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Abstract

We discuss three algorithms to find small norm elements in number fields. One of
these algorithms is a continued fraction-like algorithm based on the LLL-reduction of
positive definite quadratic forms as suggested by Beukers. The other two algorithms

are adaptations of that algorithm. We discuss how to find units from these small norm
elements and how to extract a system of independent units from that. We discuss
properties of these algorithms and compare them to algorithms by Cohen, Diaz y
Diaz, Olivier, by Buchmann, Pethő and by Pohst, Zassenhaus. We run tests on an

implementation of these algorithms in Mathematica.
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Chapter 1

Introduction

In this thesis, K = Q(α) will denote an algebraic number field obtained by adjoining to
Q a root α of an irreducible polynomial f of degree n. Let σ1, . . . , σn be the embeddings
of K in C of which r1 are real and 2r2 are complex. Then the degree of K is [K : Q] =
n = r1 + 2r2. We will write OK for the ring of integers of K, which has integral basis
α1, . . . , αn ∈ OK . The discriminant of K, denoted ∆K , is the square of the determinant
of the n× n matrix with entries σi(αj). An element x ∈ OK can be written uniquely as

x =
n∑
i=1

xiαi,

with xi ∈ Z. We will write x(i) = σi(x) for its ith conjugate.
By the norm of x, denoted N(x), we mean

N(x) = NK/Q(x) =
n∏
i=1

x(i).

We are interested in the elements x of OK with N(x) = ±1, which are called units. The
units of OK form a group, which we will denote by O∗K . In 1846, Dirichlet [9] showed
that this group is finitely generated of rank r1 + r2 − 1.

Theorem 1.1 (Dirichlet’s Unit Theorem). LetOK be the ring of integers of a field K, admit-
ting r1 real and 2r2 complex embeddings, and write µ for the group of roots of unity in OK .
Then µ is finite, and OK/µ is a free abelian group of rank r1 + r2 − 1.

A proof can be found in [26]. The theorem implies that we can write

O∗K = µ× 〈η1〉 × · · · × 〈ηr1+r2−1〉,

where µ is the group of roots of unity inO∗K and η1, . . . , ηr1+r2−1 are so-called fundamen-
tal units. This system of fundamental units is unique up to coordinate transformations
and multiplication by roots of unity.
We will give a small example to illustrate this theorem.

Example 1.2. Consider f(X) = X5−19, and let α = 191/5 be a root of f . ThenK = Q(α)
has degree 5 over Q. Now OK has 1 real and 4 complex embeddings, so Dirichlet’s
Unit Theorem tells us that O∗K = µ × 〈η1〉 × 〈η2〉. It turns out that µ = {±1} and that
η1 = 1 + α+ α3 and η2 = 4 + 2α+ α4 are fundamental units.

In general, if r1 > 0, then we have µ = {±1}, since R contains no other roots of unity. In
the totally complex case r1 = 0, the roots of unity are also easily calculated. In Chapter
5, we will discuss how that could be done.

1



Chapter 1. Introduction 2

We will give another example, which shows that the ability of finding units can solve
certain Diophantine equations.

Example 1.3. The Pell equation is the equation x2 − dy2 = 1, to be solved for positive
integers x, y for a given nonzero integer d. This equation has a rich history, and solving
it boils down to finding units in a number field. To see this, note that we can rewrite the
equation as (x+y

√
d)(x−y

√
d) = 1. Hence, a solution to the Pell equation corresponds

to a unit in the ring Z[
√
d]. On the other hand, if we can find a unit of norm 1 in

Z[
√
d], we have found a solution to the Pell equation. Here the units ±1 of Z[

√
d] are

considered trivial. If d = 19, then (x, y) = (170, 39) found in the example above solve
the Pell equation. The other solutions are given by powers of 170 + 39

√
19.

Note that the above example can be solved using a simple continued fraction algorithm
like in [16, p. 11]. However, for larger degree number fields, finding a system of fun-
damental units is a more difficult task.
In this thesis, we will focus on finding elements of small norm, which we can then
combine to create units. From these units, we then try to find a system of fundamental
units. In Chapter 3 we discuss three algorithms that we have also implemented. These
algorithms are designed to return many elements of bounded norm using quadratic
form reductions. We will also discuss some existing algorithms developed by others in
Chapter 4. We compare these algorithms and discuss differences and similarities. In
Chapter 5, we explain how to obtain a system of fundamental units from elements of
small norm. This is implemented together with the algorithms of Chapter 3 in Chapter
6. Before we do all that, we need to introduce the notions of quadratic forms and LLL
reduction. This will be the topic of Chapter 2.



Chapter 2

Quadratic Forms

A quadratic form is a polynomial of the form

Q(x) =
n∑

i,j=1

qijxixj

in the variables x1, x2, . . . , xn and with qij = qji ∈ R for 1 ≤ i, j ≤ n. To such a quadratic
form we associate a matrix Q = (qij)1≤i,j≤n. The absolute value of the determinant of
Q is called the determinant of the form, which we will denote by D(Q). We call a
quadratic form positive definite if Q(x) ≥ 0 for all x ∈ Rn and Q(x) = 0 if and only if
x = 0. From now on, with form we will mean a positive definite quadratic form. Two
forms Q,Q′ will be called equivalent if there exists P ∈ GLn(Z) such that Q′ = P tQP .
Note that D(Q′) = D(Q), since detP = ±1.
A central task with quadratic forms is finding minima. This is also our goal, because,
as we will show later, by finding minima of forms we are able to find elements of small
norm in number fields. By µ(Q) we will denote the minimal non-zero value of the set
{Q(x)|x ∈ Zn}. The following theorem by Hermite gives a bound on this minimum in
terms of the determinant of Q.

Theorem 2.1 (Hermite). For every n ≥ 2 there exists γn such that µ(Q) ≤ γnD(Q)1/n for
all positive definite quadratic forms Q in n variables.

The smallest possible values of γn are called Hermite’s constants. We have in general
γn ≤ 2n/3.
We will show below that quadratic forms are related to lattices.

2.1 Lattices

A lattice L in a vector space V is a subgroup of V of the form

L = Z · b1 + Z · b2 + · · ·+ Z · bn

for linearly independent b1,b2, . . . ,bn ∈ V . The integer n is called the rank of L. We
will look at lattices L of maximal rank, meaning that the vector space V has dimension
n. Because of our interests, from now on we will look at lattices in V = Rn.
Let b1,b2, . . . ,bn ∈ V be a Z-basis ofL. We define the matrixQ = (bi ·bj)1≤i,j≤n, which
we will call the Gram matrix of the bi. We define the determinant d(L) of L to be d(L) =√

detQ. A geometric interpretation is that d(L) is the volume of the parallelepiped
spanned by the basis vectors. Let A be the matrix with columns b1,b2, . . . ,bn. Then
Q = ATA, so detQ = (detA)2. Hence if b1,b2, . . . ,bn ∈ V form a Z-basis of L, then
detQ > 0. Moreover, Q is positive definite and symmetric, hence it corresponds to a

3



Chapter 2. Quadratic Forms 4

positive definite quadratic form. In particular, Q(x1, . . . , xn) = |x1b1 + · · ·+ xnbn|2. If
we change the Z-basis, this amounts to replacing A with AP for a P ∈ GLn(Z), hence
we get Q′ = P TQP . Hence equivalence classes of lattices correspond to equivalence
classes of forms.
Conversely, if Q is the n × n matrix of a positive definite quadratic form, we can de-
compose Q as Q = F−1DF where F is the matrix of eigenvectors and D the diag-
onal matrix whose diagonal elements are the corresponding eigenvalues, which are
real and positive. Let E be the matrix with entries Eii =

√
Dii, so E2 = D. If we

let b1,b2, . . . ,bn be the columns of A = EF , then Q is their Gram matrix. Indeed,
ATA = F TETEF = F−1EEF = F−1DF = Q Moreover, the vectors bi are linearly
independent, so they span a lattice in Rn. Similar to before, if we consider a form Q′

equivalent to Q, then we have Q′ = P TQP = P TATAP for P ∈ GLn(Z), so we have
replaced A by AP and obtained an equivalent lattice.
Hence we have shown that there is a natural correspondence between forms and lat-
tices. There are many reduction algorithms for lattices, which we can now translate to
reductions of forms.

2.2 Reduced lattices and forms

We saw before that there are equivalence classes of lattices and forms. For determina-
tion of µ(Q) we want to be able to find "nice" representatives for an equivalence class,
which are called reduced. The process of finding such representatives is called reduction.
There are different definitions of reduced, among which there are Hermite, Minkowski,
Hermite-Korkin-Zolotarev (HKZ), Venkov and Lenstra-Lenstra-Lovasz (LLL) reduced.
We will briefly discuss the notions of Minkowski and HKZ reducedness here.

2.2.1 Minkowski reduced

In 1891, Minkowski [22] came up with a notion of reduced bases, now known as
Minkowski reduced bases. We will start by stating the definition in terms of lattice
bases.

Definition 2.2. A lattice basis b1, . . . ,bn of a lattice L is called Minkowski reduced if for
all i we have

|bi| ≤ |m| = |
n∑
j=1

mjbj | for all m ∈ L with gcd(mi, . . . ,mn) = 1.

Another way of putting it, is that for all i, bi is a shortest lattice element that can be
extended to a basis with (b1, . . . ,bi−1).
For forms, as one might expect, we have the following definition.

Definition 2.3. A form Q(x) is called Minkowski reduced if for all i we have

Q(ei) ≤ Q(m) for all m ∈ Zn with gcd(mi, . . . ,mn) = 1.

We can see that if we have a Minkowski reduced form Q = (qij)ij , then q11 is the small-
est non-zero value of Q restricted to Zn. Hence if we are able to calculate a Minkowski
reduced form equivalent to a given form Q, we know µ(Q). In [15], an algorithm to
construct a Minkowski reduced lattice basis is discussed. However, the number of in-
equalities that characterise Minkowski reducedness grows very quickly, making the
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algorithm run in exponential time with respect to n. Hence the algorithm is impractical
for our purposes.

2.2.2 HKZ reduced

The notion of HKZ reducedness was initiated in 1850 by Hermite [17] and in 1873
by Korkin and Zolotareff [19]. Let µij be as defined in (2.2). We have the following
definition.

Definition 2.4. A lattice basis b1, . . . ,bn of a lattice L is called HKZ reduced if the fol-
lowing conditions hold:

1. |µij | ≤ 1
2 for i < j,

2. |b1| is the smallest non-zero vector of L,

3. the orthogonal projection of the vectors b2, . . . ,bn to b1 is HKZ reduced.

For forms, we have the following definition, where µij is as defined in the recursive
form of Q.

Definition 2.5. A form Q(x) is called HKZ reduced if the following conditions hold:

1. µij ≤ 1
2 for i < j,

2. b1 = µ(Q),

3. the form Q− b1(x1 + µ12x2 + · · ·+ µ1nxn)2 in x2, . . . , xn is HKZ reduced.

Again, it is easily seen that the two definitions are equivalent.
It turns out that when a form is HKZ reduced, then bi ≤ bi+1 + µ2i,i+1bi, which is a
stronger version of (2.7) which we will see in the next section.
Like with a Minkowski reduced form, if we have a HKZ reduced form, we immediately
have µ(Q). However, again like with Minkowski reducedness, it is very expensive to
compute an HKZ reduced basis. Several algorithms exist, for example the algorithm
by Kannan [13]. However, all known algorithms run in exponential time.

2.3 LLL reduction

LLL reduction is named after Lovasz, Lenstra and Lenstra, who proposed it in 1982
[20]. Even though it does not give optimal output, it has proven to be fast and yield-
ing good results. It will prove useful for finding units, which we will see in the next
chapters. First, we will look at the notion of LLL reduced lattices, then at LLL reduced
forms.

2.3.1 LLL reduced lattice bases

Given a basis b1,b2, . . . ,bn of a lattice L, define the vectors b∗i (1 ≤ i ≤ n) and the
numbers µij (1 ≤ i < j ≤ n) recursively by

b∗i = bi −
i−1∑
j=1

µjib
∗
j , (2.1)

µij = (bi · b∗j )/(b∗j · b∗j ). (2.2)
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This is the well-known Gram-Schmidt process and we know that the b∗i form an or-
thogonal basis of L. Note that if we define A to be the matrix with columns bi and A′

the matrix with columns b∗i , then we have

A = A′ ·


1 µ12 µ13 . . . µ1n
0 1 µ23 . . . µ2n
0 0 1 . . . µ3n
...

...
...

. . .
...

0 0 0 . . . 1

 = A′P.

Hence we can see that that d(L)2 =
∏

1≤i≤n|b∗i |2, where |·| denotes the Euclidean dis-
tance in Rn. Now, we can define the notion of LLL reducedness of a lattice base.

Definition 2.6. The basis b1,b2, . . . ,bn is called LLL reduced if

|µij | ≤
1

2
for i < j, (2.3)

3

4
|b∗i |2 ≤ |b∗i+1 + µi,i+1b

∗
i |2 for i < n. (2.4)

We have the following theorem which gives bounds for the bi.

Theorem 2.7. Let b1,b2, . . . ,bn be an LLL reduced basis of a lattice L. Then

1. d(L) ≤
∏n
i=1|bi| ≤ 2n(n−1)/4d(L).

2. |b1| ≤ 2(n−1)/4d(L)1/n.

