p) + F2A(mψ, p)p

2 + F2B(mψ, p)m
2
ψ

]
= −mσe

2g

(4π)2
εij0
(
−2

3

i

|mψ|
− 1

30

i

|mψ|

)
= i

εij0

(4π)2

7

10

mσ

|mψ|
e2g. (4.36)

Under time-reversal in silicene, the mass we have introduced transforms as mψ → −mψ,
and the frequency (p0) as iω → −iω. Using Kubo’s formula, we obtain a non-universal
correction to the transverse valley conductivity,

δσijval = lim
ω→0,p→0

{
i 〈jijj〉
ω

− i 〈jijj〉T

ω

}
= −4

εij0

(4π)2

7

10

mσ

|mψ|
e2g, (4.37)

where we have picked up a factor of 2 for the spins. Restoring the dimensionality, we
find

δσvalxy = − 1

(2π)2

7

10

mσ

|mψ|
g
e2

h
, (4.38)

for the valley Hall current. Combining this with the result from Ref. [12], we obtain

σvalxy = 2
e2

h

(
2n+ 1− 1

(2π)2

7

20
g
mσ

|mψ|

)
. (4.39)

For the Hall current, we find no correction since

δσijval = lim
ω→0,p→0

{
i 〈jijj〉
ω

− i 〈jijj〉T

ω

}

= −2
εij0

(4π)2

7
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mσ

|mψ|
e2g + 2

εij0

(4π)2

7

10

mσ

|mψ|
e2g

= 0. (4.40)
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4.1.1 Massless fermions case

If we have no fermion mass (mψ = 0), we find starting from Eq. (4.6)

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)

ˆ
d3q

(2π)3

{
Tr
[
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2
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}
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2
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}
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{
2iεij0(q − p)0

q2 [(q − p)2]

}
. (4.41)

Combining the denominators using the Feynman trick we find

Ax+ (1− x)B = q2
0 − v2

Fq
2 + p2

0x(1− x)− v2
Fp

2x(1− x)

= q2
0 −∆1. (4.42)

Where we have shifted q0 → q0 + xp0 and q→ q + xp. We also have to do this in the
numerator. Performing the shifts, the full expression becomes

iΠij = −2(ie)2(ig)v2
F

(
−mσ

4π

)
(−i)

1ˆ

0

dx

ˆ
d3q

(2π)3

{
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(q2
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}
. (4.43)

We now use

ˆ
dq0

2π

1

(q2
0 −∆1)

2 =
1

4

1

(−∆1)3/2
, (4.44)
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which gives us

iΠij = −2(ie)2(ig)v2
F
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where
∆2 ≡

p2
0

v2
F

x(1− x)− p2x(1− x).

We now calculate the q integral
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Our complete expression becomes
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1
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We obtain the same result starting from Eq. (4.23) and setting mψ = 0. Note that
applying the Kubo formula, and taking the limit p→ 0 now gives a divergence. This is
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not unexpected because the mass dimension of the diagram will be 1. Due to the boson
loop, we already have a mσ in front of the expression, and the part contributing to the
transverse conductivity will be proportional to p0. On these grounds, our expression will
be proportional to ∼ p0mσ and thus we need to divide by a term with mass dimension
1. The only quantities available in the massless case are p0 and vFp, but dividing by
these will cause a divergence when taking the limits in the Kubo formula. If we have a
fermion mass, we could also divide by mψ to get something finite in the limit p → 0,
and indeed this is exactly what happens when we introduce a fermion mass, as we can
see from the result in Eq. (4.36).



Chapter 5

Coupling massless Pseudo-QED to a
scalar field

In this chapter we will examine massless Pseudo-QED coupled to a massive scalar field
σ, with mass mσ. The Lagrangian is equivalent to Eq. (4.1) with mψ = 0, we have

L = −1

2

(F µν)2

√
−�

+ ψ̄(iγ0∂0 + ivFγ
i∂i)ψ+

1

2
∂µσ∂µσ−

1

2
m2
σσ

2−eψ̄γµψAµ+gψ̄ψσ2, (5.1)

Our goal is to examine the renormalization group flow of this theory, and to compare
it with Pseudo-QED without a scalar field. To this end we compute the divergences in
the Feynman diagrams up to two loop order involving the scalar field for the electron
self-energy and the electron-photon vertex. We have calculated the divergent part of
these diagrams using dimensional regularization, the RG-analysis remains to be done.

5.1 Electron self-energy

There are two diagrams contributing to the electron self-energy at two-loop order in-
volving the scalar field. We calculate the divergent parts of these diagrams.
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p

q

k p

−p+ k + q

Figure 5.1.1: 2-loop contribution involving to the electron self-energy involving the
scalar field.

5.1.1 First diagram

The first diagram is depicted in Figure 5.1.1. The complete expression of the diagram
is

−iΣ = −g2

ˆ
d3k

(2π)3

d3q

(2π)3

i(k0γ
0 + vFγ

iki)

k2
0 − v2

Fk
2

i

q2 −m2
σ

i

(k + q − p)2 −m2
σ

= +ig2
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(k0γ
0 + vFγ

iki)
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0 − v2

Fk
2

1

q2 −m2

1

(k + q − p)2 −m2
σ

. (5.2)

Our next step is to combine the two scalar propagators using the Feynman trick. We
first want to calculate the q integral, to do this we combine the denominators involving
q using the Feynman trick

1

AB
=

1ˆ

0

dx
1

[Ax+ (1− x)B] 2
. (5.3)

In this way we can combine

1

q2 −m2
σ

1

(k + q − p)2 −m2
σ

=

1ˆ

0

dx
1

[(k + q − p)2x−m2
σx+ (1− x)(q2 −m2

σ)]2

=

1ˆ

0

dx
1[

(q + x(k − p))2 −m2
σ + x (1− x) (k − p)2]2 ,

(5.4)

where we have completed the square and rearranged some terms. We can now make a
shift q → q − x (k − p)2 to simplify the expression even further. Looking at Eq. (5.2)
we see that there are no factors of q in the numerator. Hence, by substituting Eq. (5.4)
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into Eq. (5.2) we obtain

−iΣ = +ig2

ˆ
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(2π)3

d3q

(2π)3
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iki)
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1

[q2 −∆]2
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where we have defined ∆ ≡ m2
σ−x(1−x)(k− p)2. We can now compute the q integral.

