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Abstract

For a long time, it was believed that the Ginzburg-Landau formalism was able to

classify all different types of phase transitions [1, 2]. This view changed with the discov-

ery of the quantum Hall effect [3] and topological insulators [4]. Topological insulators

(superconductors) are materials that host symmetry-protected metallic edge states in an

insulating (superconducting) bulk [5, 6]. Although topological insulators are well under-

stood by now, a thermodynamic description of their behavior remained elusive, firstly

because the edges are lost in the thermodynamic limit, when the system size goes to

infinity, and secondly because topological quantum field theories involve non-local order

parameters, and hence cannot be captured by the conventional Ginzburg-Landau for-

malism. Recently, this challenge has been overcome: by using Hill thermodynamics [7]

to describe the paradigmatic Bernevig-Hughes-Zhang model in two dimensions, it has

been shown that at the topological phase change the thermodynamic potential does not

scale extensively due to the boundary effects [8]. Here, we extend this thermodynamic

approach firstly to the Kitaev chain in one-dimension and then to different topological

models in various dimensions (the Su-Schrieffer-Heeger model in one dimension, the Kane-

Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions)

at zero temperature. Surprisingly, we find that all these models exhibit the same universal

behavior in the order of the topological-phase transition, which depends on the dimension-

ality of the system. Next, we use this thermodynamic approach to describe topological

phases at finite-temperatures. We calculate the entropy and heat capacity for the Kitaev

chain and verify its behavior in comparison with conformal field theory. Furthermore, we

extend the topological phase transition to finite-temperatures, by numerically deriving

the topological phase diagram for the bulk of the system, and show that it displays a

good agreement with the one calculated analytically from the Uhlmann phase. Finally,

we calculate measurable quantities such as the density of states and the heat capacity for

different topological insulators. Our work reveals unexpected universalities and opens the

path to a thermodynamic description of systems with a non-local order parameter, pro-

vided that nonlinear terms are appropriately taken into account for the thermodynamic

extensive variables.
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Preface

In front of you lies the Master’s thesis titled “Thermodynamic signatures of topological

phases”, written to obtain the degree Master of Science. In the past year, I have worked on

this project together with my supervisors Anton Quelle and Cristiane Morais Smith and I

am very happy that I have chosen this project. In our first meeting, Anton was already able

to inspire me with his knowledge in physics and his eagerness to start the project. Together

with the unstoppable enthusiasm and excellent guidance of Cristiane, I knew this was going to

be an interesting project. Especially the particular way in which thermodynamics is applied

on finite-size systems got my attention, and although I did not know a lot about topological

materials, I am glad to have had the opportunity to study these materials for the past months

and got to understand them better and better.

Like any physics student, I was already acquainted with thermodynamics. I started my student

career in Science & Innovation Management, where I was introduced to the intriguing concept

of entropy in the course Physical Chemistry. Entropy, as the teacher of this course, Andrew

Bale, described it, can be explained in two ways. To start with, it can be thought of as (1) the

amount of chaos in the only closed system we will ever know: the universe. Or it can be seen

as (2) when I leave my child in his bedroom and come back after five minutes. Unfortunately,

this was the only course where I could encounter this fascinating concept of entropy in Science

& Innovation Management, and therefore I started to study Physics & Astronomy as well,

perhaps one of the best decisions in my life. In my Bachelor’s project, I investigated the

thermodynamics of “Blue energy”, and due to these interesting projects and the challenging

subjects, I continued my Master in theoretical physics.

I am very glad that I was able to use my knowledge about thermodynamics in this Master’s

project. However, this time, thermodynamics was put in a very different perspective than I

was used to, because the finite-size becomes important for topological materials. Therefore,

perhaps one of the most interesting parts of this thesis is how to describe topologically

protected edge states within a thermodynamic framework. Thermodynamics in principle does

not know about topology, but, when the boundaries are appropriately taken into account, it

turns out that thermodynamics is able to capture the correct behavior.

As usual in research, the answers to the initial questions only give rise to more questions

and new ideas. Currently, we are working on projects to connect the described framework to

conformal field theories and topological entanglement entropy in order to verify our results

and to better understand the concepts at stake. I am excited that I have the opportunity to

continue to work on these questions in the upcoming years, and, hopefully, this has not been

my last effort in this field of research.

Sander Kempkes, 28-06-2016
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1 INTRODUCTION

1 Introduction

Thermodynamics has contributed greatly to our understanding of materials and their phase

transitions. A phase transition describes how a material goes from one state of matter into

another, such as when gas transforms into a liquid upon decreasing temperature. For a long

time, the Ginzburg-Landau theory of symmetry breaking was believed to be able to describe

all possible orders in materials and their phase transitions [1, 2]. This view changed with the

discovery of the quantum Hall effect [3] and topological insulators [4], which opened up a

whole new area of research into topological phases. The term topological phase designates a

material with an insulating bulk and a metallic edges, which are protected by topology. This

new kind of topological phase is richer than the usual quantum phase because the topology of

a system comes into play together with quantum effects. Nowadays, topological systems, such

as topological superconductors and topological insulators, are frequently investigated because

of their interesting and exotic properties.

One of the most interesting properties of the topological phase is the difference between the

bulk and the boundary of a system. For instance, topological insulators exhibit an insulating

bulk, but metallic edge states, with quantized conductivity. The effect is driven by a strong

spin orbit coupling, and was first predicted to occur in graphene [4] and later in HgTe/CdTe

quantum wells [9]. Moreover, topological superconductors were predicted to host Majorana

bound states at its edges, but not in the bulk [10], and these can be used as building blocks

for quantum computing. Topological superconductors are usually created by putting a

topological insulator on top a conventional superconductor, and inducing supercurrents via

the proximity effect.

Some of these theoretical predictions have been verified by experiments. At the moment,

three different techniques are used to identify topological phases, which are Scanning

Tunneling Microscopy (STM), transport, and Angle-Resolved PhotoEmission Spectroscopy

(ARPES). With the help of these methods, great contributions to the understanding of these

materials have been made, such as the discovery of topological insulators and the quantum

spin Hall effect by the group of Molenkamp in Würzburg [11], the experimental verification of

topological insulators in three dimensions [12], the discovery of Majorana bound states in

Delft [13] and, a recent hot topic in condensed matter, the discovery of Weyl fermions [14].

Although these experiments have proven their value in identifying topological phase

transitions, it seems peculiar that it is not possible to describe these topological phases in the

way we were used to describe phase transitions within thermodynamics. Thermodynamics is

one of the most fundamental theories in physics, which is also reflected by the quote of Sir

Arthur Stanley Eddington on the front page. Therefore, we should be able to describe this
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type of topological phase transition in the conceptual framework of thermodynamics.

However, this turns out not to be so easy. In example, in ordinary thermodynamics, it is

possible to identify a phase transition by analyzing the pressure as a function of temperature

of a material. The kink in the phase diagram indicates the point of the phase transition. This

cannot be done for a topological phase change since these types of transitions do not seem to

break any of the underlying symmetries. The Ginzburg-Landau classification breaks down,

because it makes use of local order parameters, and topological insulators can only be

described by non-local order parameters such as Chern numbers. Moreover, and more

intuitively, it is not possible to simply use thermodynamics in describing topological-phase

changes, because thermodynamics is about infinitely large systems, whereas topological-phase

changes involve finite-size systems due to the presence of edge states.

However, Quelle et al. [8] recently proposed a solution to this conundrum: a thermodynamic

description of topological states of matter, based on the thermodynamic approach developed

by Hill [7] in the 1960s for finite-size systems. In this so-called Hill thermodynamics, one can

split the contributions to the thermodynamic potential of a finite-size system into the

“conventional” extensive potential for an infinite system and a non-extensive subdivision

potential. The bulk contribution of the topological insulator corresponds to the conventional

potential, whereas the boundary and finite-size contributions can be identified with the

subdivision potential. To corroborate this new method, Quelle et al. were able to find

thermodynamic signatures of topological phases in the paradigmatic 2D

Bernevig-Hughes-Zhang model [9] model. In this way, a topological phase transition can be

described in the same way as an ordinary phase transition and therefore it has the potential

to be a major breakthrough in the field. The idea of this thesis is to apply this newly

developed formalism to different models and to identify interesting thermodynamic

phase-change signatures.

In this thesis, we analyze different topological models with this method, and in particular a

paradigmatic one-dimensional (1D) superconductor: the Kitaev chain [10]. In 2001, Alexei

Kitaev proposed a toy model, the Kitaev chain, in which he shows how a 1D quantum wire

can host Majorana bound-states at the edge of the wire. A Majorana fermion is a fermion

that is its own antiparticle. This implies a Majorana fermion cannot have any charge or

energy. In his work, Kitaev analyses the 1D chain and finds two different topological phases,

of which one hosts unbound Majoranas at the edges. Due to these unbound Majoranas and

the coupling of the Majoranas at different sites, the system is unlikely to pick up an arbitrary

phase. These Majorana bound states can therefore be used as qubits, and are the best-known

candidate for the building blocks of quantum computers.

Although Majorana fermions have not been observed as an elementary particle (in the
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1 INTRODUCTION

Standard Model, only the neutrino might be a Majorana fermion, but this still has to be

experimentally proven), Majorana bound states have recently been found in some

superconducting materials as emerging quasiparticles [13]. In their experiment, Mourik et al.

use a 1D indium antimonide nanowire contacted with one normal and one superconducting

electrode and show, by using STM, that Majorana bound states emerge in this material.

More specifically, when the system is exposed to an external magnetic field on the order of

100 miliTesla, the apparatus shows a mid-gap state with a peak in the electrical conductance

at zero bias voltage. These mid-gap states are thought to be the bound Majorana states. The

results of their experiments were quickly reproduced by other groups with similar devices

[15, 16, 17, 18], but it remains difficult to undeniably prove the existence of these conjectured

Majoranas because other explanations that do not involve Majoranas are available to account

for these mid-gap states [19]. A new method to settle these discussions is thus required and

therefore we have chosen to investigate the Kitaev chain as main model of interest with the

thermodynamic method proposed by Quelle et al. [8].

Our first aim is thus to identify thermodynamic signatures of topological phases in the Kitaev

chain. Although the Majorana bound-states have been experimentally identified [13], there

might also exist thermodynamic signatures to detect the topological phase transitions in

materials, and these thermodynamic signatures could turn out to be measured more easily

than topological quantities. In order to develop such a method, we first need to understand

topological phases in general and the Kitaev chain more specifically.

The second aim is to continue the search for thermodynamic signatures in different topological

models and try to find connections between the types of phase transitions. The results show

that we find universal behavior in the order of the phase transition. By separating the bulk

and the edge state with Hill thermodynamics, we find a phase transition of order D at the

edge and of order D + 1 in the bulk, where D is the spatial dimension of the model.

The third aim is to extend this method towards finite-temperatures. Nowadays, the

zero-temperature behavior of topological phases is rather well understood, but a proper

description at finite-temperatures is not yet present. Therefore, we use Hill thermodynamics

to obtain the thermodynamic potential at finite-temperature, and we show the entropy, heat

capacity and finite-temperature topological phase diagram for the Kitaev chain. Furthermore,

we calculate the density of states and heat capacity for the 2D Kane-Mele and

Bernevig-Hughes-Zhang (BHZ) model.

This thesis is structured as follows. In Sec. 2, we review the work on topological phases and

how to detect them. As an example, the Kitaev chain is described in Sec. 2.1.2. We present

the current methods to describe topological insulators by identifying the energy spectrum of

Thermodynamic signatures in topological phases 7



the infinite Kitaev chain, show how the Majoranas emerge at the edge of the finite Kitaev

chain and how to calculate topological invariants for this model. Then, in Sec. 3, we show

how the formalism of Quelle et al. [8] can be used to identify topological phases in the Kitaev

chain. Therefore, we discuss the most important parts of Hill thermodynamics and derive how

the finite size and the edge of the systems are appropriately taken into account. At the end of

this section, we describe the Kitaev chain with Hill thermodynamics to find the order of the

topological phase change. In Sec. 4, the thermodynamic signatures and universalities in the

order of the phase transitions for different topological models are discussed. In total, we show

for five different models that the order of the phase transition depends on the dimension of

the model, and is different for the bulk and the edge. This can be considered as the first main

result of this thesis. We continue in Sec. 5 by extending the procedure towards

finite-temperatures by showing the entropy, the heat capacity and the finite-temperature

topological phase diagram for the Kitaev chain, and the heat capacity and density of states

for the Kane-Mele and BHZ model. This finite-temperature extension is the second main

result of this thesis. Finally, we conclude in Sec. 6 that Hill thermodynamics is a new and

interesting method to describe topological insulators, even at finite-temperatures. We

summarize the main findings and provide future research topics, which includes finding (an

analogue of) critical exponents for topological insulators.

Thermodynamic signatures in topological phases 8



2 TOPOLOGICAL MATERIALS AND EXPERIMENTS

2 Topological materials and experiments

Before we immediately jump into the new topic of this thesis (using Hill thermodynamics to

describe topological phases), we should first get a feeling for the materials and the method we

are working with: on the one hand topological insulators and superconductors, and on the

other Hill thermodynamics. This section is intended to give an introduction to topological

insulators. Although this section is not a complete overview of the research in this area, it

should give a clear picture of what concepts are at stake (see for excellent reviews on the topic

for example Hasan and Kane [5] or Qi and Zhang [6]). As is usual with topological insulators,

we will give an example (the Kitaev chain) to get acquainted with topological phases. We

start by introducing the concept of topology and follow the historical route to describe the

developments in this research area.

Topology is the branch of mathematics that studies the preserved properties of objects when

being deformed by smooth transformations, such as the twisting and stretching, but not

tearing, of the object. The word originates from the Greek τ óπoς (place) and λóγoς (study).

A classic example concerns deforming a doughnut into a coffee cup, where one object can be

deformed into the other because both contain exactly one hole (also referred to as genus).

When two objects can be deformed smoothly into each other, they are called homeomorphic.

Objects that cannot be deformed smoothly into each other are considered to be topologically

distinct. Examples of topologically distinct objects are a cylinder and a Möbius strip. It is

only possible to transform the Möbius strip into a cylinder if we cut the strip and glue the

edges together after twisting them as is shown in Fig. 2.1.

Figure 2.1: Topological differences between a cylinder and a Möbius strip. The arrows indicate where
the edges A are joined together. Image retrieved from Ref. [20].

Nowadays, topology is also used by physicists to describe topological insulators and
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2.1 Topological Materials

superconductors. These kind of materials exhibit interesting properties, in which the metallic

boundary modes are protected by topology. As we will see, the word “topological” gains a

slightly different meaning in this context than the above description. For example, in a

topological insulator, there is a circulation of edge currents whereas no smooth deformation is

able to break these currents. In the literature, this phenomenon is referred to as topologically

protected edge states. However, within topological systems, these smooth deformations are

not related to the tearing and cutting of a material, but to symmetry breaking such as

time-reversal symmetry, particle-hole symmetry and chiral symmetry. These symmetries state

that the Hamiltonian of a system remains invariant (up to a minus sign) when we transform

the time t to −t (time-reversal symmetry: T ), the charge q to −q (particle-hole or

charge-conjugation symmetry: C), or the product of these former two transformations

(sublattice or chiral symmetry: S = T C). These symmetries are described in the usual tenfold

way to classify topological insulators and superconductors, and is the topic of Sec. 2.1.6.

As mentioned, this section is intended to give an overview of the developments in this

relatively new branch of physics. The first part of this section, Sec. 2.1, provides a broad

overview of the history and a theoretical description of the different types of topological

materials. We start Sec. 2.1.1 with the discovery of the quantum Hall effect, the quantum

spin Hall effect and topological insulators. Then, we consider an example in Sec. 2.1.2: the 1D

Kitaev chain, because an example explains clearly what is interesting in these materials.

Next, we discuss how to distinguish the topological phase from the trivial phase via a Chern

or winding number in Sec. 2.1.3 and present the most important examples of topological

materials; the 2D topological insulator in Sec. 2.1.4, and 3D topological insulators in

Sec. 2.1.5. Finally, we describe the so-called ten-fold way in classifying these kind of

topological systems in Sec. 2.1.6. In the second part of this section, Sec. 2.2, we present an

overview of the experiments to identify topological phases; STM in Sec. 2.2.1, transport in

Sec. 2.2.2 and ARPES in Sec. 2.2.3. Finally, the section ends with a brief conclusion of the

most important aspects of topological materials in Sec. 2.3.

2.1 Topological Materials

2.1.1 Quantum Hall effect and quantum spin Hall effect

The first step in understanding topological insulators is to understand ordinary materials like

insulators and metals. The second step is to understand topological materials in the context

of the quantum (spin) Hall effect. Insulators and conductors have been known in physics and

chemistry for a very long time. An insulating state is the most basic state of matter in which

it takes a finite energy to dislodge an electron. However, a more detailed understanding of

these materials was developed within quantum mechanics within the band theory of solids.

The band theory makes use of the underlying translational symmetry of the crystals to

Thermodynamic signatures in topological phases 10



2 TOPOLOGICAL MATERIALS AND EXPERIMENTS

describe electrons in terms of their crystal momentum k in the periodic Brillouin zone. In this

way, the electrons are described by the eigenstates, also called Bloch waves, ∣um(k)⟩ of the

Bloch Hamiltonian H(k) in a single unit cell of the crystal, having an eigenvalue E(k), which

defines the energy bands. Within this band theory, the moving electrons and holes of a

material are represented by the valence and conducting band. An insulator has an energy gap

between the occupied valence band and the empty conducting band, while a conductor does

not have an energy gap between these bands, as can be seen in Fig. 2.2. Due to the Pauli

principle, electrons cannot be in the same state, which means every electron that is added to

a system system at zero temperature must be in a higher energy state than the others. The

highest energy of the electrons is given by the so-called Fermi-energy, the difference between

the highest and lowest energy level of non-interacting electrons at zero temperature. In

metals, the Fermi energy is precisely within a band of allowed energies and therefore electrons

are easily excited. Insulators have a gap at the Fermi energy between the valence and

conducting band, due to which it takes a finite energy to excite electrons.

Figure 2.2: The filling of electronic density of states for different materials. The vertical axes
shows the energy level of the electrons and the horizontal axes the electronic density of states
for different materials. The Fermi level is within the electronic density of states for a metal
and a semimetal, but is between the valence and conducting band for a semiconductor and
an insulator. Doping a semiconductor with electron accepting impurities (p-type) moves the
valence band up, and doping a semiconductor with electron donating impurities moves the
conducting band down. Image retrieved from Ref. [21]

Besides metals and insulators, more exotic states of matter have been identified such as

semiconductors and semimetals. A semiconductor has a smaller band-gap than an insulator

and therefore electrons can be excited to the conducting band. As temperature increases, the

semiconductor becomes more conducting, which is opposite to a metal. Furthermore, doping

can be used to increase the conductivity of a semiconductor. Doping introduces controlled

impurities in the sample and these impurities either release or accept electrons from the

valence band of the semiconductor. It is common to distinguish the p-type (acceptor

impurities) which moves the valence band towards the Fermi level and the n-type (donor
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2.1 Topological Materials

impurities) semiconductor, which moves the conducting band towards the Fermi level in

Fig. 2.2. In semimetals, the electronic density of states is very small at the Fermi level.

Therefore a semimetal does not have zero conductivity at zero temperature. This is opposite

to semiconductors and insulators, which do have zero conductivity at zero temperature.

Moreover, in semimetals, both the holes and the electrons contribute to conductivity, whereas

in a metal only the electrons in the conducting band contribute to the conductivity of the

material.

a b

Figure 2.3: a Experimental setup how to measure the Hall conductance. A magnetic field B in
the z-direction deflects electrons traveling in the x-direction due to the Lorentz force. Therefore
the electrons move to the left, creating a voltage difference (Hall voltage VH) in the y-direction.
From this the Hall conductivity can be measured. Image retrieved from Ref. [22]. b Classical
description of the edge states in the quantum Hall effect. In the presence of a perpendicular
magnetic field, the electrons in the system will move in an orbit with the cyclotron radius due
to the Lorentz force. However, near the edge of the system the electrons get deflected by the
edge making a so-called skipping-orbit. These skipping orbits result in chiral edge currents,
which are currents in opposite direction for opposite sides. Image retrieved from Ref. [23].

Where does topology come into play? We describe this by considering the insulating and

semiconducting state. We can smoothly deform the Hamiltonian (energy levels) of the

insulator, in such a way that the band gap does not close, to obtain the semiconducting

state [5]. This is what is called topology for electronic systems: all states that can change into

each other without closing the band gap are the same states of matter. This not only makes

an insulator the same as a semiconductor, but also the same as the vacuum. The question we

now want to answer is whether there might exist electronic states with an energy gap that are

not topologically equivalent to the vacuum. And, indeed, there exist such states of matter

that we call topological phase. The quantum Hall effect is the first example of such a

topological phase. We will discuss this effect below.

Research on topological materials already started in 1975, the year when there has been the

first theoretical prediction of a quantized Hall conductance [24]. After this prediction,

multiple experiments were performed in order to find this quantized conductance, until five
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2 TOPOLOGICAL MATERIALS AND EXPERIMENTS

Figure 2.4: The quantum Hall effect [25]. The resistivity is shown with respect to the magnetic
field at a temperature of 8mK. The Landau levels can be clearly seen,the horizontal lines, and
are characterized by h/(e2n).

years later the group of Klaus von Klitzing indeed discovered what is known as the quantum

Hall effect [3].

The quantum Hall effect describes how a two-dimensional (2D) electron system at low

temperatures responds to a strong perpendicular magnetic field, see Fig. 2.3a. When one

applies a voltage difference in the plane, the electrons will be deflected perpendicularly to the

potential difference and to the magnetic field, due to the Lorentz force. This will lead to a

transverse current in the xy direction, which is quantized by integer conductance plateaus

σxy = ne2/h at low temperatures. Here, e and h are the electric charge and the Planck

constant and n is the so-called Landau level. This Hall conductance has been measured with

a very large accuracy of 10−9, and is therefore one of the most well-known experiments

nowadays. Especially due to the fact that the Hall resistivity can be understood in

fundamental constants and an integer number was unexpected. The group of Klaus von

Klitzing experimentally measured the resistivity and was awarded the Nobel Prize in 1985.

The quantized Landau plateaus are visible in Fig. 2.4.

Besides the quantized conductivity, the quantum Hall effect also gives rise to so-called chiral
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Figure 2.5: The normal insulator, the quantum Hall effect and the quantum spin Hall effect.
On the left side, we see the representation in real space, and on the right in k-space. The
insulating state does not have any edge modes and the electrons are stuck to an atom. When
applying a perpendicular magnetic field, the electrons circulate and we observe chiral edge
states. Without a magnetic field and a strong spin orbit coupling, we obtain the quantum spin
Hall effect, where a helical spin current is observed at the boundary of the system.

edge states. Classically, one can think about these edge states as is shown in Fig. 2.3b. The

electrons in the center move with a certain velocity in a certain direction, but are deflected by

the perpendicular magnetic field and therefore will move in a circular orbit, where the radius

is given by the cyclotron radius. Near the edge, when the distance of the electron and the

edge is smaller than the cyclotron radius, the electrons cannot exit the system, and will be

deflected back into the system by making a so-called skipping orbit. Note that the current on

one side is in the opposite direction compared to the other side, which is usually referred to as

chiral edge states.

