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Abstract

In this thesis, we study two separate subjects. First, we examine phase transitions of the antiferro-
magnetic Heisenberg model on the Swedenborgite lattice. This three-dimensional model contains two
different interactions, and there is a critical ratio of these interaction strengths that separates a region
with a unique ground state from a region where geometric frustration prevents the existence of such
a ground state. First, we explain the possible phase transitions in these different regions by means of
phenomenological Landau theory and mean-field theory. Afterwards, a spin wave analysis is performed
that shows how thermal fluctuations can destroy the unique ground state. In the vicinity of the critical
ratio, we find that the critical temperature that separates the unique ground state from a disordered
phase scales linearly with the ratio of interaction strengths. This successfully completes an important
section of the phase diagram of this model.

The second part covers quasiparticle interference in the Cu doped topological insulator Bi2Te3. The
effects of impurity scattering are calculated using an effective low-energy tight-binding model, along with
a single local surface impurity. We find two distinct six-fold rotationally symmetric scattering patterns
corresponding to two different energy windows. A comparison with the band structure of the system
suggests that this distinction is caused by the interplay between edge states among themselves and with
the conduction band. We also find that the symmetry and rotational orientation of the model results are
in good agreement with experiments. However, this requires a special type of impurity that only couples
to the electrons from a single orbital.
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1.2 Triangular, Kagomé and Swedenborgite lattices . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Swedenborgite antiferromagnetic Heisenberg model . . . . . . . . . . . . . . . . . . . 9
1.4 Phase transition in the J2/J1 → 3/2 limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Phenomenological Landau theory 13
2.1 The distorted triangular lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Symmetry and the construction of the Landau free energy . . . . . . . . . . . . . . 20
2.1.3 Primary and secondary order parameters . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Landau theory of the Swedenborgite antiferromagnet . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Octupolar ordering and its absence . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Mean-field theory 26
3.1 Mean-field methods applied to the Heisenberg antiferromagnet on the triangular lattice . 26

3.1.1 A simple mean-field approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Variational mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Mean-field approximation using a Hubbard-Stratonovich transformation and the

relation with Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Variational mean-field theory revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Real space free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Momentum space free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 A final look at the triangular lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Mean-field critical temperature of the Swedenborgite antiferromagnet . . . . . . . . . . . . 37
3.4 Failure of mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Spin waves of the Swedenborgite antiferromagnet 42
4.1 Spin wave Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Real space Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Momentum space Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 On the relevance of odd order terms . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Lowest order approximation of Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Higher order contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Quadratic corrections to the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Direct perturbation theory of the correlation functions . . . . . . . . . . . . . . . . 55

4.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



Contents

II Quasiparticle interference in a topological insulator 59

5 Introduction to Part II 61
5.1 Tight-binding models and electronic band structure . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 The square lattice tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Band theory, electrical properties and topological insulators . . . . . . . . . . . . . 63
5.1.3 Mapping complicated models to a square lattice . . . . . . . . . . . . . . . . . . . 65

5.2 Green’s functions and the density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Impurity scattering and quasiparticle interference . . . . . . . . . . . . . . . . . . . . . . . 70

6 Model description of quasiparticle interference in the topological insulator CuxBi2Te3 74
6.1 The model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Methods and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix 85
A.1 Comments on the Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Additional simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.5 Perturbation theory and Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.1 Tight-binding band structure of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Efficient iterative methods for the numerical calculation of surface Green’s functions . . . 96

Bibliography 101

vi



Part I

Phase transitions of the
antiferromagnetic Heisenberg model

on the Swedenborgite lattice

1





Chapter 1

Introduction to Part I

Over the last century, phase transitions of magnetic materials have received a lot of scientific attention,
both theoretically and experimentally. Magnetic properties arise from the underlying lattice structure
of such a material, in combination with the interactions between the spins residing on the lattice sites.
This interplay between geometry and interactions may lead to different forms of magnetism, for example
paramagnetism, ferromagnetism, or antiferromagnetism. The exact properties of a magnet also depend
on the temperature of the system, resulting in the emergence of phase transitions at certain temper-
atures. However, in some situations the interactions between the spins may be incompatible with one
another, and the system is said to be frustrated. Magnetically frustrated materials often have extensively
degenerate ground states, and they lead to the existence of phases not encountered in conventional non-
frustrated materials. An example of such an unusual phase is called a spin-liquid phase. A spin-liquid
phase lacks long-range order of any type, much like how liquid water is disordered compared to frozen
water. For example, fluctuations between the many degenerate configurations that might make up a
spin-liquid phase allow the lack of long-range order to extend to much lower temperatures than it would
in absence of frustration [1].

On a theoretical level, much research has been done on frustrated systems, for example on the
Heisenberg Kagomé antiferromagnet [2]. Especially classical systems are often found to display a spin-
liquid phase. However, it was only recently that the first experimental evidence of spin liquids has
been found: in 2012, Han et al. [3] found that the material Herbertsmithite, ZnCu3(OD)6Cl, has key
features that are characteristic to spin liquids. The reason for this late discovery is that real systems
have a quantum nature, and the ground state degeneracy of frustrated magnets is often easily lifted by
small internal or external perturbations. Another class of materials that shows promise for experimental
observation of magnetic frustration are the so-called Swedenborgites. The advantage of these materials
is the ability to tune their properties by chemical substitution of some of the components. Motivated
by the potential experimental relevance, this work will build on the prior theoretical study of classical
frustrated magnetism of Swedenborgites by Buhrandt [4].

The remainder of this chapter will first cover the important concepts related to classical spin models
and frustrated magnetism. Then, the triangular lattice and the Kagomé lattice will be introduced and
described, leading to the Swedenborgite lattice. Afterwards, we will review the possible ground states
and the phase diagram of the antiferromagnetic Heisenberg model on the Swedenborgite lattice, which
is the model that is the main topic of interest of this part of the thesis. Finally, we will discuss the
unanswered questions regarding this model; these will define the main goals of this work.

In Ch. 2, we cover the phenomenological Landau theory that will give us a better qualitative under-
standing of the phase transitions that are encountered on the Swedenborgite antiferromagnetic Heisenberg
model. In order to do so, we first discuss the concepts of phenomenological Landau theory in general.
Then, Landau theory will be applied to a simpler model: the antiferromagnetic Heisenberg model on a
distorted triangular lattice. The analysis of the distorted triangular lattice will be supported by Monte
Carlo simulations, and the results from this model will be generalized to construct a Landau free energy
for the Swedenborgite lattice.

In Ch. 3, mean-field theory will be discussed in an attempt to describe the phase transitions of the
models of interest in a microscopic way. The chapter starts with a mean-field analysis of the (undistorted)
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Chapter 1. Introduction to Part I

triangular lattice. Subsequently, a general framework for variational mean-field theory is discussed and
then applied to the Swedenborgite lattice. This leads to a mean-field description of the relevant phase
transitions. However, we will see that this mean-field description disagrees both with simulations and
with the exact theoretical analysis of the model from Ch. 1. The reasons for this will be discussed at
the end of Ch. 3.

Finally, Ch. 4 will cover an analysis of spin waves about the unique ground state of the Swedenborgite
antiferromagnet. This will allow us to estimate the critical temperature that separates the unique ground
state from a disordered phase. This critical temperature will be determined to lowest order, which will
reveal the part of the phase diagram that was previously unknown. Then, higher order spin wave
contributions will be discussed by describing them as quadratic corrections to the Hamiltonian, and by
performing direct perturbation theory of the correlation functions. At the end of this chapter, we wrap
up this first part of the thesis by discussing the conclusions.

1.1 Classical spin models and frustration

Spin models provide a successful way to explain magnetism. These models describe a material as a lattice
of atoms, each of which carries its own magnetic dipole moment, a quantity that arises from the spin
that it carries. Interactions between these dipole moments, and consequently the spins, are responsible
for the magnetic properties of the material. Classically, the spins can be described by n-dimensional unit
vectors, rather than quantum mechanical operators. Using this description, magnetic properties can be
described in the following way. If the interactions between spins are for example ferromagnetic, then it is
energetically favourable for different spins to point in the same direction. Hence at low temperature (when
the system will occupy the ground state) all spins are aligned and the material becomes ferromagnetic.
On the other hand, at high temperatures thermal fluctuations will become strong enough to destroy
this ferromagnetic ordering and the spins will point in random directions, such that the system becomes
disordered. However, applying a strong enough external magnetic field can still force the spins to point
in a specific direction, so the material is now paramagnetic. The temperature at which the transition
between these two phases happens is called the critical temperature Tc. In addition to successfully
explaining magnetism, spin models also prove to be excellent models to study phase transitions and
critical phenomena in general.

The above example focuses on ferromagnetic interactions. Another possible type of interactions are
antiferromagnetic interactions, where it is energetically favourable for two interacting spins to point in
the opposite direction. This kind of interaction can give rise to the concept of magnetic frustration [5].
A system is said to be magnetically frustrated if it is unable to satisfy all interactions simultaneously.
Frustrated systems often have a highly degenerate ground state, and they allow for interesting phases and
behaviour that would not appear in systems that are not frustrated. There are two ways for magnetic
frustration to appear, which we will now explain at the hand of examples.

The simplest (but still remarkably useful) spin models are restricted to interactions between nearest
neighbour lattice sites. One such nearest neighbour spin model is the Ising model. This model considers
spins as one-dimensional unit vectors, so each spin can either take the value +1 or −1. Explicitly, this
model is described by the Hamiltonian

H = J
∑
〈i,j〉

SiSj , (1.1)

where 〈i, j〉 denotes all nearest neighbour pairs on the lattice, Si is the spin on lattice site i, and J
is the coupling constant. Note that the size and units of the spins are absorbed into J , and that J
can be negative (ferromagnetic) or positive (antiferromagnetic). In the former situation, there are two
ground states: either all spins point up (i.e. they all assume the value Si = +1), or they all point down
(Si = −1). However, these two states are simply an O(1) rotation of one another, and we refer to them as
a single unique ground state, where “unique” now implicitly means “unique up to global O(1) rotations”.
If on the other hand J is positive, it depends on the underlying lattice what the ground states are and
how many of them exist. It is very well possible that the ground state is still unique, for example on a
one-dimensional chain: then the spins simply alternate between up and down, and all interactions are
satisfied. However, one can also imagine lattices on which this will not work, such as a single equilateral
triangle, which is detailed in Fig. 1.1. On a single triangle, it is impossible for all three pairs to be
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1.1. Classical spin models and frustration

?
Figure 1.1: Geometric frustration of the antiferromagnetic Ising model on a single triangle. Once two spins
are chosen anti-parallel, the third spin can no longer be picked such that all antiferromagnetic interactions are
satisfied. Unsatisfied bonds are signified by red lines.
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Figure 1.2: Exchange frustration of a next-nearest neighbour Ising model on a single square. The dashed lines
signify ferromagnetic (FM) interactions, while the solid lines are antiferromagnetic (AFM) interactions. After
choosing the first two spins, it is not possible to choose the remaining spins such that all bonds are satisfied. The
best possible choices still leave two unsatisfied bonds (shown in red).

anti-parallel, and therefore there is no unique ground state. The best that this system can achieve, is
having two spins pointing up and one spin pointing down, such that the ground state of this system is
highly degenerate: six out of the eight possible configurations give the lowest possible energy. This is an
example where frustration arises from the incompatibility of the interactions with the geometry of the
underlying lattice, which is called geometric frustration.

The second type of frustration, called exchange frustration, can be caused by introducing conflicting
interactions beyond nearest neighbour interactions. Again, this is a concept best explained by means of
an example. We start again with the Ising model, but this time we consider the ferromagnetic version of
this model. Moreover, we will now include antiferromagnetic next-nearest neighbour interactions as well.
This model causes conflicting interactions: the ferromagnetic nearest neighbour interactions prefer all
spins to be aligned, while the antiferromagnetic next-nearest neighbour interactions require some spins
to point in the opposite direction as well. Therefore, not all of the interactions can be satisfied. As an
example, this model can be placed on a single square, which is shown in Fig. 1.2.

Lattices consisting of frustrated unit cells (such as those from the above examples) can have two
different types of ground states: either there is some long-range ordering, or the degeneracy of the
ground state scales with the system size, leading to a spin-liquid phase. The latter happens for example
for the antiferromagnetic Ising model on a full triangular lattice, while the former may happen for
higher-dimensional (continuous) spins on the same lattice. Both types will be encountered in Sec. 1.3.

In some cases, the ground state degeneracy of the spin-liquid phase is partially lifted by an effect
called order-by-disorder [6]. This effect is a result from the fact that thermal systems strive to minimize
the free energy,

F = E − TS, (1.2)

where E is the thermal average of the energy of the system, T is the temperature and S is the entropy.
The mechanism works as follows. For low but non-zero temperatures, there are thermal fluctuations
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Chapter 1. Introduction to Part I

ϵ

E

ϵ

E

Figure 1.3: Energy as a function of ε with fluctuations scaling with ε2 (left) and with fluctuations scaling with
ε4 (right). For low temperatures (temperature being indicated by the red line), the ε4 fluctuations cost less energy
than the ε2 fluctuations. This means that the system corresponding to the right picture is allowed to fluctuate
more than the one on the left for these low temperatures, leading to a larger corresponding entropy. Explanation
based on Ref. [4].

about the ground state. Different types of spin configurations may allow different types of fluctuations:
for example, a coplanar configuration of a system of three-dimensional spins (i.e. all spin vectors lie
in the same plane) can have in-plane and out-of-plane fluctuations, while general configurations lead
to all fluctuations being equivalent. Since the temperature is low, the fluctuations (parametrized by ε)
can be expanded to lowest order in ε. Now imagine a situation where fluctuations about some special
configurations scale with ε4, while general fluctuations scale with ε2. Then, the special configurations
have a larger entropy (more “disorder”) than the general configurations (see Fig. 1.3). As a result, the
system selects these special configurations, and the degeneracy of the low-T phase is decreased (i.e. the
system becomes more “ordered”).

The order-by-disorder effect plays an important role in the phase diagrams of many frustrated systems,
and we will encounter it several times in the remainder of this thesis. Additionally, the spin fluctuations
about the ground state on which the above considerations are based (called spin waves), will be covered
in much more detail in Ch. 4.

1.2 Triangular, Kagomé and Swedenborgite lattices

As was mentioned in the previous section, a spin model is always accompanied by an underlying lattice.
In this section, we will describe the structures of the lattices that form the main interest of this work.
We start with the triangular and Kagomé lattices, eventually leading to a complicated lattice called the
Swedenborgite lattice.

Lattices consist of repeating unit cells. A unit cell may consist of one or more lattice sites, together
with the corresponding bonds. The structure of an n-dimensional lattice in terms of unit cells is given
by the lattice vectors a1,a2, . . . ,an. In terms of these lattice vectors, there is unit cell located at each

r =

n∑
i

ciai, ci ∈ Z. (1.3)

First, we consider the triangular lattice. The building block of this lattice is the single equilateral
triangle that was also seen in Fig. 1.1. The lattice consists of edge-sharing triangles, resulting in the
configuration shown in the left panel of Fig. 1.4. Choosing a1 along the x̂-direction, the lattice vectors
corresponding to the triangular lattice are given by

a1 = a

(
1
0

)
, a2 =

a

2

(
1√
3

)
, (1.4)

where a is the lattice constant (i.e. the distance between neighbouring lattice sites). With each lattice
site having six nearest neighbours, the connectivity of this lattice is large. This reduces the degeneracy
of frustrated spin systems on a triangular lattice when compared to lattices with a smaller connectivity.
While frustration still plays a large role on this lattice, the effects are often less prevalent than they are
for geometrically frustrated spin systems on other lattices.

6



1.2. Triangular, Kagomé and Swedenborgite lattices

a1

a2

a1

a2

Figure 1.4: Overview of the triangular lattice (left) and the Kagomé lattice (right). The triangular lattice
consists of edge-sharing triangles, and a unit cell (indicated by the blue dashed line) consists of a single lattice
site. On the other hand, the Kagomé lattice consists of corner-sharing triangles, and a unit cell consists of three
lattice sites. The lattice vectors of both lattices are denoted by a1 and a2. Notice that the length of the lattice
vectors of the Kagomé lattice are twice as long as those of the triangular lattice.

An example of another lattice known to lead to frustration is the Kagomé lattice. Similar to the
triangular lattice, the building block of the Kagomé lattice is a triangle. However, this time the lattice
consists of corner-sharing triangles, rather than edge-sharing triangles. The resulting configuration can
be seen in the right panel of Fig. 1.4. The Kagomé lattice is notably more complicated than the
triangular lattice. In particular, the unit cell of the Kagomé lattice consists of three lattice sites rather
than just one, such that there are now interactions inside a unit cell on top of the interactions between
unit cells. On the level of entire unit cells, the lattice is simply a triangular lattice of unit cells (rather
than individual lattice sites), and the corresponding lattice vectors are

a1 = 2a

(
1
0

)
, a2 = a

(
1√
3

)
, (1.5)

i.e. the lattice vectors are twice as long as those of the triangular lattice, in terms of the lattice constant
a. In addition, each lattice site has only four nearest neighbours, such that the connectivity of the
Kagomé lattice is smaller than that of the triangular lattice. As a result, spin systems on the Kagomé
lattice have a larger degeneracy and they often show more frustration than on the triangular lattice; we
will encounter an explicit example of this difference at the end of Ch. 2.

Using the knowledge of the triangular and Kagomé lattices, it is possible to construct a complicated
three-dimensional lattice known as the Swedenborgite lattice. Before we explicitly define this lattice, we
take a moment to mention its relevance. In nature, there are many materials (called Swedenborgites)
that have the structure of the mineral Swedenborgite, SbNaBe4O7. This mineral was first discovered

Figure 1.5: Lattice structure of RBaCo4O7.
The effective lattice structure consists of
stacked Kagomé layers of Co1, connected by
intermediate Co2 sites. The effective spin in-
teractions allowed by the lattice symmetry
are denoted by J ′1, J ′2, J ′3 and J ′4. Picture
from Ref. [7].
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Chapter 1. Introduction to Part I

Figure 1.6: The Swedenborgite lattice. It is made up of alternating Kagomé layers that are connected by
intermediate triangular layers. As a result, the triangles from the Kagomé layers have one of two roles: either
they are part of a bipyramid (red), or they connect different bipyramids (blue). J1 denotes the in-plane interaction
strength, while J2 gives the intermediate interaction strength between the layers. Picture from Ref. [4].

by Gregori Aminoff in 1924, who named it after Swedish scientist and theologian Emanuel Swedenborg
[8]. An example of a Swedenborgite is RBaCo4O7, see Fig. 1.5. As several materials with this structure
exist, it is of interest to study the consequences of this structure on a theoretical level.

We will now construct the Swedenborgite lattice using the triangular and Kagomé lattices. We start
with two Kagomé layers (B and C) with lattice spacing a that are not connected to each other, with layer
C rotated 180 degrees with respect to layer B. Then, we connect these two layers by placing a triangular
layer (A) with lattice spacing 2a between the layers B and C. Placing another layer A on top of layer C,
we can now fill out the entire space by repeating this configuration of layers. The resulting structure is
an ...ABAC...-pattern, and the corresponding lattice vectors are

a1 = 2a

1
0
0

 ≡ 2aâ, a2 = a

 1√
3

0

 ≡ 2ab̂, a3 = 4

√
2

3
a

0
0
1

 ≡ 4

√
2

3
aĉ, (1.6)

where â, b̂ and ĉ are the basis vectors that span the lattice structure. For the remainder of this part of the
thesis, we rescale the lattice in the ĉ-direction, such that a3 has the same length as a1 and a2. In terms
of these basis vectors, the layers are stacked in the ĉ-direction, while the triangular and Kagomé lattices
are spanned by the vectors â and b̂. Keeping only the nearest neighbour bonds, the Swedenborgite
lattice resulting from the above description is shown in Fig. 1.6.

Figure 1.7: Unit cell of the Swedenborgite lattice. Lattice sites 4 and 8 are located on intermediate triangular
layers, while the other lattice sites are located on Kagomé layers. Picture from Ref. [4].
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1.3. The Swedenborgite antiferromagnetic Heisenberg model

As can be seen from the figure, the Swedenborgite lattice is made up of triangle-sharing columns of
bipyramids. In other words: the individual frustrated clusters (the bipyramids) are connected by other
frustrated clusters (the intermediate triangles), and this will lead to additional frustration. Additionally,
the unit cells are quite large. Since two adjacent bipyramids inside a column are rotated by 180 degrees
with respect to each other, a unit cell cannot be just a single bipyramid. Instead, a unit cell is given
by two stacked bipyramids, resulting in eight-site unit cells, see Fig. 1.7. On the level of entire unit
cells, the Swedenborgite lattice reduces to a stacked triangular lattice, similar to what happened with
the Kagomé lattice.

Concerning the interactions, Khalyavin et al. [7] found that the symmetry of this lattice allows for
four different spin interactions, denoted by J ′1, J ′2, J ′3 and J ′4 in Fig. 1.5. However, it was also found for
RBaCo4O7 that these interactions can be simplified using just an in-plane interaction strength J1 and
an intermediate interaction strength J2 to a good approximation. We will adopt this approximation for
the remainder of this thesis, leading to the interactions as shown in Fig. 1.6.

1.3 The Swedenborgite antiferromagnetic Heisenberg model

In this section, we will discuss the spin model that forms our main topic of interest: the Swedenborgite
antiferromagnetic Heisenberg model (the final part often being abbreviated to HAFM, which stands for
Heisenberg antiferromagnet). The Heisenberg model describes spins as three-dimensional unit vectors
that are allowed to point in any direction on the unit sphere. Placing this model on the Swedenborgite
lattice and allowing for different antiferromagnetic in-plane and intermediate interactions J1, J2 > 0, the
Hamiltonian of becomes

H = J1

∑
〈i,j〉∈

same layer

Si · Sj + J2

∑
〈i,j〉∈

adj. layers

Si · Sj . (1.7)

Here, J1 and J2 denote respectively the in-plane and intermediate coupling constants, Si is the S2 spin
vector located at lattice site i, the first sum goes over all in-plane nearest neighbour pairs, and the second
term sums over all nearest neighbour pairs between adjacent layers (all pairs being shown in Fig. 1.6).
Once again, the units and length of the spin vectors have been absorbed into the coupling constants,
such that |Si| = 1. In the following, we will review the analysis of this model that was done by Buhrandt
in Refs. [4, 9]. The pictures in this section are from these works as well.

The first thing to note is that the Heisenberg model is invariant under global O(3) transformations:
sending all Si → gSi with g ∈ O(3), the dot products that appear in the Hamiltonian are left invariant.
This is easily shown by using gT = g−1:

Si · Sj = STi Sj → (gSi)
T (gSj) = STi g

T gSj = STi g
−1gSj = STi Sj = Si · Sj . (1.8)

Hence, configurations that are merely O(3) rotations of each other are equivalent, and the word “unique”
therefore means “unique up to O(3) transformations”, similar to what we have seen in Sec. 1.1. Of course,
the above also holds for more general n-dimensional spins and corresponding global O(n) transformations.

Next, we will derive the ground state of the Swedenborgite HAFM. To do so, it is convenient to
split the Hamiltonian in terms of the building blocks of the lattice, which are the bipyramids and the
interconnecting triangles. Numbering the individual lattice sites of these components according to Fig.
1.8 and using that Si · Si = |Si|2 = 1, the Hamiltonians corresponding to the building blocks are given
by

Htriangle = J1 (S1 · S2′ + S2′ · S3′′ + S3′′ · S1)

=
J1

2
(S1 + S2′ + S3′′)

2 − 3J1

2

=
J1

2
(S1 + S2′ + S3′′)

2
+ const., (1.9)

and similarly

Hbipyramid =
J1

2

(
S1 + S2 + S3 +

J2

J1
(S4 + S5)

)2

+
J2

2

2J1
(S4 − S5)

2
+ const. (1.10)

9



Chapter 1. Introduction to Part I

Figure 1.8: Numbering of the individual lattice sites of the building blocks of the lattice. The spin configuration
shown is the ground state of the antiferromagnetic Heisenberg model for J2/J1 ≥ 3/2, as derived in the text.

The second term of Eq. (1.10) appears to cancel the unwanted S4 ·S5 cross term that arise from the first
term. Using these two Hamiltonians, the total Hamiltonian is simply given by the sum over all building
blocks. It is now clear that the energy is minimized by minimizing the length of the three vectors that
appear inside the squares. Therefore, the optimal configuration would be given by

S1 + S2′ + S3′′ = 0, (1.11)

S1 + S2 + S3 +
J2

J1
(S4 + S5) = 0, (1.12)

S4 − S5 = 0 (1.13)

for all triangles and bipyramids. The third condition is easily satisfied by S4 = S5. Noting that this
condition has to hold for all bipyramids, this leads to all intermediate spins of a given column pointing
in the same direction.

Condition (1.11) requires the spins of an intermediate triangle to assume a so-called 120◦ configura-
tion. This can be seen as follows. The unit vectors S1 and S2′ define a plane. Since the sum of the vectors
must be zero, the third vector S3′′ must lie in this plane as well. Without loss of generality, we can choose
the coordinate system such that the common plane is the x−y plane, and we choose the x̂-direction along
S1. Then, we have S1 = (1, 0, 0), S2′ = (cos θ2′ , sin θ2′ , 0) and S3′′ = (cos θ3′′ , sin θ3′′ , 0). Solving Eq.
(1.11), one finds θ2′ = −θ3′′ and θ2′ = ±2π/3 = ±120◦, leading to S1 = (1, 0, 0), S2′ = (−1/2,±

√
3/2, 0)

and S3′′ = (−1/2,∓
√

3/2, 0). This proves that Eq. (1.11) indeed leads to a configuration where all spins
are at an angle of 120◦ with respect to each other. The above is an example of a frustrated cluster that
still leads to a unique ground state, which is one of the possibilities that was mentioned in Sec. 1.1.

The final condition, Eq. (1.12), leads to more complicated situations. Depending on the value of
J2/J1, there may be many possible solutions, or it can be impossible to satisfy this condition. This
originates from the fact that the vector S1 + S2 + S3 can at most have length 3, while the vector
J2
J1

(S4 + S5) has length 2J2/J1 due to Eq. (1.13). As a result, there are three regimes.
First, if J2/J1 = 3/2, the condition is satisfied by the unique solution S1 = S2 = S3 = −S4.

Together with the other conditions, this leads to a unique ground state: inside a given column, all
intermediate spins point in the same direction, while all other spins of that column point in the opposite
direction of the intermediate spins. Keeping this in mind, the configuration of an entire column can
therefore be described by assigning it a macrospin (for example the direction of the intermediate spins).
Since the Swedenborgite lattice is a triangular lattice of columns (or macrospins), adjacent triangles are
edge-sharing (such that they share two corners). Due to condition (1.11), each of these triangles must
assume a 120◦ configuration. This uniquely determines the configuration on the entire lattice: given the
configuration of one triangle, two out of three macrospins of an adjacent triangle are known, and then
its third macrospin is automatically imposed as well. This ground state is shown in Figs. 1.8 and 1.9. In
the second regime, J2/J1 > 3/2, it is impossible to satisfy condition (1.12). However, the length of this
vector is still minimized by the same configuration as for J2/J1 = 3/2, and therefore this regime leads
to the same unique ground state configuration.

The third regime, J2/J1 < 3/2, is where the effects of frustration are most prominent. Again, the
vector S1 + S2 + S3 must be equal to −2J2/J1S4, which is now a vector with length smaller than 3.
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1.4. Phase transition in the J2/J1 → 3/2 limit

Figure 1.9: Unique ground state of the antiferromagnetic Heisenberg model on the Swedenborgite lattice for
J2/J1 ≥ 3/2. Blue, green and red spins denote the spins on the layers A, B and C, respectively.

Hence, there are now many ways to choose S1, S2, and S3, and the number of possible configurations
increases with decreasing J2/J1. The ground state is therefore highly degenerate in this regime. Part of
this degeneracy is removed again when all columns are connected to form the complete lattice, but the
effects of frustration are still easily strong enough to destroy all long-range order. This is an example of
a spin-liquid phase, which is the second possibility that was mentioned in Sec. 1.1.

Now that the ground state has been determined, we can shift our focus to the phase diagram of
the model. For all J2/J1, we expect a disordered phase above some finite temperature. For very small
J2/J1, the Kagomé layers decouple from the triangular layers, and the low-temperature phase will be
a two-dimensional spin-liquid phase. On the other hand, for large J2/J1 (i.e. J2/J1 ≥ 3/2) the low-
temperature phase will be the unique ground state that was found. For J2/J1 < 3/2, we have seen
that the low-temperature phase is a spin-liquid phase. However, something else happens for small but
finite temperatures: it has been shown by Buhrandt that order-by-disorder effects remove a large part
of the ground state degeneracy by selecting a common plane for all spin vectors. As a result, the low-
temperature phase in this regime is a so-called nematic phase. For somewhat larger temperature, when
entropic order-by-disorder no longer plays a role, the system will occupy a three-dimensional spin-liquid
phase before becoming completely disordered.

The full phase diagram by Buhrandt is shown in Fig. 1.10. This phase diagram was constructed
by elaborate Monte Carlo simulations based on the above considerations. It was found that the phase
transition between the nematic phase and the spin-liquid phase is first order, the phase transition between
the unique ground state and the disordered phase is second order, and all other transitions are actually
crossovers. However, there are reasons to believe that the simulations did not capture all of the physics
relevant to this model. This will be discussed in the next section.

1.4 Phase transition in the J2/J1 → 3/2 limit

Although Fig. 1.10 gives a good overview of the different phases and the corresponding phase transitions
of the Swedenborgite HAFM, there is one region that the simulations did not capture: the region in the
vicinity of J2/J1 = 3/2. Due to the low resolution of data points in this region, there is not enough
information to deduce the behaviour, and the vertical line that is drawn appears only to connect the
different parts of the phase diagram. As was mentioned by Buhrandt in Ref. [9], one cannot actually
distinguish this vertical phase boundary from a steep slope towards J2/J1 > 3/2. We do not expect a
vertical line for several reasons. For one, a vertical phase boundary would result in an ill-defined critical
temperature. More importantly, there is an entropic argument as well. The spin-liquid phase to the left
of the boundary and the unique ground state to the right have a similar energy. However, the spin-liquid
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Chapter 1. Introduction to Part I

Figure 1.10: Phase diagram of the Swedenborgite antiferromagnetic Heisenberg model, by means of Monte
Carlo simulations. The line separating the nematic phase from the spin-liquid phase denotes a first order phase
transition, the unique ground state is separated by a second order phase transition, and the dashed lines signify
crossovers. Note that the nematic phase exists for all J2/J1 < 3/2.

phase has a much larger entropy than the unique ground state. Minimization of the free energy therefore
leads us to believe that the spin-liquid phase also eats its way into the region J2/J1 > 3/2, an effect
becoming stronger for increasing temperatures. Based on this argument, one would expect the actual
boundary between the spin-liquid phase and the unique ground state to have a finite slope.

As discussed above, there is still a region of the phase diagram that has not yet been properly
investigated. Moreover, this region is quite special when compared to most other regions: it is this
region that contains the physics concerning boundaries between the two types of low temperature phases
of frustrated systems that have been covered in the previous sections. It is therefore desirable to complete
the phase diagram.

The main goal of the following chapters is to gain a proper understanding of the phase transitions
in the region close to the “critical” value J2/J1 = 3/2, i.e. the boundary between the regions where a
unique ground state exists and where it does not. First, we attempt to gain a general understanding
by means of Landau theory. Then we will investigate this region microscopically by using mean-field
theory, and finally going beyond mean-field theory by examining fluctuations. Since we expect a finite
slope towards J2/J1 > 3/2, we focus mostly on J2/J1 approaching the value 3/2 from above.
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Chapter 2

Phenomenological Landau theory

The goal of this chapter is to gain a better qualitative understanding of the phase transitions of the Swe-
denborgite HAFM by means of phenomenological Landau theory (see for example Chaikin & Lubensky
[10] for an elaborate introduction). To reach this goal, we first discuss the principles of the Landau theory
of phase transitions. Then, we apply this theory to a simple model: the antiferromagnetic Heisenberg
model on the distorted triangular lattice. This is a model that also depends on the ratio of two different
interaction strengths J1 and J2, and it shares several features with the Swedenborgite antiferromagnet,
making it a good introductory example. The results from this example will then be generalized to the
Swedenborgite lattice, enabling us to understand the types of phase transitions that appear.

Landau theory, first described in 1937 [11], attempts to describe phase transitions by introducing
a function L, called the Landau free energy (not to be confused with the Helmholtz free energy F ),
that depends on the temperature, microscopic constants and order parameters of the system. An order
parameter is a quantity that measures if the system is in an ordered state or not, changing from a
non-zero value in the corresponding ordered phase to zero in the disordered phase. An example of such
an order parameter would be the magnetization of a ferromagnetic spin model. The actual state of a
system is then determined by the global minimum of L with respect to the order parameters. The idea
of Landau theory is to expand the Landau free energy in terms of the order parameters in the vicinity
of the phase transition, assuming them to be small in this region.