3. For every x ∈ L with x 6= 0, we have |b1| ≤ 2(n−1)/2|x|.

Proof. We start by proving part 1. We know that d(L)2 =
∏

1≤i≤n|b∗i |2. We can rear-
range and square (2.1), to get

|bi|2 = |b∗i |2 +
i−1∑
j=1

µ2ji|b∗j |2,

by orthogonality of the b∗i . Hence, we have d(L)2 ≤
∏

1≤i≤n|bi|2 and the first inequality
follows. We have

|b∗i+1|2 ≥ (3/4− µ2i,i+1)|b∗i |2 ≥ |b∗i |2/2,

where the first inequality follows from (2.4) and the orthogonality of b∗i , and the second
inequality follows from (2.3). By induction, we now have

|b∗j |2 ≤ 2i−j |b∗i |2 (2.5)

for i ≥ j. This gives

|bi|2 = |b∗i |2 +
i−1∑
j=1

µ2ji|b∗j |2 ≤ |b∗i |2 +
i−1∑
j=1

2i−j |b∗i |2/4 ≤ (2i−1 + 1)|b∗i |2/2, (2.6)

giving the second inequality and proving 1.
For part 2, note that we can combine (2.5) and (2.6) to get that for i ≥ j, we have
|bj |2 ≤ (2i−2+2i−j−1)|b∗i |2. Setting j = 1 and multiplying the inequalities for 1 ≤ i ≤ n,



Chapter 2. Quadratic Forms 7

we get part 2.
For part 3, note that there exists an i such that x =

∑
1≤j≤i rjbj =

∑
1≤j≤i sjb

∗
j , for ri ∈

Z, sj ∈ R and with ri 6= 0. From (2.1), we see that ri = si, so we have |x|2 ≥ s2i |b∗i |2 =
r2i |b∗i |2 ≥ |b∗i |2, since ri 6= 0 is an integer. By (2.5), we have |x|2 ≥ 21−j |b∗1|2 ≥ 21−n|b∗1|2,
from which part 3 follows.

We can see that even though the vector b1 in a reduced basis of L does not have to be
the shortest non-zero vector in L, it is not too far from it. Hence, indeed the results are
in that sense not optimal, but the algorithmic advantage over other types of reduced-
ness in combination with the above bounds make it a powerful notion nevertheless.
Given a basis of a lattice, the LLL Algorithm transforms the basis vectors so that they
form an LLL reduced basis. The algorithm is simple and very efficient and is given
below. It is implemented in most mathematics software packages, such as Mathemat-
ica, PARI/GP and SageMath. The algorithm requires a lattice basis b1,b2, . . . ,bn and
returns an LLL reduced basis. For more details, we refer to [6].

Algorithm 2.8.

1. Start

Compute b∗1, . . . ,b
∗
n.

2. Reduction

(a) For i = 2 to n

(b) For j = i− 1 to 1

(c) bi ← bi − µijbj

3. Swap

(a) If ∃i such that 3
4 |b
∗
i |2 > |b∗i+1 + µi,i+1b

∗
i |2, bi ↔ bi+1. Go to 1.

The notion of LLL reduced forms is very similar to that of LLL reduced lattices, which is
not a surprise, given the correspondence between lattices and forms discussed before.
We will treat it for completeness and to be able to compare the theorems and results.

2.3.2 LLL reduced forms

We can write a form Q(x) in the so-called recursive form

Q(x) = b1(x1 + µ12x2 + · · ·+ µ1nxn)2

+b2(x2 + µ23x3 + · · ·+ µ2nxn)2

...
+bn−1(xn−1 + µn−1,nxn)2 + bnx

2
n.

We can write the corresponding matrix as Q = P TQ′P , with

P =


1 µ12 µ13 . . . µ1n
0 1 µ23 . . . µ2n
0 0 1 . . . µ3n
...

...
...

. . .
...

0 0 0 . . . 1

 and Q′ =


b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

...
...

. . .
...

0 0 0 . . . bn

 .
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Hence we see that if we let A and A′ be as in Section 2.3.1 and Q′ = (A′)TA′, then
Q = P T (A′)TA′P = ATA. Therefore, if we define bi = |b∗i |2 and let the µij defined
above correspond to those in Section 2.3.1, thenQ′ is Gram matrix of the lattice spanned
by b∗i and Q is Gram matrix of the lattice spanned by bi. We can now define LLL
reducedness of a form.

Definition 2.9. We call the form Q LLL reduced if

|µij | ≤
1

2
for i < j, (2.7)

3

4
bi ≤ bi+1 + µ2i,i+1bi for i < n. (2.8)

As one would expect, for quadratic forms, we have a theorem similar to Theorem 2.7.

Theorem 2.10. Let Q be an LLL reduced form in n variables and denote by ei the ith basis
vector of Rn. Then

1. D(Q) ≤
∏n
i=1Q(ei) ≤ 2n(n−1)/2D(Q).

2. Q(e1) ≤ 2(n−1)/2D(Q)1/n

3. Q(e1) ≤ 2n−1µ(Q).

Proof. By the discussion above, it is clear that Q is the gram matrix of the basis bi.
Hence we have D(Q) = d(L)2 and Q(ei) = |bi|2. Now it should be clear that this
theorem is a direct translation of Theorem 2.7 to forms.
A proof for forms specifically can be found in [3].

This theorem will prove useful for proving the results of the algorithms of the next
chapter.
Like with lattices, the process of finding a LLL reduced form is called LLL reduction of
the form. An implementation as given in [3] uses shift and swap operations. A shift
is a substitution of the form xr → xr + axs for 1 ≤ r < s ≤ n and a ∈ Z such that
|µrs| ≤ 1/2. A swap for 1 ≤ r ≤ n interchanges the variables xr, xr+1.
In [3] and [21], explicit formulae for bi and µij in terms of the coefficients of Q are
given, which allow for LLL reduction to be applied directly on the form Q. For certain
quadratic forms, this gives a version of LLL reduction that can be used for finding units
in a number field. This is explained in the next chapter and implemented later.



Chapter 3

Implemented unit algorithms

We introduce a notation which allows us to rewrite the LLL reducedness conditions in
a for us more convenient way. For proofs of the statements, we refer to [3] and [21].

Theorem 3.1. Let Q be a form in n variables with matrix (qij)i,j=1,...,n and let bi and µij be
the coefficients of the recursive form of Q. For i, j with 1 ≤ i ≤ j ≤ n, we define

Bij =

∣∣∣∣∣∣∣∣∣
q11 . . . q1,i−1 q1,j
q21 . . . q2,i−1 q2,j

...
. . .

...
...

qi1 . . . qi,i−1 qi,j

∣∣∣∣∣∣∣∣∣ ,
with B00 = 1. Then bi = Bi,i/Bi−1,i−1 for all 1 ≤ i ≤ n. Also, µij = Bij/Bii for all
1 ≤ i < j ≤ n.
If we also define

Ci =

∣∣∣∣∣∣∣∣∣∣∣

q11 . . . q1,i−1 q1,i+1

q21 . . . q2,i−1 q2,i+1
...

. . .
...

...
qi−1,1 . . . qi−1,i−1 qi−1,i+1

qi+1,1 . . . qi+1,i−1 qi+1,i+1

∣∣∣∣∣∣∣∣∣∣∣
,

then we have Ci/Bi−1,i−1 = bi+1 + µ2i,i+1bi.

With this notation, we can rewrite the LLL reducedness conditions as follows.

Corollary 3.2. Let Q be a quadratic form and let Bi,j and Ci be as defined above. We call the
form Q LLL reduced if

2|Bij | ≤ Bii for i < j,

3

4
Bii ≤ Ci for i < n.

The shifts and swaps defined in the previous chapter can now be expressed in terms
of the determinants Bij and Ci. In the next sections, we will use quadratic forms and
these determinants to find units.

3.1 Geodesic algorithm

Let K = Q(α) be a number field of degree n + 1 with a real embedding with integral
basis 1, α1, α2, . . . , αn. In [3] and [21], the authors consider the quadratic form given by

Qt = x21 + x22 + · · ·+ x2n + t(x0 + x1α1 + · · ·+ xnαn)2

9
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in n+ 1 variables xi for 0 ≤ i ≤ n and a parameter t. Its matrix has the form

Qt =


t tα1 tα2 . . . tαn
tα1 1 + tα2

1 tα1α2 . . . tα1αn
tα2 tα1α2 1 + tα2

2 . . . tα2αn
...

...
...

. . .
...

tαn tα1αn tα2αn . . . 1 + tα2
n

 .

By Gaussian elimination, this can be transformed to
t tα1 tα2 . . . tαn
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

From this we see that det(Qt) = t. Assume that this form has a minimum at y =
(y0 + y1 + · · ·+ yn). Then by 2.1, we have

Qt(y) = y21 + y22 + · · ·+ y2n + t(y0 + y1α1 + · · ·+ ynαn)2 ≤ γn+1t
1/(n+1).

This gives t(y0+y1α1+ · · ·+ynαn)2 ≤ γn+1t
1/(n+1) and y21 +y22 + · · ·+y2n ≤ γn+1t

1/(n+1).
Multiplying the two inequalities gives

(y0 + y1α1 + · · ·+ ynαn)2 · (y21 + y22 + · · ·+ y2n)n ≤ γn+1
n+1 ,

hence

|y0 + y1α1 + · · ·+ ynαn| · (y21 + y22 + · · ·+ y2n)n/2 ≤ γ(n+1)/2
n+1 ≤ (n+ 1)n/2. (3.1)

This makes it tempting to hope that by finding minima of quadratic forms of the above
type, we may find elements of small norm.
Using LLL reduction, we can find elements close to minima relatively easily. The fol-
lowing geodesic algorithm from [3] and [21] does just that.

Algorithm 3.3.

1. Initialization

Q
(0)
t = x21 + x22 + · · ·+ x2n + t(x0 + x1α1 + · · ·+ xnαn)2,

P (0) = In+1,

k ← 0.

2. Repeat

(a) Determine the maximum of the set {t |Q(k)
t is LLL reduced} and call this tk.

(b) Perform LLL reduction onQ(k)
tk+ε

for infinitesimal ε > 0 and letAk ∈ GLn+1(Z)
be such that x→ Akx is the corresponding change of variables.

(c) Define Q(k+1)
t (x) = Q

(k)
t (Akx) and P (k+1) = P (k)Ak.

(d) k ← k + 1
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Since LLL reduction does not give a minimum of a quadratic form, we have a weaker
version of 3.1.

Proposition 3.4. Let y = (y0, y1, . . . , yn) be the first column of P (k). Then

|y0 + y1α1 + · · ·+ ynαn| · (y21 + y22 + · · ·+ y2n)n/2 ≤ 2n(n+1)/4.

Proof. First, note that det(Q
(k)
t ) = t, since Ak ∈ GLn+1(Z). We have Qt(P

(k)x) =

Q
(k)
t (x) for every k. Hence Qt(y) = Q

(k)
t (e1) and by part 2 of Theorem 2.10, we have

y21 + y22 + · · ·+ y2n + t(y0 + y1α1 + · · ·+ ynαn)2 ≤ 2n/2t1/(n+1).

Hence we have t(y0 + y1α1 + · · · + ynαn)2 ≤ 2n/2t1/(n+1) and y21 + y22 + · · · + y2n ≤
2n/2t1/(n+1). Multiplying these, we get

|y0 + y1α1 + · · ·+ ynαn| · (y21 + y22 + · · ·+ y2n)n/2 ≤ 2n(n+1)/4.

From this proposition, we can say something about the norm of y0 + y1α1 + · · ·+ ynαn.
Note that we have |y0 + y1α1 + · · · + ynαn| ≤ 2n/4t−n/(n+1). As we let t get big, this
gives |y0 +y1α1 + · · ·+ynαn| � 1, so y0 ≈ −y1α1 + · · ·+ynαn. If we write α(j)

i = σj(αi),
with α(1)

i = αi, we have

n+1∏
i=1

|y0+y1α(i)
1 +· · ·+ynα(i)

n | ≈ |y0+y1α1+· · ·+ynαn|
n+1∏
i=2

|y1(α(i)
1 −α

(1)
1 )+· · ·+yn(α(i)

n −α(1)
n )|.

Call the right-hand side S. We know that

n+1∑
i=2

|y1(α(i)
1 − α

(1)
1 ) + · · ·+ yn(α(i)

n − α(1)
n )|2 ≤ c (y21 + · · ·+ y2n)

for a constant c ∈ R+. Hence for all i > 1, we have

|y1(α(i)
1 − α

(1)
1 ) + · · ·+ yn(α(i)

n − α(1)
n )| ≤

(
c (y21 + · · ·+ y2n)

)1/2
.

If we multiply these inequalities for all i > 1,

S ≤ |y0 + y1α1 + · · ·+ ynαn| ·
(
c (y21 + y22 + · · ·+ y2n)

)n/2
.

By the proposition, we now have

|N(y0 + y1α1 + · · ·+ ynαn)| ≈ S ≤ 2n(n+1)/4c−n/2.

Hence the absolute norms of the elements corresponding to the first column of P (k) are
bounded.
We have the following proposition, showing a practical aspect of the algorithm.

Proposition 3.5. Let Qt = x21 + x22 + · · · + x2n + t(x0 + x1α1 + · · · + xnαn)2. Then the
determinants Bij and Ci as defined before are of the form ut + v where v ∈ Z and where u is
quadratic in αi.
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For a proof, we refer to [21]. This proposition shows that the values of t ≥ 1 for which
Qt(x) is LLL reduced are closed intervals in R≥1. Hence it is easy to find tk which
’break’ the LLL conditions, allowing us to reduce again to find elements that may have
small norm.
Moreover, it is shown in [3] that even though the rules for updating the Bij and Ci are
not linear, the only non-linear part consists of division by an integer. These two obser-
vations allow this algorithm to be very practical and easy to implement.
In order to find units, we perform the above algorithm, and in each iteration we look
at the first column of P (k), which we denote by (y0, . . . , yn). By the discussion after
Proposition 3.4, we see that N(y0 + y1α1 + · · · + ynαn) is bounded. We can calculate
this norm, and check if it is a unit. If it is not, we may be able to divide it by another
element of the same norm to get a unit. This is further explained in Chapter 6.
Note, however, that we required the field K to have at least one real embedding. Oth-
erwise, the quadratic form is not necessarily real valued and our theory does not apply.
If we change the quadratic form to Qt = x21 +x22 + · · ·+x2n + t|x0 +x1α1 + · · ·+xnαn|2,
the quadratic form stays real valued. However, Proposition 3.5 no longer holds and the
determinants can become quadratic in Bij and Ci. This results in forms that cannot be
reduced by changing t. Moreover, the results of the algorithm can in theory (and do in
practice) depend on the choice of the real embedding.
In the next section, we consider another quadratic form and discuss its properties.