The result of the integral is
ˆ

d3q

(2π)3

1

(q2 −∆)2 =
i

(4π)3/2

√
π

∆

=
i

8π

1√
∆
. (5.6)

Substituting Eq. (5.6) into Eq. (5.5), we obtain

−iΣ = ig2 i

8π

1ˆ

0

dx
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∆
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1
2

. (5.7)

Next, we want to calculate the k integral. Since the Lorentz symmetry is broken by
the Fermi velocity vF, we have to treat the k0 and k integrals separately; we will do the
k0 integral first. As before, we combine the denominators using the Feynman trick. In
this case, it looks like

1

AB
1
2

=
1

2

1ˆ

0

dy
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1
2

(Ay +B(1− y))
3
2
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Let us first calculate the denominator

Ay +B(1− y) = yk2
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Fk
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0,

(5.9)
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and introduce the shorter notation

α ≡ y − (1− y)x(1− x)

δ ≡ (1− y)x(1− x). (5.10)

Using this notation we find
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2 + c2(k− p)2δ + (1− y)m2

σ − δp2
0.
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0.

]
= α

[(
k0 + p0

δ

α

)2

− δ

α

(
1 +

δ

α

)
p2

0 −
y

α
v2

Fk
2 + c2(k− p)2 δ

α

+
(1− y)

α
m2
σ

]

= α

[(
k0 + p0

δ

α

)2

−∆2

]
, (5.11)

where we defined
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Substituting this into Eq. (5.7), we obtain
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where we have made a shift k0 → k0− p0
δ
α
and noticed that the terms odd in k0 do not

contribute. The k0 integral, which is finite, now reads
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dk0
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Substituting this result into Eq. (5.13) yields
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Before we calculate the k integral let us rewrite ∆2 as
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2 − c2(k− p)2 δ

α
− (1− y)

α
m2
σ

= k2

(
y

α
v2

F − c2 δ

α

)
+ 2c2kp

δ

α
+ c2p2 δ

α
− (1− y)

α
m2
σ +

δ

α

(
1 +

δ

α

)
p2

0. (5.16)

Defining

ρ ≡
(
y

α
v2

F − c2 δ

α

)
,

we can further simplify

∆2 = ρ

[
k2 + 2c2kp

δ

αρ
+ c2p2 δ

ρα
− (1− y)

ρα
m2
σ +

δ

ρα

(
1 +

δ

α

)
p2

0.

]
= ρ

[(
k + p

c2δ

αρ

)2

+ p2 c²δ
ρα

(1 +
c2δ

ρα
)− (1− y)

ρα
m2
σ +

δ

ρα

(
1 +

δ

α

)
p2

0.

]
(5.17)

= ρ

[(
k + p

c2δ

αρ

)2

−∆3

]
. (5.18)

We now plug Eq. (5.17) into Eq. (5.15) and perform the shift

k→ k− p
c2δ

αρ
,
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to obtain

Σ =
g2

16π2

1ˆ

0

dy

1ˆ

0

dx

ˆ
d2k

(2π)2

(1− y)−
1
2

α
3
2

(
−p0

δ
α
γ0 + vFγ

iki
)

ρ

[(
k + p c2δ

αρ

)2

−∆3

]

=
g2

16π2

1ˆ

0

dy

1ˆ

0

dx

ˆ
d2k

(2π)2

(1− y)−
1
2

α
3
2

(
−p0

δ
α
γ0 + vFγ

i
(
k − p c2δ

αρ

)
i

)
ρ (k2 −∆3)

=
g2

16π2

1ˆ

0

dy

1ˆ

0

dx

ˆ
d2k

(2π)2

(1− y)−
1
2

α
3
2

δ

α

(
−p0γ

0 − vFγ
ipi

c2

ρ

)
ρ (k2 −∆3)

, (5.19)

where we have eliminated the term odd in ki. We can now perform the k integral using
dimensional regularization. The result is as beforeˆ

d2k

(2π)2

1

(k2 −∆3)
= − 1

2π

1

ε
+ finite terms, (5.20)

where we keep only the divergent term. If we substitute Eq. (5.20) result in Eq. (5.19)
we find

−iΣ =
g2

16π2

(
− 1

2π

1

ε

) 1ˆ

0

dy

1ˆ

0

dx(1− y)−
1
2
δ

α
5
2ρ

(
−p0γ

0 − vFγ
ipi
c2

ρ

)

=
g2

16π2

i3

4π

(
− 1

2π

1

ε

) 1ˆ

0

dy

1ˆ

0

dx(1− y)−
1
2

δ

α
3
2 (yv2

F − c2δ)

(
−p0γ

0 − vFγ
ipi
c2

ρ

)
.

(5.21)

Next, we compute the parametric integrals over x and y that were introduced by the
Feynman trick. Let us compute the p0 term first. This integral reads

I1 = −
1ˆ

0

dy

1ˆ

0

dx(1− y)−
1
2

δ

α
3
2 (yv2

F − c2δ)
p0γ

0

= −
1ˆ

0

dy

1ˆ

0

dx
(1− y)−

1
2 (1− y)x(1− x)

[y − (1− y)x(1− x)]
3
2 (yv2

F − c2(1− y)x(1− x))
p0γ

0

= − 1

c2

1ˆ

0

dy

1ˆ

0

dx
(1− y)

1
2x(1− x)

[y − (1− y)x(1− x)]
3
2

(
y
v2F
c2
− (1− y)x(1− x)

)p0γ
0. (5.22)
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We will compute the y integral first, and write for notational convenience β = v2
F/c

2

and λ = x(1− x). Continuing with the integral we find

I1 = − 1

c2

1ˆ

0

dy

1ˆ

0

dx
(1− y)

1
2λ

[y − (1− y)λ]
3
2 [yβ − (1− y)λ]

p0γ
0.