The Landau free energy has several properties. Most importantly, it must be invariant under the
symmetry group of the disordered (high-temperature) phase, which is the symmetry group of the mi-
croscopic Hamiltonian. As a result, the expansion of L can only contain combinations of the order
parameters that are invariant under operations from this symmetry group. We also assume that L is an-
alytic close to the phase transition, allowing us to perform the aforementioned expansion of L. Equating
the derivatives of L with respect to the order parameters to zero and noting that the order parameters
themselves are zero in the disordered phase, we see that the expansion of L cannot contain linear terms.
It is however possible to apply an external field that forces an order parameter to be non-zero even in
the high-temperature phase; this can be included by adding a linear coupling term to L. Finally, the
highest order term included in the expansion must always be even, and its coefficient must be positive
for all temperatures in order to have a global minimum at all.

It turns out that Landau theory is very successful in predicting the types of phase transitions that
can appear in a system. The most common types of phase transitions are first order phase transitions
and second order phase transitions. First order phase transitions are discontinuous, in the sense that
the corresponding order parameter discontinuously jumps from zero to a finite value at the critical tem-
perature; second order phase transitions are continuous, and the order parameter continuously becomes
non-zero. To see how all of this works, let us restrict ourselves to a single homogeneous order parameter
η for the moment. Following the above description and assuming that the series can safely be truncated
above fourth order terms, the Landau free energy takes the form

L =
1

2
c2({J}, T )η2 +

1

3
c3({J}, T )η3 +

1

4
c4({J}, T )η4 − hη. (2.1)

Here η is the order parameter, ci({J}, T ) are the expansion coefficients as a function of the temperature T
and the set of microscopic constants {J}, h is the external field, and the numeric prefactors are included

13



Chapter 2. Phenomenological Landau theory

η

F

η

F

Figure 2.1: Landau free energy as a function of the order parameter η for the two examples discussed in the
text. The left plot shows how the global minimum can change continuously from zero to non-zero values (second
order phase transition), while the right plot shows how this can happen discontinuously as well (first order phase
transition). The green curves are for T > Tc, the red curves are for T = Tc and the blue curves are for T < Tc.
The dashed black lines denote the possible positions of the global minimum for different temperatures. Note that
Tc 6= T ∗ for the second example.

for convenience. We now consider two examples to see how this Landau free energy can distinguish first
order and second order phase transitions. For both examples, we set the external field to zero and make
the {J} dependence of the coefficients implicit.

For the first example, we consider a model that has η → −η symmetry. This is for instance realized
by the ferromagnetic Ising model: then, the order parameter is simply the average value of the spins
Si (this is called the magnetization), and the Si → −Si symmetry of the Hamiltonian dictates that
this symmetry must hold for the order parameter as well. As the Landau free energy must respect this
symmetry, the expansion cannot contain any odd order terms. Considering only the region close to some
temperature T ∗ and demanding that c4 stays positive, we can expand to linear order in T − T ∗:

L =
1

2
a(T − T ∗)η2 +

1

4
bη4, (2.2)

where a and b are positive coefficients. This free energy is plotted in the left panel of Fig. 2.1. We now
see that the shape of the free energy, and consequently the position of the global minimum, depends on
the temperature T : the global minimum is located at η = 0 if T ≥ T ∗, but for T < T ∗ it is located at
η = ±

√
−a(T − T ∗)/b. The order parameter thus changes continuously from zero to non-zero values. We

can conclude that this model has an ordered low-temperature phase and a disordered high-temperature
phase, separated by a second order phase transition at critical temperature Tc = T ∗.

For the second example, we consider a model that allows odd order terms by its symmetry, such that
the Landau free energy expansion becomes

L =
1

2
a(T − T ∗)η2 +

1

4
bη4 − 1

3
cη3, (2.3)

where the minus sign in front of the final term has been chosen for convenience. This free energy is
shown in the right panel of Fig. 2.1. As can be seen from the figure, the global minimum now jumps
discontinuously from zero to non-zero η at some critical temperature Tc, resulting in a first order phase
transition. Note that Tc is now different from T ∗: solving L = 0 and demanding that there are exactly
two solutions gives Tc = T ∗ + 2c2/9ab.

The above examples demonstrate how a simple analysis following from the symmetry group of the
Hamiltonian can be used to predict the order of the corresponding phase transitions. However, Landau
theory is usually more complicated than in these two situations. To complete this introduction of phe-
nomenological Landau theory, we consider the possibility of an inhomogeneous order parameter η(r),
which can for instance be achieved by applying an inhomogeneous external field. Defining a local order
parameter on a lattice can be tricky, and is usually done by a procedure called coarse-graining, where
the lattice is divided into small sections and determining the order parameter for each of these sections.
As domain walls between sections with different order parameters usually cost energy (for example the
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2.1. The distorted triangular lattice

ferromagnetic Ising model with a section with magnetization +1 neighbouring a section with magneti-
zation −1), gradient terms must be added to the Hamiltonian. Once again considering a single order
parameter η(r) and truncating the series above fourth order, the simplest form of the Landau free energy
is given by

L[η(r)] =
N

V

∫
dr

[
1

2
c2η(r)2 +

1

3
c3η(r)3 +

1

4
c4η(r)4 − h(r)η(r) +

1

2
C [∇η(r)]

2

]
, (2.4)

where V is the volume of the system, and all of the coefficients can depend on T and {J}. In principle,
higher order derivatives are allowed as well, but this lowest order term often suffices. The partition
function can now be calculated as well, by taking a functional integral over the order parameter:

Z =

∫
Dη(r)e−βL[η(r)], (2.5)

where β = 1/kBT is the inverse temperature and kB is the Boltzmann constant. Finally, we note that
there can be several relevant order parameters in a single system, and they are not always scalar as in
the above introduction. Instead, order parameters are often rank-n tensors.

2.1 The distorted triangular lattice

In this section, we will apply phenomenological Landau theory to describe a simple model: the antifer-
romagnetic Heisenberg model on the distorted triangular lattice. This model shares several properties
with the Swedenborgite HAFM, and it will serve as an example of a more complicated Landau theory of
which the results can later be generalized to the Swedenborgite lattice. We will start by describing the
model itself and its ground states, after which we discuss the order parameters and use it to construct
a Landau free energy. We will then finish this section by discussing the consequences of the resulting
Landau free energy, supported by Monte Carlo simulations.

In Sec. 1.3, we briefly discussed the ground state of the antiferromagnetic Heisenberg model of the
undistorted triangular lattice, following from the constraint S1

∆ + S2
∆ + S3

∆ = 0 on each triangle that
appears on the lattice. We have seen that this leads to a 120◦ configuration of the spins on a single
triangle, and that this uniquely defines the ground state configuration of the entire system due to the
fact that neighbouring triangles share two lattice sites. For the example of this section, we once again
consider the antiferromagnetic Heisenberg model on a two-dimensional triangular lattice. This time,
however, the bonds in one direction (say the a1-direction) are stronger than in the other directions. The
Hamiltonian is thus given by

H = J1

∑
〈i,j〉∈

a1-direction

Si · Sj + J2

∑
〈i,j〉∈

other directions

Si · Sj , (2.6)

where J1 > J2 > 0. We can rewrite this Hamiltonian to a more convenient form:

H =
J1

2

∑
∆

(
S1

∆ + S2
∆ +

J2

J1
S3

∆

)2

− J1N∆

(
1 +

J2
2

2J2
1

)
. (2.7)

Here, the sum runs over all triangles of the system, with N∆ being the total number of triangles, and Si∆
denotes the ith spin of a triangle. In this notation, S1

∆ and S2
∆ are connected by a J1-bond, while the

other combinations within the triangle are connected by a J2-bond. To calculate the final term (which
is constant), we used the fact that all spins have unit length.

The above Hamiltonian (2.7) is obviously minimized if

S1
∆ + S2

∆ +
J2

J1
S3

∆ = 0 (2.8)

for all triangles, provided that it is possible. To check if it is possible to satisfy this condition, we will
simply try to construct the ground state using Eq. (2.8) and see if it works. We start by numbering the
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a1

a2
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J2 J2

1 2 6

3 5

4

Figure 2.2: Schematic view of the distorted triangular lattice. The numbers denote the lattice sites that are
referenced in the text.

spins according to Fig. 2.2 and choosing S3 = x̂. To complete the first triangle, we now have to solve

S1 + S2 +
J2

J1
S3 =

Sx1 + Sx2 + J2
J1

Sy1 + Sy2
Sz1 + Sz2

 = 0. (2.9)

Choosing the ŷ-direction such that S2 lies in the x− y plane, we find

S1 =


− J2

2J1

±
√

1−
(
J2
2J1

)2

0

 , S2 =


− J2

2J1

∓
√

1−
(
J2
2J1

)2

0

 , S3 =

1
0
0

 . (2.10)

Obviously, (S1)2 = (S2)2 = (S3)2 = 1 holds as required.
From this first triangle, we will try to construct the rest of the ground state. There are two types of

nearest neighbours of a triangle: like S4 and S5 (see again Fig. 2.2). S4 has to obey the same equation
as S3, so we immediately find S4 = S3. Now let us calculate S5:

S3 + S5 +
J2

J1
S2 =


1 + Sx5 −

J2
2

2J2
1

Sy5 ∓ J2
J1

√
1−

(
J2
2J1

)2

Sz5

 = 0 ⇒ S5 =


J2
2

2J2
1
− 1

±J2J1

√
1−

(
J2
2J1

)2

0

 . (2.11)

S5 is a unit vector as well:

(S5)2 =

(
J2

2

2J2
1

− 1

)2

+
J2

2

J2
1

(
1−

(
J2

2J1

)2
)

=
J4

2

4J4
1

− J2
2

J2
1

+ 1 +
J2

2

J2
1

− J4
2

4J4
1

= 1. (2.12)

From this, we see that it is possible to construct neighbouring triangles in both directions. Therefore, we
can conclude that it is indeed possible to construct the entire ground state configuration from Eq. (2.8),
once the initial ± choice (see Eq. (2.10)) has been made. Note that this ± choice is simply a reflection
about the x− z plane (an O(3) transformation), and they are regarded as the same configuration.

From the above analysis, it is apparently possible to choose the basis such that Szi = 0 for all i,
leading to the conclusion that the ground state configuration is coplanar. Next, we will look at the
angles between neighbouring spins by considering the dot products between them. To further support
the following analysis, let us first calculate one additional spin, S6:

S2 + S6 +
J2

J1
S5 =


− J2

2J1
+ Sx6 + J2

J1

(
J2
2

2J2
1
− 1
)

∓
√

1−
(
J2
2J1

)2

+ Sy6 ±
J2
2

J2
1

√
1−

(
J2
2J1

)2

Sz6

 = 0

(2.13)
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J1 = J2 J1 = 2J2

J1 = 5J2 J1 = 100J2

Figure 2.3: Ground state of the antiferromagnetic Heisenberg model on the distorted triangular lattice for
different values of J1/J2, unique up to global O(3) rotations. The darker lines correspond to the strong bonds
J1, while the lighter lines signify the weaker bonds J2. The periodic case J1 = J2 has been divided into three
sublattices, denoted by the different colours.

⇒ S6 =


J2
2J1

(
3− J2

2

J2
1

)
±
(

1− J2
2

J2
1

)√
1−

(
J2
2J1

)2

0

 . (2.14)

It is easily checked that S6 is a unit vector as required. Using all these spins, we can calculate the dot
products between neighbouring spins in the a1-direction:

S1 · S2 =

(
J2

2J1

)2

−

(
1−

(
J2

2J1

)2
)

=
J2

2

2J2
1

− 1, (2.15)

S2 · S6 = −
(
J2

2J1

)2(
3− J2

2

J2
1

)
−
(

1− J2
2

J2
1

)(
1−

(
J2

2J1

)2
)

= −
(
J2

2J1

)2(
3− J2

2

J2
1

− 1 +
J2

2

J2
1

)
− 1 +

J2
2

J2
1

=
J2

2

2J2
1

− 1, (2.16)

S3 · S5 =
J2

2

2J2
1

− 1. (2.17)

17



Chapter 2. Phenomenological Landau theory

Seeing how the spins are constructed, this pattern must extend over the entire system, such that all
neighbouring spins in the a1-direction (so all neighbouring spins in a chain) are at the same angle
between one another. The same statement holds for neighbouring spins in the other directions (between
chains), as can be checked:

S1 · S3 = S2 · S3 = S1 · S4 = S2 · S4 = S2 · S5 = S6 · S5 = − J2

2J1
. (2.18)

We conclude that spins inside a chain are at an angle ± arccos
(
J2
2

2J2
1
− 1
)

with respect to each another,

while the different chains are at an angle ∓ arccos
(
− J2

2J1

)
between one another. Either the upper or

the lower sign must be chosen for all spins, which can be seen from the above example spins. It is
important to note that this ground state is generally not periodic in the a1-direction, since in general

arccos
(
J2
2

2J2
1
− 1
)
/π is irrational, and in that case a multiple of this angle can never be a multiple of 2π.

Unless the fraction J1/J2 is chosen exactly such that the ground state is periodic, the lattice distortion
is called incommensurate, meaning that the periodicity of the ground state and the periodicity of the
lattice are incompatible, leading to a perfectly predictable yet not periodic ground state configuration
that lacks translational symmetry.

Fig. 2.3 shows the ground state that follows from the above analysis for several different values of the
ratio J1/J2. As can be seen in the figure, the ground state for J1 = J2 (i.e. the undistorted triangular
lattice) indeed reduces to the 120◦ configuration that was found before.

2.1.1 Order parameters

In order to write down a Landau free energy, we need suitable order parameters that can be used to
identify the ground state. First, we can use the fact that the ground state selects a common plane for
all spins. Consider the following vector [2]:

κκκ∆ ≡
1

Nκ
(
S1

∆ × S2
∆ + S2

∆ × S3
∆ + S3

∆ × S1
∆

)
, (2.19)

where Nκ is a normalization constant. In the disordered phase, all spins independently point in random
directions, such that this vector is zero on average. On the other hand, in the ordered phase κκκ∆ is a unit
vector normal to the selected plane. To see this, we choose the basis such that the configuration from
Eq. (2.10) holds for one of the triangles. Then, the normal vector is simply the basis vector ẑ. Using
the fact that the configurations on all triangles are rotations of each other, this immediately gives

J1

J2
S1

∆ × S2
∆ = S2

∆ × S3
∆ = S3

∆ × S1
∆ = ±

√
1−

(
J2

2J1

)2

ẑ (2.20)

for all triangles on the lattice. Choosing

Nκ = 2

(
1 +

J2

2J1

)√
1−

(
J2

2J1

)2

, (2.21)

this leads to the conclusion that κκκ∆ = ±ẑ holds for all triangles on the lattice, given that the system
occupies the ground state.

Since the direction of the normal vector κκκ∆ has no relevance, the order parameter associated with
the selection of a common plane cannot be a vector. Instead, it must at least be a rank-2 tensor that
is invariant under κκκ∆ → −κκκ∆. The selection of a common plane (and consequently a normal direction)
is similar to the selection of a preferred direction in nematic liquid crystals, hence the relevant order
parameter is the so-called nematic order parameter [10]:

Qαβκ ≡
1

N∆

∑
∆

(
κα∆κ

β
∆ −

1

3
|κκκ∆|2δαβ

)
. (2.22)

As before, the sum goes over all triangles of the lattice, while N∆ is the total number of triangles. The
tensor Qαβκ is symmetric and traceless, and all components become zero in the disordered phase due to
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2.1. The distorted triangular lattice

O(3) symmetry of this phase. On the other hand, the ordered phase gives some non-zero components.
Returning to the basis that led to κκκ∆ = ±ẑ, we find the ground state value

Qκ =

− 1
3 0 0

0 − 1
3 0

0 0 2
3

 . (2.23)

For later reference, we note that it is possible to construct simpler forms of the nematic order parameter,
for example [12]:

QαβS ≡
1

N

∑
i

(
Sαi S

β
i −

1

3
δαβ
)
. (2.24)

Although this form of the nematic order parameter does not give the same numeric values as Qαβκ , it still
describes the same type of ordering, and we are free to choose the preferred form of the nematic order
parameter.

While the nematic order parameter Qαβ does a good job detecting the selection of a common plane,
it is not sufficient: it may be possible that all spins lie in a common plane (giving a non-zero Qαβ),
but still being randomly distributed inside this plane. In order to distinguish between random coplanar
configurations and the actual ordered ground state, we introduce an additional order parameter: the
sublattice magnetization

M ≡ 1

N

∑
i

(
Si cos(q · ri) +

1

NM
Si × (Si+1 × Si+2) sin(q · ri)

)
≡ 1

N

∑
i

Mi. (2.25)

Here, the sum goes over all lattice sites i (with i counted along the direction of a1), NM is the normal-
ization constant of the triple cross product, ri is the two-dimensional position of lattice site i and q is
the wave vector corresponding to the ground state periodicity. The normalization constant NM is easily
derived by noting that the triple cross product from the second term should have unit length for the
ground state configuration:

NM = sin

(
arccos

(
J2

2

2J2
1

− 1

))

=
J2

J1

√
1−

(
J2

2J1

)2

. (2.26)

Moreover, the wave vector q is given by (2π/λx, 2π/λy), where λx,y are the wavelengths corresponding
to the ground state periodicity. Noting that two chains are separated by a distance

√
3a/2 and referring

back to Fig. 2.3, we immediately get λy =
√

3a. For the other direction (i.e. the direction of a1), we

note that each distance a yields a phase shift of arccos
(
J2
2

2J2
1
− 1
)

, such that the wavelength is given by

λx = 2πa/ arccos
(
J2
2

2J2
1
− 1
)

. Combining these results, we find

q =

(
arccos

(
J2

2

2J2
1

− 1

)
/a, 2π/

√
3a

)
. (2.27)

As with Qαβ , M becomes zero in the disordered phase due to O(3) symmetry. For the ground state,
Mi is a unit vector that points in the same direction for every i due to the definition of the wave vector q.
To see this, we consider the periodic case J1 = J2 as an example. We place lattice site i = 1 at the origin
and divide the lattice sites into three sublattices in such a way that each sublattice only contains one of
the three possible spin states when considering the ground state (see the top-left panel of Fig. 2.3). The
value of q · ri is fixed for each of these sublattices: it equals 0 for sublattice 1, 2π/3 for sublattice 2 and
4π/3 for sublattice 3. We find

Mi1 = Si1 , (2.28)

Mi2 = −1

2
(Si2 − 2Si2 × (Si2+1 × Si2+2)), (2.29)

Mi3 = −1

2
(Si3 + 2Si3 × (Si3+1 × Si3+2)), (2.30)
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Chapter 2. Phenomenological Landau theory

where in denotes that we are looking at a lattice site that resides on sublattice n. For the ground, this
reduces to

Mi1 = S1, (2.31)

Mi2 = −1

2
(S2 − 2S2 × (S3 × S1)), (2.32)

Mi3 = −1

2
(S3 + 2S3 × (S1 × S2)), (2.33)

Using the basis of Eq. (2.10) again, it is now easily checked that Mi is the same for all lattice sites i,
which confirms that M becomes a unit vector when considering the ground state configuration.

2.1.2 Symmetry and the construction of the Landau free energy

Now that we have found suitable order parameters, we can construct the Landau free energy of the system.
The order parameters that we will use are the sublattice magnetization M and a general nematic order
parameter Qαβ ; note that we no longer distinguish between different forms such as Qαβκ and QαβS due to
the fact that the exact form is just a matter of choice.

In order to construct a Landau free energy from the order parameters Qαβ and M, we need to find
the combinations that are invariant under the symmetry group of the Hamiltonian, in this case O(3).
First, we need to know how the order parameters Qαβ and M transform under the operation

Sαi → gαβSβi , g ∈ O(3), (2.34)

where we have used Einstein’s convention to sum over repeated indices. Using that det(g) = ±1 for all
g ∈ O(3), one can show for any two vectors A and B

gA× gB = det(g)g(A×B) = ±g(A×B). (2.35)

Referring back to Eq. (2.19), we see that the normal vector κκκ∆ transforms as

κα∆ → ±gαβκ
β
∆. (2.36)

Combining this with the fact that gαρgβσδρσ = δαβ and that the dot product q · ri is left invariant, we
find that the operation of Eq. (2.34) imposes

Qαβ → gαρgβσQρσ, (2.37)

Mα → gαβMβ , (2.38)

which confirms that Qαβ and M transform like a rank-2 tensor and a vector respectively.
To find all combinations of the order parameters Qαβ and Mα that are left invariant under the above

transformation, we consider an arbitrary combination A with 2n indices. Since the Landau free energy
itself does not carry any indices, each term must be fully contracted. Using that gT = g−1, such a term
transforms as

Aα1α1α2α2...αnαn → gα1β1gα1γ1gα2β2gα2γ2 . . . gαnβngαnγnAβ1γ1β2γ2...βnγn

= gα1β1(g−1)γ1α1gα2β2(g−1)γ2α2 . . . gαnβn(g−1)γnαnAβ1γ1β2γ2...βnγn

= δβ1γ1δβ2γ2 . . . δβnγnAβ1γ1β2γ2...βnγn

= Aβ1β1β2β2...βnβn

= Aα1α1α2α2...αnαn . (2.39)

From this, we conclude that any fully contracted non-zero combination of Qαβ and Mα is allowed. Since
Qαβ is traceless (so Qαα = 0) and (QαβQβα)2 is proportional to QαβQβγQγρQρα [10], the Landau free
energy up to fourth order is given by

L = C1M
αMα + C2Q

αβQβα + C3Q
αβQβγQγα + C4M

αQαβMβ + C5(MαMα)2

+ C6(QαβQβα)2 + C7M
αQαβQβγMγ + C8M

αMαQβγQγβ (2.40)

= C1|M|2 + C2Tr(Q2) + C3Tr(Q3) + C4M · (Q ·M) + C5|M|4

+ C6Tr(Q2)2 + C7|Q ·M|2 + C8|M|2Tr(Q2), (2.41)
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2.1. The distorted triangular lattice

where Ci are unknown coefficients that generally depend on the temperature and the microscopic pa-
rameters of the system.

It may be useful to look at the Landau free energy in a particular basis. In the basis with κκκ∆ = ±ẑ,
the order parameters reduce to the following expressions [10]:

Q =

− 1
3S 0 0
0 − 1

3S 0
0 0 2

3S

 , (2.42)

M =

M cos(θ)
M sin(θ)

0

 . (2.43)

With these, the Landau free energy becomes

L = c1M
2 + c2S

2 + c3S
3 + c4M

2S + c5M
4 + c6S

4 + c7M
2S2, (2.44)

which shows that it is possible to express it in terms of two scalars S and M rather than the much more
complicated parameters Qαβ and M.

2.1.3 Primary and secondary order parameters

In this final part of the section, we will interpret the Landau free energy found above. The simplified
expression Eq. (2.44) consists of three parts: a part that depends only on M , a part that depends only
on S, and some coupling terms that relate the order parameters to each other. The part depending only
on M consists of even order terms only, which implies a second order phase transition, in accordance
with the beginning of this chapter. On the other hand, the part that depends only on S also contains
an odd order S3 term, which implies a first order phase transition. This indicates that we should
distinguish between primary and secondary order parameters. The primary order parameter drags the
secondary order parameter along, and it is therefore the one that decides the type of the phase transition
in most situations. However, even if the primary order parameter never becomes non-zero, the secondary
order parameter can still become non-zero on its own, in which case the secondary order parameter will
determine the type of the phase transition. Below, we will further look into this concept by means of
Monte Carlo simulations.

Before turning to the simulations, it is important to note that we are looking at a two-dimensional
system with a continuous symmetry. As we will discuss in Ch. 3, the Mermin-Wagner theorem [13]
states that this continuous symmetry cannot be spontaneously broken at any finite temperature, so
there cannot be a phase transition at any T > 0. Nevertheless, the simulations are done on a finite
lattice, such that they still show some ordering for T > 0, and this can be used to analyse the relations
between the order parameters.

We consider simulations based on a simple Metropolis algorithm of the classical antiferromagnetic
Heisenberg model on a distorted triangular lattice with N lattice sites (see appendix A.1 for more
information on the methods). The quantities that we measure are the lowest order non-zero contractions
of the order parameters. Since the nematic order parameters are traceless, these contractions are the
generalized squares |M|2 ≡ (Mα)2, QαβS QβαS ≡ (QαβS )2 and Qαβκ Qβακ ≡ (Qαβκ )2.

The results of the simulations on the undistorted triangular lattice (with J1 = J2) with N = 132
lattice sites are shown in the left panel of Fig. 2.4. For these simulations, helical boundary conditions are
used. Two features stand out. First, the different nematic order parameters show the same qualitative
behaviour, suggesting that they are indeed both valid parameters to describe nematic ordering. Second,
the sublattice magnetization is the first quantity to start increasing when the temperature is being
decreased. This suggests that the sublattice magnetization is the primary order parameter, while the
nematic order parameters are only secondary. Note especially the similarities between these results and
those of the Kagomé lattice in Ref. [12]. The similarities suggest that the sublattice magnetization Mα

on the triangular lattice takes a similar role as the octupolar moment Tαβγ on the Kagomé lattice (we
will explain this octupolar ordering in Sec. 2.2.1). In particular, we expect a coupling term in Landau
free energy:

∆L ' CMαQαβMβ , (2.45)
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Figure 2.4: Order parameters as functions of temperature on the undistorted triangular lattice (with J1 = J2)
with N = 132 lattice sites (left) and on the distorted triangular lattice (with J1 = 1.93J2) with N = 288 lattice
sites (right). All quantities are normalized such that they are equal to 1 in the ground state.

where C is a coefficient that can depend on the temperature and the parameters of the Hamiltonian.
This is exactly what we have seen before.

The results of the simulations on the distorted triangular lattice with J1 = 1.93J2 and N = 288
lattice sites are shown in the right panel of Fig. 2.4. Here, periodic boundary conditions were used.
Note that the results look very similar to those of the undistorted triangular lattice. This suggests that
the same conclusions hold as for the undistorted triangular lattice, such that for this model the coupling
constants J1 and J2 do not have a qualitative effect on the Landau theory.

An explanation for the usage of the value J1 = 1.93J2 may be in order. As was explained in the
first part of this section, the ground state of the antiferromagnetic Heisenberg model on the distorted
triangular lattice is generally not periodic in the a1-direction. Therefore, simulations using periodic
boundary conditions (which forces periodic solutions) may not give the correct results. To fix this, the
lattice size and the ratio J1/J2 have been chosen such that the ground state is approximately periodic on
the lattice used in the simulations. Additional information on the Monte Carlo simulations, the problems
that were encountered and their solution, and additional results on slightly different models can all be
found in appendix A.2.

Let us return to the matter of primary and secondary order parameters. The simulations suggested
that the sublattice magnetization is the primary order parameter, while the nematic order parameter is
only secondary. This is also implied by their definition: if the sublattice magnetization is non-zero, it
automatically means that the spins selected a plane, leading to a non-zero nematic order parameter. On
the other hand, it is perfectly possible to have a random coplanar configuration that has non-zero nematic
ordering while still having a zero sublattice magnetization. The sublattice magnetization therefore drags
the nematic order parameter along when it becomes non-zero, and not the other way around, suggesting
that the sublattice magnetization is the primary order parameter.

In the Landau free energy, all of this manifests itself by having the only temperature dependence in
the coefficient c1, leading to

L = c1(T )M2 +
1

2
c2S

2 +
1

3
c3S

3 + c4M
2S + c5M

4 +
1

4
c6S

4 +
1

2
c7M

2S2, (2.46)

where the parameters c2, . . . , c7 are now constants in T . If we now want to find S in terms of M , we
look at a fixed value of M (corresponding to a fixed temperature), which gives

L =
1

2
c2S

2 +
1

3
c3S

3 +
1

4
c6S

4 + (c4S +
1

2
c7S

2)M2 + const. (2.47)

This expression suggests that M2 now acts as an external field to S, once again implying that a non-zero
M results in a non-zero S, and not the other way around. Minimizing L with respect to S now gives

c2S + c3S
2 + c6S

3 + (c4 + c7S)M2 = 0, (2.48)

22



2.2. Landau theory of the Swedenborgite antiferromagnet

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

● 1

4
((Mα)2+(Mα)4)2

■ (Qκ
αβ)2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

kBT /J2

J1 = J2

Figure 2.5: Overlap of the lines for a particular series of the magnetization.

which gives us S as a function of M2. As a next step, it is possible to express the solution of this equation
as a power series in M2.

As an example, we use the results shown in the left panel of Fig. 2.4. To find the relation between
these two quantities, different powers and prefactors of the magnetization have been attempted until the
data overlapped. This can be seen in Fig. 2.5. The resulting relation is

S ∼M2 +M4, (2.49)

so the simulations agree with the observation that S can be expressed as a power series in M2. Using
this result and plugging it back into the Landau free energy and combining the terms of the same order,
we finally arrive at

L = A(T )M2 +BM4, (2.50)

where A and B are the new Landau coefficients.

2.2 Landau theory of the Swedenborgite antiferromagnet

While it turned out in the end that the secondary order parameter can safely be ignored when constructing
the Landau free energy of the model from the previous section, this is not a general result. Let us first
consider the order parameters that describe the ordering encountered in the different low-temperature
phases of the Swedenborgite HAFM. As we have seen in Sec. 1.3, this model has two different low-
temperature phases, depending on the value of J2/J1: if J2/J1 ≥ 3/2, there is a unique ground state
configuration, while for J2/J1 < 3/2 there is only the selection of a common plane. The latter type of
ordering is the same as the nematic ordering encountered in the previous section, so this phase can again
be described by the nematic order parameter Qαβ . Additionally, the unique ground state configuration
is entirely coplanar as well, so this order parameter is also valid in this region. However, just as we have
seen in the previous section, the nematic order parameter is not sufficient to describe all of the ordering
of the unique ground state. Since this ground state has a very well defined configuration over the entire
lattice, it is once again possible to define a sublattice magnetization M that rotates each of the spins in
such a way that it successfully captures this configuration. We will not actually write down this sublattice
magnetization explicitly, as it is not very illuminating; the important result is that the ordering can be
described by a vector M similar to the one from the previous section. It is now immediately apparent
that Qαβ must be secondary to M: both low-temperature phases have non-zero Qαβ , while only the
unique ground state has non-zero M, and there is no phase where only M is non-zero.

While the exact expressions of the order parameters themselves are different, we once again have a
rank-2 tensor Qαβ and a vector M as our order parameters, so the most general form of the Landau free
energy up to fourth order looks the same as before:

L = C1M
αMα + C2Q

αβQβα + C3Q
αβQβγQγα + C4M

αQαβMβ + C5(MαMα)2

+ C6(QαβQβα)2 + C7M
αQαβQβγMγ + C8M

αMαQβγQγβ (2.51)

= c1M
2 + c2S

2 + c3S
3 + c4M

2S + c5M
4 + c6S

4 + c7M
2S2, (2.52)
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where all of the coefficients can now be functions of T , J1 and J2. As the order of the low-temperature
phase and the types of the phase transition depend on the value of J2/J1, at least one of the coefficients
must be a function of this fraction.

In the following, we will see how a particular choice of the coefficients can result in the proper phase
diagram. Let us first consider J2/J1 < 3/2. In this region, M will remain zero, so c5 and c7 are greater
than zero for all temperatures. Moreover, noting that c6 must be positive and choosing c3 to be negative,
S will always be non-negative, such that c4 must be positive as well. The coefficient c1 could become
negative for some temperature: the effective quadratic term in M is now given by(

c1 + c4S + c7S
2
)
M2, (2.53)

so c1 could be negative as long as S is large enough such that the entire prefactor remains positive.
Allowing the final coefficient c2 to change sign at a certain temperature T ∗, these observations result in
a first order phase transition from a low-temperature nematic phase to a disordered phase (which could
be a spin-liquid phase, since this Landau theory cannot distinguish this from a true disordered phase).

Next, we consider J2/J1 ≥ 3/2. In this region, the sublattice magnetization becomes non-zero and
drags the nematic order parameter along. As we have seen in the previous section, this can be explained
by putting the relevant temperature dependence in c1. In order for S to be dragged along, the coefficients
c4 and c7 are now negative, while the coefficients of the highest order terms c5 and c6 must of course still
be positive. Similar to the J2/J1 < 3/2 case, we choose c3 to be negative, while the final coefficient c2
may still switch sign for some temperature. As in the previous section, minimization of L with respect
to S allows us to expand S as a power series in M2, which returns a Landau free energy of the form
of Eq. (2.50). This case leads to a second order phase transition between a unique configuration with
non-zero sublattice magnetization (the unique ground state) and a disordered phase.

Combining the above, we have that c3 is negative while c5 and c6 are positive for all fractions J2/J1

and temperatures T . In addition, the coupling coefficients c4 and c7 are positive below J2/J1 = 3/2 and
negative otherwise, changing sign at this boundary value. The coefficients c1 and c2 are both positive
for high temperatures, and it depends on the fraction J2/J1 which of the two causes a phase transition
at a certain temperature.

Note that the above analysis of the coefficients is not unique, and it is just an example of how
the coefficients can lead to the phase diagram from Fig. 1.10. However, some of the observations are
conclusive: the Landau free energy, which follows entirely from the symmetries of the Hamiltonian,
allows for second order phase transitions and first order phase transitions (to a unique configuration and
a nematic phase respectively) at certain temperatures and coupling constants. Which of the two happens
and what the critical temperature is, depends on the fraction J2/J1. These conclusions confirm what we
have seen in Sec. 1.3, and we have achieved the goal of this chapter: we have successfully constructed
a Landau theory for the Swedenborgite HAFM and used it to understand which phase transitions are
possible and what the types of these phase transitions are.