3.2 Another quadratic form

Let K be a number field of degree n with integral basis α1, . . . , αn, let r1 be the number
of real embeddings of K, and r2 be the number of complex embeddings. We write
α
(j)
i = σj(αi), with α

(1)
i = αi. Index the conjugates such that we have α(j)

i ∈ R for

1 ≤ j ≤ r1 and α
(j)
i = α

(j+r2)
i for r1 + 1 ≤ j ≤ r1 + r2, where x denotes the complex

conjugate of x.
In the quadratic form of the previous section, we use one embedding of the algebraic
integer x0 + x1α1 + · · · + xnαn. Now, we want to look at all embeddings of such an
integer, and use them all in some sense. To that end, we define

Qt = t · |x1α(1)
1 + · · ·+ xnα

(1)
n |2 + |x1α(2)

1 + · · ·+ xnα
(2)
n |2 + · · ·+ |x1α(n)

1 + · · ·+ xnα
(n)
n |2

if σ1 is a real embedding, and

Qt = t·|x1α(1)
1 +· · ·+xnα(1)

n |2+· · ·+t|x1α
(1+r2)
1 +· · ·+xnα(1+r2)

n |2+· · ·+|x1α(n)
1 +· · ·+xnα(n)

n |2

otherwise. We want to use Algorithm 3.3 with this quadratic form. We will first show
some properties of this form.
First, note that in both cases this quadratic form is real-valued. Next, we can see that in
the real case, its matrix is given by

Qt =


tRe(α

(1)
1 α

(1)
1 ) +

∑n
k=2 Re(α

(k)
1 α

(k)
1 ) . . . tRe(α

(1)
1 α

(1)
n ) +

∑n
k=2 Re(α

(k)
1 α

(k)
n )

tRe(α
(1)
2 α

(1)
1 ) +

∑n
k=2 Re(α

(k)
2 α

(k)
1 ) . . . tRe(α

(1)
2 α

(1)
n ) +

∑n
k=2 Re(α

(k)
2 α

(k)
n )

... . . .
...

tRe(α
(1)
n α

(1)
1 ) +

∑n
k=2 Re(α

(k)
n α

(k)
1 ) . . . tRe(α

(1)
n α

(1)
n ) +

∑n
k=2 Re(α

(k)
n α

(k)
n )

 .
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If K has a real embedding, then det(Qt) = |∆K | · t. In the complex case, we have an
other matrix, with det(Qt) = |∆K | · t2. We will prove this in the next section in a more
general setting.
The following algorithm is simply a version of Algorithm 3.3 with the new quadratic
form.

Algorithm 3.6.

1. Initialization

Q
(0)
t = t · |x1α(1)

1 + · · ·+ xnα
(1)
n |2 + |x1α(2)

1 + · · ·+ xnα
(2)
n |2 + · · ·+ |x1α(n)

1 +

· · ·+ xnα
(n)
n |2,

P (0) = In,

k ← 0.

2. Repeat

(a) Determine the maximum of the set {t |Q(k)
t is LLL reduced} and call this tk.

(b) Perform LLL reduction on Q(k)
tk+ε

for infinitesimal ε > 0 and let Ak ∈ GLn(Z)
be such that x→ Akx is the corresponding change of variables.

(c) Define Q(k+1)
t (x) = Q

(k)
t (Akx) and P (k+1) = P (k)Ak.

(d) k ← k + 1

We would like to have Propositions similar to 3.4 and 3.5. Indeed, Proposition 3.4
translates to the following.

Proposition 3.7. Let y = (y1, . . . , yn) be the first column of P (k). Then,

|N(y1α1 + · · ·+ ynαn)| ≤ 2n(n−1)/4|∆K |1/2.

Proof. We have Qt(P (k)x) = Q
(k)
t (x) for every k. Hence Qt(y) = Q

(k)
t (e1) and by part 2

of 2.10, we haveQ(y) ≤ 2(n−1)/2 det(Qt)
1/n. First, assume thatK has a real embedding.

Then, we have

t · |y1α(1)
1 + · · ·+ ynα

(1)
n |2 + · · ·+ |y1α(n)

1 + · · ·+ ynα
(n)
n |2 ≤ 2(n−1)/2|∆K |1/nt1/n.

This gives
|y1α(1)

1 + · · ·+ ynα
(1)
n |2 ≤ 2(n−1)/2|∆K |1/nt(1−n)/n

for the first embedding, and for i > 1,

|y1α(i)
1 + · · ·+ ynα

(i)
n |2 ≤ 2(n−1)/2|∆K |1/nt1/n.

If we multiply these together, we get∏
i

|y1α(i)
1 + · · ·+ ynα

(i)
n |2 ≤ 2n(n−1)/2|∆K |.

If K does not have a real embedding, then we have

|y1α(1)
1 + · · ·+ ynα

(1)
n |2 ≤ 2(n−1)/2|∆K |1/nt2/nt−1
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for embedding 1 and 1 + r2. For i > 1,

|y1α(i)
1 + · · ·+ ynα

(i)
n |2 ≤ 2(n−1)/2|∆K |1/nt2/n.

Multiplying these, we get∏
i

|y1α(i)
1 + · · ·+ ynα

(i)
n |2 ≤ 2n(n−1)/2|∆K |,

which proves the statement.

This proposition gives a bound on the norms of the elements obtained by the algorithm.
This bound depends on the degree of the field and its discriminant. For fields K with
a real embedding, we have the following proposition, which is a weaker version of
Proposition 3.5.

Proposition 3.8. Let K be a number field with a real embedding and let Qt = t · |x1α(1)
1 +

· · ·+ xnα
(1)
n |2 + · · ·+ |x1α(n)

1 + · · ·+ xnα
(n)
n |2. Then the determinants Bij and Ci as defined

before are linear in t.

Proof. Since α(1)
i ∈ R for all i, we can write

Qt =


tα

(1)
1 α

(1)
1 +

∑n
k=2 Re(α

(k)
1 α

(k)
1 ) . . . tα

(1)
1 α

(1)
n +

∑n
k=2 Re(α

(k)
1 α

(k)
n )

tα
(1)
2 α

(1)
1 +

∑n
k=2 Re(α

(k)
2 α

(k)
1 ) . . . tα

(1)
2 α

(1)
n +

∑n
k=2 Re(α

(k)
2 α

(k)
n )

... . . .
...

tα
(1)
n α

(1)
1 +

∑n
k=2 Re(α

(k)
n α

(k)
1 ) . . . tα

(1)
n α

(1)
n +

∑n
k=2 Re(α

(k)
n α

(k)
n )

 .

We can subtract α(1)
i /α

(1)
1 times the first row from the ith row to obtain a matrix where

t only occurs in the first row. Since in the definition of Bij and Ci, these stay in the first
row, the determinants are linear in t.

However, when K is totally imaginary, Proposition 3.5 does not translate well to our
form, as we can see in the following example.

Example 3.9. Consider the totally imaginary field K = Q(α), where α is a root of
the polynomial X4 + 2. Let Bij be as defined in Theorem 3.1. Then, we have B22 =
(17 + 14t+ t2)/

√
2 and C2 = (3 + t)

√
2, so the condition 3

4B22 ≤ C2 becomes quadratic.

We see that in those cases it becomes a lot harder to determine tk from Algorithm 3.6.
The fact that the conditions can be quadratic, also leads to losing the linear aspect of
the algorithm. Moreover, it turns out that in certain cases with totally imaginary K, at
a certain point the LLL conditions cannot be satisfied at all. Therefore, we do not use
this algorithm on totally complex fields in our implementation and in the tests. We will
now discuss yet another quadratic form that does work for totally complex fields.

3.3 Reduction in directions

Using the number field and the indexing from before, consider the quadratic form

Qt1,t2,...,tn =

n∑
i=1

ti · |x1α(i)
1 + · · ·+ xnα

(i)
n |2



Chapter 3. Implemented unit algorithms 15

in n variables xi and n parameters ti. Note that the quadratic form from the previous
section is a special case of this one, with ti = 1 for i = 2, . . . , n. In this more general
setting, by adjusting the parameters, we can now change the influence each embedding
has.

Proposition 3.10. The quadratic form

Qt1,t2,...,tn =

n∑
i=1

ti · |x1α(i)
1 + · · ·+ xnα

(i)
n |2

has determinant

det(Qt1···tn) = |∆K |
n∏
k=1

tk

Proof. We can rewrite entry (i, j) as

n∑
k=1

tkRe(α
(k)
i α

(k)
j ) =

r1∑
k=1

tkα
(k)
i α

(k)
j +

n∑
k=r1+1

tkRe(α
(k)
i α

(k)
j ).

Since Re(z) = Re(z) = (z + z)/2 for complex z, for every k ≥ r1 + 1 we have

tkRe(α
(k)
i α

(k)
j ) + tk+r2Re(α

(k+r2)
i α

(k+r2)
j ) = tkRe(α

(k)
i α

(k)
j ) + tk+r2Re(α

(k)
i α

(k)
j ),

so

tkRe(α
(k)
i α

(k)
j ) + tk+r2Re(α

(k+r2)
i α

(k+r2)
j ) = (tk + tk+r2)(α

(k)
i α

(k)
j + α

(k+r2)
i α

(k+r2)
j )/2.

Hence we can write entry (i, j) as

n∑
k=1

τkα
(k)
i α

(k)
j , with τk =


tk if 1 ≤ k ≤ r1;
(tk + tk+r2)/2 if r1 < k ≤ r1 + r2;

(tk + tk−r2)/2 if r1 + r2 < k ≤ r1 + 2r2.

Hence we can see that

Qt1,t2,...,tn = A


τ1 0 . . . 0
0 τ2 . . . 0
...

...
. . .

...
0 0 . . . τn

AT ,

with

A =


α
(1)
1 α

(2)
1 . . . α

(n)
1

α
(1)
2 α

(2)
2 . . . α

(n)
2

...
...

. . .
...

α
(1)
n α

(2)
n . . . α

(n)
n

 .

Since det(AAT ) = |∆K |, we have det(Qt1···tn) = |∆K |
∏n
k=1 τk.

The determinant of the form Qt from Section 3.2 follows after setting ti = 1 for i =
2, . . . , n.
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From now on, we will set ti+r2 = ti for i > r1 to make sure that the conjugate embed-
dings get the same parameter. In that case, the determinant becomes simply |∆K |

∏n
k=1 tk.

With this new quadratic form, we will reduce in "directions", which means that we will
choose ti and LLL reduce the obtained form. If we repeat this, this leads to the follow-
ing algorithm.

Algorithm 3.11.

1. Initialization

Qt1,t2,...,tn ←
∑n

i=1 ti · |x1α
(i)
1 + · · ·+ xnα

(i)
n |2.

k ← 1.

2. Repeat

(a) Choose t′1, t
′
2, . . . , t

′
n ∈ R.

(b) Perform LLL reduction on Qt′1,t′2,...,t′n and let Ak ∈ GLn(Z) be such that x →
Akx is the corresponding change of variables.

(c) k ← k + 1.

There is a freedom of choosing t′i in step (a). One can do this in a systematic fashion,
similar to the geodesic algorithms. This could be done to hope that no units are missed
in the direction we are looking at. Another option is to choose random t′i and hope
that we will find units. This way, we can look at very different directions, but we can
miss units that the systematic algorithm does find. Both options are implemented in
Chapter 6.
The following proposition gives a bound for the norms of the elements found.

Proposition 3.12. Let y = (y1, . . . , yn) be the first column of Ak. Then,

|N(y1α1 + · · ·+ ynαn)| ≤ 2n(n−1)/2|∆K |1/2.

Proof. The proof is the same as the proofs of Propositions 3.4 and 3.7 but with another
determinant and is therefore not included.

For a discussion on the results of the three algorithms introduced above, we refer to
Chapter 6.



Chapter 4

Existing unit algorithms

In this chapter, we will have a look at a couple of unit algorithms that have been de-
veloped by others. There exist more algorithms, but most of them share ideas with the
algorithms we chose to discuss. A lot of these algorithms started as ideas by some re-
searchers, and have then been changed and adapted by others. Most of the algorithms
have their roots in the 1980s and have been implemented by the authors. In this chap-
ter, we will discuss the algorithms briefly and show the similarities and differences
they have to each other and to the algorithms of Chapter 3.