If N Landau energy levels are filled, there is a finite-energy gap between the occupied and

empty energy states, which is similar to an insulator. The energy levels are given by

En = h̵ωc(n + 1/2), where ωc is the cyclotron frequency. However, the chiral edge currents are

something rather different and are not observed in a normal insulating state, and this is what

is topologically different between the quantum Hall state and a normal insulator. The

difference can be calculated explicitly via a Chern or winding number, which is an integer
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Figure 2.6: Band inversion for a topological insulator [26]. The energies E0, En and Ep denote
the Fermi energies of the neutral, negatively and positively doped solids respectively. The
drawings above and below the energies are useful to illustrate the twisting of the energy bands
and can be compared with the mathematical description of topology. a A normal insulator. b
Due to a strong spin-orbit coupling and tuning some parameter, a valence band gets a higher
energy than its corresponding conduction band, inducing a band-inversion. This band-inversion
gives rise to a topologically protected spin current at the boundary of the material.

number indicating whether the system is in the topological or trivial state. In the quantum

Hall effect, the Chern number is equal to the Landau level n, and counts the number of chiral

edge states. We will show how to calculate a winding number in the example of the Kitaev

chain.

In order to obtain the quantum Hall state, the group of Klitzing made use of a magnetic field,

which breaks the time reversal symmetry of the Hamiltonian. In the experiments, the

magnetic field was in the order of 15 Tesla, to compensate for the relatively high temperature.

This triggered new theories about how to obtain a topological phase without using a magnetic

field. The first breakthrough was made by Kane and Mele in 2005 [4]. By making use of the

spin-orbit coupling, they were able to theoretically predict the closing of the gap in graphene,

giving rise to the quantum spin Hall effect. We summarize the normal insulator, the quantum

Hall effect and the quantum spin Hall effect in Fig. 2.5.

The main idea of the quantum spin Hall effect is to use the intrinsic spin-orbit coupling of a

material as a “magnetic field”. The spin-orbit coupling denotes that a particles spin interacts
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with its motion and therefore influences the energy of the particle. For an electron, spin up

and spin down, this means that L ⋅ S either gives a positive or negative contribution to the

energy of the particle, which in its turn lifts the energy degeneracy. For large values of the

spin-orbit coupling the bands are separated, and it can be the case that the energy for some

valence band is higher than the energy for the conducting band, making these two bands

invert (see Fig. 2.6b). By inverting the two bands, the energy gap closes and opens again:

these two states topologically distinct and give rise to spin currents at the boundary.

The quantum spin Hall effect was predicted to occur in graphene, a 2D system, which indeed

has an intrinsic spin orbit coupling. However, the spin-orbit coupling was too small to

actually induce the inversion of the bands. Quickly after this theoretical prediction, another

prediction was made by Bernevig-Hughes-Zhang, who made use of this idea of spin-orbit

coupling by inverting the energy bands and inducing spin currents in quantum wells [9]. After

this prediction, the group of Molenkamp were able to measure the quantum spin Hall effect,

establishing topological insulators as a new and exciting field in condensed matter physics [11].

To get a better intuition for these topological phases, we explicitly show an example of a

topological superconductor. Then, we continue our description of topological phases by giving

an introduction to topological invariants (such as Chern and winding numbers) and discuss

the main models for the 2D and 3D topological insulators.

2.1.2 An example: the Kitaev chain

Topological phases are best understood via an explicit example where the edge states appear

in the model. The Kitaev chain is a well-known, paradigmatic one-dimensional (1D) chain,

which hosts two phases: one trivial and one topological phase [10]. Especially the topological

phase is considered to be of great interest, since this is the phase that hosts unbound

Majorana edge states, which can be used for quantum computation. In this part, we show the

energy spectrum and how to distinguish the topological phase from the trivial phase.

Unlike the materials we described before, the Kitaev chain is a topological superconductor

rather than an insulator, giving rise to a superconducting bulk. It was shown in 2008-2009

that the topological classifications also hold for superconductors [27, 28, 29], where the energy

gap is created by the superconducting pairing ∆. With a BCS mean-field theory of a

superconductor, these materials have an intrinsic particle-hole symmetry than can be used as

a protective symmetry for the edge states. Therefore, by closing the gap, there occurs a

topological phase transition in the same sense as in topological insulators.

We first consider the motivations for Kitaev to introduce, what is currently known as, the
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Kitaev chain: quantum computing. One of the major challenges in quantum computation is

the probability of random errors in the calculations and, therefore these errors need to be

suppressed. One of the options for this fault-tolerant quantum computing is based on the

physical level of the quantum bits, in which non-Abelian anyons are used. Inspired by this

proposal, Kitaev introduced a new kind of model, where unbound Majoranas at the edge are

immune to any kind of error.

The idea is as follows. Quantum states are sensitive to errors of two kinds: a classic and a

phase error. When the classic error σxj acts on a state at position j, the operator changes a

quantum bit (qubit) ∣0⟩ into a ∣1⟩ and vice versa. A phase error σzj changes the sign of all

qubits at position j with state ∣1⟩ relative to all ∣0⟩ states at position j. In general, one of the

errors can be removed from the system rather easily, but removing both errors is difficult.

Therefore Kitaev proposes to use Majoranas as qubits. In the proposed system an electron at

a site is resembled by a ∣1⟩ and a hole by a ∣0⟩. In this way, the system is immune to classic

errors due to charge conservation. However, two classic errors might still occur when an

electron jumps from one site to another. Two (or a multiple of two) classic errors can be

prevented if the fermionic sites are placed far from each other and the medium between the

electrons has an energy gap in the excitation spectrum. In this system, we can also prevent a

phase error to occur. As we will see, we can introduce Majorana-operators, which can be

considered to be both electron and hole. Each fermionic site, normally described in terms of

aj and a�j, can be expressed in terms of two Majorana operators ηj and γj,

aj =
1

2
(ηj + iγj), a�j =

1

2
(ηj − iγj), (j = 1,2⋯,N), (2.1)

with N the total number of sites. The Majorana operators ηj and γj belong to different

Majorana sites. These operators indeed satisfy the Majorana criterion

ηj = η
�
j γj = γ

�
j (2.2)

and the anti-commutation relations {ηi, γj} = 0. Now, a phase error can be expressed as

a�jaj = 1/2(1 + iγjηj) and this shows that a phase error can only occur when there is an

interaction between two Majorana-sites. Possibly, it can be avoided that there is such an

interaction, and therefore Kitaev argues that this kind of error is unlikely to occur. Moreover,

an isolated Majorana operator cannot appear in the Hamiltonian because it does not obey the

fermionic parity. Thus, an isolated Majorana site is immune to any kind of error and can be

perfectly used as a qubit for computations.

As an example to detect these isolated Majoranas, Kitaev describes a rather unrealistic but
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simple model where unbound Majorana edge states show up at the boundary in the

topological phase of a 1D chain. In this section, we will describe the model that he introduced

and show how the Majorana edge modes appear. We first start to get a feeling for these

topological phases by analyzing the spectrum of the infinite Kitaev chain, which can be solved

analytically, and how to find the Green’s functions of this chain, which could be measured via

STM (see Sec. 2.2.1). Then, we describe the finite Kitaev chain and how the unbound

Majoranas appear at the edges of the chain in the topological phase. Finally we show how the

bulk-boundary correspondence can be used by analyzing the bulk to obtain information about

the boundary via the winding number.

The infinite Kitaev chain We start by showing the energy spectrum of the Kitaev chain

in the bulk. In his article, Kitaev considers a 1D chain on a superconducting surface and the

electrons in the chain are assumed to be spinless [10]. The Hamiltonian is

H = −µ
N

∑
i=1

a�iai −
N−1

∑
i=1

[t(a�iai+1 + a
�
i+1ai) −∆aiai+1 −∆∗a�i+1a

�
i] , (2.3)

where N is the number of sites, µ is the chemical potential, t ≥ 0 is the hopping parameter, ∆

and ∆∗ ≥ 0 are superconducting gaps (pairing energies) and ai (a�i ) are fermionic destruction

(creation) operators at position i, satisfying the anti-commutation relation {ai, a
�
j} = δi,j. In

order to describe the energy spectrum of this system, it is useful to perform a Fourier

transformation. By using Bloch’s theorem, we introduce Fourier expansions of the operators

aj =
1

√
N
∑
k

eikljak, a�j =
1

√
N
∑
k

e−iklja�k, (2.4)

where l is the distance between two neighboring sites and −πm/(Nl) ≤ k ≤ πm/(Nl), with

∣m∣ ≤ N/2. We can substitute these expressions into Eq. (2.3) and use the definition of the

delta function δk,k′ = 1/N ∑j e
ij(k−k′) for an infinite Kitaev chain (N → +∞), to obtain

H = ∑
k

[εka
�

kak +∆a−kake
ikl +∆∗a�ka

�

−ke
−ikl] , (2.5)

where εk = −µ − 2t cos(kl), which satisfies εk = ε−k. It is convenient to rewrite Eq. (2.5) using a

matrix notation. Because we sum over all the values of k, one obtains a sin(kl) in the matrix

notation, where k > 0:

∑k a−kake
ikl = 1/2∑k a−kake

ikl + aka−ke−ikl = 1/2∑k a−kak (e
ikl − e−ikl) = i∑k a−kak sin(kl). By a

similar calculation for a�ka
�

−k, we find

H =
1

2
∑
k

⎡
⎢
⎢
⎢
⎢
⎣

(a�k a−k)
⎛

⎝

εk −2i∆∗ sin(kl)

2i∆ sin(kl) −εk

⎞

⎠

⎛

⎝

ak

a�−k

⎞

⎠
+ εk

⎤
⎥
⎥
⎥
⎥
⎦

, (2.6)
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and the extra εk comes from the anti-commutation relations for the fermionic operators. In

order to find the quasiparticle excitations of the infinite Kitaev chain, we want to obtain the

action and determine the poles of the Green’s function [30]. Furthermore, by obtaining the

Green’s function we are able to calculate the density of states for the Kitaev chain. Therefore,

we go back to the original second quantized Hamiltonian Eq. (2.3) and introduce the field

operators

φ(x) = ∑
i

aiχi(x), φ�(x) = ∑
i

a�iχ
∗
i (x), (2.7)

which annihilate and create a particle at position x. The wave function χ(x) represents a full

set of eigenstates in space coordinates. For these relations, we can obtain the

anti-commutation relations for the field operators

{φ(x), φ(x′)} = {φ�(x), φ�(x′)} = 0, {φ(x), φ�(x′)} = δ(x − x′), (2.8)

where we used the anti-commutation relations for ai and a�i , the completeness relation

∑j χj(x)χ
∗
j (x

′) = δ(x − x′) and the relations from Eq. (2.7). Normally, the action for the fields

φ is given by

S[φ∗, φ] = ∫ dtd3xL (φ,∇φ,
∂φ

∂t
), (2.9)

but now, by using a Wick rotation t→ −iτ , we can rewrite this action into the Euclidean

space

SE[φ
∗, φ] = ∫

h̵β

0
dτ ∫ d3x{φ∗(x, τ)h̵

∂

∂τ
φ(x, τ) +H[φ∗(x, τ), φ(x, τ)]} . (2.10)

which is more convenient because the time component can be treated in the same way as the

space components. It is helpful to introduce a Matsubara expansion to evaluate the action.

We expand the operators not only in space coordinates, but also in imaginary frequency space

φ(x, τ) = ∑
i

+∞
∑
n=−∞

ai,nχi(x)
e−iωnτ

√
h̵β

, (2.11)

where ωn = π(2n + 1)/(h̵β) for the fermionic fields. It is now possible to substitute this

expression in Eq. (2.3) for the field operators. We can Fourier transform this expression again,

using Eq. (2.4), which yields

SE = −
1

2
∑
k,n

(a�k a−k)
⎛

⎝

+ih̵ωn 0

0 +ih̵ωn

⎞

⎠

⎛

⎝

ak

a�−k

⎞

⎠
+H ∶= −

1

2
∑
k,n

(a�k a−k) h̵G
−1(k,ωn)

⎛

⎝

ak

a�−k

⎞

⎠
, (2.12)
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a b c

Figure 2.7: The energy spectrum for the Kitaev chain, where t = ∆ = ∆∗ = 0 and a µ = 0.6, b
µ = 0.5 and c µ = 0.4. A phase transition occurs when going from the trivial phase a to the
topological phase c.

where

G−1 =
⎛

⎝

−εk/h̵ + iωn +2i∆∗ sin(kl)/h̵

−2i∆ sin(kl)/h̵ +εk/h̵ + iωn

⎞

⎠
(2.13)

is the inverse Green’s function. The Green’s function is the inverse of this matrix

G = −
1

V
∑
k

1

2h̵ωk

⎛

⎝

+εk + h̵ωk +2i∆ sin(kl)

−2i∆∗ sin(kl) −εk + h̵ωk

⎞

⎠
[1 − 2NFD(h̵ωk)], (2.14)

where we have summed over the Matsubara frequencies. Furthermore, the energy is

(h̵ωk)2 = ε2k + 4∣∆∣2 sin2(kl). First, we look at the energy spectrum of the Kitaev chain and

later, we show how to calculate the Green’s function. The poles of the Green’s function,

which resemble the single particle excitations of the Kitaev chain, are given by

h̵ωk = ±
√

[µ + 2t cos(kl)]
2
+ 4∣∆∣2 sin2(kl). (2.15)

This energy spectrum is shown in Fig. 2.7 for a fixed value of t = ∆ = ∆∗ = 0.25 and for

varying µ. By varying the chemical potential µ, it is possible to close the energy gap and

therefore find two topologically different phases; one trivial phase (Fig. 2.7a) and one

topological phase (Fig. 2.7c). The phase transition occurs when µ = ±2t. Furthermore, the

superconducting pairing ∆ opens up a gap in the energy spectrum. When observing the

figures, no clear distinction can be made between the energy spectrum in the trivial or

topological phase, but when we discuss these phases further in Sec. 2.1.2, we will see one

phase hosts zero-energy states whereas the other does not. It can also be seen in the figure

that the Kitaev chain has an intrinsic particle-hole symmetry, which is indicated by a positive

and negative energy value for each value of k.

Let us calculate G12 as an example by summing over the Matsubara frequencies. First, we
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observe that

G12 = ∑
n,k

2i∆ sin(kl)

h̵2βV (−ε2k/h̵
2 − 4∣∆∣2 sin2(kl)/h̵2 − ω2

n)
= −

h̵

h̵βV
∑
n,k

2i∆ sin(kl)

(h̵ωn)2 + (h̵ωk)2
, (2.16)

Now, we are in a position to perform the sum over the fermionic Matsubara frequencies. It is

possible to rewrite the component of the Green’s function as

−
h̵

h̵βV
∑
k

i∆ sin(kl)∑
n

1

h̵2ωk
[

1

ωk + iωn
+

1

ωk − iωn
]. (2.17)

In order to calculate this integral, we can use contour integration [30], to find that

lim
η↓0

1

h̵β
∑
n

eiωnη

iωn − ωk
= lim

η↓0

1

2πi ∫C
dz

eηz

z − ωk

−1

eh̵βz + 1
(2.18)

by considering a contour which goes around the Matsubara frequencies, as shown in Fig. 2.8.

The contour C encloses the entire imaginary axis for which the function h̵β/(exp[h̵βz] + 1)

has poles at the Matsubara frequencies ωn. We can freely add infinite arcs C’ to the contour

C. This can be seen by considering the right hand side of Eq. (2.18). The integrand behaves

as exp[(−h̵β − η)Re(z)]/∣z∣ for Re(z) → ∞ and − exp[−ηRe(z)]/∣z∣ for Re(z) → −∞. This

means that the integrand always vanishes must faster for 0 < η < h̵β, namely exponentially

fast, and thus we can add the contour C’ because it gives no contribution. However, if we now

consider the contours formed by C and C’, we observe a pole for 1/(z − ωk), and not for the

Matsubara frequencies anymore. We can use this different contour and obtain

lim
η↓0

1

2πi ∫C+C′
dz

eηz

z − ωk

−1

eh̵βz + 1
= +

1

eh̵βωk + 1
. (2.19)

by using the residue theorem. This expression is also known as the Fermi-Dirac distribution

NFD(h̵ωk). Finally, we can perform the sum over the Matsubara frequencies by identifying a

proper contour integration to end up with

G12 = −
1

V
∑
k

∆ sin(kl)

h̵ωk
[1 − 2NFD(h̵ωk)]. (2.20)

This final result states that the Green’s function of the infinite Kitaev chain can be rewritten

in terms of the Fermi-Dirac distribution. The other components of the Green’s function can

be treated in a similar manner and will yield similar results as can be seen in Eq. (2.14).

As is shown in Sec. 2.2.1, the Green’s function is related to the spectral function and hence

the local density of states of a sample. By calculating the Green’s, function we therefore gain

insight in the electron distribution of the Kitaev chain and can predict what the tunneling
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Figure 2.8: Illustration of the contours that are used for the calculation of the sum over the
Matsubara frequencies. The black dots refer to the poles in Eqs. (2.18) and (2.19). The poles for
the Matsubara frequencies are displayed on the y-axis, whereas the pole for z −ωk corresponds
in the figure to the pole at (ε − µ)/h̵.

conductance will be in an STM experiment.

Majorana zero modes Although the Majorana bound states have not been observed in

the investigation of the infinite Kitaev chain, we have already seen how to derive the Green’s

function and calculated the energy spectrum of the Kitaev chain in the two distinct

topological phases. Now, we want to make a connection with Majoranas by considering the

finite Kitaev chain.

It is possible to numerically diagonalize the Hamiltonian of a finite system, such as given by

Eq. (2.3). Therefore, the Hamiltonian is first rewritten as

H =
1

2
(a�1 a1 a�2 a2 ⋯ a�N aN)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−µ 0 −t −∆∗ ⋯ 0 0

0 +µ ∆ t ⋯ 0 0

−t ∆∗ −µ 0 ⋯ 0 0

−∆ t 0 +µ ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ −µ 0

0 0 0 0 ⋯ 0 +µ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1

a�1
a2

a�2
⋮

aN

a�N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−µN/2, (2.21)

of which the energies (eigenvalues) can be numerically calculated. The energies for a Kitaev

chain with N = 250 are depicted in by Fig. 2.9 for t = ∆ = ∆∗ = 0.25, and varying µ (the same

parameters as before to identify the phase transition). In these figures, the particle-hole

symmetry can be observed immediately, since there are two symmetric energy branches for
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a b c

Figure 2.9: The energy spectrum for the finite Kitaev chain for t = ∆ = ∆∗ = 0.25 and a µ = 0.6,
b µ = 0.5 and c µ = 0.4. A phase transition occurs when going from the trivial phase in a to
the topological phase c. In c, Majorana zero modes appear in the spectrum.

each lattice site j. Furthermore, the energies in Fig. 2.9a are all finite, whereas in Fig. 2.9c,

there exists two phases with zero energy. Since Majoranas cannot have a finite energy, these

two zero-energy states are the Majoranas at the edge of the finite Kitaev chain and indeed,

they only emerge in the topological phase.

Another way to observe the Majorana zero modes is to introduce Majorana-fermion operators

ηj and γj at position j. Recall from Eq. (2.1) that aj = 1/2(ηj + iγj) and a�j = 1/2(ηj − iγj).

Due to these unique properties, it is no longer possible to conceive a Majorana state as being

empty or filled in a similar way as is usual for other fermions. Moreover, every fermionic

operator can be rewritten into pairs of Majorana operators, which means that the Majorana

zero modes always come in pairs (although these pairs may be spatially isolated from each

other). Substituting these Majorana operators into the Hamiltonian from Eq. (2.3), we find

H =
i

2
[
N

∑
i

−(µηiγi) +
N−1

∑
i

(∣∆∣ + t)γiηi+1 + (∣∆∣ − t)ηiγi+1] − µN/2. (2.22)

As shown by Kitaev [10], this Hamiltonian leads to two special phases that deserve further

inspection. In Eq. (2.22), we observe an energy competition between Majorana operators on a

single site (ηjγj) and Majorana operators on neighboring sites (ηjγj+1 or γjηj+1). This

competition leads to two distinct phases, in which the coupling between the Majorana bound

states is either within a lattice site or between lattice sites. It is possible to Fourier transform

the Majorana operators and to diagonalize the obtained Hamiltonian, to find the same energy

spectra shown in Fig. 2.7. We will analyze these two different phases below.

1. µ < 0 and t = ∣∆∣ = 0, Fig. 2.10.

This is the trivial case, in which the Majorana operators of the same site are connected

to each other. The Hamiltonian takes the form H = − i
2 ∑

N
j µηjγj and the ground state

has occupation number zero.
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Figure 2.10: The trivial phase of the Kitaev chain

2. µ = 0 and t = ∣∆∣ ≠ 0, Fig. 2.11.

In this case, the Hamiltonian can be written as H = it∑
N−1
j γjηj+1 and Majorana

operators at different sites couple to each other. Note that the Hamiltonian does not

depend on γN and η1, which indeed is a signature of the unbound Majoranas at the

edges of the chain. When t = −∣∆∣, the situation is the same (H = it∑
N−1
j ηjγj+1),

although the Majorana zero modes have switched sides.

Figure 2.11: The topological phase of the Kitaev chain

These two cases represent two different topological phases, which can be easily transformed

into each other via a redefinition of the Majorana operators ηi+1↔ ηi. This transformation

shows that the bulk properties of both phases are very similar. However, the edges are rather

different, since only the second case contains Majoranas at the boundaries. In general, the

Kitaev chain is in the trivial phase for ∣µ∣ > 2t and in the topological phase for ∣µ∣ < 2t, the

band gap closing is at ∣µ∣ = 2t. Now, we diagonalize the Hamiltonian (2.22) to obtain the

energy spectrum in real space for the Majorana operators. We obtain the same values for the

energy spectrum as previously in Fig. 2.9, where one can distinguish the Majorana bound

states at the edge of the system. Moreover, these Majoranas are protected by the

particle-hole symmetry. Due to this symmetry, every positive energy needs to have a

corresponding negative energy (a particle and a hole). One interpretation of the Kitaev chain

is that every single unit site now has a particle and a hole. In the topological phase, the

Majoranas at the boundary do not have a partner, which means that they need to have zero

energy to obey this particle-hole symmetry. Since they are at the other side of the chain,

these states do not communicate, and as a result one edge state cannot have a finite energy,

because the other edge state would not know that it should have the same negative energy.

This effect implies that the boundary modes cannot change unless the band gap is closed and
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a topological phase transition occurs. The robust edge states in the topological phase are

protected by the particle-hole symmetry.

Topological invariants An interesting question is how to determine whether the chain is

in the topological or trivial state, without looking at the boundaries of the system. This is

reflected in the bulk-boundary correspondence. In principle, there are two main ways of

classifying this in the Kitaev chain. The first method was proposed by Kitaev and involves

counting the number of Majorana zero-modes at the edge of the system [10]. The second

method, which is the one that is mainly used, calculates the winding number of the model.

We present both methods, starting with the counting of Majoranas.

