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Abstract

In this thesis, we study the origin of the primordial fluctuations in the Cosmic Microwave
Background by assuming that they originated from quantum fluctuations in the early universe,
which stretched to cosmic size during a period of inflationary expansion. We shall consider the
case of slow-roll inflation, a single field rolling down a flat potential. The main predictions of
such models are characterized by two slow-roll parameters ε and η. Recent measurements of
the temperature and the polarization fluctuations in the CMB suggest that these parameters
satisfy ε . η/3. This inequality will become much stronger in the absence of the detection of
primordial B-modes. Therefore, the natural question to ask is what characterizes this ε � η
limit, or more generically, what characterizes the ε → 0 limit. We will refer to this limit as
the decoupling limit. As we will see, a new hierarchy in the way of organizing the slow-roll
expansion will arise. In addition, the isometries of the background will reduce to that of a de
Sitter space-time. When the physical wavelength of the perturbations becomes super Hubble
size, the de Sitter-isometries acting on the inflaton perturbation correlation functions will reduce
to those of a Euclidean conformal field theory. In this limit, the inflaton perturbation correlation
functions become fully fixed by the conformal symmetries. For this reason, we will refer to this
limit as the conformal limit of inflation. Last but not least, in conformal limit, the equilateral
non-Gaussianities can be approximated by the spectral tilt of the potential, fNL ∼ αs.
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1.1. Introduction

1.1 Introduction

Measurement of the Cosmic Microwave Background show us that the universe is homogeneous
and isotropic to a very high accuracy. When one splits up the universe into causal patches,
one finds that all causal patches in the universe have thermalised to the same temperature to a
precision of 1 in 105. This fact of the CMB is troubling, since how could all causal patches have
known to what temperature they should have thermalized without having ever communicated
with one another? This problem is called the Horizon problem. It can be solved by assuming
the universe has undergone a period of inflationary expansion, which we call inflation. In this
thesis, we study the vanilla model of inflation, which is the slow-roll model. In this model, a
scalar field, the inflaton, rolls down a very flat potential. As it rolls down, it picks up kinetic
energy and due to a weak coupling to gravity, this energy is converted to the gravitational
sector which expanses the universe. The backgrounds of these models are usually described by
Friedmann-Lemâıtre-Robertson-Walker metrics. The simplest FLRW-metric is of the form

ds2 = −dt2 + a(t)2r2dΩ2 ,

here a(t) is called the scale factor and it describes how much the spatial part of the background
is expanding at a certain time t. During inflation, the scale factor scales as, a(t) ≡ eH(t)t, with
H the Hubble expansion rate. This parameter describes the rate of acceleration of the universe.
Three new important scales arise during inflation, the first one is Hubble expansion rate, the
second one is the rate of deceleration of the expansion of the universe

ε ≡ − Ḣ

H2
,

and the third scale is

η ≡ ε̇

εH
,

which is closely related to the mass of the inflaton. The isotropy and the homogeneity of the
CMB suggests that the early universe was very close to be scale invariant. Scale invariance arises
naturally from the de Sitter isometries, a spacetime in which H is constant. This suggests that
the background dynamics the universe are governed during inflation by the relations

ε� 1 and η � 1 .

These parameters, ε and η, are called slow-roll parameters and all predictions and results of
inflationary theories are typically expressed in terms of them.

In the universe, there exists a certain scalar quantity that is conserved when its wavelength
becomes super horizon scales, aH < k. This quantity is called the adiabatic mode and is defined
to be

Ri =

(
δρ

ρ̄+ p̄

)
i

,

here δρi, ρ̄i and p̄i are the density perturbations, average density and average pressure re-
spectively of the different components contributing to the energy density of the universe, i ∈
{matter, radiation, dark energy, etc.}. Due to energy conservation, this quantity is the same
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1.1. Introduction

for every component (Ri = Rj) in the universe, which means that we can describe all scalar
(curvature) perturbations in the universe by means of one single scalar field.

Recent measurements of the polarizations by the Planck satellite constrain the value of ε and
η to be ε . η/3. As the detection of gravitational B-modes stay out, this inequality will only
become stronger in the future [12]. It is therefore natural to ask ourselves what this ε� η limit
characterizes, or more generically, what the ε→ 0 limit characterizes. It turns out that in the
limit in which we have a vanishing first slow roll parameter, ε, and when the scalar curvature
perturbations have become super Hubble size, the correlation functions are fully constrained
by the de Sitter isometries. This means that the density perturbations in the early universe,
which generated the current matter distribution of the universe, can be fully deduced from
symmetries.

When the scalar perturbationR becomes super-horizon size, it stops evolving in time. Taking
the limit of t → ∞, or in conformal time taking τ → 0 where dt = a(τ)dτ , does not change
the value for R. In the limit of τ → 0, the isometries of the de Sitter spacetime will become
equivalent to that of a 3D Euclidean Conformal field theory and all inflaton perturbations will
become fully invariant under these isometries. Therefore we call this limit the conformal limit
of inflation.

In standard single field inflation, a n-point correlation function can be related to a (n − 1)-
point correlation function by taking one of the external momenta to be soft, ki = kl → 0. In the
conformal limit, a new physical relation for the inflaton perturbations arises from this relation,

〈ϕlϕsϕs〉 = 〈ϕlϕl〉∂ϕl〈ϕsϕs〉 ≈ αs〈ϕlϕl〉〈ϕsϕs〉 ,

where αs is defined to be the running of the potential. When calculating correlation functions
of inflaton perturbations, one is usually resticted by the number of exact calculations one can
perform due to the complexity of the mode functions. For example, when the inflaton is not
massless, the integral one encounters when calculating the three point correlation function

Figure 1.1: The evolution of the physical length of the universe and the physical length of the scalar
perturbations. The red lines denote the physical wavelength of the scalar perturbations. The black line
seperating the white area and the colored area is the Hubble radius. During inflation, the physical length
of the perturbations exceeds the Hubble length and the modes freeze out. As the universe evolves, the
Hubble radius changes and eventually catches up with the physical wavelength of the perturbations. At
this point the perturbations start oscillating again and can be observed [30].
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1.1. Introduction

will become extremely hard to solve. This new physical relation let us calculate (three point)
correlation functions in an alternative way, in which we do not need to solve integrals. Also,
this new physical relation constrains the equilateral non-Gaussianities that our model predicts
to be

fNL ∼
〈ϕlϕsϕs〉
〈ϕ2

l 〉〈ϕ2
s〉
∼ αs .

This new estimate of non-Gaussianities might just be measurable in the near future.

Outline of this thesis

We start this thesis with an introduction to modern cosmology 2, here we discuss the relation of
the CMB and the Homogeneous and Isotropic universe model. We study the Horizon problem
and discuss why the best paradigm to solve this problem is inflation.

In 3 we move away from the ideal homogeneous and isotropic universe model and we consider
perturbations. The methods and techniques that are discussed for perturbation theory concern
linear perturbation theory, gauge freedom concerning couplings to gravity, the ADM-formalism
in inflationary cosmology, the Foliation of spacetime into spacelike hypersurfaces of equal time
and the Keldysh-Schwinger or in-in formalism.

In 4 we study perturbation theory in the Comoving gauge along the lines of [13]. We calculate
corrections to the so called Bispectrum that are one order higher than have previously done in
literature. As we will see, current methods and approximations like the ones described in most
recent literature, [13][14][19][20] are not sufficient to prove the “freezing out” of the comoving
curvature-bispectrum. The time dependence is explored by means of a toy model 4.6.1 and a
new way in calculating the bispectrum is derived that satisfies the full Consistency relation [13]
to next order.

In 5 we do perturbation theory in the Spatially flat gauge. We consider a certain limit of
inflation, similar to the one taken in the effective field theory of inflation [21], where the dy-
namics of the Goldstone boson associated to time translations decouples from the gravitational
fluctuations. In this limit, we have a vanishing first slow-roll parameter, ε. We will discuss
the results of [22] and show that the results can be explained by the conformal invariance of
the correlation functions. We derive the scalar consistency relation in the spatially flat gauge,
similar to [13] and discuss its implications. We show the validity of the consistency relation
is the limit that the mass of the inflation is m2 = 0 and m2 = 2H2, afterwards we will use it
to generate a squeezed -light (arbitrary) mass-bispectrum. Then we relate the calculations to
the ones performed in 4 by means of the δN formalism. Last but not least, we show that the
amount of physical non-Gaussianities in our model reduces to the simple expression fNL ∼ αs,
relating fNL and the running of the spectral index αs.

In A we relate the definitions used in this thesis, to the most used alternative definitions. In B
a full derivation of the gauge transformation between the spatially flat gauge and the Comoving
gauge is given, here [13] is followed closely. In C we calculate the linear order bispectrum to
confirm the results of [13]. In D we calculate the two point function in the de Sitter spacetime
and we give a verification of the result of the two point function as given in [24]. In E we give
a discussion and derivation of the conformal isometries in momentum space, where we will use
them to calculate the bispectrum up to a overall factor.

10
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2.1. A glance at the early universe

2.1 A glance at the early universe

At the beginning of time, the universe was hot and dense, exotic particles were present and
particle interactions were frequent and energetic. Matter consisted of atomic nuclei and free
electrons. Over time, the universe cooled down, electrons were captured by the nuclei and light
elements formed. The universe cooled down even further, photons became less energetic and
could not destroy the light elements anymore and were released from the primordial particle
plasma and hence, they began to stream freely. Today, we can still observe this afterglow of the
primordial universe and we call it the Cosmic Microwave Background, abbreviated as the CMB.
This radiation from the primordial universe is found to be almost completely isotropic, it has a
temperature of approximately T = 2.725 Kelvin with small deviations of ∆T/T ≈ O(10−5) in
every direction [1]. The fluctuations are very small and look insignificant, however, they reflect
the presence of small density fluctuations in the matter distribution of the primordial universe,
which in turn can give us information about the particles and particle-interactions that were
present at the earliest moments of our universe.

In 1965, the CMB was discovered and it’s by far the best blackbody spectrum ever measured.
This suggests that before recombination, the universe was in thermal equilibrium. After the
recombination of protons and electrons into neutral hydrogen, about 380,000 years after the
Big Bang [2], the mean free path of the photons became larger than the horizon size and the
universe became transparent for the photons produced in the earlier phases of the evolution of
the universe. This radiation therefore provides a snapshot of the universe at that time. The
collection of points where the photons of the CMB, that are now arriving on the earth had their
last scattering before the universe became transparent is called the last scattering surface.

The universe just before recombination was a tightly coupled fluid, where photons scattered
off charged particles and since they carried energy, they felt perturbations imprinted in the
metric during inflation. The propagation of these small perturbations was very similar to
that of sound waves, a train of slight compressions and rarefactions. The gas was heated by
the compressions, while the rarefactions cooled it down. This led to a pattern of hot and cold
spots, as seen in the CMB as the temperature anisotropies. One can make a distinction between
primary and secondary anisotropies. Primary anisotropies arise due to the effects at the time
of recombination and secondary anisotropies are generated by scattering along the line of sight.
There are three basic primary perturbations, important on respectively large, intermediate, and
small angular scales:

• Gravitational Sachs-Wolfe, photons released from high density regions at last scattering
had to climb out of a higher gravitational-potential well than photons from lower density
regions. They are redshifted by δT/T = δΦ. Here δΦ is the perturbation in gravitational
potential.

• Adiabatic, recombination occurs “later”1 in regions of higher density, causing photons com-
ing from denser regions to have smaller redshift from the universal expansion. This redshift
corresponding to this effect is given by δT/T = −δz/(1 + z) = δρ/ρ.

1Recombination happens at a certain temperature and density in the universe, speaking about a certain time
might not be the correct choice of words in GR.
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2.1. A glance at the early universe

• Doppler, the primordial plasma before recombination had a velocity at the moment of
recombination. This gives a Doppler shift in the frequency of the photons which can be
related to the temperature fluctuations via δT/T = δv · r̂/c, with r̂ the direction along the
line of sight and v the mean velocity of the photons in the plasma.

Over the years, these anisotropies have been measured by Through the Cosmic Background
Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP) and more recently by the
Planck satellite, they were found to be of the order δT/T ∼ O(10−5). These fluctuations
contain a wealth of cosmological information, their angular sizes depend on their physical size
at the time of last scattering, but also on the geometry of the universe, through which the
photons have been traveling for almost 14 billion years.

Figure 2.1: A map of the CMB temperature anisotropies of the full sky. The top picture was based on
the COBE data and the bottom picture is based on most recent data provided by the Planck satellite.
The avarage temperature of the CMB is 2.725 µK [3].
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2.2. Geometric information from CMB Isotropies

2.2 Geometric information from CMB Isotropies

When we look at the CMB, we observe a projection of sound-waves onto the sky. A certain
mode with a wavelength λ subtends an angle θ on the sky. The observed spectrum of the CMB
anisotropies can then be mapped as the magnitude of the temperature fluctuations versus the
angular size of the hot and cold spots. This is usually done through a multipole expansion
in terms of Legendre polynomials Pk(cos(θ)) of a correlation function C(θ). The order of the
polynomial, l, is related to the multipole moment and it plays a similar role in the angular
decomposition as the wavenumber k ∼ 1/λ does for a Fourier decomposition. This means that
the value of l is inversely proportional to the characteristic (angular) size of the wave-mode it
describes. Therefore we can define the CMB correlation functions, C(θ), in the following way.
Let us define the temperature fluctuations in the CMB from it’s mean value in the direction
of a unit vector n̂. Then C(θ) is defined as the product of the temperature fluctuations of two
points in the sky,

C(θ) ≡
〈

∆T (n̂1)

T

∆T (n̂2)

T

〉
, (2.1)

here the angle brackets denote the full-sky avarage over n̂1 and n̂2. Also, it is assumed that
the fluctuations are fully Gaussian. Then writing C(θ) in terms of Legendre polynomials, we
obtain

C(θ) =
∞∑
l=0

(2l + 1)

4π
ClPl(cos(θ)) . (2.2)

We can invert (2.2) for Cl in terms of the correlator, then

Cl =
1

4π

∫
d2n̂1d

2n̂2P (n̂1 · n̂2)

〈
∆T (n̂1)

T

∆T (n̂2)

T

〉
. (2.3)

The multipole coefficient of this correlation function, Cl is plotted in fig.(2.2). The peaks
in the CMB power spectrum are being produced by modes caught at the extrema of their

Figure 2.2: The function l(l + 1)Cl/(2π) plotted against the multipole moment l [4].
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2.2. Geometric information from CMB Isotropies

oscillations. They form a harmonic series based on the distance the sound waves can travel by
recombination. This phenomena is known as the sound horizon. The first peak is the mode that
compressed once inside the potential wells before recombination, the second peak is the mode
that first compressed and later rarefied and the third peak is the mode that first compressed,
then rarefied and then compressed again, etc.
Cl can be directly observed. The difference between the theoretical prediction and the actual

observed value for Cl is called the Cosmic variance and has been defined by〈(
Cl − Cobs

l

Cl

)2
〉

=
2

2l + 1
. (2.4)

2.2.1 Transfer functions

In order to relate the multipole moment of the CMB temperature fluctuations to the quantum
fluctuations in the primordial universe, we introduce a transfer function Tl and a power spectrum
PR, then

Cl =
2

π

∫
dk k2PR(k)Tl(k) . (2.5)

The power spectrum in (2.5) characterizes the quantum fluctuations generated in the primordial
universe. The subscript R refers to a certain parametrization of the quantum fluctuations in the
metric that freeze out after the modes surpass the horizon during inflation, we will discuss this
in more details in the next couple of chapters. The transfer function Tl is known and accounts
for the evolving of the perturbations from the moment they ‘re-enter the horizon2’ until the
time they are measured.

As it turns out, the acoustic peaks, as shown in 2.2, are produced in the theoretical model by
the transfer function. This means that these peaks are not created in the primordial universe
and can be related to more recent physics. When one filters these modes from the spectrum,
one would find a nearly constant correlation function for Cl. Since the angular moment l is
closely related to the solid angle at which we observe the CMB,

Ω =
4π

2l
, (2.6)

where Ω is the solid angle at which we observe the CMB. This suggests that if we measure
the CMB at a larger angle the magnitude of the fluctuations remains the same. This suggests
that the primordial universe was close to be scale invariant. Since scale invariance arises natu-
rally from the de Sitter isometries, it suggests that the early universe can be described by an
approximate de Sitter background.

2We come back to this in 2.4
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2.3. Friedmann-Lemâıtre-Robertson-Walker models

2.3 Friedmann-Lemâıtre-Robertson-Walker models

When we look far into our universe, we see that the matter distribution in terms of galaxies
becomes simpler and that the universe is expanding. If we average over large scales, we see
that the universe starts looking more and more the same in every direction, the universe is
isotropic at large scales. If the universe is also isotropic around all points, i.e. independent of
the position we look at, it is also homogeneous.

Homogeneity and isotropy single out a unique form of the spacetime geometry. This suggests
that the universe can be represented by a time-ordered sequence of three-dimensional spatial
slices Σt, each of which is homogeneous and isotropic. In terms of isometries, a homogeneous
spacetime is invariant under spatial-translations and isotropic means that the metric is invariant
under rotations. A metric that describes a spacetime for an approximate isotropic, homogeneous
and expanding space time is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. A
line-element in this spacetime is given by

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (2.7)

here a(t) is called the scale factor, which is an arbitrary function depending on time, κ encodes
the curvature of the spacetime, with κ = {0,+1,−1} denote a spatially flat, positively curved
and negatively curved spacetime respectively. In this thesis, we will focus on the case in which
κ = 0. In order to study the causal structure of the universe, it is convenient to define

dτ ≡ dt

a(t)
, (2.8)

where τ is called conformal time. When we substitute this into (2.7) the FLRW metric factorizes
into a static Minkowski metric ηµν metric multiplied by a (conformal)-time dependent scale
factor

ds2 = a2(τ)
[
−dτ2 + dr2 + r2dΩ2

]
≡ a2(τ)ηµνdx

µdxν . (2.9)

2.3.1 The Friedmann equations

In order to study the evolution of the universe, we would like to know the solution of the scale
factor a(t). Since the universe is a very complicated system, the scale factor of the universe will
depend on the distribution of matter, radiation and even dark energy, Λ. Luckily, the influence
of all components will not be the same and we can make approximations that some components
will dominate the universe and others will give sub-leading contributions. In order to get an
expression for a(t), we start by considering the following action

Stotal = SHE + Sφ , (2.10)

where SHE is the Einstein-Hilbert action describing the coupling to gravity

SHE =
M2

Pl

2

∫
d4x
√
−gR , (2.11)
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2.3. Friedmann-Lemâıtre-Robertson-Walker models

Sφ is the action describing matter fields that are minimally coupled to gravity

Sρ =

∫
d4x
√
−gLφ , (2.12)

where Lφ is an arbitrary Lagrangian containing the fields (φ). Varying (2.10) with respect to
the metric gµν yield the Einstein-Equations, formally given by

Rµν −
1

2
gµνR =

1

M2
Pl

Tµν , (2.13)

where Rµν and R are the Ricci- tensor and scalar respectively and Tµν is the stress-energy
tensor defined by

Tµν =
−2√
−g

δSφ
δgµν

. (2.14)

When assuming that the energy-density distribution of the different components in the universe
behaves as a perfect fluid, i.e.

T 00 = ρ(t) , T 0i = T i0 = 0 , T ij = a−2(t)p(t)δij . (2.15)

Combining (2.13) and (2.15) we obtain the following equations

ä

a
+

2ȧ2

a2
=

1

2M2
Pl

(ρ− p) , (2.16)

3ä

a
= − 1

2MPl
(3p+ ρ) , (2.17)

Since the stress-energy tensor is a conserved quantity, we also have

∇νTµν = 0 , (2.18)

this gives us

ρ̇+
3ȧ

a
(p+ ρ) = 0 . (2.19)

Then (2.17), (2.17) and (2.19) are called the Friedmann equations which together fully charac-
terize the solution of the scalefactor a(t). In FLRW spacetimes we usually define the Hubble
radius, i.e.

rH(t) =
c

H(t)
, (2.20)

as the characteristic length-scale where we defined the Hubble constant (H) as

H(t) =
ȧ(t)

a(t)
. (2.21)
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2.4 The horizon problem

One of the most remarkable things about the CMB is probably that it’s so extremely isotropic.
To understand why this is troubling, we have to split up the universe into causal patches,
where the size of each causal patch of space is determined by the distance light can travel in
a certain amount of time. Since spacetime is isotropic, we can define our coordinate system in
such a what that light travels in the radial direction. Then the evolution is determined by a
two-dimensional line element

ds2 = a(τ)2
[
−dτ2 + dr2

]
. (2.22)

Photons move along null geodesics, i.e. ds2 = 0, therefore their path is defined by

∆r(τ) = ±∆τ , (2.23)

here the plus and minus sign represent outgoing and incoming photons respectively. Note that
in conformal time, the light cones are at 45◦ in the r − τ coordinates. With these definitions,
we can now define two different types of cosmological horizons. One which limits the distance
at which past events can be observed and one which limits the distances at which it will be
possible to observe future events.

• Particle Horizon: The greatest comoving distance from which an observer will be able to
receice signals travelling at the speed of light is given by [6]

rph(τ) = τ − τi =

∫ τ

ti

dt

a(t)
. (2.24)

This is the (comoving) particle horizon. Causal influences have to come from within this
region, this means that only particles whose worldlines intersect the past light cone of the
observer will be able to communicate.

• Event Horizon: In comoving coordinates, the greatest distance from which an observer at
time tf will receive signals emitted at any time later than t is given by [6]

reh(τ) = τf − τ =

∫ tf

t

dt

a(t)
. (2.25)

This horizon is called the comoving event horizon.

Now to get back why a such a uniform CMB is problematic, we will have to look at (2.24) and
(2.25) for different causal patches that we observe in the sky. As it turns out, almost every spot
in the CMB has non-overlapping past light cones and hence could never have been in causal
contact with one another. To illustrate this problem, let’s consider fig.4.1. In this figure, two
causal patches at opposite directions in the sky are considered. The CMB photons that we
receive from these directions were emitted at the points labeled p and q and they originated at
the initial hypersurface of a moment shortly after recombination. The photons were emitted
sufficiently close to the Big Bang singularity such that the past light cones of p and q do not
overlap. This implies that no point lies inside the particle horizons of both p and q. The big
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Hubble Sphere

Light Cone

p q

Light Cone

Now

CMB

Big Bang Singularity

Figure 2.3: A schematic representation of the horizon problem. All events we observe lay on our past
light cones. The horizontal line represents the spacelike hypersurface of the observed CMB. Points p and
q are two spots in the CMB that are and were causally disconnected from one another. However, both
spots have thermalized to the same temperature with a presision of the order 1 in 105 K.

question that now arises is: how do the photons coming from p and q know that they should
be at almost exactly the same temperature? The same question applies to any two points in
the CMB that are separated by more than 1◦ in the sky [6]. If there was not enough time for
these regions to communicate, why do they look so similar? This is called the horizon problem.
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2.5 Cosmological Inflation as solution to the horizon problem

The relevant horizon for solving the horizon problem is the particle horizon. In order to see
this, let us rewrite (2.24) into a more convenient form

rph =

∫ t

ti

dt

a
=

∫ ln(a)

ln(ai)
d[ln(a)]

1

aH
, (2.26)

here ai = 0 denotes the Big Bang singularity. The causal structure of the universe can then
be related to the comoving Hubble radius, i.e. (aH)−1. For a universe dominated by a perfect
fluid with a constant equation of state we have [6]

1

aH
=

1

H0
a

1
2

(1+3w) . (2.27)

here w = P/ρ. A possible solution to the horizon problem is a phase in which the comoving
Hubble radius was decreasing in the early universe,

d

dt

(
1

aH

)
< 0 . (2.28)

In terms of (2.27), this corresponds to a fluid which violates the Strong Energy Condition, i.e.
(1+3w) < 0. In a phase like this, (2.26) is dominated by the lower (integration) limit. In terms
of conformal time this means that the initial (conformal) time,

τi =
2H−1

0

1 + 3w
a

1
2

(1+3w)

i , (2.29)

is being pushed to τi → −∞. Intuitively, one could conclude from this that there should have
been much more time between the Big Bang Singularity and the moment of last scattering.
This phase of decreasing comoving Hubble sphere is known as Inflation.

A rough estimate can be made about the duration of inflation, if we assume that the universe
starts with a Big Bang singularity and ends in a radiation dominated epoch. In a radiation
dominated universe we have H ∼ a−2, then

a0H0

aEHE
∼ aE
a0
∼ T0

TE
∼ 10−28 . (2.30)

where we used a numerical estimate of TE ∼ 1015 GeV and T0 ∼ 10−3 eV. For inflation this
implies that (aH)−1 should shrink by a factor of 1028. If we assume that H ≈ constant during
inflation, we have that HI ≈ HE , giving us

ln

(
aE
aI

)
> 64 . (2.31)

This suggests that in order for inflation to solve the horizon problem, inflation should last at
least 60 e-folds.
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There are two other cosmological problems that inflation could be the answer to, these are
the flatness problem and the monopole problem. The flatness problem is the problem which
basically asks why the universe is so flat. One would expect a curvature in spacetime, since in
general relativity spacetime is dynamical, curving around matter. Inflation solves this problem
by flattening the spacetime during the expansion. The monopole problem is the problem why
we do not observe magnetic monopoles, which one would expect when looking at the Maxwell
equations. Inflation would solve this problem by reducing the magnetic monopole ratio such
that its presence would not be observable today.

2.5.1 Physics of inflation

During inflation, a number of conditions are met. The first one is that the universe has an
accelerated expansion. We can see this studying the comoving Hubble radius. Taking the first
time derivative we find

d

dt

(
1

aH

)
=

d

dt

(
1

ȧ

)
= − ä

ȧ2
. (2.32)

From this we conclude that ä > 0.
The second condition is that there are a number of dimensionless parameters which we refer

to as Hubble parameters that are slowly varying during inflation. These Hubble parameters are
defined in the following way. Consider again the total time derivative of the comoving Hubble
radius

d

dt

(
1

aH

)
= − ȧH + aḢ

(aH)2
≡ −1

a
(1− ε) , (2.33)

then the first Hubble parameter, ε, is defined as

ε ≡ − Ḣ

H2
= − 1

H

dH

dN
, (2.34)

here we defined dN = d ln(a) = Hdt, which measures the number of e-foldings N during
inflation. Note that since the “Hubble sphere” is shrinking during the period of inflation, we
have that ε < 1. (2.34) implies that the fractional change of the Hubble parameter is small.
Since we want the phase of inflationary expansion to last for at least 60 e-folds, we also want
that the higher order derivatives of ε remain small during inflation. We can define then higher
order Hubble parameters in a similar fashion to ε,

η ≡ ε̇

εH
=

1

ε

dε

dN
, ξ(1) ≡ η̇

ηH
, , ... , ξ(n) ≡ ξ̇(n−1)

ξ(n−1)H
, (2.35)

here the superscript on ξ(n) refers to the (n − 2)th Hubble parameter. In literature, you can
find much more of these kinds of parameters, which are also called ε, η, etc.. To be consistent,
we will only use Hubble parameters. When another slow-roll parameter is used, we will give it
a label. For further definitions and conventions, see A.

For perfect inflation, we have that ε = 0. In this limit, the metric reduces to the de Sitter
metric

ds2 = −dt2 + e2Htdxidxi , (2.36)

21



2.5. Cosmological Inflation as solution to the horizon problem

where H = ∂t ln(a) = constant. Since we are not living in a inflating universe, we know
that inflation should have ended. Therefore, it should not correspond to a de Sitter space.
However, since we assume ε � 1, line element of (2.36) will be still a good approximation to
the inflationary background. For this reason, the inflationary background during inflation is
often referred to as a quasi-de Sitter spacetime.

2.5.2 Slow-roll inflation

The toymodel that is often used to parametrize inflation contains a canonical scalar fields rolling
down a flat potential. The choice for scalar fields comes from the fact that scalar fields are not
located in a particular place, they permeate the universe. In a way they represent a smooth
background, which may, however couple to other fields in physically interesting ways. Also,
for example when using vector fields or other structures, the CMB would acquire a prefered
direction. We do not observe this. In this thesis, we will be considering a model where a single
canonical scalar field minimally coupled to gravity rolls down a potential a very flat potential.
These models are referred to as slow-roll inflation-models. The general action for such models
is given by

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.37)

here φ is the canonical scalar field that drives inflation, i.e. the inflaton. The spacetime
dynamics generated by the inflaton are again characterized by the stress -energy tentor, which
in the case of (2.37) is given by

Tµν =

[
1

2
gαβ∂αφ∂βφ− V (φ)

]
gµν + ∂µφ∂νφ. (2.38)

Neglecting all spatial derivative terms, the different components of (2.38) are given by

T 00 =
1

2
φ̇2 + V (φ) , T 0i = T i0 = 0 , T ij =

1

a2

(
1

2
φ̇2 − V (φ)

)
δij . (2.39)

If we now match these components to the one of a perfect fluid (2.15), we find

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ) . (2.40)

Then the Friedmann equations, (2.17), (2.17) and (2.19), become

Ḣ = − 1

2M2
Pl

φ̇2, (2.41)

Ḣ + 3H2 =
1

2M2
Pl

V (φ), (2.42)

3H = − 1

φ̇

(
φ̈+ V ′(φ)

)
. (2.43)
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Using (2.43), we can relate the Hubble parameters, ε and η, to the canonical scalar field by

ε =
φ̇2

2M2
PlH

2
� O(1) (2.44)

η = 2

(
φ̈

Hφ̇
− Ḣ

H2

)
� O(1). (2.45)

In the general slow-roll regime, the Friedmann equations (2.43) cannot be solved exactly. How-
ever, we can solve the equations when a certain potential is specified, or we express the equations
in terms of the lowest order Hubble parameters. Since they are all small, the general dynamics
is described by a good approximation.
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Chapter 3

The inhomogeneous universe
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3.1. Cosmological perturbation theory

3.1 Cosmological perturbation theory

So far, we considered that the universe was perfectly homogeneous and isotropic, and to a high
accuracy, for deviations of the order 1 in 105, this is true. However, as mentioned before, there
are certain processes that will produce small inhomogeneities. As long as these perturbations
are small compared to the perfectly homogeneous and isotropic situation, we can and will treat
them in perturbation theory. In this chapter we will first discuss the linear perturbation theory
of the “matter” and “metric” perturbations classically and then generalize it to a quantized
theory. The review of this section is based on [5] and [6].

3.1.1 Linear perturbation theory

Since the perturbations around a homogeneous and isotropic universe-model are very small, we
can model the perturbations using linear perturbation theory. Lets assume we start with (2.7)
with zero curvature and denote this unperturbed metric by ḡµν . We can perturb this metric
with a small fluctuation around it

gµν = ḡµν + δgµν , (3.1)

here gµν is the total perturbed metric and δgµν is the small fluctuation. Assuming that δgµν is
a general two tensor, we can decompose gµν as

ds2 = a(τ)2
[
−(1 + 2A(x, τ))dτ2 + 2δijB

i(x, τ)dxjdτ + (δij + hij(x, τ)) dxidxj
]
, (3.2)

here A, Bi and hij are functions of spacetime. We can further decompose the vector Bi by
making a Helmholtz decomposition [5],[6] of the form

Bi = ∂iB + B̂i , (3.3)

here ∂iB is the irrotational of Bi and B̂i is the incompressible part of Bi satisfying ∂iB̂
i = 0. The

tensor hij can also be further decomposed using the Scalar-Vector-Tensor (SVT ) decomposition

hij = 2Cδij + 2∂〈i∂j〉E + 2∂(iÊj) + 2γ̂ij , (3.4)

where

∂〈i∂j〉E =

(
∂i∂j −

1

3
δij∂

2

)
E, (3.5)

∂(iÊj) =
1

2

(
∂iÊj + ∂jÊi

)
, (3.6)

γ̂ i
i = 0, (3.7)

∂iÊi = 0 . (3.8)

In this decomposition, it is now easy to count the number of degrees of freedom that we have
in our theory, i.e. 10 degrees of freedom. We have 4 scalar degrees of freedom, corresponding
to A, B, C and E, we also have 4 vector degrees of freedom, corresponding to the two diver-
genceless vector quantities B̂i and Ĉi and last not least, we have 2 tensorial degrees of freedom
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3.1. Cosmological perturbation theory

corresponding to the traceless tensor γ̂ij . Note that in my conventions, the hatted quantities
are divergenceless or traceless. The reason for making a SVT-decomposition is because in the
Einstein equations the scalar, vector and tensor fluctuations to not mix at linear order [5],[6],
thus the different fluctuations can be treated at linear order separately.