4.1 Cohen, Diaz y Diaz, Olivier

In 1997, Cohen, Diaz y Diaz and Olivier [7] describe the implementation of an algo-
rithm which computes the class group and the unit group of a number field. It is
based on ideas of Buchmann [4] and its implementation is used in software packages
PARI/GP and SageMath. In Cohen’s "A Course in Computational Algebraic Number
Theory" [6], the algorithm is explained more thoroughly. The algorithm actually com-
putes the class group of a number field, getting the fundamental units "for free". The
algorithm is the fastest algorithm known asymptotically, but one needs to accept the
Generalized Riemann Hypothesis (GRH) for its correctness. The GRH is assumed in
step 1 and 4 of the algorithm. For more details, we refer to remark below the algo-
rithm.
We will start explaining some number theoretic definitions needed for this algorithm.
Denote by I and J two nonzero fractional ideals of OK . We say that I and J are re-
lated, denoted I ∼ J , whenever there exist nonzero elements a and b of OK such that
(a)I = (b)J . This is an equivalence relation and its equivalence classes are called the
ideal classes ofOK . Ideal classes can be multiplied and the class of principal ideals is an
identity element for this multiplication. With this multiplication, the set of fractional
ideal classes are an abelian group, called the ideal class group of OK , denoted Cl(K).
The size of this group is called the class number of K, and is denoted by h(K).
Let η1, . . . , ηr1+r2−1 be a system of fundamental units of OK . Number the embeddings
into C that are not conjugates by 1, . . . , r1 + r2. Let cj be 1 if embedding j is real and
2 otherwise. Then the determinant of the (r1 + r2 − 1) × (r1 + r2) matrix with en-
tries cj log|ηji | is called the regulator of K, denoted by R(K). If O∗K is finite, we put
R(K) = 1. Unlike the discriminant, the regulator is a positive real number which is
usually expected to be transcendental.
In the algorithm, the authors work with ideals rather than elements of the field. The
authors cut the algorithm in the following 5 steps, which are explained in more detail
below.

17
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Algorithm 4.1.

1. Calculate the Minkowski bound and consider prime ideals with norms up to this
bound. Denote these by g1, . . . , gk. It is known that they generate Cl(K).

2. Find many (say l) relations in the class group among the gi. Write these relations
as

k∏
i=1

g
mi,j

i = αjZK (1 ≤ j ≤ l),

where mi,j ∈ Z and αj ∈ K.

3. Let M = (mi,j)1≤i≤k,1≤j≤l be the k× l matrix of exponents, and let V = (αj)1≤j≤l
be the vector of the αj . Perform Hermite and Smith normal form reductions on
M , doing the same operations on V . This way, we obtain a tentative class group
and unit group. Let h′(K) andR′(K) be the corresponding tentative class number
and regulator.

4. By using the analytic class number and regulator formula, check that the product
h′(K)R′(K) is correct up to a factor of 2. If it is not, find a few more relations and
go back to step 3.

5. Now h′(K) = h(K) and R′(K) = R(K). From the data obtained above, compute
a system of fundamental units, and output it as well as the class group.

Remark. If we are willing to accept the GRH, then in step 1 we do not need to go as
far as the Minkowski bound. There are other bounds that are usually much smaller
than the Minkowski bound, for example as discussed in [2]. The bound proven there is
12 ln2|D|. In step 4, GRH is assumed to be able to prove that if h′(K)R′(K) is correct up
to a factor of 2, then h′(K) = h(K) and R′(K) = R(K). In this proof, the authors rely
on a truncation of the Euler product of the analytic class number and regulator formula
which can only be done assuming GRH.

In step 1, we can calculate the Minkowski bound

MK =
√
|D|
(

4

π

)r2 n!

nn
,

and consider the prime ideals with norms up to this bound. It is known that these gen-
erate Cl(K), and they can be found using the Kummer-Dedekind theorem [8]. Note
that although these ideals generate Cl(K), there can be ideals amongst these that cor-
respond to the same class or that are principal. Since a priori we do not know Cl(K)
(this is one of the things the algorithm gives us), we just work with all prime ideals gi
we found.
In step 2, the relations are found in three ways. Firstly, there are the trivial relations ob-
tained by factoring prime numbers of Z into ideals of the number field. This is already
done in order to find the generators in step 1. Secondly, the authors use algorithms as
in [10] to find elements α ∈ OK of small norm. This is done by enumerating elements
of a lattice that lie in suitable ellipsoids, similar to Section 4.3. They hope to be able to
factor these in terms of the ideals generating Cl(K), obtaining new relations. Finally,
the authors generate random exponents ui and consider the ideal

I =

k∏
i=1

guii .
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Let α1, . . . , αn be a Z-basis of this ideal. Choose a vector v = (vi)1≤i≤n of real numbers
such that vr2+i = vi for r1 < i ≤ r1 + r2. Consider the form

Q =
n∑
i=1

evi · |x1α(i)
1 + · · ·+ xnα

(i)
n |2.

Perform LLL reduction on this form and let β1, . . . , βn be the LLL reduced basis of I
obtained. Let α = β1, which is small by Theorem 2.10. Then, βi/α form a Z-basis of the
fractional ideal I/α which we will call J . Next, the authors try to factor J to get

J =
k∏
i=1

gvii ,

so
k∏
i=1

gui−vii = αOK .

Note that J does not necessarily factor in gi. If it does, the authors obtain a new relation.
Otherwise, the authors try other random ui, obtaining another ideal I .

Remark. The quadratic form Q is simply Qt1,...,tn from Section 3.3 with ti = evi . Hence
the reduction of the form Q we performed in Section 3.3 is used in this algorithm, too.
Moreover, this step of the algorithm just boils down to finding small α ∈ OK and trying
to factor an ideal above it (namely IJ−1) it in terms of gi. The method of finding these
small α is the same as Algorithm 3.11.

In step 3, Hermite and Smith normal form reductions onM (doing the same operations
on V ) are used to identify certain subdeterminants of the matrices with multiples of
the class number and regulator. In particular, certain columns of an obtained matrix
correspond to elements α ∈ K such that

αOK =
k∏
i=1

g0i = OK .

Hence these columns corresponds to units. The details of these matrix reductions are
tedious and will not be treated here. They can be found in [6]. For finding units, it
boils down to trying to divide elements such that the corresponding row in the matrix
of exponents M only contains zeros, such that the above relation holds.
Using a relation between the class number and regulator, it can be shown that if h′(K)R′(K)
is correct up to a factor of 2, then we have h′(K) = h(K) and R′(K) = R(K). In par-
ticular, truncate the Euler product of the analytic class number and regulator formula
is at a carefully chosen place (smaller than 12 log2|D(K)|). Denote by z the quantity
obtained. Then,

h(K)R(K)√
2

< z <
√

2h(K)R(K).

To be able to show the inequalities, GRH must be assumed. Now if h′(K)R′(K) < z
√

2,
the authors are able to show that h′(K) = h(K) and R′(K) = R(K).
This is checked in step 4, and in step 5, the matrices of step 3 are processed to get Cl(K)
and the fundamental units.
For more details, we refer to [6] and [7].
To summarise, this algorithm generates many relations between prime ideals of the
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field. Then, using matrix reductions, from these relations a tentative class group and
regulator are obtained. These are checked to be correct and can then be used to com-
pute the class group and a system of fundamental units. Although this algorithm is
substantially different from the algorithms of Chapter 3, a part of Step 2 coincides with
a part of Section 3.3.

4.2 Buchmann, Pethő

Among the many unit group algorithms Johannes Buchmann introduced, there is one
algorithm he created together with Atilla Pethő [5] that we will discuss here. The al-
gorithm uses LLL reduction of lattices, which we will translate to quadratic forms. For
more details, we refer to the article.
The algorithm finds a system of independent units rather than fundamental units. A sys-
tem {ε1, . . . , εu} ⊆ O∗K is called independent if εm1

1 . . . εmu
u = 1 impliesm1 = · · · = mu = 0

for every system of integers {m1, . . . ,mu}. In Chapter 5, we will explain how from such
a system we can find fundamental units.
Again, let the number of real embeddings be r1 and the number of complex embed-
dings r2. We number them like before, such that σj is a real embedding for 1 ≤ j ≤ r1
and that σj and σj+r2 are conjugate embeddings for r1 < j ≤ r1 + r2. We write
σi(α) = α(i). The authors construct a sequence of numbers (γk)k∈N in OK for every
i ∈ {1, . . . , r1 + r2}. This sequence satisfies

|γ(i)k | < |γ
(i)
k−1| for k ≥ 2, (4.1)

|γ(j)k | > |γ
(j)
k−1| for k ≥ 2, j ∈ {1, . . . , r1 + r2}, j 6= i. (4.2)

Hence the absolute value of the chosen embedding becomes smaller and the rest be-
come larger. Moreover, the numbers γk are constructed in such a way that they are of
bounded norm. The numbers γk are pairwise distinct. Hence after a finite amount of
steps, two of them are associated to a unit, in the sense that γk2/γk1 = εi for a certain
k1, k2 ∈ N. This unit satisfies

|ε(i)i | < 1 and |ε(j)i | > 1 for j 6= i. (4.3)

To construct the sequence (γk)k∈N, start with γ1 = 1. For every k we compute a number
βk such that

|β(i)k | < 1 and c1 > |β(j)k | > 1 for j 6= i. (4.4)

Here c1 is a constant depending on the degree and the discriminant of K. We can now
set γk+1 = γkβk, so (γk)k∈N satisfies 4.1 and 4.2. We let βk be an element of the module
Rk = 1

γk
OK . We also want |N(βk)| ≤ c2/|N(γk)|, where c2 is a constant depending on

the degree and the discriminant of K. This way, the conjugates of βk are small for all
k, which makes computations inexpensive. Moreover, this is used to guarantee that γk
is of bounded norm. In fact, we only need to keep track of the small βk and not the
γk. Two elements γk1 and γk2 are associated if the modules Rk1 and Rk2 are the same.
Then, the unit can be computed by

εi =

k2−1∏
l=k1

βl.
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We will now explain how we can calculate βk.
First, the authors find a reduced basis of the module Rk. A module basis is called
reduced if its image under the mapping

K → Rn

α 7→ (α(1), . . . , α(r1),Re α(r1+1), . . . ,Re α(r1+r2), Im α(r1+1), . . . , Im α(r1+r2))

is an LLL reduced lattice basis. This way, the authors can assure that the basis elements
are bounded. Specifically, they are able to bound |α(i)

1 | from above, which will prove
useful later.
Secondly, the authors LLL reduce the columns of a well-chosen matrix. If the embed-
ding i we are considering is a real embedding, the authors define

U =



0 0 0 . . . δ
0 0 0 . . . 0
...

...
...

...
...

0 0 δ . . . 0
0 δ 0 . . . 0

α
(i)
1 α

(i)
2 α

(i)
3 . . . α

(i)
n


. (4.5)

Here, α1, . . . , αn is an LLL reduced basis ofRk in the above sense. The positive constant
δ is defined as

δ = 2−n/4|α(i)
1 |κ

−n, (4.6)

where κ ≥ 1 is a constant that is chosen in the beginning of the algorithm. Although
there are some restrictions on this choice of κ (for which we refer to the article), the
choice is rather arbitrary. The Gram matrix of the columns of U is

G =


(α

(i)
1 )2 α

(i)
1 α

(i)
2 . . . α

(i)
1 α

(i)
n

α
(i)
2 α

(i)
1 δ2 + (α

(i)
2 )2 . . . α

(i)
2 α

(i)
n

...
...

. . .
...

α
(i)
n α

(i)
1 α

(i)
n α

(i)
2 . . . δ2 + (α

(i)
n )2

 ,

which corresponds to the quadratic form

Qδ = δ2x22 + δ2x23 + · · ·+ δ2x2n + (α
(i)
1 x1 + α

(i)
2 x2 + · · ·+ α(i)

n xn)2.

This corresponds to the form of Algorithm 3.3 with t = 1/δ2. The determinant of Q
is D(Qδ) = |α(i)

1 |δn−1. Let y = (y1, . . . , yn) be the first column of the transformation
matrix corresponding to the reduction. Let β be β = α1y1 + α2y2 + · · · + αnyn. Then,
by part 2 of Theorem 2.7, we see that

|β(i)| ≤ 2(n−1)/4|α(i)
1 |

1/nδn−1.

Since α1, . . . , αn form an LLL reduced basis of Rk, the authors can bound |α(i)
1 | from

above. Therefore, they are able to bound |β(i)| in terms of only constants, n and |N(γk)|.
We can also bound |N(β)| similar to the discussion after Proposition 3.4. The authors
find |N(β)| ≤ c3|N(γk)|−1. This means that we can bound the absolute values of the
embeddings β(j) for j 6= i from below. Hence if we carefully choose δ, we can force 4.4
to hold, hence satisfying 4.1 and 4.2.
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If i corresponds to a complex embeddding, the authors proceed in the same way, but
with another matrix

U =



0 0 0 . . . δ
0 0 0 . . . 0
...

...
...

...
...

0 0 δ . . . 0

Re α(i)
1 Re α(i)

2 Re α(i)
3 . . . Re α(i)

n

Im α
(i)
1 Im α

(i)
2 Im α

(i)
3 . . . Im α

(i)
n


. (4.7)

The Gram matrix of the columns of U is

G =



Re α(i)
1 α

(i)
1 Re α(i)

1 α
(i)
2 Re α(i)

1 α
(i)
3 . . . Re α(i)

1 α
(i)
n

Re α(i)
2 α

(i)
1 Re α(i)

2 α
(i)
2 Re α(i)

2 α
(i)
3 . . . Re α(i)

2 α
(i)
n

Re α(i)
3 α

(i)
1 Re α(i)

3 α
(i)
2 δ2 + Re α(i)

3 α
(i)
3 . . . Re α(i)

3 α
(i)
n

...
...

...
. . .

...

Re α(i)
n α

(i)
1 Re α(i)

n α
(i)
2 Re α(i)

n α
(i)
3 . . . δ2 + Re α(i)

n α
(i)
n


.