Before we end this chapter, we note that there is still a type of ordering that might appear that we
have not yet considered. As we will see in this final part of the chapter, this type of ordering turns out
to be absent for the Swedenborgite HAFM, such that the above is still the full story.

2.2.1 Octupolar ordering and its absence

As was briefly mentioned in Sec. 2.1.3, the phase diagram of the Kagomé HAFM contains a phase
described by octupolar ordering [12]. To see what this is, we take a step back and look at the ground
state of the Kagomé antiferromagnet. As we have seen in Sec. 1.2, the building block of the Kagomé
lattice is a single triangle. The Hamiltonian of the antiferromagnetic Heisenberg model on this single
triangle can be written as

H1 = J
∑
i,j

Si · Sj =
J

2
(S1 + S2 + S3)

2
+ const. (2.54)

Just like before, minimization of this energy leads to a 120◦ configuration of spins. However, unlike what
we have seen on triangular lattices, the Kagomé lattice consists of corner-sharing triangles. So if the

24



2.2. Landau theory of the Swedenborgite antiferromagnet

configuration of a single triangle is known, the neighbouring triangles are still free to choose their own
plane and helicity, rather than being uniquely determined. Therefore, the ground state of the Kagomé
HAFM is highly degenerate.

Similar to what we have seen for the Swedenborgite HAFM, Chalker showed that the low-temperature
phase of the Kagomé HAFM is dominated by order-by-disorder effects, which select coplanar configu-
rations and lead to a nematic phase [2]. This additional constraint takes away the freedom to select a
plane for each triangle, and we are now only allowed to choose the helicity of each triangle (for example
the sign choice in Eq. (2.10)). While the total degeneracy is still very large, each spin must now point
in one of only three possible directions. Hence, this nematic phase is still far more ordered than random
coplanar configurations, and the usual nematic order parameter is not enough to describe the ordering
of this phase.

In the XY model, which describes spins as two-dimensional unit vectors, this ordering can successfully
be captured by the parameter wj = e3iθj , where θj is the angle of the spin in the plane: in the ground
state, each spin has θj ∈ {0, 2π/3, 4π/3}, leading to wj = 1 for each spin. For the Heisenberg model,
it is more complicated to describe this ordering due to the fact that the common plane is arbitrary.
The order parameter cannot be a vector (which describes a particular configuration) or a rank-2 tensor
(which describes nematic ordering), so it must at least be a rank-3 tensor. Zhitomirsky found that this
ordering, called octupolar ordering, can be described by the octupolar moment [12]:

Tαβγ =
1

N

∑
i

(
Sαi S

β
i S

γ
i −

1

5
Sαi δ

βγ − 1

5
Sβi δ

αγ − 1

5
Sγi δ

αβ

)
. (2.55)

It turns out that this is the primary order parameter of the Kagomé HAFM, and that the nematic order
parameter is only secondary.

The question is now whether or not this octupolar ordering also plays a role for the Swedenborgite
HAFM. The most important difference between the two lattices is that the ground state degeneracy on
the Kagomé lattice originates from the interactions between unit cells, while on the Swedenborgite lattice
it is caused by the interactions inside a single unit cell. So contrary to the nematic phase of the Kagomé
HAFM, a single building block of the Swedenborgite lattice (i.e. a bipyramid) already results in a very
high degeneracy, as we have seen in Sec. 1.3. Moreover, a large part of this degeneracy remains even
when restricted to a single plane. As a result, the spins do not have to choose from a finite number of
possible directions, such that there is no octupolar ordering.

Since there is no octupolar ordering present in the nematic phase of the Swedenborgite HAFM,
we assume that the nematic order parameter Qαβ is sufficient. There could of course still be a very
complicated order parameter that we missed, as there are still constraints that prevent the configurations
of the nematic phase to be truely random coplanar configurations, but comparison with the simulations
leads us to believe that this is not the case. Therefore, our final conclusion of this chapter is that the
analysis from the first part of this section is the proper Landau description for the antiferromagnetic
Heisenberg model on the Swedenborgite lattice.
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Chapter 3

Mean-field theory

In this chapter, we will develop a mean-field approach in an attempt to derive the phase diagram of
the antiferromagnetic Heisenberg model on the Swedenborgite lattice. This approach will only be an
approximation, and its results will not be exact in the number of dimensions we are looking at. Still,
the methods that we will use in the end are very general for spin models, and they form an excellent
framework to provide a first approximation. We will start this chapter by introducing mean-field theory
by applying several mean-field methods to the antiferromagnetic Heisenberg model on the undistorted
triangular lattice. At the end of this first section, we will relate mean-field theory to Landau theory (see
Ch. 2) by means of a Hubbard-Stratonovich transformation. Then in Sec. 3.2, we will revisit one of the
mean-field methods and generalize it to a framework that can be applied to any spin model. Using this
framework, we will then be able to construct a mean-field theory for the Swedenborgite HAFM and use
it to find an approximation for the critical temperature as a function of J2/J1. Finally, we will wrap up
this chapter by discussing the validity of mean-field theory and its failure for low-dimensional systems.

3.1 Mean-field methods applied to the Heisenberg antiferro-
magnet on the triangular lattice

We consider the antiferromagnetic Heisenberg model on the undistorted triangular lattice. Even though
the Mermin-Wagner theorem [13] states that this model cannot exhibit long-range order at a finite
temperature, we will discuss several mean-field methods to describe it. In Sec. 3.4, we will see how
the presence of fluctuations (which were ignored) cause mean-field theory to fail in low-dimensional
systems, rendering the conclusions drawn from the mean-field methods obsolete. While the methods
presented here do not give the correct results for the model at hand, they may be used to approximate
higher-dimensional systems.

3.1.1 A simple mean-field approximation

For the first method, we use our knowledge of the ordered phase of the model (the ground state, i.e.
the 120◦ configuration) to see that the lattice can be divided into three sublattices, each with their own
magnetization (see again the top-left panel of Fig. 2.3). Let us rewrite the Hamiltonian:

H = J
∑
〈i,j〉

Si · Sj

=
1

2

∑
ij

JijSi · Sj

=
1

2

∑
ij

Jij [Si · 〈Sj〉+ 〈Si〉 · Sj − 〈Si〉 · 〈Sj〉+ (Si − 〈Si〉) · (Sj − 〈Sj〉)]

'
∑
ij

JijSi · 〈Sj〉+ const. (3.1)
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3.1. Mean-field methods applied to the Heisenberg antiferromagnet on the triangular lattice

Here, and in the remainder of this thesis, angle brackets around a quantity 〈. . .〉 denote the thermal
expectation value of the quantity. In the first line, 〈i, j〉 denote all nearest neighbour pairs. In the
second line, Jij is defined to be equal to J if i, j are nearest neighbours, and zero otherwise. The factor
1/2 is there to cancel double counting of the pairs. In the final line, we neglect the fluctuations term
(Si − 〈Si〉) · (Sj − 〈Sj〉) (which is the mean-field approximation) and we use Jij = Jji to combine the
remaining terms. Finally, note that the average 〈Sj〉 ≡mj depends on the sublattice to which j belongs.

We will now introduce the sublattices l1, l2 and l3 and the corresponding magnetizations m1, m2

and m3. The Hamiltonian becomes

H =
∑
i∈l1,j

JijSi · 〈Sj〉+
∑
i∈l2,j

JijSi · 〈Sj〉+
∑
i∈l3,j

JijSi · 〈Sj〉

= 3J
∑
i∈l1

Si · (m2 + m3) + 3J
∑
i∈l2

Si · (m3 + m1) + 3J
∑
i∈l3

Si · (m1 + m2)

≡ H1 +H2 +H3. (3.2)

Using the fact that mn = 0 in the disordered phase and S1
∆ + S2

∆ + S3
∆ = 0 in the ground state, we see

that we can write
Hn = −3J

∑
i∈ln

Si ·mn, (3.3)

where n ∈ {1, 2, 3} signifies the sublattice.
We can use Eq. (3.3) to write down self-consistency equations for mn:

mn = 〈Si∈ln〉 =

Tr Si∈ln exp

[
3βJ

∑
i∈ln

Si ·mn

]

Tr exp

[
3βJ

∑
i∈ln

Si ·mn

]

⇒ mj
n =

3

N

1

3βJ

∂ lnZn

∂mj
n

. (3.4)

Here, j ∈ {x, y, z}, while the 3/N comes from the fact that each sublattice consists of N/3 lattice sites.
The partition function corresponding to sublattice n is given by

Zn = Tr exp

[
3βJ

∑
i∈ln

Si ·mn

]

=

 1

4π

2π∫
0

π∫
0

e3βJmn cos θ sin θdθdφ

N/3

=

(
sinh(3βJmn)

3βJmn

)N/3
, (3.5)

where we used that Si ·mn = |Si||mn| cos θi = mn cos θi, with mn ≡
√

(mx
n)2 + (my

n)2 + (mz
n)2. Plugging

this result back into Eq. (3.4), we find

mj
n =

(
1

tanh(3βJmn)
− 1

3βJmn

)
mj
n

mn
. (3.6)

The final form of the self-consistency equation for the absolute values of the magnetizations mn is thus

mn =
1

tanh(3βJmn)
− 1

3βJmn
. (3.7)

This result, assuming that fluctuations can safely be neglected (which they cannot, as we will see in
Sec. 3.4), implies the existence of a phase transition. To see this, we can graphically solve Eq. (3.7) for
different values of β, which is done in Fig. 3.1. For high temperatures (i.e. small β), the only solution
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mn

1

tanh (3 β J mn )
- 1

3 β J mn

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

mn

Figure 3.1: Graphic solution of Eq. (3.7) for different values of β.

is mn = 0. However, for lower temperatures there are also solutions for non-zero values of mn. This
implies that the system will go into an ordered phase for sufficiently low temperatures.

Finally, let us calculate the critical temperature that follows from Eq. (3.7). As can be seen from
Fig. 3.1, the critical temperature is the temperature for which the derivative of the right-hand side with
respect to mn is equal to 1 for mn = 0. This derivative is given by

1

3βJm2
n

− 3βJ

sinh2(3βJmn)
. (3.8)

Using the Taylor series
1

sinh2 x
=

1

x2
− 1

3
+O(x2), (3.9)

we find

lim
mn→0

(
1

3βcJm2
n

− 3βcJ

sinh2(3βcJmn)

)
= βcJ = 1, (3.10)

so the critical temperature is given by
kBTc = J. (3.11)

3.1.2 Variational mean-field theory

Next, we will consider variational mean-field theory, using the principles described by Falk [14]. However,
before we do so, we will rewrite our spin variables in terms of rotated variables. The rotation matrix
corresponding to a rotation of angle θ about a unit vector ûi = (ui,x, ui,y, ui,z) is given by

Ri(θ) =

 cos θ + u2
i,x(1− cos θ) ui,xui,y(1− cos θ)− ui,z sin θ ui,xui,z(1− cos θ) + ui,y sin θ

ui,yui,x(1− cos θ) + ui,z sin θ cos θ + u2
i,y(1− cos θ) ui,yui,z(1− cos θ)− ui,x sin θ

ui,zui,x(1− cos θ)− ui,y sin θ ui,zui,y(1− cos θ) + ui,x sin θ cos θ + u2
i,z(1− cos θ)

 ,

(3.12)
which can straightforwardly be derived by applying a sequence of rotations about the basis vectors x̂, ŷ
and ẑ. Next, we introduce a new spin variable:

Mi ≡ Ri(−q · ri) · Si, (3.13)

where q is the wave vector corresponding to the periodicity of the ground state configuration. We allow
the rotation axis ûi to depend on the lattice site, such that we may in principle include fluctuations.
However, we assume that the rotation axis changes slow enough that it can be taken the same for
neighbouring lattice sites. In terms of these new variables, the Hamiltonian becomes

H =
1

2

∑
ij

Jij(Ri(q · ri) ·Mi)
T · (Ri(q · rj) ·Mj)

=
1

2

∑
ij

Mi · JijRi(q · (rj − ri)) ·Mj . (3.14)
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3.1. Mean-field methods applied to the Heisenberg antiferromagnet on the triangular lattice

Since q · (rj − ri) = ±2π/3, it is also useful to know how the rotation matrix corresponding to such
rotations acts on an arbitrary vector A. It is straightforward to show that

Ri(±2π/3) ·A =
1

2

(
3(ûi ·A)ûi −A±

√
3(ûi ×A)

)
. (3.15)

With these preliminaries out of the way, let us consider variational mean-field theory [14]. In this
theory, one writes down a free energy according to an unknown probability density ρ. In the mean-
field approximation, we assume that this probability density is the product of independent single site
probability densities:

ρ =
∏
i

ρi. (3.16)

The free energy corresponding to this probability density is given by

Fρ = Tr ρH + kBT
∑
i

Tr ρi ln ρi. (3.17)

The actual Helmholtz free energy of the system is obtained by minimizing Fρ with respect to ρ by means
of variational differentiation, under the constraint Tr ρ = 1. We will now apply this to the model at hand
along the lines of Chaikin & Lubensky [10].

Using Eq. (3.16), we immediately see that our free energy functional is given by

Fρ =
1

2

∑
ij

〈Mi〉 · JijRi(q · (rj − ri)) · 〈Mj〉+ kBT
∑
i

2π∫
0

π∫
0

ρi(θi, φi) ln(ρi(θi, φi)) sin θidθidφi, (3.18)

where the expectation value 〈Mi〉 is defined as

〈Mi〉 ≡ Tr ρiMi =

∫
dΩiMi(Ωi)ρi(Ωi)

=

2π∫
0

π∫
0

Mi(θi, φi)ρi(θi, φi) sin θidθidφi. (3.19)

In these expressions, θi and φi are the angles that fix the direction of the rotated spin variable Mi,
and the corresponding solid angle is denoted as Ωi. Minimizing Eq. (3.18) with respect to ρi under the
constraint Tr ρi = 1 gives

δFρ
δρi

= −Mi · hei + kBT (ln ρi + 1) = λi, (3.20)

hei ≡ −
∑
j

JijRi(q · (rj − ri)) · 〈Mj〉. (3.21)

Here, λi is a Lagrange multiplier used to satisfy the constraint, while hei is the effective field acting on
site i. Solving Eq. (3.20) for ρi gives us the probability density:

ρi =
1

Zi
eβh

e
i ·Mi , (3.22)

with

Zi =

∫
dΩie

βhei ·Mi . (3.23)

The next step is to calculate the effective field hei . For convenience, let us write 〈Mj〉 ≡ ηηηj . The
nearest neighbours of the lattice site at position r are located at r + ak. In the basis where q =
(2π/3a, 2π/

√
3a), the vectors ak are given by

a1 = a(1, 0), a2 = −a(1, 0), a3 = −a
2

(1,
√

3),

a4 =
a

2
(1,
√

3), a5 =
a

2
(−1,

√
3), a6 = −a

2
(−1,

√
3). (3.24)
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Chapter 3. Mean-field theory

Hence, for nearest neighbour k, the rotation angle q · (rj − ri) is given by (−1)k+12π/3. Combining this
with Eqs. (3.15) and (3.21), we find

hei ≡ he(ri) = −J
2

[
3

(
ûi ·

∑
k

ηηη(ri + ak)

)
ûi −

∑
k

ηηη(ri + ak)−
√

3

(
ûi ×

∑
k

(−1)kηηη(ri + ak)

)]
.

(3.25)
To make sense of this expression, we can expand ηηη(ri + ak) for small lattice spacing a:

ηηη(ri + ak) = ηηη(ri) +
∂ηηη(ri)

∂rµ
aµk +

1

2

∂2ηηη(ri)

∂rµ∂rν
aµka

ν
k +O(a3). (3.26)

Here, µ, ν ∈ {x, y, z}, and summation over µ and ν is implied. It is now straightforward to check that∑
k

ηηη(ri + ak) = 6ηηη(ri) +
3a2

2
∇2ηηη(ri) +O(a3), (3.27)

while
∑
k

(−1)kηηη(ri + ak) vanishes up to second order in a. We conclude that (up to second order in a)

the effective field is given by

he(ri) = −J
2

[
3

(
ûi ·

(
6ηηη(ri) +

3a2

2
∇2ηηη(ri)

))
ûi − 6ηηη(ri)−

3a2

2
∇2ηηη(ri)

]
. (3.28)

If we further take ûi to be perpendicular to ηηηi, we finally arrive at

he(ri) = 3Jηηη(ri) +
3Ja2

4

(
∇2ηηη(ri)− 3

(
ûi · ∇2ηηη(ri)

)
ûi
)
. (3.29)

Now that the effective field has been calculated, let us return to the variational mean-field theory
itself. Using Eq. (3.22), we can once again write down a self-consistency equation:

ηηηi ≡ 〈Mi〉 =
1

Zi

∫
dΩiMie

βhei ·Mi . (3.30)

If we assume that ηηηi uniform, the effective field becomes hei = 3Jηηη, and the self-consistency equation
becomes

ηηη =
1

Zi

∫
dΩiMie

3βJηηη·Mi . (3.31)

In essence, this is the same self-consistency equation as Eq. (3.4), and therefore we find

|ηηη| ≡ η =
1

tanh(3βJη)
− 1

3βJη
. (3.32)

This result demonstrates that the two given mean-field methods both yield the same results, and hence
that they both lead to the same (incorrect) conclusions about a phase transition and the corresponding
critical temperature.

3.1.3 Mean-field approximation using a Hubbard-Stratonovich transforma-
tion and the relation with Landau theory

In this section, we will rewrite the partition function in an exact way by using Gaussian integral identities,
then performing a mean-field approximation to extract results from the new form. We start with the
Hamiltonian from Eq. (3.14) and introducing some new variables:

H =
1

2

∑
ij

M̃iAijM̃j . (3.33)

Here, i, j ∈ {1, 2, ..., 3N}, and the new variables are defined as

M̃ ≡ (M1,M2, ...,MN ), (3.34)
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3.1. Mean-field methods applied to the Heisenberg antiferromagnet on the triangular lattice

A ≡


J11R1(0) J12R1(q · (r2 − r1)) · · · J1NR1(q · (rN − r1))

J21R2(q · (r1 − r2)) J22R2(0) · · · J2NR2(q · (rN − r2))
...

...
. . .

...
JN1RN (q · (r1 − rN )) JN2RN (q · (r2 − rN )) · · · JNNRN (0)

 . (3.35)

Now consider the following Gaussian integral identity with real degrees of freedom x1, ..., xN :

∫ ( N∏
i=1

dxi√
2π

)
exp

1

2

∑
ij

xiGijxj −
∑
ij

biGijxj


=

1√
Det(−G)

exp

−1

2

∑
ij

biGijbj


≡ N exp

−1

2

∑
ij

biGijbj

 . (3.36)

A derivation of this identity can be found in appendix A.3. Using this integral, we can rewrite the
partition function:

Z =

∏
i

1

4π

2π∫
0

dφi

π∫
0

dθi sin θi

 exp

−β
2

∑
ij

JijSi · Sj


≡
∫
DΩ exp

−β
2

∑
ij

JijSi · Sj


=

∫
DΩ exp

−β
2

∑
ij

M̃iAijM̃j


=

∫
DΩ

1

N

(
3N∏
i=1

dη̃i√
2π

)
exp

β
2

∑
ij

η̃iAij η̃j − β
∑
ij

M̃iAij η̃j

 . (3.37)

If we now define η̃̃η̃η ≡ (ηηη1, ηηη2, ..., ηηηN ), this expression becomes

Z =

∫
DΩDηηη exp

β
2

∑
ij

ηηηi · JijRi(q · (rj − ri)) · ηηηj − β
∑
ij

Mi · JijRi(q · (rj − ri)) · ηηηj


=

∫
DΩDηηη exp

[
−β

2

∑
i

ηηηi · hei + β
∑
i

Mi · hei

]
. (3.38)

For this last step, we used Eq. (3.21) from last section. The ηηηi’s and therefore the effective fields from this
section and the previous one are not necessarily the same, but we will see later on that they actually are.
The exponent in this final expression only contains linear terms in Mi, and we can therefore perform
our original integral over Ω. The integral is essentially the same as the one in Eq. (3.5), so we can
immediately evaluate it:

Z =

∫
Dηηη exp

[
−β

2

∑
i

ηηηi · hei

]∏
i

sinh(βhei )

βhei

=

∫
Dηηη exp

[
−β

2

∑
i

ηηηi · hei +
∑
i

(ln sinh(βhei )− ln(βhei ))

]
, (3.39)

where hei ≡ |hei |. This is our final expression for the partition function Z. The above transformation is
a so-called Hubbard-Stratonovich transformation, and it is important to note that the final expression
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Eq. (3.39) is exact. Referring back to Eq. (2.5) at the start of Ch. 2, we see that this expression for the
partition function is the same as it is for Landau theory, provided that ηηη is indeed the order parameter.
If this is the case, we can now immediately read off the Landau free energy from the exponent.

Let us now turn to the mean-field approximation. In this case, the mean-field approximation is
that we assume that the most probable value of the integrand is the only relevant contribution to the
functional integral. In other words: the partition function Z is approximated to be equal to the integrand
of the functional integral, evaluated at its maximum value with respect to ηηηi. In this approximation, we
find the Helmholtz free energy

F = −kBT lnZ = min
ηηηi

[
1

2

∑
i

ηηηi · hei − kBT
∑
i

(ln sinh(βhei )− ln(βhei ))

]
= min

ηηηi
L[ηηηi], (3.40)

where L[ηηηi] is the Landau free energy. Under the assumption that ηηηi is uniform (i.e. hei = 3Jηηη), we
obtain

L =
3JN

2
η2 −NkBT (ln sinh(3βJη)− ln(3βJη)), (3.41)

again with |ηηη| ≡ η. Minimizing this Landau free energy with respect to η once again gives us Eq. (3.32),
confirming that this ηηη can indeed be identified as the order parameter 〈M〉, and that this mean-field
method gives the same results as the previous ones.

Finally, we will look at the situation that ηηηi is not uniform. To do so, consider the continuum limit:
the small a limit, with ηηηi → ηηη(r), hei → he(r) and

∑
i

→ N/V
∫

dr. Since we are interested in the region

close to the critical point, we expand the Landau free energy for small ηηη(r). Using the series

ln sinhx− lnx =
x2

6
− x4

180
+O(x6), (3.42)

we find the following Landau free energy:

L[ηηη(r)] =
N

V

∫
dr

[
1

2
ηηη(r) · he(r)− kBT

(
β2|he(r)|2

6
− β4|he(r)|4

180
+ ...

)]
≡ N

V

∫
drf(r). (3.43)

Here, f(r) is the Landau free energy density. Additionally, we only keep terms up to lowest non-trivial
order in a, such that

ηηη(r) · he(r) = 3J |ηηη(r)|2 +
3Ja2

4
ηηη(r) · ∇2ηηη(r) + ..., (3.44)

|he(r)|2 = 9J2|ηηη(r)|2 +
9J2a2

2
ηηη(r) · ∇2ηηη(r) + ..., (3.45)

|he(r)|4 = 81J4|ηηη(r)|4 + ..., (3.46)

where we used that û(r) is chosen such that ηηη(r) · û(r) = 0. With these, the Landau free energy becomes

L[ηηη(r)] =
N

V

∫
dr

[
3Ja2

8
(1− 2βJ)ηηη(r) · ∇2ηηη(r) +

3J

2
(1− βJ)|ηηη(r)|2 +

9β3J4

20
|ηηη(r)|4 + ...

]
. (3.47)

Again, this implies a critical temperature of kBTc = J , because that is the temperature at which the
coefficient in front of the quadratic term changes sign. Close to this temperature, we obtain

L[ηηη(r)] =
N

V

∫
dr

[
−3Ja2

8
ηηη(r) · ∇2ηηη(r) +

3Jt

2
|ηηη(r)|2 +

9J

20
|ηηη(r)|4 + ...

]
, (3.48)

where t ≡ (T−Tc)/Tc, showing that the Landau free energy can also fully be derived from the microscopic
Hamiltonian. However, we will see in Sec. 3.4 that mean-field theory alone is not enough, hence the
interpretation from simply minimizing L does not give the correct results for this two-dimensional system.
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3.2 Variational mean-field theory revisited

While the methods covered in the previous section are very useful for a lattice with unit cells containing
only a single lattice site, it is not straightforward to generalize them to more complicated lattices. In
order to be able to develop a mean-field theory for the Swedenborgite HAFM, we will now revisit the
principles of variational mean-field theory and use it to formulate a framework that can be applied
to general spin models, including those on a complicated lattice. Doing so, we will closely follow the
methods described by Reimers, Berlinsky, and Shi in Ref. [15].

3.2.1 Real space free energy

Previously, we used our knowledge of the ground state of the antiferromagnetic Heisenberg model on the
triangular lattice to rewrite the Hamiltonian in terms of rotated spin variables. Now, we will keep the
original spin variables, such that the associated magnetization will become periodic rather than constant
for the ground state. The advantage of this is that the following procedure is independent of the lattice
and can be applied in general.

As before, we consider the Heisenberg Hamiltonian:

H =
1

2

∑
ij

JijSi · Sj , (3.49)

where we now sum over all lattice sites i, j, while Jij is defined to be equal to J (with J > 0) if i, j are
nearest neighbours and zero otherwise. We start by writing down the mean-field free energy Fρ according
to Eq. (3.17), where ρ is again the product of single site probability densities ρi(θi, φi), the angles θi, φi
are now the angles describing the direction of spin Si, and the trace is now defined as

Tr ≡
∫
DΩ =

∏
i

 1

4π

2π∫
0

dφi

π∫
0

dθi sin θi

 . (3.50)

As we discussed in Sec. 3.1.2, the actual free energy of the system is obtained by minimizing Fρ with
respect to ρi by means of variational differentiation, under the constraint Tr ρi = 1. Additionally, rather
than obtaining a self-consistency equation later on, we now introduce the order parameter by means of
another constraint:

Tr ρiSi = 〈Si〉 ≡mi. (3.51)

Minimization of Fρ under the above constraints gives

δFρ
δρi

= Si ·

∑
j

Jijmj

+ kBT (ln ρi + 1) = λi + Si ·ΛΛΛi. (3.52)

Here, λi and ΛΛΛi are Lagrange multipliers used to satisfy the constraints. Since these multipliers are
unknown constants that are to be found later, they can be used to absorb some of the terms by redefining
them. Writing ΛΛΛi → ΛΛΛi +

∑
j

Jijmj , this equation gives

ρi =
1

Zi
eβΛΛΛi·Si , (3.53)

with

Zi =

∫
dΩie

βΛΛΛi·Si

=
sinh (βΛi)

βΛi
(3.54)
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and Λi ≡ |ΛΛΛi|. Using the above results, we find the free energy

F =
1

2

∑
ij

Jijmi ·mj + kBT
∑
i

(βΛΛΛi · Tr ρiSi − Tr ρi lnZi)

=
1

2

∑
ij

Jijmi ·mj +
∑
i

(
ΛΛΛi ·mi − kBT ln

(
sinh (βΛi)

βΛi

))
. (3.55)

The next step is to expand ΛΛΛi in terms of mi. To do so, we first write down the equation for mi in
terms of ΛΛΛi:

mi = Tr ρiSi =
1

β
∇ΛΛΛi lnZi

=

(
1

tanh (βΛi)
− 1

βΛi

)
Λ̂ΛΛi. (3.56)

The absolute value mi can thus be expanded as

mi =
βΛi

3
− β3Λ3

i

45
+O(Λ5

i ). (3.57)

Inverting this expression gives

βΛi = 3mi +
9

5
m3
i +O(m5

i ). (3.58)

Additionally, this result can be used to find

lnZi =
3

2
m2
i +

27

20
m4
i +O(m6

i ). (3.59)

With these expansions, the free energy becomes

F =
1

2

∑
ij

(Jij + 3kBTδij)mi ·mj +
9

20
kBT

∑
i

m4
i +O(m6

i ), (3.60)

where δij is the Kronecker delta.
This final expression is the general low-field expansion of the mean-field free energy for the antifer-

romagnetic Heisenberg model on an arbitrary lattice. However, this form of the free energy can be hard
to work with on complicated lattices. In order to make sense of it, we can work on the level of unit cells
rather than individual lattice sites. To do so, we write mi → ma

i , Jij → Jabij and δij → δabij . Here i, j
refer to the unit cells while a, b refer to the different sites within the unit cells (i.e. the sublattices). For
a lattice with unit cells consisting of n lattice sites, this means that i, j go from 1 to N/n ≡ Nc (where
N is the total number of lattice sites), while a, b go from 1 to n. With this notation, the free energy
simply becomes

F =
1

2

∑
ab

∑
ij

(
Jabij + 3kBTδ

ab
ij

)
ma
i ·mb

j +
9

20
kBT

∑
a

∑
i

(ma
i )4 +O

(
(ma

i )6
)
. (3.61)

3.2.2 Momentum space free energy

Due to the often complicated form of Jabij , the free energy given in Eq. (3.61) is often still not very
useful. Therefore, we will make use of the lattice symmetries by Fourier transforming the free energy
with respect to the unit cells. Noting that ma

i = ma
ri (where ri is the position of unit cell i), Jabij = Jabrij

(with rij ≡ ri − rj) and δabij = δabrij , the Fourier transform is given by

ma
ri =

∑
q

ma
qe
iq·ri , (3.62)

Jabrij =
1

Nc

∑
q

Jabq eiq·rij , (3.63)

δabrij = δab
1

Nc

∑
q

eiq·rij . (3.64)
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The components of the free energy become∑
ij

Jabij ma
i ·mb

j =
1

Nc

∑
ij

∑
q1,q2,q3

Jabq1
ma

q2
·mb

q3
eiri·(q1+q2)−irj ·(q1−q3)

= Nc
∑
q

Jabq ma
−q ·mb

q, (3.65)

∑
ij

δabij ma
i ·mb

j = δab
1

Nc

∑
ij

∑
q1,q2,q3

ma
q2
·mb

q3
eiri·(q1+q2)−irj ·(q1−q3)

= δabNc
∑
q

ma
−q ·mb

q, (3.66)

∑
i

(ma
i )4 =

∑
i

(ma
i ·ma

i )
2

=
∑
i

(∑
q1,q2

ma
q1
·ma

q2
eiri·(q1+q2)

)2

=
∑
i

∑
q1,q2,q3,q4

(
ma

q1
·ma

q2

) (
ma

q3
·ma

q4

)
eiri·(q1+q2+q3+q4)

= Nc
∑

q1,q2,q3,q4

δq1+q2+q3+q4,0

(
ma

q1
·ma

q2

) (
ma

q3
·ma

q4

)
≡ Nc

∑
{q}

′ (ma
q1
·ma

q2

) (
ma

q3
·ma

q4

)
. (3.67)

Plugging this back into Eq. (3.61), we see that the free energy per unit cell is equal to

F/Nc =
1

2

∑
ab

∑
q

(
Jabq + 3kBTδ

ab
)
ma
−q ·mb

q +
9

20
kBT

∑
a

∑
{q}

′ (ma
q1
·ma

q2

) (
ma

q3
·ma

q4

)
+O

(
(ma

q)6
)
.

(3.68)
Next, we will diagonalize the second order term. Since Jabq is Hermitian, it is diagonalized by

Jabq =
∑
ij

Uaiq D
ij
q (U−1

q )jb =
∑
ij

Uaiq D
ij
q (U†q)jb, (3.69)

where i, j now refer to the n normal modes, Uaiq is the unitary diagonalization matrix and

Dij
q = δijλiq (3.70)

is the diagonal matrix of the eigenvalues of Jabq . It is useful to note that ma
−q = (ma

q)∗ and (Jab−q)∗ = Jabq
(and therefore (Uai−q)∗ = Uaiq ), which follows from the fact that their position space counterparts are
real. In terms of the normal modes of the system,

ΦΦΦiq ≡
∑
a

(U†q)iama
q, (3.71)

the magnetization becomes

ma
q =

∑
i

Uaiq ΦΦΦiq, (3.72)

and dot products of two magnetizations thus become∑
a

(
ma

q1
·ma

q2

)
=
∑
a

∑
ij

Uaiq1
Uajq2

ΦΦΦiq1
·ΦΦΦjq2

=
∑
ij

(UTq1
Uq2)ijΦΦΦiq1

·ΦΦΦjq2
. (3.73)
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All this can then be used to rewrite the free energy per unit cell in terms of the normal modes:

F/Nc =
1

2

∑
i

∑
q

(
λiq + 3kBT

)
ΦΦΦi−q ·ΦΦΦiq

+
9

20
kBT

∑
ijkl

∑
{q}

′ (ΦΦΦiq1
·ΦΦΦjq2

) (
ΦΦΦkq3
·ΦΦΦlq4

)∑
a

Uaiq1
Uajq2

Uakq3
Ualq4

+O
(
(Φiq)6

)
. (3.74)

This expression is again the general low-field expansion of the mean-field free energy of the antifer-
romagnetic Heisenberg model on an arbitrary lattice, but this time in momentum space. The quadratic
term of this expansion implies a phase transition. As usual, there is a phase transition between the
region where there are non-zero modes (the ordered phase) and the region where there are no non-zero
modes (the disordered phase). In accordance with Landau theory, a mode becomes non-zero when the
corresponding quadratic coefficient becomes negative. Hence, Eq. (3.74) implies that there is a phase
transition at the point where the first of the modes becomes non-zero, which gives

kBTc = −min
q,i

λiq/3. (3.75)

Moreover, minimizing the free energy for any temperature shows us that the mode corresponding to
the smallest possible eigenvalue is the one that is selected by the system. In the next sections, we will
investigate the implications of these general results on the triangular lattice and on the Swedenborgite
lattice.