We can perturb the stress-energy tensor in a similar fashion to the metric

Tµν = T̄µν + δTµν (3.9)

here T̄µν is the unperturbed part of the stress-Energy tensor and δTµν is its perturbation. Since
T̄µν has to take the form of an perfect fluid in a homogeneous and isotropic universe, we can
define

T̄µν = −(ρ̄+ P̄ )ŪµŪν − Pδµν . (3.10)

with Ūµ = a(t)δ 0
µ the comoving four-velocity, ρ the energy density and P the pressure. The

pertubation of the stress-energy tensor can be decomposed as

δTµν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν)− δPδµν −Πµ
ν , (3.11)

here Πµ
ν is called the anisotropic stress, which is negligibly small [5],[6]. The spatial part of the

anisotropic stress satisfies Πi
i = 0, since its trace can be absorbed into the isotropic pressure.

Perturbations in the four-velocity can introduce a non-vanishing energy flux and momentum
density, T 0 j 6= 0 and T i0 6= 0 respectively. Using gµνU

µUν = 1 we obtain at linear order

δgµνŪ
µŪν + 2ŪµU

µ = 0. (3.12)

Using our definitions from (3.2) and defining δU i ≡ vi/a, with vi ≡ dxi/dτ the coordinate
velocity, we have

Uµ =
1

a(τ)
[1−A(x, τ), vi] ,

Uµ = a(τ)[1 +A,−(vi +Bi)] . (3.13)

Using (3.11), (3.12) and (3.13) we obtain

δT 0
0 = δρ ,

δT i0 = (ρ̄+ P̄ )vi ,

δT 0
j = −(ρ̄+ P̄ )(vj +Bj) ,

δT ij = −δPδij −Πi
j .

(3.14)

When considering a non-negligible small anisotropic stress, it is convenient to decompose the
anisotropic stress tensor using the SVT decomposition,

Πij = ∂〈i∂j〉Π + ∂(iΠ̂j) + Π̂ij . (3.15)
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3.1.2 Gauge freedom

The metric (3.2) that we want to use to describe the spacetime has a subtle problem, it is
not uniquely defined. This means that one can make certain transformations or can choose
certain coordinates that change the perturbation variables. Let us consider for example a
spatial translation of the form x → xi + ξi(x, τ). Our unperturbed flat space FLRW metric
(2.7) transforms under this translation to

ds2 = a(τ)2
[
−dτ2 + 2∂τξidx̃

idτ +
(
δij + 2∂(iξj)

)
dx̃idx̃j

]
. (3.16)

Comparing (3.2) with (3.16), we note that we have introduced the metric perturbations Bi ≡
∂τξi and Êi = ξi. These modes are called gauge modes and can removed by making a coordinate
transformation [5],[8]. This subtlety illustrates that we have to find a better way to represent
our metric and that we would like to write it in terms of the true physical perturbations, i.e.
perturbations that cannot be removed by a coordinate transformation.

In order to find this more convenient representation of the metric, we first need to know how
the metric transforms under a general coordinate transformation of the form

xµ → xµ + ξµ(x, τ) , (3.17)

here we define ξ0 ≡ T and we decompose the spatial part again with a Helmholtz decomposition
to ξi = Li = ∂iL + L̂i. Again L̂i is divergenceless. Using the fact that the spacetime interval
ds2 should invariant under the spacetime transformations,

ds2 = gµν(X) dXµdXν = g̃αβ(Y ) dY αdY β , (3.18)

where X and Y represent the spacetime coordinates. Then

gµν(X) =
∂Y α

∂Xµ

∂Y β

∂Xν
g̃αβ(Y ) . (3.19)

Then under the coordinate transformation (3.17), the variables A, B, ... , ĥij transform as [6]

A→ A− T ′ − a

a
T ,

B → B + T − L′ , B̂i → B̂i − L̂′i ,

C → C − a′

a
T − 1

3
∂2L ,

E → E − L , Êi → Êi − L̂i ,
γ̂ij → γ̂ij ,

here we defined ′ ≡ ∂τ . Now that we have the transformations of all variables in (3.2) under
(3.17) we can construct the following 4 gauge invariant quantities

Ψ ≡ A+
a′

a
(B − E′) + (B′ − E′′) , (3.20)

Φ ≡ −C − a′

a
(B − E′) +

1

3
∂2E , (3.21)

Φ̂i ≡ Ê′i − B̂i , (3.22)

γ̂ij ≡ γ̂ij . (3.23)
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These variables are known as Bardeen variables. In terms of the Bardeen variables, the invariant
line element can be written as [8]

ds2 = a(τ)2
[
−(1 + 2Φ)dt2 + 2Φ̂i dx

idτ + ((1− 2Ψ)δij + γ̂ij) dx
idxj

]
. (3.24)

3.1.3 Choice of gauge

In a theory of gravity, choosing a coordinate system is equivalent to choosing a gauge. As shown
in [8], using the freedom in the gauge variable xi(x, τ), we can set two degrees of freedom in our
theory to zero [5]. Since models where a canonical scalar field is minimally coupled to gravity
also contains scalar degrees of freedom, we are also able to remove for example the scalar field
perturbations from the theory

φ = φ̄+ ϕ , (3.25)

here φ̄ is the field avarage of φ and ϕ is its perturbation. Three gauges that are often used
when doing perturbation theory in inflationary models are the Newtonian gauge, the Spatially
flat gauge and the Comoving gauge.

In the Newtonian gauge, B and E are set to 0 in such a way that we can write the invariant
line element as

ds2 = a(τ)2
[
−(1 + 2Ψ)dτ2 + (1− 2Φ)δijdx

idxj
]
. (3.26)

In this gauge, the hyperslice surfaces of equal time are orthogonal to the worldlines of that of
a static observer. In the absence of anisotropic stress, Ψ ≡ Φ [5].

In the spatially flat gauge, C and E have been set to zero in such a way that we can write
the invariant line element as

ds2 = a(τ)2
[
−(1 + 2Φ)dτ2 + 2δijB

i(x, τ)dxjdτ + (δij + γ̂ij)dx
idxj

]
. (3.27)

As the name of this gauge suggests and as we will see later, in this gauge R = 0 and the
covariant derivative in the spatial direction reduces to ∇i = ∂i.

The comoving gauge is a little more subtle, here we choose our hyperslice surfaces in such a
way that we remove the scalar perturbations (δφ) from the matter fields φ = φ̄ + δφ. In this
gauge, we also set B = 0, then the invariant line element is given by

ds2 = a(τ)2
[
−(1 + 2Ψ)dτ2 + (1 + 2ζ)(δij + hij)dx

idxj
]
. (3.28)

As we will see later, fluctuations in the comoving gauge are most naturally connected to the
inflationary initial conditions and can directly be related to the number of e-folds. Note that
we have 4 scalar degrees of freedom in the metric, 2 in Ψ, ζ and 1 in hij .
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3.2 ADM-formalism in inflationary cosmology

The simplest slow-roll inflation model is given by (2.37). When doing perturbation theory for
canonical scalar fields, it is convenient to choose a gauge. When choosing a gauge, we fix our
background metric and indirectly we fix a preferred time-slicing of equal time hypersurfaces
of our spacetime manifold M. In doing so, the Poincaré symmetry of our theory is broken
in the sense that the spacetime diffeomorphism symmetry breaks up into an unbroken spatial
diffeomorphism symmetry and an implicitly broken time diffeomorphism symmetry for certain
scalar fields. What is meant by implicitly broken time diffeomorphism symmetry is the follow-
ing. The full theory is still invariant under the full Poincaré group, but not all fields inside the
action respect time diffeomorphisms separately. The reason for choosing such a hypersurface
slicing is that it is convenient when quantizing the fields. When quantizing the fields, we use
the Hamiltonian formalism, which requires a preferred time direction.

A convenient decomposition for the metric which is often used in inflationary slow-roll models
is provided by the Arnowitt-Deser-Misner decomposition, i.e.

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (3.29)

where N and N i are functions of spacetime and are called the lapse and the shift respectively.
The reason for these names will become clear in a moment. Since the ADM metric is non-
diagonal and we have two extra functions, N and N i, this action will not look very nice. To get
a more convenient form, we are going to slice up the space-time Manifold into hypersurfaces of
equal time. By doing this we will see that we can remove the temporal part of the ricci tensor
and no object will appear with more than one time derivative [13]. Since in the original Ricci
tensor, these kinds of terms do appear we can see this intuitively as we would have partially
integrated these terms. In order to account for this partial integration, we have to correct the
action with a total (time) derivative term.

3.2.1 Foliation of spacetime

Let us consider a manifoldM that “lives” in a random 4-dimensional spacetime. This manifold
can be sliced up into space-like hyper-surfaces of equal time, Σt. A schematic picture of this
is given in fig.(3.1) and fig.(3.2). These pictures show the slicing up of a (random) curved
spacetime. The direction of our time-flow is represented by the vector tα. Note that tα is
perpendicular to both surfaces in a flat space-time and has a tilt in a curved spacetime. In
order to proceed, we want to decompose the vector tα into a part that is perpendicular to Σt

and a part that is normal to Σt. For a flat space-time this is trivial, since we do not have a
‘shift’. For the curved space-time this will become [9],[10]

tα = −(gµνt
µnν)nα + (tα + (gµνt

µnνnα) ≡ (N,N i), (3.30)

here nα is a time-like vector normal to Σt, i.e. nα = gµνn
µnν = −1. All space-like vectors

tangent to Σt satisfy hijt
itj ≥ 0. From (3.30) and fig.(3.2) we note that N represents the

direction of the time lapse and N i represents shift in tα as it goes from Σt to Σt+dt.

30



3.2. ADM-formalism in inflationary cosmology

Figure 3.1: A schematic representations of the hypersurface-slicings of a manifold M into space-like
hypersurfaces Σt and Σt+dt of equal time in a curved background. This picture is taken from [11].

Figure 3.2: A schematic representation of the lapse and shift functions N and N i respectively. This
picture is taken from [9].
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3.2. ADM-formalism in inflationary cosmology

To get back to our situation, we would like to make a similar decomposition of our Ricci-
scalar R. In order to proceed, we first have to make a decomposition of the Riemann Tensor
Rρσµν . The Riemann tensor is defined as

Rρσµν∂ρ = [∇σ,∇µ] ∂ν = ∇σ∇µ∂ν −∇µ∇σ∂ν . (3.31)

This object is fully constructed from covariant derivatives ∇µ, thus in order to make a decom-
position of Rρσµν , we have to make a decomposition of ∇µvα. Here vα is some vector tangent
to Σt. Then

uκ∇κvα = −gµνuκ∇κvµnνnα + (uκ∇κvα + gµνu
κ∇κtµnνnα)

≡ Kiju
iujnα + uκ (3)∇κvα ,

(3.32)

here Kij is called the extrinsic curvature, it describes how the space-time slices Σt are embedded
into M and uκ (3)∇κ is the 3-dimensional covariant derivative along some vector field uκ. If
we turn to the basis (n, ∂i), all indices on tensor structures onM become Roman indices, since
they will coincide with the spatial part of M. Then ∇j∂k and ∇i∇j∂k can be written as

∇j∂k = Kjkn+ Γmjk∂m

∇i∇j∂k = (∂iKjk + ΓkjkKim) + (KjkK
m
i + ∂iΓ

m
jk + ΓnkjΓ

l
in)∂m ,

(3.33)

and therefore we can rewrite the Riemann tensor as

Rρijk∂ρ = [∇i,∇j ] ∂k
=
(
∂iKjk − ∂jKik + ΓmjkKim − ΓmikKjm

)
n+

+
(
KjkK

m
i −KikK

m
j + ∂iΓ

m
jk − ∂jΓmik + Γljk Γmil − Γlik Γmjl

)
∂m

≡ (∇iKjk −∇jKik)n+
(
KjkK

m
i −KikK

m
j − (3)Rmijk

)
∂m .

(3.34)

The first term is a boundary or surface term. This boundary term is also known as the Gibbons
Hawking York boundary term. This term becomes important when the spacetime has a bound-
ary such as, for example, in the Schwarzschild description of spacetime around a blackhole or
a star. The boundary term in the energy-stress tensor that is often omitted cancels the con-
tribution coming from this term. Since quasi-de Sitter spacetime has a temporal boundary at
τ → 0, we need to subtract this boundary term from the action. Without the boundary term,
the Ricci scalar is given by

R(4) ≡ R(4) µν
µν = R

(3) ij
ij +KijKij −Ki

iK
j
j

= R(3) +KijKij −K2.
(3.35)

We now turn our attention to
√
−g that appears in the action. To calculate the determinant,

it is more convenient to use
√
|gµν |−1 instead of

√
|gµν |, since N factorizes and can be pulled

out more easily. The inverse metric gµν is given by

gµν =


(−1
N2

)
(1⊗1)

(
N i

N2

)
(1⊗3)(

N i

N2

)
(3⊗1)

(
hij − N iNj

N2

)
(3⊗3)

 , (3.36)
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3.2. ADM-formalism in inflationary cosmology

here the metric is cut into four pieces, 1 scalar, 2 vectors and 1 tensor, the subscript of (i⊗ j)
denotes the dimensions of the object. Then the square root of the determinant can be written
as

√
−g ≡

√
|gµν | =

√
|gµν |−1 =

√∣∣∣∣(− 1

N2
hij +

N iN j

N4

)
− N iN j

N4

∣∣∣∣ = N
√
|h| , (3.37)

here the determinant of gµν is denoted by |gµν | ≡ g. Using the ADM-metric and using it’s
decomposition, we can rewrite (2.37) as

S =
1

2

∫
d4x
√
h
[
M2

PlNR
(3) − 2NV +N−1(EijE

ij − E2) +N−1(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ
]
,

(3.38)
here we have defined Eij and E as

Eij =
MPl

2
(ḣij − 2∇(iNj))

E = Eii = hijEij .
(3.39)

and we subtracted the boundary term

SADM b.t. =

∮
∂Σ
d2x
√
γ ∇α(nβ∇βnα − nαK). (3.40)

This decomposition and form of the action is used in many papers, for example [13],[14],[19],[20],
and shall be used as the starting point of our calculations.

3.2.2 Perturbative expansion constraints

Following section 3.1.1, it turns out that the action (3.38) contains more mathematical degrees
of freedom than dynamical ones. The dynamical degrees of freedom are represented by φ and
hij , while the non-dynamical degrees of freedom are represented by N and N i. Therefore we
can treat N and N i as Lagrange multipliers whose equations of motions have to be solved an
substituted back into (3.38). It turns out that the solutions for N and N i cannot be solved
exactly. Since we want to express N and N i in terms of the dynamical scalar perturbations δφ
and/or ζ, and both of these quanta are considered of the order O

(
10−5

)
, we can solve them

perturbatively order by order. When doing so, a question arises, If we solve the constraint
equations order by order up to order ζn, to what order in ζn will our action be correct?. It turns
out that we do not need to solve the constraints to the nth order to get the correct expression
for the nth-order action [13],[14],[15],[16]. In [13] it is noted that in order to calculate the cubic
order action, S3, we only need to solve the constraints up to first order in perturbations. Then
in [15] it was noted that in order to calculate the nth order action, we could solve the constraints
up to order (n− 2) and still get the correct action (starting from n=3). In [16], it is wrongfully
claimed that in general, starting from n = 3, we have to solve the constraints up to order (n−2)
in order to get the correct form of the nth order action. In this section we [12] proof that with
the nth order constraints, we can actually construct the (n+ 1)th order action.
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3.2. ADM-formalism in inflationary cosmology

Consider a very general Lagrangian that depends on a constraint N and perturbations ζ. Both
N and ζ can have derivatives acting on them. The Euler-Lagrange equations of N can be
derived in the usual way by varying the action with respect to N

0 = δS[N, ∂N, ζ] =

∫ b

a
d4x

[
∂L
∂N

δN +
∂L

∂(∂µN)
δ(∂µN)

]
(3.41)

=

∫ b

a
d4x

[(
∂L
∂N
− ∂µ

(
∂L

∂(∂µN)

))
δN + ∂µ

(
∂L

∂(∂µN)
δN

)]
,(3.42)

here the last term in (3.42) is a total derivative. This term vanishes after integrating, since the
action principle require that all fluctuations of the fields drop at the boundaries, δN(a) = 0 =
δN(b). Then it follows that the Euler-Lagrange equations of motion for N are given by

∂L
∂N
− ∂µ

(
∂L

∂(∂µN)

)
= 0 . (3.43)

When the field N has no temporal derivatives acting on it, it can be seen as a constraint, i.e.
a non-dynamical degree of freedom, in the action. We can eliminate it by solving its equations
of motion in terms of dynamical variables, which will turn into constraint equations. After
substitution of the solutions of N into the action, we obtain the action parametrized by only
dynamical variables.

When we cannot find an exact expression for N in terms of ζ, we can solve N in terms of ζ
it perturbatively order by order. If we solve the constraints up to order n, and substitute them
back into (3.43) we obtain

∂L
∂N

(N≤n, ∂N≤n, ζ)− ∂i
(

∂L
∂(∂iN)

)
(N≤n, ∂N≤n, ζ) = 0 +O({N, ∂N, ζ}≥n+1) , (3.44)

here the first non-zero order corrections appear at order n+ 1 in perturbations. Also, note that
the Greek indices turned into Roman indices since we have no temporal (∂0 = ∂t) derivatives
acting on N (they are non-dynamical). Expanding the Lagrangian in N , we find

L(Nsol, ∂Nsol, ζ) ≡ L(N≤n + δN≥n+1, ∂N≤n + ∂δN≥n+1, ζ)

= L(N≤n, ∂N≤n, ζ) + δN≥n+1
∂L
∂N

(N≤n, ∂N≤n, ζ)+

+ ∂i(δN≥n+1)
∂L

∂(∂iN)
(N≤n, ∂N≤n, ζ) +O

(
(n+ 1)2

)
= L(N≤n, ∂N≤n, ζ) + δN≥n+1

∂L
∂N

(N≤n, ∂N≤n, ζ)−

− δN≥n+1∂i

(
∂L

∂(∂iN)

)
(N≤n, ∂N≤n, ζ)

+ ∂i

(
δN≥n+1

∂L
∂(∂iN)

)
(N≤n, ∂N≤n, ζ) +O

(
(n+ 1)2

)
.
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3.2. ADM-formalism in inflationary cosmology

In the last step we have made use of a total derivative term, a similar trick to partially integrating
the ∂i. Using (3.44) we obtain the result of interest,

L(Nsol, ∂Nsol, ζ) =L(N≤n, ∂N≤n, ζ) + δN≥n+1(0 +O(≥ n+ 1))

+ ∂i

(
δN≥n+1

∂L
∂(∂iN)

)
(N≤n, ∂N≤n, ζ) +O

(
(n+ 1)2

)
.

(3.45)

From this we note that the corrections to the action are correctly solved up to order 2(n+1)−1 =
2n+ 1 in perturbations up to a total derivative term. This total boundary term will again give
a zero contribution when substituted back into the action, since scalar perturbations damp out
at superhorizon scales. Therefore, we conclude that solving the constraints up to nth order in
perturbations, we can construct the correct (2n + 1)th order action. This is one of the new
results of this thesis.

3.2.3 Gauge fixing of the ADM action

At the end of the day, we are interested in quantities that we can relate to the CMB, i.e.
quantities that will “freeze out” after their wavelength surpasses the Hubble radius. Weinberg
showed [5] that there are two of such quantities, namely R and γij , here R is the Comoving
curvature perturbation and γij is the induced spatial metric. In the language of (3.2), the
induced spatial metric is given by

γij = a2 [(1 + 2C)δij + 2Eij ] (3.46)

In order to find the second conserved quantity, we have to study the scalar perturbations in the
metric further, more specifically, we are interested in the three dimensional Ricci scalar R(3)

since this gauge invariant quantity captures the curvature of our induced metric. For scalar
perturbations, we have

Eij = ∂〈i∂j〉E . (3.47)

The three dimensional Ricci scalar that one obtains from (3.46) is then given by

a2 (3)R = −4∂2(C − 1/3∂2E) . (3.48)

From this we define the curvature perturbations as

ζ ≡ C − 1/3∂2E . (3.49)

To get the comoving curvature perturbation, it is convenient to go to the comoving gauge. In
this gauge, B and v are zero. Therefore we are free to add any combination of these quantities
to the curvature perturbation. As it turns out [6], the gauge invariant combination of B and v
is given by (a′/a)(B+ v). Adding this to the curvature perturbation, one obtains the comoving
curvature perturbation

R = C − 1

3
∂2E +

a′

a
(B + v) . (3.50)

35



3.2. ADM-formalism in inflationary cosmology

In the next chapters of this thesis, we shall study perturbation theory in the comoving
and in the spatially flat gauge. In the comoving gauge, we have that the comoving curvature
perturbation is equal to the comoving curvature perturbation, since B and v are zero,

R = C − 1

3
∂2E ≡ ζ . (3.51)

In the spatially flat gauge the comoving curvature perturbation is given by

R =
a′

a
(B + v) . (3.52)

To relate R to the inflaton perturbation ϕ by the perturbations of the stress-energy tensor,
which in the spatially flat gauge is given by

δT 0
j = −(ρ̄+ P )∂j(B + v) , (3.53)

and

δT 0
j =

φ̄′

a2
∂jϕ . (3.54)

From these two equations, we obtain the relation

B + v = − ϕ
φ̄′
. (3.55)

Substituting (3.55) back into (3.52) we find that the comoving curvature pertubation is given
by

R = −H
˙̄φ
ϕ . (3.56)

Usually, in the spatially flat gauge, we calculate ϕ correlation functions. Once these pertur-
bations become super Hubble size, one can go over to the comoving gauge by making a gauge
transformation of the form t→ t̃ = t+ T (x, t). Up to second order in perturbations, the gauge
transformation between the spatially flat and the comoving gauge is given by [13]

ζ =
ρ̇
˙̄φ
ϕ− 1

2

ρ̇ ¨̄φ
˙̄φ2
ϕ2 +

ρ̇
˙̄φ2
ϕϕ̇+

ρ̈
˙̄φ2
ϕ2 − 1

2 ˙̄φ
∂kχ∂

kϕ− 1

4

e−2ρ

˙̄φ2
∂kϕ∂

kϕ

+
1

4

e−2ρ

˙̄φ2
∂−2∂k∂l(∂

kϕ∂lϕ) +
1

2 ˙̄φ
∂−2∂k∂l(∂

kϕ∂lϕ) .

(3.57)

Since the calculation of this gauge transformation is very technical, it is moved to B. In the
derivation, [13] is followed closely.
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3.3. Quantum field theory in Curved space time

3.3 Quantum field theory in Curved space time

As mentioned, we are interested in calculating (primordial) correlation functions in this thesis.
When calculating higher order correlation functions of scattering processes in usual quantum
field theories, one usually starts with an initial state at some initial time, ti then evolves it from
t = −∞ to t = ∞ and then evaluates its overlap with the final state. The methods that are
being used in inflationary cosmologies are not quite the same, but are rather similar to it. In
the usual quantum field theory, it is assumed that both states in the expectation value have
a fixed value. When calculating correlation functions in a curved spacetime, this can become
rather problematic, since both states will become time dependent [18],

〈Ω(t)|Q̂(t)|Ω(t)〉 . (3.58)

At the start of inflation, we can define a so called Bunch-Davies vacuum state, which is a
vacuum state defined in a asymptotically flat background, that we can use to have a fixed value
for our vacuum state (more about this later). However, we cannot do this for the final state at
t→∞, since we are working with a time dependent background. Therefore defining a vacuum
state at the end of inflation can become rather problematic. The Keldysh-Schwinger -Formalism
or In-in-formalism is constructed to deal with this problem. In the In-in formalism we calculate
expectation values of operators using only the initial cauchy data, in such a way that we do
not need to use the final states of the system. In the In-in formalism, the scattering matrix
elements are given by

〈Ω(ti)|Q̂(t)|Ω(ti)〉 =
∑
f

〈Ω(ti)|Ω(tf )〉〈Ω(tf )|Q̂(t)|Ω(ti)〉 , (3.59)

here |Ω(ti)〉 is the vacuum state defined at the far past t→∞ and the summation over |Ω(tf )〉
represents the sum over all possible out states. In this section, I will review this In-in formalism.
This review is based on [18] and [14].

3.3.1 Keldysh-Schwinger formalism

To understand how the time-evolution in correlation functions is generated in the In-in formal-
ism, we start by considering the action for a generic scalar field φ

S =

∫
d4x L(φ(x, t), φ̇(x, t)) =

∫
dtL . (3.60)

As usual, the Hamiltonian is obtained by

H[φ(t), π(t)] =

∫
d3x φ̇πφ − L , (3.61)

with πφ the canonical momenta for φ,

πφ =
∂L
∂φ̇

. (3.62)
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3.3. Quantum field theory in Curved space time

In quantum theory, the fields φ and π satisfy the following equal time commutation relation

[φ(x, t), π(y, t)] = iδ(x− y) . (3.63)

Commutators between two field operators or between two of their canonical momentum oper-
ators vanish. Next we decompose our fields in the following way

φ(t,x) = φ̄(t) + δφ(t,x), (3.64)

here φ̄(t,x) is the mean value of φ(t,x) and δφ(t,x) are perturbations around this value. Then
the Hamiltonian splits into a part containing all the field averages, H̄ and into a part containing
all the perturbations, H̃. Then the Hamiltonian becomes

H[φ(t), π(t)] = H̄[φ̄(t), π̄(t)] +

∫
d4x

∂H
∂φ(x, t)

δφ(x, t) +

∫
d4x

∂H
∂φ(x, t)

δπ(x, t) + H̃[δφ(t), δπ(t)] .

(3.65)
Next we continue with the part of the Hamiltonian containing the perturbations. We split
this perturbed Hamiltonian into a quadratic part (the free part of the perturbed Hamiltonian),
which we shall denote by H0 and into a part that contains all the higher order contributions,
which we shall denote by HI ,

H̃[δφ(t), δπ(t)] = H0[δφ(t), δπ(t)] +HI [δφ(t), δπ(t)] . (3.66)

Assuming Q̂(t) in (3.58) is a multiplication of multiple scalar perturbations δφ, H0 is used to
evolve Q̂(t). The Heisenberg equations of motion of the perturbations δφ and δπ are given by

δφ̇(x, t) = i[H0[δφ(t), δπ(t)], δφ(x, t)]

δπ̇(x, t) = i[H0[δφ(t), δπ(t)], δπ(x, t)] .
(3.67)

The interaction part of H̃, i.e. HI , is then used to evolve the state |Ω(t)〉. The evolution of a
state is then found by solving the equation

i
d

dt
|Ω(t)〉 = HI(t)|Ω(t)〉 . (3.68)

(3.68) suggest that we can introduce a time-evolution operator UI(t, t
′) that evolves any state

from t′ to t,

|Ω(t)〉 = UI(t, t
′)|Ω(t′)〉 . (3.69)

This operator, UI , can be found by solving

d

dt
UI(t, t

′) = −iHI(t)UI(t, t
′) . (3.70)

The solution of (3.70) is given by,

UI(t, t
′) = T̂

[
e−i

∫ t
t′ dt̃HI(t̃)

]
, (3.71)
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3.3. Quantum field theory in Curved space time

here T̂ denotes the Time-ordering operator in such a way that fields occurring at later times
are placed to the left of those occuring at earlier times. For example, consider the time ordering
of two fields ζ(t,x) and ζ(t′,y), then

T̂
[
ζ(t,x)ζ(t′,y)

]
= Θ(t− t′)ζ(t,x)ζ(t′,y) + Θ(t′ − t)ζ(t′,y)ζ(t,x) , (3.72)

here Θ(t− t′) is the Heavyside function. Using (3.68), we can rewrite (3.70) into the following
more intuitive form

〈Ω(t)|Q̂(t)|Ω(t)〉 = 〈Ω(t0)|U †I (t, t0)Q̂(t)UI(t, t0)|Ω(t0)〉. (3.73)

In quantum field theories, we usually write down correlation functions diagrammatically, where
time flows from left to right in the diagram. In our case, presenting correlation functions
diagrammatically can be rather confusing, since our initial and final time will be the same.
Therefore, it is more convenient to stick to the notation of (3.73). Using the fact that UI(t, t

′)
is an unitary operator, especially the fact that

U †I (t, t0) = UI(t0, t), (3.74)

we note that in (3.73) our system starts in a state at t0, then it evolves forward until t where
the operator Q̂ occurs and then the system evolves back to the initial state again at t0. Using
the unitary property of the evolution operator,

I = U †I (∞, t)UI(∞, t), (3.75)

we can extend (3.73) into the infinite future

〈Ω(t)|Q̂(t)|Ω(t)〉 = 〈Ω(t0)|U †I (t, t0) Q̂(t) UI(t, t0)|Ω(t0)〉

= 〈Ω(t0)|U †I (t, t0)I Q̂(t) UI(t, t0)|Ω(t0)〉

= 〈Ω(t0)|U †I (t, t0)U †I (∞, t)UI(∞, t) Q̂(t) UI(t, t0)|Ω(t0)〉

= 〈Ω(t0)|U †I (∞, t0)UI(∞, t)I Q̂(t) UI(t, t0)|Ω(t0)〉.

(3.76)

When looking closely to the last line of (3.76), we see that the system starts in an initial state t0,
then evolves to t where the field operators occur, then the systems evolves further to t→∞ and
the goes all the way back to the initial state at t0. This evolution of the system is represented
in fig.(3.3) Note that the forward and backward parts of the contour are treated as two distinct
parts of this continuous contour, rather than retreading the same part in two directions. This
smart representation of the arcs makes it possible to write the expectation value of operators
in terms of one single time-ordered expression.

To make this theorem more explicit for our perturbations δφ, let us split the perturbation
into two parts

δφ(t,x) = δφ+(t,x) + δφ−(t,x) , (3.77)

here δφ+(t,x) and δφ−(t,x) are the parts of δφ(t,x) that are located on the positive and
negative contour respectively. When calculating correlation functions, we will encounter time-
ordered structures of multiple δφ. Then the time-ordering of the positive and negative modes
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Im@OHxLD

Re@OHxLD

+ Contour

- Contour

Figure 3.3: The contour in the complex plane over which should be integrated. The contour starts at
0 + iε, moves to =∞ and returns at 0− iε. Note that we integrate clockwise.

will be the following

T̂
[
δφ+(t,x)δφ+(t′,y)

]
= Θ(t− t′)δφ+(t,x)δφ+(t′,y) + Θ(t′ − t)δφ+(t′,y)δφ+(t,x) , (3.78)

T̂
[
δφ+(t,x)δφ−(t′,y)

]
= δφ−(t′,y)δφ+(t,x) , (3.79)

T̂
[
δφ−(t,x)δφ+(t′,y)

]
= δφ−(t,x)δφ+(t′,y) , (3.80)

T̂
[
δφ−(t,x)δφ−(t′,y)

]
= Θ(t′ − t)δφ−(t,x)δφ−(t′,y) + Θ(t− t′)δφ−(t′,y)δφ−(t,x). (3.81)

Applying this on the evolution operators, we note that all of the operators in
UI(∞, t) Q̂(t) UI(t, t0) are located on the “+ contour”, thus they should all be written as
positive fields, i.e.