The corresponding quadratic form is

Qδ = δ2x23 + · · ·+ δ2x2n + |α(i)
1 x1 + α

(i)
2 x2 + · · ·+ α(i)

n xn|2,

which is similar to the form in the real case. Again, we let y = (y1, . . . , yn) be the first
column of the transformation matrix of the reduction. Using arguments similar to the
real case, the authors guarantee that β = α1y1 + · · · + αnyn satisfies 4.4. For a more
detailed explanation, we again refer to [5].
Now we know how to find γ(i)k for all k, giving a unit εi for k large enough. Hence after
applying this for every i, we find r1 + r2 units εi satisfying 4.3. We then check if among
this set of r1 + r2 units there are r1 + r2− 1 independent units. If this does not hold, we
apply the algorithm again but with bigger κ in 4.6.
As we saw, this algorithm is rather different from the algorithms we implemented. The
LLL reduction of lattice bases the authors perform corresponds to the LLL reduction
of quadratic forms we also considered. However, in this algorithm the author also
reduces the bases of the modules, hence resulting in different lattices. We considered
geodesic algorithms and algorithms that have a certain randomness. Buchmann and
Pethő chose to use a chain of modules Rk and guarantee that the units satisfy certain
properties. Therefore, they are able to find an independent system of units. We will
discuss how to get from an independent system to fundamental units in Chapter 5.
We conclude by summarising the algorithm for a direction i ∈ {1, . . . , r1 + r2}. This
algorithm should be run for i = 1, . . . , r1 + r2. This is a very high-level summary, more
details can be found in [5].
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Algorithm 4.2.

1. Initialization

k ← 1,

R1 = OK .

2. Repeat

(a) Find an LLL reduced basis of Rk and call it α1, . . . , αn.

(b) Define U as in 4.5 or 4.7 if i corresponds to a real or a complex embedding,
respectively.

(c) LLL reduce the columns of U . Let y = (y1, . . . , yn) be the first column of the
transformation matrix corresponding to the reduction.

(d) Let βk = α1y1 + · · ·+ αnyn and Rk+1 = (1/βk)Rk.

(e) If Rk = Rl for l ≤ k, return εi =
∏k
l=l βl.

(f) k ← k + 1

4.3 Pohst, Zassenhaus

The third and final algorithm we will discuss is due to Pohst and Zassenhaus and is
explained in their book Algorithmic Algebraic Number Theory [25]. It uses Minkowski’s
Convex Body Theorem to find non-trivial lattice points in certain lattices. Those points
correspond to elements of bounded norm, which can be used to find units. In Chapter
5, we will discuss how we can find units using those elements. We will start by stating
Minkowski’s Convex Body Theorem. A proof can for example be found in [25].

Theorem 4.3 (Minkowski’s Convex Body Theorem). LetC ⊆ Rn be a convex, 0-symmetric
set and L a lattice. If V (C) > 2nd(L) or if V (C) = 2nd(L) and C is compact, then C contains
a lattice point x ∈ L with x 6= 0.

Here, V (C) is the volume of the set C, which is Jordan-measurable. By 0-symmetric,
we mean that x ∈ L implies −x ∈ L.
The authors create these types of setsC such that they can find non-trivial lattice points.
The authors call these sets parallelotopes. The parallelotopes are constructed in a special
way which we will explain below.
LetK be a field with [K : Q] = n and let α1, . . . , αn be a basis ofOK . There is a bijective
mapping

φ : OK → Zn : x1α1 + · · ·+ xnαn 7→ (x1, . . . , xn).

The authors use this mapping to go back and forth from the ring of integers to Zn ⊂ Rn,
and we will follow the same notation. Consider the set

Π = {(x1, . . . , xn)T ∈ Rn | − 1 ≤ xi ≤ 1, 1 ≤ i ≤ n}.

This set is convex, compact and 0-symmetric, and has volume V (Π) = 2n. If we con-
sider the lattice L = Zn, then we see that Π satisfies the premises of Minkowski’s Con-
vex Body Theorem. Obviously, we could have seen a priori that Π contains non-trivial
points of Zn. However, we will now transform Π in such a way that these premises still
hold, but such that we can find other lattice points that correspond to other elements
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of small norm.
If we define

B = max


n∏
j=1

|y1α(j)
1 + · · ·+ ynα

(j)
n |
∣∣y ∈ Π

 , (4.8)

then we have |N(φ−1(x))| ≤ B for all x ∈ Zn ∩Π.
Choose an element ω ∈ OK\Z. More about the choice of ω can be found in the end of
this section. Then its right regular representation Mω ∈ Zn×n is defined by

(α1, . . . , αn)ω = (α1, . . . , αn)Mω.

We have N(ω) = detMω, and we can define a linear transformation Ψω by Ψω =
|N(ω)|−1/nMω. Now, Ψω is linear and has determinant ±1. Therefore,

Ψω(Π) := {|N(ω)|−1/nMω(x1, . . . , xn)T ∈ Rn | − 1 ≤ xi ≤ 1, 1 ≤ i ≤ n}

is a convex, 0-symmetric parallelotope of volume 2n.
For −1 ≤ x1, . . . , xn ≤ 1, we have

n∏
j=1

|N(ω)|−1/n |(α(j)
1 , . . . , α(j)

n )Mωx| = |N(ω)|−1
n∏
j=1

|ω(j)(α
(j)
1 , . . . , α(j)

n )x| ≤ B.

Hence the absolute norms of elements of φ−1(Ψω(Π) ∩ Zn) are bounded by B.
This means that by using these kinds of transformations, we can find new elements of
bounded norm. The only thing left to show is how to compute Ψω(Π) ∩ Zn.
The authors show that there exist unimodular matrices Uω, U−1ω such that MT

ω Uω is in
Hermite normal form. We will call this matrix Nω. It is a lower triangular matrix, and
since detMω = ±detNω, the product of the diagonal elements ofNω is up to signN(ω).
The authors now create a lower triangular matrix Bω ∈ Zn×n such that

MT
ω UωBω =


|N(ω)| 0 . . . 0

0 |N(ω)| . . . 0
...

...
. . .

...
0 0 . . . |N(ω)|

 .

They create Bω by recursively computing its elements from top left to bottom right.
Consider a lattice point c = (c1, . . . , cn)T of Ψω(Π). Hence c = |N(ω)|−1/nMωx for
x ∈ Rn with 1 ≤ xi ≤ 1 for all i. We define d = UTω c. Then d ∈ Zn, since c ∈ Zn. We
have

BT
ωd = |N(ω)|−1/nBT

ωU
T
ωMωx = |N(ω)|(n−1)/nx.

Hence we can find d ∈ Zn by solving

−|N(ω)|(n−1)/n ≤
(
BT
ωd
)
i
≤ |N(ω)|(n−1)/n

for i ∈ {1, . . . , n}. Since BT
ω is an upper triangular matrix this can be done recursively,

starting from dn and working to d1. When we have d, we calculate

c = (U−1ω )Td,
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yielding an element of Ψω(Π) ∩ Zn.
Hence the authors find elements of small norm using the following algorithm.

Algorithm 4.4.

1. Initialization

Π = {(x1, . . . , xn)T ∈ Rn | − 1 ≤ xi ≤ 1, 1 ≤ i ≤ n}.

2. Repeat

(a) Choose ω ∈ OK\Z and let Mω ∈ Zn×n be its right regular representation.
Define Ψ to be the linear transformation given by |N(ω)|−1/nMω with respect
to α1, . . . , αn.

(b) Compute unimodular matrices Uω, U−1ω such thatNω = MT
ω Uω is in Hermite

normal form.

(c) Compute lower triangular Bω ∈ Zn×n such that MT
ω UωBω is a diagonal ma-

trix with entries |N(ω)|.
(d) Find d ∈ Zn by solving −|N(ω)|(n−1)/n ≤

(
BT
ωd
)
i
≤ |N(ω)|(n−1)/n for i ∈

{1, . . . , n}. Calculate c = (U−1ω )Td.

(e) Save φ−1(c) = c1α1 + · · ·+ cnαn.

This yields for every ω at least one element c of absolute norm bounded byB as defined
in 4.8. Hence the output of this algorithm is similar to the result of the algorithms of
Chapter 3. They all return elements of bounded norm, which must then be processed
in order to obtain units. How this could be done is described in Chapter 5.
Note that the algorithm depends on the choice of basis α1, . . . , αn in the beginning and
the choices of ω in every step. The choice of basis influences B, hence affecting the
maximum norm of the elements found. The choice of ω determines the transformation
of the parallelotope, hence the elements it contains. The authors do not know how to
choose the basis to make B as small as possible. Neither do they know how to choose
ω wisely, but they suggest to choose ω to have small absolute norm, to consider a few
powers of the element and then to switch to another ω. The algorithm returns elements
of bounded norm, so these elements can then be used as ω. Moreover, if ω has small
norm, then Mω will be small too, requiring not much storage when implementing the
algorithm.

Remark. This algorithm is indeed very different from the other algorithms discussed
in this section, since it does not use any type of reduction to find a short element in
a lattice. It depends strongly on the choices of bases and transformation elements,
whereas the other algorithms discussed do not. For a more detailed description, we
refer to [25].



Chapter 5

Computing the unit group

In the previous chapters, we discussed algorithms that are able to find elements of
small norm, systems of independent units and systems of fundamental units. In this
chapter, we will discuss how we can use these results to determine the unit group. Let
K be a field of degree nwith signature (r1, r2), so r1 +2r2 = n. Moreover, let α1, . . . , αn
be an integral basis of OK . Recall that by Dirichlet’s Unit Theorem, the unit group can
be written as

O∗K = µ× 〈η1〉 × · · · × 〈ηr1+r2−1〉.

We will start by explaining how to compute the group µ of the roots of unity in O∗K .
This will be based on discussions in [6] and [25]. In Section 5.2, we will discuss how to
find fundamental units η1, . . . , ηr1+r2−1 from the outputs of the algorithms of Chapters
3 and 4.

5.1 Computing the roots of unity

An nth root of unity for n ∈ Z+ is a number z satisfying zn = 1. A primitive root of unity
is an nth root of unity that is not a kth root of unity for some smaller k. The number of
primitive nth roots of unity is given by φ(n), where φ is Euler’s totient function. The
zeros of the nth cyclotomic polynomial Φn are precisely the primitive nth roots of unity.
It is given by

Φn(z) =

φ(n)∏
k=1

(z − zk) =
∏
d|n

(zd − 1)µ(n/d).

Here, µ is the Möbius function. For more details, we refer to any book on elementary
number theory.
Note that the only real roots of unity are ±1. Hence if r1 > 0, then µ = {±1}. From
now on, we will assume r1 = 0, so we are in the case of a totally complex field K.
The first way of determining µ is due to [6]. Let β = y1α1 + · · ·+ynαn be a root of unity
in K. Then |β(i)|2 = 1 for every i ∈ {1, . . . , n}. Hence if we define the form

Q(x) =

n∑
i=1

|x(i)1 α
(i)
1 + · · ·+ x(i)n α

(i)
n |2,

then Q(y) = n. Moreover, for an element α ∈ OK\{0}, we have

n∑
i=1

|α(i)|2 ≥ n
( n∏
i=1

|α(i)|
)2/n

≥ n.

26
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Here, the first inequality follows from the inequality of arithmetic and geometric means.
The second inequality follows from the fact that the norm of α is at least 1. Note that we
have equalities if and only if |α(i)|2 = 1 for all i. Hence the minimum non-zero value of
Q(x) is n and it is attained for y precisely when y1α1 + · · ·+ ynαn is a root of unity.
Hence finding roots of unity boils down to finding y minimising the form Q. Since we
now need to find elements really minimising the form, using just LLL reduction will
in general not work, since that does not guarantee finding minima. Hence we need
to apply other algorithms that are not as fast as LLL reduction. This can be done by
enumeration, but an example of a faster algorithm can be found in [10].
Another way to find µ is the following. We know that µ is a finite cyclic group and we
will denote its order by g. We know that g must be even since it contains the subgroup
{±1} of order 2. We will now try to find a primitive gth root of unity, which generates
µ. Note that such a primitive gth root of unity generates a subfield of K, hence φ(g)|n.
This means that we need to find all even m with φ(m)|n. Since φ is multiplicative, this
is not hard. Once we have found a list of candidates of g, we have to check for every
candidate m if Φm has a root in OK . Now, g is the maximal value for which this is true,
and the corresponding root is the generator of µ. For more details, for instance about
how to determine if Φm has a root in OK , we refer to [25]. We finish the section with a
small example of the second method.

Example 5.1. Define the field K = Q(α) where α is a root of X4 + 3. Since we have
n = 4, we have to find even m satisfying φ(m)|4. We get m ∈ {2, 4, 6, 8, 10, 12} and it
turns out that

Φ6(t) = t2 − t+ 1

has root 1/2 + α2/2. This is an element of OK and since Φm(t) has no roots in OK for
m ∈ {8, 10, 12}, the group of roots of unity has order 6. It is generated by 1/2 + α2/2
and we have

µ =

{
1 + α2

2
,
1− α2

2
,−1,−1 + α2

2
,−1− α2

2
, 1

}
.

5.2 Computing fundamental units

The algorithm of Cohen, Diaz y Diaz and Olivier outputs a system of fundamental
units of the number field. The other algorithms discussed here output a system of
independent units (Buchmann, Pethő) or only many elements of small norm (the other
algorithms). In this section, we will explain how one can construct fundamental units
from the outputs of these algorithms. First, we need a definition. Consider the mapping
λ : K\{0} → Rr1+r2−1 given by

λ(x) = (c1 log|x(1)|, . . . , cr1+r2−1 log|x(r1+r2−1)|),

where ci = 1 for 1 ≤ i ≤ r1 and ci = 2 otherwise. This is called the logarithmic
embedding. It is a homomorphism from the multiplicative group of K to the additive
group in Rr1+r2−1. The kernel of its restriction to O∗K is µ. The image of O∗K is an
r1 + r2 − 1 dimensional lattice. Hence to find fundamental units, we need to find
r1 + r2 − 1 fundamental vectors which form a basis of this lattice. From Lemma 6.3 of
[25], we know that if µ×〈ε1〉× · · ·× 〈εr1+r2−1〉 is a subgroup ofO∗K of finite index, then
λ(εi) are linearly independent. As we saw before, the regulator of the number field is
the determinant of λ(O∗K).
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5.2.1 Generating units

If an algorithm outputs many elements of bounded norm, a first step would be to col-
lect the units among those elements. We can group the other elements based on their
absolute norm. In each group, we can try to divide any two elements to obtain an ele-
ment of norm ±1. However, dividing two elements of the same absolute norm in OK
can yield an element outside of OK . Hence after dividing two elements of the same
norm, we need to check if the result is in the ring of integers. If it is, we have obtained
a new unit, otherwise we try to divide other elements. This way, from our elements of
bounded norm, we can construct hopefully many units.