Kitaev starts by defining a Majorana number M= ±1, which is −1 when there are Majorana

bound-states in the chain and +1 when these modes are absent. When we connect two

independent chains, the Majorana number should satisfy M(H1⊕H2) =M(H1)M(H2),

where ⊕ means we connect two independent chains given by H1 and H2, see also Fig. 2.12. In

the end, the trick is to connect this number to the fermionic parity P , which is measured via

the operator P = ∏i −iηiγi. The Majorana number can be used to study the boundary modes

by looking at the bulk properties of the system. Therefore, we connect two different chains of

length L1 and L2, close the chain and assume periodic boundary conditions. Kitaev proofs

that for such a system of length L = L1 +L2, the ground state parity

P (H(L1 +L2)) =M(H)P (H(L1))P (H(L2)), (2.23)

where H(L) denotes the Hamiltonian of the system with length L. For systems of equal

length L1 = L2, this equation simplifies to M(H) = P (H(L)).

The Majorana number can be related to the Pfaffian of an anti-symmetric matrix. In terms of

the Majorana operators, the Kitaev chain Hamiltonian in general has the form

H = i/2∑i,j ηiAi,jγj, where Ai,j is a real, anti-symmetric matrix. Via a Jordan-Wigner

transformation, this matrix can be rewritten in a form

Ai,j,J =WAW T = diagλ
⎛

⎝

0 ελ

−ελ 0

⎞

⎠
, (2.24)

where W is a orthogonal matrix and diagλ denotes that the diagonal of the 2N × 2N matrix is

this 2 × 2 block matrix. Now, the value of det[W ] = ±1 determines whether there is an even

(+1) or odd parity (−1) in the system. By considering Eq. (2.24), we can write PfAJ = ∏λ ελ

and, because of the relation Pf [WAJW T ] = det[W ]Pf[A], we obtain

P (H) = sgnPf[A] = sgn det[W ] = ±1.
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Figure 2.12: The Majorana number is conserved when connecting two independent closed chains
L1 and L2 [10].

For the Kitaev chain, we have particle-hole symmetry, which means that every positive energy

E(k) has a negative energy −E(−k). There are only two points where the band gap closes

and which can be projected into itself: k = 0 and k = π. This implies we can only focus on

these specific points and derive

M= sgn (Pf[Ã(0)]Pf[Ã(π)]) = det[W̃ (0)]det[W̃ (π)], (2.25)

where the Ã and W̃ represent the Fourier transform in k space of A and W respectively. The

value of M determines whether we are in the topological (M= −1) or in the trivial phase

(M= +1) and is undefined at the gap closing. By cutting the wire into two parts, the

Majorana bound states remain present or absent. By taking the product of these Pfaffians, we

are comparing the fermionic parity at k = 0 and k = π, which only results in a topological

phase if the parity at these points is different. The Majorana operator M only changes when

there is a continuous deformation between the Ã(0) and Ã(π) in which the gap closes, and

this is indeed what is needed for a topological invariant.

Perhaps a less complicated construction of a topological invariant for the Kitaev chain is based

on the winding number. In general, one can attach a global parameter to a topological system

which measures whether the bulk is in the topological or trivial phase. When the model has

chiral symmetry, this quantity is a winding number, otherwise it is a Chern number [31].

For the Kitaev chain, we will now find the winding number w. We first consider Eq. (2.6) and

observe that we can rewrite the Hamiltonian in the block form

H =
1

2
∑
k

⎡
⎢
⎢
⎢
⎢
⎣

(a�k a−k)H
⎛

⎝

ak

a�−k

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (2.26)

where

H = h(k) ⋅ σ = hyσy + hzσz, (2.27)

and we have hy = 2∆ sin(kl), hz = εk = −µ − 2t cos(kl) and σi the Pauli matrices (i ∈ {x, y, z}).
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a b

Figure 2.13: Illustration of the mapping of ĥ. a The trivial phase in which ĥ has the same sign
for k = 0 and k = π. b The topological phase were the sign is different for the two values of k.
Image retrieved via Ref. [32]

The unit vector ĥ = h(k)/∣h(k)∣ now maps the half Brillouin zone k ∈ [0, π] to the 2-sphere S2.

At k = 0, π the normal ĥ points either to the north or the south pole (only ẑ-direction is

nonzero). In this case, two things can happen. Either ĥ has the same sign at k = 0 and k = π,

which is in the trivial phase (∣µ∣ > 2t), or it has opposite sign, which is in the topological phase

(∣µ∣ < 2t). This reasoning is visualized in Fig. 2.13. If the system is gapped, the normal is not

well defined, and the system goes trough a phase transition when going from the north to the

south pole.

The winding number can then be calculated via an integral over the Brillouin zone

w =
1

2π ∫
dk (ĥz

∂ĥy
∂k

− ĥy
∂ĥz
∂k

) , (2.28)

which counts how many times h wraps around the unit sphere (which is indeed a winding

number). The winding number is either 0 when the system is in the trivial phase or 1 in the

topological phase. In this way it is possible to use the bulk information (bulk Hamiltonian) to

derive information about the edge states (the presence or absence of Majoranas).

By considering the Kitaev chain, we have shown an explicit example of topological phases and

how the protected edge states emerge in these materials. We have also seen how to rewrite

the Hamiltonian in terms of Majorana operators and calculated the energy spectrum in real

space, where the zero energy states were easily observed. Finally, we discussed how to find

topological invariants for the model, where we also discussed how to calculate the winding

number. The winding number forms a part of the more general topological invariants, which

is the topic of the next section.
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2.1.3 Topological invariants

In general, topological phases are identified with a Chern number that can either be

interpreted as an integral of the Berry phase or as a winding number in the case we have seen

in the previous section [5, 6]. We already mentioned the Chern number in the discussion of

the quantum Hall effect, which is one of the first examples in condensed matter where the

Chern number indicates whether the system is in the trivial or nontrivial phase. We will give

a short introduction to these topological invariants in this section.

The use of the Chern number in topological insulators can be related back to the Thouless,

Kohmoto, Nightingale and Den Nijs (TKNN) invariant [33]. In 1982, TKNN found that the

filling fraction n in the quantum Hall effect, the Landau levels, is related to an integer

topological invariant: the Chern number. Originally, the Chern number comes from the

mathematical theory of fiber bundles [34], but is more easily understood in physics with the

Berry phase. When the vector k is transported around a closed loop, the eigenstate ∣ψm(k)⟩

can obtain a Berry phase Am, which is given by the line integral Am = i ⟨ψm(k)∣∇k ∣ψm(k)⟩,

where ∇k = (∂/∂k1, ..., ∂/∂kn). The Chern number can then be expressed as the total Berry

flux in the Brillouin zone (BZ)

Cm =
−i

2π ∫∂BZ
dk ⟨ψm(k)∣∇k ∣ψm(k)⟩ , (2.29)

which can also be rewritten by Stokes theorem as an integral over the Brillouin zone of the

Berry curvature

Cm =
1

2π ∫BZ
d2kF, (2.30)

where F = ∇ ×A is the Berry flux or Berry curvature. According to the Chern theorem, this

integral of the Berry curvature over a closed manifold is quantized in units of 2π, and

therefore, the Chern number is a quantized integer. The total Chern number of a system is

given by the bulk-boundary correspondence C = ∑mCm, which is found by summing over all

occupied bands m. TKNN compared the Chern number and the quantized Hall conductivity

σxy, calculated via the Kubo formula, and showed that the Chern number C is equal to the

number of filled Landau levels n. This observation also explains why the quantized

conductivity is robust: the Chern number is a quantized value and cannot change when the

Hamiltonian is smoothly varied.

In principle, a Chern number can indeed be calculated for the bulk Hamiltonian for

topological phases. In a similar way as above, the Chern number explains the quantized

conductivity in the quantum spin Hall effect, and therefore C is a topological invariant that

can be used to differentiate the topological phase from the trivial phase. This means that one
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can retrieve information about the boundary (edge modes) via the bulk, because when there

is a nonzero Chern number, the system is in a topological phase. This is often referred to as

the bulk-boundary correspondence.

2.1.4 Topological insulators in 2D

Now we have seen an example with a topological and trivial phase and how topological

invariants can be calculated, we consider different types of topological insulators that have

had a great impact in the past years. In 2D, these are the Kane-Mele model for graphene and

the 2D Bernevig-Hughes-Zhang (BHZ) model. The Kane-Mele model was already introduced

together with the quantum spin Hall effect. Here, we will show what the model looks like and

why it indeed gives the required result of two copies of the quantum Hall effect, one for spin

up and one for spin down. Next, we consider the BHZ model, which is developed shortly after

the Kane-Mele model to measure the quantum spin Hall effect.

The Kane-Mele model The Kane-Mele model predicts a quantum spin Hall effect in

graphene. In the time when the model was developed, graphene already had a good model to

account for the honeycomb lattice and the massless Dirac fermions in the system. This model

was developed by Haldane in 1988, who introduced the spinless Hamiltonian

HHaldane = ∑
⟨ij⟩
tc�icj +m∑

i

εic
�
ici + t2 ∑

⟪ij⟫
e−iνijφc�icj, (2.31)

where the first term describes the nearest-neighbor hopping with amplitude t, the second

describes a staggered on-site potential m with opposite signs εi = ±1 for sublattices A and B,

and the third describes the next-nearest neighbor (NNN) hopping, where νij = −νji = ±1 are

clock- or counter-clockwise electron hoppings and a flux φ which sums up to zero over each

unit cell [35]. This model was able to describe a quantum Hall effect without the Landau level

structure in graphene. Moreover, the first term describes the famous Dirac cones in graphene.

By calculating the energy bands for this term, one obtains a linear dispersion at the points K

and K ′, the analogues of sublattices A and B in reciprocal space. This dispersion is exactly

the same as the one obtained for a massless relativistic fermion in a 1D Dirac equation, hence

the name Dirac cone. These Dirac cones are frequently observed in the quantum spin Hall

effect, because as the bands invert, the energy spectrum has a Dirac cone. In 3D topological

insulators, these Dirac cones have been observed via ARPES, which we will encounter in

Sec. 2.2.3.

Especially the last term is important for the quantum spin Hall effect, the NNN-hopping,

since it breaks the time-reversal symmetry without using a magnetic field. Following Haldane,

we define lattice vectors between the NNN sites such that b1 = δ2 − δ3, b2 = δ3 − δ1 and

Thermodynamic signatures in topological phases 29



2.1 Topological Materials

a b

Figure 2.14: a Graphene is often displayed in a honeycomb lattice, both in real space as in
reciprocal space, leading to interesting properties. Figure adapted from [36]. b The Chern
number ν for the topological phase (ν = ±1) and the trivial phase (ν = 0). The phase transition
occurs at the Haldane mass m = ±3

√
3t2 sin(φ)). In the figure, Haldane used M instead of

m [35].

b3 = δ1 − δ2 (see Fig. 2.14), and we rewrite Eq. (2.31) in k-space

H(k) = 2t2 cos(φ) [∑
i

cos(k ⋅ bi)]1 + t [∑
i

[cos(k ⋅ δi)σx + sin(k ⋅ δi)σy]] +

[m − 2t2 sin(φ) [∑
i

sin(k ⋅ bi)]]σz, (2.32)

with σi the usual Pauli matrices. Haldane shows that there is now a lifted degeneracy in the

bands when either m or 2t2 sin(φ) is nonzero (the last term of Eq. (2.32)). More explicitly, the

σz-contribution changes the sign between the different valleys K and K ′ (in reciprocal space),

which breaks the time-reversal symmetry and opens a gap in the energy spectrum. Hence, a

phase transition occurs between a trivial phase and a topological phase, and one can show

that this happens exactly at the Haldane mass m = ±3
√

3t2 sin(φ) by calculating the Chern

number (see Fig. 2.14). Therefore, without using a magnetic field to break time-reversal

symmetry, there exists topological phases in graphene when considering NNN-hopping.

Moreover, the Hamiltonian of Eq. (2.32) can be rewritten in the Bloch form H(k) = h(k) ⋅ σ,

and this can be used to interpret the Hall conductivity in this model. As was the case for the

Kitaev chain, the Chern number for these kind of systems can be seen as a winding number

(but now in 2D)

n =
1

4π ∫
d2kĥ ⋅ [

∂ĥ

∂kx
×
∂ĥ

∂ky
) , (2.33)

where n is the winding number and ĥ = h(k)/∣h(k)∣ is a unit vector. In the insulating state,

the sum of the winding numbers cancels and therefore there is no quantized current, but in the
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quantum Hall state, the winding numbers add and contribute to the conductivity σxy = e2/h.

Kane and Mele were inspired by this work to make a double copy of the model, by

introducing spin in the system, eventually leading to the spin quantum Hall effect [4]. This

quantum spin Hall effect differs from the quantum Hall effect by Haldane because it is

invariant under time-reversal symmetry and gives rise to helical, counter-propagating spin

currents at the edge. A simple way to describe the model of Kane and Mele is to have the

Haldane model for a spin up and a spin down

H =
⎛

⎝

H↑ 0

0 T H↑T −1

⎞

⎠
,=

⎛

⎝

H↑ 0

0 H↓

⎞

⎠
=
⎛

⎝

HHaldane(φ = −π/2) 0

0 H∗
Haldane(φ = π/2)

⎞

⎠
, (2.34)

where T it the time reversal operator. The time-reversal operator essentially does two things:

it complex conjugates the wave-function and flips the spin, and this is indeed invariant for the

Hamiltonian in Eq. (2.34). The Hamiltonian in Eq. (2.31) is recast due to this spin

HKM = ∑
⟨ij⟩α

tc�iαcjα +m∑
i

εic
�
ici + it2 ∑

⟪ij⟫αβ
νijσ

z
αβc

�
aαcjβ, (2.35)

where the third term now describes the intrinsic spin-orbit coupling (SOC), with t2 the SOC

parameter, σz a Pauli matrix representing the electron’s spin and νij = −νji = ±1 still describes

clock- or counter-clockwise electron hopping. In the original model, also a Rashba term is

included, but this term is omitted in our case since it is not necessary to describe the

quantum spin Hall effect.

Whereas the quantum Hall effect gives rise to chiral edge states, here we will get two copies of

these chiral edge states for different spins, leading towards a so-called helical edge state. Edge

states come in so-called Kramers pairs that are derived from Kramers’ theorem. The theorem

proves that all eigenstates of a time-reversal invariant Hamiltonian are at least two-fold

degenerate. States with an even number of Kramers pairs of edge states at one edge are

considered to be topologically trivial, and with an odd Kramers pair nontrivial. The spectrum

of Eq. (2.35) can be calculated by considering a strip of graphene and is shown in Fig. 2.15.

We see the normal energy bands, but also a crossing of two bands at kx = π/a. These crossing

bands are the spin up and spin down electrons at the edge of the system, and are propagating

in opposite direction (the speed can be determined via the slope of the energy band).

The SOC-term allows for a mass inversion within a valley K or K ′ (which breaks

time-reversal symmetry in one valley, just as in the Haldane model), whereas the total

electronic system is time-reversal invariant. This was also shown in Fig. 2.6, where the

inversion of the bands gives rise to the helical edge states. For this to happen, the SOC must
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Figure 2.15: The energy spectrum of the Kane-Mele model for a strip of graphene for t2/t =
0.03 [4]. One can easily observe the counter propagating edge states that cross at kx = π/a and
zero energy. At E = 0, the edge states have a linear dispersion, making these electrons behave
as Dirac fermions.

be large enough. Unfortunately, this was not the case in graphene. The most promising

materials are those that are heavy elements and have a small band gap. The SOC is a

relativistic effect and is strong for heavy elements, and furthermore, if the band gap is too

large, the SOC is not able to close the gap and induce a phase transition [37]. Therefore, only

specific materials have chiral edge states, and quickly after this prediction by Kane-Mele, the

first topological insulator was found in the form of a quantum well.

The Bernevig-Hughes-Zhang model Not more than a year later, a new material was

proposed by Bernevig, Hughes and Zhang (BHZ) that might have the required band inversion

and, indeed, the quantum spin Hall effect was measured a year later by the group of

Molenkamp [9, 11]. In a slightly different way, BHZ show how in a 2D mercury telluride

(HgTe)-cadmium telluride (CdTe) quantum well the bands invert for a critical thickness d = dc

and predicted the first experimentally verified topological insulator.

The system is shown in Fig. 2.16, where the CdTe acts as a semiconductor and HgTe is a

semimetal between two plates of of CdTe. The crucial point is that both materials have a

s-type Γ6 and a p-type Γ8 band, where in CdTe the Γ6 is above the Γ8 and in HgTe these

bands are inverted (see Fig. 2.16). In both materials, the energy gap between the bands is the

smallest near the high-symmetry Γ point in the Brillouin zone (the k = 0 point in the x-axis).

Leaving the other present band, the Γ7 out of the picture, BHZ wrote down a six-band model

for this system, with spin up and down for the s-band and J = 1/2 and J = 3/2 spins for the

p-band, where J is the total angular momentum.
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Figure 2.16: The band inversion for CdTe HgTe quantum well [9]. Above, we see the energy
bands Γ6, Γ7 and Γ8 for HgTe (left) and CdTe (right). Below, we see the increasing thickness of
the quantum well, making Γ6 and Γ8 bands invert due to the presence of more HgTe or CdTe.
This inversion takes place at a critical thickness dc.

The corresponding six-components spinor can be written as

Ψ = (∣Γ6,1/2⟩ , ∣Γ6,−1/2⟩ , ∣Γ8,3/2⟩ , ∣Γ8,1/2⟩ , ∣Γ8,−1/2⟩ , ∣Γ8,−3/2⟩) . (2.36)

A little bit before, results by the group of Molenkamp in Würzburg had shown that this

combination of materials has three important energy bands derived from a six-band Kane

model: ∣E1±⟩, ∣H1±⟩ and ∣L1±⟩ [38, 39]. The ∣E1±⟩ band corresponds to mixing of the spin

±1/2 electrons in both Γ bands, and the ∣H1±⟩ is formed from the spin 3/2 of the Γ8. By

analyzing the band structure, it turns out that the ∣E1±⟩ and the ∣H1±⟩ energies have a band

crossing, whereas the ∣L1±⟩ band is separated from the other two.

BHZ construct an effective Hamiltonian, based on the even parity of the ∣Γ6,±1/2⟩ and odd

parity of the ∣Γ8,±3/2⟩ states under two-dimensional spatial reflection, and write down an

effective Hamiltonian in the basis of the energy bands ∣E1,±1/2⟩ and ∣H1,±3/2⟩. The
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low-energy dynamics of the model is given by the time-reversal invariant Hamiltonian

Heff(kx, ky) =
⎛

⎝

H(k) 0

0 H∗(−k)

⎞

⎠
, (2.37)

where

H(k) = ε(k) + di(k)σi. (2.38)

This Hamiltonian can be considered as a Taylor expansion (low-energy behavior) with respect

to the in-plane wave vectors kx and ky. The whole Hamiltonian satisfies the constraining

parity and time-reversal symmetries. From the even/odd parity, we can deduce that d3(k) is

an even function of k and d1(k) and d2(k) are odd functions of k. In general, we can write

d(k) = (Akx,Aky,M −B(k2
x + k

2
y)), ε(k) = C −D(k2

x + k
2
y), (2.39)

where A, B, C, D, and M are parameters of the model.

The inversion of the ∣E1⟩ and ∣H1⟩ bands is tuned by the parameter M , which changes sign

for a critical thickness dc of the quantum well. The quantum well is in the normal state if the

CdTe is predominant, where E(Γ6) > E(Γ8). As the quantum well thickens, the HgTe

contribution becomes more dominant, making the ∣E1⟩ and ∣H1⟩ bands invert. At this

transition point, no other bands interfere with these bands, making this model by tuning the

thickness of the layer and inverting the bands sufficient to predict the quantum spin Hall

effect in these type of quantum wells.

To explicitly show the emergence of the spin quantum Hall effect in the quantum wells, BHZ

also calculate the quantum Hall conductance (which is related to the Chern number)

σxy = −
e2

8hπ2∬ dkxdkyd̂ ⋅ ∂xd̂ × ∂yd̂, (2.40)

which is the integral over the Brillouin zone of the unit vector d̂ of the vector d(k). However,

the d(k) in Eq. (2.39) is a Taylor expansion around the Γ-point, and therefore one needs to

write down an expression, which is a tight-binding description of the same model, and in the

lowest order expansion reduces to Eq. (2.39). The tight-binding model still contains

time-reversal symmetry and its elements are

d(k) = (A sin(kx),A sin(ky),M − 2B [2 − cos(kx) − cos(ky)]) (2.41)

ε(k) = C − 2D [2 − cos(kx) − cos(ky)] . (2.42)
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With this description, one can calculate the Hall conductivity, and, by introducing a cut-off

for the momentum at some finite point, we obtain for the spin-up electrons the quantized

conductance σxy = e2/(2h)sign(M). At the phase transition, M changes sign, leading towards

a total difference ∆σxy = e2/h between the trivial and topological phase. Due to the spin-down

electrons, we get another contribution in σxy, resulting in a helical quantized edge current

with ∆σxy = 2e2/h, which is indeed the correct value of the quantum spin Hall effect. In

Sec. 2.2.2, we show how this effect was indeed measured in transport experiments a year later.

2.1.5 Topological insulators in 3D

Quickly after the theoretical prediction of the 2D topological insulator, a theoretical

formulation for 3D topological insulators was made. Although the quantum Hall effect does

not extend towards 3D, the quantum spin Hall effect does in a rather particular sense. In the

summer of 2006, three different groups were able to identify the existence of a natural

continuation of the 2D quantum spin Hall effect in 3D [40, 41, 27]. It turns out that there

exist two types of topological insulators, the weak and the strong, and these also have been

identified experimentally, with the material Bi1−xSbx arising as first experimentally tested one.

These 3D topological insulators are characterized via four Z2 topological invariants

(ν0;ν1, ν2, ν3), leading towards a total of 16 different types. The weak topological insulator is

the one which is the easiest to understand with the previous discussion in mind. By layering

2D quantum spin Hall systems onto each other, a 3D one appears, where we can identify a Z2

topological invariant for every x, y, z direction. Unfortunately, this type of topological

insulator is not robust in the presence of disorder, and the physics does not change in the

procedure of going 3D. However, it offers an interesting way to experimentally verify 2D

physics in a 3D system. In this type of materials, a dislocation (a line-like defect) always gives

rise to quantum wire in which helical spin currents flow just like in the quantum spin Hall

effect. Weak topological insulators are characterized by ν0 = 0, whereas the other invariants

can be interpreted to describe the orientation of the layers and whether these are topological

or not.

In contrast, the strong topological insulator is characterized by ν0 = 1. A strong topological

insulator is not simply layering 2D topological materials, but makes use of the band inversion

and the time-reversal symmetry. In this way, we do not obtain a 1D helical edge current, but

a 2D, topologically protected metallic surface. Also the dispersion relation of the Dirac

fermions can be extended toward the so-called Dirac cone, which is now located at the surface

of the material. In the simplest case, the Fermi circle (the 2D analogue of the Fermi level)

encloses one Dirac cone at a surface. The surface structure can be compared with the Dirac

cones in graphene. In contrast with graphene, which has four Dirac cones, a topological
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Figure 2.17: The band inversion in 3D Bi1−xSbx. When changing the amount of bismut (Bi)
and antimony (Sb), changing the value of x in previous subscript, a band inversion occurs
between the bands Ls and La around x ≈ 0.04 [5]. The energy bands show the transition from a
semimetal (a) to a semiconductor (b), and again back to the semimetal (c) for different values
of x.

insulator has only one Dirac cone at opposing surface (making a pair of two Dirac cones in

total). This isolation of a single Dirac cone had not been observed before and is perhaps one

of the most interesting properties of a strong topological insulator.