3.2.3 A final look at the triangular lattice

Before we move on to the more complicated Swedenborgite lattice, we briefly show how these methods
can be applied to the triangular lattice. On the triangular lattice, there is only one lattice site per unit
cell, making the problem much simpler. In particular, the matrix Jabq becomes a scalar Jq, and the
diagonalization process becomes obsolete. In order to calculate the Fourier transform of the interaction
matrix, we need to define a basis. It is most convenient to work in the basis of the lattice vectors

â1 =

(
1
0

)
, â2 =

1

2

(
1√
3

)
(3.76)

and “deform” the lattice such that these vectors are orthogonal, while preserving the interactions. Then,
the nearest neighbours are at ±aâ1, ±aâ2 and ±a(â1− â2), where a is the lattice constant, and the wave
vector can be decomposed as q = q1â1 + q2â2. Let us now calculate Jq:

Jq =
∑
rij

Jrije
−iq·rij

= J
[
e−iaq1 + eiaq1 + e−iaq2 + eiaq2 + e−ia(q1−q2) + eia(q1−q2)

]
= 2J [cos(aq1) + cos(aq2) + cos(a(q1 − q2))] . (3.77)

Figure 3.2: Interactions Jq of the antiferromagnetic Heisenberg model on the triangular lattice as a function of
the wave vector q.
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3.3. Mean-field critical temperature of the Swedenborgite antiferromagnet

In the following, we will always absorb a into q. A plot of the resulting expression is shown in Fig. 3.2.
Since the free energy is to be minimized, the mode that will actually appear in the system (provided

that the temperature is small enough) is the one that minimizes Jq. Doing so, we find q1 = 2π/3,
q2 = 4π/3, or the other way around. These values correspond to a 120◦ configuration of the magnetization
mi. Plugging this q back in, we find Jq = −3J , which then translates to kBTc = J . We thus find that
there is a phase transition between a disordered phase and an ordered 120◦ phase, located at the critical
temperature kBTc = J . These results agree with our previous mean-field results.

3.3 Mean-field critical temperature of the Swedenborgite anti-
ferromagnet

In this section, we apply the methods from Sec. 3.2 to the Swedenborgite lattice. To describe the lattice,
we will use the same convention as was used in Sec. 1.2. In particular, the basis vectors of the unit cells
are given by

â1 =

1
0
0

 , â2 =
1

2

 1√
3

0

 , â3 =

0
0
1

 . (3.78)

Using these conventions, referring back to Fig. 1.7, and taking the Fourier transform in the same way
as in Sec. 3.2.3, the interaction matrix becomes

Jq/J1 =

0 1 + eiq2 1 + e−i(q1−q2) J2
J1

0 0 0 J2
J1
eiq3

1 + e−iq2 0 1 + e−iq1 J2
J1

0 0 0 J2
J1
eiq3

1 + ei(q1−q2) 1 + eiq1 0 J2
J1

0 0 0 J2
J1
eiq3

J2
J1

J2
J1

J2
J1

0 J2
J1

J2
J1

J2
J1

0

0 0 0 J2
J1

0 1 + eiq1 1 + eiq2 J2
J1

0 0 0 J2
J1

1 + e−iq1 0 1 + e−i(q1−q2) J2
J1

0 0 0 J2
J1

1 + e−iq2 1 + ei(q1−q2) 0 J2
J1

J2
J1
e−iq3 J2

J1
e−iq3 J2

J1
e−iq3 0 J2

J1
J2
J1

J2
J1

0


.

(3.79)

Here, J1 is the in-plane coupling strength, while J2 is the out-of-plane coupling strength. Next, the
eigenvalues of this matrix are considered. Using Mathematica, the smallest eigenvalue was found to be
at q = (2π/3, 4π/3, 0) or q = (4π/3, 2π/3, 0) when J2/J1 > 1/

√
2, while for J2/J1 ≤ 1/

√
2 the smallest

eigenvalue is equal to −2 for all q. At these q, the smallest eigenvalues are given by

min
q,i

λiq = min

−2,
1

2

1−

√
1 + 48

(
J2

J1

)2
 =


−2 if J2/J1 ≤ 1/

√
2

1
2

(
1−

√
1 + 48

(
J2
J1

)2
)

if J2/J1 > 1/
√

2
.

(3.80)
The eigenvectors corresponding to these eigenvalues have been calculated as well. The eigenvectors

corresponding to the eigenvalue λq = −2 (which is a doubly degenerate eigenvalue for every wave vector
q) are given by (

1,
1− ei(q1−q2)

eiq1 − 1
,
eiq1

(
e−iq2 − 1

)
eiq1 − 1

, 0, 0, 0, 0, 0

)
, (3.81)

(
0, 0, 0, 0, 1,

eiq2 − 1

eiq1 + eiq2
,

1− eiq1
eiq1 + eiq2

, 0

)
. (3.82)

If the modes corresponding to these eigenvectors are non-zero, the denominators of these expressions
cause the inverse Fourier transform to diverge. This can only be prevented if the modes are zero, in
which case ma

i = 0 for all lattice sites. We conclude that there can be no transition to a phase with
non-zero sublattice magnetization for J2/J1 ≤ 1/

√
2.
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Figure 3.3: Eigenvalues of the interaction matrix Jq/J1 of the Swedenborgite HAFM for J2/J1 = 1/2 (left)
and J2/J1 = 2 (right), along two paths through symmetry points of the first Brillouin zone at fixed qz. The red
path is located at qz = 0; the blue path is the same as the red path, but at qz = π. See also Ref. [7].

The eigenvector corresponding to the second eigenvalue of Eq. (3.80) is given by1, 1, 1,− J1

4J2

1 +

√
1 + 48

(
J2

J1

)2
 , 1, 1, 1,− J1

4J2

1 +

√
1 + 48

(
J2

J1

)2
 . (3.83)

Fourier transforming this back to real space for T < Tc (i.e. when the corresponding |ΦΦΦiq|2 is non-zero),
we see that m1

i = m2
i = m3

i = m5
i = m6

i = m7
i , while m4

i = m8
i point in the opposite direction

from m1
i . Meanwhile, the values for q that lead to this solution correspond to a 120◦ configuration of

columns of unit cells. This resulting configuration is exactly the unique ground state configuration of
the antiferromagnetic Heisenberg model on the Swedenborgite lattice, as we have seen in Sec. 1.3.

In the above considerations, we used that the magnetizations directly depend on the eigenvectors of
the interaction matrix. This works as follows. Referring back to Eq. (3.74), we see that minimization of
the free energy gives the quadratic term

1

2

(
min
q,i

λiq + 3kBT

)
ΦΦΦ∗ ·ΦΦΦ, (3.84)

where ΦΦΦ ≡ ΦΦΦimin
qmin

. In other words: ΦΦΦiq is only non-zero for the i and q that minimize λiq. From Eq.
(3.72), we then see that

ma
q = δq,qmin

Ua imin
qmin

ΦΦΦ. (3.85)

As the diagonalization matrix Uaiq is the matrix consisting of the eigenvectors of the interaction matrix,

the vector Ua imin
qmin

is simply the eigenvector corresponding to the eigenvalue λimin
qmin

. As a result, the
magnetization ma

q is directly proportional to the eigenvectors that were calculated above.
Finally, we note that the mean-field critical temperature corresponding to the eigenvalues found in

this section is

kBTc/J1 =
1

6

√1 + 48

(
J2

J1

)2

− 1

 , (3.86)

which is valid for J2/J1 > 1/
√

2. Comparing this with the analysis from Sec. 1.3, we see that mean-field
theory gets this result wrong in two different ways. First, the mean-field analysis suggests that the
unique ground state exists for all J2/J1 > 1/

√
2, which is very different from the exact observation that

it only exists for J2/J1 ≥ 3/2. It is worth noting that the interaction matrix does not show any special
properties at all at J2/J1 = 3/2. Second, the qualitative behaviour is different: simulations suggest that
the critical temperature becomes quadratic in J2/J1 for large values of J2/J1, while Eq. (3.86) implies
that it becomes linear. The reasons for these significant deviations of mean-field theory with the results
from Sec. 1.3 will become clear in the final section of this chapter.
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3.4. Failure of mean-field theory

3.4 Failure of mean-field theory

As was mentioned before, the Mermin-Wagner theorem states that there can be no spontaneous sym-
metry breaking of continuous symmetries at any finite temperature in a (d ≤ 2)-dimensional system,
provided that the interactions are sufficiently short-range [13]. This theorem applies to the Heisenberg
model: the symmetry that would be broken is O(3) symmetry, which is continuous, and the model only
considers nearest neighbour interactions, which is the shortest possible range of interactions. Although
the Mermin-Wagner theorem does not prevent phase transitions from happening on the three-dimensional
Swedenborgite lattice, the number of dimensions is still low enough for mean-field theory to fail. To see
how all of this happens, we will now consider fluctuations and discuss their influence. The methods used
in this section are based on Refs. [10, 16, 17].

First note that the O(3) symmetry of the system implies that slowly changing spin rotations only
cost little energy. With respect to the mean-field approximation from Sec. 3.1.3, this would mean that
there are other low energy configurations that give a significant contribution to the partition function,
rather than just the single most probable configuration. To study the effects of such spin rotations, we
will use the Landau free energy from Eq. (3.48) and look at the effects from fluctuations. To do so,
consider the following parametrization of ηηη(r):

ηηη(r) = η

sin(θ(r)) cos(φ(r))
sin(θ(r)) sin(φ(r))

cos(θ(r))

 . (3.87)

Since we are only looking at rotational fluctuations, the absolute value η is taken constant. With this
parametrization, the fluctuations term of the Landau free energy density becomes

−3Ja2

8
ηηη(r) · ∇2ηηη(r) =

3Ja2η2

8

[
(∇θ(r))2 + sin2(θ(r))(∇φ(r))2

]
≡ K

2

[
(∇θ)2 + sin2 θ(∇φ)2

]
. (3.88)

For simplicity, we will now restrict ourselves to fluctuations in a single plane, i.e. fluctuations in φ. Next,
we add an external field hφ(r) coupling to φ(r) in order to be able to calculate correlation functions.
The part of the partition function corresponding to φ is given by

Zφ =

∫
Dφ exp

[
−β
∫

dr

(
K̃

2
(∇φ)2 − hφ(r)φ(r)

)]
, (3.89)

where K̃ ≡ K sin2 θ. Using this expression, the expectation value of φ(r) can be written as

〈φ(r)〉 =
1

Zφ

∫
Dφφ(r) exp

[
−β
∫

dr

(
K̃

2
(∇φ)2 − hφ(r)φ(r)

)]

=
1

Zφ

δZφ
δβhφ(r)

= − δFφ
δhφ(r)

. (3.90)

It is useful to introduce a quantity called the susceptibility χ, which measures how the expectation value
of φ(r) reacts to a change in the external field at r′:

χ(r, r′) ≡ δ〈φ(r)〉
δhφ(r′)

= − δ2Fφ
δhφ(r′)δhφ(r)

. (3.91)

Using Eq. (3.90), we see that the susceptibility is proportional to the correlation function G(r, r′):

χ(r, r′) = β

(
1

Zφ

δ2Zφ
δβhφ(r′)δβhφ(r)

− 1

Zφ

δZφ
δβhφ(r′)

1

Zφ

δZφ
δβhφ(r)

)
= β (〈φ(r)φ(r′)〉 − 〈φ(r)〉〈φ(r′)〉)
= β〈(φ(r)− 〈φ(r)〉)(φ(r′)− 〈φ(r′)〉)〉
≡ βG(r, r′). (3.92)
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Let us now return to the Landau free energy with the added external field, evaluated at the expectation
value. Minimizing it with respect to 〈φ(r)〉 gives

− K̃∇2〈φ(r)〉 − hφ(r) = 0. (3.93)

Performing a functional derivative of this equation with respect to hφ(r′) and using Eq. (3.92), we obtain

− βK̃∇2G(r, r′) = δ(r− r′). (3.94)

For d > 2 dimensions, one can go to Fourier space to solve this equation. Transforming the result back
to real space and making the integral dimensionless gives the result G(r, r′) ∼ r2−d, where r ≡ |r− r′|.
This means that the correlation function converges to a constant when r → ∞. However, if d = 2 this
result no longer holds. Using homogeneity and isotropy of the equation gives G(r, r′) = G(r), such that

∇2G(r, r′) =
1

r

∂

∂r

(
r
∂G(r)

∂r

)
. (3.95)

For r 6= 0, this must be zero, so we find

G(r, r′) = c1 + c2 ln r, (3.96)

where c1 and c2 are constants. To find the value of c2, we can integrate Eq. (3.94) over a circle with
radius r0 about the origin. Using the divergence theorem∫

V

dV ∇2G =

∮
∂V

dS∇G · n̂ (3.97)

and ∇G(r) = ∂G(r)
∂r r̂, we find

−βK̃
∮
∂V

dS
c2
r

= −βK̃ 2πr0
c2
r0

= 1

⇒ c2 = − kBT
2πK̃

. (3.98)

The correlation function is thus given by

G(r, r′) = − kBT
2πK̃

ln r + c1. (3.99)

The resulting correlation function can be used to find the expectation value of the phase difference
between two points. From homogeneity, it follows that 〈φ(r)〉 is constant in space. Using this, we find

〈(φ(r)− φ(r′))2〉 = 2G(0)− 2G(r) ∼ ln r. (3.100)

This expression suggests the appearance of a divergence for r → 0. However, this does not actually
happen, due to the fact that we are still working on a discrete lattice. This lattice imposes a lower cut-
off r > a, where a is again the lattice spacing. Taking this into account, there is no actual divergence.

The above results show us that the phase difference between two points diverges as r → ∞ for any
finite T . As a result, the angles between the two spins, and consequently the two spins themselves,
are completely uncorrelated at large length scales. This means that there is no long-range ordering for
any finite temperature, such that the system does not undergo a phase transition at all, confirming the
prediction from the Mermin-Wagner theorem.

We have now seen that fluctuations prevent phase transitions from happening for d ≤ 2, rendering
any conclusions about phase transitions following from mean-field theory invalid. After all, mean-field
theory assumes that we can take the expectation values of neighbours as effective fields acting on a
site, while neglecting fluctuations. It is however still possible to find short-range ordering, but this local
ordering will not extend over the entire space. This enabled us to find non-zero order parameters in the
simulations on a small two-dimensional lattice at finite temperatures in Ch. 2.

The above analysis does not yet explain why mean-field theory also (partially) failed on the Sweden-
borgite lattice. One reason for the mean-field results to be incorrect is that mean-field theory ignores
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the constraint that the spins are defined to be unit vectors. However, another reason is that fluctuations
can have a significant influence even for d > 2. To check if this is the case, we can turn to the Ginzburg
criterion [18]:

〈(δη)2〉 � 〈η〉2, (3.101)

which must hold for all temperatures in the ordered phase. Here, η is an arbitrary scalar order parameter,
while

δη ≡ V −1

∫
V

dr (η(r)− 〈η〉) (3.102)

is the average fluctuation over some volume V . In terms of the correlation length ξ, which gives the
range of the correlations, this volume should at least be of the order Vξ ≡ ξd. Using G(r) ∼ r2−d from
the previous example and making the resulting integral dimensionless, we can calculate the left-hand
side of the criterion:

〈(δη)2〉 = V −1
ξ

∫
Vξ

drG(r) ∼ ξ2−d. (3.103)

The crucial point is that the Ginzburg criterion must also hold in the vicinity of the phase transition
if we want to use mean-field theory to describe it, which is where 〈η〉 goes to zero and the correlation
length ξ goes to infinity. If we want to satisfy the criterion in this region, ξ2−d must go to zero faster than
〈η〉2. This leads to the conclusion that there is an upper critical dimension below which the fluctuations
cannot be ignored. Without explicitly calculating this upper critical dimension, the comparison between
mean-field theory and exact observations demonstrate the fact that the dimension of the Swedenborgite
lattice is not high enough for the fluctuations to be negligible. In short, the deviations from the exact
analysis that we encountered in the previous section are caused by the fact that the fluctuations in the
order parameter are larger than the order parameter itself in the vicinity of the phase transition, hence
the initial assumption that the fluctuations could be ignored was incorrect.

While we have successfully developed a mean-field theory for the Swedenborgite antiferromagnet, we
have now seen that fluctuations play an important role as well. In the next chapter, we will go beyond
mean-field theory by thoroughly analysing spin fluctuations.
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Chapter 4

Spin waves of the Swedenborgite
antiferromagnet

In the previous chapter, we have seen that mean-field theory is insufficient to properly describe the phase
transition of the Swedenborgite antiferromagnet in the J2/J1 → 3/2 limit. We will therefore attempt a
different approach, restricting ourselves to the J2/J1 ≥ 3/2 region: we will start with the unique ground
state and add spin fluctuations to it (called spin waves), analysing when these fluctuations become
strong enough to destroy the ground state configuration. The temperature at which this happens is the
temperature at which the configurations can no longer be described as fluctuations about the ground
state configuration, such that this is the critical temperature we are looking for. We will first derive
the Hamiltonian corresponding to the spin fluctuations, followed by considerations about why we will
focus on some of the terms in particular. Then, we will calculate the critical temperature using the
lowest order approximation of the Hamiltonian. Finally, the effects of higher order corrections will be
considered using two different methods, and we end this chapter by discussing the overall conclusions
regarding the goals that were mentioned in Sec. 1.4.

4.1 Spin wave Hamiltonian

In this section, we investigate the energy cost of spin excitations about the ground state of the Sweden-
borgite HAFM, of which we will later use the results to estimate the critical temperature that separates
the unique ground state from the disordered phase. To find the spin wave Hamiltonian, we build on the
spin wave analysis by Buhrandt [4], which was done along the lines of Chalker [2].

4.1.1 Real space Hamiltonian

As before, the Hamiltonian of the model at hand is given by

H =
1

2

∑
ij

JijSi · Sj , (4.1)

where Jij is equal to J1 for in-plane nearest neighbour sites i, j, J2 for intermediate nearest neighbours,
and zero otherwise. We now focus on the region J2/J1 ≥ 3/2, such that we can write each spin as
Si = SGS,i + δSi, where SGS,i is the ground state value of spin i; now the fluctuations δSi are our new
thermal variables. As was shown by Buhrandt, it is convenient to work with a local basis where ẑi is
parallel to the ground state direction SGS,i of the spin on lattice site i, ŷi orthogonal to the ground state
plane, and x̂i chosen such that the basis is right-handed. In this basis, each spin can be written as

Si =

(
εxi , ε

y
i ,
√

1− (εxi )2 − (εyi )2

)
, (4.2)
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4.1. Spin wave Hamiltonian

where εxi and εyi are the in-plane and out-of-plane spin excitations, respectively. The Hamiltonian thus
becomes

H =
1

2

∑
ij

(
εxi Jij(x̂i · x̂j)εxj + εyi Jij(ŷi · ŷj)ε

y
j +

√
1− (εxi )2 − (εyi )2Jij(ẑi · ẑj)

√
1− (εxj )2 − (εyj )2

+εxi Jij(x̂i · ẑj)
√

1− (εxj )2 − (εyj )2 +
√

1− (εxi )2 − (εyi )2Jij(ẑi · x̂j)εxj
)
. (4.3)

Here, we used that ŷi is perpendicular to both x̂j and ẑj for all i, j due to our choice of basis. The
next step is to consider small excitations and expand this Hamiltonian. The final two terms of the
Hamiltonian (i.e. the non-zero cross terms) generate all odd order terms, which we will ignore for now.
The actual relevance of these odd order terms will be discussed in Sec. 4.1.3. For our considerations
concerning only the even order terms, the Hamiltonian can be written as

H = EGS +H2 +H4 +O(ε6) +Hodd, (4.4)

where EGS is the ground state energy and Hodd contains all odd order terms in ε, while H2 and H4 are
the second and fourth order terms in the ε expansion of the Hamiltonian, respectively. To perform the
expansion, we use√

1− (εxi )2 − (εyi )2 = 1− 1

2

(
(εxi )2 + (εyi )2

)
− 1

8

(
(εxi )4 + (εyi )4 + 2(εxi )2(εyi )2

)
+O(ε6). (4.5)

From this expression, one can calculate that√
1− (εxi )2 − (εyi )2

√
1− (εxj )2 − (εyj )2 =1− 1

2

(
(εxi )2 + (εxj )2 + (εyi )2 + (εyj )2

)
− 1

8

(
(εxi )2 − (εxj )2 + (εyi )2 − (εyj )2

)2
+O(ε6). (4.6)

Now that we have a first general expression for the expansion of H in terms of the excitations ε
x/y
i ,

we can start looking at H2 and H4 individually. Using the above expressions, we find

H2 =
1

2

∑
ij

(
εxi Jij(x̂i · x̂j)εxj + εyi Jij(ŷi · ŷj)ε

y
j −

1

2

(
(εxi )2 + (εxj )2 + (εyi )2 + (εyj )2

)
Jij(ẑi · ẑj)

)
(4.7)

Defining

γi ≡
1

2

∑
j

Jij(ẑi · ẑj) (4.8)

and using Jij = Jji, the final term of H2 becomes

−1

2

∑
i

(
(εxi )2 + (εyi )2

)∑
j

Jij(ẑi · ẑj) = −1

2

∑
i

(
(εxi )2 + (εyi )2

)
2γi

= −1

2

∑
ij

[
δij
(
εxi 2γiε

x
j + εyi 2γiε

y
j

)]
. (4.9)

Plugging this back in, we see that the quadratic part of the Hamiltonian is equal to

H2 =
1

2

∑
ij

(
εxi Jij(x̂i · x̂j)εxj + εyi Jij(ŷi · ŷj)ε

y
j − δij

(
εxi 2γiε

x
j + εyi 2γiε

y
j

))
=

1

2

∑
ij

(
εxiM

x
ijε

x
j + εyiM

y
ijε

y
j

)
, (4.10)

where we defined

Mx
ij ≡ Jij(x̂i · x̂j)− 2γiδij , (4.11)

My
ij ≡ Jij(ŷi · ŷj)− 2γiδij . (4.12)
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Chapter 4. Spin waves of the Swedenborgite antiferromagnet

We can also rewrite the quartic part of the Hamiltonian in a similar fashion. Referring back to Eqs.
(4.3) and (4.6) and using again that Jij is symmetric, we find

H4 = − 1

16

∑
ij

(
(εxi )2 − (εxj )2 + (εyi )2 − (εyj )2

)2
Jij(ẑi · ẑj)

= −1

8

∑
ij

[
(εxi )4 + (εyi )4 + 2(εxi )2(εyi )2 − (εxi )2(εxj )2 − (εyi )2(εyj )2 − 2(εxi )2(εyj )2

]
Jij(ẑi · ẑj)

=
1

8

∑
ij

[
(εxi )2(εxj )2 + (εyi )2(εyj )2 + 2(εxi )2(εyj )2

]
(Jij(ẑi · ẑj)− 2γiδij)

=
1

8

∑
ij

[
(εxi )2Mz

ij(ε
x
j )2 + (εyi )2Mz

ij(ε
y
j )2 + (εxi )2Mz

ij(ε
y
j )2 + (εyi )2Mz

ij(ε
x
j )2
]
, (4.13)

where
Mz
ij ≡ Jij(ẑi · ẑj)− 2γiδij . (4.14)

Before we continue our analysis, a few remarks are in order. First, it will be necessary to know
what the dot products (x̂i · x̂j), (ŷi · ŷj) and (ẑi · ẑj) are. Referring back to the unique ground state
configuration as seen in Sec. 1.3 (i.e. the 120◦ configuration of columns) and noting that ẑi = SGS,i, we
immediately find

(ẑi · ẑj) =


1 i and j ∈ same Kagomé layer, same bipyramid

−1/2 i and j ∈ same Kagomé layer, different bipyramids

−1 i or j ∈ triangular layer, other in adjacent Kagomé layer

(4.15)

for i, j nearest neighbours. In addition, (x̂i · x̂j) = (ẑi · ẑj) and (ŷi · ŷj) = 1 for all i, j. Hence, we see
that Mz

ij = Mx
ij , such that we only have to consider Mx

ij and My
ij . Additionally, with these dot products

γi becomes

γi =

{
J1/2− J2 i ∈ Kagomé layer

−3J2 i ∈ triangular layer.
(4.16)

Second, it is more convenient to work on the level of unit cells rather than individual lattice sites, similar
to what we have done in Sec. 3.2. Letting i, j refer to the unit cells while a, b refer to the different sites
within the unit cells (i.e. the sublattices), we find

H2 =
1

2

∑
ab

∑
ij

(
εxai M

xab
ij εxbj + εyai M

yab
ij εybj

)
, (4.17)

H4 =
1

8

∑
ab

∑
ij

[
(εxai )2Mxab

ij (εxbj )2 + (εyai )2Mxab
ij (εybj )2 + (εxai )2Mxab

ij (εybj )2 + (εyai )2Mxab
ij (εxbj )2

]
. (4.18)

Here, a, b go from 1 to 8 (as there are 8 lattice sites per unit cell), while i, j go from 1 to Nc, where Nc
is defined as the total number of unit cells.

4.1.2 Momentum space Hamiltonian

Due to the complicated form of the interaction matrices Mxab
ij and Myab

ij , it is necessary to exploit the
symmetry of the ground state by Fourier transforming the Hamiltonian on the level of unit cells. Noting

that ε
x/ya
i = ε

x/ya
ri (where ri is the position of unit cell i), Mxab

ij = Mxab
rij (with rij ≡ ri − rj) and

Myab
ij = Myab

rij , the Fourier transform is given by

εx/yari =
∑
q

εx/yaq eiq·ri , (4.19)

Mxab
rij =

1

Nc

∑
q

Mxab
q eiq·rij , (4.20)

Myab
rij =

1

Nc

∑
q

Myab
q eiq·rij . (4.21)
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4.1. Spin wave Hamiltonian

Here, the lattice spacing a has once again been absorbed by the wave vector q. In terms of these variables,
the quadratic and quartic parts of the Hamiltonian become

H2 =
1

2Nc

∑
ab

∑
ij

∑
q1,q2,q3

(
εxaq1

Mxab
q2

εxbq3
+ εyaq1

Myab
q2

εybq3

)
eiri·(q1+q2)eirj ·(q3−q2)

=
Nc
2

∑
q

∑
ab

(
εxa−qM

xab
q εxbq + εya−qM

yab
q εybq

)
=
Nc
2

∑
q

∑
ab

(
(εxaq )∗Mxab

q εxbq + (εyaq )∗Myab
q εybq

)
, (4.22)

H4 =
Nc
8

∑
q1,q2,q3

∑
ab

(
(εxaq1+q3

)∗εxaq1
Mxab

q3
(εxbq2−q3

)∗εxbq2
+ (εyaq1+q3

)∗εyaq1
Mxab

q3
(εybq2−q3

)∗εybq2

+(εxaq1+q3
)∗εxaq1

Mxab
q3

(εybq2−q3
)∗εybq2

+ (εyaq1+q3
)∗εyaq1

Mxab
q3

(εxbq2−q3
)∗εxbq2

)
, (4.23)

where we used the reality condition (ε
x/ya
q )∗ = ε

x/ya
−q , and the calculation of H4 was done in exactly the

same was as shown for H2.
In the above expressions, the ε’s are the variables (now describing collective excitations called spin

waves), while the 8× 8 interaction matrices Mxab
q and Myab

q are determined by the ground state. They
can be calculated using the inverse Fourier transforms:

Mx/yab
q =

∑
r

Mx/yab
r e−iq·r. (4.24)

In terms of the basis vectors

â1 =

1
0
0

 , â2 =
1

2

 1√
3

0

 , â3 =

0
0
1

 (4.25)

and using the information from Sec. 4.1.1, the interaction matrices become

Mx
q/J1 =

2J2J1 − 1 1− 1
2e
iq2 1− 1

2e
−i(q1−q2) −J2J1 0 0 0 −J2J1 e

iq3

1− 1
2e
−iq2 2J2J1 − 1 1− 1

2e
−iq1 −J2J1 0 0 0 −J2J1 e

iq3

1− 1
2e
i(q1−q2) 1− 1

2e
iq1 2J2J1 − 1 −J2J1 0 0 0 −J2J1 e

iq3

−J2J1 −J2J1 −J2J1 6J2J1 −J2J1 −J2J1 −J2J1 0

0 0 0 −J2J1 2J2J1 − 1 1− 1
2e
iq1 1− 1

2e
iq2 −J2J1

0 0 0 −J2J1 1− 1
2e
−iq1 2J2J1 − 1 1− 1

2e
−i(q1−q2) −J2J1

0 0 0 −J2J1 1− 1
2e
−iq2 1− 1

2e
i(q1−q2) 2J2J1 − 1 −J2J1

−J2J1 e
−iq3 −J2J1 e

−iq3 −J2J1 e
−iq3 0 −J2J1 −J2J1 −J2J1 6J2J1


,

(4.26)

My
q/J1 =

2J2J1 − 1 1 + eiq2 1 + e−i(q1−q2) J2
J1

0 0 0 J2
J1
eiq3

1 + e−iq2 2J2J1 − 1 1 + e−iq1 J2
J1

0 0 0 J2
J1
eiq3

1 + ei(q1−q2) 1 + eiq1 2J2J1 − 1 J2
J1

0 0 0 J2
J1
eiq3

J2
J1

J2
J1

J2
J1

6J2J1
J2
J1

J2
J1

J2
J1

0

0 0 0 J2
J1

2J2J1 − 1 1 + eiq1 1 + eiq2 J2
J1

0 0 0 J2
J1

1 + e−iq1 2J2J1 − 1 1 + e−i(q1−q2) J2
J1

0 0 0 J2
J1

1 + e−iq2 1 + ei(q1−q2) 2J2J1 − 1 J2
J1

J2
J1
e−iq3 J2

J1
e−iq3 J2

J1
e−iq3 0 J2

J1
J2
J1

J2
J1

6J2J1


.

(4.27)

With Eqs. (4.22) and (4.23) and the above interaction matrices, our momentum space expansion of the
Hamiltonian is complete.
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Chapter 4. Spin waves of the Swedenborgite antiferromagnet

4.1.3 On the relevance of odd order terms

So far, we have ignored the odd order terms of the expansion of the Hamiltonian. In general, the odd
order terms cannot be ignored, and in this section we will discuss the relevance of these terms. The part
of the Hamiltonian generating these terms is given by

Hodd =
1

2

∑
ij

(
εxi Jij(x̂i · ẑj)

√
1− (εxj )2 − (εyj )2 +

√
1− (εxi )2 − (εyi )2Jij(ẑi · x̂j)εxj

)
=
∑
ij

εxi Jij(x̂i · ẑj)
√

1− (εxj )2 − (εyj )2, (4.28)

where we used the fact that Jij is symmetric for the last step. Before considering the odd order terms
in general, let us first look at the linear term,

H1 =
∑
ij

εxi Jij(x̂i · ẑj). (4.29)

Since we are considering an expansion about the ground state (i.e. about the minimum of H), we know
that this linear term must vanish. This can also be shown explicitly. For nearest neighbours, the dot
product (x̂i · ẑj) is only non-zero if i, j belong to different bipyramids, and consequently they must both
be part of the same Kagomé layer if the dot product is to be non-zero. Using that each Kagomé lattice
site i has two nearest neighbours that are part of different bipyramids (call them i1 and i2), we can write

H1 = J1

∑
i∈Kagomé

εxi ((x̂i · ẑi1) + (x̂i · ẑi2)) . (4.30)

Making use of our knowledge of the ground state configuration, we know that ẑi1 and ẑi2 are at angles
2π/3 and 4π/3 with respect to ẑi, respectively (or the other way around). Noting that x̂i is at an angle
of −π/2 with respect to ẑi, in the same plane as the other angles, we conclude that the angle between
x̂i and ẑi1 is π/6, while the angle between x̂i and ẑi2 is 5π/6 (or the other way around). Therefore:

H1 = J1

∑
i∈Kagomé

εxi (cos(π/6) + cos(5π/6)) = J1

∑
i∈Kagomé

εxi

(√
3/2−

√
3/2
)

= 0, (4.31)

so the linear term indeed vanishes, as was required.
For general odd order terms, the same argument can be used to write

(x̂i · ẑi1) = ±
√

3/2, (x̂i · ẑi2) = ∓
√

3/2, (4.32)

which leads to

Hodd = ±
√

3

2
J1

∑
i∈Kagomé

εxi

(√
1− (εxi1)2 − (εyi1)2 −

√
1− (εxi2)2 − (εyi2)2

)
. (4.33)

Contrary to the linear term, this expression does not vanish in general, however the odd order terms will
still not play a role in the approximations we will consider. As we will see in the next sections, we will
only be concerned with two-point functions, i.e. expectation values of the form〈

εx/yaq (εx/ybq )∗
〉
. (4.34)

In accordance with the usual Feynman rules (see also appendices A.4 and A.5), two-point functions can
be calculated by constructing Feynman diagrams with two external legs; terms of order n in perturbation
theory contain n vertices. Now odd order terms of the Hamiltonian are responsible for the appearance of
vertices with an odd number of legs. In order to construct a Feynman diagram for two-point functions
using vertices with an odd number of legs, we need an even number of such vertices, hence these vertices
do not appear in first order perturbation theory. Since we will not go to higher order than the first in our
calculations of the two-point functions, it will indeed not be necessary to consider the odd order terms
that appear in the Hamiltonian.