= − 1

c2

1ˆ

0

dx

[
2i√

λ(1− β)
− 2√

λ

β
1
2

(β − 1)
3
2

tan−1

(
i

√
β + 1

β

)]
p0γ

0

= − 1

c2

[
2i

(1− β)
− 2

β
1
2

(β − 1)
3
2

tan−1

(
i

√
β + 1

β

)] 1ˆ

0

dx
1√
λ
p0γ

0

= − 1

c2

[
2i

(1− β)
− 2

β
1
2

(β − 1)
3
2

tan−1

(
i

√
β + 1

β

)] 1ˆ

0

dx
1√

x(1− x)
p0γ

0

= −iπ
c2

[
2

(1− β)
− 2

β
1
2

(β − 1)
3
2

tanh−1

(√
β + 1

β

)]
p0γ

0

≡ −F1(β)p0γ
0. (5.23)
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The other integral proceeds in the same way. We find here

I2 = −
1ˆ

0

dy

1ˆ

0

dx(1− y)−
1
2

δ

α
3
2 (yv2

F − c2δ)
vFγ

ipi
c2

ρ

= −
1ˆ

0

dy

1ˆ

0

dx
(1− y)

1
2x(1− x)

[y − (1− y)x(1− x)]
3
2 (yβ − (1− y)x(1− x))

vFγ
ipi

1

ρ

= − 1

c2

1ˆ

0

dy

1ˆ

0

dx
(1− y)

1
2x(1− x)

[y − (1− y)x(1− x)]
1
2 [yβ − (1− y)x(1− x)]2

vFγ
ipi

= − 1

c2

1ˆ

0

dy

1ˆ

0

dx
(1− y)

1
2λ

[y − (1− y)λ]
3
2 [yβ − (1− y)λ]2

vFγ
ipi

= − 1

c2

1ˆ

0

dx
1√
λ

{
i

β − 1
+

1
√
β(β − 1)

3
2

tan−1

[
i

√
β − 1

β

]}
vFγ

ipi

= −iπ
c2

{
1

β − 1
+

1
√
β(β − 1)

3
2

tanh−1

[√
β − 1

β

]}
vFγ

ipi (5.24)

≡ −F2(β)vFγ
ipi.

Substituting I1 and I2 into Eq. (5.21), we finally find

−iΣ =
g2

16π2

(
− 1

2π

1

ε

)[
−p0γ

0F1(β)− vfγipiF2(β)
]

= − g2

32π3

1

ε

[
p0γ

0F1(β) + vfγ
ipiF2(β)

]
. (5.25)

Note that this is only the divergent part of diagram.

5.1.2 Second diagram

The second diagram is shown in Fig. 5.1.2. The complete expression becomes

−iΣ = (ie)2(ig)i2
ˆ

d3k

(2π)3

d3q

(2π)3

(−igµν)√
(q − p)2

i

k2 −m2
σ

γµ (γ0q0 + vFqiγ
i)

2
γν

(q2
0 − v2

Fq
2)

2

= e2g

ˆ
d3k

(2π)3

i

k2 −m2
σ

ˆ
d3q

(2π)3

1√
(q − p)2

γµ (γ0q0 + vFqiγ
i)

2
γµ

(q2
0 − v2

Fq
2)

2 . (5.26)
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p

q

p

p+ q

k

Figure 5.1.2: The second 2-loop diagram contributing to the electron self-energy in-
volving the scalar field

The k integral we have done before, and we immediately find

−iΣ = e2g
(
−mσ

4π

) ˆ d3q

(2π)3

1√
(q − p)2

γµ (γ0q0 + vFqiγ
i)

2
γµ

(q2
0 − v2

Fq
2)

2 . (5.27)

Turning to the gamma matrices we find

γµ
(
γ0q0 + vFqiγ

i
)2
γµ = γµ

(
q2

0 + v2
Fqiqjγ

iγj
)
γµ

= nq2
0 + v2

Fγµ
1

2
qiqj

(
γiγj + γjγi

)
γµ

= nq2
0 + v2

Fγµγ
µqiqjg

ij

= n
(
q2

0 + v2
Fq

2
)
. (5.28)

Where we have used the anti-commutation relation of the gamma matrices and n =

1− 2v2
F. Substituting Eq. (5.28) into Eq. (5.27) we obtain

−iΣ = e2g
(
−mσ

4π

)
n

ˆ
d3q

(2π)3

1√
(q − p)2

q2
0 + v2

Fq
2

(q2
0 − v2

Fq
2)

2 . (5.29)

Our next step is again to combine the denominators using the Feynman trick

1

A2B
1
2

=
Γ(5/2)

Γ(2)Γ(1/2)

1ˆ

0

dydx
yx−

1
2 δ(1− x− y)

(yA+ xB)
5
2

=
3

4

1ˆ

0

dx
(1− x)x−

1
2

[(1− x)A+ xB)]
5
2

. (5.30)
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The denominator becomes

(1− x)A+ xB = (1− x)
(
q2

0 − v2
Fq

2
)

+ x
[
(q0 − p0)2 − c2 (q− p)2]