The surfaces in a strong topological insulator are considered to be topological metals [5, 40].

This metal is half an ordinary metal, because in an ordinary metal the spin states are

degenerate, and this is no longer the case in a topological metal. In a topological metal,

time-reversal symmetry is protected, making the electrons with spin up orbiting in opposite

direction from the spin down electrons around the Fermi surface. As an electron goes around

the Fermi surface, it picks up a non-trivial Berry phase, which is either 0 or π. When an

electron circles around a Dirac point, it obtains a phase of 2π, leading to a non-trivial Berry

curvature π in the topological phase.

It did not take long before the first strong 3D topological insulator was discovered: Bi1−xSbx.

This material was theoretically predicted by Fu and Kane [42] and measured via ARPES by

the group of Hasan in Princeton [12], who happened to research the specific material already

due to its interesting thermo-electric properties. By changing the material from more bismut

(Bi) to more antimony (Sb), a band inversion takes place as is depicted in Fig. 2.17. The

bands Ls and La invert for x ≈ 0.04, and therefore a topological phase transition occurs near

this point.

The calculation of the band energies was rather complex, and therefore new strong topological

insulators were proposed in a quick pace. The second generation of topological insulators was

more simple. The general model was proposed by Zhang et al. [43] in 2009. By using a similar

Hamiltonian as BHZ, they were able to find a simple construction of the energy bands. In
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reciprocal space, the Hamiltonian reads

HBHZ(k) = ε0(k)14×4 +

⎛
⎜
⎜
⎜
⎜
⎜
⎝

M(k) A2(kx + iky) 0 A1kz

A2(kx − iky) −M(k) A1kz 0

0 A1kz M(k) −A2(kx − iky)

A1kz 0 −A2(kx + iky) −M(k)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.43)

where ε(k) = C +D1k2
z +D2(k2

x + k
2
y), M(k) =M −B1k2

z −B2(k2
x + k

2
y) and M , A1, A2, B1, B2,

C, D1 and D2 are constant parameters in the model. The expression is based on the

time-reversal, inversion symmetry and three-fold rotation symmetry in the z-axis. This is

exactly the same Hamiltonian in low approximation as the 2D BHZ Hamiltonian, except for

the terms A1kz on the anti-diagonal, which describe the third dimension kz. By rewriting

Eq. (2.43) into a tight-binding description, the energy bands were calculated and shown to

have a band inversion at M = 0. About the same period of time, multiple concurrent groups,

under which the one of Hasan, measured these band energies by using ARPES. This is

described in more detail in Sec. 2.2.3.

We have seen in historical context the research in topological insulators, starting from the

quantum (spin) Hall effect towards 3D strong topological insulators. Before going into the

important experiments that have been done to identify these materials and the Dirac cones,

we first consider one of the most important schemes to classify topological materials

nowadays: the tenfold way.

2.1.6 The tenfold way

The tenfold way is an exhaustive classification scheme that can be used to identify which class

of topological insulator (superconductor) one is describing with a certain Hamiltonian and

what kind of topological behavior can be expected. The key ingredient in this scheme are the

symmetries of the model. As we have seen for the Kitaev chain, the model has an intrinsic

particle-hole symmetry that protects the Majorana bound-states and in the quantum spin

Hall effect, time reversal symmetry is protected for the whole system. By considering these

types of symmetry for the Hamiltonian, it is possible to identify the class and whether there is

no topological phase (0), a topological and a trivial phase (a Z2 quantity) such as in the

Kitaev chain, or a number of topological phases (a Z quantity) such as in the Quantum Hall

effect. We will describe the symmetries at stake and how these symmetries can be used to

find the correct number of topological phases of a given model.

The tenfold way characterization is based on the work by Altland and Zirnbauer in 1997, who

recognized the similarities between all the possible symmetry classes of single-particle

Hamiltonians and the set of large symmetric spaces of the mathematician Cartan in 1926 [44].
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When topological insulator and their symmetry protected boundary states came into play,

this work was extended to different dimensions in Schnyder et al. [28] (up to three

dimensions) and to arbitrary dimensions via K-theory by Kitaev [29].

As mentioned, the tenfold way is based on the symmetries of the Hamiltonian [31]. What

symmetries do we need to consider? When we look at the Kitaev chain, we could have easily

added some extra perturbations that violate translational symmetry to obtain the

topologically distinct nature, so the Hamiltonian is not translational invariant. This holds for

all gapped Hamiltonians, and therefore translational invariance is not a protecting symmetry

for topological insulators. This means that a classification scheme must include translationally

not invariant Hamiltonians, thus one cannot rely on the ordinary symmetries, unitary

operators, that commute with the Hamiltonian. However, one can rely on the anti-unitary

operators, and by considering all symmetries that commute with the Hamiltonian, it is always

possible to write down the Hamiltonian in a block form. It turns out that there exist only 10

symmetry-less, also called irreducible, Hamiltonians in this sense. The two important

symmetries are anti-unitary operators, the time-reversal and charge-conjugation

(particle-hole), when acting on the single particle Hilbert space. In second-quantization, we

can always rewrite the Hamiltonian for a topological insulator in the following form

H = ∑
A,B

ψ�
AHA,BψB, (2.44)

where A and B denote the sum over all lattices, and if relevant also the spin or other

quantum numbers, and HA,B is the first quantized N ×N block matrix for N sites. We have

also seen that for the Kitaev chain, a similar expression was available via the Bogoliubov

transformations. This holds in general for all superconductors.

The interesting question now is how time-reversal (T ) and particle-hole (C) symmetry can be

seen in these systems. A system is invariant under T if and only if the complex conjugate of

the first quantized Hamiltonian H∗ is equal to H up to a unitary rotation UT . This can be

exemplified by

U �
TH

∗UT = H. (2.45)

A system is invariant under particle-hole symmetry if and only if the complex conjugate of

the Hamiltonian H∗ = HT is equal to minus H up to a unitary rotation UC . This is given by

U �
CH

∗UC = −H. (2.46)

When taking these two symmetries into account, there are only ten possible ways for a system
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Figure 2.18: The tenfold way to identify topological insulators and superconductors, as shown
in Ref. [31] The class is indicated by the Cartan label and d stands for the dimension of the
model. The symmetry classes are divided in a complex and real case to distinguish whether
the Hamiltonian is complex or if reality conditions are imposed on it. The system either has
no topological state (0), a topological or trivial state (Z2), or an integer number of topological
phases (Z)

to respond to them, which is characterized by the tenfold way. In this language, the

Hamiltonian can not be time-reversal invariant (T = 0), or can be time-reversal invariant

(T = ±1). The ±1 here indicates that the time reversal operator T squares either to +1, or −1.

This is also the case for the particle-hole symmetry, which is C = 0 for a system which has no

particle-hole symmetry or ±1 for a system that has this symmetry. In this way, nine

possibilities are obtained. The last one can be found by the multiplication of the two

symmetries, S = T ⋅ C, which is referred to as the chiral, or sublattice symmetry. Only for the

case where T = 0 and C = 0, the chiral symmetry is not determined by the behavior of the

time-reversal and particle-hole symmetry, making in total ten options available when

considering these symmetries. The tenfold way is summarized for different dimensions in

Fig. 2.18.

The table represents the label of the topological insulator (superconductor) for the symmetries

that are incorporated in the system. In the table, the 8-fold periodicity of the symmetries for

the real case is visible. This periodicity arises from the 8-fold spinor periodicity of the

orthogonal groups SO(N), and is called the Bott periodicity [31]. Furthermore, the

topological insulators appear upon the diagonal lines of the table, and this can be related to

homotopy groups. When one knows which symmetries are in the Hamiltonian, it is possible to

derive from the table whether there is a topologically protected phase.
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The tenfold way is the standard way to classify topological phases. At the moment, this table

is pretty well-understood and describes the Cartan label for non-interacting topological

systems, based on the time-reversal and particle-hole symmetries. Therefore, current

challenges are in example to extend this table towards interacting systems. Also other

extensions have been made to accompany other symmetries in the tenfold way by for instance

including the crystal-lattice symmetries [45], or inversion symmetries [31]. In this sense, there

is still a lot to uncover within this procedure.

2.2 Experiments on topological materials

A very important part of the research of topological insulators are the experiments. Due to

the immediate response of several research groups on the theoretical predictions, the existence

of these interesting materials was confirmed very quickly, which in its turn encouraged to

develop and detect more and new types of topological insulators (such as the strong

topological insulator). Especially the group of Laurens Molenkamp in Würzburg (transport)

and the group of M. Zahid Hasan in Princeton (ARPES) were very influential due to their

discovery of the 2D and 3D topological insulator. In this section, we will describe the most

important measurement techniques currently available. In our analysis, we focus on scanning

tunneling microscopy (STM), because this is the method that is used to obtain the local

density of states. With the use of Hill thermodynamics (see Sec. 3), we calculate the density

of states for the 2D Kane-Mele and BHZ model in Sec. 5, which might be measurable using

STM.

In the next part, we start with a description of STM. Then, we again follow the historical

route, and discuss the use of transport and how the group of Molenkamp was able to verify

the existence of the quantum spin Hall effect. Finally, we go 3D and summarize the main

findings of ARPES for the strong topological insulator.

2.2.1 Scanning Tunneling Microscopy (STM)

A method largely employed for experimentally detecting topological phases is Scanning

Tunneling Microscopy (STM), a specific branch of Scanning Tunneling Spectroscopy (STS).

STM and STS have largely contributed to our understanding and experimental verification of

conventional superconductivity, and in more recent years also of high-Tc superconductivity

[46]. STM originates from the tunneling of electrons through insulating barriers between two

electrodes. The number of electrons which tunnels through the barrier depends on the

thickness of the insulating gap and on the electronic structure of the electrodes. When the

thickness of the gap is known, one can measure the tunneling current and obtain information

about the electronic structures of the electrodes. In this way, STM provides information
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a b

Figure 2.19: a Sketch of a planar-junction, where it is not possible to identify the underlying
atomic structure because electrons can tunnel between the material at different sites. b Sketch
of a point-junction where it is possible to identify the underlying atomic structure since electrons
can only tunnel near the probe. Image retrieved via Ref. [50].

about the underlying topography and atomic structure of the materials. Moreover, one can

measure the local electron density of states (LDOS) by using this technique.

The first experiment in which quasiparticle tunneling was used is a famous experiment in

1960 performed by Ivar Giaever. He investigated the electronic structure of low-Tc

superconductors, for which he later received the Nobel Prize in 1973 [47], using an aluminum

and a lead sheet separated by an aluminum oxide plane. By varying the bias-voltage, he was

able to measure the differential tunneling conductance. The metals can either be in a

superconducting or in a normal state, and by varying the magnetic field, which controls

whether lead is in a superconducting state or not, he confirmed the BCS theory by showing

that the tunneling conductance of lead had a functional dependence on the bias-voltage.

The first experiments concerning tunneling were done with two systems of approximately the

same size, in which tunneling was possible between the two materials. This so-called planar

junction, which is shown in Fig. 2.19a, can only provide information on the bulk of the

materials, since it is not possible to determine from which (lattice) site the electrons are

tunneling. This all changed in 1982, the year STM was invented by Binnig and Rohrer

[48, 49]. Their new method opened up new possible applications within STS, for which they

later were awarded the Nobel Prize. Within STM, the planar junction is replaced by a

point-contact junction of ideally one atomic width, which is shown in Fig 2.19b. In this way,

the probe with the point-contact junction allows one to determine more precise where the

atoms tunnel. This new method enormously improved the resolution of the underlying atomic

structure of a material.

STM especially showed its value in researching high−Tc superconductors [46]. After the

discovery of high−Tc superconductors, it was clear that the superconductivity of these systems

differs from low−Tc superconductors. Experimentally, it was quite clear that STS was one of

the most promising techniques to investigate these high−Tc superconductors in more detail.
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Figure 2.20: Graphical representation of an experimental STM setup. (a) Tunneling process
between the tip and the sample trough a vacuum barrier of width d and height φ. The electron
wave functions Ψ decay exponentially in the vacuum, but still overlap, which means that
electrons can tunnel to the other system. (b) The metallic tip of the probe scans the sample.
Due to the piezoelectric drive, the probe can move over small distances above the sample and
determine the local atomic distribution [46].

However, due to the poor control of the tunnel barrier and material inhomogeneities, it was

difficult to use a planar-junction for this research. On the other hand, STM was able to

handle these difficulties and experiments resulted in reproducible spectra for high−Tc

superconductors [51]. Another major breakthrough in STM occurred when the distance

between the tip of the probe and the sample reached picometric precision [46].

The principle of STM is based on the tunneling of electrons, see Fig. 2.20a. The electron

wave-functions of the metals decay exponentially into the vacuum, but have a small overlap

due to which the electrons can tunnel to the other material. This tunneling induces a current,

which can be measured. STM uses a sharp metallic tip on a piezoelectric metallic drive, as

displayed in Fig. 2.20b. The tip is used as a probe and can be controlled in the X and Y

directions to scan the sample and in the Z direction to adjust the height from the sample.

The tunneling regime depends on the following parameters: the tunneling current I (∼ 0.01-10

nA), the bias voltage V (∼ 0.01-2 V) and the electrode spacing d (∼ 5-10 Å), although only

relative height differences between the tip of the probe and the sample can be measured.

The main result of an STM experiment is the differential tunneling conductance dI/dV . By

following similar steps as done in Ref. [50], we can find that

dI

dV
∝ −∫

∞

−∞
dω ∑

kxky

∣Tk∣
2A(k,ω)

∂NFD(ω − eV )

∂ω
, (2.47)

where Tk is the tunneling matrix element, which depends on the spectral function of the

probe, A(k,ω) is the spectral function of the sample, and NFD is the Fermi-Dirac distribution.
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This expression basically states that the differential tunneling conductance depends on the

local density of states in one system and the availability of states in the other system.

Furthermore, A(k,ω) is local single particle density of states and is the imaginary part of the

retarded Green’s function. For the remainder of this section, we will follow the theoretical

calculations that can be found in Refs. [46, 50] to determine Eq. (2.47).

An STM experiment consists of two independent systems that interact through the tunneling

of electrons between them. We introduce the Hamiltonian

H =H1 +H2 +HT , where HT = ∑
pk

[Mpkc
�
1,pc2,k +M

�

kpc
�

2,kc1,p] (2.48)

is the tunneling Hamiltonian. Furthermore, the independent systems 1 and 2 are described by

H1 and H2, which have their own creation (annihilation) operators c�1,p (c1,p)and c�2,k (c2,k).

The tunneling Hamiltonian HT depends on operators from both systems and the tunnel

matrix element

Mpk = −
h̵2

2m ∫
dS [ψ∗p

∂ψk
∂z

− ψk
∂ψ∗k
∂z

] , (2.49)

which is the expectation value of the single particle current in the z direction (perpendicular

to the plane of the sample as shown in Fig. 2.20b) through a surface S. Now, we define the

tunneling current operator I as the rate of change in the number of particles in one of the two

systems

I = Ṅ1 = i[H,N1] = i[HT ,N1] = −i∑
pk

[Mpkc
�
1,pc2,k −M

∗
pkc

�

2,kc1,p] (2.50)

to calculate the total current of the system as the average value of this tunneling current

operator I = −e⟨I(t)⟩. We used that H1 and H2 commute with the number operator N1 to

obtain this expression. For convenience, we can define the bosonic operator L,

L = ∑
pk

Mpkc
�
1,pc2,k. (2.51)

When the two samples are far apart, the tunneling between the systems is very small.

Therefore we can assume that the tunneling HT between the two systems acts as a

perturbation. We use the Kubo formula to express the linear response of the system for the

observable

⟨I(t)⟩ = ⟨I⟩0 − i∫
∞

−∞
dt′Θ(t − t′)⟨[I(t),HT (t

′)]⟩0, (2.52)

but we can set ⟨I⟩0 = 0, since there is no tunneling without the perturbation HT . We
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substitute Eq. (2.52) into the definition of the current I, and by using Eq. (2.51) we obtain

I(t) = e∫
∞

−∞
dt′Θ(t − t′)⟨[L(t) −L�(t), L(t′) +L�(t′)]⟩. (2.53)

By identifying the terms in this expression, we observe that [L(t), L(t′] and [L�(t), L�(t′)]

correspond to the creation and annihilation of a pair of fermions, the Cooper pairs. Cooper

pairs occur in superconducting materials, and if we setup an STM experiment without a

superconducting probe, we may neglect this term. Furthermore, we know that the tunneling

between the systems depends on a shift in the energy due to application of a voltage. We can

express this voltage in terms of the chemical potential of the systems. To do so, we switch to

the Heisenberg picture and add a chemical potential to the unperturbed Hamiltonian.

Therefore, we introduce K0 =H0 − µ1N1 − µ2N2 and rewrite

eiK0tei(µ1N1+µ2N2)tLe−i(µ1N1+µ2N2)te−iK0t = e−i(µ1−µ2)teiK0tLe−iK0t = e−ieV tL̃(t), (2.54)

where we introduced the bias voltage V = µ1 − µ2 and we used exp(N)c� = c� exp(N + 1) and

exp(N)c = c exp(N − 1). Now, it is possible to rewrite Eq. (2.53)

I(t) = −2eRe [∫
∞

−∞
dt′Θ(t − t′)eieV (t−t′⟨[L̃�(t), L̃(t′)]⟩] . (2.55)

It is left to calculate the commutator, and in doing so, we will rewrite the commutator in

terms of Green’s functions. We observe that the commutator contains the terms

⟨[L̃�(t), L̃(t′)]⟩ = ∑
pkp′k′

M∗
pkMp′k′[⟨c̃1,p(t)c̃

�
1,p′(t

′)⟩0⟨c̃
�

2,k(t)c̃2,k′(t
′)]⟩0

− ⟨c̃�1,p(t
′)c̃1,p(t)⟩0⟨c̃2,k′(t

′)c̃�2,k(t)⟩0]

= ∑
pkp′k′

M∗
pkMp′k′[G

>
1(p, p

′, t − t′)G<
2(k, k

′, t − t′)

−G<
1(p, p

′, t − t′)G>
2(k, k

′, t − t′)],

(2.56)

where we introduced and the greater G>
1,2 and lesser G<

1,2 Green’s functions for both the probe

and the sample. We can choose single-particle states that diagonalize the Green’s function,

such that G(p, p′, t − t′) = δp,p′G(p, t′), where we also changed the variables t′ = t − t′. Finally,

we rewrite the Green’s functions into the spectral representation,

G(p, t) = ∫

∞

−∞

dω

2π
e−iωtG(p,ω),

G>(p,ω) = −iA(p,ω)[1 −NFD(ω)],

G<(p,ω) = iA(p,ω)NFD(ω),

(2.57)
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and by substituting this expression we obtain for the current

I = e∫
∞

−∞
dω∑

pk

∣Mpk∣
2A1(p,ω − eV )A2(k,ω)[NFD(ω − eV ) −NFD(ω)]. (2.58)

In STM, not the current but the differential conductance dI/dV is measured. In order to

simplify the calculations, it is used that the probe, system 1, consists of a normal metal. In

this way, the spectral function of the probe does not depend directly on the bias-voltage and

thus may be treated as a constant,

∑
pk

∣Mpk∣
2A1(p,ω − eV ) ≈ ∑

k

∑
p

∣Mpk∣
2A1(p) = ∑

k

∣Tk∣
2. (2.59)

Now, we can differentiate the current with respect to the voltage and obtain Eq. (2.47).

Interestingly, one can show that the local density of states (LDOS) Nsample(x,ω) is

proportional to the spectral function. Here x is the tip center of curvature. Therefore,

Eq. (2.47) can be rewritten in terms of the LDOS

σ(x,V ) =
dI

dV
∝ ∫ dω

∂NFD(ω − eV )

∂ω
Nsample(x,ω), (2.60)

which states that the LDOS of a sample can be determined when measuring the tunneling

conductance.

As topological insulators are concerned, STM is mainly used as an addition to ARPES, but

also has interesting features by itself. Especially the materials Bi1−xSbx [52], Bi2Te3 [53, 54]

and Sb [55] have been investigated by using STM. The first comparison was made in Bi2Te3,

were it was shown that the integrated density of states agrees well with the differential

conductance dI/dV [54]. Additionally, STM measurements provide more information about

local impurities. If there are any impurities in the sample of a topological insulator, the

surface states scatter and form an interference pattern around this impurity. By Fourier

transforming the pattern into k-space, one is able to find which types of scattering are

suppressed, and it is possible to observe the, due to time-reversal symmetry forbidden,

back-scattering between k and −k surface states.

Finally, we note that with the procedure of Hill thermodynamics, one is able to calculate the

DOS, which in principle can be measured via STM. We calculate the DOS for the 2D BHZ

model in Sec. 5.2.1 and 2D Kane-Mele model in Sec. 5.2.2 as inspiration for new STM

experiments in the field.
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2.2.2 Transport

Perhaps one of the most important discoveries in the field can be ascribed to the transport

measurements by Molenkamp in 2007, where the quantum spin Hall effect was measured via

transport. In the quantum spin Hall effect, the conductivity σxy is quantized, and this is

exactly what is measured in a transport experiment. Transport is currently also used in 3D

topological insulators, but, as the only one of the available techniques, has not been able to

identify the Dirac cones yet.

In general, transport properties can be measured by applying some stimulus (perturbation)

on the system and determine its response. Usually for quantum systems, this involves tuning

a gate voltage in the sample, which leads to an increase of the energy in the system and

triggers excitations or moving electrons in the material. Theoretically, transport properties

are founded in the framework of linear response theory and is often connected to the

well-known Kubo formula (which we also have seen in previous section and describes the

linear response of the system to a perturbation), but can also be constructed by the Louiville

equation (which describes time evolution of the phase space distribution). An instructive

review to calculate transport properties for topological insulators is given in Ref. [56]

By using the experimental setup BHZ proposed, the sandwiching of HgTe between two layers

of CdTe (see Fig. 2.16 in Sec. 2.1.4), König et al. measured a quantized conductivity by

tuning the Fermi energy via the gate voltage into the energy gap. The famous results for the

conductivity are shown in Fig. 2.21. In the figure, we see the longitudinal resistance for

various thickness of the quantum well d at different gate voltages for low-temperature

T = 0.03K and zero magnetic field B. The gate voltage is used to tune the Fermi energy into

the energy gap, where the edge states can be measured in the topological phase d > 6.3nm.

Sample I (the black line) is a narrow quantum well with d = 5.5nm, and is insulating in the

gap which leads to a very high resistance (which is actually bounded to this maximum value

due to the equipment of the experiment). In sample II-IV, the band gap is inverted and the

system is in the topological phase. Sample II (blue) is already a bit closer to the quantum

spin Hall effect, σ = 0.3e2/h, but the sample is too large to actually measure the correct value

(scattering effects). For smaller samples, sample III (green) and IV (red), the quantum well

shows the desired current 2e2/h. The samples III and IV have the same lengths between the

wells, but a different width, indicating that the current is indeed at the edge of the material

and independent of the width of the material. The inset shows the results of sample III at

different temperatures, where black indicates a temperature of T = 1.8K. At higher

temperatures, the quantum spin Hall effect is less visible.