46



4.2. Lowest order approximation of Tc

4.2 Lowest order approximation of Tc

Now that the Hamiltonian corresponding to spin fluctuations about the ground state is known, we will
see how this result can be used to find the qualitative behaviour and the order of magnitude of the
critical temperature Tc in the region J2/J1 ≥ 3/2. To estimate this temperature, we will look for the
temperature for which the size of the excitations per lattice site |δSi| becomes of the order of the size of
the spins themselves, |Si| = 1. The idea is that if the excitations are larger than that, then this approach
no longer makes sense, as the spins themselves are supposed to be unit vectors. Hence, if the expectation
value of the excitations per lattice site becomes larger than 1 according to this description, then we can
no longer describe the system as excitations about the ground state, such that we are then looking at
the disordered phase. Explicitly, this criterion for the critical temperature can be written as∑

i,a

(〈
(εxai )2

〉
+
〈
(εyai )2

〉)
∼ 8Nc, (4.35)

where Nc is again the total number of unit cells, while 8 is the number of lattice sites per unit cell. Using
Eq. (4.19), this can also be written as

1

8

∑
a

∑
q

(〈
|εxaq |2

〉
+
〈
|εyaq |2

〉)
∼ 1. (4.36)

To obtain approximations for the expectation values that appear in the above criterion, we use that
the excitations ε are “small” (i.e. smaller than 1) in the region where the system can still be described by
excitations about the ground state. Therefore, we use the expansion of the Hamiltonian that was obtained
in the previous section. We will now interpret the quadratic part of the Hamiltonian as the “kinetic”
terms, while the higher order terms are interpreted as “interaction” terms. At the temperatures for which
ε is small, the interaction terms will be much smaller than the kinetic terms, and for our lowest order
approximation we will therefore restrict ourselves to the kinetic terms only. Note that the approximation
that the interaction terms are small is only valid at low temperatures, because otherwise the excitations
themselves become large and the higher order terms will dominate. However, the approximation suffices
for the region that we are interested in, as it only breaks down at the temperature scale at which the
entire description starts to fail, which is exactly the temperature scale we are looking for.

Let us now approximate the Hamiltonian by its lowest order non-trivial terms, i.e. the kinetic terms.
Referring back to the previous section, the Hamiltonian is now given by

H = EGS +H2 = EGS +
Nc
2

∑
q

∑
ab

(
(εxaq )∗Mxab

q εxbq + (εyaq )∗Myab
q εybq

)
. (4.37)

Before we move on to finding the critical temperature, we take a moment to discuss the implications of
this Hamiltonian. In order to find the energy spectrum of small spin excitations, we can calculate the
eigenvalues of the matrices Mx

q and My
q; the energy per unit cell of the corresponding mode is then given

by half the eigenvalue of the matrix. This has been done using Mathematica, and the results are shown
in Fig. 4.1. We find that there is a doubly degenerate flat band with energy per unit cell

Eiq/J1Nc = J2/J1 − 3/2 (4.38)

corresponding to two out-of-plane modes. From this, we immediately see that our approach does not
work for J2/J1 < 3/2: in that region, there are modes with negative energy, so the configuration to
which we are adding the excitations no longer minimizes the Hamiltonian, and therefore it is no longer
the ground state. Moreover, the flat band has zero energy when J2/J1 = 3/2, leading to the conclusion
that zero energy has a very large density of states when J2/J1 = 3/2. As we will see below, this leads to
a zero critical temperature for this value of J2/J1.

Returning to the matter of the critical temperature, let us now calculate the expectation values that

appear in Eq. (4.36). Introducing the Green’s function G
x/y
q according to (G

x/y
q )−1 ≡ −βNc2 M

x/y
q and

introducing external fields h
x/ya
q (which we will set to zero later on), the Hamiltonian can be written as

−βH = −βEGS +
∑
q

[
(εεεxq)∗ · (Gx

q)−1 · εεεxq + (εεεyq)∗ · (Gy
q)−1 · εεεyq + (εεεxq)∗ · hxq + (hxq)∗ · εεεxq

+(εεεyq)∗ · hyq + (hyq)∗ · εεεyq
]
, (4.39)
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Figure 4.1: Eigenvalues of the matrices Mx
q/J1 (in red, corresponding to in-plane excitations) and My

q/J1 (in
blue, corresponding to out-of-plane excitations) for different values of J2/J1, along a path through symmetry
points of the first Brillouin zone. Notice how there are excitations with negative energy if J2/J1 < 3/2, and that
there is a doubly degenerate flat band that scales linearly with J2/J1 that becomes zero at J2/J1 = 3/2. See also
Ref. [4].

where εεε
x/y
q and h

x/y
q are 8-component vectors, while (G

x/y
q )−1 are 8×8 matrices. The partition function

can now be obtained from

Z =

∫ (∏
a,q

d(εxaq )∗dεxaq
2πi

d(εyaq )∗dεyaq
2πi

)
e−βH ≡

∫
Dε e−βH . (4.40)

Using standard Gaussian integrals (see appendix A.3) and ignoring the constant term −βEGS (which
will not play a role for any of the expectation values), this becomes

Z =
∏
q

[
1

Det
[
−(Gx

q)−1
] 1

Det [−(Gy
q)−1]

exp
[
−(hxq)∗ ·Gx

q · hxq − (hyq)∗ ·Gy
q · hyq

]]
, (4.41)

or

Z[h, h∗] = N exp

[
−
∑
q

(
(hxq)∗ ·Gx

q · hxq + (hyq)∗ ·Gy
q · hyq

)]
. (4.42)

From Eqs. (4.39) and (4.40), we also see that

∂2 lnZ

∂h
x/ya
q ∂(h

x/ya
q )∗

∣∣∣∣∣
h=0

=
1

Z

∂2Z

∂h
x/ya
q ∂(h

x/ya
q )∗

∣∣∣∣∣
h=0

− 1

Z

∂Z

∂h
x/ya
q

1

Z

∂Z

∂(h
x/ya
q )∗

∣∣∣∣∣
h=0

=
〈
|εx/yaq |2

〉
−
∣∣〈εx/yaq 〉

∣∣2, (4.43)
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Figure 4.2: Lowest order estimate of the critical temperature kBTc/J1 as a function of the ratio of interaction
strengths J2/J1. The inset zooms in on the region very close to the boundary value J2/J1 = 3/2, while the right
panel contains a logarithmic plot with the same range as Fig. 1.10. A quadratic curve similar to that of Fig.
1.10 was drawn through it. Note that the numbers on the y-axis are not necessarily correct and that there should
likely be a scaling factor of the order 1, since the derivation only gives the qualitative behaviour and the order of
magnitude of Tc.

which, using 〈εx/yaq 〉 = 0 and Eq. (4.42), leads to〈
|εx/yaq |2

〉
= −

(
Gx/y

q

)aa
=

2kBT

Nc

(
(Mx/y

q )−1
)aa

, (4.44)

Referring back to the criterion, Eq. (4.36), we finally obtain

kBTc
4Nc

∑
q

Tr
[
(Mx

q)−1 + (My
q)−1

]
∼ 1. (4.45)

Considering the continuum limit (i.e. looking at an infinite lattice), the sum over q can be written as
Nc

(2π)3

∫
dq, such that

kBTc
J1
∼ 4(2π)3∫

dq Tr
[
(Mx

q/J1)−1 + (My
q/J1)−1

] (4.46)

Finally, we can use the fact that the trace is just the sum of the eigenvalues to find that

kBTc
J1
∼ 4(2π)3∑

i

∫
dq
(

1
λxiq

+ 1

λyiq

) , (4.47)

where λ
x/yi
q are the eigenvalues of the interaction matrices M

x/y
q /J1 that were given in the previous

section.
Now that we have expressions to estimate the critical temperature, we can investigate its behaviour

in this lowest order approximation. As we have seen before, there is a doubly degenerate flat band corre-
sponding to out-of-plane fluctuations (i.e. the excitations εyai ) that goes to zero when J2/J1 approaches
3/2; explicitly, it is given by the eigenvalue λyiq = 2(J2/J1 − 3/2). In the limit that J2/J1 goes to 3/2
from above, these two flat bands dominate the denominator, and a simple calculation shows that

kBTc
J1

∣∣∣∣
(J2/J1−3/2)�1

∼ 4(J2/J1 − 3/2) (4.48)

For the behaviour further away from the point J2/J1 = 3/2, Mathematica has been used to numerically
evaluate the denominator of Eq. (4.47) by adaptive Monte Carlo integration. The results are shown in
Fig. 4.2. Fitting these data to a power law, one finds that

kBTc
J1
∝ (J2/J1 − 3/2)α, (4.49)
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Figure 4.3: Lowest order estimate of the critical temperature kBTc/J1 as a function of the ratio of δJ . The red
line is a fit through the blue data points, as further explained in the text.

where α ≈ 0.58. As it seems quite unusual for the large J2/J1 behaviour to have a lower leading power
than the low J2/J1 region (where it is linear), we will end this section by investigating these powers in
more detail.

In order to find the leading power, we will look at a double logarithmic plot of the data: rewriting
an equation y = axb to the variables Y = ln y and X = lnx, it becomes eY = aebX , or Y = ln a + bX,
so the leading power can be found by measuring the slope of the corresponding log-log plot. Introducing
the variable

δJ ≡ J2/J1 − 3/2, (4.50)

the double logarithmic plot of the lowest order estimate of the critical temperature is shown in Fig. 4.3.
The results from this figure suggest that there are two regions, each with a different leading power. We
fit the data to a very simple function that would support such behaviour:

kBTc
J1

=
c1δJ

(δJ + c2)c3
, (4.51)

where c1, c2 and c3 are fit parameters. In the limit δJ → 0, this expression becomes linear, while in the
limit δJ →∞, the leading power becomes 1− c3. Note that this very simple model only serves to show
that it is possible to make such behaviour explicit; in reality, this model is far too simple to properly
describe the phase transition.

It turns out that the leading power indeed goes to 1 as δJ → 0, while for δJ →∞ it becomes close to
a square root. The linear part was already derived above, but this square root remains to be explained.
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Figure 4.4: Density of states estimates of the matrices Mx
q/J1 (left) and My

q/J1 (right) for J2/J1 = 20. The
horizontal axis gives the eigenvalues (or the energies); the y-axis gives the number of times that energy appears.
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Figure 4.5: Density of states estimate of the matrix Mx
q/J1 for J2/J1 = 20 (left) and J2/J1 = 40 (right),

zoomed in on the low energies.

To see where it comes from, we consider the density of states, i.e. the number of states corresponding to
a given energy. To find a crude estimate of the density of states, histograms have been made of all the
eigenvalues of the matrices Mx

q/J1 and My
q/J1 for a large number of random values for q. An example

is shown in Fig. 4.4. The large peaks that appear originate from the flat bands that we discussed before.
At large values of δJ , these peaks are located well away from the low energies, such that they are no
longer important, and we should instead be looking at the behaviour of the density of states of low
energies. Looking at the density of states for several large values of J2/J1, it has been found that the
low energy density of states scales with approximately 1/

√
δJ , see for example Fig. 4.5. More explicitly,

we have

ρ(E, δJ)

∣∣∣∣
δJ�1

≈ ρ0(E)√
δJ

, (4.52)

for small energies, where ρ(E, δJ) is the density of states and ρ0(E) is an unknown function of the energy.
Using this result, we can go back to Eq. (4.47). Seeing how the small eigenvalues dominate the integral
that appears in this expression, the integral has same the δJ dependence as the low energy density of
states. This leads to the conclusion that the right-hand side of the expression scales with approximately√
δJ for large values of δJ , successfully explaining the behaviour seen in Figs. 4.2 and 4.3.

4.3 Higher order contributions

In this section, we will investigate the effects from including the quartic terms of the Hamiltonian in
addition to the quadratic terms. Returning to the nomenclature from the previous section, the quartic
terms are interpreted as interaction terms. Usually, perturbation theory of such a theory is done in terms
of a coupling constant appearing in front of the interaction terms. For our problem, such a coupling
constant is absent, but we restrict ourselves to the region where the partition function is almost entirely
determined by small ε, such that we can still perform the usual perturbation theory. Before we even
begin performing such calculations, we can already say something about the effects that the quartic
terms will have: looking at Eq. (4.23) and using the fact that Mx

q only has non-negative eigenvalues,
we see that all quartic terms are strictly positive. As a result, the expectation values of the excitations
are smaller than they were without the quartic terms for a given temperature, leading to the conclusion
that the inclusion of quartic terms will lead to a larger critical temperature. We will now calculate
the effects from (quartic) interaction terms in two different ways: first, we include the interactions by
approximating them as quadratic corrections, such that the Hamiltonian can once again be treated as
non-interacting; second, we will perform perturbation theory directly, using methods from field theory.
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4.3.1 Quadratic corrections to the Hamiltonian

We will now estimate the effects of interaction terms by approximating them as corrections to the non-
interacting quadratic Hamiltonian. To do so, we will distinguish between the expectation values 〈. . .〉0
according to the non-interacting Hamiltonian H = EGS +H2, and the expectation values 〈. . .〉 according
to the interacting Hamiltonian H = EGS + H2 + H4. The idea is to interpret H4 as a shift in H2 by
finding appropriate approximations of the different parts of H4 in terms of expectation values. As the
non-interacting Hamiltonian is Gaussian, we can use Wick’s theorem (see appendix A.4) to find that the
non-interacting expectation values of the combinations that appear in Eq. (4.23) can be written as〈

(εxaq1+q3
)∗εxaq1

(εxbq2−q3
)∗εxbq2

〉
0

=
〈
(εxaq1+q3

)∗εxaq1

〉
0

〈
(εxbq2−q3

)∗εxbq2

〉
0

+
〈
(εxaq1+q3

)∗εxbq2

〉
0

〈
(εxbq2−q3

)∗εxaq1

〉
0
,

(4.53)
and similarly for the other combinations. We will now consider the first term of Eq. (4.23) as an example.
This term can be approximated using

(εxaq1+q3
)∗εxaq1

(εxbq2−q3
)∗εxbq2

≈ 1

2

[〈
(εxaq1+q3

)∗εxaq1

〉
0

(εxbq2−q3
)∗εxbq2

+
〈
(εxbq2−q3

)∗εxaq1

〉
0

(εxaq1+q3
)∗εxbq2

+
〈
(εxaq1+q3

)∗εxbq2

〉
0

(εxbq2−q3
)∗εxaq1

+
〈
(εxbq2−q3

)∗εxbq2

〉
0

(εxaq1+q3
)∗εxaq1

]
= −1

2

[
Gxaaq1

δq3,0(εxbq2
)∗εxbq2

+Gxabq1
δq3,q2−q1

(εxaq2
)∗εxbq2

+Gxbaq2
δq3,q2−q1

(εxbq1
)∗εxaq1

+Gxbbq2
δq3,0(εxaq1

)∗εxaq1

]
. (4.54)

This is just a more general version of the approximation a2 ≈ 〈a〉0a, and the prefactor is there such that
Eq. (4.53) still holds. A better approximation can be obtained by using the expectation values 〈. . .〉
rather than 〈. . .〉0, which would lead to self-consistency equations, but the above will suffice for a first
approximation. With this approximation, the first term of H4 (call it H4,1) can be written as

H4,1 ≈ −
Nc
16

∑
q1,q2

∑
ab

[
Mxab

0

(
Gxaaq1

(εxbq2
)∗εxbq2

+Gxbbq2
(εxaq1

)∗εxaq1

)
+Mxab

q2−q1

(
Gxabq1

(εxaq2
)∗εxbq2

+Gxbaq2
(εxbq1

)∗εxaq1

)]
= −Nc

8

∑
q1,q2

∑
ab

[
Mxab

0 Gxaaq1
(εxbq2

)∗εxbq2
+Mxab

q2−q1
Gxabq1

(εxaq2
)∗εxbq2

]
, (4.55)

where we used the fact that Mx
q is Hermitian. Similarly,

(εxaq1+q3
)∗εxaq1

(εybq2−q3
)∗εybq2

≈ −1

2

[
Gxaaq1

δq3,0(εybq2
)∗εybq2

+Gybbq2
δq3,0(εxaq1

)∗εxaq1

]
(4.56)

can be used to write the third term of H4 as

H4,3 ≈ −
Nc
16

∑
q1,q2

∑
ab

[
Mxab

0

(
Gxaaq1

(εybq2
)∗εybq2

+Gybbq2
(εxaq1

)∗εxaq1

)]
(4.57)

Using similar approximations for the remainder of H4 and putting all results together, we find

H4 ≈ −
Nc
8

∑
q1,q2

∑
ab

[
Mxab

0

(
Gxaaq1

(εxbq2
)∗εxbq2

+Gyaaq1
(εybq2

)∗εybq2
+Gxaaq1

(εybq2
)∗εybq2

+Gyaaq1
(εxbq2

)∗εxbq2

)
+Mxab

q2−q1

(
Gxabq1

(εxaq2
)∗εxbq2

+Gyabq1
(εyaq2

)∗εybq2

)]
=
Nc
2

∑
q

∑
ab

[
(εxaq )∗V xabq εxbq + (εyaq )∗V yabq εybq

]
, (4.58)

where

V xabq ≡ −1

4

∑
q′

[
Mxab

q−q′G
xab
q′ + δab

∑
c

Mxac
0

(
Gxccq′ +Gyccq′

)]
, (4.59)

V yabq ≡ −1

4

∑
q′

[
Mxab

q−q′G
yab
q′ + δab

∑
c

Mxac
0

(
Gxccq′ +Gyccq′

)]
. (4.60)
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Figure 4.6: Eigenvalues of the matrices
(
Mx

q/J1 + kBTc
J1

vx
q

)
(red) and

(
My

q/J1 + kBTc
J1

vy
q

)
(blue) for J2/J1 =

2.0 and different temperatures, along a path through symmetry points of the first Brillouin zone. Note that the
top-left panel is the same as the bottom-right panel of Fig. 4.1.

Note that G
x/y
q = − 2kBT

Nc
(M

x/y
q )−1 still holds. Finally, we see that in our approximation the Hamiltonian

becomes

H = EGS+H2 +H4 ≈ EGS+
Nc
2

∑
q

∑
ab

[
(εxaq )∗

(
Mxab

q + V xabq

)
εxbq + (εyaq )∗

(
Myab

q + V yabq

)
εybq
]
. (4.61)

The Hamiltonian now has the same form as it had for the lowest order approximation, but the interaction

matrices M
x/y
q have been replaced with M

x/y
q + V

x/y
q . Therefore, the same methods can be used to

approximate the critical temperature. It is important to note that the matrices V
x/y
q scale linearly

with the temperature, so it is convenient to introduce dimensionless matrices v
x/y
q and write them as

V
x/y
q = kBTv

x/y
q . Repeating the calculations from the previous section, the criterion for the critical

temperature becomes

kBTc
4(2π)3J1

∫
dq Tr

[(
Mx

q/J1 +
kBTc
J1

vxq

)−1

+

(
My

q/J1 +
kBTc
J1

vyq

)−1
]
∼ 1. (4.62)

Contrary to what we have done in the previous section, it is not straightforward to solve Tc from
this expression. This is due to the fact that the inverse matrices that appear in the integrals depend on
the temperature as well, in addition to the temperature dependence that appears outside the integral.
One way to solve this equation is to calculate the left-hand side of the equation for many different
temperatures and see when it becomes of the order 1. However, this proves to be very difficult due to
the fact that we are working with six-dimensional integrals and inverse matrices. To do this numerically,
one would have to calculate a three-dimensional integral of an 8× 8 matrix and take its inverse for each
value of q that is part of the overall three-dimensional integral. This would then have to be repeated for
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Figure 4.7: Density of states estimates at J2/J1 = 4.0 for the matrices
(
Mx

q/J1 + kBT
J1

vx
q

)
(left column) and(

My
q/J1 + kBT

J1
vy
q

)
(right column), with kBT/J1 = 0 (top row) and kBT/J1 = 1 (bottom row).

many temperatures and then again for many values of J2/J1 in order to find Tc as a function of J2/J1.
Rather than going through this trouble, we will now investigate the implications of Eq. (4.62) without
explicitly solving it.

Let us first look at low temperatures. In this case, the prefactors that appear in front of the v
x/y
q

matrices are small, so their influence on the integral becomes small as well. This leads to the conclusion
that for very small temperatures the left-hand side becomes the same as it was in the previous section.
Now since the critical temperature goes to zero in the limit J2/J1 → 3/2, this means that the interaction
terms do not influence the critical temperature in this limit, and we find that it is still given by Eq.
(4.48) despite the inclusion of interaction terms.

To see what the influence of interactions is at higher temperatures, we look at the eigenvalues of the

matrices
(
M

x/y
q /J1 + kBT

J1
v
x/y
q

)
for different temperatures at a fixed value of J2/J1. The eigenvalues for

J2/J1 = 2.0 are shown in Fig. 4.6. As can be seen from the figure, most eigenvalues move further away
from zero for increasing temperature. While the lowest order results say that the critical temperature is
of the order kBT/J1 ∼ 0.4 (see the plots from the previous section), we see that the eigenvalues changed
significantly for this temperature. Since the eigenvalues are now further away from zero, the integral
from Eq. (4.62) is smaller, and it requires a larger temperature for the left-hand side to become of the
order 1. This confirms the early observations from the beginning of this section.

Finally, let us take a look at the influence of the quartic terms on the density of states. Fig. 4.7

shows the density of states of the matrices
(
M

x/y
q /J1 + kBT

J1
v
x/y
q

)
for zero temperature (top row) and for

kBT/J1 = 1 (bottom row) at the fixed value J2/J1 = 4.0. It is again immediately clear that the density
of states is generally shifted to the right for increasing temperature, i.e. the most abundant energies
are higher than before. This leads again to the conclusion that the expectation values of the squared
excitations are smaller than in the lowest order approximation, leading to a larger critical temperature.
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4.3.2 Direct perturbation theory of the correlation functions

It is also possible to apply perturbation theory directly to the expectation values that are required for
approximating the critical temperature. Starting with the Hamiltonian H = EGS +H2 + gH4, where g
is a dimensionless coupling constant, it is shown in appendix A.5 that the relevant expectation values
can be calculated by using Feynman diagrams:

〈
εxaq (εxbq )∗

〉
=�

qa b
−�

q q

0

q′

a c b

d

−�
q q

0

q′

a c b

d

−�
q q′

q− q′

qa c d b
+O(g2)

= −Gxabq +
gNc

4kBT

∑
q′

∑
cd

[
Mxcd

0

(
Gxacq Gxcbq Gxddq′ +Gxacq Gxcbq Gyddq′

)
+Mxcd

q−q′G
xac
q Gxcdq′ G

xdb
q

]
+O(g2) (4.63)

and

〈
εyaq (εybq )∗

〉
=�

qa b
−	

q q

0

q′

a c b

d

−

q q

0

q′

a c b

d

−�
q q′

q− q′

qa c d b
+O(g2)

= −Gyabq +
gNc

4kBT

∑
q′

∑
cd

[
Mxcd

0

(
Gyacq Gycbq Gyddq′ +Gyacq Gycbq Gxddq′

)
+Mxcd

q−q′G
yac
q Gycdq′ G

ydb
q

]
+O(g2), (4.64)

where

−Gx/yabq =
〈
εx/yaq (εx/ybq )∗

〉
0

=
2kBT

Nc

(
(Mx/y

q )−1
)ab

(4.65)

is the non-interacting Green’s function. The diagrams should be interpreted according to Table 4.1, and
we sum over all internal indices and momenta. For our problem, we have g = 1, so the above expansions
cannot be used in general. However, restricting ourselves to the temperatures corresponding to small
excitations ε (i.e. low temperatures), we can rewrite it as a temperature expansion:

〈
εxaq (εxbq )∗

〉
=

2kBT

Nc

(
(Mx

q)−1
)ab − 2k2

BT
2

N2
c

∑
q′

∑
cd

[
Mxcd

0

((
(Mx

q)−1
)ac (

(Mx
q)−1

)cb (
(Mx

q′)
−1
)dd

+
(
(Mx

q)−1
)ac (

(Mx
q)−1

)cb (
(My

q′)
−1
)dd)

+Mxcd
q−q′

(
(Mx

q)−1
)ac (

(Mx
q′)
−1
)cd (

(Mx
q)−1

)db ]
+O

(
(kBT )3

)
, (4.66)

Expression Diagram

−Gxabq �qa b

−Gyabq �qa b

Mxab
q �qa b

Table 4.1: Definitions of the different components of the Feynman diagrams.
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and similarly for the out-of-plane excitations. Taking the continuum limit, the expectation value of the
squared excitations per lattice site (i.e. the left-hand side of Eq. (4.36)) can now be calculated:

1

8

∑
a

∑
q

(〈
|εxaq |2

〉
+
〈
|εyaq |2

〉)
=

kBT

4(2π)3J1

∫
dq Tr

[(
Mx

q/J1

)−1
+
(
My

q/J1

)−1
]
− k2

BT
2

4(2π)6J2
1

∫
dqdq′

∑
abc

[
Mxbc

0 /J1

((
(Mx

q/J1)−1
)ab (

(Mx
q/J1)−1

)ba (
(Mx

q′/J1)−1
)cc

+
(
(Mx

q/J1)−1
)ab (

(Mx
q/J1)−1

)ba (
(My

q′/J1)−1
)cc

+ (x↔ y)
)

+Mxbc
q−q′/J1

((
(Mx

q/J1)−1
)ab (

(Mx
q′/J1)−1

)bc (
(Mx

q/J1)−1
)ca

+ (x↔ y)
) ]

+O
(
(kBT/J1)3

)
≡ kBT

J1
I1 −

k2
BT

2

J2
1

I2 +O
(
(kBT/J1)3

)
, (4.67)

where I1 and I2 are positive dimensionless integrals that depend only on the fraction J2/J1. Note that I1
is the same integral as the one that we encountered for the lowest order calculations in Sec. 4.2. Without
explicitly evaluating the integral I2 (which again proves to be difficult), we can draw a conclusion: since
the quadratic term in this expansion is purely negative, we see that the fluctuations are suppressed by
the presence of interaction terms. This is the same conclusion as the one we encountered in the first part
of this section.

The temperature expansion Eq. (4.67) can be used to find the temperature scale at which the system
can no longer be described as spin fluctuations about the ground state, similar to what we have done
in the previous sections. This can again be done by investigating when this approximation for the
size of the excitations no longer makes sense, for example when they become of the order 1 or when
the quadratic term becomes dominant (in which case increasing temperature would lead to decreasing
excitations according to Eq. (4.67)). However, this temperature expansion can only be used to find the
critical temperature in the region in which the critical temperature is small, which is the region close to
the boundary value J2/J1 = 3/2. Further away from this point, the critical temperature becomes large,
and we can no longer expand the expectation values as functions of small temperature. We can therefore
only be certain of the results in the vicinity of J2/J1 = 3/2.

4.4 Conclusions and outlook

In this first part of the thesis, we have investigated the phase transitions that appear in the antiferromag-
netic Heisenberg model on the Swedenborgite lattice. In particular, we focused on the phase transition
separating the unique ground state from a disordered phase in the limit that the fraction of out-of-plane
and in-plane interaction strengths J2/J1 goes to 3/2 from above.

We have first seen how Landau theory can be used to understand the types of phase transitions
that appear in the system. It followed that the symmetries of the model allow for a first and a second
order phase transition, separating a disordered phase from a coplanar (nematic) phase and a unique
configuration, respectively. Which of the two happens can depend on the ratio J2/J1, although the way
in which it depends on this ratio does not follow from phenomenological Landau theory alone.

Next, we constructed a mean-field theory to describe the second order phase transition to the unique
ground state. Mean-field theory confirmed that the low-temperature phase is indeed the unique ground
state that was found in Sec. 1.3, and that the system can only be in this phase if J2/J1 is greater than
a specific boundary value. However, we found that mean-field theory returns a boundary value and a
critical temperature that do not agree with the exact analysis and the simulations that lead to the phase
diagram shown in Fig. 1.10. The reason of these deviations was explained by the observation that the
fluctuations of the order parameter are larger than the order parameter itself in the region close to the
phase transition, hence the assumption that these fluctuations could be ignored when describing the
phase transition was incorrect.
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Finally, we developed a method to find both the order of magnitude and the qualitative behaviour of
the critical temperature of the second order phase transition by looking at spin waves on the ground state
configuration. From this analysis, we concluded that the critical temperature is linearly proportional to
(J2/J1 − 3/2) in the limit that J2/J1 → 3/2 from above. The spin wave analysis also showed there are
modes with negative energy when J2/J1 is smaller than 3/2, confirming that the unique ground state
configuration is no longer the ground state in this region. For larger values of J2/J1, we found that the
critical temperature behaves approximately like a square root in the lowest order approximation, but also
that higher order corrections increase this critical temperature to larger values. How exactly the critical
temperature behaves in general could not be found, and therefore the only certain conclusion from the
spin wave analysis is that the critical temperature is linear in (J2/J1 − 3/2) when J2/J1 → 3/2 from
above. Referring to the goals formulated in Sec. 1.4, we see that this conclusion successfully answers the
questions of this part of the thesis. In particular, we found that the critical temperature is well defined
at the boundary J2/J1 = 3/2, namely that it goes to zero, due to the fact that spin excitations about
the ground state diverge for any non-zero temperature at this point. Combining this with the analysis
from Ch. 1, we conclude that the spin-liquid phase indeed extends to the region J2/J1 > 3/2, which is
what we expected for entropic reasons.

Even with the combined results from Buhrandt in Ref. [4] and this work, there is still a region
that has not yet been studied in detail: it remains unclear how the first order phase transition to the
nematic phase behaves in the limit J2/J1 → 0. Future work could therefore focus on finding the critical
temperature in this limit. This is however not straightforward, since mean-field theory cannot be used
in the forms presented here when concerned with nematic ordering, and one would have to develop a
more complicated theory. Additionally, the spin-wave analysis cannot simply be repeated in this limit,
as there is no unique ground state to add the spin fluctuations to. Moreover, order-by-disorder effects are
the reason for nematic ordering to appear, so it would be necessary to find a way to include these effects.
Overcoming these obstacles and successfully completing the phase diagram in the limit J2/J1 → 0 may
prove useful in understanding the relation between the two-dimensional Kagomé antiferromagnet and
the three-dimensional Swedenborgite antiferromagnet.
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Chapter 5

Introduction to Part II

The second part of this thesis deals with an entirely different subject than the first part, namely with
so-called quasiparticle interference in a topological insulator. In short, this means that we will look at
interference effects due to the scattering of electrons in a material that is an electrical insulator in its
bulk, but a conductor on its surface. We will focus our attention on scattering of electrons that is caused
by impurities on the surface of the material. Such a surface impurity can be many things: it can be a
defect or a vacancy of the underlying lattice (leading to a strong impurity), it can be a weak attractive
or repulsive potential due to doping, or it can even be a magnetic impurity that couples differently to
particles with a different spin. As was shown experimentally by Hoffman et al. [19], the presence of
impurities can lead to the emergence of patterns in the spatially resolved quasiparticle density of states
that are very similar to familiar optical interference patterns.

The main goal of the remainder of this thesis is to explain experimental results concerning quasi-
particle interference by using a theoretical model. With this purpose in mind, Part II consists of two
chapters: one introducing the physical concepts, models and techniques necessary to understand the gen-
eral problem, and one in which we apply these preliminaries to find a model description of quasiparticle
interference in the topological insulator CuxBi2Te3.

The first of the two chapters (i.e. this chapter) will first introduce tight-binding models and band
theory, both of which are very useful for explaining the electrical properties of a material. At the end of
the first section, we will discuss how more complicated models can be approximated by a simple square
lattice tight-binding model, while still retaining the same properties in the region of interest. Then,
the concepts of Green’s functions and the density of states will be introduced, providing very powerful
methods for calculating observable quantities corresponding to a given model. Finally, we will introduce
the concepts of impurity scattering and the T-matrix, which provide the techniques necessary to find the
quasiparticle interference patterns that the presence of impurities leads to.

In Ch. 6, we will first properly formulate the problem and our goals regarding experimental results
and the model description of the experimental circumstances. Afterwards, we will discuss a model
Hamiltonian, and then we use this Hamiltonian and the previously introduced techniques in order to
numerically calculate the quasiparticle interference patterns. Having calculated the consequences of
impurity scattering in the proposed model, we will discuss the meaning of these results and compare them
to the experimental results. In the final section, we review the conclusions drawn from the discussion.