= q2
0 − v2

Fq
2 + x

[(
p2

0 − 2p0q0

)
− q2

(
c2 − v2

F

)
− c2p2x+ 2xc2pq

]
= q2

0 − 2xp0q0 − q2
[
v2

F + x
(
c2 − v2

F

)]
+ 2xc2pq + xp2

0 − xc2p2

= (q0 − xp0)2 − q2
[
v2

F + x
(
c2 − v2

F

)]
+ 2xc2pq + x(1− x)p2

0 − xc2p2

= (q0 − xp0)2 −∆1, (5.31)

with ∆1 = q2 [v2
F + x (c2 − v2

F)]−2xc2pq−x(1−x)p2
0+xc2p2. Now we shift q0 → q0+xp0,

which for the full expression yields

−iΣ = e2g
(
−mσ

4π

)
n

3

4

1ˆ

0

dx(1− x)x−
1
2

ˆ
d3q

(2π)3

(q0 + xp0)2 + v2
Fq

2

(q2
0 −∆1)

5/2

= e2g
(
−mσ

4π

)
n

3

4

1ˆ

0

dx(1− x)x−
1
2

ˆ
d3q

(2π)3

q2
0 + x2p2

0 + v2
Fq

2

(q2
0 −∆1)

5/2
, (5.32)

where the terms odd in q0 do not contribute. Now we can calculate the q0-integralsˆ
dq0

2π

1

(q2
0 −∆1)

5/2
=

2

3π

1

∆2
1ˆ

dq0

2π

q2
0

(q2
0 −∆1)

5/2
= − 1

3π

1

∆1

. (5.33)

The complete expression then becomes

−iΣ = e2g
(
−mσ

4π

)
n

3

4

1ˆ

0

dx(1− x)x−
1
2

ˆ
d2q

(2π)2

1

3π

[
2
x2p2

0 + v2
Fq

2

∆2
1

− 1

∆1

]
. (5.34)

We proceed by rewriting ∆1 as

∆1 = q2
[
v2

F + x
(
c2 − v2

F

)]
− 2xc2pq− x(1− x)p2

0 + xc2p2

= αq2 − 2xc2pq− x(1− x)p2
0 + xc2p2

= α

[
q2 − 2xc2pq

1

α
− x(1− x)

α
p2

0 +
xc2p2

α

]
= α

[(
q− xc

2

α
p

)2

− x(1− x)

α
p2

0 +
x(1− x)c2p2

α

]

= α

[(
q− xc

2

α
p

)2

−∆2

]
, (5.35)
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where we defined α ≡ v2
F + x (c2 − v2

F). Now we shift q → q + xpc2/α. Substituting
this into Eq. (5.34), we obtain

−iΣ = e2g
(
−mσ

4π

)
n

3

4

1ˆ

0

dx(1− x)x−
1
2

ˆ
d2q

(2π)2

1

3π
2

[
x2p2

0 + v2
F

(
q2 + x2 c4

α2p
2
)

α2 (q2 −∆2)2

− 1

α (q2 −∆2)

]

= e2g
(
−mσ

4π

)
n

3

4

1

3π

1ˆ

0

dx(1− x)x−
1
2

ˆ
d2q

(2π)2

[
2
x2p2

0 + v2
F

(
q2 + x2 c4

α2p
2
)

α2 (q2 −∆2)2

− 1

α (q2 −∆2)

]

= e2g
(
−mσ

4π

)
n

3

4

1

3π

1ˆ

0

dx(1− x)x−
1
2

ˆ
d2q

(2π)2

2
x2p2

0 + v2
F

(
x2 c4

α2p
2
)

α2 (q2 −∆2)2︸ ︷︷ ︸
I1

+ 2
v2

Fq
2

α2 (q2 −∆2)2︸ ︷︷ ︸
I2

− 1

α (q2 −∆2)︸ ︷︷ ︸
I3

 . (5.36)

So we see we have three distinct integrals to solve. Note that integral I1 is finite, while
I2 and I3 are log divergent. We are interested in the diverging part of the diagram,
hence we drop the I1 term. We compute I3 again using dimensional regularization

I3 =
1

α

ˆ
d2q

(2π)2

1

(q2 −∆2)

= − 1

α

1

2π

1

ε
+ finite terms
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where we have used dimensional regularization as before, and omitted the limit notation
and the finite part. Now the integral I2,

I2 =
2v2

F

α2

ˆ
d2q

(2π)2

q2

(q2 −∆2)2

=
2v2

F

α2

ˆ
d2q

(2π)2

q2 −∆2 + ∆2

(q2 −∆2)2

=
2v2

F

α2

ˆ
d2q

(2π)2

{
1

(q2 −∆2)
+

∆2

(q2 −∆2)2

}
= − 1

2π

1

ε

2v2
F

α2

where again we have only kept the divergent terms and omitted the limit notation.
Substituting everything into Eq. (5.36), we find

Σ = e2g
(
−mσ

4π

)
n

3

4

1

3π

1ˆ

0

dx(1− x)x−
1
2

[
− 1

2π

1

ε

2v2
F

α2
+

1

2π

1

ε

1

α

]

= e2g
(
−mσ

4π

)
n

3

4

1

3π

1

2π

1

ε

1ˆ

0

dx
(1− x)x−

1
2

α

 1︸︷︷︸
I4

− 2v2
F

α︸︷︷︸
I5

 . (5.37)

Now we compute the x-integrals. We have

I4 =

1ˆ

0

dx
(1− x)x−

1
2

α

=
1

v2
F

1ˆ

0

dx
(1− x)x−

1
2

1 + x
(
c2

v2F
− 1
)

=
2

v2
F

 −1(
c2

v2F
− 1
) +

c2

v2
F

arctan
(√

c2

v2F
− 1
)

(
c2

v2F
− 1
)3/2

 , (5.38)
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and

I5 = 2v2
F

1ˆ

0

dx
(1− x)x−

1
2

α2

=
2

v2
F

1ˆ

0

dx
(1− x)x−

1
2[

1 + x
(
c2

v2F
− 1
)]2

=
2

v2
F

 1(
c2

v2F
− 1
) +

(
c2

v2F
− 2
)

arctan
(√

c2

v2F
− 1
)

(
c2

v2F
− 1
)3/2

 . (5.39)

Substituting this into Eq. (5.37), we find

−iΣ = e2g
(
−mσ

4π

)
n

3

4

1

3π

1

2π

1

ε

4

v2
F

arctan
(√

c2

v2F
− 1
)

(
c2

v2F
− 1
)3/2

− 1
c2

v2F
− 1


= −e2g

mσ

8π3

(
1− v2

F

) 1

ε

1

v2
F

arctan
(√

c2

v2F
− 1
)

(
c2

v2F
− 1
)3/2

− 1
c2

v2F
− 1

 . (5.40)

Again this is only the divergent part of the diagram.