UI(∞, t) Q̂(t) UI(t, t0) = T̂
[
Q+(t)e

−i
∫∞
t0
dt̃ H−I (t̃)

]
. (3.82)

Similar arguments hold for the conjugate of (3.82), here the operators will be located on the “-
contour”. Then we can expand (3.58) as

〈Ω(t)|Q̂(t)|Ω(t)〉 ≈〈Ω(t0)|Q̂(t)|Ω(t0)〉−

− i
∫ ∞
t0

dt̃〈Ω(t0)|T̂ [Q̂+(t0)H+
I (t̃)− Q̂+(t0)H−I (t̃)]|Ω(t0)〉+O(H2

I ).
(3.83)

For each term, one takes the Wick contractions of the fields from all the possible connected
diagrams. The difference now compared to the usual in-out formalism is that there now are
two types of fields, ζ+(t,x) and ζ−(t,x) and correspondingly four possible Wick contractions

δφ±(t,x)δφ±(t′,y) = 〈Ω(t0)|T̂ [δφ±(t,x)δφ±(t,x)]|Ω(t0)〉 ≡ G±±(t,x; t′,y), (3.84)

here G±±(t,x; t′,y) has been defined as

G++(t,x; t′,y) = Θ(t− t′)G>(t,x; t′,y) + Θ(t′ − t)G<(t,x; t′,y), (3.85)

G+−(t,x; t′,y) = G<(t,x; t′,y), (3.86)

G−+(t,x; t′,y) = G>(t,x; t′,y), (3.87)

G−−(t,x; t′,y) = Θ(t′ − t)G>(t,x; t′,y) + Θ(t− t′)G<(t,x; t′,y). (3.88)
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The functions G<(t,x; t′,y) and G>(t,x; t′,y) are the positive and negative Wightman functions
and are defined by

G>(t,x; t′,y) = 〈Ω(t0)|δφ(t,x)δφ(t′,y)|Ω(t0)〉 , (3.89)

G<(t,x; t′,y) = 〈Ω(t0)|δφ(t′,y)δφ(t,x)|Ω(t0)〉. (3.90)

3.3.2 Choice of vacuum

Inflation was first developed for spacetimes with a globally flat background and since general
relativity postulates that it is always possible to choose a locally flat frame for any spacetime
point, it might be tempting to impose local flatness in the background. Unfortunately, during
inflation, length-scales and locality do not have a definite meaning. This is because it will
depend on the time when it is imposed. For example, if you define a length-scale on the
wavelength of certain fields you run quickly into trouble, since wavelengths that once might
have been small compared with the curvature of the background, might later not be so, since
they will have been stretched along with the expansion of space.

Another problem arises from the dynamical scale for the inflatory expansion, which is the
Hubble scale H, which is usually chosen to be smaller than the Planck scale. At sub-Planckian
length scales, the description of nature should by governed by the laws of Quantum field theory
and General Relativity. However, no definite theory has been constructed so far that explains
nature at these scales correctly. The standard prescription is to define modes such that in the
infinite past t0 → −∞ match with the positive energy modes of flat space. This prescription
defines what is called the Bunch Davies vacuum state [14],[18],

|Ω(t0)〉 = |Ω(−∞)〉 ≡ |0〉 . (3.91)

3.3.3 Boundary conditions

When calculating the correlation functions given by (3.83), we split the integral term into three
separate time-domains. The first domain is the part where the correlation functions are well
within the Horizon, the second domain is around the moment of horizon crossing and the third
domain starts a couple of e-folds after horizon crossing and ends at the moment when the modes
re-enter the horizon again.

For the first domain, we require that the correlation functions should oscillate very fast and
that the total contribution to this part of the integral is zero. We can achieve this by shifting
the initial states marginally into the complex plain, this gives an exponentially suppression at
early times. This is the reason why the arcs in fig.(3.3) are shifted onto the complex plane.
This boundary condition is known as the Hartle-Hawking boundary condition.

In the second domain, where we evaluate the correlator around horizon crossing, we assume
that the Hubble parameter and all slow-roll parameters can be approximated to stay approx-
imately constant. In the last domain when the modes are well outside the horizon, we have
to treat the scalar perturbations in the gauges differently. In the comoving gauge, the scalar
fluctuations ζ freeze out and do not evolve anymore. This contribution can be safely ignored.
In the Spatially flat gauge, this is not true anymore.
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Cosmological Perturbation theory
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4.1 Introduction to non-Gaussianities

The Cosmic Microwave Background contains a lot of information about the primordial universe,
allowing us to make precise test of inflationary models via their predictions of the primordial
perturbations. The primordial power spectrum, typically expressed in terms of 2-point correla-
tion functions, is well measured. If there are inhomogeneities in our initial conditions, further
information might be obtained from higher order correlation functions. If the perturbations
are exactly Gaussian, the N-Point correlation functions vanish when N is odd, and then is fully
specified in terms of the 2-point correlation function for even N.

In general, all cosmological inflationary models predict some level of non-Gaussianity. Also,
non-linear corrections will generate non-Gaussianities in the CMB, even if the spectrum is
purely Gaussian. Therefore, the observed non-linearities are a combination of the primordial
non-Gaussianities and of second order couplings between modes. A rough estimation of these
non-Gaussianities can be parametrized by a parameter f localNL , which is defined by the Komatsu-
Spergel Local form

Φ(x) = ΦG(x) + f localNL (ΦG(x)2 − 〈ΦG(x)〉2) , (4.1)

here Φ(x) is the Gaussian gravitational potential as defined in the Newtonian gauge [5]. It can
be related to the source of the temperature anisotropies in the CMB, ∆T/T , which were roughly
of the order ∆T/T ∼ O(10−5), at a point x in the sky, the subscript G denotes the Gaussian
parts of the primordial perturbations and the subscript NL refers to non-linear. Generally,
second order couplings between modes will be of the order f localNL ≈ O(1), while it has been
shown that for standard single field inflation, f localNL ∼ ε ∼ O(10−2), we will come back to this
later.

Non-Gaussianities can produce higher order N-point correlation functions where N is odd.
The lowest order correlation functions with N is odd is the 3-point correlation function. This
3-point correlation function is an independent statistic, and can be calculated in the interaction
picture using the in-in formalism as discussed in 3.3.1. This three point correlation function
contains information on both the dependence of the shape and the scale of the momentum
triangle. Also, Maldacena has shown that in the squeezed limit, it is possible to determine
how the tilt of the power spectrum is influenced by these three point correlation functions [13].
This relation between the squeezed limit and the tilt is known as the consistency relation, more
about this later.

In this chapter, we study perturbation theory in the comoving gauge, we start by analyzing
the action and the constraints, we calculate the mode functions that follow from the equations
of motion for ζ, the power spectrum and the bispectrum one order higher in the slow-roll param-
eters than what has previously been done in literature. We then comment on the correctness
using the consistency relation first observed by [13].

4.1.1 Komatsu-Spergel Local form

In order to estimate the non-Gaussianities from higher order N-point correlation functions, for
example the three point correlation function, we can study that correlation function in terms of
the Komatsu-Spergel Local form. Consider again the Gaussian field Φ(x), its Fourier transform
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can then be written as

Φ(x) =

∫
d3k

(2π)3
Φ(k)eik.x. (4.2)

By defining (4.1), we have split the field Φ(x) into its linear (Gaussian) part ΦG(x) and its
non-linear part which is the square of its local value Φ(x)2 minus the variance of its Gaussian
part 〈ΦG(x)2〉. Using these relations, the Fourier transform of (4.1) becomes

Φ(k) ≡ ΦG(k) + ΦNL(k)

= ΦG(k) + f localNL

(∫
d3p

(2π)3
ΦG(p + k)ΦG(−p)− (2π)3δ3(k)〈Φ(x)2〉

)
.

(4.3)

The Gaussian two-point correlation function is given by

〈ΦG(x)ΦG(y)〉 ≡
∫

d3k

(2π)3
P (k)eik.(x−y) , (4.4)

here P (k) is called the power-spectrum which is defined as P (k) = |ΦG(k)|2. In momentum
space, invariance under parity imposes that the fields have to be real. The reality condition on
Φ(x), i.e. Φ∗(k) = Φ(-k), now implies that

〈ΦG(k1)ΦG(k2)〉 = (2π)3P (k1)δ(3)(k1 + k2) . (4.5)

At leading order, the three point function is given by

〈Φ(k1)Φ(k2)Φ(k3)〉 = 〈Φ(k1)Φ(k2)ΦNL(k3)〉+ perms + higher order corrections . (4.6)

Using Wick’s theorem to work out the different permutations in (4.6), one obtains

〈Φ(k1)Φ(k2)Φ(k3)〉 =

= f localNL

〈
Φ(k1)Φ(k2)

(∫
d3p

(2π)3
ΦG(p + k3)ΦG(−p)− (2π)3δ3(k3)〈Φ(x)2〉

)〉
= f localNL 〈Φ(k1)Φ(k2)〉

(∫
d3p

(2π)3
〈ΦG(p + k3)ΦG(−p)〉 − (2π)3δ3(k3)

〈
Φ(x)2

〉)
+ f localNL

∫
d3p

(2π)3
〈Φ(k1)Φ(-p)〉 〈Φ(k2 + p)Φ(k3)〉+ 2 perms. .

(4.7)

Using the definition of the power-spectrum, the first term on the right hand side of (4.7) vanishes
while the second term on the right hand side can be written as (2π)3P (k1)P (k2)δ(3)(k1+k2+k3).
Then the expression one obtains for the three point function in terms of (4.1) is then given by

〈Φ(k1)Φ(k2)Φ(k3)〉 = f localNL

[
2(2π)3P (k1)P (k2)δ(3)(k1 + k2 + k3) + 2 sym.

]
. (4.8)

From this we conclude that it is possible to rewrite the three point correlation function as a
sum over a product of power spectra times the non-linear coupling parameter f localNL . We will
use this template form of the bispectrum, to estimate the amount of non-Gaussianties in 4 and
5.
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4.2 Mathematical Kung-Fu in the Comoving gauge

In order to calculate correlation functions, it is crucial to understand the dynamics of the
dynamical and non-dynamical degrees of freedom in the action. In this section, we give a
comprehensive analysis of the action and the constraints in the comoving gauge. As it turns
out, when deriving the action perturbatively, we end up with certain boundary terms containing
the shift constraint. After substitution of the solutions of the constraints, we will see that these
boundary terms are mathematically not really boundary terms, but seem to be dynamical
terms. When comparing the solution per order of the action with the zero momentum limit,
these terms boundary terms are not present, suggesting that the solutions are not continuously
connected.

4.2.1 The constraint equations

We start our analyzation with the ADM-action

S =
1

2

∫
d4x
√
h
[
M2
PNR

(3) − 2NV +N−1(EijE
ij − E2) +N−1(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ

]
,

again, Eij and E have been defined as

Eij =
MPl

2

(
ḣij − 2∇(iNj)

)
,

E = Eii = hijEij .

We decompose the field φ(t,x) into its field average, φ̄(t), and fluctuations around it, δφ(t,x),
then

φ(t,x) = φ̄(t) + δφ(t,x) . (4.9)

As mentioned before, the action (3.38) has more ‘mathematical’ degrees of freedom than dy-
namical ones. When fixing the gauge into the comoving gauge, we have

δφ = 0 , hij = e2ρ[(1 + 2ζ)δij + γ̂ij ] , ∂iγ̂ij = 0 , γ̂ii = 0 , (4.10)

here ζ and γ̂ij are the physical (dynamical) degrees of freedom, ρ is defined in such a way that
ρ̇ ≡ H, ζ parametrizes the scalar fluctuations and γ̂ij parametrizes the tensor fluctuations. The
non-dynamical degrees of freedom are parametrized by N and Ni, which means that they turn
into Lagrange Multipliers and their equations of motions turn into constraint equations. An
easy way to see what the dynamical degrees of freedom are is by looking at which objects come
with (conformal) time derivatives. The exact action, under the conditions (4.9) and (4.10), is
then given by

S =
1

2

∫
d4x
√
h
[
M2
PNR

(3) − 2NV +N−1(EijE
ij − E2 + ˙̄φ2)

]
. (4.11)

Varying (4.11) with respect to N and N i gives us the two constraint equations

M2
PR(3) − 2V −N−2

[
EijE

ij − E2 + ˙̄φ2
]

= 0 . (4.12)
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and
∇i
[
N−1

(
Eij − Eδij

)]
= 0 . (4.13)

Note that the exact solution for N is given by

N2
sol =

(
EijE

ij − E2 + ˙̄φ2
)

(
R(3) − 2V

) . (4.14)

Using (4.14) and putting MPl = 1, we can rewrite the action as

S =

∫
d4x
√
hNsol

[
R(3) − 2V (φ̄)

]
. (4.15)

Since we solved the constraints exactly, to expand (4.15) to any given order, we need to solve
Nsol up to that same order. When calculating the action in the zero momentum limit, i.e.
N = N(t, ζ(t)) and Ni(t, ζ(t), (4.15) is convenient to work with. This is because the constraint
equations become trivial in the absence of spatial derivatives. We will continue with (4.11)
and solve the constraints order by order perturbatively. With the nth order solutions to the
constraints, we can construct the (2n+ 1)th order action, as discussed in 3.2.2.

In order to keep nice and clear, lets first start with a couple of definitions that I will use
concerning the expansions of the constraints and in the way I define derivatives. My definition
for the expansions of the constraints is given by

N = 1 +
n∑
j=1

N (j), (4.16)

Ni =
3∑
j=1

(
∂iψ

(j) + N̂
(j)
i

)
, (4.17)

here the superscript (j) refers to the order in (ζ) perturbations in which the constraints are
expanded. The constraints Ni has been decomposed using the Helmholtz decomposition into

a irrotational part, ∂iψ
(j), and into a incompressible part, N̂

(j)
i . Here N̂i is traceless, i.e. it

satisfies ∂iN̂i = 0. Also, I define ∂iN
i ≡ hij∂i∂j and ∂iNi ≡ δij∂iNj .

Next we expand all objects in (4.11) in terms of ζ, N and N i, but we do not want to substitute
the expansions for N and N i yet. If we turn of gravity, by putting the tensor degrees of freedom
to, zero γ̂ij → 0, we can expand the variables that depend on the metric, the time derivative of
the metric, the Christoffel symbol and the covariant derivative, as

ḣij = 2e2ρ+2ζ(ρ̇+ ζ̇)δij , (4.18)

Γkij =
1

2
hkl(∂jhik + ∂ihjl − ∂lhij)

= δkl(∂jζδil + ∂iζδjl − ∂lζδij) ,
(4.19)

and

∇iNj = ∂iNj − ΓkijNk

= ∂iNj − ∂jζNi − ∂iζNj + ∂kζNkhij .
(4.20)
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With these relations, we can calculate the more complicated objects in (4.11), which are the
Ricci scalar and the terms related to the extrinsic curvature. Since we turned off the graviton
when fixing the gauge, the Ricci scalar reduces to

R(3) = −2(2∂k∂
kζ + ∂kζ∂

kζ) (4.21)

Using (4.19) and (4.20), we can rewrite Eij , E
ij and E as

Eij = e2ρ+2ζ(ρ̇+ ζ̇ −Nk∂
kζ)δij − ∂(iNj) + 2N(i∂j)ζ ,

Eij = e−4ρ−4ζδikδjlEkl ,

E = Eijh
ij = 3(ρ̇+ ζ̇ −Nk∂

kζ)− ∂kNk + 2Nk∂
kζ .

(4.22)

Then (EijE
ij − E2) is given by

(EijE
ij − E2) = (hikhjl − hijhkl)EijEkl

= −6(ρ̇+ ζ̇ −Nk∂
kζ)2 + 4(ρ̇+ ζ̇ −Nk∂

kζ)(∂kN
k − 2Nk∂

kζ)

+ ∂(iNj)∂
(iN j) − 4∂(iNj)N

(i∂j)ζ + 4N(i∂j)ζN
(i∂j)ζ

− (∂kN
k)2 + 4∂kN

kNl∂
lζ − 4(Nk∂

kζ)2.

(4.23)

This is the backbone of our calculation, we can now continue with expanding the N and N i

constraints and solving (4.13) and (4.13) order by order.

4.2.2 Constraints equations at zeroth order

At zeroth order in perturbations, we can write (4.12) as

(6ρ̇2 − ˙̄φ2 − 2V ) = 0 , (4.24)

and (4.13) as

∇j
(
ρ̇δ j
i

)
= ∂iρ̇ = 0 . (4.25)

At this moment, a little comment is in order. In section 2.5.2, we calculated the Friedmann
equations using the stress-energy tensor and the Einstein equations. These were dynamical
equations. Now at zeroth order in perturbations, we find that (4.12) reduces to those exact
same Friedman equations. This means that in the comoving gauge, the Friedmann equations
are not dynamical equations of motion, but are Hamiltonian constraint equations. Also, from
(4.13) we conclude that Hubble parameter does not dependent on the spatial coordinate xi.

Also, a good thing to note is the following. In the zero momentum limit, (4.13) is not present,
which means that H is not constraint anymore to be only time dependent.

4.2.3 Solution to the constraint equations at first order in perturbations

At first order in perturbations and after removing all lower order terms by using the zeroth
order constraint equations, the constraint equations (4.12) and (4.13) are given by

−2∂k∂
k
(
ζe−2ρ + ρ̇ψ(1)

)
+

1

2
˙̄φ2N (1) − 3ρ̇

[
ρ̇N (1) − ζ̇

]
= 0 , (4.26)
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and

∂j

[(
1−N (1)

)(
−2δji (ρ̇− ζ̇)

)]
− 1

2
∂j∂

jN̂
(1)
i = 0 . (4.27)

Now we have three unknowns and three equations (remember that N̂
(1)
i is traceless). We can

remove N̂
(1)
i from (4.27) by contracting both sides with ∂i. From this we conclude that the first

order contribution of N̂
(1)
i must be a constant. Since N̂ (1) must be first order in perturbations,

the only possible solution for N̂
(1)
i is

N̂
(1)
i = 0 . (4.28)

Using (4.28), (4.27) reduces to
2∂i(ζ̇ − ρ̇N (1)) = 0 . (4.29)

This gives us the following solution for N (1)

N (1) =
ζ̇

ρ̇
. (4.30)

Substituting 4.30 into 4.26, we find that the solution for ψ(1) is given by

ψ(1) = −ζ
ρ̇

+
1

2

˙̄φ2

ρ2
∂−2ζ̇ . (4.31)

Theoretically, following 3.2.2 we are now able to construct the correct action up to cubic order
in perturbations.

Before we continue, lets first discuss the claim that the solutions to the zero momentum limit
are not continuously connected to these solutions. In the zero momentum limit and after using
(4.24) and (4.25), at linear order in perturbations (4.14) reduces to

N = 1 +
3

(3− ε)
ζ̇

ρ̇
− 3ε

2(3− ε)2

(
ζ̇

ρ̇

)2

+O(ζ3) . (4.32)

Also, N i is not fixed anymore by the constraint equations. Even worse, Ni = 0 at linear order
since it cannot depend on position. Since (4.31) has a term that depends on ζ̇ and (4.23)
contains a term ∂kN

k, we loose a ζ̇ contribution, that otherwise would have shown up.

4.2.4 Solution to the constraint equations at second order in perturbations

The second order constraints can be obtained in the same way as before, expand all “big” object
up to second order in ζ and then the zeroth and first order constraint equations can be used to
subtract the zeroth and first order terms. Then (4.12) and (4.13) become(

−12ρ̇2 + 2φ̇2
)
N (2) +

(
2∂kζ∂

kζ − 4

ρ̇
ζ̇∂2ζ

)
+ 6ζ̇2 − 12ρ̇∂kψ

(1)∂kζ

− 24ρ̇ζ̇N (1) + 18ρ̇2(N (1))2 − 4ζ̇∂2ψ(1) − 4ρ̇∂2ψ(2) + 8ρ̇∂kψ
(1)∂kζ

+ 8ρ̇∂2ψ(1)N (1) − ∂i∂jψ(1)∂i∂jψ(1) + (∂2ψ(1))2 − 3φ̇2(N (1))2 = 0 ,

(4.33)
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and

∇j
[
δ j
i (−2ζ̇ + 2ρ̇N (1)) + ∂2ψ(1)δ j

i − ∂i∂
jψ(1)

]
+∇j

[
δ j
i (2∂kψ

(1)∂kζ2ρ̇N (2)+

+2ζ̇N (1) − 4ρ̇(N (1))2 + ∂2ψ(2)δ j
i − ∂i∂

jψ(2) − ∂2ψ(1)N (1)δ j
i + ∂i∂

jψ(1)N (1)+

+∂iψ
(1)∂jζ + ∂jψ(1)∂iζ − 2∂kψ

(1)∂kζδ j
i −

1

2
∂iN̂

(2)j − 1

2
∂jN̂

(2)
i

]
= 0 .

(4.34)

We can solve (4.33) for ψ(2), then

ψ(2) =
1

4ρ̇
∂−2

[
− φ̇

2

ρ̇2
ζ̇2 + (−2∂kζ∂

kζ − 4

ρ̇
ζ̇∂2ζ)− 2ρ̇

φ̇2

ρ̇2
∂k∂

−2ζ̇∂kζ + 4∂kζ∂
kζ

−∂i∂jψ(1)∂i∂jψ(1) + (∂2ψ(1))2 − 4V N (2)
]
,

(4.35)

note that the solution for N (1) has been substituted, but not the solution for ψ(1), since we
have seen from the first order constraint equations that we need to be a little bit more careful
with ψ(1). Using the the divergenceless condition for N̂ (2), we can solve (4.34) for N (2) and

ˆN (2). Note when solving these equation, ∇i ∼ ∂i+(Γ)i, here (Γ)i is a Christoffel symbol, which
is first order in ζ. Then only the first line on the right hand side of (4.33) is effected by the
Christoffel symbols coming from the covariant derivative. The first line has two kinds of terms,
one going as δ j

i times some scalar, for notational convenience lets denote it as M for now, and

left over terms that I will denote as M j
i for now. Then calculating both terms we find

∇jδ j
i M = ∂iM + Γjjkδ

k
i M − Γkjiδ

j
k M

= ∂iM + 3∂iζM − 3∂iζM

= ∂iM ,

(4.36)

and

∇jM j
i = ∂iM + ΓjjkM

k
i − ΓkjiM

j
k

= ∂iM + 3∂kζM
k
i − ∂iζM k

k .
(4.37)

Using (4.36) and (4.37), we can rewrite (4.34) as

0 =∂i

[
2ρ̇N (2) − ∂2ψ(1)N (1)

]
+ ∂j

[
∂i∂

jψ(1)N (1) + ∂iψ
(1)∂jζ + ∂jψ(1)∂iζ

]
− 3∂kζ∂i∂

kψ(1) + ∂iζ∂
2ψ(1) − 1

2
∂2N̂

(2)
i −

1

2
∂i∂jN̂

(2)j .
(4.38)

In order to get a more convenient form for (4.34), we can work out the brackets in (4.34) and
pull the second order variables to the left. Then

2ρ̇∂iN
(2) − 1

2
∂2N̂

(2)
i = −

(
∂kN

(1)∂k∂iψ
(1) − ∂iN (1)∂2ψ(1) + ∂2ζ∂iψ

(1) + ∂i∂
kζ∂kψ

(1)
)
. (4.39)
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Again, we can split (4.39) into a compressible part and into irrotational part. Acting on (4.39)
with ∂i, we find that the irrotational part of the equation is given by

N (2) = − 1

2ρ̇
∂−2∂i

(
∂kN

(1)∂k∂iψ
(1) − ∂iN (1)∂2ψ(1) + ∂2ζ∂iψ

(1) + ∂i∂
kζ∂kψ

(1)
)

(4.40)

and the incompressible part is given by

N̂
(2)
i = 2∂−2

(
∂kN

(1)∂k∂iψ
(1) − ∂iN (1)∂2ψ(1) + ∂2ζ∂iψ

(1) + ∂i∂
kζ∂kψ

(1))− 2ρ̇∂iN
(2)
)
. (4.41)

Theoretically, following 3.2.2 we are now able to construct the correct action up to quintic

order in perturbations. Also, at second order in perturbations, we can have a non-zero N
(2)
i .

However, it is not constraint by any equations anymore.
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4.3 Linear dynamics of ζ

In this section, we use the solutions of the constraints to expand the action to linear and
quadratic order. We discuss the treatment of the boundary terms and we calculate the equations
of motion for ζ, assuming that the fluctuations and slow-roll parameters are small and therefore
can be seen as perturbations around a free theory, as discussed in 3.3.1.

4.3.1 Analyzation of the action

Starting with the usual action (3.38), we expand all terms in the action to linear order in ζ.
We obtain the following expression for S1

S1 =
1

2

∫
d4x e3ρ

[
−4e−2ρ∂i∂iζ − 12ρ̇ζ̇ + (6φ̇2 − 36ρ̇2)ζ + 4ρ̇e−2ρ∂i∂iψ

(1)
]
. (4.42)

We can rewrite (4.42) into a more convenient form by making use of partial integration. Using

−
∫
d4x e3ρ12ρ̇ζ̇ =

∫
d4x

[
∂0

(
−12ρ̇ζe3ρ

)
+ 12ρ̈ζe3ρ + 36ρ̇2ζe3ρ

]
, (4.43)

and using (4.43) and (4.24), we obtain

S1 =
1

2

∫
d4x e3ρ

(
−4e−2ρ∂i∂iζ + 4ρ̇e−2ρ∂i∂iψ

(1)
)

+

∫
d4x ∂0

[
−12ρ̇ζe3ρ

]
. (4.44)

Naively looking at this expression, we only see boundary terms, which is exactly what was
predicted in 3.2.2. However, this is not entirely true. When substituting the solution for ψ(1),
there appears to be a term in S1 that is not a full boundary term. The part of the S1 action
that is not a full boundary term is given by

S1 =

∫
d4x a3

(
4ρ̇

1

2

˙̄φ2

ρ̇2
ζ̇

)
=

∫
d4x a3

(
4Hεζ̇

)
. (4.45)

Having a non-vanishing S1 action, we will produce so called tadpole corrections to the self-energy
of the propagator and tadpole corrections to the three point functions. These tadpole corrections
produce logarithmic divergences at tree level at lowest order in the slow-roll expansion. However,
we do not observe these kinds of effects in the power spectrum. Also, when calculating the action
in the zero momentum limit, no tadpoles appear and the S̃1 action is just a total boundary
term

S̃1 = −12

∫
d4x ∂0

[
Hζe3ρ

]
, (4.46)

here I denote the zero-momentum limit of the action with a tilde. In literature, [13],[14], these
terms are treated as boundary terms and are therefore omitted.

From 3.2.2 we know that in order to calculate S2, we only have to expand the constraints
to first order in perturbations. After performing a couple of partial integrations, we obtain the
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4.3. Linear dynamics of ζ

following cubic order action for ζ

S2 =

∫
d4x

[
e3ρ 1

2

φ̇2

ρ̇2
ζ̇2 − eρ 1

2

φ̇2

ρ̇2
∂kζ∂kζ

]
+ (4.47)

−
∫
d4x ∂0

[
eρ

1

ρ̇
ζ∂k∂kζ − 2e3ρρ̇(2 + 6ζ + 9ζ2)

]
+ (4.48)

−
∫
d4x e2ρ∂k

[(
2 + ζ +

ρ̈

ρ̇2
ζ +

ζ̇

ρ̇

)
∂kζ −

1

ρ̇
ζ∂kζ

+eρ
(

4ρ̇ζ∂kψ
(1) − ∂2ψ(1)∂kψ

(1) + ∂iψ
(1)∂i∂kψ

(1)
)]
, (4.49)

(4.47) is the usual quadratic order action as found in [13],[14], (4.48) are the total temporal
boundary terms and (4.49) are the spatial boundary terms. In literature, [13],[14], these terms
are again omitted. However, just as for S1 there appear to be two total boundary terms that
are not actually boundary terms, these are the terms ∂k

[
−∂i∂iψ(1)∂kψ

(1) + ∂iψ
(1)∂i∂kψ

(1)
]
.

4.3.2 Equations of motion and quantization

The linear dynamics of the free theory of ζ can be derived by varying (4.47) with respect to
zeta. The equations of motion that follow from this are then given by

ζ ′′ + 2
(az)′

az
ζ ′ − ∂2

i ζ = 0, (4.50)

here the primes denote derivatives with respect to the conformal time τ which is defined as
dt2 ≡ a(τ)2dτ2, and z has been defined as z = φ̄/H. This equation is known as the Muhkanov-
Sasaki equation [5]. In order to solve (4.50), it is convenient to decompose ζ into positive and
negative Fourier modes

ζI(x, t) =

∫
d3k

(2π)3

[
a†I(k)u∗k(t)e

ik.x + aI(k)uk(t)e
−ik.x

]
, (4.51)

where uk(τ) and u∗k(τ) are called mode functions and aI(k) and a†I(k) are the lowering and

raising operators, where a†I(k) annihilates the Bunch-Davies vacuum,

a†I(k)|Ω(t0)〉 = 0 . (4.52)

In order to solve the equation of motion for ζ, we need to substitute (4.51) into (4.50) and
rewrite it into a more convenient form(

∂2
τ + k2 − (az)′′

az

)
vk(τ) = 0 . (4.53)

here vk(τ) is the rescaled Muhkanov field which is defined as

vk(τ) = a(τ)z(τ)uk(τ) . (4.54)
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To solve (4.53), we first want to express (az)′′

az in terms of the slow-roll parameters. Then

(az)′ = a
d

dt

[
a ˙̄φ

H

]
≈ a2

[
˙̄φ+

¨̄φ

H
+

∂3
t φ̄

2M2
PlH

2

]
,

here the dot denotes a derivative with respect to t, not τ . From this follows that

(az)′′

az
≈ (aH)2

[
2 +

(
˙̄φ2

M2
PlH

2
+

3¨̄φ
˙̄φH

)
+

(
∂4
t φ̄

2M4
PlH

4
+

2 ˙̄φ ¨̄φ

M2
PlH

3
+
∂3
t φ̄
˙̄φH

)]

≈
2 + (2ε+ η

2 ) + (−2ε2 + 2εη − ξ(2))

(1− ε)2τ2
.

In order to proceed, we have to make an approximation. When doing the slow-roll approxima-
tion, we assume that the slow-roll parameters change adiabatically in time, in such a way that
we can assume that they can be approximated as constants in (4.53). Then (4.53) resembles
Bessel’s differential equation. In order to normalize ζI we use the Wronskian condition, which
is based on the fact that

[ζ(x, τ), πζ(y, τ)] = iδ(3)(x− y) , (4.55)

here πζ(x, τ) is the canonical momentum corresponding to ζ, πζ ≡ ∂L/∂ζ̇. Using the usual
commutation relations for the raising and lowering operators,[

â(k), â†(k′)
]

= (2π)2δ(3)(k1 + k2) . (4.56)

we obtain
u(τ)∂τu

∗(τ)− u∗(τ)∂τu(τ) = −i . (4.57)

This equation is known as the Wronskian condition. The solutions for uk(τ) are then given by

u(k, τ) = − 1

a(τ)

H
˙̄φ

√
−πτ

4
H(1)
ν (−kτ) , (4.58)

here H
(1)
ν (x) is the first Hankel -function which is a sum of the J and Y Bessel -functions,

H(1)
ν (x) = Jν(x) + iYν(x) . (4.59)

Also, in (4.58) we have introduced a new variable ν, as defined in [5],

ν2 =
(az)′′

az
+

1

4
≈ 9− 6ε+ 6η +O(ε2, εη, η2, ξ2)

4(1− ε)2

≈ 9

4
+ 3ε+

3

2
η +O(ε2, εη, η2, ξ2) .