Example 5.2. Define the field K = Q(α) where α is a root of X3 − 5. Our imple-
mentation of Algorithm 3.11 gives in a certain instance the following three elements of
absolute norm 4:

β1 = −1 + α, β2 = −1− α+ α2, β3 = 29 + 17α+ 10α2.

We get β1/β2 = 1 + α/2 + α2/2, which is not an element of OK . The same holds for
β2/β3. On the other hand, β1/β3 = 1 − 4α + 2, which is not just an element of O∗K , it
turns out to even be a fundamental unit.

Remark. The method in Cohen, Diaz y Diaz and Olivier uses a method which is similar
to this one, but more advanced. When they reduce the matrix of exponents, it comes
down to combining and dividing ideals based on their prime ideal decomposition.
Even though there is more involved, we do a somewhat similar thing here but with
principal ideals.

5.2.2 Constructing a set of independent units

We now have hopefully many units, from which we want to construct a set of indepen-
dent units. Recall that a set of units {ε1, . . . , εu} is called independent if εm1

1 . . . εmu
u = 1

implies m1 = · · · = mu = 0 for every set of integers {m1, . . . ,mu}.
Such a set generates a multiplicative group, which we will try to make as big as pos-
sible with the units we have generated in the previous section. If we consider the
logarithmic embedding of this group, it is an additive group spanning a lattice. We
know many points on this lattice, namely the units generated in the previous section.
Hence we need to find a basis spanning this lattice.
We will construct this by maintaining a set of independent units. The set starts empty.
We will consider the units generated in the previous subsection one by one. We will
add a unit if it is independent of the units already in the set. Denote by {ε1, . . . , εu}
a set of independent units, their logarithmic embeddings being {v1, . . . ,vu}. A new
unit ε is independent of this set if its corresponding logarithmic embedding v is lin-
early independent of {v1, . . . ,vu}. This can be checked by considering the rank of the
matrix with columns v1, . . . ,vu,v. If this rank is greater than the rank of the matrix
with columns v1, . . . ,vu, we know that v is linearly independent of v1, . . . ,vu. In that
case, we add ε and v to their respective sets. If, however, the rank does not increase,
we know that v is linearly dependent of v1, . . . ,vu.
In that case, we solve a1v1+· · ·+auvu+av = 0 for a1, . . . , au, a ∈ Z. This is just a system
of linear equations that can be solved easily. By dividing by their greatest common di-
visor, we can assume that gcd(a1, . . . , au, a) = 1. We also want gcd(a1, . . . , au) = 1. This
is not always the case, but we can guarantee this by replacing v with an other vector v′
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constructed as follows. Let d = gcd(a1, . . . , au) > 1. Now, since gcd(d, a) = 1, there ex-
ist l,m ∈ Z such that dm−al = 1. Choose such l,m and define v′ = mv+ l(a1v1 + · · ·+
auvu)/d. Since d is a divisor of all ai, this is an integer combination of v and v1, . . . ,vu.
Now, note that dv′ = dmv + l(a1v1 + · · ·+ auvu) = v + l(av + a1v1 + · · ·+ auvu) = v.
Hence we have the new relation

(a1/d)v1 + · · ·+ (au/d)vu + av′ = 0.

Via the above construction, we can guarantee to have a relation of the form

a1v1 + · · ·+ auvu + av = 0

for a1, . . . , au, a ∈ Z, with gcd(a1, . . . , au) = 1.
Now, there exist b1, . . . , bu ∈ Z satisfying a1b1 + a2b2 + · · · + aubu = a − 1. These can
be found for example by repeating the Euclidean algorithm. Now, we are able to find
a system of vectors of size u that contain v1, . . . ,vu and v.

Lemma 5.3. Let a1, . . . , au, a and b1, . . . , bu be as above. Then,

{v1 + b1v, . . . ,vu + buv}

are a linearly independent system of vectors containing v1, . . . ,vu and v.

Proof. We have

v + a1(v1 + b1v) + a2(v2 + b2v) + · · ·+ au(vu + buv) = v − av + (a− 1)v = 0.

Hence the system contains v. Therefore, it contains vi + biv − biv hence vi for all i.
Since v1, . . . ,vu are linearly independent, so is the system we constructed.

Hence when considering a unit that is dependent on the other units, we can create a
new system by the above discussion. Because of the lemma, this set of independent
units {ε1εb1 , . . . , εuεbu} generates a bigger group than the set we started with. This way,
we will enlarge our set of independent units, until we have considered all the units
generated in the previous section.
We now have a subgroup ofO∗K of the form U = µ×〈ε1〉×· · ·×〈εu〉 containing the units
generated in the previous section. If u = r1 + r2 − 1, this subgroup is of finite index
in O∗K . Then the regulator of U is Reg(U) = |det(cj log|ε(j)i |)1≤i,j≤r|. The index of U in
O∗K is given by Reg(U)/Reg(OK). Hence in our tests, we can compare our regulator
to the regulator that PARI/GP returns (which is correct assuming GRH). If they are
equal, then we have indeed found a system of fundamental units. Otherwise, we have
a subgroup of which we can calculate the index.

Remark. Note that we are not able to guarantee that the group U we have generated
is all of O∗K if we do not have a way to check our regulator. Hence for fields of which
the generator is not known, we are only guaranteed to compute a subgroup of O∗K ,
which is of finite index inO∗K if we found r1 + r2− 1 independent units. In [1] and [25]
the authors compute a lower bound of the regulator and use that together with a more
advanced analysis to be able to check if the group generated is all of O∗K . We will not
discuss that here and refer to those articles instead.
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Implementation and results

We implemented the algorithms of Chapter 3 in Mathematica. Algorithm 3.3 was im-
plemented by Rianne Maes [21], Algorithms 3.6 and 3.11 were added later. We chose
Mathematica because of the high numerical precision it can guarantee. A disadvan-
tage of Mathematica is that it is not fast, compared to for example C. In the following
section, we will describe our code. The complete code can be found in Appendix A.

6.1 Description of code

The module Main[f,algo,param] is the main function, where f is an irreducible
polynomial defining the field K of which we want to find the unit group. With the
parameter algo one decides what algorithm to use, where 1 is Algorithm 3.3, 2 means
Algorithm 3.6 and 3 stands for Algorithm 3.11. Depending on algo, the parameter
param is a number determining the number of steps for the first two algorithms, or
a Boolean determining if the last algorithm should search in random (True) or sys-
tematic (False) directions. In Main, first some basic properties of the number field
(degree, signature, integral basis) are calculated using built-in Mathematica functions.
Then, using QuadraticForm1[f], QuadraticForm2[f] or QuadraticForm3[f],
the right quadratic form matrix Q is calculated. For the first two algorithms, then the
module GeodesicLLL[Q,param] then calculates elements of small norm. For the
last algorithm, this is done by Directions[Q,param]. In both cases, the result is
stored in the list elements. After that, the roots of unity of K are calculated using a
Mathematica built-in function. The module Units[elements] returns a list of units,
which is stored in units. Finally, IndependentUnits[units,f] computes a max-
imal system of independent units from that.
The module GeodesicLLL as implemented by Rianne Maes [21] is left mostly intact.
Some things are removed or renamed, since her focus was different from ours. How-
ever, since no big changes have been made, we will refer to her thesis for a description
of that implementation.
The module Directions performs Algorithm 3.11. First, it generates a number of pa-
rameter vectors using Randomparametervectors or
Systematicparametervectors, depending on the previously set parameter param.
Randomparametervectors[size,power,number] returns number parameter vec-
tors of length size filled with random powers of 2 smaller than power. The module
Randomparametervectors[size,power,number] recursively creates all param-
eter vectors of the form {2i1 , . . . , 2in} with n = size and 0 ≤ ij < power for all j.
The way these parameters can be chosen is discussed in the next section. Every such a
"direction" t′1, t

′
2, . . . , t

′
n ∈ R is then passed to the module

ReduceDirection[Q,direction]. This module then substitutes t1, t2, . . . , tn in Q
for this parameter vector and calls LLLReduce, which performs LLL reduction on the

30
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obtained matrix. The elements of small norm are collected and in the end returned by
Directions.
The module LLLReduce is very similar to the version of LLL reduction implemented
by Rianne Maes. For a discussion, we refer to [21].

Remark. In Chapter 3, we took the first column of the matrix Ak corresponding to the
change of variables after performing LLL reduction. For an element corresponding
to such a column, we were able to guarantee an upper bound of the norm. In our
implementation, we also collect the elements corresponding to the other columns. In
practice, these are also of small norm and they can hopefully be divided to obtain units.

6.2 Tests and comparisons

We used the database of the article [18] to obtain many number fields of given deter-
minants and signatures. We performed tests on these number fields, of which we will
discuss the results below. We will refer to Algorithm 3.3 as algo1, to Algorithm 3.6 as
algo2 and to Algorithm 3.11 as algo3. All tests have been done on a 2013 MacBook Pro
with a 2.4 GHz Intel Core i5 processor. The results have been processed with Python
and RapidMiner.

6.2.1 Choosing the parameters

We first want to be able to choose optimal parameters for each of the algorithms. We
can then use these parameters to compare the algorithms. To that end, we choose 28
number fields of degree 2 to 8 at random, choosing 4 fields for each degree. We pick
these from a large set of number fields with relatively small determinants, generated
by the database mentioned before. Using PARI/GP, for each of those number fields we
calculate the regulator (hence using the algorithm of Cohen, Diaz y Diaz and Olivier).
We also look up the signature and calculate r = r1 + r2 − 1. The results can be found
in the table on the next page. We perform tests on these number fields with our imple-
mented algorithms.
With algo1 and algo2, we try to find an optimal number of steps to take in the loop.
We run the algorithm for 50, 100, . . . , 400 steps and collect the results such as running
time, number of units found (after division), number of independent units, regulator
and max norm. For all number fields with r1 > 0, algo1 was able to find a system of
independent units with regulator equal to that calculated by PARI/GP. In other words,
the algorithm is able to construct a system of fundamental units for all fields. For all
fields, such a system was already found within 50 steps. The number of steps and
the number of units found are linearly correlated, but the time seems to increase ex-
ponentially as the number of steps increases. We conclude that for both algorithms, a
step size of 50 is enough for these number fields. The algorithms also run sufficiently
fast, with at most a couple of seconds for 50 steps. We conclude this analysis with two
graphs of the results. The first graph is a scatterplot of the running time (in seconds) on
various numbers of steps for algo1. The second graph is a scatterplot of the number of
units found for various numbers of steps, also for algo1. Different colours correspond
to different polynomials. The results can be seen in Figure 6.1.
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Polynomial Reg (PARI) |Disc| r1 r2 r

x2 − x− 1 0.481 5 2 0 1
x2 − x− 39 5.361 157 2 0 1
x2 − x− 198 9.081 793 2 0 1
x2 − 13 1.195 13 2 0 1
x3 − x2 − 2x+ 1 0.525 49 3 0 2
x3 + 3x− 1 1.133 135 1 1 1
x3 − 5 4.812 675 1 1 1
x3 − x2 − 6 10.029 996 1 1 1
x4 − x3 + x2 − x+ 1 0.962 125 0 2 1
x4 − x2 + 1 1.317 144 0 2 1
x4 + 1 1.763 256 0 2 1
x4 − x3 + 2x2 − 2x− 1 1.479 1963 2 1 2
x5 − 2x4 + 2x3 − x2 + 1 0.347 2209 1 2 2
x5 − x4 + x3 − 3x2 + x− 1 1.436 9664 1 2 2
x5 − 2x2 − 1 1.042 6581 1 2 2
x5 − x4 + 2x3 − 2x2 + 1 1.082 9829 1 2 2
x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x+ 1 0.237 12167 0 3 2
x6 − x5 + x4 − x3 + x2 − x+ 1 2.102 16807 0 3 2
x6 − x3 + 1 3.397 19683 0 3 2
x6 − x− 1 0.741 49781 2 2 3
x7 − x6 − x5 + x4 − x3 − x2 + 2x+ 1 0.605 357911 1 3 3
x7 + 2x5 − x− 1 1.266 854575 1 3 3
x7 − 2x6 + 3x5 − 3x4 + 3x3 − 2x2 + 2x− 1 0.441 227287 1 3 3
x7 − x6 + x4 − x3 − x2 + x+ 1 0.756 451051 1 3 3
x8 − 4x7 + 6x6 − 8x4 + 4x3 + 8x2 − 8x+ 2 5.498 6553600 0 4 3
x8 − x7 − x6 + x5 + 2x3 + x2 − 3x+ 1 2.126 3379725 0 4 3
x8 − 3x7 + 4x6 + x5 − 9x4 + 13x3 − 9x2 + 4x− 1 1.207 7288099 2 3 4
x8 + x4 + x2 + 1 0.763 4227136 0 4 3

For algo3, we first perform tests using random directions. We have two parameters
that can be chosen. First, the amount of parameter vectors can be varied. We let this
run from 10, 20, . . . , 50. Secondly, the highest power of 2 in each parameter vector can
be varied. We choose to let this run from 5 to 30 with steps of 5. For each of these 30
configurations and for each field, we collect the results like we did for algo1 and algo2.
The performance of the algorithm varies a lot. Often, a highest power of 25 or 210 is not
enough. For all fields, except x3 − x2 − 6, using 20 parameter vectors of maximal size
220 is enough to find a system of fundamental units. For x3−x2−6, using 50 parameter
vectors of maximum size 250, algo3 is able to find such a system. The regulator of the
corresponding field is big, which means that the fundamental unit is big in a certain
sense, too. This suggests why in this case we need to have higher parameters.
The running time of the algorithm varies wildly. For x8−x7−x6+x5+2x3+x2−3x+1,
when using 40 parameter vectors of maximum size 230, the algorithm ran for more than
2 minutes, whereas with 50 parameter vectors of maximum size 230 it took 13 seconds.
This is caused by the randomness of the parameter vectors. Because of these results,
in the next subsection we will run tests with 20 parameter vectors of maximal size 220.
To deal with the randomness, we run every test multiple times and average the results
such as running time and number of units found.
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FIGURE 6.1: Scatter plots of running time and number of units found as
a function of steps for algo1. Different colours correspond to different

fields.