5.2 Vertex correction

The lowest order correction to the electron-photon vertex is of order eg2 and is depicted
in Fig. (5.2.1). To simplify the calculation, we break the Lorentz invariance of the scalar
field in the same way as for the electrons. That is, we replace c by vF . The full expression
becomes

iΓµ = 2ieg2

ˆ
d3k

(2π)3

d3q

(2π)3

[
SF (p+ q − k)γµSF (p′ + q − k)

i

k
2 −m2

σ

i

q2 −m2
σ

]
, (5.41)

where we picked up a symmetry factor of 2. Since we are interested only in the divergent
part, and since this will come from the loop integrals, we can set p = p′ = 0 to simplify
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p′

p′ + q − k
k

q

p+ q − k

p− p′

p

Figure 5.2.1: Correction to the electron-photon vertex due to the scalar field

the calculation. In this way

iΓµ = 2ieg2

ˆ
d3k

(2π)3

d3q

(2π)3

[
SF (q − k)γµSF (q − k)

1

k
2 −m2

σ

1

q2 −m2
σ

]

= 2ieg2

ˆ
d3k

(2π)3

d3q

(2π)3

[
γαγµγβ

(
q − k

)
α

(
q − k

)
β[

(q0 − k0)2 − v2
F (q− k)2]2 1

k
2 −m2

σ

1

q2 −m2
σ

]
.

(5.42)

We can write the product of the three gamma matrices as

γαγµγβ = γα
(
−γβγµ + 2gµβΘµ

)
, (5.43)

where Θ0 = 1 and Θi = vF otherwise. Substituting Eq. (5.43) into Eq. (5.42) we find

iΓµ = 2ieg2

ˆ
d3k

(2π)3

d3q

(2π)3

[
−γµ

(
q − k

)2
+ 2γα

(
q − k

)
α

(
q − k

)µ
Θµ[

(q0 − k0)2 − v2
F (q− k)2]2 1

k
2 −m2

σ

1

q2 −m2
σ

]
.

(5.44)

We combine the denominators using

1

A2B
= 2

1ˆ

0

dx
x

[Ax+ (1− x)B]3
. (5.45)



5.2. Vertex correction 79

We have

Ax+ (1− x)B = q2 −m2
σ + x

[
q2

0 + k2
0 − 2q0k0 − v2

Fq
2 − v2

Fk
2 + 2v2

Fqk− q2
0 + v2

Fq
2 +m2

σ

]
= q2 −m2

σ + x
[
k2

0 − 2q0k0 − v2
Fk

2 + 2v2
Fqk +m2

σ

]
= q2 − 2xqk −m2

σ(1− x) + x
[
k

2
+m2

σ

]
=
(
q − xk

)2 −m2
σ(1− x) + k

2
x(1− x)

=
(
q − xk

)2 − δ1, (5.46)

with

δ1 = m2
σ(1− x)− x(1− x)k

2
.

Substituting Eqs. (5.45) and (5.46) into Eq. (5.45) we obtain

iΓµ = 2ieg22

1ˆ

0

dx x

ˆ
d3k

(2π)3

d3q

(2π)3

[
−γµ

(
q − k

)2
+ 2γα

(
q − k

)
α

(
q − k

)µ
Θµ(

q − xk
)2 − δ1

1

k
2 −m2

σ

]

= 2ieg22

1ˆ

0

dx x

ˆ
d3k

(2π)3

d3q

(2π)3

[
1

k
2 −m2

σ

×
−γµ

(
q − k(1− x)

)2
+ 2γα

(
q − k(1− x)

)
α

(
q − k(1− x)

)µ
Θµ

(q2 − δ1)
3

]

= 2ieg22

1ˆ

0

dx x

ˆ
d3k

(2π)3

d3q

(2π)3

{
1

k
2 −m2

σ

×
−γµ

[
q2 + k

2
(1− x)2

]
+ 2γα

[
qαq

µ + kαk
µ

(1− x)2
]

Θµ

(q2 − δ1)
3

}
. (5.47)

Using

ˆ
d3q

(2π)3
qµqαG(q2) =

gµα

3

ˆ
d3q

(2π)3
q2G(q2), (5.48)
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where G(q2) is the denominator (the identity follows from Lorentz invariance), we find

iΓµ = 2ieg22

1ˆ

0

dx x

ˆ
d3k

(2π)3

d3q

(2π)3

{−γµ [q2 + k
2
(1− x)2

]
+ 2

3
γµ
[
q2 + k

2
(1− x)2

]
(q2 − δ1)

3

× 1

k
2 −m2

σ

}

= 2ieg22

1ˆ

0

dx x

ˆ
d3k

(2π)3

d3q

(2π)3

−
1
3
γµ
[
q2 + k

2
(1− x)2

]
(q2 − δ1)

3

1

k
2 −m2

σ

 . (5.49)

The result for the q integral isˆ
d3q

(2π)3

1

(q2 − δ1)
3 = − i

v2
F

1

32πδ
3/2
1

,

ˆ
d3q

(2π)3

q2

(q2 − δ1)
3 =

i

v2
F

3

32πδ
1/2
1

.