(4.60)

At leading order in slow-roll parameters, we have

ν ≈ 3/2 + 3ε+
3

2
η . (4.61)
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Equation (4.58) has the following important properties. The mode functions have an oscillatory
behavior within the horizon, k|τ | � 1. As it gets stretched out of the horizon k|τ | � 1, the
amplitude becomes constant and freezes. Physically, this means that when we look at the
different superhorizon size-comoving patches of the universe, and ignore all short wavelength
contributions, they all evolve classically but with different ϕ. This can be made explicit by
relating

ζ ≈ −Hϕ
˙̄φ
≈ Hδt . (4.62)

This e-fold difference is the conserved quantity after the modes exit the horizon, and this
conservation remains until the mode re-enters the horizon. This quantity can be related to the
temperature fluctuations in the CMB, which is the physical quantity that we can measure.
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4.4 Scalar two point correlation function

The two point correlation function for the comoving curvature perturbation is defined in the
following way

〈ζ(k1, 0)ζ(k2, 0)〉 = 〈ζ(k1, 0)ζ(k2, 0)〉′ δ(3)(k1 + k2) ≡ 2π2

k3
1

Pζ(k1)δ(3)(k1 + k2) , (4.63)

here Pζ(k) is called the Powerspectrum and has been defined as

Pζ(k) = lim
τ∗→0

[
k3

2π2
u(k, τ∗)u

∗(k, τ∗)

]
. (4.64)

In (4.63) a momentum conserving delta functions has been pulled out and the power spectrum
only depends on the length of the momentum vector. The reason for this is that we have
assumed that the perturbations are statistically isotropic. Physically, it means that all n-point
configurations in the CMB are assumed to be drawn from the same distribution, regardless of
their orientation.

A more formal argument is the following. Correlation functions inherit the isometries of the
background. During inflation, the background can be described as a quasi-de Sitter spacetime.
The isometries that this spacetime imposes on the correlation functions are the following. Cor-
relation functions should be invariant under spatial translations, rotations and should be very
close to scale invariant. Translational invariance imposes in momentum space that the corre-
lation functions should be proportional to a momentum conserving delta function. Rotational
invariance further restricts correlation functions, in the sense that it only depends on the shape
and the size. An easy way to see this is the following. For every field inside our correlation
function we have d degrees of freedom, corresponding to d-spacetime dimensions. Thus, in an
unrestricted n-point correlation function, we have d∗n degrees of freedom. There are d possible
translations and every correlation function has n possible rotation axes. Then the number of
degrees of freedom we are left with is d ∗ n − d − n. For power spectrum, this leaves us with
3∗2−3−2 = 1 degree of freedom, for the three point function (similar to the power spectrum),
this leaves us with 3 ∗ 3− 3− 3 = 3 degrees of freedom.

Then there is also the approximate scale invariance of the correlation function. For the two
point correlation functions, we therefore pull out a factor of 1/k3. If the correlation functions
was fully scale invariant, Pζ will not depend on momentum and is just a constant. However,
if there are (small) deviations from scale invariance, this will produce a small tilt in the power
spectrum. The value that is defined to model this tilt is the spectral index

(ns − 1) ≡
d ln(Pζ)

d ln(k)
. (4.65)

This spectral index has been measured to high accuracy by WMAP and later by the Planck
satellite and is given by ns = 0.9667 ± 0.0040 with k∗ = 0.05 Mpc−1, here k∗ is taken at the
moment when the modes become super Hubble size [2].
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4.4. Scalar two point correlation function

4.4.1 Asymptotic behavior

In order to catch the late time behavior of the two point correlation function, we need to
analytically continuate the Hankel functions around |kτ∗| � 1,

H(1)
ν (−kτ) =

1

π

[
−eiπνΓ(−ν)

(
−kτ

2

)ν
− iΓ(ν)

(
2

−kτ

)ν]
+ higher contributions .

The first term is suppressed as τν when τ � 1, therefore the leading order contribution at late
times to the mode function is given by

u(k, τ) =

√
1

2

H

∂tφ
2ν−

3
2

Γ(ν)

Γ(3
2)

1

a(τ)

√
−τ(−kτ)−ν . (4.66)

In this limit, (4.63) becomes

〈ζ(k1, τ)ζ(k2, τ)〉 =
(2π)5

2k3
1

22ν−3

(2π)2
H2

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

(
H
˙̄φ

)2
 .

The late time behaviour of the power spectrum is then captured by

Pζ =

22ν−3

(2π)2
H2

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

(
H
˙̄φ

)2
 . (4.67)

The leading order contribution to the power spectrum is given when ν = 3/2. Then 4.67 reduces
to

Pζ =
H2

(2π)2

(
H
˙̄φ

)2

=
H2

8M2
Plε

=
V

24M4
Plε

. (4.68)

This is the usual result as found in [13],[14].
In order to study the behavior at the earliest moments during inflation, have have to expand

the mode functions (4.58) for the limit in which |kτ | � 1. In this limit (4.58) behaves as

uν(k, τ) ≈ He−ikτ

2π
√

4kε

(
1− i4ν

2 − 1

8kτ
− (4ν2 − 1)(4ν2 − 9)

2!(8kτ)2
− ...

)
. (4.69)

The power spectrum in this limit is given by

P (τ, k) =
H2

(2π)3

1

4ε

(
2ν + 1

2(2ν − 1)
+ (2ν + 1)2 (4ν2 − 9)2

64k2τ2
+ ...

)
. (4.70)

Again, when taking the limit of ν = 3/2 we find that (4.70) reduces to (4.68). Note that in the
last step, we used the following relation in order to get rid of the 1/τ suppression in the second
term in (4.69)

τ = − 1

H(τ)

(
ν − 1

2

)
. (4.71)

At the beginning of inflation, we have that τ is pushed to −∞, therefore the second term in
(4.69) is suppressed as limτ→−∞ 1/τ2.
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4.4. Scalar two point correlation function

4.4.2 Spectral index and running

Before we calculate the spectral index, let us first begin with a formal definition of the spectral
index or spectral tilt. The spectral tilt is given by (ns − 1) and the spectral index is defined
to be ns. These quantities are defined as the logarithmic momentum derivative of the power
spectrum. The power spectrum can be split into a scale-independent factor and a part that
captures the scale-dependence

Pζ(k) = Pζ(k∗)

(
k

k∗

)n(k)

, (4.72)

here k∗ is defined to be the moment when the modes become super Hubble size and n(k) is a
function that depends on the momentum k and n(k)� 1. We can bring n(k) down by taking
the logarithm of it. If we then expand this function n(k) around k∗ we find

ln(Pζ(k)) = ln(Pζ(k∗) + n(k∗) ln

(
k

k∗

)
+

1

2

dn(k)

d ln(k)

∣∣∣∣
k=k∗

ln

(
k

k∗

)2

+O

(
ln

(
k

k∗

)3
)
. (4.73)

Using the usual definition of the spectral index and its first derivative, which we call the
running of the potential, αs we can rewrite (4.73) as

ln(Pζ(k)) = ln(Pζ(k∗) + (ns − 1) ln

(
k

k∗

)
+

1

2
αs ln

(
k

k∗

)2

+O

(
ln

(
k

k∗

)3
)
. (4.74)

To calculate the leading order contributions in slow-roll parameters to the spectral index, it
is sufficient to start from the leading order power spectrum, (4.68),

(ns − 1) =
d ln(Pζ)

d ln(k)
=
d ln(V )

d ln(k)
− d ln(εv)

d ln(k)

= −
M2(∂φV )2

V 2
−
∂φV

3H2

ε̇

Hε
= −2ε− η ,

(4.75)

In order to calculate the higher order contributions to the spectral index, we need to start from
taking derivatives of the exact expression for the power spectrum, (4.67),

(ns − 1) =
d ln(Pζ)

d ln(k)
=

d

d ln(k)
ln

22ν−3(2π)2

H2

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

(
H

φ̇

)2


=
d

d ln(k)
ln

22ν−3(2π)2

H2

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

+
d

d ln(k)
ln

[(
H

2π

)2(H
φ̇

)2
]
.

In order to keep this calculation orderly, we split the calculation in the calculation of two terms
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and calculate them separately. The contribution from the “first”-term is

d

d ln(k)
ln

22ν−3(2π)2

H2

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

 =

=
d

d ln(k)
[(2ν − 3) ln(2) + 2 ln(Γ(ν) + (1− eν) ln(1− εv)]

=
1

H
(−2ε̇− η̇) (−2 + γE + log(2)) +O(ε3, ε2η, εη2, η3, ...) ,

here γE is the Euler-gamma constant which can be approximated as γE ≈ 0.57721.
To expand the second-term to second order in slow-roll parameters, we also need to expand

the Friedmann equations to the next to leading order. At leading order he φ̇ term dominates the
background equation (2.43) and φ̈ is neglected. When calculating the second order corrections to
the spectral index, we cannot neglect this term anymore. Its contributions can be approximated
as φ̈ ≈ Hφ̇(ε− ηv). With this correction, (2.43) becomes

(3− ε+
1

2
η)Hφ̇+ V ′ = 0 . (4.76)

Also, the derivative to the next to leading order in slow-roll parameters is given by

d log(k)

dt
=
d log(aH)

dt
=
ȧ

a
+
Ḣ

H
= H

(
1 +

Ḣ

H

)
= H(1 + ε) . (4.77)

Then the contribution of the second term is given by

d

d ln(k)
ln

[(
H

2π

)2(H
φ̇

)2
]

=
2ε

1− ε
− ε̇H

(1− ε)Hε

= − 2ε

1− ε
− η

1− ε
≈ −2ε− η − 2ε2 − εη .

(4.78)

Combining both results, we find the following expression for the spectral index to second order
in slow-roll parameters

(ns−1) = −2ε−η−2ε2− εη− 1

H
(2ε̇+ η̇) (−2 + γE + log(2)) +O(ε3, ε2η, εη2, η3, ...) . (4.79)

Following the definition of the running, (4.74), we can also calculate the leading order running
of the potential,

αs ≡
d(ns − 1)

d ln(k)
= −2εη − ηξ(1) . (4.80)
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4.5 Tensor two point function

So far, our main focus was on the scalar degrees of freedom inside our metric, however, there
are also tensorial degrees of freedom. With the tensor power spectrum Pt, we can determine
the tensor to scalar ratio in the CMB. As we will see, this will provide a bound on the value
for ε, which will be the starting point of the next chapter.

The tensor degrees of freedom are parametrized in our gauge by the transverse traceless
quantity γ̂ij . The cubic action for γ̂ij is given by

Sgr[γ̂ij ] =
M2

Pl

8

∫
d3x dτ a2

[
(∂τ γ̂ij)

2 − (∇γ̂ij)2
]
. (4.81)

Following the usual formula for canonical momentum, we find that the canonical momentum of
the graviton is given by

π̂ij =
δSgr

δ(∂τ γ̂ij)
=
M2

Pl

4
a2∂τ γ̂ij . (4.82)

The proper canonical quantisation is then given by[
γ̂ij(x, τ), π̂kl(y, τ)

]
=
i

2

[
P̂ilP̂jk + P̂ikP̂ik − P̂ijP̂kl

]
δ(3)(x− y) , (4.83)

here P̂ij ≡ δij − ∂i∂j/∇2 is the transverse projection operator. Since the graviton has two
polarizations, usually denoted by + and ×, and both polarizations are governed by the same
equation of motion, it is convenient to decompose the gravition in the following way [6]

γ̂ij(x) =
2

MPl

∑
α=+,×

∫
d3k

(2π)3

[
h(k, τ)εαij âkαe

ikx + h∗(k, τ)ε†αij â
†
kαe
−ikx

]
. (4.84)

here âkα and â†kα are the annihilation and creation operators where âkα|Ω(t0)〉 = 0. They
following the following commutation relation[

âkα, â
†
k′α′

]
= (2π)3δα,α′δ

(3)(k− k′), [âkα, âk′α′ ] = 0,
[
â†kα, â

†
k′α′

]
= 0 , (4.85)

and εαij are the two graviton polarization tensors, which characterise a massless spin two particle.
Varying (4.81) with respect to γ̂ij we find that the equations of motion for the mode functions

h(τ, k) are given by (
∂2
τ + k2 − a′′

a

)
(ah(τ, k)) = 0 . (4.86)

The solutions that follow from (4.86) and the Wronskian condition are given by

h(τ, k) =
1

a

√
−πτ

4
H(1)
ν , ν =

3− ε
2(1− ε)

. (4.87)

Then the power spectrum for the tensor perturbations can be defined in a similar fashion to
the scalar power spectrum, then

Pgr(k) =

[
k3

2π2
h(k, τ∗)h

∗(k, τ∗)

]
. (4.88)
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Then the exact expression for the gravition power spectrum is then given by

Pgr(k, τ) =
H2

π3MPl
2

3−ε
1−ε Γ

(
3− ε

2(1− ε)

)2

(1− ε)
2

1−ε

(
k

H

)− 2ε
1−ε

. (4.89)

4.5.1 The Lyth bound at the end of inflation

Similar to the spectral tilt the comoving curvature perturbation, the spectral tilt for the graviton
is given by

(nt − 1) ≡ d ln(Pgr)

d ln(k)
. (4.90)

At leading we obtain (nt − 1) = −2ε. Therefore, the slow-roll parameter ε can be related to
both the scale dependence of the power spectra and the presence of physical perturbations.

In theory, it is possible to measure at some point the ratio between the tensor and scalar
perturbations. In [17] a lower bound was derived on the variation in the inflaton field during
inflation in terms of the ratio r between tensor and scalar perturbations generated during
inflation,

r ≡ Pt
Pζ
≈ 16ε . (4.91)

So far, this ratio has not been measured yet. The constraint this gives on the value of ε is called
the Lyth bound. The current constraints on r and ε are r < 0.07 and ε < 0.01.
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4.6 Scalar three point correlation function

In this section we calculate the three point correlation function for ζ. In literature this has
already been done at leading order in slow-roll parameters, our goal of this section is to produce
the next to leading corrections. When performing this calculation in the usual way, we will
stumble onto left over time dependence. We do not expect this time dependence since ζ should
freeze out after it leaves the horizon, hence all correlators of ζ should do the same. We explore
this left over time dependence with a toy model and then will calculate the correct next to
leading order bispectrum.

The three point correlation function is a bit more involved to calculate compared to the two
point function. This is because we now need to expand the evolution operators of the vacuum
in-in states. For a general operator, the evolution can be realized by a unitary transformation,
i.e.

〈Q(t)〉 =

〈[
T̄ exp

(
i

∫ t

−∞(1−iε)
dt HI(t)

)]
Q̂I(t)

[
T exp

(
−i
∫ t

−∞(1+iε)
dt HI(t)

)]〉
. (4.92)

Here T and T̄ refer to time ordering and anti-time-ordering, the subscript I refers to the fact
that we are calculating the expectation values of the operators in the interaction picture. Using
this equation, the 3-point correlation function for ζn(k) in leading order of slow-roll parameters
is then given by

〈ζ(k1)ζ(k2)ζ(k3)〉 = −i
∫ τ

−∞(1±iε)
dτ ′ a(τ ′)

〈[
ζ(k1, 0)ζ(k2, 0)ζ(k3, 0), HI(τ

′))
]〉
. (4.93)

Just as the two point function could be written in terms of the Power spectrum, a momentum
conserving delta function and a scaled out momentum factor by assuming statistical isotropy,
the three point function can be written in a similar way. Only in this case, we write it in terms
of a Bispectrum or a Shape function instead of a Power spectrum. The Bispectrum and Shape
are defined by

〈ζ(k1)ζ(k2)ζ(k3)〉 ≡ (2π)7δ(3)(k1 + k2 + k3)B(k1, k2, k3)

≡ (2π)7δ(3)(k1 + k2 + k3)
S(k1, k2, k3)

(k1k2k3)2
.

(4.94)

When studying the symmetries of three point correlation function, the Bispectrum definition is
more convenient to use. When studying the momentum dependence of the momentum triangle,
the shape is more convenient to use.

In order to calculate three point correlation functions, we need the part of the interaction
Hamiltonian that has an odd number of ζ fields. Since S1 is a full boundary term that does
not give a contribution, the leading order contributions will come from S3. In [13] it was noted
at cubic order in perturbations, we have Hint = −Lint. A formal prove of this statement is the
following.
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A toy model

Consider a Lagrangian density containing an arbitrary potential and an additional term with
three time derivatives

L =
1

2
ζ̇2 − V (ζ, ∂ζ) + αζ̇3 . (4.95)

The canonical momentum corresponding to ζ is given by

π =
δL
δζ̇

= ζ̇ + 3αζ̇2 . (4.96)

This relation can be inverted to find a relation for ζ̇,

ζ̇ = π − 3αζ̇2 . (4.97)

Calculating the Hamiltonian explicitly we find

H = πζ̇ − L

= π2 − 3αζ̇2 − 1

2

(
π2 + 9α2πζ̇2 − 6απζ̇2

)
− απ3 + V (ζ, ∂ζ) +O(ζ4)

=
1

2
π2 + V (ζ, ∂ζ)− απ3 +O(ζ4) .

Then from the inverted expression (4.97), it follows that

Hint = −απ3 − Vint,3(ζ, ∂ζ) +O(ζ4) = −Lint,3 +O(ζ4) . (4.98)

Notice that this works only if we write the quadratic term as function of π rather than ζ̇, as we
should since we are computing the Hamiltonian. This argument is therefore very general.

4.6.1 Analyzation of the cubic action

Before we calculate the bispectrum to the next order in slow-roll parameters, let us first analyze
the action. In order to obtain the action at cubic order in perturbations, one needs to expand
the action in terms of ζ. In the comoving gauge, this was done in the seminal work [13]. After
performing a number of partial integrations, the result obtained for S3 is given by

S3 =

∫
dt d3x

[
a3ε2ζζ̇2 − 2aε2ζ̇(∂ζ)(∂χ) + aε2ζ(∂ζ)2

+
a3

2
εη̇ζ2ζ̇ +

1

2

ε

a
∂ζ∂ψ(1)∂2ψ(1) +

ε

4
∂2ζ(∂ψ(1))2 + f(ζ)

δL2

δζ

]
,

(4.99)

here f(ζ2) has been defined as

f(ζ2) ≈ η

4
ζ2 +

1

H
ζ̇ζ +O(∂ζ) . (4.100)

This paper has been quoted many and many times in the past by numerous authors, therefore
let us use this action as the starting point of our discussion.
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4.6. Scalar three point correlation function

When studying (4.99), we note that the last term looks very compact, but after substitution
of f(ζ) it actually is inconveniently large to work with. Normally speaking, a term multiplying
the linear equations of motion of a field will not produce a contribution to any Feynman diagram
when it is evaluated on-shell. Therefore one naively can drop these terms when only interested
in terms that contribute to Feynman diagrams. However, there is one subtlety that has to
be kept in mind. The mode functions of ζ contain Hankel functions, and these can only be
expressed as analytic functions when the index, ν is half integer. One could argue that we can
approximate the mode functions as ν ≈ 3/2 and still would get the correct result at leading
orders in slow-roll parameter. This was done in [13]. However, this approximation of the mode
functions corresponds to the mode functions of a de Sitter space, and therefore only solve
the Quasi-de Sitter equation of motion approximately. Therefore, this term will give a finite
contribution when calculating this and cannot therefore not simply be omitted. In [13], these
terms were removed by means of a field shift of the form [13],

ζ → ζn + f(ζ2
n) , (4.101)

f(ζ2
n) ≈ η

4
ζ2
n +

1

H
ζ̇nζn +O(∂ζn) . (4.102)

Note that when performing a field shift, we will not be calculating correlation functions in terms
of ζ anymore but rather correlation functions in terms of ζn. While ζ is conserved outside of
the horizon, ζn is not. This means that ζn correlators will contain left over time dependence.
A second thing to note is the following; in order to get from (3.38) to (4.99), numerous partial
integrations must have been performed. This can been seen to the fact that δL/δζ contains two
derivatives on one zeta. Since no terms starting from (3.38) have this property, these terms can
only be produced by means of partial integration.

To gain a better understanding about the time dependences and the field shift of ζ and ζn,
let us study a toy model where after performing partial integration, we can subtract a term
that scales with the linear equations of motion, by means of a field shift.

A Toy model

Let us construct a toy model based on the action (3.38) and (4.99). We would like to start
with a term similar to one in (3.38) and then, by means of partial integration, we would like to
construct in it a term similar to one found in (4.99) that only has one or both time derivatives
acting on a single ζ. Since we are interested in studying the spurious time dependences, let us
therefore consider the following toy model-action,

S =

∫
dt ε2a3ζζ̇2 =

∫
dt
[
∂t(a

3ε2ζ2ζ̇)− ζ∂t(a3ε2ζζ̇)
]
, (4.103)

here the dots denote time derivatives ∂t. As already shown in (4.103), we can move the time
dependence from one of the ζ fields to, a(t), ε(t) or another ζ(t) by means of partial integration.
In doing so, we can produce higher order slow-roll parameters, starting from η, and we can create
spurious divergences in the bispectrum when τ → 0. To study these cases separately, let us
first study a model in which ε = fixed. Such a model corresponds to a de Sitter spacetime. Here
we only consider the spurious time divergences at the same order of slow-roll parameters, and
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4.6. Scalar three point correlation function

afterwards we consider the case in which ε has a time dependence. Also, in every calculation of
any bispectrum term, similar to what is usually done in literature, we approximate the Quasi-de
Sitter mode functions by the de Sitter mode functions, i.e. by approximating ν ≈ 3/2.

Using H3 = −L3 and assuming that ε is fixed, we obtain the following contribution to the
bispectrum produced by the left hand side of (4.103)

〈ζ3〉′ = − H4ε

32ε2k3
1k

3
2k

3
3

k3
1 + 2k1k

2
2 + k2

2(k2 + k3) + k2
1(2k2 + k3)

k2
t

+ 2 perm.

= − H4ε

32ε2k3
1k

3
2k

3
3

 1

kt

∑
i<j

k2
i k

2
j +

k1k2k3

k2
t

∑
i<j

kikj

 , (4.104)

here we defined kt =
∑3

i=1 ki and the prime on the brackets of the correlation function denote
the trunctation of a momentum conserving delta function and a factor of (2π)3. When working
out the brackets on the right hand side of (4.103) we obtain the following four terms∫

dτ

[
∂τ
(
a2ε2ζ2ζ ′

)
− a3ε2

(
1

a
ζ(ζ ′)2 + 3Hζ2ζ ′ + ζ2∂τ

(
1

a
∂τζ

))]
. (4.105)

Note that we switched to conformal time in this expression and the primes denote again ∂τ .
Another important thing to note is that the last two terms in (4.105) are both in the de Sitter
equations of motion. Calculating the contributions to the bispectrum in the same order as given
in (4.105), we obtain

〈ζ3〉′ ⊇ H4

32ε2k3
1k

3
2k

3
3

2εk2
3 + perm. , (4.106)

〈ζ3〉′ ⊇ H4ε

32k3
1k

3
2k

3
3ε

2

(k3
1 + 2k1k

2
2 + k2

2(k2 + k3) + k2
1(2k2 + k3)

k2
t

+ 2 perm. , (4.107)

〈ζ3〉′ ⊇− 6H4ε

32ε2k3
1k

3
2k

3
3

k2
3

(
k2

1 + (k2 + k3)(k2 + (1− γE)k3) + k1(k2 + (2− γE)k3)− k3kt log(−ktτ)
)

kt

+ 2 perm. ,

(4.108)

and

〈ζ3〉′ ⊇− 2H4ε

32ε2k3
1k

3
2k

3
3

(
2(k1 + k2)(k2

1 + k1k2 + k2
2 +

(
(7− 3γE)k2

1 + (13− 6γE)k1k2

+(7− 3γE)k2
2

)
k3 − (−7 + 6γE)(k1 + k2)k2

3 + (2− 3γE)k3
3 − 3k3k

3
t log(−ktτ)

)
.

+ 2 perm. .

(4.109)

Note that when we add (4.106)-(4.109) we obtain (4.104). Another very important fact is the
following. When we add (4.108) and (4.109), we find that the time dependence, τ , in both
contributions cancel, i.e. they are spurious time dependences. Adding the “spatial” kinetic
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term of the action, the entire contribution vanishes. Therefore we conclude, that when we use
the de Sitter solutions to the modefunctions, the terms multiplying the de Sitter equations of
motion will formally give a zero contribution to the bispectrum.

Let us now turn on the time dependence of ε. We will assume that ε varies slowly in time.
Then after partial integration, the right hand side of (4.103) will now contain an additional
term,∫

dτ

[
∂τ
(
a2ε2ζ2ζ ′

)
− a3ε2

(
3Hζ2ζ ′ +

1

a
ζ(ζ ′)2 + ζ2∂τ

(
1

a
∂τζ

)
+ 2ηHζ2ζ ′

)]
. (4.110)

Naively, the extra contribution to the bispectrum the last term produces in (4.110) compared
to (4.105) is given by

〈ζ3〉 ⊇ H4εη

16ε2k3
1k

3
2k

3
3

(−1 + γE + log(ktτ))

3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

 . (4.111)

Again, we find a time-dependent part in the bispectrum. Only this time it is not that obvious
that this time dependent part is spurious when τ → 0. One has to realize however that we
have been treating H, ε and all other slow-roll parameters as constants under integration.
When assuming that these variables still contain some very small time dependence, treating
them as constants under integration would produce a mismatch in the results when partially
integrating the action. Therefore we should and must consider subleading corrections to these
slowly varying parameters. For this reason, let us study for example the first slow-roll parameter
ε. When assuming ε varies slowly in time, one can approximate ε by

ε(t) ≈ ε(t∗) + (t− t∗)ε̇(t∗) + ...

≈ ε∗ −
1

H
log

(
τ

τ∗

)
ε∗η∗H∗ + ...

≈ ε∗ − log

(
τ

τ∗

)
ε∗η∗ + ... .

(4.112)

Using this approximation, one obtains the following form for the left hand side of (4.103)

S =

∫
dt ε2a3ζζ̇2 ≈

∫
dt

(
ε2∗ − 2ε2∗η∗ log

(
τ

τ∗

))
a3ζζ̇2 (4.113)

The contribution to the bispectrum that the additional term in (4.113) produces compared to
(4.103) is given by

〈ζ3〉 ⊇ H4

32ε2∗k
3
1k

3
2k

3
3

2ε∗η∗
k2
t

k2
t

3∑
i 6=j

k2
i kj(−1 + 2γE + 2 log(−ktτ∗)) +

3∑
i 6=j

k3
i k

2
j (γE + log(−ktτ∗))

 .

(4.114)

Note that this term is now fully time independent again. Using this approximation and partially
integrating (4.113), we obtain∫

dt

[
∂τ
((
ε∗ − 2ε2∗η∗ log (τ/τ∗)

)
a2ζ2ζ ′

)
− 2Hε2∗η∗

τH
a2ζ2ζ ′ − ε∗ζ ′∂τ (a2ζζ ′)

]
. (4.115)
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Note that in the third term, we can approximate −1/(Hτ) ≈ a(τ) giving us the term similar to
(4.110) again. The extra contribution to the bispectrum coming from the additional boundary
term is given by

〈ζ3〉 ⊇ H4ε∗η∗
32ε2k3

1k
3
2k

3
3

log

(
τ

τ∗

) 3∑
i=1

k3
i . (4.116)

This term now cancels exactly the time dependence in (4.111) making the contribution to the
bispectrum time independent again.

There are a couple of important things that we have learned from this model. The first thing is
that when one approximates the Quasi-de Sitter wave functions by the de Sitter wave functions,
the contribution of terms multiplying the Quasi-de Sitter equations of motion will be non-zero.
One can show that only the contribution from terms multiplying the de Sitter equations of
motion will produce a zero result, leaving us with contributions that appear from higher order
slow-roll corrections. Therefore these higher order slow-roll terms should be pulled out of the
f(ζ)δL/δζ terms in the action when approximating the Quasi-de Sitter mode functions by the
de Sitter ones. The second important thing to note is that higher order slow-roll parameters
enter the game when partially integrating the action. When a time derivative is partially
integrated onto a slow-roll parameter or H, a time divergence in the bispectrum appears. Total
boundary terms together with the slowly varying parameter approximation play a crucial role
in controlling and canceling these time divergences. This prescription in dealing with the time
divergences is one of the (new) fundamental results of this thesis.

Subtleties concerning the field shift

In [19] and [20], it is noted that the derivation of the η contribution to the bispectrum is
somewhat misleading, in the sense that (4.99) does not produce the right value for (ns − 1)
using the consistency relation for the bispectrum without this field shift. The reason for this
is that all boundary terms in the derivation of the result in [13] were omitted. Since we just
learned from the toy model that we cannot simply omit all boundary terms, we have to study
these boundary terms better. All temporal boundary terms that were omitted are given by [20]

SBoundary3 =

∫
dt d3x

d

dt

[
−9a3Hζ3 +

a

H
ζ(∂ζ)2 − 1

4aH3
(∂ζ)2∂2ζ − aε

H
ζ(∂ζ)2

− εa3

H
ζζ̇2 +

1

2aH2
ζ
(
∂i∂jζ∂i∂jψ

(1) − ∂2ζ∂2ψ(1)
)

−ηa
2
ζ2∂2ψ(1) − 1

2aH
ζ(∂i∂jψ

(1)∂i∂jψ
(1) − ∂2ψ(1)∂2ψ(1))

]
.

(4.117)

When using the quasi-de Sitter mode functions, all terms that do not have exactly one deriva-
tive on a ζ perturbations will formally produce a zero contribution to the bispectrum. When
approximating the mode functions by the de Sitter mode functions, all terms that have two or
more derivatives acting on ζ will formally produce a zero contribution to the bispectrum.

There is one term that is important when one calculates the η-contribution to the bispectrum,
i.e. d

dt

[
−ηa

2 ζ
2∂2ψ(1)

]
. In order to calculate its contribution, it is more convenient to work in
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conformal time, τ , rather than ‘normal’ time, t. In conformal time, the part of this boundary
term that produces a non-zero contribution is given by (4.126)

−
∫

dt
d

dt

(
εηa3

2
ζ2ζ̇

)
= −

∫
dτ

d

dτ

(
εηa2

2
ζ2ζ ′

)
= −

(
εηa2

2
ζ2ζ ′

)
.

(4.118)

The contribution this term produces to the bispectrum is given by

〈ζ(k1, τ)ζ(k2, τ)ζ(k3, τ)〉′η =i
εη

2
a2(τ) u(τ, k1)u(τ, k2)u(τ, k3)u∗(τ, k1)u∗(τ, k2)u∗(τ, k3)

+ 5 perm. + c.c.,
(4.119)

here perm. refers to 5 cyclic permutations of k1, k2 and k3 and c.c. refers to complex conjugate.
Thus the contribution to the bispectrum we obtain is

〈ζ(k1, τ)ζ(k2, τ)ζ(k3, τ)〉′η =
H4

16ε2
η

2

(k3
1 + k3

2 + k3
3)

(k1k2k3)3
. (4.120)

This result is equivalent to the one found in [13].
When performing the field shift as proposed in [13], this boundary will cancel against another

boundary term that we produce during partially integrating the shifted quadratic action to
produce terms proportional to δL/δζ,

S2[ζ → ζn + f(ζn)] =

∫
d4x

[
e3ρ 1

2

φ̇2

ρ̇2
ζ̇2 − e2ρ∂iζ∂jζ

]

=

∫
d4x

[
e3ρ 1

2

φ̇2

ρ̇2
ζ̇2
n − e2ρ∂iζn∂iζn + e3ρ φ̇

2

ρ̇2

(
ζ̇nḟn − e−2ρ∂iζn∂ifn

)]

=

∫
d4x

[
e3ρ 1

2

φ̇2

ρ̇2
ζ̇2
n − e2ρ∂iζn∂iζn − f(ζ)

{
d

dt

(
e3ρ φ̇

2

ρ̇2
ζ̇n

)
− eρ φ̇

2

ρ̇2
∂i∂iζn

}]
+

+

∫
d4x

d

dt

[
2a3εfnζ̇n

]
=

∫
d4x

[
e3ρ 1

2

φ̇2

ρ̇2
ζ̇2
n − e2ρ∂iζn∂iζn − f(ζn)

δL2

δζ

]
+

∫
d4x

d

dt

[
2a3εfn(ζn)ζ̇n

]
.