After this great success for transport measurements in 2D, it turned out to be more difficult
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Figure 2.21: The longitudinal four-terminal resistance of the quantum well for various thickness
d as a function of the gate voltage at T = 0.03K and B = 0T . Sample I is in the trivial phase and
has a high resistance, whereas sample II-IV are in the topological phase and show a quantized
conductivity e2/h. The inset shows the resistance at higher temperature T = 1.8K (black line),
where the effect is less visible.

to measure the quantized Hall conductance in 3D. The main issue for transport are the

considered materials that have a very large static dielectric constant. In order to observe the

Dirac cone, the chemical potential must be lowered via the gating voltage, but this is

extremely difficult for materials with this high dielectric constant [56]. To cope with this

problem, the 3D materials need to be heavily doped. Furthermore, the synthesis of these

materials comes along with impurities, such as defects and vacant sites, due to which the

materials are no longer perfectly crystalline [6]. However, in theory, the materials are only

insulating when there is a perfect crystalline structure, which means that in experiments with

these impurities there is always a finite residual bulk carrier density that is measured in

transport. This bulk contribution is dominant in the measurements and it turns out to be

very difficult to filter our. Although these problems also arise for ARPES, ARPES measures

the surface structure, and not the resistance in the whole material and thus can more easily

cope with this problem.

Due to these problems, transport has not been able to describe 3D topological insulators.

Until now, the Dirac cones still have not been observed via transport measurements, but a

great effort is still being done in order to find the quantized conductivity. See for example Qi

and Zhang [6] and Culcer [56] for an overview of experiments.
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2.2.3 Angle-Resolved PhotoEmission Spectroscopy (ARPES)

Probably the most influential method to observe the topological phase is by considering the

single surface Dirac cone by using ARPES. Not only does this method results in beautiful

pictures of Dirac cones, it also resulted in the first proof of the existence of a 3D topological

insulator BixSb1−x. In an ARPES experiment, a photon is used to eject an electron out of a

crystal and then its behavior in momentum space is analyzed. ARPES has mainly been used

to study superconductors, but in the recent years it has also been applied to topological

insulators. Also here, a large amount of literature is available, and we refer the interested

reader further towards Ref. [57, 58].

ARPES stands for Angle-Resolved PhotoEmission Spectroscopy and is a direct method to

observe the density of single particle electrons in reciprocal space. The technique is based

upon the photoelectric effect, which was originally observed by Hertz in 1887 and explained

by Einstein in 1905, where he described the photoelectric effect as a consequence of the

quantum-behavior of light. An electron in a crystal can escape the material when it absorbs a

photon. The maximum kinetic energy of the electron is hf − φ, where f is the frequency of

the photon and φ the material work function, which indicates how much energy the valence

electrons need to escape the energy barrier of a material.

Within an ARPES experiment, a beam of monochromatized radiation is send towards a

crystalline-shaped sample, see also Fig. 2.22. The photons are absorbed by the electrons, and

in its turn the electrons escape the sample into the vacuum in all directions. These electrons

are registered by an electron energy analyzer, which is characterized by a finite-acceptance

angle. In this way, the analyzer measures the kinetic energy for a given emission angle, and

gives all the information about the momentum p, which are its modulo
√

2mEkin and its

perpendicular and parallel components. Within a non-interacting picture and by neglecting

the low-energy photon momenta in the conservation laws, the kinetic energy of the electron

and its momentum can be related to the crystal momentum h̵k within the solid and the

binding energy Eb of the electron

Ekin = hf − φ − ∣Eb∣, (2.61)

p∥ = h̵k∥ =
√

2mEkin sin(θ), (2.62)

where θ is the polar emission angle (see Fig. 2.22) and h̵k∥ is the component parallel to the

electron crystal momentum such that k∥ =
√
k2
x + k

2
y.

We follow the same route as Ref. [58] to arrive at a theoretical understanding of ARPES.

From a this point of view, an ARPES experiment is approximated via Fermi’s golden rule,

where the transition probability wf,i between the N -electron ground state ψNi and one of the
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Figure 2.22: An ARPES experiment [58]. An electron is dislodged from its position in the
sample due to the absorption of a photon. The electron analyzer detect the emitted electron
and measures its momentum in perpendicular and parallel components.

possible final states ψNf is given by

wf,i =
2π

h̵
∣ ⟨ψNf ∣Hint ∣ψ

N
i ⟩ ∣2δ(EN

f −EN
i − hf), (2.63)

where EN
i = EN−1

i −Ek
B and EN

f = EN−1
f +Ekin are the initial and finite energies of the

N -particle system and Ek
B is the binding energy of an electron with momentum k. The

interaction with the photon is considered as a perturbation, which means

Hint = −
e

2mc
(A ⋅ p + p ⋅A) = −

e

mc
A ⋅ p, (2.64)

with p the electronic momentum operator and A the electromagnetic vector potential. In

deriving Eq. (2.64), the gauge of the scalar potential Φ = 0, and we made use of the

commutation relation [p,A] = −ih̵∇ ⋅A and the dipole approximation (A is constant in space:

A(x, t) = A(t)), which means ∇ ⋅A = 0. The initial state of this interaction is a neutral solid,

whereas the final state is a dipole due to the hole in the material that is created by the

absence of the electron. When one assumes that the photoemission is instantaneous (the

electron is instantaneously removed from the system and the effective potential of the system

changes discontinuously at that instant), one can separate the wave-functions of the ejected

electron from the electrons that remain in the system and further calculations become more

simple. This assumption is called the sudden approximation, and is only applicable for

escaping electrons with a high kinetic energy.
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The final state can be written via this sudden approximation as ψNf = Aφkfψ
N−1
f , where A is

the antisymmetric operator which anitisymmetrizes the entire expression according to Pauli’s

principle, φkf is the emitted electron and ψN−1
f is the (N − 1)-electron system which is left in

the material. Each possible final state can be characterized with ψN−1
m with energy EN−1

m , and

we need to sum over all possible states to find the total transition probability.

The initial state can also be split into an electron orbital φki and the other particles in the

system ψNi = Aφkiψ
N−1
i , where we assume that the initial state ψNi is a single Slater

determinant. Furthermore, the term ψN−1
i = ckψNi , where ck is the annihilation operator for an

electron with momentum k, from which it is clear that ψN−1
i is just the wave function that

remains after annihilating an electron (and is thus not an eigenstate of the initial

Hamiltonian). The elements in Fermi’s golden rule in Eq. (2.63) become

⟨ψNf ∣Hint ∣ψ
N
i ⟩ = ⟨φkf ∣Hint ∣φ

k
i ⟩ ⟨ψ

N−1
m ∣ψN−1

i ⟩ , (2.65)

in which the electron-photon interaction is given by ⟨φkf ∣Hint ∣φki ⟩ =M
k
f,i, and we replaced ψN−1

f

with an eigenstate ψN−1
m over which we need to sum. The total photoemission intensity is then

given by summing over all transition probabilities I(k,Ekin) = ∑f,iwf,i and is proportional to

∑
f,i

∣Mf,i∣
2
∑
m

∣cm,i∣
2δ(Ekin +E

N−1
m −EN

i − hf), (2.66)

where ∣cm,i∣ is the probability to go from the initial state i into the final excited state m. For a

single final state, the ARPES spectra will be given by a simple delta-function. However, for

strongly correlated systems this is not the case and there will be a lot of overlapping peaks in

the spectrum.

One of the main properties of ARPES is to measure this intensity of the spectrum, which can

be related to the single-particle spectral function and the Green’s function just as in STM.

The Green’s function for adding (G+(k,ω)) or removing (G−(k,ω))a particle with momentum

k in Fourier space reads

G±(k,ω) = ∑
m

∣
∣ ⟨ψN±1

m ∣ c±1
k,σ ∣ψ

N
i ⟩ ∣2

ω −EN±1
m +EN

i ± iη
, (2.67)

in which the operator c±1
k,σ creates an electron with momentum k, energy ω and spin σ in the

initial N -particle state. The summation is taking into account all possible final particle states

and we added the infinitesimal η. In the limit η → 0, we obtain the spectral functions
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Figure 2.23: ARPES results for Bi0.9Sb0.1. (a) ARPES data on the (111) surface of Bi0.9Sb0.1.
The five surface states that cross the Fermi energy are indicated with a circle and a number in
the figure. The white lines indicate the filled (circle) and unfilled bulk bands. (b) A schematic
drawing of the 3D Brillouin zone of the (111) projection. (c) The resistivity of pure Bi (x = 0)
and the Sb alloy (x = 0.1). A clear drop in the resistance can be seen for the alloy. Figure taken
from [5], original results in [12].

A(k,ω) = A+(k,ω) +A−(k,ω) = −1/πIm [G+(k,ω) − (G−(k,ω))
∗
], where

A±(k,ω) = ∑
m

∣ ⟨ψN±1
m ∣ c±1

k,σ ∣ψ
N
i ⟩ ∣2δ(ω −EN±1

m +EN
i ), (2.68)

and these A±(k,ω) denote the one-electron removal or addition spectra functions. By using

the previous formulas and the sudden approximation, one can rewrite for T ≠ 0 the intensity

in an ARPES experiment

I(k,ω) = I0(k∥, f,A)NFDA(k,ω), (2.69)

where ω is the energy with respect to the Fermi level and I0(k∥, f,A) is the electron-photon

intensity and is proportional to ∣Mk
f,i∣

2. Moreover, the Fermi-Dirac distribution is introduced

again to take into account that only occupied states can indeed attribute to the density.

Therefore, in an ARPES experiment, not only the k dependence is measured, but also the

intensity, which can be related to the Green’s functions.
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ba

Figure 2.24: High resolution ARPES of the surface electronic band dispersion in Bi2Sb3. along
the Γ −M and Γ −K direction. A Dirac cone is clearly visible in the spectrum. b The first
measurements of a single Dirac cone in a topological insulator. In the left picture, the shape
of the Fermi surface is depicted, whereas in the right the Dirac cone can be seen.

As mentioned, ARPES was already used quite a bit within superconductors, and is nowadays

also used to measure the surface states in topological insulators. The group of Hasan in

Princeton was able to verify the existence of 3D topological insulators in 2008 [12]. The main

results that prove this existence are shown in Fig. 2.23. In Fig. 2.23a, we see the surface

bands in the topological state indicated with a circle and a number. The bulk bands are

shown in white. The figure clearly shows five surface states that cross the Fermi energy

(numbers 1-5), indicating topological surface states in this material. The odd number of

crossings shows the protected nature of these states [5].

After this experiment, more ARPES experiments were performed on other materials such as

Bi2Se3 [59] and Bi2Te3 [60, 61]. Whereas the previous experimental results were relatively

difficult to interpret, the results that was obtained in these measurements is very clear: a

single Dirac cone at the surface state. One of the first trials is by Xia et al. [59] in 2009, and

the results are shown in Fig. 2.24a. In this figure, we see a high resolution ARPES taken for

two different directions for Bi2Sb3. The Dirac cone is clearly visible. However, from the figure

it can be seen that the Fermi energy is above the conduction band, making this material

actually a metal rather than an insulator. The first true topological insulator was measured

by Chen et al. [60], where the material Be2Te3 is doped with 0.67% Sn. These results are

shown in Fig. 2.24b. Also here, we see a Dirac cone, but now the material is actually an

insulator in the bulk, and thus a proper topological insulator.

2.3 Conclusion

To summarize, we have seen in this section the relatively new research area of topological

insulators and superconductors. A topological insulator is characterized by metallic edge
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currents in an insulating bulk, and this phase transition is triggered by inverting the band

gap. The quantum Hall effect was the first time that these edge currents appeared, leading

towards the theoretical prediction of the quantum spin Hall effect in 2005, where topologically

protected helical edge states appeared in the nontrivial phase. Two years later, these edge

states were experimentally measured in transport experiments and this opened up the way to

investigate also 3D topological insulators. These 3D topological insulators are interesting in

its own way, firstly because the 2D effects can be seen, and secondly because a whole new

type of strong topological insulator leading towards new effects (such as the isolated Dirac

cone) have been observed in ARPES. In the meantime, the theoretical framework to classify

topological insulators without interactions was developed in the tenfold way, and a topological

insulator is classified according to its dimension and the protecting symmetries. Nowadays,

the zero-temperature and non-interacting behavior of these materials is relatively well

understood, opening the route towards new interesting effects at finite-temperatures and

interaction drive topological insulators. In the next section, we focus on a procedure to

describe this finite-temperature behavior by using a specific form of thermodynamics: Hill

thermodynamics.
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systems

In the previous section Sec. 2, we have seen what topological insulators are, how the trivial

phase and the topological phase can be distinguished with a topological invariant, how to

classify topological phases within the tenfold way and how to detect topological phases. We

have also seen that there is no sign of thermodynamics (yet) in this description of topological

phases. In the thesis, we will argue that, although at first sight it might seem peculiar to use

thermodynamics for finite-size systems, it is still possible to describe topological insulators

within a thermodynamic framework by appropriately taking the finite-size into account.

Moreover, we show universalities in the phase transitions and are able to extract

finite-temperature results out of our calculations, which is exactly one of the new hot-topics in

this research area. This section aims to give an introduction to the thermodynamics of

finite-size systems, also called Hill thermodynamics, and to use this theory to describe the

topological phase transition in the Kitaev chain in a thermodynamic way.

Thermodynamics is the part of physics which connects the heat of a system with other

properties such as energy and work. Originally, thermodynamics, as a science, tried to

understand and develop new engines. One of the first attempts of thermodynamics started

with Otto von Guericke in 1650, who designed the first vacuum pump and who is well known

for his work in the Magdeburg hemispheres. Other well-known scientists in the field of

thermodynamics are Boyle, Carnot, Joule, Kelvin, Boltzmann, Gibbs, Clausius and many

more: thermodynamics has always been a very important branch in physics (see also the

quote on the front page, which is actually only about the second law of thermodynamics, but

can be interpreted in a broader sense). In the course of years, thermodynamics developed

itself from engines towards more complex systems such as colloids and superconductivity, and

still is an essential part of any physics education, although nowadays perhaps better known as

the slightly different subject of statistical physics. We will come back to the difference

between statistical mechanics and thermodynamics in Sec. 3.2

One of the most important results of thermodynamics is to adequately describe phase

transitions. A phase transition occurs when a material changes from one state of matter into

another. Examples from everyday life are water turning into ice or into steam. The first

theory to describe phase transitions was developed by Ehrenfest. According to his scheme, a

phase transition of a system is characterized by the first discontinuous derivative of the free

energy with respect to a thermodynamic variable (e.g. the pressure or chemical potential).

The order of the phase transition corresponds with the number of derivatives of the free

energy that are required to find this first discontinuity in the free energy. In this way, the free
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energy of a first order phase transition has a discontinuity in its first derivative, whereas the

free energy of a second order phase transition is continuous in the first derivative, but

discontinuous in its second derivative.

Although most phase transitions can be characterized via the Ehrenfest classification, the

theorem does not take into account the critical behavior of a phase transition such as the case

where a derivative of the free energy diverges and, therefore, fails to describe the phase

transition of e.g. ferromagnets. At the critical point, thermodynamic properties such as

pressure and density are not well defined and this leads to a breakdown in the Ehrenfest

classification. To avoid these ill-defined critical points, Landau developed a more general

theorem which describes a phase transition in terms of the breaking of the underlying

symmetries of a system. When going from water into ice for example, the system loses a part

of its translational symmetry of the loosely packed fluid into a more firmly structured crystal

lattice. Landau found a procedure to describe the underlying symmetry of any kind of phase

transition and after him many scientists have discovered new phase transitions which were

explained very accurately with this model. It is this classification that is still used in modern

physics to describe phase transitions of materials.

In the course of years also new types of phase transitions were discovered, of which one of

them is the topological phase transition in 2005. This discovery emerged as a black swan to

oppose the view that all materials can be described with the Landau theory of symmetry

breaking. It turned out that one of the interesting properties of the topological materials, the

bulk boundary correspondence, can not be described by underlying symmetries. An intuitive

explanation for the breakdown of the Landau theory of symmetry breaking has to do with the

boundary of the system. In order to describe the underlying symmetries of a system, one

needs to make use of the thermodynamic limit, the usual limit in thermodynamics in which

the number of particles is taken to infinity. However, topological materials always have a

boundary, making it impossible to take the thermodynamic limit because the boundary

vanishes in this limit. Furthermore, topological invariant such as the Chern number are global

parameters, whereas the Landau theory of phase transition requires a local order parameter.

The breakdown of the normal classification makes topological materials extremely interesting

and poses important questions about the validity of the classification, how the phase

transition of these materials can be described and if there are also other materials (such as

Weyl semimetals) where the classification scheme developed by Landau does not hold.

However, as is common in science, a well-established theory is not rejected this easily.

Thermodynamics is so well-established in the description of materials and phase transitions

that there might be something interesting to investigate here. The only difference between

ordinary materials and topological materials is the boundary. But, luckily, the before
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mentioned Hill thermodynamics can be used to adequately describe the boundary of systems

by considering finite system sizes. Moreover, Quelle et al. [8] proved that actually model

topological materials with this Hill thermodynamics and find their phase transitions, which

means that thermodynamics might still be an at first sight unexpected way to go when

describing topological materials.

This section describes the method of Quelle et al. [8] to use thermodynamics for identifying

phase transitions in topological materials. We will show the procedure in detail for the Kitaev

chain in this section. First, we review the theory of phase transitions in Sec. 3.1. Second, we

introduce Hill thermodynamics and show how Hill thermodynamics can be used to find phase

transitions in Sec. 3.2, and third, we show the thermodynamic description of phase transitions

for the Kitaev chain in Sec. 3.3. In Sec. 4, we will use the general procedure developed in this

section to describe the topological phase transitions for multiple topological models such as

the SSH (1D topological insulator), BHZ(2D topological insulator) and tight binding

graphene (2D topological insulator).

3.1 Theories of phase transitions

In the course of years, there have been two dominant theories to classify phase transitions:

the Ehrenfest classification and the Landau theory of symmetry breaking. In this section, we

review these two theories and describe how the procedures were developed and when they can

be used. Furthermore, we will discuss new types of phase transitions, the quantum phase

transition and topological phase transitions, and show how these phase transitions fit in the

current framework.

3.1.1 Ehrenfest classification

The Ehrenfest classification was developed by Paul Ehrenfest in 1933 as a framework to

classify phase transitions. In those days, all known phase transitions were associated with a

latent heat difference between two phases of matter. This view changed with experiments in

Leiden, starting with the liquefaction of helium by Kamerlingh Onnes in 1908, for which he

gained the Nobel Prize [62]. In the 1920’s, Dana and Onnes observed a sharp maximum in the

pressure-temperature curve in liquid helium at 2.2 K [63]. This result inspired Wolfke and

Keesom to measure the dielectric constant of liquid helium near this temperature, which

resulted in a “rapid change of the galvanometer” near this point, indicating a phase transition

in liquid helium [64]. The two phases were originally called liquid helium I and liquid helium

II [65]. The group of Keesom continued to study the phase transition of liquid helium and

found the interesting result that this type of phase transition did not have an associated

latent heat and also had no clear surface demarcation between phases [66, 67]. In fact, the

heat capacity of liquid helium would rise to a finite maximum value before, and then jump to
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a much lower value. Keesom and Clusius denoted this as a λ phase transition - a name

suggested by Ehrenfest -, due to the λ-shaped curve of the latent heat, as is shown in Fig. 3.1.

Figure 3.1: The λ phase transition for liquid helium as was found out by Keesom and Clusius
[66]. The heat capacity (y-axis) first rises as a function of the temperature (x-axis), and then
suddenly jumps towards a lower value at T = 2.2K, the point of the phase transition. A
λ-shaped curve indicates the name of this type of phase transitions.

A year later, Ehrenfest developed a mathematical description to accommodate the difference

between the liquid helium phase transition and previously observed phase transitions. The

differences according to the Ehrenfest classification are shown in Fig. 3.2. He considers

surfaces of constant Gibbs free energy which have continuous derivatives away from the

transition points. The Gibbs free energy is given by G = U + pV − TS, where U is the internal

energy, p the pressure, V the volume, T the temperature, and S the entropy. These constant

G surfaces appear as curves in the p-T plane. Now, a first-order phase transition is

characterized by a kink in the G surface, which means that the first derivative of G with

respect to a thermodynamic variable is discontinuous. A second-order phase transition is

characterized by a kink in the in the first derivative of G with respect to a thermodynamic

variable and a discontinuity in the second derivative. A second order phase transition

therefore has a jump, or discontinuity, in the heat capacity at constant volume

Cv = −T (∂2G)/(∂T 2) and explains the phase transition of liquid helium. In this way, it is even

possible to obtain higher order phase transitions.

Immediately after the publication, the Ehrenfest classification got a lot of attention and was
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Figure 3.2: Ehrenfest’s classification of phase transitions. (a) First-order phase transition.
The Gibbs free energy shows a kink, which means the volume, the first derivative with respect
to the pressure, shows a discontinuity. (b) Second-order phase transition. Now the volume
shows a kink, meaning the heat capacity shows a discontinuity. Image retrieved from [68]

widely discussed in the scientific community [67]. Although not everyone agreed initially, new

evidence of these second-order phase transitions were found, building up a solid theorem to

describe phase transitions. However, a couple of years after the publication, doubts began to

rise whether the most well-known example of a second-order phase transition, the liquid

helium λ phase transition, actually satisfied the Ehrenfest definition of a second-order phase

transition.

Moreover, the situation changed in 1944 when Lars Onsager solved the two-dimensional Ising

model in the absence of a magnetic field exactly, showing a phase transition where the free

energy derivative becomes infinite rather than discontinuous : something which did not fit

within the Ehrenfest scheme. This result was the first to point out a flaw in the Ehrenfest

classification. Later, also the λ phase transition was commonly thought to have an infinite

heat capacity at the phase transition rather than having a finite jump, making the Ehrenfest

classification inadequate to describe this type of phase transitions.

Although the Ehrenfest classification is generally thought to be too simple, it still gives

important information about the type of phase transition and is frequently used in physics

textbooks to introduce students to the different types of phase transitions: phase transitions

that do involve latent heat (first-order or discontinuous phase transitions) and phase

transitions that do not involve latent heat (higher-order or continuous phase transitions).

However, when one needs to classify also models with infinite derivatives of the energy such as

the Ising model or liquid helium, one needs to use a different classification scheme developed
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by Landau. This will be discussed next.

3.1.2 Landau theory of symmetry breaking

The first alternative of the Ehrenfest classification was developed by Landau and Lifshitz in

their classic work Statistical Physics in 1938 [1]. Although their classification had less

influence on the debate on the classification of phase transitions, the procedure is considerably

better the Ehrenfest’s classification because it can work with the ill-defined second-order

phase transitions such as the two-dimensional Ising model [67]. The Landau classification, as

we will briefly denote the Landau-Lifshitz, or Ginzburg-Landau, classification scheme, is a

phenomenological approach to classify phase transitions based on the symmetries of a system

and involves the notion of symmetry breaking. In order to get a feeling for the approach, we

follow the same route as [30] and start by describing the classification of the D-dimensional

Ising model as an example of how the Landau classification can be used. Within this example,

the main idea of symmetry breaking, the concept of an order parameter and the Landau free

energy are all introduced.