5.1 Tight-binding models and electronic band structure

In solid-state physics, the electrical properties of a material (such as electrical resistivity and conductiv-
ity) are often successfully described by a tight-binding model. Such models assume that the electrons in
the system are all tightly bound to their corresponding atoms. As the materials of interest are crystalline
solids, this means that the electrons are confined to a well-defined lattice. In addition to these spatial
restrictions, tight-binding models assume that the interactions between electrons from different lattice
sites are “limited”. In particular, this refers to the interactions having a maximum range (i.e. being suf-
ficiently short-ranged), for example by only considering nearest and next-nearest neighbour interactions,
or even by restricting ourselves to just nearest neighbour interactions.
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In this section, we will first work out an example of a simple tight-binding model. The results from
this example will then be used to introduce the concepts of band theory, providing suitable models to
explain the properties of, among other things, semiconductors and topological insulators. Finally, we
will see how an approximate low-energy Hamiltonian can be mapped to a square lattice to capture its
relevant physics without knowledge of the full Hamiltonian, using graphene as an example.

5.1.1 The square lattice tight-binding model

The electrical properties of a material are a direct result of the quantum mechanical nature of electrons.
In particular, electrons are fermions, such that the Pauli exclusion principle prohibits more than two
electrons (one for each spin state) to occupy the same orbital. To illustrate how a tight-binding model can
incorporate quantum properties to capture electrical properties, we will first consider a simple second-
quantized tight-binding model on a square lattice with only nearest neighbour interactions. To do so,
we introduce the fermionic creation and annihilation operators c†σij and cσij , where σ ∈ {↑, ↓} indicates
the spin of the electron, and i, j denote the position on the lattice according to

rij = a (ix̂ + jŷ) , i, j ∈ Z, (5.1)

with rij being the position vector and a being the lattice constant. When acting on a many-body state,
the annihilation operator removes an electron from its corresponding orbital, spin state and lattice site,
while the creation operator adds one. These fermionic operators satisfy the anticommutation relations

{cσij , c†σij} = cσijc
†
σij + c†σijcσij = 1, {cσij , cσij} = 0, {c†σij , c

†
σij} = 0, (5.2)

while all anticommutation relations between different orbitals, spin states or lattice sites vanish. The
Pauli exclusion principle is immediately apparent from these relations: (cσij)

2 = (c†σij)
2 = 0, which

means that a particular state can only be occupied by one or zero electrons. For simplicity, we will now
first restrict ourselves to a single available orbital on each lattice site, the operators of which are c†σij
and cσij . Since we only allow electrons to be created and annihilated on the lattice sites (and nowhere
else), we are indeed considering electrons that are tightly bound to the atoms and their lattice.

Now that we have introduced the necessary fermionic operators, we can construct the second-
quantized Hamiltonian. The only term we should include is a “hopping” term, such that it is ener-
getically favourable for electrons to hop to a neighbouring lattice site. The Hamiltonian of this simple
example is thus given by

H =
∑
σ,ij

[
−tc†σijcσ i+1 j − tc†σijcσi j+1 + h.c.

]
, (5.3)

where t is the (real) hopping strength. The hopping in different directions and with different spin states
all have the same hopping strength, so this Hamiltonian describes an isotropic and non-magnetic model.

The electrical properties can be found in the dispersion relation. This dispersion relation is derived
by Fourier transforming the Hamiltonian. We define the Fourier transforms as follows:

cσij =
1√
Nx

∑
kx

cσkxje
ikxxi ⇐⇒ cσkxj =

1√
Nx

∑
i

cσije
−ikxxi , (5.4)

and similarly for the other direction. Here, Nx is the number of lattice sites in the x̂-direction, xi = ai
is the position in the x̂-direction, and akx = 2πn/Nx with n ∈ {0, 1, . . . , Nx − 1}. Making use of the
Kronecker delta

δij =
1

N

∑
k

eik(xi−xj), (5.5)

and the identity cosx = (eix + e−ix)/2, we immediately find

H =
∑
σ,kx,j

[
−2t cos(akx)c†σkxjcσkxj − tc

†
σkxj

cσkxj+1 − tc†σkxj+1cσkxj

]
=
∑
σ,k

c†σk [−2t cos(akx)− 2t cos(aky)] cσk

≡
∑
σ,k

c†σkHkcσk (5.6)
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Figure 5.1: Band structure of the square lattice tight-binding model as a function of momentum. Left: the
allowed energies in the continuum limit, together with those from a discretized model with Ny = 10 (blue lines).
Right: allowed energies from a model with free boundary conditions in the ŷ-direction and Ny = 500.

For future reference, we note that the first line of Eq. (5.6) can be written as

H =
∑
σ,kx

(
c†σkx1 c

†
σkx2 · · · c

†
σkxNy

)

−2t cos(akx) −t 0 · · ·

−t −2t cos(akx) −t · · ·

0 −t −2t cos(akx)
. . .

...
...

. . .
. . .



cσkx1

cσkx2

...
cσkxNy


≡
∑
σ,kx

C†σkxHkxCσkx . (5.7)

Also note that we assumed free boundary conditions in the ŷ-direction for this final expression. Periodic
boundary conditions can be incorporated by placing another −t in the top-right and bottom-left corners
of the matrix.

One thing that is immediately clear from the Fourier transformed Hamiltonian is that it is diagonal in
k: both the creation and the annihilation operators carry the same value for k in each term of the sum,
and the matrix elements Hk are only a function of a single k (rather than k and k′). This is a result of the
number of considered bonds scaling linearly with the number of lattice sites, rather than quadratically
(neglecting boundary effects). The observation that the Hamiltonian is diagonal in k can now be used
to find the dispersion relation: calculating the expectation value of the Hamiltonian corresponding to a
many-body state with a well-defined momentum k, one finds that its energy is given by

ω = −2t cos(akx)− 2t cos(aky). (5.8)

However, it is also possible to consider the allowed energies as a function of kx only. For periodic
boundary conditions in both directions, the allowed energies can be obtained directly from Eq. (5.8)
by plugging in aky = 2πn/Ny, again with n ∈ {0, 1, . . . , Ny − 1}. The energies from Eq. (5.8) and the
corresponding discretization in the ŷ-direction are shown in the left panel of Fig. 5.1. For free boundary
conditions in the ŷ-direction, the same arguments can be used to find that the allowed energies as a
function of kx are given by the eigenvalues of the matrix Hkx from Eq. (5.7). This is shown in the right
panel of Fig. 5.1. As can be seen from this figure, the square lattice tight-binding model leads to the
existence of an energy band of allowed energies: all possible states have an energy between ω = −4t and
ω = 4t, and all energies in this range are allowed.

5.1.2 Band theory, electrical properties and topological insulators

The existence of a band structure is a very general feature in solid-state physics, of which tight-binding
models are an example. Before we discuss the physical implications and consequences of band structures,
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we first introduce a more general tight-binding Hamiltonian. Introducing creation and annihilation
operators for each orbital and spin state on every site i of a d-dimensional lattice, the full annihilation
operator corresponding to lattice site i is given by

ψi =


a↑i
a↓i
b↑i
...

 . (5.9)

Here, the first letter (i.e. a, b, etc.) denotes the orbital, while the arrow signifies the spin state. Using
our previous observation that the Hamiltonian of a tight-binding model is diagonal in k, the Hamiltonian
can be written as

H =
∑
k

ψ†kHkψk. (5.10)

The quantity Hk that appears in this expression (often also simply called “the Hamiltonian”, as it gives
the momentum space matrix elements of the full Hamiltonian) is now a 2n× 2n matrix, where n is the
number of considered orbitals. The band structure of a given tight-binding model is entirely encoded in
this matrix Hk. It should be noted that the general Hamiltonian from Eq. (5.10) is a direct result of
Bloch’s theorem (see for example Ref. [20]). Following from the fact that we are working on a crystal
lattice, it tells us that the basis of the wave functions consists of the eigenstates of this Hamiltonian
(which are Bloch waves with a well-defined wave vector k), and the energies of each of these states are
the eigenvalues of the matrix Hk.

The band structure that follows from the Hamiltonian Hk often consists of several different energy
bands. Examples of possible band structures are shown in Fig. 5.2. In order to understand how these
band structures lead to certain electrical properties, one has to take into account that systems consisting
of many electrons are described by the Fermi-Dirac distribution,

f(ω) =
1

e(ω−µ)/kBT + 1
, (5.11)

where ω is the energy corresponding to a given state, µ is the chemical potential, kB is the Boltzmann
constant and T is the temperature. The distribution f(ω) gives the probability that a state with energy
ω is occupied. An important concept to introduce is that of the Fermi level, which is defined as the
energy for which f(ω) is exactly equal to 1/2, thus providing a natural energy scale that separates the
occupied from the unoccupied states. From Eq. (5.11), it immediately follows that ωF = µ is the Fermi
level by definition. For zero temperature, every state below the Fermi level is filled, while all states
above the Fermi level are empty. On the other hand, if the system is at a finite temperature, some of
the electrons from low-energy states are excited to high-energy states by thermal fluctuations. Together
with the band structure, this determines whether or not a material conducts electricity. For example, if
the Fermi level is located inside an energy band, electrons close to the Fermi level can easily transition
to different states with a similar energy. This is what happens in a metal. However, it is also possible
for the Fermi level to be located between different bands. This can lead to many interesting materials,
such as conventional insulators, semiconductors and topological insulators.

The two bands closest to the Fermi level are called the valence band and the conduction band, see
again Fig. 5.2. If the gap between these two bands (called the band gap) is large, then it is very unlikely
for electrons to “jump” from the valence band to the conduction band. As a result, almost all states of
the valence band are occupied, while the conduction band remains empty, such that the electrons have
very limited freedom. Materials with a large band gap are thus electrical insulators. If the gap is small,
a portion of the electrons can make it across the gap. The result is a semiconductor: a material with a
much larger resistivity than a metal, but a much smaller resistivity than an insulator. Semiconductors
are particularly useful due to how easily their conductivity can be influenced, for example by increasing
the temperature (allowing more electrons to jump to the conduction band) or by applying an electric
field (moving the conduction band closer to the Fermi level). A possible band structure of an insulator
or a semiconductor (depending on the size of the band gap) is shown in the left panel of Fig. 5.2. In this
example, electrons near the bottom of the conduction band have a quadratic dispersion, so they behave
like free (but massive) particles. However, the effective mass of these excitations is often different than
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Figure 5.2: Examples of possible band structures. The valence band is shown in red, the conduction band is
plotted in blue, and the horizontal axis denotes the Fermi level. The left plot is an example of a semiconductor or
an insulator (depending on the size of the band gap), while the right one is an example of a topological insulator,
with black lines denoting the edge states.

that of a free electron, so we are instead looking at electron quasiparticles. In addition to the presence of
these electron quasiparticles, the conduction band electrons leave behind holes in the valence band. A
nearly full valence band can be described by interpreting these holes as the “particles” (or quasiparticles)
of interest, rather than looking at all of the individual electrons, and they have a negative energy with
respect to the Fermi level. In the example of the figure, there is particle-hole symmetry, so the holes near
the top of the valence band also have a quadratic dispersion. The holes can therefore be interpreted as
free particles as well.

In some cases, the bulk of a material and its surface (or edges) have very different properties. This is
what happens in a so-called topological insulator. With periodic boundary conditions, the band structure
of such a material looks very similar to that of an insulator. However, when the surface of the material is
considered as well (rather than just looking at the bulk, for example by using free boundary conditions),
edge states appear that connect the valence band and the conduction band. An example of this is shown
in the right panel of Fig. 5.2. The presence of such edge states leads to the remarkable feature that the
bulk of the material is an insulator, while its surface behaves as a conductor. In the next chapter, we
will consider a specific topological insulator, and we will encounter (among other things) some of the
consequences of the existence of bulk states and edge states.

5.1.3 Mapping complicated models to a square lattice

In the final part of this section, we will discuss how more complicated models can be mapped to a
simple square lattice tight-binding model without making use of their actual microscopic structure, while
retaining much of the important physics. To do so, we will use graphene as an example. A derivation of
the tight-binding band structure of graphene and its small-k approximation, as well as a brief discussion
of Dirac points and the corresponding linear dispersion, can be found in appendix B.1.

As a starting point, we use the low-energy Hamiltonian of graphene, close to one of the Dirac points
(where the valence band and the conduction band touch). Up to a factor ~ (which we set to one), this
Hamiltonian is given by

Hk = vFσσσ · k. (5.12)

Here, vF is called the Fermi velocity, and σσσ is the two-dimensional vector of Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
. (5.13)

In order to find a tight-binding model that has the same small-k Hamiltonian as graphene, we replace
akx/y by sin(akx/y). Note that this particular choice is not unique, but it does not matter for the final
results, as long as we restrict ourselves to the region close to the origin. Performing Fourier transforms
according to Eq. (5.4), we find:

H =
vF
a

∑
σ,k

(
a†σk b

†
σk

)( 0 sin(akx)− i sin(aky)
sin(akx) + i sin(aky) 0

)(
aσk
bσk

)
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Figure 5.3: Schematic view of a single term of the square lattice tight-binding model that leads to the same low-
energy Hamiltonian as graphene. The red and blue dots enclosed by dashed lines denote the two different orbitals
located at each lattice site, while the arrows denote the different hopping terms, together with the corresponding
hopping parameter. The direction of the arrows signify which particle is created and which one is annihilated.

=
vF
a

∑
σ,k

[
a†σkbσk (sin(akx)− i sin(aky)) + h.c.

]
=
vF
2a

∑
σ,kx,j

[
2 sin(akx)a†σkxjbσkxj − a

†
σkxj

bσkxj+1 + a†σkxjbσkxj−1 + h.c.
]

=
vF
2a

∑
σ,ij

[
−i a†σijbσi+1 j + i a†σijbσi−1 j − a†σijbσi j+1 + a†σijbσi j−1 + h.c.

]
. (5.14)

Similar to the example in the first part of this section, i, j denote the position on a square lattice
according to Eq. (5.1). The final line of Eq. (5.14) describes a tight-binding model on a square lattice,
each lattice site consisting of two orbitals and each bond having a different and sometimes complex
hopping parameter. All interactions corresponding to a single term of the overall sum are shown in Fig.
5.3. The fact that this result now describes a square lattice tight-binding model comes from the choice
to replace akx/y by a simple sine rather than something more complicated.

Now that we have mapped graphene to a square lattice, we should check if this approximate model
gives the same band structure in the region of interest as the actual model that follows from graphene’s
honeycomb lattice. Let us first find the band structure of the approximate model as a function of kx.
Defining the annihilation operator

ψσkxj ≡
(
aσkxj
bσkxj

)
(5.15)

and using the third line of Eq. (5.14), the Hamiltonian can be written as

H =
vF
2a

∑
σ,kx,j

[
2 sin(akx)a†σkxjbσkxj − a

†
σkxj

bσkxj+1 + b†σkxjaσkxj+1 + h.c.
]

=
∑
σ,kx

(
ψ†σkx1 ψ

†
σkx2 · · · ψ

†
σkxNy

)

h0(kx) h1 0 · · ·
h†1 h0(kx) h1 · · ·

0 h†1 h0(kx)
. . .

...
...

. . .
. . .



ψσkx1

ψσkx2

...
ψσkxNy

 , (5.16)

where

h0(kx) =

(
0 vF

a sin(akx)
vF
a sin(akx) 0

)
, h1 =

(
0 −vF2a
vF
2a 0

)
, h†1 =

(
0 vF

2a
−vF2a 0

)
. (5.17)

Note that in the first line of Eq. (5.16), we switched the term a†σkxjbσkxj−1 from Eq. (5.14) with its
Hermitian conjugate. Additionally, we wrote j → j+1 in the terms containing the layer j−1. This does

66



5.1. Tight-binding models and electronic band structure

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

akx

a
ω
/v
F

2.3 2.4 2.5 2.6
-0.2

-0.1

0.0

0.1

0.2

akx

a
ω
/v
F

Figure 5.4: Comparison of the band structure of the approximate square lattice model (left) and the actual
honeycomb lattice model (right). The top row shows the overall structure in the first Brillouin zone, while the
bottom row zooms in on one of the Dirac points (i.e. the regions enclosed by the rectangles in the top panels).

not change any results, as it is just a redistribution of the interaction terms among the different terms
of the overall sum.

To keep everything consistent with the full model, we will now consider periodic boundary conditions
by putting an additional matrix h1 in the bottom-left corner of the Hamiltonian matrix, and an additional
h†1 in the top-right corner. The allowed energies as a function of kx can now be found by calculating the
eigenvalues of the Hamiltonian matrix. The resulting band structure is shown in the left half of Fig. 5.4.
Additionally, these allowed energies as a function of kx have also been calculated for graphene’s actual
honeycomb lattice by making use of the dispersion relation

ω = ±2vF
3a

√
3 + 2 cos(

√
3akx) + 4 cos(

√
3akx/2) cos(3aky/2), (5.18)

the derivation of which can be found in the appendix. The energies have been plotted as a function
of kx with aky = 2πn/Ny, n ∈ {0, 1, . . . , Ny − 1}, where Ny is again the number of “layers” in the
ŷ-direction. The results are shown in the right half of Fig. 5.4. As can be seen from these results, the
complete band structure of the approximate model and the full model are very different. However, in the
region of interest (i.e. the low-energy regions in the vicinity of the Dirac points) have almost exactly the
same band structure. This confirms that small-k Hamiltonians can indeed successfully be mapped to a
square lattice in order to extract the correct band structure in the region close to the origin. Since the
approximate model derived in this section does not use the fact that graphene’s underlying lattice is a
honeycomb lattice, it also illustrates that these methods work without any knowledge of the underlying
lattice, as long as the small-k Hamiltonian is known.

Finally, it should be noted that approximate models such as the one from this section are very
convenient for analyzing the effects of edges. In order to add edge states to the model, one would have to
consider Eq. (5.16) with free boundary conditions (i.e. keeping the bottom-left and top-right corners of
the matrix empty). Doing so, the edges are simply located at j = 1 and j = Ny, rather than having some
complicated structure by themselves. As we will see later on, this makes it much more straightforward
to work with edge states.
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5.2 Green’s functions and the density of states

Having introduced tight-binding models and band theory, this next section will cover concepts and
techniques necessary to analyze such models. In order to derive explicit expressions for the quantities
that can be measured experimentally, it is necessary to first introduce the general concept of Green’s
functions. An elaborate introduction to this concept (and the other subjects from the following two
sections) can for example be found in Refs. [21, 22].

As an example, we will first consider the basis of eigenvectors |r〉 of the position operator. This can
be used to define the position space representation of the wave function corresponding to an arbitrary
energy eigenstate |ψn〉 as

ψn(r) ≡ 〈r|ψn〉. (5.19)

Then, the time-independent single particle Schrödinger equation is given by

[En −H(r)]ψn(r) = 0, (5.20)

where the operator H(r) is the position space Hamiltonian and the energy En is its eigenvalue. We can
now define a Green’s function G by means of the equation

[ω −H(r)]G(r, r′, ω) = δ(r− r′). (5.21)

The Green’s function that follows from this equation has important physical implications. To see this,
we go back to the original vector space of which we have taken the position space representation. In this
most general vector space, Eq. (5.21) becomes

G(ω) = (ω −H)−1. (5.22)

The validity of this expression with respect to Eq. (5.21) can easily be verified by making use of the
relations

δ(r− r′)H(r) = 〈r|H|r′〉, (5.23)

G(r, r′, ω) = 〈r|G(ω)|r′〉, (5.24)

δ(r− r′) = 〈r|r′〉, (5.25)∫
dr |r〉〈r| = 1. (5.26)

The physical significance of the general expression Eq. (5.22) can be extracted by inserting a completeness
relation:

G(ω) = (ω −H)−1
∑
n

|ψn〉〈ψn| =
∑
n

|ψn〉〈ψn|
ω − En

, (5.27)

where En is the energy (i.e. the eigenvalue of H) corresponding to the eigenstate |ψn〉. From this, we
conclude that the poles of the Green’s function G(ω) coincide with the eigenvalues of the Hamiltonian
H. This observation will turn out to be very useful for calculating the density of states.

The problem with the Green’s function is that it is not defined if ω is equal to one of the eigenvalues
of H (in this case, the matrix (ω −H) has a zero eigenvalue and is therefore not invertible). In order to
assign a value to the Green’s function for these values of ω, we remove the poles by adding an infinitesimal
imaginary part iδ to the (real) energy ω. This can be done in two different ways: one can either let δ go
to zero from above or from below, leading to two different Green’s functions G±, where G+ is called the
retarded Green’s function, and G− is called the advanced Green’s function. These two Green’s functions
are thus given by

G±(ω) = lim
δ→0+

G(ω ± iδ) = lim
δ→0+

(ω ± iδ −H)−1. (5.28)

Note that ω and δ are both real numbers, while H is still an operator (or a matrix). The retarded
and advanced Green’s functions are only different from each other at the poles of the original Green’s
function; for all other values of ω, the infinitesimal δ is much smaller than all (ω−En) and can therefore
safely be ignored.
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5.2. Green’s functions and the density of states

Now that we have defined the general Green’s functions, they can be used to calculate the density of
states. The density of states (or DOS) is defined as

ρ(ω) ≡
∑
n

δ(ω − En), (5.29)

such that the number of particles with energy between ω1 and ω2 is given by

ω2∫
ω1

dω ρ(ω). (5.30)

The local density of states (or LDOS) corresponding to a given position r can be calculated in a similar
way:

ρ(r, ω) ≡
∑
n

δ(ω − En) |〈r|ψn〉|2 , (5.31)

where |〈r|ψn〉|2 gives the probability to find a particle at position r. From the normalization of the wave
function, it follows that ρ(ω) =

∫
dr ρ(r, ω).

In order to express the density of states in terms of a Green’s function, we consider the following
expression for the Dirac delta function:

δ(x) = lim
δ→0+

1

π

δ

x2 + δ2
. (5.32)

To prove this equation, we note that the right-hand side is equal to zero if x 6= 0, while it goes to
infinity if x = 0. This is precisely the behaviour of the delta function, so we only have to show that the
normalization on the right-hand side is correct. To do so, we integrate the right-hand side over x:

lim
δ→0+

∞∫
−∞

dx
1

πδ

1

(x/δ)2 + 1
= lim
δ→0+

∞∫
−∞

dy
1

π

1

y2 + 1

=

π/2∫
−π/2

du

cos2 u

1

π

1

tan2 u+ 1

= 1. (5.33)

The substitutions used here are x = yδ and y = tanu. In addition to Eq. (5.32), we also use the identity

1

x± iδ
=

x∓ iδ
x2 + δ2

. (5.34)

With these two identities, we return to Eq. (5.31):

ρ(r, ω) = lim
δ→0+

∑
n

1

π

δ

(ω − En)2 + δ2
〈r|ψn〉〈ψn|r〉

= ∓ 1

π
lim
δ→0+

∑
n

Im
1

ω ± iδ − En
〈r|ψn〉〈ψn|r〉

= ∓ 1

π
Im lim

δ→0+

∑
n

〈r| 1

ω ± iδ − En
|ψn〉〈ψn|r〉

= ∓ 1

π
Im lim

δ→0+

∑
n

〈r|(ω ± iδ −H)−1|ψn〉〈ψn|r〉

= ∓ 1

π
Im lim

δ→0+
〈r|(ω ± iδ −H)−1|r〉

= ∓ 1

π
ImG±(r, r, ω). (5.35)
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Note that the quantity 〈r|(ω ± iδ − H)−1|r〉 that appears on the second to last line is simply the rr
diagonal matrix element of the operator (ω ± iδ − H)−1. Therefore, we can now immediately find the
total density of states, independent of the basis:

ρ(ω) = ∓ 1

π
Im Tr lim

δ→0+
(ω ± iδ −H)−1

= ∓ 1

π
Im TrG±(ω). (5.36)

As we have seen before, the local Hamiltonian (and consequently the local Green’s functions
G±(r, r′, ω)) often still has a matrix structure, for example due to the presence of several allowed orbitals.
If this is the case, we simply take the trace over the remaining matrix structure, for the same reason as
in Eq. (5.36). Also note that G±(r, r′, ω) = G±(r − r′, ω) for a translationally invariant system, such
that the corresponding local density of states is constant in space.

Finally, we explicitly write the Hamiltonian as a function of the momentum k (or in other words: we
consider the matrix elements Hk ≡ 〈k|H|k〉) to find the spectral-weight function:

ρ(k, ω) = ∓ 1

π
Im Tr lim

δ→0+
(ω ± iδ −Hk)−1. (5.37)

This function gives us the probability density as a function of both the momentum and the energy, and
is very useful for finding the band structure of a given Hamiltonian. For the remainder of this thesis, the
Hamiltonian Hk that appears in this expression will always be the Hamiltonian matrix corresponding to
the quadratic Hamiltonian from equation (5.10).

Let us return for a moment to the discussion from the final part of the previous section, where we
found that complicated lattice models can successfully be mapped to a square lattice, and that edges
located at the “layers” j = 1 and j = Ny can then be added by simply considering free boundary
conditions in one of the directions. The matrix corresponding to such a model (for example the one from
Eq. (5.16)) has a very clear structure, with the indices of the matrix corresponding to the layers. From
the general expression for the Green’s function Eq. (5.22), we see that the Green’s function has this same
clear structure as the Hamiltonian. As a result, the surface Green’s function (i.e. the Green’s function
corresponding to the single layer j = 1 or j = Ny) is given by the top-left or bottom-right corner of the
total Green’s function. Note however that the components of the Hamiltonian matrix in Eq. (5.16) are
themselves matrices, so the individual components of the total Green’s function are n × n matrices as
well, where n is the number of available states per lattice site. The surface Green’s function, which is
a single component of the total Green’s function, is therefore also an n × n matrix. Using this surface
component of the total Green’s function, the surface spectral-weight function can now be calculated by
replacing the total Green’s function (ω ± iδ −Hk)−1 in Eq. (5.37) with the surface Green’s function.

5.3 Impurity scattering and quasiparticle interference

In the previous section, we have seen how the density of states can be calculated for an arbitrary Hamil-
tonian H. However, in practice it is not always completely straightforward to actually do the calculation,
for example in the presence of an impurity. Let us now consider a purely quadratic Hamiltonian of the
form H = H0 +HI , such that the (retarded) Green’s function corresponding to the “bare” Hamiltonian
H0 is known to be G+

0 (ω), and HI is the impurity Hamiltonian. The total Green’s function can now be
calculated:

G+(ω) = lim
δ→0+

(ω + iδ −H)−1

= lim
δ→0+

(ω + iδ −H0 −HI)
−1

= lim
δ→0+

(
(ω + iδ −H0)(1− (ω + iδ −H0)−1HI)

)−1

=
(
1−G+

0 (ω)HI

)−1
G+

0 (ω)

= G+
0 (ω) +G+

0 (ω)HIG
+
0 (ω) +G+

0 (ω)HIG
+
0 (ω)HIG

+
0 (ω) + . . . . (5.38)
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5.3. Impurity scattering and quasiparticle interference

Expression Diagram

G+(ω) �
G+

0 (ω) �
HI �
T (ω) �

Table 5.1: Definitions of the different components of the Feynman diagrams.

These equations become more insightful by writing them in terms of Feynman diagrams, according to
Table 5.1. Doing so, the final line of Eq. (5.38) becomes

� =+�+�+ . . . (5.39)

The physical interpretation of this equation is as follows: in absence of “interactions”, the propagator is
given by the bare Green’s function G+

0 (ω). However, the propagator can now also be scattered on the
impurity HI ; moreover, this can happen an arbitrary number of times, resulting in Eq. (5.39). In terms
of an incoming particle, it can scatter on the potential HI several times before leaving, and the complete
propagator thus includes all of these possibilities.

In order to calculate the total Green’s function, we introduce the concept of the T-matrix. We
define the T-matrix such that it captures the probability amplitude of an arbitrary number of times the
propagator is scattered on HI :

G+(ω) ≡ G+
0 (ω) +G+

0 (ω)T (ω)G+
0 (ω). (5.40)

Comparing this expression to the previous ones, we find that the T-matrix is given by

T (ω) ≡ � = HI +HIG
+
0 (ω)HI +HIG

+
0 (ω)HIG

+
0 (ω)HI + . . .

=
(
1−HIG

+
0 (ω)

)−1
HI

=

(
1−�)−1 �. (5.41)

Now that we have developed a general recipe for the calculation of the Green’s function in the presence
of a scattering potential HI , we will apply this to the problem of scattering on a single local impurity at
the origin. The position space matrix elements of the scattering potential are now given by

HI(r) = V δ(r), (5.42)

where V is the impurity strength. Again, it is very possible that V still has a matrix structure, for
example if there are several available orbitals or spin states. In terms of Feynman diagrams, the local
Green’s function G+(r, r′, ω) becomes

�
r r′

=�
r r′

+�
r 0 r′

+�
r 0 0 r′

+ . . .

=�
r r′

+�
r 0 r′

(5.43)
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Making use of the T-matrix formalism and assuming the bare Hamiltonian to be translationally invariant,
we find

G+(r, r′, ω) = G+
0 (r− r′, ω) +G+

0 (r, ω)T (ω)G+
0 (−r′, ω), (5.44)

with

T (ω) =
(
1− V G+

0 (0, ω)
)−1

V. (5.45)

It is immediately apparent that the resulting Green’s function is no longer translationally invariant, as
the second term cannot be written in terms of a single variable (r− r′). This is due to the fact that we
are considering a local impurity (namely one located at the origin), and so the system itself is no longer
translationally invariant.

With the above expression for the local Green’s function, we can calculate the changes in the local
density of states due to the presence of the impurity. Using the results from the previous section, we
find the following expression for the local density of states:

ρ(r, ω) = − 1

π
Im TrG+

0 (0, ω)− 1

π
Im Tr

[
G+

0 (r, ω)T (ω)G+
0 (−r, ω)

]
≡ ρ0(ω) + ρI(r, ω). (5.46)

Here, the spatially constant ρ0(ω) is the local density of states due to the “bare” Hamiltonian, while
ρI(r, ω) is the correction to the local density of states due to the presence of the impurity located at the
origin. Experimentally, the local features are the ones that are measured, so the correction term ρI(r, ω)
is the most relevant for the problem at hand. These features are then often best analyzed by taking the
Fourier transform, i.e.

ρI(q, ω) =

∫
dr ρI(r, ω)e−iq·r. (5.47)

Note that this Fourier transformed local density of states (or FT-LDOS) is very different from the
spectral-weight function that we previously discussed: in absence of an impurity, the spectral-weight
function would still depend on the momentum k, explicitly giving the probability density as a function
of k for a given energy. On the other hand, the FT-LDOS would be featureless in absence of an
impurity, as it is simply the Fourier transform of the spatial features of the LDOS, and it does therefore
not directly give a probability density. Moreover, the q that appears in Eq. (5.47) does not refer to an
actual momentum, and instead it is simply an arbitrary wave number.

Often, it is most convenient to work with the momentum space representation of H0, such that one
starts with a Green’s function of the form G+

0 (k, ω). Starting with this Green’s function, there are
two ways to calculate the FT-LDOS. The most obvious way is to simply calculate its inverse Fourier
transform to get G+

0 (r, ω), using

G+
0 (r, ω) =

∫
dk

(2π/a)d
G+

0 (k, ω)eir·k ⇐⇒ G+
0 (k, ω) =

∑
r

G+
0 (r, ω)e−ir·k. (5.48)

Then, one could calculate ρI(r, ω) and Fourier transform it back to get ρI(q, ω). Note that the above
Fourier transform is taken in the continuum limit, such that the sum over k becomes an integral due to
the fact that the step size 2π/N becomes infinitesimal. However, it is also possible to write the FT-LDOS
in terms of a convolution of G+

0 (k, ω) with itself. This works as follows:

GI(r, ω) ≡ G+
0 (r, ω)T (ω)G+

0 (−r, ω)

=

∫
dk

(2π/a)d
dk′

(2π/a)d
G+

0 (k, ω)T (ω)G+
0 (k′, ω)eir·(k−k

′), (5.49)

where d is the number of dimensions of the system. We can then Fourier transform it to find

GI(q, ω) =

∫
drGI(r, ω)e−iq·r

=

∫
dk′

(2π/a)d
G+

0 (q + k′, ω)T (ω)G+
0 (k′, ω), (5.50)
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5.3. Impurity scattering and quasiparticle interference

which is called a convolution. We can now write the FT-LDOS in terms of this convolution:

ρI(q, ω) =

∫
dr

[
− 1

π
Im TrGI(r, ω)

]
e−iq·r

=
i

2π
Tr

∫
dr
[
GI(r, ω)− (GI(r, ω))

∗]
e−iq·r

=
i

2π
Tr
[
GI(q, ω)− (GI(−q, ω))

∗]
. (5.51)

Both of these methods are entirely equivalent, and it is just a matter of choice which one to use. While
the method using the convolution requires the evaluation of only one integral rather than the two Fourier
transforms required for the first method, this single integral is generally more time-consuming than the
calculation of Fourier transforms (for example by using an FFT algorithm), and it therefore depends on
the problem at hand which of the methods is more efficient.

The above discussion concerning the T-matrix formalism and how it can be used to calculate the
local density of states contains everything we will need to analyze the effects of the presence of a local
lattice impurity. The type of impurity has not yet been specified, so we are free to implement all kinds of
impurities: weak or strong, magnetic or non-magnetic, coupling differently to different orbitals, or even
more exotic ones. The resulting correction to the local density of states ρI(r, ω) changes the probability
to find a quasiparticle at a given position. This change in the probability also changes the conductance
at that position, which can be measured experimentally, providing a way to compare experimental data
to the theoretical results. As we will see in the next chapter, the quasiparticle LDOS maps originating
from the presence of a local impurity often contains interference patterns. In order to better understand
these quasiparticle interference (or QPI) patterns, we will then Fourier transform these LDOS maps (i.e.
calculate the FT-LDOS) and analyze the results. Finally, we will use the results from this analysis to
draw conclusions about the scattering processes that may happen in the considered material.