(4.121)

Due to this boundary term, the calculation of [13] is consistent with the calculation when we
do not perform a field shift. Then, the action we should use to calculate our bispectrum with
is given by

S3 =

∫
dt d3x

(
a3ε2ζζ̇2 − 2aε2ζ̇(∂kζ)(∂kψ

(1)) + aε2ζ(∂ζ)2 + f(ζ)
δL2

δζ

∣∣∣∣
dS

+
a3

2
(εη̇ − ε2ηH)ζ2ζ̇ +

1

2

ε

a
∂kζ∂kψ

(1)∂2ψ(1) +
ε

4
∂2ζ(∂ψ(1))2

)
+

+

∫
dt d3x

d

dt

(
−εη

2
a3ζ2ζ̇ + a3ε2ζ2ζ̇ + ...

)
,

(4.122)
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here the dots denote boundary terms that do not give any contribution to any Feynman diagram.

The interaction Hamiltonian of interest

Depending how much people enjoy partially integrating the cubic order action, there are multiple
forms one can use for the interaction Hamiltonian [13],[19],[20]. We are however interested in
the form presented in [13] with the correction of the boundary terms and all terms that do not
appear in the Quasi-de Sitter equations of motion pulled out of δL/δζ. This form of the action
turns out to be the most convenient one when comparing the results of the bispectrum with
the results from next chapter. The interaction Hamiltonian we shall use is given by

H3 =−
∫

dt d3x

(
a3ε2ζζ̇2 − 2aε2ζ̇∂kζ∂kψ

(1) + aε2ζ(∂ζ)2 + f(ζ)
δL2

δζ

∣∣∣∣
dS

+
a3

2
(εη̇ − ε2ηH)ζ2ζ̇ +

1

2

ε

a
∂kζ∂kψ

(1)∂2ψ(1) +
ε

4
∂2ζ(∂ψ(1))2

)
+

∫
dt d3x

d

dt

[εη
2
a3ζ2ζ̇ − a3ε2ζ2ζ̇ + ...

]
.

(4.123)

4.6.2 The leading order bispectrum

In order to calculate the bispectrum, we take the leading order corrections in slow-roll parame-
ters to the mode functions, i.e. we approximate ν as ν ≈ 3/2. As mentioned before, this choice
for ν corresponds to the de Sitter mode functions for ζ. Since the corrections to the mode
functions should be at order, error ∼ O(η) � 3/2, this approximation holds at leading orders
in slow-roll parameters. In this limit the mode function of ζ reduce to

uk(τ) = u(k, τ) =
iH√
4εk3

(1 + ikτ)e−ikτ . (4.124)

The leading order contributions of the three point function, are being produced by the following
parts of the interaction Hamiltonian

H3 = −
∫

dt d3x
(
a3ε2ζζ̇2 − 2aε2ζ̇∂kζ∂kψ

(1) + aε2ζ(∂ζ)2
)

(4.125)

+

∫
dt d3x

d

dt

[εη
2
a3ζ2ζ̇ + ...

]
. (4.126)

(4.125) produces the three point function proportional to ε. Their contribution to the bispec-
trum is given by [13]

〈ζ(k1, τ)ζ(k2, τ)ζ(k3, τ)〉′ ⊇ H4
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2
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) , (4.127)

here the prime on the brackets of the correlation function denote the truncation of a factor of
(2π)3 and a momentum conserving delta function. Note that when working out the summations,
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both terms in the summation of
∑3

i 6=j

(
k2
i kj + 4

kt
k2
i k

2
j

)
will produce six terms. A full derivation

of this contribution is given in appendix C.1.
The second contribution at this order in slow-roll parameters is produced by (4.126). Its

contribution is given by (4.120)

〈ζ(k1, τ)ζ(k2, τ)ζ(k3, τ)〉′ ⊇ H4

16ε2
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3
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.

This result is equivalent to the result as found in [13] where a field shift was used of the form

ζ → ζn + f(ζ2
n)

f(ζ2
n) ≈ η

4
ζ2
n +

1

H
ζ̇nζn +O(∂ζn).

When converting a ζn correlation function back into a ζ correlation function, we have to take
into account the amount of time the different modes have evolved with respect to each other
before they are converted to ζ. They should be converted back when the last mode leaves the
horizon, k∗ = a(τ∗)H∗. Since the correlators are invariant under permutations of k1, k2 and k3,
we are free to choose k∗ = k3. Also during the conversion, we will pick up a superhorizon part
due to the second order relation between ζ and ζn, then

〈ζ(k1)ζ(k2)ζ(k3)〉 = 〈ζn(k1)ζn(k2)ζn(k3)〉+ 〈ζn(k1)ζn(k2) : ζn(k3)ζn(k3) :〉+ 5 perm.
(4.128)

It is this superhorizon part in [13] that produced the η contribution to the bispectrum.

4.6.3 The next to leading order bispectrum

In the next chapter we will study a certain limit of inflation where the contributions multiplying
higher order slow-roll parameters will play a dominant role. If we are to compare those results
to the results in the comoving gauge, we have to compute these higher order corrections to the
bispectrum. For this reason, we shall treat the calculation of the η̇ contribution more explicitly,
afterwards we state all other terms of order ε2 and εη that appear in this action. First, we have
to note the following; higher order corrections could be the appearance of higher order slow-roll
parameters, for example η, ξ(1), terms that multiply more slow-roll parameters or both.

As discussed in the previous sections, there are two methods to calculate the bispectrum, one
where we perform a field shift and fix the time dependence at the end, and one where we do
not use a field shift but take really good care on all the boundary terms and variation of the
slow-roll parameters. We shall perform both calculations and check the results. The term of
the cubic action that will produce the η̇ contribution is given by

S3 ⊇
∫
dτ d3x

(
a3

2
εη̇ζ2ζ ′

)
. (4.129)

Note again that we have converted the expression to conformal time. The contribution to
truncated bispectrum is then given by

〈ζn(k1)ζn(k2)ζn(k3)〉η̇ =

= i [Πiui(τend)]

∫ τend

−∞(1±iε)
dτ
[
a3εη̇u∗(k1, τ)u∗(k2, τ)∂τu

∗(k3, τ) + 2 perm.
]

+ c.c. ,
(4.130)
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here we used Wicks theorem to contract the different mode functions and the complex conjugate
is produced by the commutator in (4.93). Wicks theorem produces six permutations, but since
every term shows up twice, we can cancel the factor 1/2 and just write two permutations.

〈ζn(k1)ζn(k2)ζn(k3)〉η̇ =

= i [Πiui(τend)]

∫ τend

−∞(1+iε)
dτ
[
a3εη̇u∗(k1, τ)u∗(k2, τ)∂τu

∗(k3, τ) + 2 perm.
]

+ c.c.

=
iH3

64ε3k3
1k

3
2k

3
3

εη̇

∫ τend

−∞(1+iε)
dτ

[
−1

τ3
(τk2

3 − i(k1 + k2)k2
3τ

2 − k1k2k
2
3τ

3)eiktτ + 2 perm

]
+

−iH3

64ε3k3
1k

3
2k

3
3

εη̇

∫ τend

−∞(1−iε)
dτ

[
−1

τ3
(τk2

3 + i(k1 + k2)k2
3τ

2 − k1k2k
2
3τ

3)e−iktτ + 2 perm

]
,

here we defined kt ≡ k1 + k2 + k3. Since our regularization scheme makes sure that our
perturbation theory does not produce a contribution at the initial state, we will put both of
the integrals into the same integral,

〈ζn(k1)ζn(k2)ζn(k3)〉′εη̇ =

=
iH3

64ε3k3
1k

3
2k

3
3

εη̇

∫ τend

−∞
dτ

[
k2

3

τ2
(−2i sin(ktτ)) +

2

τ
i(k1 + k2)k2

3 cos(ktτ) + 2k1k2k
2
3i sin(ktτ) + 2 perm

]
=

H4

16ε2k3
1k

3
2k

3
3

η̇

2H

[
CosInt(ktτend)(k

3
1 + k3

2 + k3
3)− (k2

1 + k2
2 + k2

3)
sin(ktτend)

τend
+ k1k2k3 cos(ktτend)

]
,

here CosInt(x) is the cosine integral,
∫ x
−∞ dt cos(t)/t. At the end of inflation, we have kτend � 1.

Then all three terms in the expression will behave differently. The last terms behave trivial,
cos(ktτend) ≈ 1 and sin(ktτend)

τend
= kt. The CosIntegral however behaves a little bit different and

analytical continuation is needed around small values of ktτend. In this region, the CosIntegral
has the following behavior

CosInt(ktτend) ≈ γE + log(−ktτend)−
k2
t τ

2
end

4
+ O((ktτend)

4). (4.131)

Substituting this into our equations we find that the contribution to the ζn-bispectrum is given
by

〈ζ(k1)ζ(k2)ζ(k3)〉′ ⊇

⊇ H4

16ε2k3
1k

3
2k

3
3

η̇

2H

(−1 + γE + log(−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

 , (4.132)

here we have defined τend ≡ τ∗, with τ∗ is a few e-folds after the last mode leaves the horizon.
As discussed earlier, we are free to choose τend = − 1

k3
.

Let us now study the calculation of this η̇ term when we do not perform a field shift. As it
turns out, the integral we need to calculate when not doing a field shift is very similar, we can
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see this by expanding η around τ∗ in the action

S3 ⊇
∫
dτ d3x

(
a3

2
εη̇ζ2ζ ′

)
≈
∫
dτ d3x

a3

2

(
ε∗ −

ε̇∗
H

log

(
τ

τ∗

))
d

a dτ

(
η∗ −

η̇∗
H∗

log

(
τ

τ∗

))
ζ2ζ ′

≈ −
∫
dτ d3x

a2

2

ε∗η̇∗
Hτ

ζ2ζ ′,

(4.133)

here we approximated −1/Hτ ≈ a(τ) giving us our original integral back. Note that ε̇ = Hεη is
one order higher in slow-roll parameters, therefore we will not be considering this contribution.
Also, note that we actually did not need to expand the slow-roll parameters, since due to the
expansion they are self consistent and we could just have used η(t) and η̇. The contribution to
the bispectrum coming from this term is then given by

〈ζ(k1)ζ(k2)ζ(k3)〉′ ⊇

⊇ H4

16ε2k3
1k

3
2k

3
3

η̇∗
2H

(−1 + γE + log(−ktτ))
3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

 , (4.134)

The subtle difference between (4.134) and (4.132) is that (4.134) still contains time dependence
while (4.132) does not. Just like we have seen in our toy model, to remove this time dependence,
we have to use the boundary term given by (4.126) [20] and use it in the same way as we did
in our toy model 4.6.1

S ⊇
∫

dt d3x
d

dt

[
−εη

2
a3ζ2ζ̇ + ...

]
⊇
∫
dτ d3x

d

dτ

[
− ε

2

(
η∗ −

η̇∗
H∗

log

(
τ

τ∗

))
a2(τ)ζ2ζ ′

]
≈
∫
dτ d3x

d

dτ

[
−
(
ε∗η∗

2
− ε∗η̇∗

2H∗
log

(
τ

τ∗

))
a2ζ2ζ ′

]
.

(4.135)

The contribution to the bispectrum this term produces is given by

〈ζ(k1)ζ(k2)ζ(k3)〉′ ⊇ H4

16ε2

(
η∗ −

η̇∗
2H∗

log

(
τ

τ∗

))
k3

1 + k3
2 + k3

3

k3
1k

3
2k

3
3

. (4.136)

Just as we have seen in our toy model, when adding this boundary term contribution (4.140)
with the dynamical term contribution (4.134) we note that the time dependence gets canceled.
Again we obtain the same result as the one obtained when using a field shift, i.e. we find
(4.132).

As discussed in the toy model, by means of partial integration we can get higher order slow-roll
parameters. Let us therefore partially integrate (4.129) once more in time

S3 ⊇
∫
dτ d3x

(
a3

2
εη̇ζ2ζ ′

)
=

∫
dτ d3x

[
−a3

6
(3Hεη̇ + ε̇η̇ + εη̈) ζ3 + ∂τ

(
a3εη̇

6
ζ3

)]
. (4.137)
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The contribution of first term on the right hand side of (4.137) to the bispectrum is given by

〈ζ(k1)ζ(k2)ζ(k3)〉′ ⊇

⊇ H4

16ε2k3
1k

3
2k

3
3

(
η̇∗
2H

+
η̈∗

6H2
+
η∗η̇∗
6H

)(−1 + γE + log(−ktτ))
3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

 ,
(4.138)

Note again the time dependence in the correlation function. The time dependence of the η̇
contribution is annihilated by the boundary term (4.126). Note that when partially integrating,
this term is being produces by hitting the scale factor with the time derivative and therefore,
we do not have to make a slow varying parameter approximation. The time dependence in the
η̈ and ε̇η̇ contributions are being a annihilated by the expanding the boundary term in (4.137)
to ∫

dτ d3x ∂τ

[
1

6
a3

(
ε∗ −

ε̇∗
2H∗

log

(
τ

τ∗

))(
η̇∗ −

η̈∗
2H∗

log

(
τ

τ∗

))
ζ3

]
. (4.139)

Then the contribution to the bispectrum comming from this boundary term that annihilate the
time dependence in the η̈ and ε̇η̇ contributions to the bispectrum are then given by

〈ζ(k1)ζ(k2)ζ(k3)〉′ ⊇ − H4

16ε2

[
η̈∗

6H∗
log

(
τ

τ∗

)
+
η∗η̇∗
6H∗

log

(
τ

τ∗

)]
k3

1 + k3
2 + k3

3

k3
1k

3
2k

3
3

. (4.140)

Adding all contributions, we obtain

〈ζ(k1)ζ(k2)ζ(k3)〉′ ⊇

⊇ H4

16ε2k3
1k

3
2k

3
3

(
η̇∗
2H

+
η̈∗

6H2
+
η∗η̇∗
6H

)(−1 + γE + log(−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

 .
(4.141)

The leftover terms in the action which we did not use , but that still give a contribution to
the bispectrum give contributions at order ε2 and εη. The contribution to the bispectrum is at
order ε2 and is given by

〈ζ3〉 ⊇ H4

16ε2k3
1k

3
2k

3
3

ε2

2

 3∑
i=1

k5
i

k2
t

+
∑
i 6=j

k4
i kj
k2
t

− 2
∑
i<j<l

k2
i k

2
jkl

k2
t

− 2
∑
i 6=j

k2
i k

3
j

k2
t

 . (4.142)

A more explicit derivation of this calculation can be found in C.2. The contribution at order
εη is given by,

〈ζ3〉 ⊇ H4

16ε2∗k
3
1k

3
2k

3
3

ε∗η∗
k2
t

(−1 + γE + log(−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

 . (4.143)

The derivation of this term is similar to the one performed in the discussion of our toy model.
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4.7 Shape and a relation Non-Gaussianities

As mentioned earlier, the bispectrum contains information about the shape of the momentum
configuration in the modes. To estimate the non-Gaussianities, a number of templates can be
used to compare the shape with. We however, will make an estimate based on the Komatsu-
Spergel local form

〈Φ(k1)Φ(k2)Φ(k3)〉 ≡ (2π)3δ(3)(k1 + k2 + k3)f local
NL [2P (k1)P (k2) + perm.] ,

In this definition, the gravitational potential, Φ and the scalar curvature ζ are related by
Φ(k) ≡ −5

3ζ(k). For a scale invariant power spectrum, we have

P (k) ≈ H2

4εM2
Pl

1

k3
. (4.144)

Then (4.8) can be approximated as

〈Φ(k1)Φ(k2)Φ(k3)〉′ ≈ f local
NL

H4

16ε2M4
Pl

(k3
1 + k3

2 + k3
3)

(k1k2k3)3
. (4.145)

If we compare (4.145) to the other contributions to the bispectrum, we note that the momen-
tum configurations are sometimes different. Also, when taking specific configurations of the
momentum triangle, for example when we take one of the momenta very much smaller than the
others, we see that the numerical prefactor fNL can change. In general, there are three kinds of
shapes. These are the equilateral -, sqeezed - and Folded shapes. These peak when k1 ∼ k2 ∼ k3,

k1k2 k1k2

k3k3
k2 k1k3

Figure 4.1: The three possible momentum triangle which we consider, from left to right the equilateral,
the sqeezed and the folded shape.

k1 � k2 ∼ k3 or k1 � k2 ∼ k3 respectively. We can also split up the different kind of terms
one encounters in the bispectrum. In general, there are four kinds of terms a bispectrum can
contain, these are Local -, equilateral, folded - and left over terms. The local bispectrum is given
by

Bloc(k1, k2, k3) =
(k3

1 + k3
2 + k3

3)

(k1k2k3)3
, (4.146)

74



4.7. Shape and a relation Non-Gaussianities

the equilateral bispectrum is given by

Bequil(k1, k2, k3) =
1

k3
1k

3
2k

3
3

− 3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3,

 , (4.147)

the folded bispectrum is given by

Bfolded(k1, k2, k3) =
1

k3
1k

3
2k

3
3

6
3∑
i=1

k3
i − 6

∑
i 6=j

kik
2
j + 18,

 . (4.148)

and the left over terms are terms containing for example log(ktτ∗) terms. The local and equi-
lateral configurations are the most common. The folded configuration for the bispectrum can
be found when assuming for example that the universe is not in the Bunch-Davies vacuum but
in an exited state.

In order to estimate the order of non-gaussianities in our situation, we have to look at the
leading order contributions of the bispectrum. A general slow-roll model bispectrum can be
put in the form of (4.8) by taking it’s squeezed limit, this is because the squeezed bispectrum
shape coincides with the local shape. If we turn to the leading order bispectrum result [13], we
find that in the squeezed limit it is given by

η∗
8

+
ε∗
8

− 3∑
i=1

k3
i +

3∑
i 6=j

kik
2
j +

8

kt

3∑
i<j

k2
i k

2
j

→ η + 2ε

8

3∑
i=3

k3
i . (4.149)

Then comparing this result with (4.8) we note that the order of the Non-Gaussianities is given
by

fNL =
η∗
2

+ ε∗ . (4.150)

We can do the same thing to the η̇ contribution to the bispectrum, in the squeezed limit (4.141)
becomes

α

(−1 + γE + log(−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

kik
2
j + k1k2k3

→ α (−2 + γE + log (2))

3∑
i=1

k3
i ,

(4.151)

here α has been defined as α ≡ η̇∗
H + η̈∗

3H2 + η∗η̇∗
3H , we assumed that τ∗ = −1/ks since this mode

becomes super Hubble size last and that kt ≈ 2ks. Comparing this result with (4.8) we note
that the contribution to the Non-Gaussianities is given by

fNL =

(
η̇∗
H

+
η̈∗

3H2
+
η∗η̇∗
3H

)
(−2 + γE + log (2)) ∼ O(η∗ξ

(1)
∗ ) . (4.152)

Doing a similar calculation to the bispectrum scaling with ε2 and εη show

fNL = 2ε2 + 2ε∗η∗(−2 + γE + log(2)) ∼ O(ε2∗, ε∗η∗) . (4.153)
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4.7.1 Consistency relation

Beside the fact that we can use the squeezed limit as easy way to estimate the non-gaussianities
in a model, it has another important consequence. When one of the modes in the bispectrum
has a significant smaller momentum than the other two modes, this mode will have a significant
larger wavelength than the other two modes. We therefore refer to this mode as the long mode
and the other two the small modes. A mode with a longer wavelength leaves the horizon earlier
than modes with a smaller wavelength and thus freezes out earlier, hence the long mode will
act as a perturbation of the background for the two short modes. This changes the time when
the other two modes will become super Hubble size by a small amount, δt∗ ≈ − ζ

H , as a first
order correction.

Since ζ is a metric perturbation, taking on of the modes to be long in a (n+1)-point correlation
function can be seen as a coordinate transformation of a n-point correlation function of ζ, i.e.

〈ζs(x1) · ... · ζs(xn)|ζl(z)〉 = 〈ζ̃s(x1) · ... · ζ̃s(xn)〉 , (4.154)

here ζ̃ is the shifted field, and the subscripts s and l refer to short and long modes respectively.
We can make this statement more explicit. When multiplying both sides with ζL from the left
and take the average we find

〈ζl(x)〈ζs(x1) · ... · ζs(xn)|ζl(z)〉〉 = 〈ζl(x)〈ζ̃s(x1) · ... · ζ̃s(xn)〉〉 . (4.155)

If we assume that this can also be produced by a coordinate transformation of the form

xi → x̃i = xi + ζl(z)xi = xi + δxi , (4.156)

we can write

〈ζ̃s(x1) · ... · ζ̃s(xn)〉 = 〈ζs(x1) · ... · ζs(xn)〉+ δxi∂i〈ζs(x1) · ... · ζs(xn) + ...

= 〈ζs(x1) · ... · ζs(xn)〉+ ζLx
i∂i〈ζs(x1) · ... · ζs(xn)〉+ ... . (4.157)

Substituting (4.157) into (4.155) we get

〈ζl(x)〈ζs(x1) · ... · ζs(xn)|ζl(z)〉〉 =

= 〈ζl(x)〈ζs(x1) · ... · ζs(xn)〉〉+ 〈ζl(x)ζl(z)xi∂i〈ζs(x1) · ... · ζs(xn)〉〉+ ...

= 〈ζl(x)ζl(z)xi∂i〈ζs(x1) · ... · ζs(xn)〉〉
= 〈ζl(x)ζl(z)〉xi∂i〈ζs(x1) · ... · ζs(xn)〉 .

(4.158)

The first term on the right hand side of (4.158) vanishes because we can only take Wick
contractions between two long modes and two short modes. To get the final result for the
consistency relation, we want to make a Fourier transformation of (4.158). Note that we cannot
just simply replace xi∂i by ki∂i, since the we get an additional term due to partial integration.
Then consistency relation in Fourier space becomes

〈ζ(k1)ζ(k2)ζ(k3)〉|k1�k2,k3 = −〈ζl(k1)ζl(−k1)〉
[
3(n− 1) + ki∂ki

]
〈ζs(k2)ζs(k3)〉

= −〈ζl(k1)ζl(−k1)〉(ns − 1)〈ζs(k2)ζs(k3)〉 .
(4.159)
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Here n is the number of spatial dimensions. A very important thing to note here is the following.
When acting with

[
3(n− 1) + ki∂ki

]
on a power spectrum, it produces a factor of (ns − 1). In

this way, we can relate the spectral index of the two point function to the squeezed limit of the
bispectrum. This relation is called the Consistency relation as first derived in [13].

In [13] it was proven that at leading order in slow-roll parameters, the consistency relation
holds. When computing the squeezed limit of (4.132), we find that at leading order in kl

〈ζ(k1)ζ(k2)ζ(k3)〉′η̇ =
H4

16ε2k3
sk

3
l

η̇∗
H

(−2 + γE + log(2)) , (4.160)

here we assumed that

ktτ∗ = − kt
k3

= −k1 + k2 + k3

k3
≈ −2k3

k3
= −2 . (4.161)

The squeezed limit at leading order in kl of (4.142) is given by

〈ζ(k1)ζ(k2)ζ(k3)〉′ε2 =
H4

16ε2k3
sk

3
l

2ε2∗ . (4.162)

Following the definition of (4.159), we find at subleading order in slow-roll parameters, that the
spectral tilt is given by

(ns + 1) = −2ε2∗ − 2ε∗η∗ −

(
ε∗η∗ + η∗ξ

(1)
∗ +

η∗ξ
(1)
∗ ξ

(2)
∗

3
+
η2
∗ξ

(1)
∗

3H

)
(−2 + γE + log(2)) . (4.163)

At this moment a comment is in order. So far, we have calculated the value of the spectral
index in two different ways. First we calculated it by taking derivatives of the power spectrum.
This was a very clean and relatively simple method and this result can be used as a check.
Secondly, we calculated the same subleading contribution to the spectral index by using the
consistency relation and the bispectrum. In the sense that we could calculate the bispectrum
of the quasi-de Sitter modes and that we needed to make approximations. If we now compare
(4.79) and (4.163) we note that the terms that we have, indeed match in both equations.
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Chapter 5

The conformal limit of inflation
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5.1 The back-reacted decoupling limit

We are interested in the simplest model of single field inflation; namely, the vanilla model of a
scalar field rolling down a potential and interacting with gravity. To study this model, we start
from the usual Einstein-Hilbert action

S =

∫
d4x
√
−g
(
M2

Pl

2
R− (∇φ)2

2
− V (φ)

)
, (5.1)

here we kept the factors of MPl explicit, as we wish to consider a particular “decoupling or
de Sitter limit of the theory. Our universe seems to have a small, perhaps negligible, tensor
to scalar ratio, which suggests that ε � 1. However, taking simply the limit of ε → 0 can be
rather confusing, since the scalar amplitude scales with 1/ε and the amplitude that we observe
is finite. However, when we compare the scalar and the tensor amplitudes we note that this ε
scaling is absent for tensors

〈ζ(k)2〉 ∼ H2

εM2
pl

= finite and 〈γij(k)2〉 ∼ H2

M2
pl

� 1 .

Since tensors perturbations have not been measured so far, and in order to keep the amplitude
of the scalar fluctuations fixed, it is convenient to consider the following limit

ε→ 0 ,
H2

M2
Pl

→ 0 and
H2

εM2
Pl

= fixed . (5.2)

We call this limit, the back-reacted decoupling limit. In this limit, we have a nearly vanishing
first slow-roll parameter ε→ 0, while the other slow-roll parameters are kept small but nonzero.
As it turns out, in this limit, the second slow-roll parameter η is related to the mass η ∼ m2/H2.
Also, it is good to note that we kept H fixed. Therefore the powerspectra for the scalar is kept
finite, while the scalar to tensor ratio approaches zero, r = 16ε→ 0.

Let us write the background equations of motion for the attractor FRW solution, which will
be quasi-de Sitter space in our case. They are

˙̄φ2 = −2M2
PlḢ ,

V (φ̄) = M2
Pl(3H

2 + Ḣ) ≈ 3M2
PlH

2 and (5.3)

¨̄φ+ 3H ˙̄φ+ V ′(φ̄) = 0 .

We see that in the limit (5.2) the potential dominates over the kinetic energy of the background
field. Nonetheless, we consider to have a finite kinetic energy, which is why we can interpret the
scalar fluctuations as scalar curvature fluctuations by means of a proper gauge transformation.
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5.2 Mathematical Taekwondo in the spatially flat gauge

In this section, we solve the constraints for the non-dynamical components of the metric. We
use the ADM formalism and work in the spatially flat gauge, in this gauge ζ = 0 and the scalar
perturbations are parametrized by the inflaton φ. We first solve the solution for the contraints
N and N i, afterwards we will show that in the decoupling limit (5.2), the constraint solutions
become trivial, in the sense that

N = 1 +O(M−2
Pl ) and N i = O(M−2

Pl ) . (5.4)

In the spatially flat gauge, the dynamical scalar fluctuations are contained in the field φ, while
the tensor fluctuations remain in the metric hij ,

φ = φ̄(t) + ϕ(x, t) and hij = a(t)2(eγ̂)ij ≡ a(t)2

(
δij + γ̂ij +

1

2
γ̂ikγ̂kj + · · ·

)
, (5.5)

with ∂iγ̂ij = 0 and γ̂ii = 0. Writing the action (5.1) in terms of the fluctuations and Lagrange
multipliers, we obtain

S =

∫
dtd3xNa3

(
M2

Pl

2
R+

1

2

(
N−2(φ̇−N i∂iφ)2 − hij∂iφ∂jφ

)
− V (φ)

)
= (5.6)

=

∫
dtd3x a3

[
M2

Pl

2

(
NR(3) +N−1hijhkl(EikEjl − EijEkl)− 6NH2

)
+

+
1

2

(
N−1( ˙̄φ+ ϕ̇−N i∂iϕ)2 −Nhij∂iϕ∂jϕ

)
+ (5.7)

+N
˙̄φ2

2
−N

(
V ′(φ̄)ϕ+

V ′′(φ̄)

2
ϕ2 + · · ·

)]
.

Let us study (5.6) and (5.7) for a moment. We split up (5.7) into different pieces containing
different factors of MPl. In the last line of (5.7), a large piece of the action has been separated
with a prefactor of M2

Pl. These terms will produce the most dominant contributions to the
action. The left-over pieces of the action do not have a prefactor of M2

Pl. This might not
be obvious at first sight. We can make this explicit by expanding the potential around the
background solution,

V (φ) = V (φ̄) + V ′(φ̄)ϕ+
1

2
V ′′(φ̄)ϕ2 +

1

6
V ′′′(φ̄)ϕ3 + ... , (5.8)

here a piece of the background value V (φ̄) is of O(M2
Pl) and therefore converges in the limit

(5.2). This contribution can be absorbed into the cosmological constant. The subleading piece

is proportional to ˙̄φ2 and carries no M2
Pl. This separation has been made explicit in the last line

of (5.7). The other terms in V (φ) involve fluctuations and derivatives of the potential. In our
decoupling limit, these derivatives are finite, and thus belong to the small piece of the action.
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Suppose that we switch off the graviton degree of freedom by setting hij = a2δij . Writing
out the constraint equations, one obtains

M2
Pl

(
R(3) − 6H2 −N−2hijhkl(EikEjl − EijEkl)

)
+

−M0
Pl

(
N−2( ˙̄φ+ ϕ̇−N i∂iϕ)2 + (− ˙̄φ2 + 2V ′(φ̄)ϕ+ · · · ) + hij∂iϕ∂jϕ

)
= 0 . (5.9)

M2
Pl

(
∇a
(
N−1(habEbi − δ a

i h
bcEbc)

))
+M0

Pl

(
N−1∂iϕ(N j∂jϕ− ˙̄φ− ϕ̇)

)
= 0 . (5.10)

We note that the leading order terms in the constraint equations have no explicit ϕ dependence,
therefore we expect that they are solved self-consistently at leading order in M2

Pl. We note that
the constraints are solved by N = 1 and N i = 0 up to terms of order O(M2

Pl). Therefore we
have that the solutions to the constraint equations must following the ansatz:

N = M0
Pl(1 +O(γ2)) +M−2

Pl O(ϕ, γ2) +O(M−4
Pl ) , (5.11)

N i = M0
Pl(O(γ2)) +M−2

Pl O(ϕ, γ2) +O(M−4
Pl ) . (5.12)

Note that the graviton even appears in the strict M2
Pl → ∞ limit. This is because in this

limit, we should recover the limit of pure gravity in the de Sitter space and, in this limit, the
solutions to the constraint equations are non-trivial. The graviton fluctuations are absent due to
our gauge fixing conditions of transversality and tracelessness. Higher order corrections to the
constraints, corrections of O(M2

Pl), are determined by successive approximations; the O(M2
Pl)

corrections are used in the constraint equations at order O(M−2
Pl ), the O(M0

Pl) corrections are
used in the constraint equations to O(1), etc. Calculating the the constraint up to linear order
corrections in perturbations, one obtains

N = 1 +M−2
Pl

˙̄φ

2H
ϕ+O(ϕ2) and N i = −M−2

Pl

˙̄φ

2H

∂i
∂2

[
ϕ̇+ ϕH

η

2

]
+O(ϕ2) . (5.13)

There is an interesting simplification of the constraint equations in the scalar sector, if we use
M−2

Pl as a small expansion parameter, rather than ϕ. In other words, consider setting γij = 0,
keeping all powers and derivatives of ϕ, but expand the lapse and shift to O(M−2

Pl ),

N(ϕ, γ = 0) = 1 +M−2
Pl N

(1)(ϕ) +O(M−4
Pl ) ,

Ni(ϕ, γ = 0) = M−2
Pl N

(1)
i (ϕ) +O(M−4

Pl ) . (5.14)

Again, it will be convenient to use the Helmholtz decomposition of a vector field, N
(1)
i =

∂iψ
(1) + Ñ

(1)
i . In the flat gauge, the geometric quantities simplify considerably,

R(3) = 0, Eij = Hhij −
1

2
(∂iNj + ∂jNi) and E = 3ρ̇− ∂kNk . (5.15)

To the order we are interested in, the constraint equations read

6HN (1) + a−2∂iN
(1)
i + L = 0 ,

2H∂iN
(1) + a−2

2

(
∂i∂jN

(1)
j − ∂2N

(1)
i

)
+ Pi = 0 , (5.16)
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with

L ≡ 1

H

(
˙̄φϕ̇+

1

2
ϕ̇2 +

1

2
hij∂iϕ∂jϕ+ (V ′(φ̄)ϕ+ · · · )

)
,

Pi ≡ −∂iϕ( ˙̄φ+ ϕ̇) . (5.17)

Solving the constraints (5.16) in a similar fashion as we did in perturbation theory in the field
fluctuation, we obtain

ψ(1) = a2∂−2
(
3∂−2∂iPi − L

)
, (5.18)

Ñ
(1)
i = 2a2∂−2

(
Pi − ∂−2∂i∂jPj

)
, (5.19)

N (1) = − 1

2H
∂−2∂iPi . (5.20)

Substituting the solutions (5.13) into (5.6) and expand the action up to second order in per-
turbations, we find

S2 =
1

2

∫
dtd3x a3

[
ϕ̇2 − ∂ϕ2

a2
− V ′′ϕ2 +

(
6ε+ 2εη − 2ε2

)
H2ϕ2

]
(5.21)

=
1

2

∫
dtd3x a3

[
ϕ̇2 − ∂ϕ2

a2
− V ′′ϕ2+ (5.22)

−2
˙̄φ

HMPl

V ′

MPl
ϕ2 −

(
˙̄φ

HMPl

)2
V

M2
Pl

ϕ2

+ (5.23)

+
1

2

∫
d4x e3ρ

(
∂k

[
∂jψ

(1)∂j∂kψ(1) − ∂kψ(1)∂2ψ(1) − 2 ˙̄φ∂kψ(1)ϕ
]
e−2ρ+

−∂0

[
˙̄φ

2ρ̇
ϕ2

])
, (5.24)

here we made the Planck suppression explicit for all terms in the action. All terms that have
vanishing contributions due to this Planck suppression are given in (5.23). Also, note that
the boundary terms given the first line of (5.24) are not actual boundary terms again after
substitution of the solution for ψ(1).
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5.3 Linear dynamics

In order to calculate correlation functions for the scalar perturbations, we have to find the
mode functions that correspond to ϕ. In order to do this, we have to vary the non-vanishing
quadratic terms in (5.22) with respect to ϕ and then solve the equation. Varying (5.22) with
respect to ϕ yields the Mukhanov-Sasaki equation for a massive scalar field,

ϕ′′ − 2

τ
ϕ′ + k2ϕ+

m2

H2τ2
ϕ = 0 , (5.25)

here the mass has been defined as

m2 = −∂2
φV (φ) +

(
6ε+ 2εη − 2ε2

)
H2, (5.26)

k is the magnitude of the comoving momentum k, τ is the conformal time, dt ≡ a(τ)dτ , and
the prime denotes the derivative with respect to τ . In order to calculate the ϕ correlators, the
scalar perturbation is again promoted to an operator that can be expanded in terms of creation
and annihilation operators,

ϕ(t,k) = u(k)âk + u∗(k)â†k, (5.27)

where we assume that âk annihilates the Bunch-Davies vacuum and that âk and â†k satisfy the
usual commutation relation, [

â(k), â†(k′)
]

= (2π)2δ(3)(k1 + k2). (5.28)

The dymamics of ϕ is then determined by (5.25) together with the Wronskian condition,

∂xu(x)u∗(x)− ∂xu∗(x)u(x) = −i. (5.29)

In contrary to the ζ equations of motion of last chapter we now have an additional mass term
in the equation of motion. This mass term depends on the slow-roll parameters and on the
running of the potential. Usually, this mass term is considered to be small and can be positive
or negative. As it turns out, in order to test the decoupling limit, a more general treatment of
the mass term is needed.