Using this we obtain

iΓµ = −2

3

i

v2
F16π

γµieg2

1ˆ

0

dx x

ˆ
d3k

(2π)3

{[
3

δ
1/2
1

− k
2
(1− x)2

δ
3/2
1

]
1

k
2 −m2

σ

}

= −2

3

i

v2
F16π

γµieg2

1ˆ

0

dx x

ˆ
d3k

(2π)3

{
1

k
2 −m2

σ

×

 3

i
√
x(1− x)

(
k

2 − m2
σ

x

)1/2
+

k
2
(1− x)2

i [x(1− x)]3/2
(
k

2 − m2
σ

x

)3/2

} (5.50)

Next, we combine the remaining denominators using

1

A1/2B
=

1

2

1ˆ

0

dy
y−1/2

[Ay +B(1− y)]3/2
, (5.51)

1

A3/2B
=

3

2

1ˆ

0

dy
y1/2

[Ay +B(1− y)]5/2
. (5.52)

The denominator becomes

Ay +B(1− y) = k
2 −m2

σ + y

[
−m

2
σ

x
+m2

σ

]
= k

2 −m2
σ

(
1− y +

y

x

)
. (5.53)
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The full expression becomes

iΓµ = − i

v2
F16π

γµieg2

1ˆ

0

dy

1ˆ

0

dx x

ˆ
d3k

(2π)3

 y−1/2

i
√
x(1− x)

[
k

2 −m2
σ

(
1− y + y

x

)]3/2

+
y1/2k

2
(1− x)1/2

ix3/2
[
k

2 −m2
σ

(
1− y + y

x

)]5/2

 . (5.54)

The divergent part of the first k integral

ˆ
d3k

(2π)3

1[
k

2 −m2
(
1− y + y

x

)]3/2
=

1

v2
F(2π)3

Γ(− ε
2
)

Γ(3/2)

i

(−1)3/2
π3/2

[
m2
(

1− y +
y

x

)] ε
2

= − 1

v2
F(2π)2

Γ(− ε
2

)
[
m2
(

1− y +
y

x

)] ε
2

=
2

v2
F(2π)2

1

ε
+ finite terms. (5.55)

The second k integral has the same divergent part, to see this we write

ˆ
d3k

(2π)3

k
2[

k
2 −m2

(
1− y + y

x

)]5/2
=

ˆ
d3k

(2π)3

k
2 −m2

(
1− y + y

x

)
+m2

(
1− y + y

x

)[
k

2 −m2
(
1− y + y

x

)]5/2

=

ˆ
d3k

(2π)3

1[
k

2 −m2
(
1− y + y

x

)]3/2

×+

ˆ
d3k

(2π)3

m2
(
1− y + y

x

)[
k

2 −m2
(
1− y + y

x

)]5/2
. (5.56)

The second integral in the last line of Eq. (5.56) is finite, hence all diverging terms will
come from the first integral, but this integral is exactly Eq. (5.55). Hence we have

ˆ
d3k

(2π)3

k
2[

k
2 −m2

(
1− y + y

x

)]5/2
=

2

v2
F(2π)2

1

ε
+ finite terms. (5.57)
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Using these results for the k integrals, Eq. (5.54) becomes

iΓµ = − 2

v2
F16π

γµieg2

1ˆ

0

dy

1ˆ

0

dx x
1

v2
F(2π)2

1

ε

{
y−1/2√
x(1− x)

+ y1/2 (1− x)1/2

x3/2

}

= − 2

v2
F16π

γµieg2

1ˆ

0

dx x
1

v2
F(2π)2

1

ε

{
2

1√
x(1− x)

+
2

3

(1− x)1/2

x3/2

}

= − 2

v2
F16π

γµieg2 1

v2
F(2π)2

1

ε

4π

3

= − ieg2

v4
F24π2

γµ
1

ε
. (5.58)



Chapter 6

Conclusions and Outlook

In this thesis we have examined dynamical interactions in (2+1)D Dirac systems. In
Chapter 1, we have briefly explored condensed-matter systems where Dirac fermions
occur, such as graphene and silicene. In Chapter 2, we examined dynamical interactions
in such (2+1)D systems. Starting from QED in (3+1)D, we confined the matter current
to a plane, and proved that the (2+1)D Pseudo-QED formalism is equivalent to this,
and that it reproduces a Coulomb interaction in the static limit. We briefly analyzed
the Pseudo-QED Lagrangian: it has non-local interactions, is strictly renormalizable
and is unitary and causal. We stated the Feynman rules and to illustrate calculations
calculated two one-loop diagrams.

In Chapter 3, we introduced the Kubo formalism to obtain the conductivity using
Feynman diagrams, and reviewed two articles that employ Pseudo-QED to obtain con-
ductivities in both massless and massive Dirac systems. We reproduced their results
and found the longitudinal conductivity and a quantum valley Hall effect in graphene.
In massive Dirac systems, we reproduced the same quantum valley Hall effect, and also
a spontaneous total Hall effect.

In Chapter 4, we coupled massive Pseudo-QED to a scalar field to study how the
transverse conductivities, reproduced in Chapter 3, changed under the influence of a
new interaction. We found a non-universal correction, depending on the ratio of the
scalar-field and fermion masses, to the quantum valley Hall effect. The total Hall
conductivity remained unchanged, and in the massless case the limit p → 0 was not
well-defined.

In Chapter 5, we examined massless Pseudo-QED coupled to a scalar field, and
calculated the divergent parts of three 2-loop Feynman diagrams containing this newly
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introduced scalar field. Using these diverging parts, together with the 1-loop diagrams,
we can analyze the RG-flow of this system, although this was not completed.

We have seen that Pseudo-QED describes relativistic, dynamical interactions in
(2+1)D Dirac systems, that are possible to create in condensed-matter. Using this de-
scription we are able to capture anomalies, particle hole symmetry, and it is possible to
obtain effects non-perturbative in vF. It is thus a more complete description of interac-
tions in (2+1)D Dirac systems, and although not always computationally convenient,
it could improve our understanding of (2+1)D Dirac systems.