73



Chapter 6

Model description of quasiparticle
interference in the topological
insulator CuxBi2Te3

In this final chapter, we will apply the concepts and techniques from the previous chapter to find a
suitable model description of experimentally realized quasiparticle interference in the Cu doped three-
dimensional topological insulator Bi2Te3. The experiments that provide the motivation of this chapter
were done by Van Heumen et al. in Ref. [23]. The results from their experiments are also the ones to
which we will compare our model results.

The problem that was encountered by Van Heumen in his theoretical model description of the exper-
imental circumstances is that the model and the experiments often seem to disagree about the overall
rotational orientation of the QPI patterns. In particular, where the experiments show that the QPI
peaks always appear along the Γ→M direction, the model results often imply that these peaks should
be located along the Γ → K direction (see appendix B.1 for the definition of these symmetry points
of the first Brillouin zone). The main goal of this chapter is to find a model, the corresponding model
parameters and the impurity that lead to the correct orientation of the QPI patterns. In doing so, the
model parameters have to be chosen such that the band structure coincides with the one found from the
experiments, in the small-k region close to the Γ point. An additional goal is to confirm the existence
of different energy windows for the scattering processes, of which the observation was also highlighted
in Ref. [23]. In order to achieve these goals, we will first discuss a model Hamiltonian and show that
it indeed contains the necessary edge states. Then, we will choose suitable model parameters such that
the band structure is the same as that of CuxBi2Te3, after which we will use everything discussed so far
to calculate the QPI patterns. Finally, we will discuss the meaning of the results and compare them to
the experiments, and we close the chapter by drawing conclusions that follow from this discussion.

6.1 The model Hamiltonian

In this section, we will choose a model Hamiltonian to describe the experimental setup and rewrite it
along the lines of Sec. 5.1.3, such that we will be able to analyze surface effects. In Ref. [24], the
microscopic lattice structure and the symmetries of the topological insulator Bi2Te3 have been used to
derive its most general Hamiltonian, up to third order in k (where k = 0 corresponds to the Γ point).
As we have seen in Sec. 5.1.3, a small-k Hamiltonian is sufficient for deriving the physics in the region
we are interested in, and we will therefore use the Hamiltonian from Ref. [24] as our starting point to
describe the undoped material:

H =
∑
k

ψ†kHkψk, (6.1)

where

Hk = ε(k)I4 +M(k)Γ5 +B(kz)Γ4kz+A(k||)(kyΓ1−kxΓ2)+R1Γ3(k3
x−3kxk

2
y)+R2Γ4(3kyk

2
x−k3

y). (6.2)
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Here, k2
|| ≡ k

2
x + k2

y is the “in-plane” part of k, and the functions are given by

ε(k) = C0 + C1k
2
z + C2k

2
||, M(k) = M0 +M1k

2
z +M2k

2
||,

B(kz) = B0 +B2k
2
z , A(k||) = A0 +A2k

2
||. (6.3)

Moreover, I4 is the 4 × 4 identity matrix, while Γi are the Euclidean gamma matrices, satisfying the
Clifford algebra {Γi,Γj} = 2δijI4. The parameters Ci, Mi, Bi, Ai and Ri are unknown and have to be
chosen in agreement with experiments. It should again be stressed that the above model Hamiltonian
only describes the undoped material; the effects of the Cu doping will be added later on by including an
impurity Hamiltonian HI .

As can also be seen from the model Hamiltonian, Bi2Te3 is layered in the ẑ-direction, such that kz is
decoupled from kx and ky. This gives rise to a natural surface for possible surface experiments on this
material. In order to calculate observables specifically on this surface, we will now describe the material
using a one-dimensional tight-binding model of layers. Note however that there is no unique way to do
so, as there are several different models that lead to the same effective Hamiltonian of Eq. (6.2).

First, we calculate the localized four-component spinors by means of a Fourier transform:

ψk ≡ ψk||kz =
1√
Nz

∑
j

ψk||je
−ikzzj ⇐⇒ ψk||j =

1√
Nz

∑
kz

ψk||kze
ikzzj , (6.4)

where Nz is the number of layers. Next, we replace all powers (akz)
n that appear in Eq. (6.2) by

functions fn(akz) that satisfy fn(akz) = (akz)
n+O(k4

z), where a is the lattice constant (i.e. the distance
between the layers). This enables us to calculate the Fourier transforms. Restricting ourselves to a few
particularly convenient choices for fn(akz), we find∑

kz

ψ†kc ψk =
1

Nz

∑
kz,ij

ψ†k||ic ψk||je
ikz(zi−zj)

=
∑
i

ψ†k||ic ψk||i, (6.5)∑
kz

ψ†kc kzψk →
∑
kz

ψ†k
c

3a
[4− cos(akz)] sin(akz)ψk

=
1

Nz

∑
kz,ij

ψ†k||i
c

a
ψk||j

[
−2i

3
eiakz +

2i

3
e−iakz +

i

12
e2iakz − i

12
e−2iakz

]
eikz(zi−zj)

=
∑
i

[
ψ†k||i

(
−2ic

3a

)
ψk||i+1 + ψ†k||i

(
ic

12a

)
ψk||i+2 + h.c.

]
, (6.6)

∑
kz

ψ†kc k
2
zψk →

∑
kz

ψ†k
2c

a2
[1− cos(akz)]ψk

=
1

Nz

∑
kz,ij

ψ†k||i
c

a2
ψk||j

[
2− eiakz − e−iakz

]
eikz(zi−zj)

=
∑
i

[
ψ†k||i

(
2c

a2

)
ψk||i + ψ†k||i

(
− c

a2

)
ψk||i+1 + ψ†k||i+1

(
− c

a2

)
ψk||i

]
, (6.7)

∑
kz

ψ†kc k
3
zψk →

∑
kz

ψ†k
2c

a3
[1− cos(akz)] sin(akz)ψk

=
1

Nz

∑
kz,ij

ψ†k||i
c

a3
ψk||j

[
−ieiakz + ie−iakz +

i

2
e2iakz − i

2
e−2iakz

]
eikz(zi−zj)

=
∑
i

[
ψ†k||i

(
− ic
a3

)
ψk||i+1 + ψ†k||i

(
ic

2a3

)
ψk||i+2 + h.c.

]
, (6.8)

where c is an arbitrary Hermitian matrix. Defining

h||(k||) ≡
(
C0 + C2k

2
||

)
I4+

(
M0 +M2k

2
||

)
Γ5+A(k||)(kyΓ1−kxΓ2)+R1Γ3(k3

x−3kxk
2
y)+R2Γ4(3kyk

2
x−k3

y),

(6.9)
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Figure 6.1: Eigenvalues of the Hamiltonian Hk|| for kx = 0 with periodic boundary conditions (left) and with
free boundary conditions (right). In the presence of surfaces, edge states appear that connect the two bands.

Eq. (6.2) becomes
Hk = h||(k||) + C1k

2
zI4 +M1k

2
zΓ5 + B(kz)Γ4kz. (6.10)

Combining the above results, we find that the tight-binding Hamiltonian we are looking for is given by

H =
∑
k||,i

[
ψ†k||ih0(k||)ψk||i + ψ†k||ih1ψk||i+1 + ψ†k||i+1h

†
1ψk||i + ψ†k||ih2ψk||i+2 + ψ†k||i+2h

†
2ψk||i

]

=
∑
k||

(
ψ†k||1 ψ

†
k||2
· · · ψ†k||Nz

)


h0(k||) h1 h2 0 0 · · ·
h†1 h0(k||) h1 h2 0 · · ·
h†2 h†1 h0(k||) h1 h2 · · ·

0 h†2 h†1 h0(k||) h1
. . .

0 0 h†2 h†1 h0(k||)
. . .

...
...

...
. . .

. . .
. . .




ψk||1

ψk||2

...
ψk||Nz



≡
∑
k||

ψ†k||Hk||ψk|| , (6.11)

with

h0(k||) ≡ h||(k||) +
2C1

a2
I4 +

2M1

a2
Γ5, (6.12)

h1 ≡ −
C1

a2
I4 −

M1

a2
Γ5 −

(
2B0

3a
+
B2

a3

)
iΓ4, (6.13)

h2 ≡
(
B0

12a
+
B2

2a3

)
iΓ4. (6.14)

Having introduced a localized model, it is now possible to calculate surface observables by using the
methods explained in Sec. 5.2. However, we will first check if the model indeed supports the presence
of surface states. To do so, we consider periodic boundary conditions in the in-plane directions, and
compare the eigenvalues of the Hamiltonian of Eq. (6.11) corresponding to periodic boundary conditions
with those corresponding to free boundary conditions in the ẑ-direction. These eigenvalues have been
calculated along the ŷ-direction with kx = 0, using the parameters highlighted in the next section. The
eigenvalues are shown in Fig. 6.1. As can be seen in this figure, there can indeed be states that are only
present when the system has surfaces, and they connect the valence band to the conduction band. This
heavily implies that these states are edge states.

Finally, we require one additional ingredient in order to find QPI patterns: a local surface impurity.
The Hamiltonian corresponding to such a surface impurity located at the origin is given by

HI = ψ†r||=0,i=1V ψr||=0,i=1, (6.15)
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where V is the 4× 4 local impurity matrix, and ψr||,i is the real space spinor that has also been Fourier
transformed in the remaining two directions. Physically, we add this term to the Hamiltonian to include
the effects of the Cu doping of our material. However, we only add a single impurity, rather than several
impurities. This is justified by the assumption that the impurities are sufficiently separated from each
other, such that the QPI patterns they cause are all independent.

6.2 Methods and results

Now that we have a well-defined model to work with, we can use it to calculate experimentally relevant
quantities, using the methods from Secs. 5.2 and 5.3. First, we have the bulk retarded Green’s function:

G+(k||, ω) = lim
δ→0+

(
(ω + iδ)I4Nz −Hk||

)−1
, (6.16)

where Hk|| is the matrix that appears in Eq. (6.11). Due to the way that this matrix has been defined,
we can immediately identify the 4× 4 top-left corner of the bulk Green’s function as the surface Green’s
function, which we will simply call G(k||, ω) from now on. Setting B2/a

2 = −B0/6 for simplicity (such
that h2 = 0), this surface Green’s function can be calculated iteratively using the relation

GN (k||, ω) =
(
G−1

1 (k||, ω)− h1GN−1(k||, ω)h†1

)−1

, (6.17)

where GN (k||, ω) is the surface Green’s function corresponding to a model consisting of N layers; or it
can be calculated by using the even more efficient methods derived in Ref. [25]. These very efficient
iterative methods for calculating surface Green’s functions, explained in detail in appendix B.2, are the
ones used for all calculations in this chapter. Having calculated the surface Green’s function, we can
calculate the surface spectral-weight function as well:

ρ(k||, ω) = − 1

π
Im TrG(k||, ω). (6.18)

The surface spectral-weight function has been calculated for a system consisting of 215 = 32 768 layers
with broadening δ = 10−3 eV, using the parameters C0 = −1.2 eV, C1/a

2 = 0.295 eV, C2 = 18.67 eVÅ2,
M0 = −1.2 eV, M1/a

2 = 0.43 eV, M2 = 6.845 eVÅ2, B0/a = 0.33 eV, B2/a
2 = −B0/6, A0 = 1.8

eVÅ, A2 = 0, R1 = 300 eVÅ3 and R2 = −140 eVÅ3, where B2 has been chosen such that there are
no next-nearest neighbour interactions between the layers. For these calculations, we have defined the
gamma matrices as

Γi = σi ⊗ τ1, Γ4 = σ0 ⊗ τ2, Γ5 = σ0 ⊗ τ3, (6.19)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (6.20)

where i ∈ {1, 2, 3} signify the spatial dimensions, σ0 is the 2×2 identity matrix, σi are the Pauli matrices
that act in the spin basis, and τi are the Pauli matrices corresponding to the orbital degrees of freedom,
all in accordance with Ref. [24]. The results from the calculations are shown in Fig. 6.2. The parameters
were chosen such that these spectral-weight plots coincide with the ARPES results of CuxBi2Te3 found
in Ref. [23]. Note especially that the Fermi surface (defined as the constant energy surface in k-space
that corresponds to the Fermi level) is subject to strong warping. By comparing the QPI patterns shown
at the end of this section with those resulting from similar parameter sets that lead to much less warping,
it was found that the presence of warping has a strong influence on the scattering processes.

There are a couple of remarks that should be mentioned about these figures. First, the bright lines
inside the band gap correspond to edge states, which was already heavily implied by the plots from
the previous section. This claim is now further strengthened by the observation that these states are
by far the most pronounced states on the surface of the system (after all, we are specifically looking
at the surface density of states). The presence of these edge states in turn indicates that the model
indeed describes a topological insulator. Second, the strong warping of the Fermi surface has been used
to identify the Γ → M and the Γ → K directions of the first Brillouin zone. This identification does
not follow from these calculations alone, and instead it has been done by comparing these results with
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Figure 6.2: Surface spectral-weight function corresponding to the Hamiltonian of Eq. (6.11) with Nz = 215

layers, calculated on a 500 × 500 grid. Left: band structure along the path M ← Γ → K of the first Brillouin
zone. Right: constant-energy surface of ω = 0 (i.e. the Fermi surface). The top row shows the full range (using
the broadening δ = 5 ·10−3 eV), while the bottom row zooms in on a smaller range for the density of states (with
δ = 10−3 eV). Note that the edge states are much more pronounced than is shown in the bottom row.

experiments, see for example Ref. [26]. The conclusion that follows from this comparison is that our
ky-direction corresponds to the Γ→M direction, while the kx-direction is the Γ→ K direction.

The next step is to actually find the QPI patterns that appear as a result of the presence of the local
impurity that was introduced in Eq. (6.15). This is done by using the techniques outlined in Sec. 5.3.
Using T-matrix formalism, the corrections to the surface LDOS due to the presence of a local impurity
are found to be given by

ρI(r||, ω) = − 1

π
Im Tr

[
G0(r||, ω)T (ω)G0(−r||, ω)

]
, (6.21)

where G0(r||, ω) is the Fourier transform of the “bare” surface Green’s function G(k||, ω) in absence of
an impurity, while the T-matrix is given by

T (ω) = (I4 − V G0(0, ω))
−1
V. (6.22)

As we have seen before, the “bare” part of the LDOS ρ0(ω) is independent of the position r due to
translational symmetry of the undoped system, such that we can safely ignore that term and simply
focus on the term ρI(r||, ω) that arises from the presence of the impurity.

As with most interference patterns, the features from the QPI patterns are most apparent in momen-
tum space. Therefore, we will utilize the FT-LDOS ρI(q||, ω) in order to analyze the QPI patterns and
the corresponding scattering processes. However, while the real space LDOS is an entirely real quantity,
the FT-LDOS is a simple Fourier transform and so it can have an imaginary part as well. As we are
interested in the amplitudes corresponding to the different wave vectors, we “fix” this by simply plotting
the absolute value of the FT-LDOS.

78



6.2. Methods and results

0

1.×10-5

2.×10-5

3.×10-5

0

0.5×10-5

1.×10-5

1.5×10-5

Figure 6.3: Real space LDOS ρI(r||, ω) for two different energies, calculated using the impurity and parameters
mentioned in the text. Note that ω = −0.175 eV is an energy located in the band gap, while ω = 0.1 eV is well
into the conduction band.

The surface LDOS and the corresponding FT-LDOS have been calculated for several different energies,
with a resolution of 1 000× 1 000 points, qx,y going from −0.8 to 0.8 Å−1, Nz = 215 layers, and δ = 10−2

eV. The impurity that was used is the non-magnetic impurity

V = V0σ0 ⊗
(

1 0
0 0

)
= V0


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (6.23)

where V0 = 0.05 eV is the impurity strength. Physically, this is a weak impurity that couples equally to
both spin states (hence being called non-magnetic), while it only couples to one of the two considered
orbitals. Note that this weak impurity is in the regime where T (ω) ≈ V , such that the precise impurity
strength does not influence the shapes of the QPI patterns, only their amplitudes. Two examples of
the real space LDOS following from this specific impurity are shown in Fig. 6.3. As can be seen in
this figure, the resulting LDOS has three-fold rotational symmetry and depends strongly on the energy
scale. In particular, the ripples characteristic to interference patterns become more pronounced for higher
energies. The momentum space FT-LDOS corresponding to these real space LDOS plots can be found
in Fig. 6.4. From these plots, we see that there are two regions with different QPI patterns: one region
that spans the band gap and the bottom part of the conduction band, and another region further into
the conduction band. The pattern corresponding to ω = −0.05 eV appears to be a transition between
the two regions. Referring back to the observation that the ky-direction corresponds to the Γ → M
direction, the plots also show that the most pronounced QPI peaks appear along the Γ → M direction
for all of the energies shown in the figure (except for the transition energy ω = −0.05 eV).

It should be noted that the QPI patterns shown in Fig. 6.4 are very sensitive to the parameters of
the model, the type and strength of the impurity, and the energy scale. To illustrate this, the effects of
a different type of impurity and of a much stronger impurity are shown in Fig. 6.5. For the left panel,
V = V0I4 with V0 = 0.05 eV was used, while the right panel was calculated using the impurity from
Eq. (6.23), but with V0 = 103 eV. The latter is an example of a very strong impurity, which can be
interpreted as a vacancy on the underlying lattice. As can be seen from these examples, these changes in
the impurity can have a significant influence on the QPI pattern and its rotational orientation. In both
panels, the most pronounced peaks now appear in the Γ→ K direction rather than the Γ→M direction.
However, a careful look at Fig. 6.4 reveals that the now-dominant peaks in the Γ → K direction were
already present in Fig. 6.4, but the peaks in the Γ→M direction were simply stronger. As the impurity
clearly has a strong influence on the results, a particular choice had to be made. The type of impurity
and the impurity strength that were used for Fig. 6.4 were chosen due to the similarities between these
results and the experiments.
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Figure 6.4: Momentum space FT-LDOS ρI(q||, ω) for eight different energies, again for the impurity and
parameters described in the text. Two regions with distinct looking QPI patterns can be observed, with ω = −0.05
eV connecting these regions. The overall six-fold rotational symmetry and the orientation of the patterns are the
same in both regions, with the most pronounced peaks being in the Γ→M direction.
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Figure 6.5: Left: FT-LDOS corresponding to the same model, energy and parameters as for one of the pictures
of Fig. 6.4, but with a different type of impurity: V = V0I4, with V0 = 0.05 eV. Right: FT-LDOS corresponding
to the same model, energy, parameters and impurity as for another one of the pictures of Fig. 6.4, but with a
much larger impurity strength V0 = 103 eV. These particular energies and impurities were chosen in order to
illustrate how strongly these changes in the impurity can influence the QPI patterns.

6.3 Discussion

In this section, we will discuss the results found in the previous section, focusing on the FT-LDOS results
shown in Fig. 6.4. One of the first features that stands out is that the QPI patterns all have the same
orientation as the Fermi surface. However, the distance of the QPI peaks to the origin is approximately
twice as big as the distance of the “ring” from the Fermi surface to the origin (note that the Fermi surface
from Fig. 6.2 is rotated by 90 degrees with respect to the plots from Fig. 6.4, where qx and qy have been
switched with respect to kx and ky). This can be explained by backscattering : surface particles coming
in with momentum k and hitting the impurity can be bounced back with momentum −k, leading to a
change in momentum of q = −2k. Another interesting feature seen in the FT-LDOS is the distance of
the Γ → M peaks to the origin as a function of energy, plotted in Fig. 6.6. In both regions (i.e. the
two energy windows with distinct looking QPI patterns that were observed in the previous section), this
distance ∆q increases with the energy. This is exactly what one would expect from the observation that
the spectral-weight function becomes “wider” for larger energies, as can be seen in the left half of Fig.
6.2. However, there is also a jump in ∆q between the two regions. Noting that the conduction band is
more narrow than the edge states at a given energy, the jump in ∆q may be explained by the states from
the conduction band becoming more dominant in the scattering processes than the edge states.

The existence of the two energy windows requires an explanation as well. As is argued by Van
Heumen in Ref. [23], it is necessary to consider both the edge states and the conduction band. Inside
the band gap, there are only edge states, and as a result there can only be scattering between different

0.10 0.15 0.20 0.25

-0.2

-0.1

0.0

0.1

0.2

0.3

Δq (Å-1)

ω
(e
V
)

Figure 6.6: Momentum space distance of the most pronounced QPI peaks to the origin, as a function of energy.
The jump takes place in the vicinity of ω = −0.05 eV. At this energy, no pronounced peaks are present. The
small bump that can still be observed at this energy is denoted by the red dot.
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Figure 6.7: Comparison of the model results from Fig. 6.4 with the experimental results from Ref. [23]. The
left panel contains the FT-LDOS results corresponding to ω = −0.175 eV (located in the first region), while the
right panel shows the results corresponding to ω = 0.05 eV (located in the second region). The central picture
compares the transition patterns, where it should be noted that the model and the experiments disagree about
the energy at which this transition happens.

edge states. This results in the QPI patterns that were found for low energies. As the energy increases,
we eventually reach the bottom of the conduction band. However, as can be seen in Fig. 6.2, the edge
states are still much more pronounced than the conduction band, so the scattering between different
edge states still dominates the QPI patterns. This continues until we reach ω = −0.05 eV. Around this
energy scale, scattering between edge states and the conduction band becomes more important than
scattering among edge states only, leading to different QPI patterns. Since states from the conduction
band have a smaller momentum than the edge states at the same energy level (see once again Fig. 6.2),
this transition leads to a jump in ∆q as well. In the experiments from Ref. [23], a third region was
observed that was attributed to scattering between different conduction band states becoming the most
dominant scattering processes. This region cannot be discerned from our results, due to the fact the
model Hamiltonian that we used is only valid for small k and low energies, such that it does not allow
a proper investigation of higher energy scales.

Next, we compare the model results to the experimental results from Ref. [23], see also Fig. 6.7. As
was stated in the previous section, all model parameters were chosen such that Fig. 6.2 agrees with the
experimental ARPES data. While all energies are the same between the model and the experiments, the
momenta are still different. This could be fixed by simply rescaling the model parameters, but it has no
physical significance, so we ignore it. Additionally, the QPI patterns from the model are generally in good
agreement with those from the experiments. In particular, the model results and the experimental results
share the same six-fold rotational symmetry and orientation. In both regions, many of the features from
the model are somewhat different and much sharper than those from the experiments, but this is likely
due the fact that the model describes a perfect situation that is very difficult to achieve experimentally.
For example, the model contains a perfect single layer surface that separates the bulk from a perfect
vacuum, which is not a very realistic scenario. On the other hand, the transition pattern (i.e. the one
corresponding to ω = −0.05 eV) that connects the two regions appears to be very similar to the one from
the experiments. However, the energy at which this transition happens is different: the experiments show
that it happens at the lower energy ω = −0.1375 eV. This may again be due to the real surface being
less perfect than the one used in the model, or due to the model parameters not being entirely correct.
Additionally, it is possible that the impurities on the real material are not always located exactly on the
surface, but are instead located a few layers into the bulk, which may lead to different results as well. It
would however require a more thorough analysis to be able to draw proper conclusions about the origin
of this discrepancy.

Finally, we can say a few words about the nature of the impurity caused by the Cu doping of the
material. As was mentioned before, the model results that we found originate from a non-magnetic
impurity that only couples to one of the two considered orbitals, see Eq. (6.23). The other orbital is
thus undisturbed by the impurity. Moreover, we found that an impurity that couples equally to both
orbitals leads to a different rotational orientation of the QPI patterns. Attempts with more types of
impurities reveal that only an impurity coupling to the first orbital leads to the orientation of the QPI
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patterns from Fig. 6.4, while other types of impurities correspond to different orientations. Since the
experiments show that the orientation seen in Fig. 6.4 is the correct one, this therefore suggests that the
actual impurities encountered in the experiments only couple to one of the orbitals as well.

6.4 Conclusions and outlook

In the second part of the thesis, we have worked out a model that can be used to describe the experi-
mentally realized quasiparticle interference in the Cu doped topological insulator CuxBi2Te3, which was
highlighted in Ref. [23]. Our main goals were to reproduce the orientation of the QPI patterns that was
found in the experiments and to confirm the existence of the different energy windows corresponding to
different dominant scattering processes.

After discussing all necessary preliminaries in Ch. 5, we introduced a tight-binding model of layers
that is capable of describing the material at hand, which was then used to calculate the changes in the
surface LDOS due to the presence of a single local surface impurity. There are several conclusions that
can be drawn from the results. First, the similarities between the results from the model and from the
experiments confirm that the model is able to reproduce the experimental results. This in turn heavily
implies that the model properly captures the experimental circumstances. A second related conclusion is
that the model is indeed capable of producing QPI patterns with the same six-fold rotational symmetry
and orientation as the ones that follow from the experiments. Referring back to the impurity that was
necessary to retrieve the correct orientation, we can also conclude that the impurities caused by the
Cu doping of the material only couple to the electrons from a single orbital. Finally, the model results
confirm that there are at least two energy windows with distinct QPI patterns, which can be explained by
the presence of two different scattering processes, namely scattering among edge states versus scattering
between edge states and the conduction band. However, besides all of the above conclusions, there
are also several quantitative differences between the model results and the experimental results, most
importantly the difference in the energy scale separating the two regions. Future work could therefore
focus on finding the origins of these differences. Still, everything being taken into account, and despite
the fact that the model results are very sensitive to the model parameters and the type and strength of
the impurity, the model proved to be very successful in qualitatively reproducing the prominent features
from the experimental results.
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Appendix

A.1 Comments on the Monte Carlo simulations

In Ch. 2, we have seen the results of Monte Carlo simulations of the antiferromagnetic Heisenberg
model on the distorted triangular lattice. We will now comment on some of the aspects related to these
simulations. For the general concepts and methods of Monte Carlo simulations in statistical physics, I
refer the reader to the book by Newman & Barkema [27].

For our simulations, we used a simple Metropolis algorithm. Starting with a random spin configura-
tion, each simulation step consists of selecting a single random spin and rotating it by a random solid
angle within a given opening angle δ. Then, the acceptance ratio is calculated according to the usual
Monte Carlo prescriptions, and this ratio is used to determine whether this random move is kept, or the
previous configuration is restored. The angle δ is chosen such that the number of accepted and discarded
moves are of the same order. First, many simulation steps are done to allow the system to thermalize
(i.e. reach thermal equilibrium). After the system is properly thermalized, the simulation continues, but
now the relevant quantities are measures as a function of time (the number of simulation steps being a
measure of time) and at the end their average values are calculated, giving us the thermal average of
these quantities at given values for J1/J2 and kBT/J2.

As was mentioned in the main text, the simulations were done using different types of boundary
conditions. Boundary conditions are necessary because a simulation must always be done on a finite
lattice (let us call it the “simulation box”), rather than an infinite lattice, and therefore we require a
description for how to handle the boundaries. The boundary conditions that were used are periodic
boundary conditions and helical boundary conditions. To see how these work, we consider the square
lattice as an example. For periodic boundary conditions, the spin at one end is simply connected to the
spin at the corresponding opposite end. For the square lattice, the four neighbours of the lattice site
located at position (x, y) are thus found at

((x± 1) modL, y) ,

(x, (y ± 1) modL) , (A.1)

where L is the length of the simulation box. While these boundary conditions are quite simple, helical
boundary conditions require even less code. Helical boundary conditions are very similar to the usual
periodic boundary conditions, but now we simply label each lattice site with a single index i and impose
that the neighbours of lattice site i are the sites

(i± 1) modL,

(i± L) modL2. (A.2)

Whichever of these boundary conditions we choose, they effectively extend the simulation box over the
entire space by filling it up with copies of the initial box, only restricting all length scales to be of the
order L at most. Fig. A.1 illustrates how the above boundary conditions work on a square lattice.
It is straightforward to generalize this example to formulate the boundary conditions on a (distorted)
triangular lattice.

Finally, we note that there is a problem that arises for Metropolis simulations on the distorted
triangular lattice that was not discussed in the main text: the system sometimes gets stuck in a local
minimum. To illustrate this, we look at the extreme case J1 = 100J2. The ground state is shown in
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Figure A.1: Example of periodic boundary conditions (left) and helical boundary conditions (right) on a
square lattice. A simulation is done in a single box (enclosed by a blue square), which is then extended over
the entire space by placing copies of this one box according to the boundary conditions. These concepts can
straightforwardly be generalized to the triangular lattice.

the bottom-right panel of Fig. 2.3. In this state and on our finite lattice, it would only cost a relatively
small amount of energy to rotate one of the chains out of plane in its entirety. Given the nature of
the single spin rotations done in the Metropolis algorithm, it would be very unlikely to change such a
configuration back to the ground state configuration. Therefore, if we start with a random configuration
and the system takes one of these local minima by chance, the algorithm will sometimes not be able to
rotate the chain back to the correct plane in a reasonable amount of time.

A.2 Additional simulation results

We will now look at some additional results from the Monte Carlo simulations. First, let us look at the
high temperature values of the order parameters. It is expected that all of the squared order parameters
that we measure are greater than zero even when the temperature goes to infinity. This is due to the
fact that the quantities are strictly non-negative for each configuration. If we then take the expectation
values for T →∞, all configurations (including ordered configurations, where the squares are non-zero)
are equally likely, such that the expectation values are strictly positive. They then go to zero when the
lattice size goes to infinity. The left panel of Fig. A.2 shows the results of the undistorted triangular
lattice up to a much higher temperature than what was previously considered. We indeed see that the
squares remain non-zero even for large temperatures, which is due to the fact that the lattice is finite.
However, we see that (QαβS )2 remains significantly larger than (Qαβκ )2, suggesting that the latter is a
more appropriate order parameter.

Next, we consider the ferromagnetic Heisenberg model on the undistorted triangular lattice (so J1 =
J2 → −J). For this model, we can use the actual magnetization rather than the staggered magnetization
that was previously used:

M ≡ 1

N

∑
i

Si. (A.3)

The results of the simulations are shown in the right panel of Fig. A.2. As can be seen in the figure,
the behaviour is the same as in the antiferromagnetic case, with the exception of (Qαβκ )2 (which now
remains zero by definition). The only apparent difference is that ordering starts to appear at a larger
temperature than in the antiferromagnetic case on the same lattice size.

Lastly, we take a moment to look at the finite size effects and compare it to a generalized three-
dimensional lattice. In order to find the actual critical temperature, one would have to extrapolate the
simulation results to an infinite lattice, and therefore we want to know how the order parameters change
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Figure A.2: Left: order parameters as functions of temperature for the antiferromagnetic Heisenberg model
on the undistorted triangular lattice using a larger temperature range than before. Right: order parameters as
functions of temperature for the ferromagnetic Heisenberg model on the undistorted triangular lattice. Both
simulations are done on lattices with N = 132 lattice sites.

with increasing lattice size. The left panel of Fig. A.3 shows the finite size scaling of the Heisenberg
antiferromagnet on the undistorted triangular lattice, ranging from N = 72 to N = 3540 lattice sites;
the curves move to the left for increasing temperature. While not conclusive from this picture alone, it
suggests that the curves are extrapolated all the way to zero in the N → ∞ limit, corresponding to a
critical temperature Tc = 0. Assuming that this is true, it agrees with the Mermin-Wagner theorem that
we encountered in Ch. 3. To see if there is a phase transition at finite temperature in a three-dimensional
system, we repeat the same procedure on a generalized three-dimensional lattice, consisting of stacked
triangular layers that are coupled antiferromagnetically (such that we simply have antiferromagnetic
chains in the third dimension). The results are found in the right panel of Fig. A.3. On this three-
dimensional lattice, finite size scaling suggests that there is a finite critical temperature of the order
kBTc/J ∼ 1, confirming that a phase transition can indeed exist for this model in three dimensions.
Note however that mean-field theory of this model would give kBTc/J = 3, so mean-field theory once
again deviates significantly from the simulations for this three-dimensional model. The above is thus
an example of the influence of the number of dimensions on the existence of a phase transition and the
validity of mean-field theory, which was explored in Sec. 3.4.
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Figure A.3: Finite size scaling of the order parameters of the antiferromagnetic Heisenberg model as a function
of temperature on the two-dimensional (undistorted) triangular lattice (left) and on the three-dimensional stacked
triangular lattice (right). The simulations on the two-dimensional lattice range from N = 72 to N = 3540 lattice
sites, while those on the three-dimensional lattice range from N = 216 to N = 5832 lattice sites. Note that the
left-most curve is always the one that corresponds to the largest lattice size.
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A.3 Gaussian integrals

In the following three sections, we will cover some useful methods, mostly applied to the models from
the main text. More information on these methods can be found in Ref. [28].