The mode functions can be split up into two regimes, where we look at the value of the mass.
For m2/H2 ≤ 9/4 the dynamics of the mode functions is captured by

u(τ, k) = −ie−i
π
2

(ν+ 1
2

)

√
π

2
H(−τ)

3
2 H(1)

ν (−kτ), (5.30)

here we defined ν =
√

9/4−m2/H2. For m2/H2 > 9/4 the dynamics of the mode functions is
captured by

u(τ, k) = −ie−
π
2
ν̃+ iπ

4

√
π

2
H(−τ)

3
2 H

(1)
iν̃ (−kτ), (5.31)

here we defined ν̃ =
√
m2/H2 − 9/4. The normalization of both mode functions has been

chosen such that, when the momentum k/a is much larger than the Hubble parameter H and
the mass m, we recover the Bunch-Davies vacuum

uk → −
H√
2k
τe−ikτ . (5.32)
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Our main interest lays in the region where τ → τ∗, which is the moment around horizon crossing
of the modes. After analytically continuation of the mode functions in this limit, we obtain

u(τ, k) = i
2ν−1

√
π

Γ(ν)
H

kν
(−τ)−ν+ 3

2 ,
m2

H2
<

9

4
. (5.33)

u(τ, k) = i
1√
π
H(−τ)3/2 ln (−kτ),

m2

H2
=

9

4
, (5.34)

u(τ, k) = e−
π
2
ν̃

√
π

2
H(−τ)

3
2

[
1

Γ(iν̃ + 1)

(
−kτ

2

)iν̃
− iΓ(iν̃)

π

(
−kτ

2

)−iν̃] m2

H2
>

9

4
. (5.35)

The decay factors indicate that the perturbations for massive fields eventually roll back in
the potential to zero, (5.35) has an oscillation facor of τ±iν̃ . Also, as the value of the mass
m2 increases, the behavior of the perturbations changes from that of an over-damped oscil-
lator corresponding to (m2/H2 < 9/4) to that of an under-damped oscillator corresponding
to (m2/H2 > 9/4). In the under-damped case, the contributions to correlation functions are
suppressed by a factor of ∼ e−m/H per mode. Because of this suppression, this limit will not be
interesting for us and we will concentrate at the case in which the mode functions are described
by (5.33).

5.3.1 Exact expressions for the mode functions

There are certain limits, for which the Bessel equations can be solved exactly that determine
the modefunctions. These mode functions correspond to mode functions with a half-integer
value for ν. If we only look at the (conformal) time- and momentum dependence in the mode
functions we have

u(−kτ) ∼ τ
3
2H(1)

ν (−kτ) = τ
3
2

(
J (1)
ν (−kτ) + iY (1)

ν (−kτ)
)
. (5.36)

There are two exact solutions for the mode functions for which 0 < ν ≤ 3/2, i.e. for which ν is
equal to ν = 1/2 and ν = 3/2. The mode functions for these values scale as

u(−kτ) ∼ τ
3
2H

(1)
1/2(−kτ) = −i

√
2

πk
τ eikτ ,

u(−kτ) ∼ τ
3
2H

(1)
3/2(−kτ) = −i(1− ikτ)

√
2

πk3
eikτ .

(5.37)

To see which masses correspond to these limits, we have to study ν. We can expand ν in terms
of the slow-roll parameters and the mass

ν =

√
9

4
+ 3ε+

3

2
η ≡

√
9

4
+ 9ε− 3ηv ≡

√
9

4
− m2

H2
,

here we have defined the following Potential slow-roll parameter ηv ≡ MPl
V ′′

V � O(1) [14].
This suggests that ν = 1/2 corresponds to a very heavy massive scalar field with a mass of
m2 = 2H2 and that ν = 3/2 corresponds to a massless scalar field, m2 = 0. Both of these
expressions can be used to calculate the Bispectrum, since these are the only ones which we
can integrate exactly.

85



5.4. Scalar Power spectrum

5.4 Scalar Power spectrum

In this section, we derive the usual tilt of the ζ-power spectrum by converting the scalar per-
turbation of ϕ into ζ at the same time τ∗, i.e. at a moment when all modes are well outside
the horizon, for every k mode. In the conversion ζ = ϕ/

√
2ε∗ and the slow-roll parameter

ε ≡ Ḣ/H2 are evaluated at the time τ∗ for any k and therefore induces no corrections to the
tilt.

When calculating the two point function in the decoupling limit (5.2), we have that ε � 1.

In this limit, we have a vanishing positive vacuum expectation value, ˙̄φ→ 0, meaning that our
slow-roll expansion does not break the dS isometries anymore. It is also important to notice
that higher slow-roll parameters can have a non-zero values and at the same time that the
correlators still enjoy the full isometry group of de Sitter.

Consider the mode functions in the late time limit with a mass in the range 0 < m2/H2 < 9/4
(5.35), then the truncated two point function for ϕ is given by

〈φ(k, τ)φ(−k, τ ′)′〉 =
H2

M2
Pl

(ττ ′)3/2

4π

[
Γ (ν)2

(
k2ττ ′

4

)−ν
+ c.c.

]
. (5.38)

From (2.35), (5.2) and (5.26), we note that during slow-roll inflation, the mass is generally very
small m� H. Therefore, we will will expand ν and work at leading order in m,

ν =
3

2

[
1− 2

9

m2

H2
+O

(
m4

H4

)]
≈ 3

2
− ηV . (5.39)

At this moment, a comment is in order. It is not directly clear from our definitions, but in (5.39)
we have a negative mass. This can be made explicit when relating the Hubble and Potential
slow-roll parameters to each other by ηV = 2ε − η/2 ≈ −η/2. Then using Γ(3/2) =

√
π/2

and keeping the leading order m/H term only in the exponents, we find the following ζ power
spectrum

〈ζ(k, τ∗)ζ(−k, τ∗)〉 =
1

2εMPl

H2

2εMPl
τ2ηV
∗ k−3+2ηV . (5.40)

Using Γ(3/2) =
√
π/2 and keeping the leading order m/H term only in the exponents we obtain

〈ζ(k, τ∗)ζ(−k, τ∗)〉 =
1

2εMPl

H2

2εMPl
τ2ηV
∗ k−3+2ηV . (5.41)

The tilt derived from this expression agrees with the standard result [14],

(ns − 1) = −6εV + 2ηV , (5.42)

here εV has been approximated at leading order in slow-roll as ε ∼ εV → 0.
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5.5 Three point functions

In the next sections, we show that in the decoupling limit (5.2) the interaction part of the action
simplifies. We give the expression for the bispectrum in the spatially flat gauge and work out
the transformation of the bispectrum of a general massive scalar field ϕ to the comoving gauge
and we show that this transformation can be related to the δN -formalism. Then we relate the
running of the potential to the ζ-bispectrum. Last, but not least, we check our results by taking
the decoupling limit of our the calculation performed in 4.6.

As non-Gaussianities arise from departures from non-linear couplings, we need to calculate
the action to cubic order in perturbations in order to calculate the bispectrum. When assuming
the effects of interactions are small, the higher correlation functions can be obtained by a
perturbative expansion of the interaction Hamiltonian around the free theory. These higher
correlation functions can again be calculated using the in-in formalism,〈∏

a

ϕa(t)

〉
=

〈[
T̄ exp

(
i

∫ t

t0

dt Hint(t
′)

)]∏
a

ϕ̂Ia(t)

[
T̄ exp

(
−i
∫ t

t0

dt Hint(t
′)

)]〉
, (5.43)

where the superscript I signifies that these modes are evolved using the linear (free) equations
of motion, and T and T̄ refer to time-ordering and anti-time-ordering.

5.5.1 The Spatially-flat gauge bispectrum

In order to calculate the bispectrum, we have to expand the action to cubic order in pertur-
bations. As shown earlier, with the nth order solutions of the constraints, we can build the
(2n+ 1)th order action. For the cubic action, this means that we only need the solutions of N
and Ni to first order in perturbations. Then

S3 =

∫
d4x a3

[
a−4

2M6
Pl

(
−∂iN (1)

j ∂iN j(1) + ∂iN
i(1)∂jN

j(1)
)
N (1)

+ a−2

(
2H

M6
Pl

∂iN
i(1)(N (1))2 − 1

M2
Pl

N
(1)
i ∂iϕϕ̇+

1

M4
Pl

˙̄φ N (1)N
(1)
i ∂iϕ− 1

M2
Pl

N (1)(∂ϕ)2

)
+

(6H2 − ˙̄φ2)

2M6
Pl

(N (1))3 − 1

M2
Pl

N (1)ϕ̇2 +
1

M4
Pl

˙̄φ (N (1))2ϕ̇− 1

6
V ′′′(φ̄)ϕ3 − V ′′(φ̄)

2M2
Pl

ϕ2N (1)

]
.

(5.44)

In the limit (5.2), both N (1) and N i(1) scale with ε. Then the only term in S3 that is not Planck
suppressed comes from expanding the potential around the background value of φ,

S3 =

∫
d4x a3

[
−1

6
V ′′′(φ̄)ϕ3

]
. (5.45)

In [22] it was noted that the Bispectrum of a scalar field ϕ can be calculated exactly when ν is
half-integer, since only then an exact solution can be found for (5.33). There are two cases that
lay within the range 0 < ν ≤ 3/2, namely ν = 3/2 and ν = 1/2. These values for µ correspond
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to scalar fields with a mass m = 0 and m =
√

2H respectively. The bispectrum of a massless
scalar field is then given by [22]

〈ϕ(k1, τ∗)ϕ(k2, τ∗)ϕ(k3, τ∗)〉′ =

=
H2

k3
1k

3
2k

3
3

V ′′′(φ̄)

12

(−1 + γE + log (−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

k2
i kj + k1k2k3

 ,
(5.46)

here kt ≡ k1 + k2 + k3 and τ∗ is the moment inflation ends. The bispectrum of a scalar field
with m =

√
2H is given by [22]

〈ϕ(k1, τ∗)ϕ(k2, τ∗)ϕ(k3, τ∗)〉′ =
πH2V ′′′(φ̄)

8

τ3
∗

k1k2k3
, (5.47)

here the prime on the brackets indicate the removal of the momentum conserving delta function
and a factor of (2π)3. When calculating (5.46) and (5.47), it is very important to take the limit
of k∗τ∗ � 1 at the very end of the calculation to avoid relative prefactor mistakes between the
different momentum functions in (5.46). Both of these expressions can be used as a check when
building a general formalism to calculate three point correlation functions for an arbitrary mass.

5.5.2 Conformal analysis of the three point function

There are two methods to construct primordial correlation functions. The first and most com-
mon way is to start from a general action, solving the free equations of motion and then use
the higher order action as perturbative corrections to the theory. The second method is by
looking at which isometries the background imposes on the correlation functions and use that
to constrain the general expression for the correlation function. However, with the isometries,
we can only build correlation functions up to a certain prefactor. For example if A(ki) is an
isometry of the background, the correlation function should satisfy

n∑
a=1

Aa〈ϕ(k1) · ... · ϕ(kn)〉 = 0 , (5.48)

here the sum over a corresponds to a sum over all different fields with momentum ka.

In the limit (5.2), we expect that our spacetime reduces to a pure de Sitter spacetime and
that all correlation functions should satisfy it’s SO(1,3) group. So far, we have only used the
translation- and the rotation isometries to constrain the degrees of freedom of our correlation
function, since these were also isometries of the Quasi-de Sitter background. In 4.4 we saw
that the correlation functions should contain a momentum conserving Dirac delta function and
could only depend on the length of the momenta vectors. In a de Sitter/Conformal spacetime,
correlation functions should also be invariant under the Dilation and Special conformal isome-
tries. These will constrain the overal momentum and conformal time dependence and will also
constrain the shape of the function.
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Let’s start our conformal analyzation of (5.46) and (5.47) by studying the dilation isometry.
The differential form of the dilation isometry in momentum space of a truncated three point
function is given by [24](

3∑
a=1

Da − (d− 1)

)
〈ϕ(k1) · ... · ϕ(kn)〉′ = (−3(∆− 3) + ka∂

a − d+ 1) 〈ϕ(k1) · ... · ϕ(kn)〉′ ,

(5.49)
here a is not a spacetime index but is again a label for the momentum, n is the number different
momenta in the momentum conserving delta function that has been truncated and ∆ is the
conformal scaling dimension which can be related to ν by ∆ = 3/2 − ν [22]. Also, it is good
to note why we have subtracted n in this equation from the usual dilation isometry; we are
looking at an stripped correlator and the n is the correction for the truncation. More explicitly,
consider the delta function containing three momenta

ki∂
iδ(3)

(
3∑
i=1

ki

)
= (−1− 1− 1) δ(3)

(
3∑
i=1

ki

)
. (5.50)

For three point correlation functions, we should subtract 3 from D.

Applying (5.49) on (5.47) we obtain(
3∑
i=1

Di − 3

)[
τ3
∗

k1k2k3

]
=
(
−3(∆− 3) + ki∂

i − 3
) [ τ3

∗
k1k2k3

]
= (−3 + 9− 3− 3)

[
τ3
∗

k1k2k3

]
= 0 .

note that ∆ = 1 for ν = 1/2. Thus (5.47) satisfies the Dilation isometry. Doing the same for
(5.46) we find(

3∑
i=1

Di − 3

)[
k3

1 + k3
2 + k3

3

(k3
1k

3
2k

3
3)

]
=
(
−3(∆− 3) + ki∂

i − 3
) [(k3

1 + k3
2 + k3

3)

k3
1k

3
2k

3
3

]
= (9− 6− 3)

[
(k3

1 + k3
2 + k3

3)

k3
1k

3
2k

3
3

]
= 0 ,

(5.51)

note that for ν = 3/2 we have ∆ = 0. Here we only acted with D − 3 on the local part of
the correlation function. We can do this because the dilation isometry only looks at the overall
momentum and (conformal) time dependence of the correlator, since (5.46) is invariant under
cyclic exchange of k1, k2 and k3.

The analyse the three point functions with special conformal isometry is a little bit more
involved than the analysis with the dilation isometry. The reason for this is that the special
conformal isometry is a vector which depends on kµa . The differential form of the special
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conformal isometry is given by [24]

3∑
a=1

biK
i
a =

3∑
a=1

bik
i
a

[
∂2
a +

(d+ 1− 2∆a)

ka
∂a

]
, (5.52)

here we have contracted Kµ
a with a arbitrary vector bi to get a scalar operator. By making

smart use of rotational invariance of the three point correlation function, it can be shown E.2
that (5.52) can be reduced when action on (5.47) and (5.46) to

3∑
a<b

biK
i
a =

([
∂2
a +

(d+ 1− 2∆a)

ka
∂a

]
−
[
∂2
b +

(d+ 1− 2∆b)

kb
∂b

])
, (5.53)

with a 6= b. A full derivation is given in appendix E.2.
When acting with (5.53) on (5.47) and (5.46), we find that both expressions are annihilated

[22]. At this moment, a rather important comment is in order. The shape of (5.47) is relatively
simple and consists out of one single term and nothing out of the ordinary is happening here,
the shape of (5.46) however is much more complicated and consists of local, equilateral and local
times logarithmic terms. Therefore is not directly obvious that the full massless bispectrum is
annihilated by all isometries. As usual, the local terms are annihilated by all isometries. How-
ever, the equilateral shape (4.147) and the logarithmic term multiplying a local term separately,
are not. When we added together, both contributions cancel eachother. The reason why this
is happening can be found when doing a more formal analysis of (5.52). As we show in E.2,
this combination of terms appears as higher order corrections when solving the (5.52) using
dimensional regularization. This means that this shape follows from the conformal isometries
and therefore is invariant. For this reason we can define this new shape as the conformal shape,

BSCT ∼
log (−ktτ∗)

∑3
i=1 k

3
i −

∑
i 6=j k

2
i kj + k1k2k3

k3
1k

3
2k

3
3

. (5.54)

A plot of this shape is given in 5.1
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Figure 5.1: The conformal shape plotted as function of k2/k1 and k3/k1 and with k1 fixed.
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5.6 A scalar consistency relation

Just like in the comoving gauge where we had a consistency relation for ζ, we can define a
consistency relation in the spatially flat gauge. This time however, it will be a consistency
relation for ϕ rather than ζ. In the comoving gauge, we saw that the squeezed limit of a
correlation function corresponded to a coordinate transformation. In this case, when we are
working in the spatially flat gauge, we can see a long ϕ mode as a homogeneous background
fluctuation, to leading order in derivatives.

Before we continue to the effects on correlation functions, let us study the background equa-
tions of motion for δH and δḢ first. To study the effects on the unperturbed Hubble parameters
and its time derivative(s), we need to solve pertubatively these background equations of motion
(5.3). To linear order, one obtains

V ′(φ̄)ϕ = M2
Pl(6HδH + δḢ) and (5.55)

2 ˙̄φϕ̇ = −2M2
PlδḢ . (5.56)

Solving these equations for δH and δḢ, we obtain

δH =
1

6M2
PlH

[
(− ¨̄φ− 3H ˙̄φ)ϕ+ ˙̄φϕ̇

]
, and (5.57)

δḢ = −
˙̄φϕ̇

M2
Pl

, (5.58)

here we used (5.3) to write V ′(φ̄) in terms of time derivatives of φ̄. As the numerators are all
finite, while the denominator is proportional to M2

Pl, we see that the background evolution is
not affected by a homogeneous ϕ fluctuation in the limit (5.2).

Now that we have seen that the background equations of motion remain uneffected by a
long ϕ mode, let us continue to the effect on correlation functions. Taking one of the modes
to be long for a n-point correlation function, corresponds to taking the squeezed limit, i.e.
limki→0〈ϕ(k, τ)n〉. The effect on this correlation is intuitively the following; as one of the modes
will have a significantly smaller wavelength than the others, the wavelength of the longer mode
will surpass the Hubble radius much earlier than the short modes. This mode function will
therefore become super Hubble size much earlier than the other and will contribute to the
background for the short modes. This long mode can therefore effectively be seen as a field
shift in the background fields for the short modes. Following this argumentation, one can write

〈ϕs(x1, τ) · ... · ϕs(xn, τ)|ϕl(z, τ)〉 = 〈ϕ̃s(x1, τ) · ... · ϕ̃s(xn, τ)〉|ϕl . (5.59)

Here the subscript s stands for small wavelength-modes and the subscript l stands for long
wavelength-modes. The last term is evaluated in the background of a ϕl(z) mode. I assume
that z is of the same order as all the other xi of the short mode fields. Now we can expand the
right hand side of (5.59) as

〈ϕ̃(x1, τ) · ... · ϕ̃(xn, τ)〉|ϕl =〈ϕs(x1, τ) · ... · ϕs(xn, τ)〉

+ ϕl(z)

[
δ

δϕl(z)
〈ϕs(x1, τ) · ... · ϕs(xn, τ)〉

]
ϕl→0

+O(ϕ2
l ) .

(5.60)
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To prove that there is a consistency relation, we have to use a little trick. We will multiply
both sides of (5.59) from the left with ϕl(x, τ) and then take the average, i.e.

〈ϕl(x, τ)〈ϕs(x1, τ) · ... · ϕs(xn, τ)|ϕl(z, τ)〉〉 = 〈ϕl(x, τ) 〈ϕ̃s(x1, τ) · ... · ϕ̃s(xn, τ)〉|ϕl〉 . (5.61)

Since we are considering that the long-modes become super Hubble size much earlier than the
short-modes, we can only make Wick contractions between two short modes and between two
long modes, so no cross Wick contractions between a ϕs and a ϕl are allowed. This means that
the first term of (5.60) will give a zero contribution, which means that the leading contributions
come from the second term. Then substituting (5.60) into (5.61) we find that the squeezed limit
of the three point function becomes

〈ϕl(x1, τ)|ϕs(x2, τ)ϕs(x3)〉 ≈ 〈ϕl(x1, τ)〈ϕs(x2, τ)ϕs(x3)〉ϕl〉

=

〈
ϕ(x1, τ)ϕl(z, τ)

δ

δϕl(z)
〈ϕs(x2, τ)ϕs(x3)〉ϕl

∣∣∣∣
ϕl→0

〉

= 〈ϕl(x1, τ)ϕl(z, τ)〉
[

δ

δϕl(z)
〈ϕs(x2, τ)ϕs(x3)〉ϕl

]
ϕl→0

.

(5.62)

Since we prefer working in momentum space, since the calculations are much easier there when
solving the bispectrum, we have to make Fourier transformation of (5.62). Then the consistency
relation for ϕ in momentum space takes the following form

〈ϕ(k1, τ)ϕ(k2, τ)ϕ(k3, τ)〉′ ≈ 〈ϕl(k1, τ)ϕl(−k1, τ)〉′ δ
δϕl
〈ϕs(k2, τ)ϕs(k3, τ)〉′

∣∣
ϕl→0

= αs〈ϕl(k1, τ)ϕl(−k1, τ)〉′ 〈ϕs(k2, τ)ϕs(k3, τ)〉′
∣∣
ϕl→0

(5.63)

with k1 � k2, k3.
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5.7 Squeezed three point functions

In general, it is very difficult to calculate three point correlation functions for fields with a
non-zero mass or when m2 6= 2H2. This is because only when m2 = 0 and m2 = 2H2, we can
find exact expressions for the mode functions that we are able to integrate. However, via the
squeezed limit of a correlation function we can calculate the local non-Gaussianities f local

NL of
three point functions without having to do integrals. Therefore we want to test the validity,
explore and and try to exploit (5.63) in the limit (5.2) to see whether it is possible to construct
(more) general massive three point correlation functions. Also, the consistency relation for
scalar-fields in the spatially flat gauge has never been fully tested for the entire bispectrum.
Since in (5.2) the cubic interaction action reduces to only a single term, we can and will show
that this consistency relation holds for particles with a mass of m = 0 or m =

√
2H.

A natural question one might ask at this point is the following, do we loose information about
the interactions when using the scalar consistency relation to compute three point functions?.
The answer to this question is no. The reason is the following; when taking one of the legs
to be soft of the interaction vertex, corresponds to introducing an effective mass term for the
short modes, ϕs,

− V ′′′

6
ϕ3 → −V

′′′

6

(
ϕ3
s + 3ϕlϕ

2
s + 3ϕ2

l ϕs + ϕ3
l

)
. (5.64)

Note that the terms with different modes will have a different relative prefactor due to symmetry
factors. Since ϕ is real, we obtain the following effective mass for the short mode

m2
eff(τ) = V ′′′(φ̄)ϕl(τ) . (5.65)

It is very important to notice that this effective mass term has a time dependence. Contrary
to the scalar perturbation ζ that freezes and becomes constant in (conformal) time after it
leaves the horizon, the scalar perturbation ϕ does not freeze. Therefore, it seems that the the
squeezed limit breaks conformal invariance, in the sense that we could not derive the correct
squeezed bispectrum by only using conformal symmetries. However, “squeezing” a conformal
three point correlation function in position space shows

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 ∼ 1

x∆3−∆1−∆2
12 x∆2−∆1−∆3

13 x∆1−∆2−∆3
23

+

− δ(x12)
1

x∆2−∆1−∆3
13

+ 2 perm. + higher corrections ,

(5.66)

here we defined xij ≡ |xi − xj |. Making now a Fourier transformation to momentum space
can give rise to non-trivial corrections that can explain the reason why we can not seemingly
construct the squeezed bispectrum only from the momentum isometries. However, these higher
correction terms have not been studied in literature in momentum space. The study of these
terms in momentum space is therefore considered to beyond the scope of this thesis concerning
Conformal field theories.

The equation of motion for ϕs one obtains by taking one of the legs to be soft of the interaction
vertex is given by

∂2
τϕ(τ)− 2

τ
∂τϕ(τ) +

(
k2 +

m2

τ2H2

)
ϕ(τ) = −V

′′′(φ̄)

H2τ2
ϕ̂l(kl)τ

3/2−νϕ(τ) , (5.67)
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here we dropped the subscript s of the short mode for notational convenience, ϕ̂l(kl) is the
time independent part of the mode function and kl is the momentum of the long mode. We
shall refer to (5.67) as the Effective-Mukhanov-Sasaki -equation, or just EMS. Also, note that
we used the late time behavior of the modefunctions, i.e. we used (5.33).

In general, Bessels equation with an additional time dependent term cannot be solved exactly.
Therefore in order to find a solution to (5.67), we will iteratively solve (5.67) using Greensfunc-
tion methods. We first show that for m = 0 and m =

√
2H the leading order solutions that

follow from (5.63) and (5.67) are the same as the squeezed limits of (5.47) and (5.46). Then we
will perturbatively solve (5.67) for the case that m = 0 + m0 and m =

√
2H + m0, where we

assume m0 � 1.

5.7.1 Perturbative solutions of the EMS

Let us first start with a brief review of Greens functional methods. A general inhomogeneous
differential equation has the form

L̂(τ)φ(τ) = f(τ), (5.68)

here L̂ is a differential equation in terms of τ and f(τ) is a random function depending on τ .
To find a solution of φ(τ), we split up the solution for φ into a homogeneous and a particular
solution;

φ(τ) = φH(τ) + φp(τ) , (5.69)

where φH solves (5.68) for f(τ)→ 0. To solve the particular part of the solution for φ, we can
look at particular solutions of the form

φp(τ) =

∫ b

a
dτ ′ G(τ, τ ′)f(τ ′) , (5.70)

here G(τ, τ ′) is the Green’s function and a and b define the domain for which the particular
solution of φ should be valid. Of course, when we act on this particular solution with the
differential operator L̂, we should obtain f(τ) again,∫ b

a
dτ ′ L̂(τ)G(τ, τ ′)f(τ ′) = f(τ) . (5.71)

Therefore, the Green’s function should satisfy the following relation

L̂(τ)G(τ, τ ′) = δ(τ − τ ′) , (5.72)

here δ(τ − τ ′) is the dirac delta function. To get back to our differential equation (5.67), there
is one extra subtlety. When the mass of the particle increases, the time dependence of the
effective mass increases. The problem that now arises is the following, the effective mass term
is of the form V ′′′(φ̄)ϕlϕs. Then increasing the mass changes the ϕs mode function, changing
the right hand side of (5.67). Therefore, to catch the full time dependence of ϕ, we need to
iteratively solve ϕ,(

∂2
τϕ

(n+1)(τ)− 2

τ
∂τϕ

(n+1) +

(
k2 +

m2

τ2H2

)
ϕ(n+1)

)
= −V

′′′(φ̄)

H2τ2
ϕ̂lτ

3/2−νϕ(n) . (5.73)
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here the subscript (n + 1) and (n) refer to the order of the correction to the Green’s function
and the full solution of ϕ will be of the form

ϕ(τ, k) =

∞∑
i=1

ϕ(n) . (5.74)

To prove my claim that we only need the linear order correction to the mode functions to catch
the leading order contribution to the bispectrum in the squeezed limit, we shall calculate first
explicitly the linear order corrections to the mode functions corresponding to a mass of m = 0
and m =

√
2H respectively and show that with these corrections we can calculate leading order

squeezed bispectrum of (5.46) and (5.47).
In order to calculate the particular solution for a general massive scalar field ϕ, we first need

to determine the corresponding Green’s functions. The Green’s function satisfies the following
equation of motion for a massive particle in a de Sitter space

∞∑
i=1

(
�−m2

)
G(n)(τ, τ ′) =

1√
−g

δ(τ − τ ′) , (5.75)

here the superscript (n) on the Green’s function signifies that it is the linear order correction
to the full Green’s function. Working out the D’Alembertian explicitly, we obtain(

∂2
τG

(1)(τ, τ ′)− 2

τ
∂τG

(1)(τ, τ ′) +

(
k2 − m2

τ2H2

)
G(1)(τ, τ ′)

)
= τ2H2δ(τ − τ ′) . (5.76)

Note that the right hand side of (5.76) is only non-vanishing when τ = τ ′, therefore we can
write the function outside the delta function as a function only depending on τ or τ ′. Also, in
the language of (5.68), the function f(τ) is given by

f(τ) ≡ −V
′′′(φ0)

H2τ2
ϕ̂lτ

3/2−νϕ(0)(τ) . (5.77)

Since (5.67) is a second order differential equation, we can find that in general the solutions for
G(n)(τ, τ ′) are given by

G(1)(τ, τ ′) = iΘ(τ − τ ′)
(
ϕ

(0)
1 (τ)ϕ

(0)
2 (τ ′)− ϕ(0)

1 (τ ′)ϕ
(0)
2 (τ)

)
, (5.78)

with ϕ
(0)
1 (τ) and ϕ

(0)
1 (τ) the two homogeneous solutions of (5.67) and Θ(τ − τ ′) the Heaviside

step-function. After substitution of the homogeneous solutions to the mode functions (5.30),
we obtain

G(1)(τ, τ ′) =
H2π

2
(ττ ′)3/2

(
Jν(−kτ ′)Yν(−kτ)− Jν(−kτ)Yν(−kτ ′)

)
Θ(τ − τ ′) , (5.79)

here Jν(−kτ) and Yν(−kτ) are Bessel functions and ν ≡
√

9/4−m2/H2. The Green’s functions
for the massless and the massive m =

√
2H case respectively are given by

G
(1)
3/2(τ, τ ′) =

H2

k3

[
(1 + k2ττ ′) sin

(
k(τ − τ ′)

)
− k(τ − τ ′) cos

(
k(τ − τ ′)

)]
Θ(τ − τ ′),(5.80)

G
(1)
1/2(τ, τ ′) =

H2

k
ττ ′ sin

(
k(τ − τ ′)

)
Θ(τ − τ ′) , (5.81)
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here the subscript on the Green’s functions of 3/2 and 1/2 refer to the values of ν of the
Besselfunctions from which the Green’s function is constructed. Then the particular solution
at leading order in kl for the massless scalar field ϕ is given by

ϕ(1)
p (τ, ks) = −V

′′′(φ0)ϕ̂l(kl)

3
√

2k3
sH

(
2 + ie2iksτ (i+ ksτ)ExpEi(−2iksτ)

)
e−iksτ . (5.82)

Following (5.63), we obtain the following expression for the squeezed massless three point func-
tion

〈ϕ(ks, τ∗)ϕ(ks, τ∗)ϕ(kl, τ∗)〉′ ≈
H2V ′′′

6

(−2 + γE + log (−2ksτ∗))

k3
sk

3
l

. (5.83)

This result is equal to the result when taking the squeezed limit of (5.46).
The particular solution at leading order in kl for the massive m =

√
2H is given by

ϕ(1)
p (τ, ks) =

iV ′′′(φ̄)ϕ̂l(kl)τe
−iksτ

2
√

2k3
s

(
e2iksτExpEi(−2iksτ)− 2 log(klτ∗)

)
(5.84)

The squeezed three point correlation function that we obtain from (5.84) is given by

〈ϕ(ks, τ∗)ϕ(ks, τ∗)ϕ(kl, τ∗)〉′ =
πH2V ′′′(φ̄)

8

τ3
∗

k2
skl

. (5.85)

This result is also equal to the result we obtain by taking the squeezed limit of (5.47). We
have thus proven that the scalar consistency relation holds at least at leading orders in kl.