To appreciate the Landau classification scheme, it is best to consider a simple model that

exhibits a second-order phase transition at nonzero temperature: the Ising model in

D-dimensions, where D is more than one. The model describes the competition of spin

direction Ŝz,i at lattice sites xi that can have values mi = ±h̵/2 and is considered to be one of

the easiest models of magnetism. The spins on each site are coupled to their neighboring sites

with strength J . The Hamiltonian of such a system is given by

Ĥ = −
2J

h̵2 ∑
⟨i,j⟩

Ŝz,i ⋅ Ŝz,j, (3.1)

where ⟨i, j⟩ denotes the summation over nearest-neighbors. For J > 0 the system lowers its

energy to point all spins in the same direction, the system is said to be ferromagnetic. In

contrast, when J < 0, the spins tend to point in opposite direction, making the interaction

antiferromagnetic. Now, it is common to introduce the magnetization, the expectation value

of the average spin,

⟨M⟩ =
1

N
⟨∑
i

Ŝz,i⟩ =
1

Z
Tr [(

1

N
∑
i

Ŝz,i) e
−βĤ] , (3.2)

with Z the canonical partition function, N the total number of spins and where the trace is

over all microstates of the model. The Ising model can exactly be solved for the

one-dimensional and the two-dimensional case, but in more than three dimensions we need to

resort to approximation methods.
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We start rewriting the Hamiltonian with a fluctuation expansion of the spin around a certain

fixed magnetization M

Ŝz,i =M + Ŝ′z,i, (3.3)

where we assume the fluctuations Ŝ′z,i are small such that we only need to take the linear

order into account. We can expand the Hamiltonian

Ĥ = −
2J

h̵2 ∑
⟨i,j⟩

Ŝz,i ⋅ Ŝz,j = −
2J

h̵2 ∑
⟨i,j⟩

(M + Ŝ′z,i) ⋅ (M + Ŝ′z,j) (3.4)

= −
2J

h̵2
zNM2 −

4J

h̵2
zM∑

i

Ŝ′z,i +O((Ŝ′z,i)
2), (3.5)

with z = 2D is the number of nearest neighbors in D dimensions. We can now substitute

Eq. (3.3) back into Eq. (3.4) and, by neglecting higher order terms Ŝ′z,i, find the Hamiltonian

in terms of Ŝz,i

Ĥ ≈
2J

h̵2
zNM2 −

4J

h̵2
zM∑

i

Ŝz,i. (3.6)

From this expression, we are able to approximate the partition function of the model in terms

of the average magnetization

Z(M) = ∑
{mi}

⟨{mi} ∣ exp{−
Ĥ

kBT
} ∣ {mi}⟩ (3.7)

≈ ∑
{mi}

⟨{mi} ∣ exp{
2zJNM2

kBT h̵2
+

4zJM

kBT h̵2∑
i

Ŝz,i} ∣ {mi}⟩ (3.8)

= exp{
−2zJNM2

kBT h̵2
}∏

i

∑
mi=±h̵/2

exp{
4zJMmi

kBT h̵2
} (3.9)

= exp{
−2zJNM2

kBT h̵2
+N log (exp{

2zJM

kBT h̵
} + exp{

−2zJM

kBT h̵
})} (3.10)

= exp{−
FL(M)

kBT
} , (3.11)

where in the last line we introduced the Landau free energy

FL(M) =
2zJNM2

h̵2
−NkBT log (exp{

2zJM

kBT h̵
} + exp{

−2zJM

kBT h̵
}) . (3.12)

In order to obtain the average value of the magnetization, we can expand the free energy in

terms of power M

FL(M) = −NkBT log(2) +
1

h̵2
(2zJNM2 −

2Nz2J2

kBT
)M2 +

1

h̵4

4Nz4J4

3(kBT )3
M4 +⋯. (3.13)
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Figure 3.3: Qualitative sketch of a) the Landau free energy as a function of m for T < Tc
and T > Tc and b) the order parameter for a continuous phase transition. A phase transition
between the ordered and disordered phase occurs for T = Tc = Jz/kB. Image retrieved from [30]

The first term in this expression is independent of M and is the entropy contribution to the

free energy at zero magnetization. The second term is quadratic in M and the third term is

quartic in M . By denoting the coefficient in front of the second term as α(T ) and the

coefficient in front of the third term by β(T ), we can examine the behavior of the free energy.

When both α(T ) and β(T ) are positive, we have a global minimum in the free energy at

⟨M⟩ = 0, which is also called the disordered phase because the spins are not aligned. The

coefficient α can also become negative at low temperatures, making the free energy at M = 0 a

maximum and the minimum at a nonzero value of M . This transition from positive to

negative α(T ) is also called a continuous phase transition, because a phase change from a

disordered system to an ordered system has occurred in a continuous way, which is the same a

the second order phase transition from Ehrenfest. This phase change occurs at the critical

temperature Tc = Jz/kB. The expectation value of the magnetization is given by minimizing

the free energy

dFL(M)

dM
∣M=⟨M⟩ = 0, ⟨M⟩ =

h̵

2
tanh(

2zJ ⟨M⟩

kBT h̵
) , (3.14)

which needs to be solve numerically.

In this example, we encountered the order parameter M in which we could expand the free

energy. This is the main idea of the Landau-Ginzburg classification. In principle, any free

energy can be expanded in series of an order parameter, which discriminates the different

phases of the phase transition (the disordered from the ordered phase). This means the free

energy of a system with volume V is given by

FL(m) = V fL(m) =
V

2
{α(T )m2 +

β(T )

2
m4 +

δ(T )

3
m6 +⋯} , (3.15)

where fL(m) is the Landau free energy density and m is the order parameter of the system.

Due to spin reversal symmetry, only even powers occur in this expansion. Depending of the
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Figure 3.4: Qualitative sketch of a) the Landau free energy as a function of m for T < Tc and
T > Tc and b) the order parameter for a discontinuous phase transition. A phase transition
between the ordered and disordered phase occurs for T = Tc = Jz/kB. Image retrieved from [30]

sign of β(T ), the transition between the phases is continuous (positive β(T ), see Fig. 3.3) or

discontinuous (negative β(T ), see Fig. 3.4).

In the continuous phase transition, the free energy either has one global minimum for zero

(disordered) or nonzero (ordered) m. When α(T ) changes sign, the order parameter shifts

continuously from m = 0 to m ≠ 0 and vice versa.

In the discontinuous phase transition, the free energy has more minima for temperatures near

Tc. At the phase transition, the free energy has two minima for two different values of the

order parameter. When the temperature is lowered from T > Tc to T < Tc, a discontinuous

phase change occurs where the value of m jumps from zero to a nonzero value. This is

depicted in Fig. 3.4b.

To summarize, the Landau-Ginzburg classification uses an order parameter to expand the free

energy in series of this order parameter. By analyzing its behavior in terms of the coefficients

in front of the order parameter, it is possible to classify whether a phase transition is

continuous or discontinuous, in the same sense as Ehrenfest’s classification, but now from a

phenomenological perspective. In experiments, only first and second order phase transition

seem to occur, which increased the scientific focus on the difference between a continuous and

discontinuous phase transition, leaving the differences between higher-order phase transitions

relatively untouched.

3.1.3 Quantum and topological phase transitions

In the previous sections, we saw the different types of classification schemes for phase

transitions at finite temperature. The phase transitions were driven by a change in the

temperature and could be distinguished in either a continuous or a discontinuous phase

transition. In the course of year after the introduction of the classification schemes, more

strange phase were encountered, including phase transitions at zero temperature. These

Thermodynamic signatures in topological phases 62



3 HILL THERMODYNAMICS: THERMODYNAMICS OF FINITE-SIZE SYSTEMS

Figure 3.5: Two phase diagrams of a quantum phase transition. In both figures, the quantum
critical point is given by gc at T = 0. In (a), the quantum phase transition only occurs at
T = 0, whereas in (b) there is an additional line of T > 0 second-order phase transitions. The
Ehrenfest classification of phase transitions are valid in the shaded region in (b) [69].

so-called quantum phase transitions occur at zero temperature and therefore cannot be driven

by the usual thermal fluctuations, but by quantum fluctuations (h̵ω > kBT ) driven by the

Heisenberg uncertainty principle. The system has a degenerate ground state, and can switch

phases by tuning a physical parameter such as doping, magnetization or chemical potential

(but not the temperature).

One can get an intuitive picture of a quantum phase transition by considering a Hamiltonian

H(g) in a finite lattice which varies as a function of the dimensionless coupling g [69]. An

interesting case occurs when g couples to a conserved quantity such that H(g) =H0 + gH1,

where H0 and H1 commute. The energy of the system can be calculated by diagonalizing H0

and H1 independently. Now, the energy spectrum depends on g, such that at g = gc there is a

level crossing H0 = gH1, where an excited energy level becomes a ground state energy in a

non-analytic way. This is the main idea of a quantum phase transition, by tuning the

parameter g, a phase change from, in this example, the excited state to the ground state

occurs. The critical value gc is referred to as the quantum critical point. For an infinite

lattice, the avoided crossing is sharper than for a finite lattice, making the possibilities even

richer for larger system sizes.

Strictly speaking, quantum phase transitions only occur at zero temperature. However, it is

impossible to actually measure materials at zero temperature, and therefore we are interested

what happens at small finite temperatures. In general there are two important phase

diagrams near a quantum critical point, both depicted in Fig. 3.5. The first type, Fig. 3.5a,

only has a thermodynamic singularity at gc and zero temperature, whereas all other

(thermodynamic) T > 0 properties are analytic functions. The second type, Fig. 3.5b, contains

a T > 0 line, indicating a second-order phase transition, that is terminated in gc. In the
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Figure 3.6: The quantum critical phase. In this figure, ∆ = h̵ω indicates the energy scale
of the quantum fluctuations and kBT the scale of the thermal fluctuations. When ∆ > kB,
the quantum fluctuations dominate. In the quantum critical phase, the energy scales compete
∆ < kBT [69].

shaded area, the theory of classical phase transitions driven by thermal fluctuations, the

Ehrenfest classification, can be applied.

Often associated with quantum phase transitions is the quantum critical region: the region

where the quantum and thermal fluctuations are equally important [69]. The typical energy

scales for the quantum fluctuations h̵ω compete with the thermal fluctuations kBT and this

leads to interesting and often surprising physics. The quantum critical region is depicted in

Fig. 3.6. Note that these lines do not indicate a quantum phase transition, but a smooth

crossover between two regions in which quantum and/or thermal fluctuations are important.

The difference between a topological phase transition and a quantum phase transition is the

following: in a quantum phase transition, just as in a normal phase transition, a symmetry is

broken, whereas in a topological phase transition this is not the case. As we have already seen

in Sec. 2.1.2 and Sec. 2.1.3, topological phase transitions do not break any global symmetries,

and are rather defined by a topological invariant that is either present or not present. As

Hasan and Kane state:

The state responsible for the quantum Hall effect does not break any symmetries,

but it defines a topological phase in the sense that certain fundamental properties

(such as the quantized value of the Hall conductance and the number of gapless

boundary modes) are insensitive to smooth changes in material parameters and

cannot change unless the system passes through a quantum phase transition [5].

Therefore topological phase transitions do not involve symmetry breaking, but are defined by

“non-smooth deformations” that involve closing the gap [70]. Although this difference,
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Figure 3.7: Finite-temperature topological phase diagram as calculated via the Uhlmann phase.
In this figure, m = 2µ, c = t and ∆ = 1. The FBP (flat-band point) indicates the point in which
the Kitaev chain of infinite length has a flat band in the spectrum.

topological phase transitions are often considered to be a special type of a quantum phase

transition and are believed to follow the same low temperature phase diagram as depicted

in Fig. 3.5.

Only two years ago, the first finite-temperature phase diagram for different topological models

was obtained by Viyuela et al. [71, 72]. As discussed in Sec. 2.1.3, the difference between the

topological and trivial phase a zero temperature can be identified with a Chern number via

the Berry curvature. This procedure only works at zero temperature because the Berry phase

is calculated via pure quantum states. At finite temperatures, mixed quantum states come

into play and therefore this procedure breaks down, although a slightly different procedure

that involves the Uhlmann phase can be used. The Uhlmann phase makes use of mixed

quantum states, and Viyuela et al. worked out a procedure to define a winding/Chern

number even at nonzero temperature. We will discuss the details of this procedure in more

depth in Sec. 5, where we compare our finite-temperature results for the Kitaev chain with

the ones obtained via the Uhlmann phase. As a teaser, the finite-temperature topological

phase diagram for the Kitaev chain is depicted in Fig. 3.7.

Now, we have all the ingredients. We introduced the different types of classification schemes

and discussed the different types of phase transitions and indicated where the topological

phase transitions fits in. It is time to start with a new old way to describe these topological

phase transitions. New in the sense that the method has not been used before Quelle et al. [8]

and old because the technique has already been available since 1963.
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3.2 Hill thermodynamics

In order to investigate the topological phase transition, we need to work with the boundaries

of the system within the framework of thermodynamics. Normally, in statistical physics, these

systems with boundaries often lead to tedious calculations, because one needs to imply

boundary conditions, but at least these calculations can be performed. This is because

statistical physics is about the microscopic description of a system from which we can

calculate macroscopic properties. However, thermodynamics analyzes the macroscopic

behavior of a macroscopic system and derives thermodynamic functions and mathematical

interrelations between these functions. This indirectly means that the finite-size effects are

generally not taken into account in thermodynamics, which is also due to the thermodynamic

limit N →∞. Almost 60 years ago, the chemist Terrell Hill recognized this problem and

developed a new thermodynamic framework which makes use of thermodynamics to describe

systems with a boundary. In this section, we describe Hill’s framework and show how it can

be used to properly calculate thermodynamic variables for finite-size systems.

Hill conveniently makes use of the extensive and intensive variables that thermodynamics has

to offer. An intensive variable is independent of the system size or the amount of material in

the system. Examples are the pressure, temperature and density. In contrary, extensive

variables scale linearly with the system size. Examples are the volume, mass and energy of a

system. According to Hill, we will see that when considering a boundary in the system,

extensive quantities such as the energy need not necessarily scale linearly with the system

size. Instead, Hill introduces an additional subdivision potential, which in principle can be

anything, that needs to be added to the appropriate thermodynamic energy of the system

Hill starts his analysis of small systems by considering an ensemble of N distinguishable,

independent subsystems, all characterized by the volume V , temperature T and chemical

potential µ. In the conventional thermodynamic limit of N →∞, the whole ensemble is a

macroscopic thermodynamic system, although each individual subsystem is not. The total

energy of the system, besides the usual terms, also depends on N , and therefore one can write

for the internal energy

dEt = TdSt − pNdV + µdNt +XdN , (3.16)

where p is the mean pressure, S is the entropy, N is the number of particles within the system

and the sub-index t denotes properties of the whole ensemble. He also introduced the term

X = −p̂V , which can be regarded as another pV work term that adds to the internal energy.

Indeed, XdN corresponds to changing the volume of the system by increasing the number of

subsystems with volume V , rather than changing V per subsystem. By integrating Eq. (3.16)
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in the grand canonical ensemble (keeping µ,V and T constant), one finds

Et = TSt + µNt − p̂VN , (3.17)

and one identifies X = −p̂V = (Et − TSt − µNt)/N . The next step is an important one, as it

characterizes the essential mechanism of Hill thermodynamics. We define Ē = Et/N and

N̄ = Nt/N as the appropriate thermodynamic ensemble averages of E and N per subsystem

and S = St/N as the appropriate S per subsystem. Notice that we did not put a bar over S

because it is a property of the complete probability distribution and not an average value in

the same sense as N̄ and Ē. By using these definitions, we can rewrite Eq. (3.16)

d (N Ē) = Td (NS) − pNdV + µd (N N̄) +XdN

NdĒ + ĒdN = T (NdS + SdN) − pNdV + µ (NdN̄ + N̄dN) +XdN

dĒ = TdS − pdV + µdN̄, (3.18)

where in the last line we substituted X = Ē − TS − µN̄ and we divided by N to obtain the

differential equation for a single subsystem. Notice that the thermodynamic identity for a

subsystem is still given by the usual thermodynamic expression. However, when comparing

Eq. (3.18) with Eq. (3.17), we observe that upon integrating the expression in the grand

canonical ensemble, the internal energy per system is

Ē = TS + µN̄ − p̂V = TS − pV + µN̄ + E , (3.19)

where E ∶= (p − p̂)V defines the subdivision potential, which states that the internal energy is

not a linear homogeneous function of S,V and N̄ . Eq. (3.19) is the main result of Hill’s

analysis and captures the full non-extensive behavior of a finite-size subsystem in the

grand-canonical ensemble. For a macroscopic system, the mean pressure and the integral

pressure are equal p̂ = p, but this does not hold in general for a finite-size system, where

doubling the volume V will not double the internal energy because of the finite size and edge

effects. As a result, the subdivision potential vanishes in the thermodynamic limit and we

obtain the usual expressions for the macroscopic system.

3.2.1 Gibbs thermodynamics

We should note that, although the procedure looks trivial, it differs in an important way from

the conventional approach developed by Gibbs when considering boundaries in a system. In

Gibbs’ procedure, one can split the contribution from the bulk (B) and the boundary (b),

such that the internal energy of the bulk is

dEB = dSBTB − pdV + µBdNB, (3.20)
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and the energy for the boundary is

dEb = dSbTb − γdA + µbdNb, (3.21)

where γdA is the analogue of work (pdV ) of a 2D material. In equilibrium, TB = Tb = T ,

µB = µb = µ, and the total energy of the system reads

dEB+b = dEB + dEb = Td (SB + Sb) − pdV − γdA + µd (NB +Nb) , (3.22)

where we encounter and additional −γdA term in the thermodynamic identity. This is a

crucial difference when comparing Gibbs’ and Hill’s approaches. Whereas Gibbs assumes that

the boundary contributes in the above way, Hill connects the boundary to the bulk in a

natural way and finds that the subdivision potential might correspond to γA and additional

terms. Therefore, Gibbs’ procedure works perfectly well when the bulk and the boundary can

be considered independent, or when an effective theory can be written down for both parts.

However, this theory is not useful when considering a system with a boundary phase

transition, in which the boundary merges with the bulk, as it is the case for topological phase

transitions.

3.3 Thermodynamics and statistical physics

In this section, the correspondence between the statistical physics and thermodynamics will

be made in order to investigate whether thermodynamic signatures can indicate the

topological phase transition in the Kitaev chain in Sec. 3.4. As usual for quantum phase

transitions, we will describe the phase transition according to the Ehrenfest classification.

In Ref. [8], it was shown that we can use Hill’s formalism to describe topological models, and

that the subdivision potential provides a thermodynamic description of the edge states. To

connect Hill thermodynamics to topological models, one considers a system of finite size V in

contact with an environment characterized by T and µ. The grand potential is

Φ = Ē − TS − µN̄ = Φc +Φ0, (3.23)

with Φc = −pV and Φ0 = E the subdivision potential. One of the strengths of Hill’s approach is

that the thermodynamic identities are kept the same as in conventional thermodynamics. The

grand potential of this system in the framework of statistical mechanics reads

Φ(T,µ, V ) = −kBT log[Z], (3.24)

where kB is Boltzmann’s constant, T the temperature and Z = ∑n e
−β[En−µN] the grand
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partition function with energy E of state n of the system. To obtain the grand potential of

the infinite Kitaev chain it is possible to calculate the outcome of this equation with the

values that were found for the energies in the previous section. For a finite Kitaev chain, the

Hamiltonian of the Kitaev chain from Eq. (2.21) needs to be diagonalized to find the

corresponding energies. For a general diagonalized Hamiltonian, we will find

H = ∑
i

[εia
�
iai − εiaia

�
i] − µN/2 = ∑

i

[2εia
�
iai − εi] − µN/2. (3.25)

Now this factor µN/2 is a constant which can be shifted shifted out of the partition function.

We obtain

Z = Tr (e−βH) = ∑
ψi

⟨ψi∣e
−β∑i[−εi+2εia

�
iai]∣ψi⟩

= eβ∑i εi∑
ψi

⟨ψi∣e
−β∑i[2εia�iai]∣ψi⟩

= ∏
i

[eβεi]∏
i

[1 + e−2βεi] ,

where ψi are the fermionic wave functions, which either result in a 0 or a 1 when acted on

with the creation and annihilation operators and β = 1
kBT

. By using Eq. (3.24) we calculate

Φ(T,µ, V ) = −∑
i

εi − kBT ln[∏
i

(1 + e−2βεi)] = −∑
i

[εi + kBT ln(1 + e−2βεi)]. (3.26)

Now, by comparing this equation with Eq. (3.23), one finds an expression for the subdivision

potential. In principle, Φ0 can take any form, since it does not scale with the volume.

However, we take the Ansatz proposed in Ref. [8]

Φ(µ,T, V ) = Φc(µ,T )V +Φ0(µ,T )V /W, (3.27)

where V is the D dimensional volume and W is the distance between the boundaries, such

that the subdivision potential Φ0 scales with the boundary of the system and captures its

topological properties [8]. This is an important step because it basically states that for long

enough systems, the bulk and the boundary can indeed be separated, but for smaller

distances the finite-size effects also come into play. By calculating the eigenvalues of the

Hamiltonian, a linear fit is used to find the correspondence between Eqs. (3.24) and (3.27),

and to obtain the topological behavior in a thermodynamic description.

3.4 The topological phase transition for the Kitaev chain

We follow procedure from Sec. 3.3 for the Kitaev chain near an interesting point: the

topological phase transition. A phase transition occurs when µ = 2t. Therefore, we fix t = ∆
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=0.25 while varying 0.3 ≤ µ ≤ 0.7 with step-size ∆µ = 0.001. To analyze the quantum phase

transition, we set β = 1000, which corresponds to a very low temperature, and calculate the

grand potential for 50 different lengths in order to make a linear fit (Φ = ΦcL +Φ0) to extract

the coefficients Φc and Φ0. We indeed observe that the Ansatz 3.27 is only applicable for

larger lengths (L ≈ 200) for values of µ far away from the phase transition. Therefore we vary

the length between 200 ≤ L ≤ 250 to find a linear model in L for Φ. The results are shown in

Fig. 3.8.

a b Φ′
c

Φ′
0

Φ0

Φc

Figure 3.8: The potential Φ and subdivision potential Φ0 for the Kitaev chain with t = ∆ = 0.25,
200 ≤ L ≤ 250, β = 1000 and 0.3 ≤ µ ≤ 0.7. The topological phase transition occurs at µ = 0.5. a
The potential Φc and the subdivision potential Φ0. b The derivatives of Φc and Φ0 with respect
to µ.

A couple of interesting features of the model can be seen in Fig. 3.8. First of all, although the

total grand potential is negative, the subdivision potential is positive. This means the

boundary term increases the total energy of the system. Furthermore, at the phase transition

µ = 0.5, we already see critical behavior for both the subdivision potential Φ0 (discontinuous

in first derivative) as well as the potential Φc (kink in the first derivative). However, as can be

seen in Fig. 3.9, the linear model fit breaks down near the phase transition. Near the phase

transition, the system is more ill-defined and therefore the linear regime of the potential

(extensive scaling with the length) is not applicable for these relatively small length scales.