Next, we run tests using systematic parameter vectors. We vary the maximum power
of 2 in every parameter vector, hence also the number of parameter vectors considered.
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We consider parameter vectors of the form (25i1 , 25i2 , . . . , 25ir1+r2 ) with 0 ≤ ij ≤ k for
k = 2, 3, . . . , 7 and all j. We chose to multiply every power by 5 to make the elements
in the parameter vectors bigger without increasing the number of parameter vectors.
For a given k, the number of parameter vectors considered is of order kr1+r2 . Hence
the number of reductions to perform increases exponentially, and so does the running
time. For x7 + 2x5−x− 1 and k = 7, the running time is more than 15 minutes, and for
the degree 8 fields, the algorithm failed to return an answer within the hour for k > 4.
However, using k = 3, the algorithm is able to find a system of fundamental units for
all fields except for x3 − x2 − 6 within a couple of seconds.

6.2.2 Statistics

Now, we run the algorithms on the chosen parameters on many number fields, to be
able to provide statistical results. We run algo1 and algo2, with 50 steps. Algo3 is run
with 20 random parameter vectors of maximum size 220 (to which we will refer as algo3
(r)) and with systematical parameter vectors (25i1 , . . . , 25ir1+r2 ) with 0 ≤ ij ≤ 3 for all
j, respectively (algo3 (s)). The results of algo3 (r) are averaged over 5 runs in order to
deal with the randomness in the results.
We selected 700 number fields, 100 of each degree from 2 to 8. These number fields were
generated by [18] and selected to have small discriminants. We ran the algorithms on
each of these number fields and collected the results. The following tables summarise
these results.
First we calculate the percentage of number fields for which a system of fundamental
units has been found. We break this down on the degrees of the number fields and on
r = r1 + r2 − 1. We also calculate the average running time. The results can be seen in
Table 6.1 and 6.2, respectively.
We can see that algo1 and algo3 (r) are the best in terms of percentages and running
time. However, algo1 does not work for totally complex fields, whereas algo3 does.
What is surprising is that algo3 does not work well for degree 2 fields. In many of
these cases, no units were found at all. Even though algo3 works for totally complex
fields, it does not work well in those cases. This holds for both the systematic and the
random version of algo3. We see that the degree is of big influence on the running time.
This is caused by the matrices being larger, hence the calculations will be slower. More-
over, the discriminants are larger on average for higher degree fields. The value of r
affects the running time, too, but less significantly so, except for the systematic version
of algo3. This is because the value of r is of great influence on the number of parameter
vectors to be considered in that algorithm. In the other algorithms, it only influences
the search for independent units, which loops over all found units in any case. What is
surprising is that algo2 is often much slower than algo1 for the same degree and same
r. This may be caused by the fact that the matrix Q contains more information and
hence finding its subdeterminants costs more time.
Next, we will look at the norms of the elements obtained by reductions. By Proposition
3.4, 3.7 and 3.12, the norms of certain elements are bounded. However, in our imple-
mentation we do not only consider those elements, but rather all elements obtained by
reductions. To be able to get a grasp of what kind of elements the algorithms obtain,
we plot histograms in which we group elements by their norm. We ran these tests with
algo1 and algo2, both with 1000 steps on x4+3x2−12 and x7−2x6+3x5−x4−x3+2x2−1.
For both fields, the results of algo1 and algo2 are very similar. The algorithms find
many elements of small absolute norm and few elements of large absolute norm. For
both fields, algo2 finds more elements of small norm and less elements of large absolute
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Degree r algo1 algo2 algo3 (r) algo3 (s)
2 1 94 95 75 51
3 1 100 100 94 88

2 100 100 100 100
4 1 - - 94 86

2 100 68 82 77
3 58 42 100 67

5 2 96 96 99 99
3 90 70 90 90
4 100 100 100 100

6 2 - - 99 96
3 100 90 100 100

7 3 99 94 100 100
4 100 100 100 100

8 3 - - 98 88
4 90 70 100 100

total 96 92 94 87

TABLE 6.1: Percentage of number fields for which a system of funda-
mental units is found

Degree r algo1 algo2 algo3 (r) algo3 (s)
2 1 0.47 0.54 0.12 0.06
3 1 0.47 0.79 0.09 0.05

2 0.54 0.85 0.14 0.14
4 1 - - 0.18 0.08

2 1.42 2.60 0.27 0.25
3 1.52 2.89 0.54 2.11

5 2 2.75 5.33 0.45 0.45
3 3.22 5.51 0.95 3.07
4 4.14 5.87 0.70 13.14

6 2 - - 0.73 0.73
3 5.61 10.39 1.02 3.80

7 3 9.37 17.74 1.88 6.71
4 9.20 18.28 2.03 26.29

8 3 - - 2.67 12.15
4 16.97 28.23 2.23 43.13

total 3.58 6.59 0.90 3.59

TABLE 6.2: Average running time in seconds
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Degree r fields 50 steps 100 steps 500 steps 1000 steps
9 4 2 1 1 2 2

5 2 2 2 2 2
6 2 0 0 1 1
7 2 0 0 1 1
8 2 0 0 0 0

10 5 2 2 2 2 2
6 2 2 2 2 2
7 2 0 0 0 2
8 2 0 0 1 1
9 2 0 0 0 0

11 5 2 1 2 2 2
6 2 0 0 1 1
7 2 0 0 0 0

TABLE 6.3: Number of fields for which a system of independent units
was found with algorithm 1 and varying numbers of steps

norm than algo1. In the second field, this difference is remarkably big. For x4+3x2−12,
we also plotted histograms for algo3 (r) and algo3 (s). We considered 80 parameter
vectors with maximum size 220 for the random algorithm, and looked at all parameter
vectors (25i1 , 25i2 , 25i3) with 0 ≤ i1, i2, i3 ≤ 5 for algo3 (s). These algorithms perform
worse in terms of the norms of the elements than algo1 and algo2. Although the algo-
rithms find many elements of small norm, also some elements of very large norm are
found. We removed these outliers to be able to get a better view of the results. These
outliers have norms up to 3 · 106 for both algo3 (r) and algo3 (s). The histograms can be
found in 6.2 and 6.3.

6.2.3 High degree number fields

Next, we perform tests on higher degree number fields to see how far we can go. To that
end, we collect number fields of degree 10 to 20 and run algo1 and algo3 (r) on these
fields. Because of the longer running time and the worse performance for the other two
algorithms, we do not run these tests on the other two algorithms. We choose about 6
fields for every degree, of varying signatures.
First, we run algo1 for 50 steps on every field. For 3 out of the 10 fields of degree 9, the
algorithm was able to find a system of independent units of maximal size. The same
holds for 4 of the 10 fields of degree 10 and 1 field of degree 11. In all those cases,
this system of independent units is in fact a system of fundamental units. The fields
for which the algorithm is able to find such a system, are fields with many complex
embeddings, hence with small r = r1 + r2 − 1. For higher degrees, the algorithm was
not able to find sufficiently many independent units within 50 steps. After increasing
the number of steps to 1000, still for no fields of degree 12 or higher the algorithm is
able to find r independent units. The results are summarised in Table 6.3. The results
suggest that if we go on long enough, we might be able to find a system of fundamental
units for number fields of higher degree too. However, for 1000 steps the algorithm
already takes 5 minutes for a degree 11 field. We conclude this analysis by an example
of the results of a degree 10 field.
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FIGURE 6.2: Histograms of norms of elements obtained by reduction on
x4 + 3x2 − 12
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FIGURE 6.3: Histograms of norms of elements obtained by reduction on
x7 − 2x6 + 3x5 − x4 − x3 + 2x2 − 1

Example 6.1. Consider the field defined by a root of the polynomial

x10 − 2x9 + 5x7 − x6 + 4x5 − 12x4 − 28x3 + 9x+ 1.

Its discriminant is approximately 3 ·1011 and we have (r1, r2) = (6, 2), so r1+r2−1 = 7.
PARI/GP computes a regulator of 97.835. If we run algorithm 1 on this field with 50
steps, it finds 2 units that are also independent. Increasing the number of steps to 100,
the algorithm also finds 2 independent units. With 500 steps, 9 units are found among
which there are 7 independent units. The calculated regulator is 195.670, hence we
have found a subgroup of the group of fundamental units of index 195.670/97.835 =
2. If we run the algorithm with 1000 steps, the algorithm finds 23 units. It finds a
system of independent units with regulator 97.835, hence corresponding to a system of
fundamental units. With 1000 steps, this computation took about 2 minutes.

We also run algorithm 3 on these high degree number fields with 50 random parameter
vectors (2i1, . . . , 2

i
r1+r2) with ij ≤ 5 for all j. We do this, because with our previous

parameters (20 of such parameter vectors with ij ≤ 20), on a degree 14 number field
the algorithm takes very long if it ends at all. Therefore, we choose to decrease the
size but increase the number of parameter vectors. The algorithm is able to find a
system of fundamental units in 42 of the 53 cases of fields of degree 9 up to degree 15.
The surprising part is that it performs almost equally well for all degrees and values
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of r. The algorithm is also relatively fast, with an average running time of 3 and a
maximum of 7.5 minutes. These running times are displayed in Figure 6.4. For number
fields of degree 16 and higher, the algorithm has not been able to give a result within a
reasonable amount of time.

FIGURE 6.4: Running time of algo3 (r) on high degree number fields.
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Appendix A

Mathematica Code

Computes units for the field defined by f, where algo=1 means the geodesic algorithm, algo=2 stands
for the geodesic algorithm with another form, algo=3 stands for reduction in random directions and
algo=4 stands for reduction in systematic directions.

In[1]:= Main[f_,algo_,steps_,size_]:=Module[{Q, elements, units},
n = Exponent[f,x]; (* the degree of the field *)
{r1,r2}=NumberFieldSignature[Root[f,1]]; (* number of real (r1) and
complex (r2) embeddings *)
b=NumberFieldIntegralBasis[Root[f,1]];(* basis of the ring of
integers of the number field *)
np=1000; (* the numerical precision *)
If[algo>2,
Q=QuadraticForm3[f]; (* create the required quadratic form *)
elements = Directions[Q,steps,size]; (* collect elements found by
algorithm *)

,
If[r1 == 0, Print["No real embeddings."]; Return[]];
If[algo==1,
Q=QuadraticForm1[f],(* create the required quadratic form *)
Q=QuadraticForm2[f]];(* create the required quadratic form *)

elements = GeodesicLLL[Q,steps]; (* collect elements found by
algorithm *)
];
elements = DeleteDuplicates[elements];
units = Units[elements];
Print["Number of units: ", Length[units]];
If[Length[units]>0, IndependentUnits[units,f]];
Print["Roots of unity: ", NumberFieldRootsOfUnity[Root[f,1]]]

]

QuadraticForm1 creates the square (n+ 1)× (n+ 1) matrix Q for x21 + ...+ x2n + tα2, where for each
entry the constant and the coefficient of t are separated.

In[2]:= QuadraticForm1[f_]:=Module[{Q,a,i,j},
Q=ConstantArray[0,{n,n,2}];
a=N[b, np];
For[i=1,i≤≤≤n,i++, (* loop over variables xjxk *)

For[j=1,j≤≤≤n,j++,
Q[[i,j,1]]=a[[i]]*a[[j]]];

Q[[i,i,2]]=1];
Q[[1,1,2]]=0;

Return[Q]
]

42
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QuadraticForm2 creates the square n× n matrix Q for |α(2)|2 + · · ·+ |α(n)|2 + t(α(1))2 where for each
entry the constant and the coefficient of t are separated.

In[3]:= QuadraticForm2[f_]:=Module[{Q,a,i,j,k},
Q=ConstantArray[0,{n,n,2}];
For[i=1,i≤≤≤n,i++, (* loop over embeddings *)

a=N[NumberFieldIntegralBasis[Root[f,i]],np];
For[j=1,j≤≤≤n,j++, (* loop over variables xjxk *)

For[k=1,k≤≤≤n,k++,
If[i==1,

Q[[j,k,1]]+=Re[a[[j]]*Conjugate[a[[k]]]], (* first
embedding is multiplied with t *)
Q[[j,k,2]]+=Re[a[[j]]*Conjugate[a[[k]]]]]

]]];
Return[Q]

]

QuadraticForm3 creates the square n× n matrix Q for t1|α(1)|2 + · · ·+ tn|α(n)|2 where for each entry
the constant and the coefficients of ti are separated.