We are interested in correlation functions that correspond to scalar fields which have a very
small mass, i.e. ν ≈ 3/2 +α with α� 1. Since these massive correlations functions correspond
to correlation functions with mode functions where ν lays withing the range 1/2 < ν < 3/2,
and we have just proven that the linear order corrections to the mode functions capture the
leading order contributions to the squeezed three point functions, we can be confident that the
linear order corrections to the mode functions of interest also capture the correct leading order
squeezed bispectrum behavior.
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5.7.2 The massive bispectra

As mentioned before, when trying to solve ϕs for a general mass, one might encounter problems
that no exact solution to (5.67) exists. As previously shown, there are two limits in which we
can solve the EMS exactly. This was because we wrote down our differential equation as Bessels
equation that equaled a arbitrary function. However, when our mass is considered to be very
small, m2/H2 � 1, we can also rewrite (5.67) into a more convenient form

∂2
τϕ(τ)− 2

τ
∂τϕ(τ) + k2ϕ(τ) = − 1

H2τ2

(
m2

0 + V ′′′(φ̄)ϕ̂lτ
m2

0
3H2

)
ϕ(τ) , (5.86)

Mathematically, (5.67) and (5.86) look very similar. There is one difference however, when
solving (5.86) we take the mass term into the inhomogeneous part of the solution for ϕs.
Meaning that we will be looking for solutions of the form

ϕ(τ,m+m0 + δm(τ)) ≈ ϕ(τ,m) +m2
0 ϕ(τ,m0) + δm(τ)2 ϕ(τ,m) , (5.87)

here m is the “standard” unperturbed mass, m0 is the small perturbation of the mass, and
δm(τ) is the time dependent mass that the interactions induce. Before we continue with the
calculation of the squeezed bispectrum of a particle with a small mass, we will first discuss the
momentum dependence that the correlation function should have based on the isometries. The
dilation operator that annihilates a general massive three point function is given by

3∑
a=1

Da − 3 =
(
−3(∆− 3) + ki∂

i − 3
)
, (5.88)

here we have subtracted -3 in order to account for the truncation of the Dirac-delta function.
Remember that ∆ = 3

2 + iµ = 3
2 − ν. This suggests that our three point function should scale

as

〈ϕ3〉′ ∼ τ3( 3
2
−ν)

k
3
2

+3ν
. (5.89)

We can use this scaling as a check to see whether the solution we found meets the isometry
conditions.

To calculate the light mass bispectrum, we will make the following assumptions. Following
our definition of (5.87) we set m = 0 and m0 � 1. In this case, the leading order correction to
the Green’s function is given by (5.80). Then the particular solution of ϕ is then given by

ϕ(1)
p (τ, k) =

=− 1

24
√

2H5k4(−τ)5/2
√
−kτ

(
1

3H4 − 4H2m2
0 +m4

0

(
16H4k3m2

0τ
3
(
3H4 − 4H2m2

0 +m4
0

)
−

− 3H2V ′′′(−τ)
m2

0
H2
(
2iH2m4

0(kτ + i)2 +m6
0(kτ + i) −H4m2

0(kτ + i)(2kτ − i)(2kτ + i)

+2H6(kτ − i)(−1 + 3kτ(2kτ + i))
)
ϕ̂l
)

+

e2ikτ (kτ + i)

(
3V ′′′ϕ̂l

(
2H4 +H2m2

0 −m4
0

)
(−τ)

m02

H2 E
4−m02

H2
(2ikτ) + 8iH4k3m2

0τ
3Ei(−2ikτ)

))
.

(5.90)
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This is the linear order correction to the Green’s function. We can check the validity of (5.90)
by taking the limit of m0 → 0. In this limit, we obtain the following expression for the particular
solution

ϕp(k, τ∗) =
V ′′′ϕ̂le

−ikτ (2 + e2ikτ (1− ikτ)E1(2ikτ)
)

3
√

2Hk3/2
. (5.91)

This result is equivalent to (5.82) up to an overall phase factor. The squeezed limit one obtains
by using (5.91) is equal to (5.83).

Then after a lot of “taking the real part juggling Kung-Fu”, we end up with the following
expression

〈ϕ(ks, τ∗)ϕ(ks, τ∗)ϕ(kl, τ∗)〉′ ≈
H2V ′′′

6

(−2 + γE + log (−2ksτ∗))

k3
sk

3
l

+

+
m2

0V
′′′

k3
l k

3
s

[
1

9
[−2 + γE + log (−2ksτ∗)] log

(
kl
ks

)
− 7

108
[−2 + γE + log (−2ksτ∗)]

+
1

6
[−2 + γE + log (−2ksτ∗)][−2 + γE + log (−2ksτ∗)]−

25

432
π2

]
.

(5.92)

At this point, let us comment on this result. When solving a massive correlation function, we
expect the momentum and (conformal) time scalings to change. However, this does not seem to
be the case in (5.92). The overall scaling is still the one inherited from the massless bispectrum,
since we assumed that the mass was very small. Also, note that all logarithm terms in this
expressions are invariant under the massless dilation and special conformal isometry.

What we can do however is the following, by increasing the value of the mass m0 and the
value of kl, there are a number of terms that start to dominate over the others. We can then
make an educated guess about the “un-squeezed” momentum configuration by exponentiating
the dominant terms. In doing that, we obtain for (5.92)

〈ϕ(ks, τ∗)ϕ(ks, τ∗)ϕ(kl, τ∗)〉′ ≈

≈ H2V ′′′

6

(−2 + γE + log (−2ksτ∗))

k3
sk

3
l

[
1 +

m2
0

H2

(
2

3
log

(
kl
ks

)
+ log(−2ksτ∗)

)]

=
H2V ′′′

6
(−2 + γE + log (−2ksτ∗))

(−2τ∗)
m2

0
H2

k
3−

m2
0

3H2
s k

3−
2m2

0
3H2

l

∼ τ
m2

0
H2
∗

k6−
m2

0
H2

.

(5.93)

The overall scaling of (5.93) is the scaling that we would expect of a massive correlation function
in our situation. If we very boldly make an educated guess based on (5.46) how this part of
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(5.92) would look like in the equilateral configuration it would be

〈ϕ(k1, τ∗)ϕ(k2, τ∗)ϕ(k3, τ∗)〉′ ≈

≈ H2V ′′′

12

(−2τ∗)
m2

0
H2

(k1k2k3)3−
2m2

0
3H2

(−1 + γE + log(−Kτ∗))
3∑
i=1

k
3−m

2
0

H2

i −
3∑
i 6=j

(
k2
i kj
)1− m2

0
3H2 + (k1k2k3)1− m2

0
3H2

 .
(5.94)

Note however, that a number of terms were omitted in (5.94) that, when added to (5.94),
produce slight deviation from conformal invariance. Whether it is possible to re-sum the left
over terms in (5.92) is not entirely clear, but since we made approximations in deriving this
result, we would expect small deviation form conformal invariance in (5.92) anyway.

We can also perform a similar calculation for fields with mtot =
√

2H + m0. Instead of
perturbing around m = 0, we will solve (5.67) by perturbing around m =

√
2H. Again we

assume m0 � 1. The result at quadratic order in m0 is given by

〈ϕ(ks, τ∗)ϕ(ks, τ∗)ϕ(kl, τ∗)〉′ ≈
πH2V ′′′

8

τ3
∗

klk2
s

[
1 +

2m2
0

H2

(
log

(
kl
ks

)
+ γE + log(−2ksτ∗)

)]
.

(5.95)
Note that this expression is much simpler than the massless one, the reason for this is that
the mode functions for ν = 1/2 are much simpler than for the ν = 3/2 case. This expression
however, does not satisfy at leading order in m0 and kl the expected momentum and (conformal)
time scaling that we would have expected using the dilation isometry. Therefore we have to
conclude that the approximation we have made has broken down and the result seems not to
be valid anymore.
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5.8 Gauge transformation and the δN formalism

To relate the correlation functions to the CMB, we want to express them in terms of comoving
curvature perturbations ζ, since ζ stops evolving after horizon exit. The transformation between
ϕ and ζ correspond to a gauge transformation between the spatially flat gauge and the comoving
gauge. There are two methods to relate these gauges to one another. The first method is a
direct gauge transformation of the form t → t + T (ϕ). This was explored in [13] and B. The
second method is by relating ζ to ϕ via the δN -formalism. In this section, we shall explore this
second scheme.

In the δN -formalism, it is realized that ζ is equal to a perturbation to the number of e-
folds, N , that arise from perturbing the initial scalar field φ in the spatially flat gauge. Scalar
perturbations to the spatial metric on a fixed time slice t can be written as a local perturbation
to the scale factor,

a(x, t) ≡ a(t)eζ(x,t) . (5.96)

The local number of e-folds a field makes before it exits the horizon is

N =

∫ t∗

t0

dt′ H(t′) = ln

(
a(t∗)

a(t0)

)
= H(t∗ − t0) , (5.97)

here t0 is an arbitrary initial time and t∗ is the moment the mode leaves the horizon. If we
define N(x, t) as the number of e-folds from a fixed flat slice to a comoving curvature slice at
time t, then

ζ(x, t) = δN(x, t) . (5.98)

To relate ζ(x, t) to the inflaton perturbations ϕ(x, t), we assume that the inflaton field has
become superhorizon at some initial time. At this time, we choose a spatially flat time-slice on
which there are no scalar fluctuations in the metric, but only fluctuations in the matter fields
φ(x, t) = φ̄(t) + ϕ(x, t). We then choose the final time slice to be coinciding with a comoving
curvature slice, where the scalar fluctuations are all inside the metric. In order to go from one
slice to the other, we evolve the unperturbed and the perturbed fields classically to the final
slice separately. The difference between the two results is then equal to the differents in the
number of e-folds a field makes,

ζ = δN = N(φ̄+ ϕ)−N(φ̄) . (5.99)

Expanding (5.99) around φ̄ we can obtain an expression for ζ(x, t) in terms of the scalar
fluctuations ϕ and derivatives of N defined on the initial slice.

ζ ≈ N ′(φ̄)ϕ+
1

2
N ′′(φ̄)ϕ2 + ... , (5.100)

here the primes denote derivatives with respect to φ. Note that the δN formula is merely
an identity which expresses ζ in terms of geometrical quantities and can be used as a “book-
keeping” object which describes how much one region of the universe has expanded (ζ > 0)
or contracted ζ < 0 relative to the mean expansion. As implicitly stated earlier, the mean
expansion is specified as the region of the universe which is supposed to be described by the
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5.8. Gauge transformation and the δN formalism

unperturbed background. Also, for this reasoning, ζ is a pure gauge mode in an exact de Sitter
spacetime.

To convert the power spectrum, a first order relation in ϕ is sufficient. However, for the
bispectrum a transformation to second order in ϕ is needed [13]. To first order in perturbations,
we have

∂φ

∂N
= − φ̇

H
= −

(
˙̄φ

H
+
ϕ̇

H

)
, (5.101)

here the dot denotes a derivative with respect to t. Inverting this expression and taking another
φ-derivative we find

∂N

∂φ

∣∣∣∣
φ̄

= −

(
H
˙̄φ
− H

˙̄φ
ϕ̇

)
and

∂N2

∂φ2

∣∣∣∣
φ̄

= −

(
Ḣ

H2
−

¨̄φ

H ˙̄φ

)(
H
˙̄φ

)2

, (5.102)

here we assumed that ϕ � φ̄. Also, although when evaluating φ we assumed that ϕ = 0, but
not ϕ̇. Then making use of (2.35) we find that ζ and ϕ are related to second order by

ζ = − 1√
2εMPl

ϕ+
η

8εM2
Pl

ϕ2 +
1

2εM2
PlH

ϕϕ̇ ... , (5.103)

which is equivalent to the transformation found in [13] in the limit (5.2). In literature, the second
order contribution ϕϕ̇ is often omitted or not taken to be into account. When calculating three
point correlation functions, this term will be τν∗ suppressed at the end of inflation and can
therefore be safely ignored.

Constant ζ in time is a solution of it’s equation of motion to all orders in powers of ζ outside
the horizon [13], meaning that any three point function of ζ(τ∗ → 0) should freeze out after
all modes have passed the horizon. To convert the ϕ correlation functions to ζ correlation
functions, we need to choose a convenient final slice. As we already observed in (5.46), our
result can contains logaritmic terms. Taking the final slice to be τ → 0 can then be rather
confusing since we would encounter a fictional divergence. This divergence is fictional in the
sense that one no observer can really set τ∗ → 0, since observations must be made at a finite
time which gives a cutoff scale for τ∗. An alternative and better choice would be the moment
of horizon crossing, the moment at which the logaritmic divergence are controllable,

k∗ ≡ a(τ∗)H(τ∗) , (5.104)

here τ∗ is the moment when the modes leaves the horizon. However, since not all modes
inside the bispectrum need to carry the same momenta, modes with a longer wavelength will
exit the horizon earlier than modes with a shorter wavelength. To account for the difference
in evolution before the modes become super Hubble size, we will convert the bispectrum at
the moment when the last mode leaves the horizon. Since the bispectrum is invariant under
permutations of the different modes, we choose k1 ≤ k2 ≤ k3 and so we set τ∗ = −1/k3. Then,
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5.8. Gauge transformation and the δN formalism

the general ζ-bispectrum is related to the ϕ-bispectrum via

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉′ = −1

(2ε)
3
2M3

Pl

〈ϕ(k1, τ∗)ϕ(k2, τ∗)ϕ(k3, τ∗)〉′+

+
1

2ε2M4
Pl

η

8
〈ϕ(k1, τ∗)ϕ(k2, τ∗)[ϕ(k3, τ∗) • ϕ(k3, τ∗)] + 2 perm.〉′ ,

(5.105)

here • denotes a convolution product. The first term in (5.105) is the connected part of the
ϕ correlator and the last term is the contribution due to the superhorizon part of the gauge
transformation between comoving- and the spatially flat gauge. For an arbitrary mass, this
superhorizon part is given by

η

16ε2M4
Pl

〈ϕ(k1, τ∗)ϕ(k2, τ∗)[ϕ(k3, τ∗) • ϕ(k3, τ∗)] + 2 perm.〉′ =

=
ηH4

16ε2M4
Pl

Γ(−iµ)4

42+2iµπ2

∑3
i=1 k

−2iµ
i

(k1k2k3)−2iµ
(−τ∗)6+4iµ .

(5.106)

With this prescription at hand to calculate ζ correlators from ϕ correlators, we can convert
the bispectrum to the comoving gauge. Converting (5.46) one obtains

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉′ =

=
H2

(2ε)3/2M3
Pl

V ′′′(φ̄)

12

1

k3
1k

3
2k

3
3

(−1 + γE + log (−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

k2
i kj + k1k2k3


+

H4

16ε2M4
Pl

η

2

k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

,

(5.107)

and converting (5.47) to the comoving gauge, one obtains

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉′ =πH2V ′′′(φ̄)

8

τ3
∗

k1k2k3
+

H4

16ε2M4
Pl

η

2

(k1 + k2 + k3)

k1k2k3
τ4
∗ . (5.108)

Let us examine (5.107) closely, we note that it is fully constructed from conformal and local
terms and therefore is invariant under the full conformal isometry group.

When examining (5.108) however, we note a new shape, the second term. This term is
invariant under the special conformal isometry but does not seem to be invariant under the
Dilation isometry. There are a few subtleties one has to consider when making a statement
about this term. In the equilateral configuration, we have that kt ∼ −1/τ∗. Therefore we
can argue that in the equilateral limit, the correlator still obeys the conformal isometries.
Also, for a massive correlation function, the time dependence strongly suppresses the massive
contribution to the bispectrum as τ∗ → 0. Therefore one would expect a negligible contribution
to the bispectrum comming from massive scalar fields producing again a conformal invariant
bispectrum.
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5.8. Gauge transformation and the δN formalism

If we want to compare this result to the one performed in the comoving gauge we need to
convert the third derivative of the potential to slow-roll parameters, since interactions in the
comoving gauge arise from different couplings. Starting from (5.3) and taking three φ-derivatives
we obtain

V ′′′(φ̄) =
H2

√
2εMPl

[
−3

2

η̇

H
− η̈

2H2
− ηη̇

2H
+ 3ηε− 9

2

εη̇

H
+

5

2
εη2 + 3ε2η − 8ε3

]
. (5.109)

In the decoupling limit (5.2), this expression simplifies to

V ′′′(φ̄) =
H2

√
2εMPl

[
−3

2

η̇

H
− η̈

2H2
− ηη̇

2H

]
. (5.110)

From (2.35) we note that the first term in (5.110) is leading order in slow-roll parameters. At
leading order in slow-roll parameters (5.107) becomes

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉′ =

=
H4

16ε2M4
Pl

(
η̇

2H
− η̈

6H2
− ηη̇

6H

)
1

k3
1k

3
2k

3
3

(−1 + γE + log (−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

k2
i kj + k1k2k3

+

+
H4

16ε2M4
Pl

η

2

k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

.

(5.111)

When we take the full bispectrum result of the previous chapter, including the ε∗η∗ contribution
as given in [19], and take the limit (5.2), we obtain the exact same result as (5.111). This verifies
the validity of the results and calculations done in this chapter.
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5.9 Estimate of non-Gaussianities

Just as in the comoving gauge calculation where we had estimated the amount of non-
Gaussianities the slow-roll model contains using the Komatsu-Spergel local form, we can es-
timate the (equilateral) non-Gaussianities in our decoupling limit model in a similar fashion.
It turns out that in the limit (5.2), a very elegant simplification arises for the estimate of the
connected part of ϕ correlation function, namely

fNL ∼ αs . (5.112)

This relation can be obtained in the following way. In general, the spectral tilt of the power
spectrum is given by

ns − 1 = −2ε+
ε,N
ε
, (5.113)

here we expressed the slow-roll parameter η in terms of the “e-folds”-derivatives of ε. In our
decoupling limit, it is now possible to directly relate the running of the potential to the third
derivative of the potential with respect to φ,

αs ≡ (1− ns),N = 2ε,N −
ε,NN
ε

+
(ε,N
ε

)2

= (1− ns)− 6ε (1− ns) + 8ε− εNN
ε

(5.114)

' (1− ns) ξ +O(ε)

' 2M4
Pl

V ′′′V ′

V 2
+O(εV ) ,

where again ξ ≡ η̇/(ηH) = −η,N/η and εV � 1. Consider the connected part of the correlation
function, we can now write

〈ζ3〉 ⊃ (2ε)−3/2M−3
Pl 〈δφ

3〉 ∝ V ′′′H2

(2ε)3/2M3
Pl

= αs × numbers . (5.115)

After bringing the superhorizon part of the ζ correlator into the form of (4.145) we find that
the non-Gaussianities produced by this term are given by

f local
NL ∼ η

2
∼ m2

H2
, (5.116)

which is the same term appears in the leading contributions to the non-Gaussianities produced
by the boundary term [20] in the comoving gauge. Note that in contrary to the comoving gauge
calculation, this η contribution arises from the superhorizon part of the gauge transformation.

In [25] it is noted that terms in the bispectrum of the form (ns−1)×local will not contribute to
any non-Gaussianities, since we cannot observe locally whether our measurements are effected
by a long mode in the background. The reason for this is that the results of our calculation
are measured in comoving coordinates, but the actual distance is measured with the full metric.
Therefore, one needs to put back the (1 + 2ζ) term back in hij . This transformation cancels
exactly the (ns − 1)× local contributions in the bispectrum.
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5.9. Estimate of non-Gaussianities

This can be made explicit by writing the comoving curvature perturbation as

ζ(x) = ζs(x) + ζl(x) , (5.117)

here the ζ-perturbation has been separated into a long- and short-wavelength piece on the scale
of the patch within the correlation function is measured. When we transform ζ to Fermi normal
coordinates [25], we loose the ζl contribution of (5.117) giving us

ζ̄(xF ) = ζx(x) +O(∂i∂jζl)

≈ ζs(x) ,
(5.118)

here the bar on ζ signifies the fact that ζ is given in Fermi normal coordinates. When we
now transform the squeezed ζ-bispectrum, since we are interested in the “equilateral” non-
Gaussianities, to Fermi normal coordinates, we obtain we obtain [25]

Bζ̄ζ̄ζ̄(kl,k1k2) = Pζ(kl)Pζ(ks)
∂ ln

(
k3
sPζ(ks)

)
∂ ln(ks)

+Bζζζ(kl,k1k2) (5.119)

As previously shown,
Bζζζ(kl,k1k2) = −(ns − 1)Pζ(kl)Pζ(ks) (5.120)

therefore all terms proportional to (ns − 1) × local cancel. Therefore, we conclude that the
physical (equilateral) non-Gaussianities in this model follow (5.112).
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6.1. Summary

6.1 Summary

We started this thesis with a brief introduction to modern cosmology where we related the
CMB and the Horizon problem. We argued that the most promising paradigm that solves this
problem was inflation. We then moved away from the ideal homogeneous and isotropic universe
picture and we studied perturbation theory. We gave a formal way to foliate the spacetime of the
primordial universe and we gave a formal (new) proof to what order we need to perturbatively
solve the ADM -constraints in order for our action to be valid.

Then we did cosmological perturbation theory in the comoving gauge. We solved the spectral
tilt to the next order and we proved that the consistency relation holds up to second order for
the bispectrum. During this calculation, we derived a new formal treatment how to calculate
the bispectrum when approximating the Quasi-de Sitter mode functions as the de Sitter mode
functions and showed that the dangerous logarithmic divergences that appear in the bispectrum
can be controlled by the use of boundary terms.

And last not least, we did perturbation theory in the spatially flat gauge. Here we studied our
decoupling limit. At the moment when the modes left the horizon, we found that the isometries
of the (Quasi)-de Sitter space reduced to that of an conformal field theory and that all three
point correlation functions enjoy the full conformal symmetry. The conformal field theory that
corresponded with this dS/CFT was Euclidean. We constructed a scalar consistency relation
and showed that it holds in our decoupling limit. We then calculated the squeezed bispectrum
for a more general massive particle. For very light massive particles the approximation seems to
hold at leading orders in kl, but it seems that the approximation breaks down for the calculation
when we perturbed around a mass of m2 = 2H2. We then converted the result of the spatially
flat gauge to the comoving gauge and showed that the δN formalism method is equivalent
to a direct gauge transformation of the time coordinate t. We compared the results between
both gauges and proved that the calculations are consistent. Finally we estimated the physical
non-Gaussianities in our model to fNL ∼ αs.
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6.2 Beyond this thesis

Loop corrections

Another interesting application arises when one is interested in calculating the one loop correc-
tion to the propagator. In the limit, (5.2) also the quartic interaction action becomes trivial in
the sense that we can write the full interaction action up to quartic order in perturbations as

Sint =

∫
d4x

[
1

6
V ′′′(φ̄)ϕ3 +

1

24
V ′′′′(φ̄)ϕ4

]
. (6.1)

A simplification arises when one wants to convert the corrections to the comoving gauge. We
are free to choose our moment of conversion as long as we do it consistently. By choosing
the moment when we convert the loop correction, we can control the dangerous logarithmic
temporal divergence. In any case, we can make sure that the loop correction that arises from
the quartic vertex dominates over the loop correction that arises when using two cubic vertices,
since the latter is suppressed by two sets of slow-roll parameters. Also, one would expect that
there will be three loop corrections arising from the fact that there is a second order relation
between ϕ and ζ. Then the integrals one has to perform to get the full loop correction are then
given by

〈ϕ(τ, k)ϕ(τ, k)〉′ ≈

[
−2

H6

˙̄φ6
Im

[
−
∫ t∗

−∞
dt̃
〈

[H(4)(t̃), ϕ(t, k)2
〉′]

+ (6.2)

+
∂N

∂φ

∂2N

∂φ2

∫
d3q

(2π)3
B(k, k − q, q) + (6.3)

+
1

2

∂2N

∂φ2

∫
d3q

(2π)3
P (k − q)P (q) + (6.4)

+
∂N

∂φ

∂3N

∂φ3

∫
d3q

(2π)3
P (k)P (q)

]
τ→τ∗

, (6.5)

here (6.2) is the loop correction arising from the interactions and (6.3)-(6.5) arise from the
second order relation between ϕ and ζ.

Higher order consistency relations

With the consistency relation, as given in 5.6, we can study higher correlation functions in the
presence of a long background mode. In appendix F, a simple (new) calculation is performed
to calculate the tri-spectrum for the massless case and the massive m2 = 2H2 case. As we see
in this appendix, the more massive the particle becomes, the more distorted the original three
point correlation function becomes. Similar to what we discussed in 5.7.1, the mode functions
for the short modes will shift again due to the introduction of a time dependent mass. However,
since we produce a equilateral shaped three point function when taking one of the legs soft of
a four point function, suggests that when squeezing the four point function, we also find the
solution, at leading orders in kl, to a very non-trivial integral.
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Appendix A

Definitions and conventions

A.1 A connection to literature

In literature, you might come across different definitions of the slow-roll parameters. This is a
brief overview of the slow-roll parameters that are often used in literature and the conversion
factors between them.

εV ≡
M2

Pl

2

(
V,φ
V

)2

, ηV ≡M2
Pl

V,φφ
V

, ξ
(1)
V ≡M

4
Pl

V,φV,φφφ
V 2

, (A.1)

ε ≡ − Ḣ

H2
≈ εV , η ≡ ε̇

εH
= −

ε,N
ε
≈ 4εV − 2ηV , (A.2)

δ ≡ φ̈

φ̇H
, ξφ ≡

∂3
t φ

φH2
, (A.3)

εV = ε

(
3 + η/2− ε

3− ε

)2

= ε

(
3− δ
3− ε

)2

, (A.4)

ηV =
6ε− 3/2η − ξφ

3− ε
=

3(ε+ δ)− ξφ
3− ε

. (A.5)

The potential slow-roll parameters are defined in (A.1) and are denoted by a subscript V , the
Hubble slow-roll parameters are defined in (A.2) and do not carry a subscript and the potential
slow-roll parameters as defined in [5] are given by (A.3) and are denoted with a subscript φ. The
remaining equations (A.4) and (A.5) are the conversion factors between the different slow-roll
parameters.

The leading order corrections to the spectral tilt and running are defined by

(ns − 1) =
∂P

∂ log(k)
= −2ε− η = −6εV + 2ηV , (A.6)

αs =
∂ns

∂ ln(k)
= −2εη − ηξ(1) = −16εV ηV + 24ε2V + 2ξ

(1)
V , (A.7)

here the subscript s denotes the fact tat we are looking at scalar perturbations. The potential
slow-roll parameters are defined in (A.1) and are denoted by a subscript V , the Hubble slow-roll
parameters are defined in (A.2)
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A.2. Potential in terms of slow-roll parameters

A.2 Potential in terms of slow-roll parameters

When comparing results from different gauges with eachother, it is convenient to express all
quantities that only depend on the background equations of motion of the fields in terms of
slow-roll parameters. For example, one can express the potential and its derivatives as

V (φ̄) = M2
PlH

2(3− ε) , (A.8)

V ′(φ̄) = MPlH
2

[
−
√
ε

2
η − 3

√
2ε+

√
2εε

]
, (A.9)

V ′′(φ̄) = H2

[
−3

2
η +

5

2
εη − 1

4
η2 − 1

2

η̇

H
+ 4ε2

]
, (A.10)

V ′′′(φ̄) =
H2

√
2εMPl

[
−3

2

η̇

H
− η̈

2H2
− ηη̇

2H
+ 9εη + 3

εη̇

H
+ 3εη2 − 9ε2η + 4ε3 − 12ε2

]
.(A.11)

here the factors of MPl have been kept explicit for the reasons discussed in 5.

112



Appendix B

Gauge transformation between the
Comoving and Spatially flat gauge

In this section we rederive the gauge transformation between the spatially flat and the comoving
gauge, we follow [13] closely. Consider again a scalar field φ(t,x) that is dependent on space
and time. We can decompose this field into it’s mean value which slowly varies in time, φ̄(t)
and perturbations around this mean value with we will denote by ϕ(t,x). Then we can write
φ(t,x) as

φ(t,x) = φ̄(t) + ϕ(t,x) . (B.1)

The coordinate transformation that corresponds to this gauge transformation is given by the
following time translation

t→ t̃ = t+ T (t,x) , (B.2)

here T (t,x) is a gauge variable that depends on space and time. We would like to find a relation
(order by order) between ϕ and T and a relation between ζ and T to connect ϕ and ζ. In order
to do this, we split T into

T = T1 + T2 + ... + Tn , (B.3)

here the subscripts 1, 2, ... n refer to the order in perturbation in ϕ or ζ. To find a relation
between ϕ and T , we can transform the field φ(t,x) under (B.2),

φ(t,x)→ φ̃(t̃,x) = φ(t,x) + (t̃− t)∂φ
∂t

+
1

2
(t̃− t)2∂

2φ

∂t2
+ ...

= φ̄+ ϕ+ ˙̄φT + ϕ̇T +
1

2
¨̄φT 2 .