Therefore we increase the length between 0.45 ≤ µ < 0.48 and 0.51 < µ ≤ 0.52 to 500 ≤ L ≤ 550

and for 0.48 ≤ µ ≤ 0.51 to 1000 ≤ L ≤ 1050 and this indeed increases the accuracy of the linear

model. The results are shown in Fig. 3.10.

According to the Ehrenfest classification, we can determine the order of the phase transitions

of the potentials by looking at the first discontinuous derivative. In Fig. 3.10, we therefore

observe that the order of the phase transition at the boundary is first order, whereas the

phase transition in the bulk is second order. This means different thermodynamic variables

will behave differently at the bulk than at the boundary, which is something that could be

measured.
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a b

Figure 3.9: Error of the linear model fit for the 50 values of L. a The errors for µ = 0.415.
b The errors for µ = 0.498. The error in a are numerical errors following from the numerical
calculation of the energies, whereas the errors in b are structural errors following from the
fact that the linear regime is not reached yet for these values of the length due to the critical
behavior of the potential near the phase transition.

Next, we verify that the subdivision term indeed arises from the boundary. One insightful

way of showing this, is by considering the infinite Kitaev ring, in which we connect the

boundaries of the Kitaev chain to each other and we can use the Bloch waves to find the

energy of the system. In this way, the contribution of the boundaries is no longer present,

since there are now boundaries in the system anymore, which means the subdivision potential

should vanish. We showed in Sec. 2.1.2 that the energy of such a system is given by√

(2t cos (2πm/N) + µ)
2
+ 4 ∣∆∣

2
sin2 (2πm/N), where 0 ≤m ≤ N − 1. We can follow the same

procedure as before to obtain the potential and subdivision potential for the Kitaev ring. The

results are the dashed lines in Fig. 3.10. Indeed, as expected, we find no subdivision potential,

whereas the conventional potential is the same for the Kitaev chain as for the Kitaev ring.

We further note that similar results for the phase transitions are obtained when changing

phases in different ways, for example by varying the hopping parameter t instead of the

chemical potential µ (not shown), thus indicating that the order of the phase transition is

robust to a variation of the parameters driving it.

3.5 Conclusion

Taken all together, we have shown in this section that there are different ways to classify a

phase transition, the Ehrenfest classification and the Landau classification, and that in the

recent years new types of phase transitions were discovered, including the rich quantum phase

transitions and topological phase transition. Whereas quantum phase transitions can be

identified via symmetry breaking, topological phase transitions cannot be identified in the

same manner since there is no broken symmetry. Therefore, to describe topological phase

Thermodynamic signatures in topological phases 71



3.5 Conclusion
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Figure 3.10: Behavior of the thermodynamic potentials and their derivatives for the Kitaev
chain. a The conventional potential Φc (red) and subdivision potential Φ0 (blue) and (b, c, d)
their derivatives with respect to µ for the Kitaev chain (solid lines) and the Kitaev ring (dashed
lines), for t = ∆ = 0.25. In the thermodynamic limit, the subdivision potential of the Kitaev
ring indeed vanishes, whereas the conventional potential does not change. The inset in a shows
the topological (left) and trivial (right) phase of the Kitaev chain. The phase change occurs
at µ = 2t = 0.5. b The subdivision potential shows a discontinuity in the first derivative, c
whereas the conventional potential shows a discontinuity in the second derivative. d The third
derivative is displayed to help the visualization of the discontinuity in the second derivative.

transitions, we make use of the Ehrenfest classification, and with the application of Hill

thermodynamics, we can appropriately take the edge states into account in a natural way,

where we can separately calculate the bulk and the edge contributions. Furthermore, we find

that the phase transition is of a different order: a first-order phase transition at the edge and

a second-order phase transition in the bulk. In the next section, we use this formalism to

identify the order of the phase transitions for different topological models.
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4 Classification of topological phase transitions:

universalities

In the previous section we have seen how Hill thermodynamics is able to capture a

thermodynamic description of the topological phase transition for both the bulk and the

boundary in the Kitaev chain. In this section, we apply the procedure described in Sec. 3.3 on

different topological models of different Cartan classes in different dimensions D that we

already encountered in Sec. 2.1 and we show that for all these models, we observe the same

behavior: a phase transition of order D at the boundary and one of order D + 1 in the bulk,

where D is the spatial dimension. This can be considered as a new approach in describing

these topological phases, which also results in interesting physics, namely universalities. We

start with the 1D SSH model, then proceed to the 2D Kane-Mele model and the 2D BHZ

model, and finally present the results for the 3D BHZ model.

4.1 One dimension

In 1D, we show the results for the SSH model. Together with the results for the Kitaev chain,

we observe that for one-dimensional topological models there occurs a first-order phase

transition at the edge and a second-order one in the bulk.

4.1.1 Su-Schrieffer-Heeger model

The SSH model is a 1D model, which was first used to describe the dimerization of

polyacetylene [73]. It describes electrons hopping between two neighboring sites of a bipartite

lattice, and has proven to be an adequate tight-binding model for capturing the behavior of

conjugated polymer chains. The SSH Hamiltonian reads

HSSH = ∑
n

[t1c
�
A,ncB,n + t2c

�
A,n+1cB,n + h.c.] , (4.1)

where t1 and t2 denote unequal hopping amplitudes between the even and odd links for the

even (odd) sites A (B). It is common to rewrite t1 = t(1 +∆) and t2 = t(1 −∆), which makes

the Hamiltonian only dependent on the parameter ∆, and thus there is a phase change

between the topological (∆ < 0) and trivial (∆ > 0) phases for ∆ = 0.

In Fig. 4.1, we show the results for the SSH chain for t = 3/2. We observe a first-order phase

transition at the edge and a second-order phase transition in the bulk, which is the same

behavior obtained for the 1D Kitaev chain.
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Figure 4.1: Behavior of the thermodynamic potentials and their derivatives for the SSH model.
a The conventional potential Φc (red) and subdivision potential Φ0 (blue) and (b, c, d) their
derivatives with respect to ∆, for with t = 3/2. The figures show a similar behavior as the
Kitaev chain, a first-order phase transition for the edge and a second-order phase transition in
the bulk. The inset in a shows the topological (left) and trivial (right) phase of polyacetylene.

4.2 Two dimensions

In 2D, we discuss the Kane-Mele model and the 2D BHZ model. The 2D BHZ model was

already presented in Quelle et al. [8]. We show a second-order phase transition at the

boundary and a third-order one in the bulk.

4.2.1 Kane-Mele model

As we have seen in Sec. 2.1.4, the Kane-Mele model is a paradigmatic 2D model to describe

graphene in the presence of strong spin-orbit coupling (SOC) [4], see Fig. 2.14. We recall the

Hamiltonian

HKM = ∑
⟨ij⟩α

tc�iαcjα +m∑
i

εic
�
ici + ∑

⟨⟨ij⟩⟩αβ
it2νijσ

z
αβc

�
aαcjβ, (4.2)

where the first term describes the nearest-neighbor hopping with amplitude t, the second

describes a staggered on-site potential m with opposite signs εi = ±1 for sublattices A and B,

and the third describes the intrinsic spin-orbit coupling (SOC), with t2 the SOC parameter,

σz a Pauli matrix representing the electron’s spin and νij = −νji = ±1 describes clock- or
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Figure 4.2: Behavior of the thermodynamic potentials and their derivatives for the Kane-Mele
model. a The conventional potential Φc (red) and (b, c, d) the subdivision potential Φ0 (blue)
and their derivatives with respect to m for the Kane-Mele model with t = 2t2 = 0.2. The phase
change occurs at m = 0.52. The subdivision potential shows a discontinuity in the second
derivative, whereas the conventional potential shows a discontinuity in the third derivative.

counter-clockwise electron hopping. For simplicity, we omit a possible Rashba term. Kane

and Mele showed by using this model that graphene with a strong SOC hosts

counter-propagating quantized spin currents at the edges of the material (the quantum spin

Hall effect). Unfortunately, graphene did not posses these strong intrinsic spin-orbit coupling

and therefore it was not able to measure this effect in experiments.

In Fig. 4.2, we display the results for the conventional potential and its derivatives for

t = 2t2 = 0.2 and different values of m. We observe a second-order phase transition at the edge

(Fig. 4.2c) and a third-order one in the bulk (Fig. 4.2d).

4.2.2 Bernevig-Hughes-Zhang model

As discussed in Sec. 2.1.4, the BHZ model is a theoretical model, first proposed to describe

the appearance of a quantum spin Hall effect in mercury telluride-cadmium telluride quantum

wells, upon tuning the thickness of the quantum well above a critical value [9]. This

theoretical prediction was promptly followed by the first experimental observation of this

effect in 2007 [11]. Quelle et al. [8] show in this model how Hill thermodynamics can be

applied on topological models.
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Figure 4.3: a The second derivative ∂2φ/∂M2 is shown as a function of M . A kink is visible at
M = 0, indicating that the bulk undergoes a third-order phase transition (see the inlay, where
the discontinuity in the third derivative is depicted). b The first derivative ∂φ0/∂M is shown as
a function of M . A kink is visible at M = 0 indicating that the edge undergoes a second-order
phase transition (the discontinuity in the second derivative is depicted in the inlay), which can
be considered the order of the topological phase transition [8].

The Hamiltonian of the 2D BHZ model is given by

HBHZ, 2D(k) = ε0(k)14×4 +

⎛
⎜
⎜
⎜
⎜
⎜
⎝

M −Bk2 A(kx + iky) 0 0

A(kx − iky) −M +Bk2 0 0

0 0 M −Bk2
−A(kx − iky)

0 0 −A(kx + iky) −M +Bk2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

where k2
= k2

x + k
2
y and we decomposed the Hamiltonian for the spin-up electrons (left, above)

and the spin-down electrons (right, below) in the two 2 × 2 block matrices. This effective

Hamiltonian describes the interactions between the lowest conducting band and the highest

valence band of the quantum-well model. In this expression, we did not include the bending

εk ⋅ 1 of each of the bands, since this does not influence the phase transition. The Hamiltonian

can be rewritten in a tight-binding description

HBHZ, 2D = A sin(kx)σx −A sin(ky)σy + {M − 2B [2 − cos(kx) − cos(ky)]}σz, (4.3)

where ki denotes the momentum in the i-direction and σi are the Pauli matrices.

Furthermore, the parameters A,B and M denote the thickness of the quantum well, in which

the parameter M denotes the topological (M < 0) and trivial (M > 0) phase. By

Taylor-expanding the ki dependencies, we obtain the original Hamiltonian.

Although not known at that time that there were hidden universalities in these topological

phases, Quelle et al. already calculated the order of the phase transition. Their results for
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A = B = 1 are shown in Fig. 4.3. Indeed, there occurs a second-order phase transition at the

edge and a third-order one in the bulk.

4.3 Three dimensions

In 3D, we only consider the BHZ model due to numerical limitations. We find a third-order

phase transition at the edge and a fourth order one in the bulk.

4.3.1 Bernevig-Hughes-Zhang model

Although the BHZ model was originally proposed to describe 2D systems, it has immediately

raised the question whether an inversion of bulk bands could also arise in 3D materials, such

as BixSb1−x [43]. The Hamiltonian to describe these 3D models in reciprocal space reads

HBHZ(k) = ε0(k)14×4 +

⎛
⎜
⎜
⎜
⎜
⎜
⎝

M(k) A2(kx + iky) 0 A1kz

A2(kx − iky) −M(k) A1kz 0

0 A1kz M(k) −A2(kx − iky)

A1kz 0 −A2(kx + iky) −M(k)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (4.4)

where ε(k) = C +D1k2
z +D2(k2

x + k
2
y), M(k) =M −B1k2

z −B2(k2
x + k

2
y) and M , A1, A2, B1, B2,

C, D1 and D2 are constant parameters in the model. In the numerical calculations, we set

fitting parameters to one and rewrite the matrix into a tight-binding description. In Fig. 4.4,

we show the results for the potentials for the 3D BHZ model. The phase transition occurs for

M = 0 and is third-order at the edge and fourth-order in the bulk.

4.4 Conclusion

All shown models exhibit the same behavior in the order of the dimension: a phase transition

of order D at the boundary and of order D + 1 in the bulk. This is interesting because all

models are different in dimension and in Cartan class. The results are all numerical, and

therefore it might be fruitful to investigate further whether this can also be done analytically.

One way to do this is by finding critical exponents. An idea is to consider the Kitaev chain,

which can be mapped to the Ising model [74], and of which the analytic result is well-known.

We will come back to this idea in Sec. 6.

A possible interpretation of the universal results, is to see the 2D boundary of a 3D

topological material as the 2D bulk of a 2D topological material. In this way, it is only

necessary to find the bulk contributions, because the boundary contributions can be

considered as the bulk contribution in one lower dimension D − 1. This is not the same as the

conventional bulk-boundary correspondence, because in the correspondence the actual bulk
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Figure 4.4: Behavior of the thermodynamic potentials and their derivatives for the BHZ model.
a The conventional potential Φc (red) and subdivision potential Φ0 (blue) and (b, c, d) its
derivatives with respect to M for the BHZ model with A1 = A2 = B1 = B2 = C = D1 = D2 = 1.
The phase change occurs at M = 0. The subdivision potential shows a discontinuity in the third
derivative, whereas the conventional potential shows a discontinuity in the fourth derivative.
We should note that in b Φ′′

0 shows a spurious discontinuity near the phase transition (same for
Φ′′′
c in c). Therefore we considered the infinite system and verified that indeed a fourth-order

phase transition occurs in the bulk (not shown).

gives information about the properties of the boundary, whereas here we propose to interpret

the boundary as a lower dimension bulk.

These results are all at zero-temperature. However, as mentioned previously, the

finite-temperature behavior of topological insulators has not been researched frequently yet.

Therefore, although the results explicitly show a thermodynamic interpretation on the

topological phase change, it is also interesting to heat things up and investigate what happens

at finite-temperatures. This is the topic of the next section.
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5 Finite-temperature effects

Apart from the phase transitions in the previous section, Hill thermodynamics also allows us

to investigate thermodynamic variables at finite-temperature, from here on finite-T , via

Eq. (3.24). By increasing the temperature, we can calculate all thermodynamic quantities of

interest e.g. the entropy and heat capacity.

Why should we study the finite-T behavior of topological phase? One of the most important

reasons is because nowadays topological insulators are well understood at zero-T , but their

finite-T behavior is still unclear. Does it act like a quantum phase transition or is the

behavior different? Furthermore, it is physically not possible to perform experiments at zero

temperature, and therefore a finite-T description is needed. Finally, to calculate the finite-T

quantities, we can check whether the results make any sense.

Therefore, we analyze the finite-T behavior of topological insulators in this section in order to

check our results via the entropy and heat capacity, to find the finite-T topological phase

diagram for the Kitaev chain and to calculate measurable quantities such as the heat capacity

and density of states in 2D topological insulators. Specifically, we also saw in Sec. 3.1.3 that

quantum phase transitions have an interesting finite-T behavior. As mentioned, Viyuela et

al. [71] showed recently how to construct the finite-T phase diagram for different topological

models. By using Hill thermodynamics, we can compare these results with the ones obtained

via the Uhlmann phase and show that they exhibit similar behavior.

In this section, we first zoom in on the Kitaev chain and show the finite-T entropy and

compare the heat capacity with the heat capacity of a conformal field theory (CFT) in

Sec. 5.1.1. Then, we display the results for the finite-T phase diagram and compare our

results with the ones obtained via the Uhlmann phase in Sec. 5.1.2. Finally, we show the heat

capacity and the density of states for the 2D BHZ model in Sec. 5.2.1 and calculate these for

the Kane-Mele model in Sec. 5.2.2.

5.1 Finite-temperature effects in the Kitaev chain

5.1.1 Entropy and heat capacity

From the thermodynamic equation dΦ = −SdT −Ndµ − pdV , we calculate the entropy for the

bulk and boundary separately. We present the entropy in Fig. 5.1 Si = −∂Φi/∂T , where Φi

denotes either Φc (bulk, red solid line) or Φ0 (edge, blue dashed line), for different values of µ.

Especially the entropy at the edge shows an interesting behavior near the phase transition, as

it jumps from the initial value log(2) in the topological phase towards zero in the trivial phase

(Fig. 5.1). For low T , one would indeed expect this behavior because of the Majorana

zero-modes at the edge of the system in the topological phase, each contributing 1/2 log(2),
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a blog(2)
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µ = 0.52µ = 0.51
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Figure 5.1: a Thermal entropy per lattice site in the bulk (red, solid) and at the edge (blue,
dashed) for different values of µ = {0.30,0.45,0.49,0.55}. The other parameters are the same as
before. Upon increasing µ, the entropy at the edge decreases at lower T from the zero T value
log(2) (black, solid), and suddenly jumps towards zero at the phase transition µ = 0.5 (see also
b). The entropy in the bulk becomes a linear function of T near the phase transition, because
the Kitaev chain is conformal at that point. b The same as a, but now for parameter values
µ = {0.48,0.49,0.50,0.51,0.52} near the phase transition. The bulk entropy only change little
for these parameters.

and the absence of these modes in the trivial phase. At first glance, the negative entropy at

the edge in the trivial phase seems peculiar, but it can be understood in the sense that it

lowers the total entropy of the whole system. The total entropy is always positive for the

considered lengths.

Another interesting thing to note is that at the phase transition, µ = ±2t, the Kitaev chain is

conformal. This means that the Hamiltonian of the Kitaev chain is invariant under conformal

transformations, the class of transformations that preserve the angles locally. From the

Hamiltonian in Majorana operators in Eq. (2.22), we see that at the phase transition for

µ = ±2t = ±2∣∆∣, H = it∑j ηjγj ∓ γjηj+1, which means that the Kitaev chain reduces to a simple

chain of Majorana fermions. It is known that for such conformal systems the central charge

c = 1/2 [75]. Furthermore, the entropy for a conformal field theory in 1D has a linear T

dependence [76]. Indeed, when we calculate the entropy in the bulk, we observe in Fig. 5.1b a

linear function of T at the phase transition. Moreover, the entropy deviates from this linear

behavior further away from the phase transition.

Besides the entropy, also the heat capacity CV of 1D quantum systems at low T is

proportional to the central charge c: CV = πck2
BTL/(3h̵v) [76], with v the velocity of the

excitations, L the length of the system, kB the Boltzmann constant and h̵ the reduced Planck

constant. By analyzing the low-T behavior of the Kitaev chain and choosing suitable

parameters such that kB/(h̵v) = 1, we indeed find Cv = πkBT /6 per unit length, see Fig. 5.2.

Thermodynamic signatures in topological phases 80



5 FINITE-TEMPERATURE EFFECTS

πkBT /6

Figure 5.2: Low-T heat capacity (in red) at the phase transition, for t = ∆ = 0.25kB (in
units where kB/h̵v = 1). For low T , we observe a linear T dependence (in blue) with a slope
CV /LkBT = π/6, which corresponds to a central charge c = 1/2.

5.1.2 Finite-temperature phase diagram

Now, we proceed by extending the method to finite T , aiming at obtaining the complete

topological phase diagram. Here we focus on the Kitaev chain, but a similar analysis can be

done for the other models. In Fig. 5.3a, we display the discontinuous derivatives of the

conventional potential (Φc
′′, red) and of the subdivision potential (Φ0

′, blue) for different T ,

using the same parameters as before. At high T , the phase transition smooths out, the

discontinuity becomes less sharp, and occurs at different values of µ than for zero T . In 5.3b,

we show the third derivative of the conventional potential, which always remains at µ = 0.5.

As this phase transition smooths out, the question arises what should be indicated as the

point of the phase transition. We basically have two options. The first option is to consider

the kink in Fig. 5.3a as the point that characterizes the bulk phase transition (the minima of

the discontinuous derivative). Then, it is possible to construct a phase diagram for the Kitaev

chain as given in Fig. 5.4, where the topological (trivial) phase lies within (outside) the red

colored volume. In Sec. 3.1.3, we also mentioned another method to obtain the finite-T phase

diagram, by using the Uhlmann phase. In Fig. 5.4, we show the comparison between both

methods, and it can be seen that they are very similar. The second option is to consider the

point of inflection in Fig. 5.3b, where the “jump” in Φ′
c is the largest. This point always

remains at µ = 0.5 and can be identified with the topological invariant Budich and Diehl [77]

have in mind. In the upcoming discussion, we elaborate on the current debate about the

finite-T behavior of the topological phase diagram, starting with the Uhlmann phase.

The Uhlmann phase is based on the idea that the amplitude for density matrices ρ is any of
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Figure 5.3: Smoothing out of the phase transition at higher T , for different inverse temperatures
1/T = {20,40,60,80,100,300} a Second derivative (n = 2 on y-axis) of the conventional potential
Φ′′
c (red) and first derivative (n = 1 on y-axis) of the subdivision potential Φ′

0 (blue), with respect
to the chemical potential µ. For low T , the phase transition is sharp, but for high T it smooths
out. b Third derivative of the conventional potential. When the temperature increases, the
phase transition becomes smoothed out, but the inflection point always remains at the phase
transition µ = 0.5. This indicates that the largest variation in Φ′′

c is always at the phase
transition, which might also indicate the position of the phase transition.

a b

Topological

Trivial

Topological

Trivial

Figure 5.4: a Finite-T phase diagram: the results obtained for the bulk phase transition using
Hill thermodynamics are displayed in red, whereas the ones arising from the Uhlmann phase
are given in green. Here, we use the same parameters as in Ref. [71]. b A slice of the topological
phase diagram for t = 1.0, depicting the minima of the second derivative of the conventional
potential (red) and the Uhlmann phase (green). The error bars indicate a 0.025% margin of
error in identifying the minimum of the conventional potential.
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Figure 5.5: The Berry phase in comparison with the Uhlmann phase [71]. The Berry phase
uses pure states, which only have a U(1)-gauge freedom and can be considered to be a special
case of the more general U(n)-gauge freedom of the amplitudes in the Uhlmann phase. After
a closed loop γ, a pure state (Berry) carries a simple factor ΦB = Φγ, whereas a mixed state
carries a unitary matrix P exp [∮γ AU], where AU = U(T )U �(T ) is the Uhlmann connection
form.

the matrices w, such that ρ = ww�. In this way, we have a U(n)-gauge freedom in the choice

of w, where n is the dimension of the space, instead of the usual U(1)-gauge freedom for pure

states in the Berry phase, see also Fig. 5.5.

More formally, the Uhlmann phase Φγ
U = arg Tr [ρ(0)Hγ

U] over a loop γ between t = 0 and t = T

in momentum space with the Uhlmann connection Hγ
U and some initial density matrix ρ(0),

can be considered as an extension of the Berry phase in which mixed states can be described.

The Uhlmann connection Hγ
U = P exp [∮γ U(T )U �(T )], where P is the path ordering operator

and U is some unitary transformation, defining the parallel transport condition, such that the

parallel transport w(T ) =
√
ρ(T )U(T ) of a an initial purification w =

√
ρ(0)U(0) over a

closed loop γ in Hilbert space differs a unitary transformation.