Outlook

We briefly discuss some other possible applications of Pseudo-QED, and other possible
projections of QED that might be considered in the future.

Projection of QED onto two planes

One may think of having two sheets of electrons, separation of d. We follow the same
steps as in the derivation of Pseudo-QED in Chapter 2, but now we use the following
matter current:

jµ(x0, x1, x2, x3) =

j+µ(x0, x1, x2)δ(x3 − d
2
) + j−µ(x0, x1, x2)δ(x3 + d

2
) µ = 0, 1, 2

0 µ = 3
,

(6.1)
where j+ denotes the matter current in the top plane, and j− the matter current in
the bottom plane. We have to insert this current into Eq. (2.11). We then obtain four
terms, one for j+ − j+,j− − j−,j+ − j− and j− − j+ current-current interactions. As
expected, the j+ − j+ and j− − j− interactions, that is the interactions in the planes
amongst the electrons, yield the same expressions as found for Pseudo-QED. In other
words, the in-plane interactions remain the same. The difference lies thus in the j+−j−

and j− − j+ terms. This is the interaction between the two planes. Since they will
be equivalent (as also expected), we will consider only the j+ − j−term. This term
describes the interaction between electrons in different planes

To find the current-current interaction, we have to evaluate Eq. (2.12) not at z3 =
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z′3 = 0, as in Chapter 2, but for z3 = −z′3 = d/2. This yields (in Euclidean space)

1

−�E

∣∣∣∣
z3=−z′3=d

=

ˆ
d3k

(2π)3

dk3

(2π)

e−i[k0(z0−z′0)+k1(z1−z′1)+k2(z2−z′2)]e−idk3

k2
0 + k2

1 + k2
2 + k2

3

=

ˆ
d3k

(2π)3

π

2π

e−i[k0(z0−z′0)+k1(z1−z′1)+k2(z2−z′2)]e−d‖k‖√
k2

0 + k2
1 + k2

2

=

ˆ
d3k

(2π)3

1

2

e−ik(z−z′)e−d‖k‖√
k²

, (6.2)

where now k is a three-component vector. Compared to Pseudo-QED, there is now an
extra factor e−d‖k‖. We can follow the same steps to find the static interaction and we
find (the k0 integral now vanishes since the currents do not depend on it)

V = e2

ˆ
d2k

(2π)2

1

2

e−ik(z−z′)e−|2d|‖k‖√
k²

.

= e2

ˆ
dk

(2π)2

ˆ 2π

0

dθ
‖k‖
2

e−i‖k‖‖z−z
′‖Cos(θ)e−|2d|‖k‖√
k2

= e2

ˆ
dk

(2π)2

ˆ 2π

0

dθ
1

2
e−i‖k‖‖z−z

′‖Cos(θ)e−|2d|‖k‖

= e2

ˆ
dk

4π
e−|d|‖k‖J0(‖k‖‖z − z′‖)

=
1

4π

e2√
(z − z′)2 + d2

, (6.3)

which shows that we recover a Coulomb interaction between two electrons in different
planes in the static limit.

The next step is to find an effective (2+1)D Lagrangian that is equivalent to this
projection. Here there still lie some difficulties. There are now two different interactions
in the system, those between electrons in the plane, and those between electrons from
different planes. It is not clear if these should be mediated by the same gauge field,
with an extra structure accounting for these two interactions, or that there perhaps
should be two gauge fields in the system. Secondly, the kinetic term for the gauge field
mediating the interactions between the planes would take the following form in the
effective Lagrangian

F µνed
√
−�Fµν√
−�

,

but it is not clear that this is unitary. Perhaps one could justify an expansion in
the separation d as a small parameter, and in this way obtain a simpler form of the
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Lagrangian. The first term of such an expansion would correspond to Pseudo-QED,
the second one to normal QED.

Projecting (3+1)D QED onto a wire

Instead of projecting QED onto a plane, one could also consider projecting down QED
onto a wire. We would then try to confine the matter current to (1+1)D by writing

jµ(x) =

j
µ
1+1(x0, x1)δ(x3)δ(x2) µ = 0, 1

0 µ = 2, 3
. (6.4)

It turns out there are some bad divergences if we proceed in this way. In Ref. [40] the
regularized the δ-functions by replacing them with

f(x) =

√
a

π
e−ax

2

.

This reduces to the δ-function in the limit a→∞. In this way we are considering the
gauge field to propagate in a wire of finite width, and they found the effective gauge
field propagator to be (in the Feynman-’t Hooft gauge) [40]

Dµν(k) = −δµν
e2

4π
exp

(
k2

2a

)
Ei

(
−k

2

2a

)
,

where Ei(x) is the integral exponential function. This propagator does not have a nice
form, but perhaps other regulators, or certain limits of a or introducing a cut-off will
improve the situation. Here it would be interesting to check what the RG-flow of such
a theory would be, and find its fixed points.

Projecting (2+1)D QED onto a wire

We can also think about projecting (2+1)D QED onto a wire. Perhaps this could
describe a situation where the electromagnetic field is strongly screened, such that it
is confined to a plane, and if we then have a conducting wire lying in this plane. We
can follow essentially the same steps as with the projection of (3+1)-dimensional QED
onto a plane. We start from the generating functional with the Aµ field integrated out.
We find (in Euclidean space)

Zeff
QED = exp

[
e2

ˆ
d3zd3z′jµ(z)

(
δµν
−�E

)
jν(z′)

]
. (6.5)
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The only difference is that there is one spatial dimension less. Continuing in the same
fashion, we confine the matter current to a wire by writing

jµ(x0, x1, x2) =

j
µ
1+1(x0, x1)δ(x2) µ = 0, 1

0 µ = 2
. (6.6)

Substituting Eq. (6.6) into Eq. (6.5), and noting that from now on all indices are either
0 or 1, we find

Zeff
QED = = exp

{
e2

ˆ
d2zd2z′

[
jµ1+1(z)

δµν

−�E

∣∣∣∣
z3=z′3=0

j1+1(z′)

]}
.