In the main text, we used Gaussian integrals several times. We will now derive the solutions of these
general integrals to support the validity of the corresponding results in the main text. The most basic
Gaussian integral is given by ∫ +∞

−∞
dx e−α(x−x0)2 =

√
π

α
, (A.4)

where x is a real variable. This identity is easily verified by switching to polar coordinates. Writing
α ≡ −G−1/2 and x0 ≡ Gb, it becomes∫ +∞

−∞
dx exp

[
1

2
G−1x2 − bx

]
=
√
−2πG exp

[
−1

2
Gb2

]
. (A.5)

This result can be generalized to an n-dimensional integral as well. First restricting ourselves to a
diagonal matrix Gij = δijGii (such that the inverse is given by G−1

ij = δij/Gii), the n different integrals
are decoupled, so we find∫ ( n∏

i=1

dxi√
2π

)
exp

1

2

∑
ij

(
xi −

∑
k

Gikbk

)
G−1
ij

(
xj −

∑
k

Gjkbk

) =
1√∏n

i=1(−G−1
ii )

=
1√

Det(−G−1)
,

(A.6)
or ∫ ( n∏

i=1

dxi√
2π

)
exp

1

2

∑
ij

xiG
−1
ij xj −

∑
i

bixi

 =
1√

Det(−G−1)
exp

−1

2

∑
ij

biGijbj

 . (A.7)

Since we are always working with positive definite (and therefore diagonalizable) matrices in the main
text, we know that there exists an orthogonal matrix O that diagonalizes the matrix G−1, such that
the matrix O ·G−1 ·O−1 is diagonal. Utilizing the coordinate transformation x→ O · x′ and exploiting
the fact that O is orthogonal, it is easily verified that the above identity holds for any positive definite
matrix −G−1. Note that if we write G−1 → G and b→ G · b, we arrive at Eq. (3.36).

In Ch. 4, we also encountered Gaussian integrals with complex variables. The integrals over complex
variables are best solved by writing them in terms of the real and imaginary parts of the complex
variables, which we will call x and y respectively, such that z = x + iy. Then, the Jacobian matrix of
the coordinate transformation z∗ = x− iy, z = x+ iy is given by

J =

(
1 −i
1 i

)
. (A.8)

Now we can calculate a Gaussian integral over a single complex variable:∫
dz∗dz exp

[
G−1z∗z

]
=

∫
dxdyDet(J) exp

[
G−1(x2 + y2)

]
= −2πiG. (A.9)

Writing z → z +Gh, the right-hand side remains the same, and we can expand the square to find∫
dz∗dz exp

[
G−1z∗z + z∗h+ h∗z

]
= −2πiG exp [−Gh∗h] . (A.10)

In much the same way as for the real case, this can be generalized to a multidimensional integral, leading
to ∫ ( n∏

i=1

dz∗i dzi
2πi

)
exp

∑
ij

z∗iG
−1
ij zj +

∑
i

z∗i hi +
∑
i

h∗i zi

 =
1

Det(−G−1)
exp

−∑
ij

h∗iGijhj

 ,
(A.11)

where −G−1 is a positive definite Hermitian matrix. This final identity is the one that is used several
times in Ch. 4 and the next section.
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A.4 Wick’s theorem

Wick’s theorem is an important tool for calculating expectation values of products of operators with
respect to a quadratic Hamiltonian. For the situations at hand, the theorem states that such expectation
values are equal to the sum of all possible products of expectation values of two operators. To illustrate
how it works, we consider the quadratic Hamiltonian

H =
Nc
2

∑
q

∑
ab

(
(εxaq )∗Mxab

q εxbq + (εyaq )∗Myab
q εybq

)
. (A.12)

Now we define the inverse Green’s function (G
x/y
q )−1 ≡ −βNc2 M

x/y
q and add source terms to the Hamil-

tonian by introducing the external fields h
x/ya
q , such that

−βH[h, h∗] =
∑
q

[
(εεεxq)∗ · (Gx

q)−1 · εεεxq + (εεεyq)∗ · (Gy
q)−1 · εεεyq + (εεεxq)∗ · hxq + (hxq)∗ · εεεxq

+(εεεyq)∗ · hyq + (hyq)∗ · εεεyq
]
. (A.13)

As was shown in the previous section and discussed in the main text, the partition function

Z[h, h∗] =

∫
Dε e−βH[h,h∗] (A.14)

can now be evaluated as

Z[h, h∗] = N exp

[
−
∑
q

(
(hxq)∗ ·Gx

q · hxq + (hyq)∗ ·Gy
q · hyq

)]
≡ N e∆ (A.15)

by means of standard Gaussian integration. From Eqs. (A.13) and (A.14), it is clear that

〈
εx/ya1q1

(εx/ya2q2
)∗ . . . εx/yan−1

qn−1
(εx/yanqn )∗

〉
=

1

Z

∂nZ

∂(h
x/ya1
q1 )∗∂h

x/ya2
q2 . . . ∂(h

x/yan−1
qn−1 )∗∂h

x/yan
qn

∣∣∣∣∣
h=0

, (A.16)

where n is an even number. However, the right-hand side of Eq. (A.16) can also be evaluated using Eq.
(A.15) and noting that

〈
εx/yaq (ε

x/yb
q′ )∗

〉
= −δq,q′

(
Gx/y

q

)ab
≡ −δq,q′Gx/yabq . (A.17)

Looking closely at the above equations, we see that the expectation value from the left-hand side of Eq.
(A.16) must indeed consist of products of expectation values of two epsilons.

While it is tedious to derive the exact expressions for the expectation values of products of many
epsilons, we will now work out the expectation value of a quartic term as an example:

〈
εxaq1

(εxbq2
)∗εxcq3

(εxdq4
)∗
〉

=
1

Z

∂4Z

∂(hxaq1
)∗∂hxbq2

∂(hxcq3
)∗∂hxdq4

∣∣∣∣∣
h=0

=
∂4e∆

∂(hxaq1
)∗∂hxbq2

∂(hxcq3
)∗∂hxdq4

∣∣∣∣∣
h=0

=
∂3

∂(hxaq1
)∗∂hxbq2

∂(hxcq3
)∗

([
−
∑
α

(hxαq4
)∗Gxαdq4

]
e∆

)∣∣∣∣∣
h=0

=
∂2

∂(hxaq1
)∗∂hxbq2

−δq3,q4
Gxcdq4

+
∑
αβ

(hxαq4
)∗Gxαdq4

Gxcβq3
hxβq3

 e∆

∣∣∣∣∣
h=0

. (A.18)

For the final two derivatives, we use the fact that we set h to zero at the end. As a result, we can simply
discard everything that would leave terms containing h. In this particular case, we can ignore the e∆
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part of the second term when taking the final two derivatives, as both derivatives are required to get rid
of the existing two h-fields. Continuing the derivation, we find

〈
εxaq1

(εxbq2
)∗εxcq3

(εxdq4
)∗
〉

=
∂

∂(hxaq1
)∗

([∑
α

(hxαq2
)∗Gxαbq2

Gxcdq4
δq3,q4

+
∑
α

(hxαq4
)∗Gxαdq4

Gxcbq3
δq2,q3

+O(h3)

]
e∆

)∣∣∣∣∣
h=0

=
(
Gxabq2

Gxcdq4
δq1,q2δq3,q4 +Gxadq4

Gxcbq3
δq1,q4δq2,q3 +O(h2)

)
e∆

∣∣∣∣∣
h=0

= Gxabq2
Gxcdq4

δq1,q2
δq3,q4

+Gxadq4
Gxcbq3

δq1,q4
δq2,q3

=
〈
εxaq1

(εxbq2
)∗
〉〈
εxcq3

(εxdq4
)∗
〉

+
〈
εxaq1

(εxdq4
)∗
〉〈
εxcq3

(εxbq2
)∗
〉
, (A.19)

which confirms the validity of Wick’s theorem for this example.

A.5 Perturbation theory and Feynman diagrams

In the following, we will see explicitly how two-point functions can be calculated perturbatively for a
Hamiltonian of the form H = H0 + gHI , where H0 is the non-interacting (“bare”) Hamiltonian, g is a
dimensionless coupling constant, and HI contains the interaction energy. As a practical example, we will
consider the Hamiltonian

H0 =
Nc
2

∑
q

∑
ab

(
(εxaq )∗Mxab

q εxbq + (εyaq )∗Myab
q εybq

)
, (A.20)

HI =
Nc
8

∑
q1,q2,q3

∑
ab

(
(εxaq1+q3

)∗εxaq1
Mxab

q3
(εxbq2−q3

)∗εxbq2
+ (εyaq1+q3

)∗εyaq1
Mxab

q3
(εybq2−q3

)∗εybq2

+(εxaq1+q3
)∗εxaq1

Mxab
q3

(εybq2−q3
)∗εybq2

+ (εyaq1+q3
)∗εyaq1

Mxab
q3

(εxbq2−q3
)∗εxbq2

)
, (A.21)

and calculate the two-point functions up to first order in g.

We will consider the following two-point functions:

〈
εx/yaq (εx/ybq )∗

〉
=

∫
Dε εx/yaq (ε

x/yb
q )∗e−βH∫

Dε e−βH
. (A.22)

Assuming that the interaction term gHI is small, the exponents can be approximated as

e−βH = e−βH0 (1− βgHI) +O(g2), (A.23)

such that the two-point functions become

〈
εx/yaq (εx/ybq )∗

〉
=

∫
Dε εx/yaq (ε

x/yb
q )∗ (1− βgHI) e

−βH0∫
Dε (1− βgHI) e−βH0

+O(g2)

=

〈
ε
x/ya
q (ε

x/yb
q )∗

〉
0
− βg

〈
ε
x/ya
q (ε

x/yb
q )∗HI

〉
0

1− βg 〈HI〉0
+O(g2)

=
〈
εx/yaq (εx/ybq )∗

〉
0
− βg

(〈
εx/yaq (εx/ybq )∗HI

〉
0
−
〈
εx/yaq (εx/ybq )∗

〉
0
〈HI〉0

)
+O(g2),

(A.24)

where 〈. . .〉0 denotes an expectation value according to the bare Hamiltonian H0. Noting that H0 is
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quadratic, we can calculate the bare expectation values by carefully applying Wick’s theorem:〈
εx/yaq (εx/ybq )∗HI

〉
0
−
〈
εx/yaq (εx/ybq )∗

〉
0
〈HI〉0

=
Nc
8

∑
q1,q2,q3

∑
cd

Mxcd
q3

(〈
εx/yaq (ε

x/yc
q1+q3

)∗
〉

0

〈
εx/ycq1

(εx/ybq )∗
〉

0

〈
εx/ydq2

(ε
x/yd
q2−q3

)∗
〉

0

+
〈
εx/yaq (ε

x/yc
q1+q3

)∗
〉

0

〈
εx/ycq1

(ε
x/yd
q2−q3

)∗
〉

0

〈
εx/ydq2

(εx/ybq )∗
〉

0

+
〈
εx/yaq (ε

x/yd
q2−q3

)∗
〉

0

〈
εx/ycq1

(εx/ybq )∗
〉

0

〈
εx/ydq2

(ε
x/yc
q1+q3

)∗
〉

0

+
〈
εx/yaq (ε

x/yd
q2−q3

)∗
〉

0

〈
εx/ycq1

(ε
x/yc
q1+q3

)∗
〉

0

〈
εx/ydq2

(εx/ybq )∗
〉

0

+
〈
εx/yaq (ε

x/yc
q1+q3

)∗
〉

0

〈
εx/ycq1

(εx/ybq )∗
〉

0

〈
εy/xdq2

(ε
y/xd
q2−q3

)∗
〉

0

+
〈
εx/yaq (ε

x/yd
q2−q3

)∗
〉

0

〈
εy/xcq1

(ε
y/xc
q1+q3

)∗
〉

0

〈
εx/ydq2

(εx/ybq )∗
〉

0

)
= −Nc

8

∑
q1,q2,q3

∑
cd

Mxcd
q3

(
Gx/yacq Gx/ycbq Gx/yddq2

δq,q1δq3,0 +Gx/yacq Gx/ycdq1
Gx/ydbq δq,q2δq3,q2−q1

+Gx/yadq Gx/ycbq Gx/ydcq2
δq,q1

δq3,q2−q1
+Gx/yadq Gx/yccq1

Gx/ydbq δq,q2
δq3,0

+ Gx/yacq Gx/ycbq Gy/xddq2
δq,q1

δq3,0 +Gx/yadq Gy/xccq1
Gx/ydbq δq,q2

δq3,0

)
= −Nc

8

∑
q′

∑
cd

[
Mxcd

0

(
Gx/yacq Gx/ycbq G

x/ydd
q′ +Gx/yadq G

x/ycc
q′ Gx/ydbq +Gx/yacq Gx/ycbq G

y/xdd
q′

+ Gx/yadq G
y/xcc
q′ Gx/ydbq

)
+Mxcd

q−q′
(
Gx/yacq G

x/ycd
q′ Gx/ydbq +Gx/yacq Gx/ydbq G

x/ycd
q′

)]
.

(A.25)

Note that if one chooses to look at the x from x/y, then y/x should be interpreted as y (and the other
way around). Additionally, for the final term of Eq. (A.25) we used the fact that Mx

q is Hermitian,
combined with the reality condition (Mx

q)∗ = Mx
−q. We can now immediately see that the final two

terms are the same. The properties of Mx
q also lead to Mx

0 being symmetric, from which we conclude
that first two terms are the same, as well as the third and the fourth terms. Hence, we find〈
εx/yaq (εx/ybq )∗HI

〉
0
−
〈
εx/yaq (εx/ybq )∗

〉
0
〈HI〉0

= −Nc
4

∑
q′

∑
cd

[
Mxcd

0

(
Gx/yacq Gx/ycbq G

x/ydd
q′ +Gx/yacq Gx/ycbq G

y/xdd
q′

)
+Mxcd

q−q′G
x/yac
q G

x/ycd
q′ Gx/ydbq

]
.

(A.26)

Plugging this back in, the two-point function becomes〈
εx/yaq (εx/ybq )∗

〉
= −Gx/yabq +

gNc
4kBT

∑
q′

∑
cd

[
Mxcd

0

(
Gx/yacq Gx/ycbq G

x/ydd
q′ +Gx/yacq Gx/ycbq G

y/xdd
q′

)
+ Mxcd

q−q′G
x/yac
q G

x/ycd
q′ Gx/ydbq

]
+O(g2). (A.27)

To make everything a bit more compact, we can introduce Feynman diagrams. We define the com-
ponents of the diagrams according to Table 4.1. In addition to these definitions, we sum over all indices
belonging to vertices and over all momenta that go around a loop, absorbing all prefactors into the latter.
This results in the following expression:

〈
εxaq (εxbq )∗

〉
=�

qa b
−�

q q

0

q′

a c b

d

−�
q q

0

q′

a c b

d

− 
q q′

q− q′

qa c d b
+O(g2).

(A.28)
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The same expression also holds for the expectation value
〈
εyaq (εybq )∗

〉
, but with the solid and dashed lines

interchanged:

〈
εxaq (εxbq )∗

〉
=!

qa b
−"

q q

0

q′

a c b

d

−#
q q

0

q′

a c b

d

−$
q q′

q− q′

qa c d b
+O(g2).

(A.29)

Contracting all of the potentials (i.e. the matrices Mxab
q ) to a single point, we see that all first order

terms are indeed of the form

% , (A.30)

in accordance with the usual Feynman rules of φ4 theory.
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B.1 Tight-binding band structure of graphene

In Ch. 5, we discussed tight-binding models and how they can be used to find the dispersion relation
and overall band structure of a material. In this section, we will use these methods to derive the famous
dispersion relation of graphene as an example.

The underlying lattice of graphene is the honeycomb lattice, see Fig. B.1. As can be seen in the
figure, there are two distinct types of lattice sites, both with different nearest neighbours, and a unit cell
consists of one lattice site of each type. Choosing our basis, the vectors between the nearest neighbours
are given by

δδδ1 = a

(
0
1

)
, δδδ2 =

a

2

(
−
√

3
−1

)
, δδδ3 =

a

2

(√
3
−1

)
, (B.1)

where a is the lattice constant. The lattice vectors are then given by

a1 = a

(√
3

0

)
= δδδ3 − δδδ2, a2 =

a

2

(√
3

3

)
= δδδ1 − δδδ2. (B.2)

Since there are two distinct types of lattice sites, we assign them different creation and annihilation
operators: a† and a for one type, b† and b for the other. The Hamiltonian of our tight-binding model is
now given by

H = −t
∑
σ,〈i,j〉

[
a†σibσj + h.c.

]
. (B.3)

Here, t is the hopping parameter, σ ∈ {↑, ↓} is the spin, and 〈i, j〉 once again denotes the sum over
all nearest neighbour pairs. Setting the number of unit cells to be N and taking the Fourier transform
according to Eq. (5.4), we immediately find that the Hamiltonian can also be written as

H = −t
∑
σ,k

[
a†σkbσ,k

(
eik·δδδ1 + eik·δδδ2 + eik·δδδ3

)
+ h.c.

]
=
∑
σ,k

(
a†σk b

†
σk

)( 0 ∆k

∆∗k 0

)(
aσk
bσk

)
, (B.4)

with

∆k ≡ −t
(
eik·δδδ1 + eik·δδδ2 + eik·δδδ3

)
= −t

(
eiaky + e−ia(ky+

√
3kx)/2 + e−ia(ky−

√
3kx)/2

)
= −t e−iaky/2

(
2 cos(

√
3akx/2) + e3iaky/2

)
. (B.5)

The dispersion relation is again given by the eigenvalues of the Hamiltonian. Using the above equations,
we find

ω = ±|∆k| = ±t
√

4 cos2(
√

3akx/2) + 4 cos(
√

3akx/2) cos(3aky/2) + 1

= ±t
√

3 + 2 cos(
√

3akx) + 4 cos(
√

3akx/2) cos(3aky/2). (B.6)

The above dispersion relation gives rise to two different energy bands: one corresponding to the +
solution, and one corresponding to the − solution. The resulting bands are shown in Figs. B.2 and
B.3. As can be seen from these figures, it turns out that something interesting happens in this model:
the two bands touch at the several different points where ∆k = 0. It is straightforward to see that
this happens when the exponent inside the brackets of Eq. (B.5) is equal to ±1 and the cosine is equal
to ∓1/2 (depending on the value of aky). We thus find that the bands touch when aky = ±2π/3 and
akx = ±2π/3

√
3 simultaneously, or alternatively when aky = 0 and akx = ±4π/3

√
3. These six points

are called the Dirac points. As we will see below, there are two different types of Dirac points, located at
the points K and K′ of the first Brillouin zone. We will now expand the Hamiltonian close to the Dirac
points to see what happens in these regions.
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a1

a2

δ1

δ2

δ3

Figure B.1: Schematic view of the honeycomb lattice. There are two different types of lattice sites, denoted by
the red and the blue dots. A unit cell (indicated by a blue dashed line) consists of two lattice sites, one of each
type. The vectors δδδi are the vectors between nearest neighbours, while the vectors ai are the lattice vectors.

Since ∆k is zero at the Dirac points, its lowest order expansion is given by

∆k = ∇k∆k

∣∣∣∣
k=k0

· (k− k0) +O((k − k0)2), (B.7)

where k0 denotes the wave vector corresponding to a Dirac point. Let us calculate the gradient of ∆k:

∇k∆k = at e−iaky/2
( √

3 sin(
√

3akx/2)

i cos(
√

3akx/2)− i e3iaky/2

)
(B.8)

⇒ ∇k∆k

∣∣∣∣
k=k0

= C
3at

2

(
1
±i

)
. (B.9)

The ± that appears in the final line depends on the type of the Dirac point we are looking at (i.e. a K
point or a K′ point). Moreover, the constant C = ±e−iak0,y/2 that appears in the final line is a complex
number with absolute value 1. Since only the absolute value of ∆k appears in the eigenvalues of the
Hamiltonian, this overall constant will not influence any physical quantities, and we can therefore set it
to one without losing any information. Redefining k to be the wave vector with respect to a Dirac point,

kx

ky

K K'M

Γ

Figure B.2: Left: first Brillouin zone of graphene and the definition of the points Γ, M, K and K′. It is “rotated”
by 90 degrees with respect to the underlying lattice. Right: band structure of the model. Note the existence of
six points where the bands touch. These Dirac points are denoted by red dots in the left panel.
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B.1. Tight-binding band structure of graphene

Figure B.3: Left: spectral-weight function of graphene along a path through symmetry points of the first
Brillouin zone, showing the band structure. Right: dispersion close to one of the Dirac points (i.e. the K and K′

points of the first Brillouin zone), also known as a Dirac cone.

rather than to the origin in momentum space, we find

∆k =
3at

2
(kx ± iky) +O(k2), (B.10)

where the ± once again corresponds to the type of the Dirac point. Returning to the Hamiltonian of Eq.
(B.4), we find that its matrix is given by

Hk =

(
0 ∆k

∆∗k 0

)
≈ 3at

2

(
0 kx ± iky

kx ∓ iky 0

)
= vF (σ1kx ∓ σ2ky) . (B.11)

Here, vF ≡ 3at/2 is the Fermi velocity (up to a factor ~, which we set to one), and σi are Pauli matrices.
As the ∓ that appears here does not influence any physical quantities either, we can finally write the
Hamiltonian as

Hk = vFσσσ · k (B.12)

in the vicinity of a Dirac point. From here, it immediately follows that

ω = ±vF |k| (B.13)

in the regions of interest. Even though the above model has a spinor structure and even contains Pauli
matrices, it should be noted that the spinor components have nothing to do with the actual spin. Instead,
they correspond to the two different sublattices (denoted by the red and blue dots in Fig. B.1).

We thus find that the dispersion relation is linear close to the Dirac points. This is quite different
from materials such as semiconductors, where the dispersion relation is often quadratic, and it leads
to different properties. Physically, this linear dispersion means that the relevant electron and hole
quasiparticles behave like massless particles. However, the speed of light in the usual dispersion relation
of massless particles has now been replaced by the Fermi velocity vF . This can also be seen from the
observation that Eq. (B.12) is equivalent to the massless Dirac Hamiltonian, which confirms that we are
indeed looking at relativistic massless Dirac fermions. The above tight-binding description of graphene
is therefore an example of a so-called Dirac semimetal.

Although the low-energy Hamiltonian of Eq. (B.12) is only an approximation of the more general
Hamiltonian in the vicinity of the Dirac points, it is still very successful in describing the physics in these
regions. This fact is illustrated in Ch. 5 and applied in Ch. 6, where the full Hamiltonian is unknown
and the approximate small-k model has to suffice.
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B.2 Efficient iterative methods for the numerical calculation of
surface Green’s functions

In Ch. 6, we have numerically calculated the surface Green’s functions corresponding to systems with
a large number of layers. These surface Green’s functions are the 4× 4 top-left corner of corresponding
the bulk Green’s functions. Naively, we could therefore calculate a surface Green’s function by simply
calculating the entire bulk Green’s function and then extracting some of the components. However, this
method is increasingly inefficient for large numbers of layers, as we would have to calculate the entire
inverse of a very large matrix, while only being interested in some of the components. Rather than using
this inefficient method, we have therefore used much more efficient iterative methods in order to calculate
the surface Green’s functions. In this section, we will cover the iterative methods used in the main text.
The original derivation of these methods can be found in Ref. [25].

Before turning our attention to the methods themselves, we first introduce the notation we will use in
order to avoid confusion. The bulk retarded Green’s function corresponding to a system with Nz layers,

G+(k||, ω) = lim
δ→0+

(
(ω + iδ)I4Nz −Hk||

)−1
, (B.14)

will simply be denoted by GNz , such that it can be written as

GNz =

G
Nz
00 GNz01 · · ·

GNz10 GNz11 · · ·
...

...
. . .

 . (B.15)

Here, GNzij (with i, j ∈ {0, 1, . . . , Nz − 1}) are 4 × 4 matrices, and GNz00 is the surface Green’s function
corresponding to a system with Nz layers.

In order to find the components GNz00 of the bulk Green’s function, we consider the inverse of a block
matrix of the form

M =

(
An×n Bn×m
Cm×n Dm×m

)
, M−1 ≡

(
Un×n Vn×m
Wm×n Xm×m

)
. (B.16)

From the definition of the matrix inverse, we find the equations

An×n ·Un×n + Bn×m ·Wm×n = In, (B.17)

An×n ·Vn×m + Bn×m ·Xm×m = 0n×m, (B.18)

Cm×n ·Un×n + Dm×m ·Wm×n = 0m×n, (B.19)

Cm×n ·Vn×m + Dm×m ·Xm×m = Im. (B.20)

Eqs. (B.17) and (B.19) can then immediately be used to find Un×n:

Un×n = A−1
n×n −A−1

n×n ·Bn×m ·Wm×n

= A−1
n×n + A−1

n×n ·Bn×m ·D−1
m×m ·Cm×n ·Un×n, (B.21)

⇒ Un×n =
(
In −A−1

n×n ·Bn×m ·D−1
m×m ·Cm×n

)−1 ·A−1
n×n

=
(
An×n −Bn×m ·D−1

m×m ·Cm×n
)−1

, (B.22)

which is valid as long as the matrices Dm×m and
(
An×n −Bn×m ·D−1

m×m ·Cm×n
)

are invertible. This

result can be used to find the surface Green’s function. Identifying M as the matrix
(
(ω + iδ)I4Nz −Hk||

)
and using the Hamiltonian Hk|| from Eq. (6.11) with h2 = 0, we can decompose it by defining

A4×4 = (ω + iδ)I4 − h0(k||) =
(
G1
)−1

, (B.23)

B4×4(Nz−1) = (−h1 0 0 · · · ) , (B.24)

C4(Nz−1)×4 = (−h1 0 0 · · · )† , (B.25)

D4(Nz−1)×4(Nz−1) =
(
GNz−1

)−1
. (B.26)
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Then, we can use Eq. (B.22) to find the top-left 4× 4 block of the inverse of this matrix:

GNz00 = U4×4 =
(

(ω + iδ)I4 − h0(k||)− (−h1 0 0 · · · )GNz−1 (−h1 0 0 · · · )†
)−1

=
(

(ω + iδ)I4 − h0(k||)− h1G
Nz−1
00 h†1

)−1

(B.27)

Together with the Green’s function corresponding to a single layer,

G1 = G1
00 =

(
(ω + iδ)I4 − h0(k||)

)−1
, (B.28)

we have thus found a method to iteratively calculate the surface Green’s function of a system consisting
of Nz layers. With this method, each iterative step adds an additional layer to the bulk Hamiltonian,
while the numerical calculation of each step requires an equal amount of time. As a result, the time
required to calculate the surface Green’s function now only scales linearly with the number of layers Nz,
which is a significant improvement over inversion of the entire matrix. It should also be noted that this
iterative method is simply a clever way to calculate some components of the inverse matrix by making use
of the symmetries of the matrix, and has nothing to do with physics. Consequently, the above relations
are valid for any matrix of the same form as our matrix

(
(ω + iδ)I4Nz −Hk||

)
.

In the above, we assumed that the next-nearest neighbour coupling h2 is zero. However, it is straight-
forward to generalize the methods to also include h2. Following the same steps, but working with 8× 8
blocks GNzij rather than using 4× 4 blocks GNzij , we find

GNz00 =

(
(ω + iδ)I8 −

(
h0(k||) h1

h†1 h0(k||)

)
−
(
−h2 0 0 · · ·
−h1 −h2 0 · · ·

)
GNz−2

(
−h2 0 0 · · ·
−h1 −h2 0 · · ·

)†)−1

=

(
(ω + iδ)I8 −

(
h0(k||) h1

h†1 h0(k||)

)
−
(
h2 0
h1 h2

)
GNz−2

00

(
h†2 h†1
0 h†2

))−1

, (B.29)

with the initial condition

G2 = G2
00 =

(
(ω + iδ)I8 −

(
h0(k||) h1

h†1 h0(k||)

))−1

. (B.30)

The surface Green’s function we are interested in is now given by the 4× 4 lop-left quarter of GNz00 .

Although the above methods are already a huge improvement over brute force calculations, there is
an even more efficient method, highlighted in Ref. [25], that builds on Eq. (B.27). In the following,
we once again set h2 = 0. For reasons that will become clear later on, we start with calculating the
component GNz10 of the bulk Green’s function. Using Eqs. (B.19), (B.22) and (B.27), we find

W4(Nz−1)×4 = −D−1
4(Nz−1)×4(Nz−1) ·C4(Nz−1)×4 ·U4×4

= −GNz−1 (−h1 0 0 · · · )†GNz00 , (B.31)

from which it follows (by considering the top 4× 4 block) that

GNz10 = GNz−1
00 h†1G

Nz
00

≡ TGNz00 . (B.32)

Referring back to Eq. (B.27), we see that the surface Green’s function corresponding to Nz layers can
also be written as

GNz00 =
(
(ω + iδ)I4 − h0(k||)− h1T

)−1
. (B.33)

Thus, in order to find the surface Green’s function, we have to find an efficient way to calculate the
matrix T . We will do so by calculating the component GNz10 in terms of the surface Green’s function GNz00

and reading off T according to Eq. (B.32).
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Closely following the derivation from Ref. [25], the Green’s function Eq. (B.14) can be written in
the following way:

(ω + iδ)I4 − h0(k||) −h1 0 · · ·
−h†1 (ω + iδ)I4 − h0(k||) −h1 · · ·

0 −h†1 (ω + iδ)I4 − h0(k||)
. . .

...
...

. . .
. . .


G

Nz
00 GNz01 · · ·

GNz10 GNz11 · · ·
...

...
. . .

 = I4Nz .

(B.34)
Some of the equations hidden in this expression are the equations(

(ω + iδ)I4 − h0(k||)
)
GNz00 = I4 + h1G

Nz
10 , (B.35)(

(ω + iδ)I4 − h0(k||)
)
GNz10 = h†1G

Nz
00 + h1G

Nz
20 , (B.36)(

(ω + iδ)I4 − h0(k||)
)
GNz20 = h†1G

Nz
10 + h1G

Nz
30 , (B.37)

...(
(ω + iδ)I4 − h0(k||)

)
GNzNz−1 0 = h†1G

Nz
Nz−2 0, (B.38)

or

GNzn0 =
(
(ω + iδ)I4 − h0(k||)

)−1
(
h†1G

Nz
n−1 0 + h1G

Nz
n+1 0

)
≡ t0GNzn−1 0 + t̃0G

Nz
n+1 0

= t0

(
t0G

Nz
n−2 0 + t̃0G

Nz
n0

)
+ t̃0

(
t0G

Nz
n0 + t̃0G

Nz
n+2 0

)
, (B.39)

⇒ GNzn0 =
(
I4 − t0t̃0 − t̃0t0

)−1
(
t20G

Nz
n−2 0 + t̃20G

Nz
n+2 0

)
≡ t1GNzn−2 0 + t̃1G

Nz
n+2 0, (B.40)

for n ≥ 2. The step from Eq. (B.39) to Eq. (B.40) can be repeated iteratively to find

GNzn0 = tiG
Nz
n−2i 0 + t̃iG

Nz
n+2i 0, (B.41)

for n ≥ 2i, with

ti =
(
I4 − ti−1t̃i−1 − t̃i−1ti−1

)−1
t2i−1, (B.42)

t̃i =
(
I4 − ti−1t̃i−1 − t̃i−1ti−1

)−1
t̃2i−1. (B.43)

Now we are in a position to calculate GNz10 :

GNz10 = t0G
Nz
00 + t̃0G

Nz
20

=
(
t0 + t̃0t1

)
GNz00 + t̃0t̃1G

Nz
40

=
(
t0 + t̃0t1 + . . .+ t̃0 . . . t̃i−1ti

)
GNz00 + t̃0 . . . t̃iG

Nz
2i+1 0. (B.44)

For a system with Nz = 2i+1 layers, GNz2i+1 0 is the first component of the Green’s function that does
not exist. From Eqs. (B.35) to (B.38), we see that the place in which this component would appear is
simply not present in the equations, and as a result we can equivalently set GNz2i+1 0 to zero. We therefore
conclude that the matrix Ti corresponding to a system with Nz = 2i+1 layers is given by the expression

Ti = t0 + t̃0t1 + . . .+ t̃0 . . . t̃i−1ti

= t0 + τ1t1 + . . .+ τiti

= Ti−1 + τiti, (B.45)

with

τi = t̃0t̃1 . . . t̃i−1

= τi−1t̃i−1. (B.46)
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Thus, starting from t0, t̃0 (defined in Eq. (B.39)), T0 = t0 and τ1 = t̃0, we can iteratively calculate Ti
using Eqs. (B.42), (B.43), (B.45) and (B.46). If we then plug the resulting Ti into Eq. (B.33), we find
the surface Green’s function of a system consisting of Nz = 2i+1 layers.

Even though the first iterative method that we covered is already quite efficient, this final method
is even much more efficient: while each iterative step consists of more calculations and will take more
time than for the first method, each step still takes equally long, and now the time required to calculate
surface Green’s functions only scales logarithmically with the number of layers. This is because each
iteration does not simply add a layer to the bulk Hamiltonian, but instead doubles the number of layers
of the bulk Hamiltonian. Consequently, with this final method it only requires 19 iterations to consider
a system of over one million layers. With the first method, a million layers would require one million
iterations (which would take an inconveniently long time), and inverting a four million by four million
matrix by brute force would no longer be doable. Due to the extreme efficiency of the final algorithm,
that is the one that we use for the calculations of Ch. 6. Finally, it should be noted that this method is
once again just a very clever way of calculating components of the inverse matrix, and can be used for
any matrix of the same form.

99





Bibliography

[1] A. P. Ramirez, “Strongly geometrically frustrated magnets,” Ann. Rev. Mater. Sci. 24, 453 (1994).

[2] J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, “Hidden order in a frustrated system:
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