The Uhlmann phase is analogous to the Abelian Berry phase Φγ = arg ⟨ψ(0)∣ψ(T )⟩, where

∣ψ ⟩⟨ψ∣ is a family of pure states, up to one crucial difference [77]: whereas the Berry phase is

a U(1) holonomy and is additive in its group structure, which is essential for the construction

of the invariant Chern number, the Uhlmann phase is the trace of a holonomy, which does not

have this property of holonomy, and thus no additive group structure, making the Uhlmann

phase winding number not uniquely defined in general. Nevertheless, Viyuela et al. [71] made

use of this Uhlmann phase to calculate the finite-T phase diagram for the Kitaev chain and

other models. Due to imposed symmetries in the Kitaev chain, only two components of the

unit vector nk are nonzero, see also Sec. 2.1.2. We recall that the winding number

ω1 ∶=
1

2π ∮
(
∂knik
njk

)dk (5.1)
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in momentum space, and therefore the Uhlmann phase can be written as

Φγ
U = arg{cos(πω1) cos [∮ (

∂knik
2njk

sech(
h̵ωk
2T

)dk)]} , (5.2)

where h̵ωk is the energy spectrum in momentum space (see also Eq. (2.15), T the temperature

and i ≠ j. For the Kitaev chain, we have already seen the unit vector and the energy

spectrum, and these can be used to calculate the Uhlmann phase. In the limit T → 0, the

Uhlmann phase in Eq.(5.2) reduces to

Φγ,0
U = arg {cos(πω1)] , (5.3)

which is the standard notion to measure topological order with the winding number.

The finite-T µ − t phase diagrams obtained using Hill thermodynamics to evaluate the

minimum of the discontinuous derivative of the bulk potential (red) or using the Uhlmann

phase (green), depicted in Fig. 5.4a, are actually quite similar (see also Fig. 5.4b, where the

same results are shown only for a slice of the volume corresponding to t = 1.0). The deviations

between the two are due to the fact that, at finite T , it is less obvious to identify the onset of

the phase-transition regime, since the peak broadens as T increases. We include an error bar

to the bulk phase-transition points, which indicates the range of the minimum +0.025%. The

agreement between both descriptions is clear. Note that we only considered the bulk

contribution because the Uhlmann phase is also a bulk property.

However, as a response to the Uhlmann phase not being a holonomy, a different topological

invariant has been recently proposed in Ref. [77] to describe finite-T topological phase

transitions, which does not shift from the zero-T value as T increases. We would like to point

out that the inflection points of Φ′′′
c (the points corresponding to the largest variation of Φ′′

c )

always remain at µ = 0.5, independently of T , see also Fig. 5.3b. Although this work does not

help to settle the dispute involving finite-T topological invariants, it nevertheless sheds a new

light on the problem, by identifying the topological phase transition with a second-order bulk

quantum phase transition. From this perspective, it is interesting to observe that the

Uhlmann phase captures the smoothing of the phase transition at finite T , following the

expected finite-T behavior of a quantum phase transition [69].
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5.2 Heat capacity and density of states

By applying the formalism on different topological models, we can calculate any type of

thermodynamic variable for the bulk and boundary separately. However, not all of these are

interesting, because it is difficult or impossible to measure these quantities in an experiment.

Two variables that might be measured are the heat capacity, the response of the system in

added or ejected heat upon increasing temperature, and the density of states, potentially

measurable via STM (see Sec. 2.2.1). Although it is very difficult to measure these quantities

for 2D systems and to separate the bulk and the edge contribution, we can already show what

their behavior is in the trivial and topological phase and try to trigger new experiments in the

field. We first show the results from Quelle et al. for the 2D BHZ model and then the results

for the 2D Kane-Mele model.

5.2.1 The Bernevig-Hughes-Zhang model in two dimensions

The density of states DOSi = −∂2Φi/∂µ2, where Φi denotes either ΦC or Φ0. The results for

the 2D BHZ model are shown in Fig. 5.6 for the trivial (a) and the topological (b) phase at

T = 0. The results for the bulk are shifted upwards by 0.1 and 1 respectively to increase

visibility. The DOS behaves exactly as is expected for the BHZ model. The DOS in the bulk

a b

Figure 5.6: The DOS at T = 0 in the trivial (a, M = 1) and topological (b, M = −1) phase for
µ = 0. The bulk contribution per unit width is depicted in blue, and the boundary in red.

(blue) vanishes in both the trivial as in the topological phase in the energy gap ∣µ∣ < 1 and has

a nonzero contribution for different energies outside the band gap. In the trivial phase, the

DOS in the energy gap is zero, but in the topological phase becomes nonzero due to the

presence of the edge states. Outside the energy gap, this contribution drops to zero, which is

less visible in the trivial phase due to noise in the numerical calculations.

Interestingly, it is possible to estimate the value of the DOS at the edge by disconnecting the

bulk and edge contributions in the Gibbs’ sense. The Dirac states in the 2D topological
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a b

Figure 5.7: The heat capacity in the trivial (a, M = 1) and topological (b, M = −1) phase for
µ = 0. The bulk contribution per unit width is depicted in blue, and the boundary in red.

insulator have a dispersion relation E = Ak +O(k3) [5], where A = 1 is a parameter in the

BHZ model. The density of states is related with the total energy via

N = 2/(2π) ∫ dk = 2/(2π) ∫ DOS(E)dE, where the integral is taken over the 2D disk in

momentum space and N denotes the available energy states. The factor 2 in front is due to

spin. By substituting dk = dE/A, we interpret the factor 1/(πA) as the density of states µ = 0.

The value of 1/π (A=1) is depicted in yellow in Fig. 5.6b and is indeed the value of the edge

state DOS.

The heat capacity CV,i = −T∂2Φi/∂T 2. We show the Cv at µ = 0 in the trivial (M = 1,

Fig. 5.7a) and in the topological (M = −1, Fig. 5.7b) phase for the bulk (blue) and edge (red)

contributions. Surprisingly, the Cv is not always positive. However, this can be interpreted in

a similar way as the entropy, where the total Cv for the whole system is always positive, but

the finite-size effects can be negative in order to decrease the total CV . The heat capacity at

low temperatures can be understood in comparison with the DOS. For low T (inset Fig. 5.7,

Cv = π2DOS(E)kBT /3 [78]. In the trivial phase, both the contributions for the bulk and

boundary are zero because the DOS at µ = 0 is also zero. However, in the topological phase,

the edge contribution DOS= 1/π and Cv = πkBT /3, whereas the bulk contribution remains

zero. The value π/3 is shown in yellow in Fig. 5.7b and indeed shows a linear slope for Cv at

low temperatures.

5.2.2 The Kane-Mele model in two dimensions

Finally, we show the DOS and Cv for the Kane-Mele model in the topological phase and we

observe similar behavior as in the BHZ model in Fig. 5.8. The bulk contribution (red) for the

DOS at T = 0 is zero in the energy gap, and then jumps to a finite value ones the energy is

inside the first conduction band µ = 0.52. On the other hand, the boundary contribution

(blue) is nonzero in the gap and should go to zero in the conduction band. The heat capacity,
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Figure 5.8: Density of states DOSi = −∂2Φi/∂µ2 and heat capacity CV,i = −T∂2Φi/∂T 2 in the
topological phase for m = 1. a At T = 0, the density of states (D in the figure) scales with the
velocity of the electrons and is zero in the bulk (red) for µ < 0.52 (before the first conduction
band), whereas at the boundary, the density of states should drop to zero after µ = 0.52 (blue).
The noise for the boundary is due to numerical errors. b The heat capacity for the bulk (red)
and the boundary(blue) for µ = 0. The inset shows the details of the low-T behavior. The
negative value of the heat capacity should be interpreted as a lower total heat capacity for the
whole system. The total heat capacity is always positive.

just as before, is in total positive for the considered lengths, even though the bulk and

boundary contributions do not have to be positive. Both the DOS as the heat capacity show

a similar behavior for the Kane-Mele model as for the BHZ model.

5.3 Conclusion

In the previous section, we have seen how to classify the order of the phase transition in a

thermodynamic way and we observed a universal behavior of the order of the phase transition

for the bulk and boundary separately. By going to finite-temperatures, we wanted to confirm

our results by looking at the entropy and heat capacity of the Kitaev chain, discuss our

results for the finite-temperature topological phase transition and compare the results with

the one obtained via the Uhlmann phase and to calculate possible measurable quantities.

The entropy and heat capacity show exactly what one would expect by separating the bulk

and boundary contributions. The boundary entropy jumps from log(2) towards zero at the

phase transition and the entropy and heat capacity are a linear function of the temperature at

low temperatures because the Kitaev chain is conformal with central charge c = 1/2.

Next, we showed that the phase transition smooths out for finite-temperatures. By

considering the kink in the discontinuous derivative, we were able to construct the

finite-temperature topological phase diagram which is comparable with the one obtained via

the Uhlmann phase. However, since the Uhlmann phase is not a holonomy, we can also
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indicate the biggest jump in the discontinuity as the point of the phase transition, and this

always remains at the same parameter value of µ = 2t, independent of temperature. This

corresponds to the phase transition Budich and Diehl have in mind.

Finally, we calculated the density of states and the heat capacity for 2D topological

insulators: the Kane-Mele model and the BHZ model. By interpreting the bulk and the

boundary contributions separately, we can also interpret the zero contribution to the density

of states in the trivial phase, whereas a nonzero contribution emerges in the topological phase.

The main point of this section is that thermodynamics is able to capture all these important

topological features, whereas it has no intrinsic knowledge about these features. The

procedure only separates the bulk and the boundary, but does not include any other

assumption apart from standard thermodynamics. Surprisingly, it does find all the correct

(topological) results and therefore this procedure might be a new way to investigate

topological insulators in a well-known framework.
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6 Conclusion and discussion

Taken together, we have shown two main results in this thesis: Hill thermodynamics is able to

identify universalities in topological phase transitions and the analysis can be extended to

finite-temperatures. Our results for 1D, 2D and 3D topological models reveal that the phase

transition at the edge and bulk of the materials have a different order, and that this order is

related to the spatial dimension D of the quantum model: the edge phase transition is of

order D, whereas the bulk is of order D + 1. Furthermore, Hill thermodynamics might play a

crucial role in understanding topological phase transitions at finite-temperatures. Hill

thermodynamics could turn out to be the missing link in understanding these new types of

phases in a well-known framework.

In the introduction, we mentioned three aims for this project. The first aim was to unveil the

thermodynamic signatures in the Kitaev chain for the Majoranas. The Kitaev chain has been

investigated intensively in this thesis and we have shown the zero-temperature phase

transition, compared the entropy and heat capacity with the one obtained via conformal field

theory and related the finite-temperature phase diagram with the phase diagram derived from

the Uhlmann phase. Unfortunately, we are not able yet to describe a new experiment in

which Majorana bound-states could be measured, but this is certainly one of the topics that

could be thought of as a new project in the future.

The second aim was to use the Hill thermodynamics procedure on different topological

models. We have considered five paradigmatic models and showed that the topological phase

transition depends on the spatial dimension D of the model, and this can be considered as a

universal result.

The third aim was to extend this procedure towards finite-temperatures. By showing the

finite-temperature topological phase diagram, and calculating (measurable) quantities such as

the entropy, heat capacity and density of states, we were able to find numerical expressions

for these quantities.

Until now, we have focused only on specific topological models, but the “big picture” is still

missing. The main question is how we can use this thermodynamic approach to understand

topological order in a broader sense. We propose three projects, apart from developing a new

method to detect Majorana bound-states, that might help to fill this knowledge gap.

The first project concerns calculating critical exponents. In the recent years, the

zero-temperature regime of topological insulators has been investigated thoroughly, and

nowadays research has shifted towards finite-temperature and out-of-equilibrium physics.
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Conveniently, thermodynamics is one of the most profound methods to describe phase

transitions at finite temperatures and is capable of predicting out-of-equilibrium behavior. A

first interesting project is to investigate the topological phase diagram in more detail and try

to obtain (an analogue of) critical exponents. It is often thought that at higher temperatures,

the topological phase disappears [79], which agrees with both the analytic Uhlmann phase

description and our numerical results. An interesting point is to investigate whether one can

find universalities among these topological models. Critical exponents are the key ingredient

for these relations. Critical exponents describe the behavior of physical quantities near a

continuous phase transition, and this is exactly what occurs in the Kitaev chain in the bulk

and in the Kane-Mele and BHZ-model at the boundary. These exponents are universal, which

means that they do not depend on the physical details of the system but on features such as

the dimension and the range of interaction. Moreover, critical exponents are often measurable

quantities via the susceptibility, heat capacity and correlation length. A good starting point is

by considering the Kitaev chain. As is well-known, the Kitaev chain can be mapped into the

1D Ising model by switching from a fermionic to a bosonic model [74], thus allowing for

further comparison. The critical exponents of the Ising model are well-known and by

comparing the two models via e.g. a CFT, we might be able to find an analogue of critical

exponents for topological insulators.

The second project focuses on impurities in topological insulators, since topological insulators

necessarily come with impurities in an experiment [80]. Bound states, such as Majoranas,

form at these impurities in a manner similar to the way that they emerge at the boundary of

the system. One reason to investigate impurities is because recently Zhao et al. [81] showed

how to use impurities in the 3D topological material Sb2Te3 to increase the temperature of

the emergence of the superconducting condensate to 60K. They claim that their method is

one of the possible candidates in the race of finding Majoranas at finite temperatures, and

therefore a thermodynamic description of impurities at finite temperature in topological

materials is required. Moreover, to trigger new experiments in the field to measure e.g. the

heat capacity, we need to be able to give a good account of the real physics in the system,

which also involves impurities.

The third project involves a thermodynamic description of two newly developed ways to

generate topological phases. Topological phases are usually realized via a strong spin-orbit

coupling and are robust to small electron-electron interactions due to the presence of the bulk

gap [4, 82]. Recently, two new kinds of topological phases were found, one driven by

electron-electron interaction [83], and one driven by engineered dissipation [84, 85].

Interaction driven topological phases, such as the quantum valley Hall effect, are the result of

a spontaneously broken time reversal symmetry for each valley in a graphene system. In

dissipation driven topological insulators, the topological phases emerge due to a coupling with
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an external heath bath, making it possible to describe these phases in terms of the

out-of-equilibrium Lindblad master equation. In both cases, our approach seems beneficial

because thermodynamics provides a proper description for both strongly interacting and

out-of-equilibrium systems.

In my opinion, the work on thermodynamics of topological insulators is just getting started.

Due to the importance of topological insulators in quantum computing, Majorana-spotting,

and just because these new type of insulators are a very interesting new phase of matter, this

technique might turn out to be very useful. Withing this thesis, we showed how

thermodynamics became one way to describe this hot topic of topological insulators, and I

certainly hope a new student continues the work were this thesis ends. As Sir Eddington puts

it (see title page), there is no escaping from thermodynamics, not even for topologically

protected edge states.
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7 Appendix

Numerics

Two independent calculations were performed to obtain the grand potential for the Kitaev

chain, the SSH model and the BHZ model (3D), one in Mathematica and one in C++, and

were shown to be exactly the same. In C++, the Eigen package was used to calculate the

eigenvalues of the matrices. Due to the unstable behavior of the free energy near the phase

transition, we needed to consider larger system sizes in this region to obtain an appropriate

linear fit (i.e. a linear fit without systematic errors from finite-size effects). The parameter

values for each system are described below (in natural units). All the data is available upon

request.

In the Kitaev chain, the system sizes vary between 200 ≤ L ≤ 250 for 0.3 ≤ µ ≤ 0.45 and

0.55 ≤ µ ≤ 0.7, between 1000 ≤ L ≤ 1050 for 0.45 ≤ µ ≤ 0.49 and 0.51 ≤ µ ≤ 0.55 and

4000 ≤ L ≤ 4050 for 0.49 ≤ µ ≤ 0.51. The datapoints are obtained via steps δµ = 0.001. In the

Kitaev ring, all the lengths are 1000 ≤ L ≤ 1050 with δµ = 0.002. The entropy is obtained with

the same parameters for a range of values for T . For calculating the heat capacity, we used

L = 4000 and varied T in steps of δT = 0.0001. The results for the finite-T phase diagram were

obtained for a range of values for t < 1.2 with δt = 0.2 at different T in steps of δT = 0.05, all

between length 200 ≤ L ≤ 250 for 0 ≤ 2µ ≤ t and 1000 ≤ L ≤ 1050 otherwise.

In the SSH model, the system sizes vary between 200 ≤ L ≤ 250 for −0.5 ≤ ∆ ≤ −0.034 and

0.006 ≤ ∆ ≤ 0.50, between 500 ≤ L ≤ 550 for −0.034 ≤ ∆ ≤ −0.01 and 0.006 ≤ ∆ ≤ 0.022 and

1000 ≤ L ≤ 1050 otherwise. The datapoints are obtained in steps of δ∆ = 0.002.

In the Kane-Mele model, the system sizes vary between 600 ≤ L ≤ 610 with step size

δµ = 0.001 for the free energy. The results for the density of states is obtained for

400 ≤ L ≤ 450 and the heat capacity for 400 ≤ L ≤ 450 and in steps of δT = 0.05.

In the BHZ model, the system size 50 ≤ L ≤ 60 for −0.5 ≤M < −0.15 and 0.25 <M ≤ 0.5 and

200 ≤ L ≤ 210 is smaller than before because these calculations involve large matrices. To

obtain the total energy, we summed over the wave vectors kx and ky for 2πn/nmax, where

0 < n ≤ nmax = 100. Furthermore, all parameters, except M, are set to 1, and we used

δM = 0.01 as step-size between datapoints.
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[11] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi,

and S.-C. Zhang, “Quantum Spin Hall Insulator State in HgTe Quantum Wells,” Science,

vol. 318, pp. 766–, Nov. 2007.

[12] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. Cava, and M. Z. Hasan, “A topological

dirac insulator in a quantum spin hall phase,” Nature, vol. 452, no. 7190, pp. 970–974,

2008.

[13] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P.

Kouwenhoven, “Signatures of Majorana Fermions in Hybrid

Superconductor-Semiconductor Nanowire Devices,” Science, vol. 336, pp. 1003–, May

2012.

Thermodynamic signatures in topological phases 93



REFERENCES

[14] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar,

G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang,

A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a

Weyl fermion semimetal and topological Fermi arcs,” Science, vol. 349, no. 6248,

pp. 613–617, 2015.

[15] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, “Parity

independence of the zero-bias conductance peak in a nanowire based topological

superconductor-quantum dot hybrid device,” Scientific Reports, vol. 4, p. 7261, Dec.

2014.

[16] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, “Zero-bias peaks

and splitting in an Al-InAs nanowire topological superconductor as a signature of

Majorana fermions,” Nature Physics, vol. 8, pp. 887–895, Dec. 2012.

[17] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, “Anomalous

Zero-Bias Conductance Peak in a NbInSb NanowireNb Hybrid Device,” Nano Letters,

vol. 12, no. 12, pp. 6414–6419, 2012. PMID: 23181691.

[18] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu,

and C. M. Marcus, “Superconductor-nanowire devices from tunneling to the

multichannel regime: Zero-bias oscillations and magnetoconductance crossover,” Phys.

Rev. B, vol. 87, p. 241401, June 2013.

[19] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. Lieber, and S. de Franceschi,

“Spin-resolved Andreev levels and parity crossings in hybrid

superconductor-semiconductor nanostructures,” Nature Nanotechnology, vol. 9,

pp. 79–84, Jan. 2014.

[20] R. J. Coolman, “What is Topology?.”

http://www.livescience.com/51307-topology.html, 2015. [Online; accessed

01-10-2015].

[21] Nanite, “Band filling diagram.”

https://commons.wikimedia.org/wiki/File:Band_filling_diagram.svg#, 2013.

[Online; accessed 23-10-2015].

[22] Sbyrnes321, “Hall Effect Measurement Setup For Electrons.”

https://en.wikipedia.org/wiki/File:

Hall_Effect_Measurement_Setup_for_Electrons.png, 2012. [Online; accessed

13-11-2015].

Thermodynamic signatures in topological phases 94

http://www.livescience.com/51307-topology.html
https://commons.wikimedia.org/wiki/File:Band_filling_diagram.svg#
https://en.wikipedia.org/wiki/File:Hall_Effect_Measurement_Setup_for_Electrons.png
https://en.wikipedia.org/wiki/File:Hall_Effect_Measurement_Setup_for_Electrons.png


REFERENCES

[23] B. Halperin, “Quantum Hall effect: edge states and quantized Hall conductance. Chapter

written as a part of the online course Topology in Condenced Matter from the TU Delft

.” http://topocondmat.org/, 2015. [Online; accessed 13-11-2015].

[24] T. Ando, Y. Matsumoto, and Y. Uemura, “Theory of Hall Effect in a Two-Dimensional

Electron System,” Journal of the Physical Society of Japan, vol. 39, no. 2, pp. 279–288,

1975.

[25] K. von Klitzing, “The quantized hall effect,” Rev. Mod. Phys., vol. 58, pp. 519–531, Jul

1986.

[26] H. C. Manoharan, “Topological insulators: A romance with many dimensions,” Nature

nanotechnology, vol. 5, no. 7, pp. 477–479, 2010.

[27] R. Roy, “Topological phases and the quantum spin hall effect in three dimensions,” Phys.

Rev. B, vol. 79, p. 195322, May 2009.

[28] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, “Classification of

topological insulators and superconductors in three spatial dimensions,” Phys. Rev. B,

vol. 78, p. 195125, Nov 2008.

[29] A. Kitaev, “Periodic table for topological insulators and superconductors,” AIP

Conference Proceedings, vol. 1134, no. 1, 2009.

[30] Stoof, H.T.C. and Gubbels, K.B. and Dickerscheid, D.B.M., Ultracold quantum fields,

vol. 1. Springer Berlin, 2009.

[31] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, “Topological insulators and

superconductors: tenfold way and dimensional hierarchy,” New Journal of Physics,

vol. 12, p. 065010, June 2010.

[32] F. von Oppen, Y. Peng, and F. Pientka, “Topological superconducting phases in one

dimension,”

[33] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall

conductance in a two-dimensional periodic potential,” Phys. Rev. Lett., vol. 49,

pp. 405–408, Aug 1982.

[34] M. Nakahara, Geometry, topology and physics. CRC Press, 2003.

[35] F. D. M. Haldane, “Model for a quantum hall effect without landau levels:

Condensed-matter realization of the ”parity anomaly”,” Phys. Rev. Lett., vol. 61,

pp. 2015–2018, Oct 1988.

Thermodynamic signatures in topological phases 95

http://topocondmat.org/


REFERENCES

[36] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The

electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109–162, Jan 2009.

[37] J. E. Moore, “The birth of topological insulators,” Nature, vol. 464, no. 7286,

pp. 194–198, 2010.

[38] E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwehr,

H. Buhmann, and L. W. Molenkamp, “Band structure of semimagnetic hg1−ymnyTe

quantum wells,” Phys. Rev. B, vol. 72, p. 035321, Jul 2005.

[39] A. Pfeuffer-Jeschke, “Ph.d. thesis,” 2000.

[40] L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys.

Rev. Lett., vol. 98, p. 106803, Mar 2007.

[41] J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band

structures,” Phys. Rev. B, vol. 75, p. 121306, Mar 2007.

[42] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B,

vol. 76, p. 045302, Jul 2007.

[43] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators

in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nature physics,

vol. 5, no. 6, pp. 438–442, 2009.

[44] A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in mesoscopic

normal-superconducting hybrid structures,” Phys. Rev. B, vol. 55, pp. 1142–1161, Jan

1997.
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