We rewrite the inverse d’Alembertian as

1

−�E

∣∣∣∣
z2=z′2=0

=

ˆ
d2k

(2π)2

dk2

(2π)

e−i[k0(z0−z′0)+k1(z1−z′1)]

k2
0 + k2

1 + k2
2

=

ˆ
d2k

(2π)2

π

(2π)

e−i[k0(z0−z′0)+k1(z1−z′1)]√
k2

0 + k2
1

=

ˆ
d2k

(2π)2

1

2

e−i[k0(z0−z′0)+k1(z1−z′1)]√
k2

0 + k2
1

.

This has the exact same form as the one we have found before when projecting from
QED in (3+1)-dimensions onto the plane. We can immediately infer, following the
same reasoning, that the Lagrangian

L = −1

2
F µν 1

(−�)
1
2

Fµν +−ψ(/∂ −mψ)ψ + ejµAµ, (6.7)

is the effective (1+1)-dimensional Lagrangian. Our arguments for showing that the
correlation functions are equivalent can all still be applied. The essential difference is
of course, that Eq. (6.7) is (1+1)-dimensional.

The first thing we want to check in this theory, is the dimension of the fields and
the coupling constants. Starting from the kinetic term of the fermions, and working in
mass dimensions, we find

[ψ][m][ψ] = 2.

Thus [ψ] = 1
2
. From the kinetic part of the Aµ field we conclude

[∂]2[Aµ]2[
1√
−�

] = 2.
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We know [∂] = 1 and thus
[

1√
−�

]
= −1. We then find [Aµ] = 1

2
. Using this we can

infer from the interaction term that in this theory [e] = 1
2
. Since our coupling constant

is positive, we are dealing with a super-renormalizable theory.
QED in (1+1)D is quite different from QED in higher dimensions. The photon

has not propagating degrees of freedom in this theory (since there are no transverse
modes in 1D), and thus Maxwell theory in (1+1)D is a topological theory. It would be
interesting to consider instead of Maxwell theory, the first term of Eq. (6.7), and see
how the non-locality changes this analysis.



Appendix

In this Appendix we briefly review the concept of dimensional regularization. The
divergences encountered in quantum field theories can be systematically extracted by
computing the integrals in n dimensions, and taking the limit of n to the dimension in
which we are interested. We follow Ref. [41] in this appendix.

Let us see how dimensional regularization works by calculating the integralˆ
dnq

1

(q2 −∆)α
, (6.8)

where we will be interested in the case n = 2. Note that this is a spatial vector, and
thus we are already in Euclidean space. The first step is to go to spherical coordinates
in n dimension. The result is
ˆ
dnq

1

(q2 −∆)α
=

ˆ ∞
0

dq
qn−1

(q2 −∆)α

2πˆ

0

dθ1

πˆ

0

dθ2 sin θ2 . . .

πˆ

0

dθn−1 sinn−2 θn−1.

To calculate the angular integrals, we need the result
πˆ

0

dθ sink θ =
Γ
(

1
2

)
Γ
(

1
2

+ 1
2
k
)

Γ
(
1 + 1

2
k
) .

Using this result we find
ˆ
dnq

1

(q2 −∆)α
=

ˆ ∞
0

dq
qn−1

(q2 −∆)α
2π

Γ
(

1
2

)n−2

Γ
(
1 + 1

2
(n− 2)

)
=

ˆ ∞
0

dq
qn−1

(q2 −∆)α
2πn/2

Γ
(
n
2

) .
To compute the q integral, we need the integral

∞̂

0

dx
x2β−1

(x2 + a2)α
=

Γ(β)Γ(α− β)

Γ(α)

1

2 (a2)α−β
,
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which is valid for α > β > 0. We can however use the analytic continuation of the
Gamma function to extend the range in which it is valid. In our case we have

∞̂

0

dq
qn−1

(q2 −∆)α
=

Γ(n
2
)Γ(α− n

2
)

Γ(α)

1

2 (−∆)α−n/2
.

The complete integral then becomes
ˆ
dnq

1

(q2 −∆)α
=

Γ(n
2
)Γ(α− n

2
)

Γ(α)

1

(−∆)α−n/2
πn/2

Γ
(
n
2

)
At this point we take n = 2+ε, where ε is a small parameter which take to 0 in order to
obtain the result for 2 dimensions. Note that because the result is expressed in Gamma
functions, by using the analytic continuation of this function, we can make the result
well-defined for non-integer values of n. Let us find the compute the integral for α = 1,

ˆ
dnq

1

(q2 −∆)
= πΓ(− ε

2
) (−∆π)ε/2 .

The divergence if we take ε→ 0 is now contained in the Gamma function, which has a
pole at 0. We expand the expression in ε using

Γ(− ε
2

) = −2

ε
− γE +O(ε),

(−∆π)ε/2 = exp
( ε

2
ln(−∆π)

)
= 1 + ε ln(−∆π),

where −∆ must be positive (which is indeed the case for the cases we encounter in this
thesis) and γE is Euler’s constant. Substituting these expansion into the integral, we
find

ˆ
d2q

1

(q2 −∆)
= −2π

[
1

ε
+

1

2
γE +

1

2
ln(−∆π) +O(ε)

]
.

This expression is, however, not dimensionally correct. We can introduce an arbitrary
reference mass µ, to solve this problem. The full expression then becomes

ˆ
d2q

1

(q2 −∆)
= −2πµε

[
1

ε
+

1

2
γE +

1

2
ln(
−∆π

µ2
) +O(ε)

]
.

In the main text we will only focus on the divergent term of the diagram, and omit the
µε.
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