(B.4)

Substituting (B.3) into (B.4) we find

T1 = − 1
˙̄φ
ϕ , (B.5)

and

T2 =
1
˙̄φ2
ϕϕ̇− 1

2

¨̄φ
˙̄φ3
ϕ2 . (B.6)
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Substituting these equations back into (B.3) we find the relation between T and ϕ to second
order

T = − 1
˙̄φ
ϕ+

1
˙̄φ2
ϕϕ̇− 1

2

¨̄φ
˙̄φ3
ϕ2 + ... . (B.7)

To find the relation between T and ζ, we have to realize that ζ(t,x) is a scalar perturbation in
the metric, thus in order to find the relation between T and ζ we also want to know how the
metric transforms under (B.2). We start with the usual ADM-metric

ds2 =
[
N2 − hijN iN j

]
dt2 − 2Nidtdx

i − hijdxidxj . (B.8)

Then under (B.2) the time element transforms as

dt̃ = dt+ ∂iTdx
i . (B.9)

Substituting this into (B.8) we find

ds2 =
[
Ñ2 − h̃ijÑ iÑ j

]
dt2 − 2

[
Ñi − Ñ2∂iT + h̃jkÑ

jÑk∂iT
]
dtdxi

−
[
h̃ij − Ñi∂jT + Ñj∂iT − Ñ2∂iT∂jT + h̃klÑ

kÑ l∂iT∂jT
]
dxidxj .

(B.10)

The (old) spatial metric can be recast in terms of the transformed variables as

hij = e2ρ(t̃)δij + Ñi∂jT + Ñj∂iT − ∂iT∂jT + ...

= e2ρ(t)
(
δij
[
1 + 2ρ̇T + ρ̈T 2 + 2ρ̇2T 2 + ...

]
+ ∂iχ∂jT + ∂iT∂jχ− e−2ρ(t)∂iT∂jT + ...

)
.

(B.11)

For notational convenience, let us define

µij ≡ ∂iχ∂jT + ∂iT∂jχ− e−2ρ(t)∂iT∂jT . (B.12)

Then there is still some gauge freedom left in the spatial part of the metric. Transforming the
spatial coordinate xi of the metric under

xi → x̃i = xi + εi(t,x) , (B.13)

we find that the spatial part of the metric becomes

hij = e2ρ(t)
(
δij
[
1 + 2ρ̇T + ρ̈T 2 + 2ρ̇2T 2 + ...

]
+ ∂iεj + ∂jεi + µij + ...

)
. (B.14)

The part of the metric that transforms as scalars generally has to be of the form

hij = e2ζδij + ∂i∂jξ . (B.15)

Expanding both forms for hij and expanding in perturbations, we can relate T to ζ as[
1 + 2ζ1 + 2ζ2 + 2ζ2

1

]
δij + ∂i∂jξ = δij

[
1 + 2ρ̇T1 + 2ρ̇T2 + ρ̈T 2

1 + 2ρ̇2T 2
1

]
+ ∂iεj + ∂jεi + µij ,
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here εi and µij are second order variables. Then at linear order in perturbations, ζ, T1 and ζ
are related by

ζ1 = ρ̇T1 = − ρ̇
˙̄φ
ϕ (B.16)

ϕ = −
˙̄φ

ρ̇
ζ + ... . (B.17)

In order to find the second order relation between ζ and ϕ, we have to get rid of the ξ term.
This can be done applying the differential operator ∂i∂j on it and by taking a trace of (B).
Then

6ζ2 = 3
[
2ρ̇T2 + ρ̈T 2

1

]
+ 2∂kε

k + µ k
k (B.18)

2ζ2 = 2ρ̇T2 + ρ̈T 2
1 + 2∂kε

k + ∂−2
(
∂i∂jµ

ij
)
. (B.19)

Note that in both equations we have ∂kε
k, pulling them out and subtracting the results equals

zero, thus

ζ2 = ρ̇T2 +
1

2
ρ̈T 2

1 +
1

4
π k
k −

1

4
∂−2

(
∂i∂jµij

)
. (B.20)

Then the gauge transformation between ϕ and ζ is then given by [13]

ζ =
ρ̇
˙̄φ
ϕ− 1

2

ρ̇ ¨̄φ
˙̄φ2
ϕ2 +

ρ̇
˙̄φ2
ϕϕ̇+

ρ̈
˙̄φ2
ϕ2 − 1

2 ˙̄φ
∂kχ∂

kϕ− 1

4

e−2ρ

˙̄φ2
∂kϕ∂

kϕ

+
1

4

e−2ρ

˙̄φ2
∂−2∂k∂l(∂

kϕ∂lϕ) +
1

2 ˙̄φ
∂−2∂k∂l(∂

kϕ∂lϕ) .

(B.21)
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Appendix C

Calculation of the Bispectrum

In this section, we give a explicit derivation of the leading order bispectrum as first calculated
in [13]. We will calculate the bispectrum from the action in which we performed the field shift
of ζ → ζn + f(ζ2

n) + ....

C.1 Bispectrum at first order in slow-roll parameters

The following terms in the action will produce the leading order ε contribution to the bispectrum

S3 =

∫
dt d3x

[
a3ε2ζζ̇2 + aε2ζ(∂ζ)2 − 2aεζ̇(∂ζ)(∂χ)

]
.

Using the definition of ψ(1), which is given by ψ(1) = a2ε∂−2ζ̇ and using that the cubic action
terms will contribute as -〈ζ3〉 ∼ i〈[H, ζ3]〉, we find the following three expressions that contribute
to the bispectrum at order ε2

〈ζζζ〉′ =

= −2i u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞
dτ a2ε2

(
u∗(k1, τ)

du∗(k2, τ)

dτ

du∗(k3, τ)

dτ
+ 2 perm

)
+ c.c.

+ 2i u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞
dτ (a2ε2u∗(k1, τ)u∗(k2, τ)u∗(k3, τ)k1.k2 + 2 perm) + c.c.

+ 2i u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞
dτ a2ε2(u∗(k1, τ)

du∗(k2, τ)

dτ

du∗(k3, τ)

dτ
k1.k2

(
1

k2
2

+
1

k2
3

)
+ 2 perm) + c.c. .

(C.1)

These expressions oscillate rapidly when τ → −∞, which can produce a non-zero result at this
boundary, even worse, it can even diverge. Since the mode functions at this boundary are well
within the Horizon (k � aH), we require that their contribution cancels out. We must therefore
regularize our integral at this boundary [14]. We can regularize this boundary by shifting it
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C.1. Bispectrum at first order in slow-roll parameters

slightly into the complex plane, as discussed in 3.3.1, then∫ τend

−∞
→
∫ τend

−∞(1±iε)
. (C.2)

Evaluating all integrals separately we find

term 1 =

= −2i u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞(1+iε)
dτ a2ε2

(
u∗(k1, τ)

du∗(k2, τ)

dτ

du∗(k3, τ)

dτ
+ 2 perm

)
+ c.c.

= −2Re

 −iH3√
64ε3 Πik3

i

∫ 0

−∞(1+iε)
dτ

2i

H2τ2

iH3√
64ε3 Πik3

i

(1− ik1τ)k2
2k

2
3τ

2eikτ + 2 perm


= − H4

32ε2 Πik3
i

2ε Re

[
ieikτk2

2k
2
3

(
−i(kt + k1)

k2
t

− k1τ

kt

)
+ 2 perm

]
τ→0

= − H4

32ε2 Πik3
i

2ε

[
k2

2k
2
3

(
kt + k1

k2
t

)
+ 2 perm

]

= − H4

32ε2 Πik3
i

2ε

 1

kt

∑
i<j

k2
i k

2
j +

k1k2k3

k2
t

∑
i<j

kikj

 .
To deal with the momentum vectors in the next two terms, we can use the following trick in
combination with momentum conservation, i.e. k1 + k2 + k3 = 0,

(k1 + k2).(k1 + k2) = (k1 + k2)2 = k2
1 + 2k1.k2 + k2

2

⇒ (k1 + k2)2 = (−k3)2 = k2
3 = k2

1 + 2k1.k2 + k2
2

⇒ k1.k2 =
1

2

(
k2

3 − k2
1 − k2

2

)
.

Similar expressions can be obtained for k1.k3 and k2.k3 by cyclic permutations of the k1.k2

result. Then term 2 and term 3 become

term 2 =

= +2i u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞(1+iε)
dτ a2ε2u∗(k1, τ)u∗(k2, τ)u∗(k3, τ)(k1.k2 + 2 perm) + c.c.

= − H4

32ε2 Πik3
i

2ε Re

[∫ 0

−∞(1+ıε)
dτ

i

τ2
(1− ik1τ)(1− ik2τ)(1− ik3τ)eiktτ (k1.k2 + 2 perm)

]

= − H4

32ε2 Πik3
i

2ε

[
ktk1k2 + k1k2k3 + kt(k1 + k2)k3

k2
t

(k1.k2 + 2 perm)

]

= − H4

32ε2 Πik3
i

2ε

∑
i 6=j

k2
i kj +

1

kt

3∑
i=1

k4
i − k1k2k3

(
1 +

1

k2
t

3∑
i=1

k2
i

) ,
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C.1. Bispectrum at first order in slow-roll parameters

term 3 =

= +2i u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞(1+iε)
dτ a2ε2(u∗(k1, τ)

du∗(k2, τ)

dτ

du∗(k3, τ)

dτ
k1.k2

(
1

k2
2

+
1

k2
3

)
+ 2 perm) + c.c.

= − H4

32ε2 Πik3
i

(−2ε)Re[
−iH3√

64ε3 Πik3
i

∫ 0

−∞(1+iε)
dτ

(
i

τ2
(1− ik1τ)k2

2k
2
3τ

2eikτk1.k2

(
1

k2
2

+
1

k2
3

))
+ 2 perm)] + c.c.

=
H4

32ε2 Πik3
i

2ε

[
k2

2k
2
3(kt + k1)

k2
t

k1.k2

k2
2

+ 5 perm

]

=
H4

32ε2 Πik3
i

2ε

− 3∑
i=1

k3
i +

6

kt

∑
i<j

k2
i k

2
j −

1

kt

3∑
i=1

k4
i +

2k1k2k3

k2
t

3∑
i=1

k2
i

 .
Combining all three terms, we find

〈ζζζ〉′ε2 =
H4

32ε2 Πik3
i

2ε

− 3∑
i=1

k3
i +

3∑
i 6=j

(
k2
i kj +

4

kt
k2
i k

2
j

) . (C.3)

Note that both terms in the summation of
∑3

i 6=j

(
k2
i kj + 4

kt
k2
i k

2
j

)
produce six terms. This result

is known and was first calculated by Maldacena ref.([13]).
At leading order, there is also a contribution multiplying η to the bispectrum. This contri-

bution is produced by the superhorizon part of our field shift 4.101. The contribution of this
term is given by

〈ζ(k1, τ∗)ζ(k2, τ∗) : ζ(k3, τ∗)ζ(k3, τ∗) :〉′ + 2 perm =
H4

16ε2
η

2

k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

. (C.4)

This term can be interpreted in the following way. When doing a field shift, we “move away”
from the conserved comoving curvature perturbation fluctuation ζ. At the moment we con-
vert back to the comoving curvature field, we have a second order relation between ζn and
ζ. The linear order relation produces the interaction diagrams which we calculate using the
in-in formalism. The second order relation produces a superhorizon contribution, which is the
correction for moving away from the comoving curvature hyperslicings.
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C.2. Bispectrum at next to leading order in slow-roll
parameters

C.2 Bispectrum at next to leading order in slow-roll
parameters

The terms in the action that produce an ε2 contribution to the bispectrum are given by

S3 =

∫
dt d3x

(
1

2

ε

a
∂ζ∂ψ(1)∂2ψ(1) +

ε

4
∂2ζ(∂ψ(1))2

)
(C.5)

Note that ψ(1) is build from two terms, but only one of them multiplies a factor of ε. Then
the contribution at order ε2 is obtained when taking both of the terms that are multiplying a
factor of ε. Their contributions are then given by

〈ζ3〉ε2 =

=

(
3∏
i=1

ui(0)

)
i

2

∫ τend

−∞
dτ a2ε2

[
u∗1(τ)

du∗2(τ)

dτ

du∗3(τ)

dτ

(
k1.k2

k2
2

+
k1.k3

k2
3

)
+ 2 perm.

]
+ c.c.

+

(
3∏
i=1

ui(0)

)
i

2

∫ τend

−∞
dτ a2ε2

[
u∗1(τ)

du∗2(τ)

dτ

du∗3(τ)

dτ

k2
1

k2
2k

2
3

k2.k3 + 2 perm.

]
+ c.c.

(C.6)

Then their contributions separately are given by

〈ζ3〉ε2,1 ≡

≡

(
3∏
i=1

ui(0)

)
i

2

∫ τend

−∞
dτ a2ε3

[
u∗1(τ)

du∗2(τ)

dτ

du∗3(τ)

dτ

(
k1.k2

k2
2

+
k1.k3

k2
3

)
+ 2 perm.

]
+ c.c.

=
H4

16ε2
∏3
i=1 k

3
i

ε2

4

 3∑
i=1

k5
i

k2
t

+
3

2

∑
i 6=j

k4
i kj
k2
t

− 3
∑
i<j<l

k2
i k

2
jkl

k2
t

− 5

2

∑
i 6=j

k2
i k

3
j

k2
t

 ,
(C.7)

and

〈ζ3〉ε2,2 ≡

(
3∏
i=1

ui(0)

)
i

2

∫ τend

−∞
dτ a2ε3

[
u∗1(τ)

du∗2(τ)

dτ

du∗3(τ)

dτ

k2
1

k2
2k

2
3

k2.k3 + 2 perm

]
+ c.c.

=
H4

16ε2
∏3
i=1 k

3
i

ε2

4

 3∑
i=1

k5
i

k2
t

+
1

2

∑
i 6=j

k4
i kj
k2
t

− 3

2

∑
i<j<l

k2
i k

2
jkl

k2
t

− 3

2

∑
i 6=j

k2
i k

3
j

k2
t

 , (C.8)

here the subscript 1 and 2 refer to the first and second term on the right hand side of (C.6).
Summing both results we obtain

〈ζ3〉ε2 =
H4

16ε2
∏3
i=1 k

3
i

ε2

4

2
3∑
i=1

k5
i

k2
t

+ 2
∑
i 6=j

k4
i kj
k2
t

− 4
∑
i<j<l

k2
i k

2
jkl

k2
t

− 4
∑
i 6=j

k2
i k

3
j

k2
t

 . (C.9)
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Appendix D

Two point function in a pure
de Sitter- spacetime

In this section, we calculate the two point correlation function, starting directly in a pure
de Sitter spacetime, rather than starting in a quasi-de Sitter spacetime and then taking the
appropriate limit. We verify the result of sections 2 and 3 of [24] in this appendix.

D.1 Two point function - momentum space

We start with the action for a minimally coupled (massive) scalar field,

S =
1

2

∫
dt d3x

√
|g|
(
∂µφ∂

µφ−m2|φ|2
)

(D.1)

In order to solve the equation of motion, it is convenient to make the following field redefinition,

χ = a
n−1
2 φ, (D.2)

here n is defined as the number of spatial dimensions. Then (D.1) becomes

S =
1

2

∫
dt d3x

(
(∂τχ)2 +

1

2

(
(n2 − 1)

4τ2
− m2

H2τ2
− k2

)
χ2

)
(D.3)

The equation of motion for χ is given by

∂2
τχ+

(
m2

H2τ2
+ k2 − (n2 − 1)

4τ2

)
χ = 0 (D.4)

This equation resembles the Mukhanov-Sasaki equation and the solutions for χ are given by

χ(τ) = â
√
τ H(1)

ν (kτ) + â†
√
τ H(2)

ν (kτ), (D.5)

here ν =
√
n2/4−m2/H2. Note that we can make the usual (τ → −τ) change if we want to,

then the leading order contribution of the two point function in the τ → 0 limit is then given
by

〈φ(τ, k)φ(τ ′,−k)〉′ = (ττ ′)

4π

[
Γ(ν)2

(
k2ττ ′

4

)−ν
+ Γ(−ν)2

(
k2ττ ′

4

)ν]
+ ... (D.6)
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D.2. Two point function - configuration space

D.2 Two point function - configuration space

We can acquire the two point correlation function in configuration space from making a direct
Fourier transformation of (D.6). Then the two point function is given by

〈φ(x)φ(y)〉 =
τπ

4(2π)nan−1

∫
dnk eik(x−y)H(1)

ν (kτ)H(2)
ν (kτ)

=
τπ

4(2π)nan−1

∫
dnk eik(x−y)(Jν(kτ) + iYν(kτ))(Jν(kτ)− iYν(kτ))

=
τπ

4(2π)nan−1

∫
dnk eik(x−y)(J2

ν (kτ) + Y 2
ν (kτ))

=
τπ

4(2π)nan−1

∫
dnk eikr

(
2

π

∫ ∞
0

dz

z
e
−k2
2z

+τ2zKν(τ2z)eτ
2z− r

2

2
z

)
=

τπ

(4(2π)nan−1

∫
dnk eikr

(
2

π

∫ ∞
0

dz z
n
2
−1Kν(τ2z)eτ

2z− r
2

2
zr

n
2
−1

)
=

τπ

4(2π)nan−1

∫
dnk eikr

√
2

π3τ2r
Γ
(n

2
− ν
)

Γ
(n

2
+ ν
)(

τ2 − r2

4

) 1−n
4

P
1−n
2

ν− 1
2

(
r2

2τ2
− 1

)
=

1

(4πr)
n+1
2 an−1

Γ
(
n
2 − ν

)
Γ
(
n
2 + ν

)
4τ2 − r2

P
1−n
2

ν− 1
2

(
r2

2τ2
− 1

)
=

H2

(4π)
n+1
2

Γ
(
n
2 − ν

)
Γ
(
n
2 + ν

)
Γ
(
n+1

2

) F

(
n

2
− ν, n

2
+ ν;

n+ 1

2
; 1− r2

2τ2

)
,

(D.7)

here r has been defined as r ≡ |x− y|. This result is equivalent to (3.14) of [24].
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Appendix E

Solving Correlation functions using
conformal symmetries

In this section, we calculate explicitly the momentum dependence of the two and three point
functions for scalar fields up to a overall multiplicative factor. We show that, at least at the
conformal boundary, a new way arises in order to organize the different shapes from which
correlators are build.

E.1 Two point correlation function of conformal scalars

We can derive an explicit form for the two point correlation function of two conformal (scalar)
fields by imposing the Dilation and the SCT on the two point correlation function. We shall
do this in momentum space. In momentum space, the Poincarè symmetries imply that the two
point correlation functions only depend on the magnitude one single momentum vector. Then
the Dilation isometry, D, and the SCT isometry, K, then give the following two equations which
contrain the form of the correlation function [24]

0 = D〈O(p)O(−p)〉′ =
[
d−∆1 −∆2 + p

∂

∂p

]
〈O(p)O(−p)〉′ (E.1)

and

0 = K〈O(p)O(−p)〉′ =
[
∂2
p −

(∆1 + ∆2 − d− 1)

p
∂p

]
〈O(p)O(−p)〉′. (E.2)

These identities are also known as Ward identities. From (E.1) we conclude that

〈O(p)O(−p)〉 = c12p
∆1+∆2−d, (E.3)

here c12 is a integration constant. Using (E.2) we note that it only holds iff ∆1 = ∆2. Then
our two point correlation up to an overall multiplicative factor is given by

〈O(p)O(−p)〉 = c12 p
2∆1−d. (E.4)
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E.2. Three point correlation function of conformal scalars

E.2 Three point correlation function of conformal scalars

For the three point correlation functions of scalar fields, the Poincarè symmetries imply again
that our correlation function 〈O(p1)O(p2)O(p3)〉′ can be expressed in terms of the length of
our momenta, i.e. in terms of p1, p2 and p3. Then the Ward identities for the three point
function become [24],[26]

D〈O(p1)O(p2)O(p3)〉′ =

[
2d−∆t +

3∑
a=1

pa
d

dpa

]
〈O(p1)O(p2)O(p3)〉′ , (E.5)

and[
bµ

3∑
a=1

Kµ
a

]
〈O(p1)O(p2)O(p3)〉′ =

3∑
a=1

[
bµp

µ
a

(
∂2

∂p2
a

− (2∆a − d− 1)

pa

∂

∂pa

)]
〈O(p1)O(p2)O(p3)〉′ .

(E.6)
The first ward identity (E.5) constraints the overal momentum scaling of the three point function
to

〈O(p1)O(p2)O(p3)〉′ ∼ p∆t−2d
1 F

(
p2

p1
,
p3

p1

)
, (E.7)

here F
(
p2
p1
, p3p1

)
is an arbitrary function with no overall momentum scaling. To constrain the

three point function with the SCT isometry, i.e. (E.6), we need to get rid of the overall scaling
bµp

µ
a . This can be achieved by using the Poincarè symmetries again. Since our correlation

function should also be invariant under rotations, we can choose our vector bµ in such a way
that it removes one of the three Kµ

a of (E.6). If we choose for example bµp
µ
3 = 0, together with

momentum conservation we can write

bµ (pµ1 + pµ2 + pµ3 ) = 0 ⇒ bµp
µ
1 = −bµpµ2 . (E.8)

This reduces (E.6) to

Kab〈O(p1)O(p2)O(p3)〉′ ≡ [Ka −Kb] 〈O(p1)O(p2)O(p3)〉′. (E.9)

here a, b ∈cyclic {1, 2, 3} and

Ka ≡
[
∂2

∂p2
a

− (2∆a − d− 1)

pa

∂

∂pa

]
. (E.10)

Note that Ka is again the D’Alembert operator for a Rd+2−2∆a spacetime with radial coordinate
pa. In order to solve (E.9), we have to realize that every single Ka only acts on the momentum
corresponding to one of the conformal scalar fields. This suggests that in order to solve the
three point function, we can use separation of variables and therefore we can look at solutions
of the form

〈O(p1)O(p2)O(p3)〉′ = f(p1, p2, p3) = f(p1)f(p2)f(p3) . (E.11)
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E.2. Three point correlation function of conformal scalars

Then the functions f(pa), with a ∈ {1, 2, 3} are determined by

K1f(p1)

f(p1)
=
K2f(p2)

f(p2)
=
K2f(p3)

f(p3)
= C , (E.12)

here C is a constant. The equation for f(pa) then becomes

[
∂2

∂p2
a

− (2∆a − d− 1)

pa

∂

∂pa

]
f(pa) = Cf(pa) . (E.13)

The solution of (E.13) is known, since this is equation is equivalent to Bessels equation. The
solution of f(pa) is given by

f(pa) = p∆a−d/2 (aKK∆a−d/2 + aII∆a−d/2
)
, (E.14)

here K∆a−d/2 and I∆a−d/2 are modified-Bessel functions and aK and aI are constants which
need to be determined. In order to find a solution for the D and the SCT isometry, we can use
a Mellin transformation of the form

∫ ∞
0

dx x−(d+1+∆t)f(p1x, p2x, p3x) . (E.15)

The integral in (E.15) only diverges as at least one of the f(pa) is given by p∆a−d/3aKK∆a−d/2.
Since we require that the correlation function is invariant under permutation of p1, p2 and p3

the only physically relevant solution is when all three f(pa) functions are modified bessel K-
functions. Then the final solution for the three point function, up to a multiplicative constant,
is given by

〈O(p1)O(p2)O(p3)〉′ ∼

∼ p∆1−d/2
1 p

∆1−d/2
2 p

∆1−d/2
3

∫ ∞
0

dx xd/2−1K∆1− d2
(p1x)K∆2− d2

(p2x)K∆3− d2
(p3x) .

(E.16)

This solution is known as the Triple-K-Integral [26]. A very comprehensive analysis of the
implications of conformal invariance for three point functions is given by [26]. An interesting
thing to note when comparing (E.17) to calculations performed in chapters 4 and 5 is that the
(conformal) time integral resembles the dummy variable that is used in the Mellin transforma-
tion. Due to this, the triple K integral is almost exactly the same as the integral that needs to
be calculated in order to derive (5.46) and (5.47).
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E.3. Solutions of the Ward identities

E.3 Solutions of the Ward identities

From a conformal symmetry point of view, the full solution to the truncated three point function
is given by [26]

〈O(k1)O(k2)O(k3)〉 = C123π
3d
2 23d−∆t

∏
i

Γ(δi)

Γ
(
d
2 − δj

) ∫ ddk
1

|k|2δ3 |k1 − k|2δ2 |k2 + k|2δ1

=
c123π

d24+ 3d
2
−∆t

Γ
(

∆t−d
2

)
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1+∆3−∆2
2

)
Γ
(

∆2+∆3−∆1
2

)×
× k∆1− d2

1 k
∆2− d2
2 k

∆3− d2
3

∫ ∞
0

dx x
d
2
−1K∆1− d2

(k1x)K∆2− d2
(k2x)K∆3− d2

(k3x) ,

(E.17)

here δj has been defined as δj = d−∆t
2 + ∆j , where j = 1, 2, 3, d is the total number of

spatial dimensions and C123 and c123 are two constant. Just as before, only the modified Bessel
functions with half-integer ∆i − d

2 give us exact expressions for K∆i− d2
(kix). This limits us

again when searching for exact expressions for the three point function.

Another problem that arise is the fact that the integral part of (E.17) might not converge
and that some sort of regularization scheme is necessary. In general, and assuming that all
variables are real, the integral converges for

d

2
>

3∑
j=1

∣∣∣∣∆j −
d

2

∣∣∣∣+ 2. (E.18)

When we encounter a divergence that is not logarithmic, we can use analytic continuation in
order to regularize our integral by putting [26]

d→ d+ 2ε, ∆i → ∆i + ε. (E.19)

Note that ε is not related to any Hubble parameter, it is just a small phase factor (ε� 1) used
to regularize the integral. If the divergence is logarithmic, renormalisation is needed. After
renomalisation, the correlators exhibit anomalous scaling transformations: they theory suffers
from conformal anomalies.

E.3.1 Solution to the massive case

We want to calculate the bispectrum term using the ward identities and its solution, i.e. (E.17)
and compare it to (5.47). In this case, we have that d = 3, ∆1 = ∆2 = ∆3 = 1. Then the
modified K-Bessel function will become

K1/2(x) = K−1/2(x) =

√
π

2

e−x√
x
. (E.20)
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E.3. Solutions of the Ward identities

The integral will not converge, so we need to regularize is by using (E.19). Then the “Triple
K-integral” becomes∫ ∞

0
dx x−1+εK−1/2+2ε(k1x)K−1/2+2ε(k2x)K−1/2+2ε(k3x) =

= lim
ε→0

[(π
2

) 3
2 (k1 + k2 + k3)−ε√

k1k2k3
Γ(ε)

]
.

(E.21)

Combining this with the rest of (E.17) we find

〈O(k1)O(k2)O(k3)〉 ∼ 1

k1k2k3
. (E.22)

E.3.2 Solution to the massless case

For the massless case we have d = 3, ∆1 = ∆2 = ∆3 = 0. The modified K-Bessel function
becomes

K3/2(x) = K−3/2 =

√
π

2
(1 + x)

e−x

x
3
2

. (E.23)

Again, analytic continuation is needed to regularize this integral.∫ ∞
0

dx x
3
2
−1+εK−3/2+2ε(k1x)K−3/2+2ε(k2x)K−3/2+2ε(k3x) =

= lim
ε→0

(π
2

) 3
2 (k1 + k2 + k3)−ε

(k1k2k3)
3
2

(−2 + ε)

 3∑
i=1

k3
i + ε

 3∑
i 6=j

k2
i kj − k1k2k3

+ ε2k1k2k3)

Γ(−3 + ε)

 .
(E.24)

Combining this with the rest of (E.17) we find in the leading order limit in ε

〈O(k1)O(k2)O(k3)〉 ∼ k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

. (E.25)

This is the Local shape for massless scalars. Expanding (E.24) to the next to leading order in
ε produces

〈O(k1)O(k2)O(k3)〉 ∼
log (−Kτ∗)

∑3
i=1 k

3
i −

∑
i 6=j k

2
i kj + k1k2k3

k3
1k

3
2k

3
3

. (E.26)

Note that an additional factor in the log term has been put, τ∗. This has been done to make
the factor inside the log-term dimensionless. Its interpretation is that I acts as a cutoff scale
to which this approximation is valid. I shall refer to this shape as the conformal shape. These
terms are exactly the left-over terms with the correct relative prefactors as found in (5.46). This
suggests that we actually can build the scalar bispectrum up to a relative prefactor between
the local and the conformal shape.
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Appendix F

Higher order correlation functions
beyond the three point function

In the decoupling limit, (5.2), the action expanded in terms of field perturbations beyond cubic
order also simplifies considerably,

S =

∫
d4x a3

[
−V

(4)

24
ϕ4 − V (5)

120
ϕ5

]
. (F.1)

At tree level, we can have two kinds of diagrams, the first diagram is constructed from two three
point vertices and the second diagram is constructed from only a single four point vertex. Let us
study the squeezed limit of the trispectrum contribution of the contribution to the bispectrum
produced by the single four-vertex diagram.

F.1 The squeezed four point function

It will be interesting to see how the correlation function of the three point function changes
by a field shift of the background fields. As already mentioned in 5.7.1, the mode functions in
this correlation functions will get an effective mass and therefore, the three point contribution
should get non-trivial contributions. Even worse, we will not be able to solve the integrals with
these time dependent mass corrected mode functions. Therefore, by taking the squeezed limit
of the four point function, we are also finding (a general) solution to a very difficult integral.

Let us study this squeezed limit of the contribution to the bispectrum coming from the
four-vertex diagram. The general solution to this contribution is given by

〈ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)〉 =
H4 V (4)(φ̄)

48ktk3
1k

3
2k

3
3k

3
4

(
2

4∑
i=4

k4
i (−1 + γE + log(−ktτ∗)) +

+
3∑
i 6=j

kik
3
j (−4 + 2γE + 2 log(kτ∗) + 4

∑
i 6=j

k2
i k

2
j − 2

∑
i 6=j 6=l

k2
i kjkl + 2k1k2k3k4

 (F.2)
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F.2. Five point function

If we now take the squeezed limit of this four point function by setting k4 ≡ kl � 1, but
keeping all other momenta to be different, so we do not redefine k1, k2, k3 ≡ ks we obtain for
the squeezed limit of (F.2)

〈ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)〉|k4�k1,2,3 =

=
H4 V (4)(φ̄)

24 k3
1k

3
2k

3
3k

3
l

(−1 + γE + log (−ktτ∗))
3∑
i=1

k3
i −

∑
i 6=j

k2
i kj + k1k2k3

 .
(F.3)

Interestingly enough, we observe that the squeezed limit of this diagram has precisely the mo-
mentum scaling that one would have obtained by multiplying the “regular” two point (5.38) and
three point functions (5.46). This means that the leading order contributions to the bispectrum
are not effected by the long mode which shifts the background dynamics.

Similar to the massless case, we obtain the following contribution to the massive m2 = 2H2

trispectrum

〈ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)〉 =
H4 V (4)(φ̄)

8

τ4
∗

k1k2k3k4kt
. (F.4)

Taking the squeezed limit and using definitions similar to (F.5), we obtain

〈ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)〉|k4�k1,2,3 =
H4 V (4)(φ̄)

8

τ4
∗

k1k2k3(k1 + k2 + k3) kl
. (F.5)

Interestingly enough, if we divide the long mode two point function, we note that the shifted
three point function in this expression does not resemble (5.47) anymore. The conformal time
and momentum scaling of this “shifted three point function” are now given by

〈ϕ(k1)ϕ(k2)ϕ(k3)〉ϕl ∼
τ2
∗

k1k2k3(k1 + k2 + k3)
. (F.6)

F.2 Five point function

The contribution to the five point function that is produced by a single five point vertex is given
by

〈ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)ϕ(k5)〉 =

=
H6V (5)

48k5
1k

5
2k

5
3k

5
4k

5
5

 5∑
i=1

k3
i (−1 + γE + ln(−ktτ∗)−

5∑
i 6=j

kik
2
j −

3

k2
t

5∑
i 6=j 6=m6=n

k2
i kjkmkn

 .
(F.7)
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