In[4]:= QuadraticForm3[f_]:=Module[{Q,a,i,j,k},
Q=ConstantArray[0,{n,n,n}];
For[i=1,i≤≤≤n,i++, (* loop over embeddings *)

a=N[NumberFieldIntegralBasis[Root[f,i]],np];
For[j=1,j≤≤≤n,j++, (* loop over variables xjxk *)
For[k=1,k≤≤≤n,k++,

Q[[j,k,i]]+=Re[a[[j]]*Conjugate[a[[k]]]] (* every
embedding is multiplied with ti *)

]]];
Return[Q]

]

Extracts units from small norm elements by dividing elements of the same norm.

In[5]:= Units[els_]:=Module[{start,elements,units,subsets,newelem,i,j},
elements = GatherBy[els,Abs[AlgebraicNumberNorm[#]]&]; (* now
’elements’ contains ’buckets’ of elements with the same norm *)
If[Length[elements] == 0, Return[]];
units = {};
(* collect elements of absolute norm 1 *)
If[Abs[AlgebraicNumberNorm[elements[[1,1]]]]==1, (* does the first
bucket have absolute norm 1 elements? *)
(* yes *)

For[i=1,i≤≤≤Length[elements[[1]]],i++,
If[elements[[1,i]]6=6=6=1,

units=Union[units,{elements[[1,i]]}]] (* the units *)
];
start=2 (* we can start at the second bucket by dividing *)
,
(* no *)
start=1 (* we should divide elements of the first bucket too *)

];

(* divide two other elements to find units *)
For[i=start,i≤≤≤Length[elements],i++,
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If[Length[elements[[i]]]>1,
subsets = Subsets[elements[[i]],{2}];
(* pick pairs of elements of the same norm *)
For[j=1,j≤≤≤Length[subsets],j++,

newelem = subsets[[j,1]]/subsets[[j,2]];
(* divide the elements and check if they
are algebraic integers *)
If[AlgebraicIntegerQ[newelem]&&Abs[newelem]6=6=6=1,
units=Union[units,{newelem}]]

]]];
Return[units]

]

Find a system of independent units from units_.

In[6]:= IndependentUnits[us_,f_]:=Module[{units,logunits,independentunits,
logindependentunits,i,maxrank,relation,x,b,j,d,l,m,newunit,reg,
lognewunit,newrelation},

units = Complement[us, NumberFieldRootsOfUnity[Root[f, 1]]];
(* get rid of roots of unity *)
units = SortBy[units, Total[Abs[#[[2]]]] &]; (* prioritize elements
with small coefficients *)
If[Length[units] == 0, Return[]];
logunits = LogEmbed[#, f] & /@ units; (* logarithmic embedding *)
maxrank = MatrixRank[logunits];
logindependentunits = {logunits[[1]]};
independentunits = {units[[1]]};
(* consider new unit *)
For[i=2,i≤≤≤Length[units],i++,

newunit = units[[i]];
lognewunit = logunits[[i]];
(* check if rank increases *)
If[MatrixRank[logindependentunits]<MatrixRank[Append[

logindependentunits,logunits[[i]]]],
(* independent *)
(* add it to the independent units *)
AppendTo[independentunits,units[[i]]];
AppendTo[logindependentunits,logunits[[i]]]
,
(* dependent *)
(* find relation a1v1+...+auvu+av=0 *)
relation = NullSpace[Append[logindependentunits,logunits[[i]]]^T]

[[1]];
relation /= Select[relation,Chop[#]6=6=6=0&,1][[1]]; (* divide everything
by a nonzero number *)
relation = Rationalize[relation,10^-40];
relation = relation/Apply[GCD,relation]; (* relation is now
integral *)
(* now relation = {a1,...,au,a} *)
If[Or[Abs[relation[[-1]]] == 1, Or @@ (# > 2^50 & /@ relation)],

Continue[]];
(* the span won’t get bigger if v is a combination of v_1,...,v_u *)
d = Apply[GCD, Drop[relation, -1]];
(* d = gcd(a1,...,au) *)
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If[d > 1, (* replace v by v’ *)
l, m = l1, m1 /. FindInstance[d*m1 - relation[[-1]]*l1 == 1,
{l1, m1}, Integers][[1]];

newrelation = 1/d*Drop[relation, -1];
relation = Append[newrelation, relation[[-1]]];
lognewunit = m*lognewunit +

l(Drop[relation, -1].logindependentunits);
newunit = newunit^m *

Product[independentunits[[j]]^(relation[[j]]*l),
{j, 1, Length[independentunits]}]

];
(* solve a1b1+...+aubu=a-1 *)
x = Table[Unique["x"],{Length[relation]-1}];
Clear[x];
vars=Array[x,Length[relation]];
x[Length[vars]]=-1;
b = FindInstance[relation.vars==1||relation.vars==-1,
Drop[vars,-1],Integers];
b=vars/.b[[1]];
(* now b = {b1,...,bu,-1} *)
(* change basis *)
For[j=1,j≤≤≤Length[logindependentunits],j++,

logindependentunits[[j]]+=logunits[[i]]*b[[j]];
independentunits[[j]]*=units[[i]]^b[[j]];

]]];
reg = Null;
If[MatrixRank[logindependentunits]==r1+r2-1,
reg = N[Abs[Det[logindependentunits]],6]];

Print["Number of independent units: ", Length[independentunits],
"/", r1+r2-1];

Print["Independent units: ", independentunits];
Print["Regulator: ", reg]

]

Returns the logarithmic embedding of x.

In[7]:= LogEmbed[x_,f_]:=Module[{lambda,i},
lambda = ConstantArray[0, r1 + r2 - 1];
For[i = 1, i ≤≤≤ r1 + r2 - 1, i++,
If[i ≤≤≤ r1,

(* need only one complex conjugate *)
lambda[[i]] = Log[Abs[x[[2]].N[Root[f, i], np]^
Array[# &, r1 + 2 r2, 0]]],

lambda[[i]] = Log[Abs[x[[2]].N[Root[f, r1 + 2*(i - r1) - 1], np]^
Array[# &, r1 + 2 r2, 0]]]

];
If[i > r1, lambda[[i]] *= 2];

];
Return[lambda]

]
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GeodesicLLL performs the Geodesic algorithm on quadratic form Q. The number of steps it should
do is determined by the variable steps_.

In[8]:= GeodesicLLL[Q_,steps_]:=Module[{stepcounter,norms,units,i},
stepcounter = 0;
A = Initialize[N[Q,np]];
InitialReduction[];
elements = {};
While[!complete,
stepcounter++;
ApproximationStep[];
For[i=1, i≤≤≤Length[transform[[1,All]]],i++,
AppendTo[elements, transform[[All,i]].b] (* collect elements from
transform matrix *)

];
If[Accuracy[t]≤≤≤0||Accuracy[A]≤≤≤0||stepcounter>steps, complete=True];
];
Return[elements]

]

In Initialize we compute the initial values ofBij andCi. You can recall the valueBij with B[[i,j,1]]*t+B[[i,j,2]]
and the value of Ci with C[[i,1]]*t+C[[i,2]]. This Module returns {B,C}. Also we define some global
variables which are used in several Modules.

In[9]:= Initialize[Q_]:=Module[{n,B,C},
n=Length[Q];
t=1;
transform=IdentityMatrix[n];(*this matrix keeps hold of the
transformations *)
stepcounter=0;(*counts the number of approximation steps*)
complete=False;(*becomes true when the process has to stop.*)
Return[Determinants[Q]]

]

Creates matrix B and array C consisting of determinants.

In[10]:= Determinants[Q_]:=Module[{B,C,i,j},
B=ConstantArray[0,{n,n,2}];
C=ConstantArray[0,{n-1,2}];
For[i=1,i<n,i++,
For[j=i,j≤≤≤n,j++,
B[[i,j]]=MakeBij[Q,i,j];
];
C[[i]]=MakeCi[Q,i];

];
B[[n,n]]=MakeBij[Q,n,n];
Return[{B,C}]

]

Finds the determinant Bij to put in matrix B.

In[11]:= MakeBij[Q_,i_,j_]:=Module[{B,k,l},
Clear[p];
B=ConstantArray[0,{i,i}];
For[k=1,k≤≤≤i,k++,
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For[l=1,l≤≤≤i-1,l++,
B[[l,k]]=Q[[l,k]][[2]]+p*Q[[l,k]][[1]];
];
B[[i,k]]=Q[[j,k]][[2]]+p*Q[[j,k]][[1]];

];
Return[{Coefficient[Det[B],p,1],Coefficient[Det[B],p,0]}]

]

Finds the determinant Ci to put in matrix C.

In[12]:= MakeCi[Q_,ii_]:=Module[{i,j,C,k,l},
Clear[p];
i=ii+1;
j=ii+1;
C=ConstantArray[0,{i,i}];
For[k=1,k≤≤≤i,k++,
For[l=1,l≤≤≤i-1,l++,
C[[k,l]]=Q[[k,l]][[2]]+p*Q[[k,l]][[1]];
];
C[[k,i]]=Q[[k,j]][[2]]+p*Q[[k,j]][[1]];

];
C=Drop[C,{ii}]; (* remove i’th row and column *)
C=Drop[C,{}, {ii}];
Return[{Coefficient[Det[C],p,1],Coefficient[Det[C],p,0]}]

]

We perform the first shifts to make sure that all µij lie in the interval [-0.5;0.5], thus we check all the
inequalities 2|B1j | ≤ B11 for t = 1.

In[13]:= InitialReduction[]:=Module[{B11,B1j,mid,a,j},
B11=A[[1,1,1]][[1]]*t+A[[1,1,1]][[2]]; (*Compute value of B_11*)
For[j=2,j≤≤≤n,j++,
B1j=A[[1,1,j]][[1]]*t+A[[1,1,j]][[2]];
If[2*Abs[B1j]>B11, (*If the inequality is not met, we need to
perform a shift*)
mid= B1j/B11;(*We use mid to calculate with which
value we have to shift*)

a=Floor[0.5-mid];
Shift[1,j,a](*We perform the shift x_1→x_1+a x_j*)

]]
]

This Module performs one approximation step and calls for the corresponding critical shift or swap.
It calls for Reductionstep2 and Reductionstep3 to make the new form LLL-reduced.

In[14]:= ApproximationStep[]:=Module[{plan,a,i,j,mij},
plan=MakePlan[];
If[!complete, (*While making the plan, complete can become True in
the ComputeInt Module, then we skip the next part and the process
stops*)
If[plan[[1]], (*This means we have to shift*)
a=-1; (*a decides whether we shift with -1 or 1*)
i=plan[[2]];
j=plan[[3]];
mij=(A[[1,i,j,1]]*t+A[[1,i,j,2]])/(A[[1,i,i,1]]*t+A[[1,i,i,2]]);
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If[mij<0,a=1];
Shift[i,j,a];
If[j==i+1,ReductionStep2[]];
ReductionStep3[];
, (* we will swap *)
Swap[plan[[2]]];
ReductionStep2[];
ReductionStep3[](*For partial reduction we can skip this step*)

]]
]

This Module uses the list of intervals which is the output of ComputeInterval[]. We calculate the next
value of t and return a plan. This plan is a list of the form {shift,i,j}. The variable shift is a boolean,
if it is true we need to perform a shift, otherwise a swap. The i and j tell us which shift or swap (if
j = −1) we have to perform.

In[15]:= MakePlan[]:=Module[{int,shift,i,j,upperbound,k},
int=ComputeInterval[];
shift=True;
upperbound=Max[int[[1,3]]];
i=int[[1,1]];
j=int[[1,2]];
For[k=1,k≤≤≤Length[int],k++,
If[Max[int[[k,3]]]<upperbound,
upperbound=Max[int[[k,3]]];
i=int[[k,1]];
j=int[[k,2]]]];

If[j==-1,shift=False];
t=upperbound; (*assigns the new value for t*)
Return[{shift,i,j}]

]

This Module computes for each inequality the intervals for t for which the inequality is met. It
returns an array with elements of the form {int, i,j} where int is the interval and i and j denote the
corresponding inequality. If j = −1 the interval belongs to the inequality ωBii ≤ Ci (so we have to
swap), otherwise the interval belongs to the inequality 2|Bij | < Bii (so we have to shift).

In[16]:= ComputeInterval[]:=Module[{Int,Bij,Bii,int1, int2, int,Ci,i,j},
Int={};
(*In the following for-loop we check the inequalities 2|Bij|<Bii*)
For[i=1,i≤≤≤ n,i++,
For[j=i+1,j≤≤≤n,j++,
Bij=2A[[1,i,j]];
Bii=A[[1,i,i]];
If[Bij[[1]]-Bii[[1]]==0||-Bii[[1]]-Bij[[1]]==0,
complete=True];

If[!complete, (*We have to check both 2Bij<Bii and -Bii<2Bij.
Then we compute their intersection.*)
If[Bij[[1]]-Bii[[1]]>0,
int1 = Interval[{0,(Bii[[2]]-Bij[[2]])/(Bij[[1]]-Bii[[1]])}],
int1 = Interval[{(Bii[[2]]-Bij[[2]])/(Bij[[1]]-Bii[[1]]),
Infinity}]];

If[-Bii[[1]]-Bij[[1]]>0,
int2 = Interval[{0,(Bij[[2]]+Bii[[2]])/(-Bii[[1]]-Bij[[1]])}],
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int2 = Interval[{(Bij[[2]]+Bii[[2]])/(-Bii[[1]]-Bij[[1]]),
Infinity}]];

int = IntervalIntersection[int1,int2];
AppendTo[Int,{i,j,int}]

]];
(*In the following for-loop we check the inequalities 3/4Bii ≤≤≤ Ci*)
For[i=1,i≤≤≤n-1,i++,
Bii=3/4A[[1,i,i]];
Ci=A[[2,i]];
If[Bii[[1]]-Ci[[1]]>0,int=Interval[{0,(Ci[[2]]-Bii[[2]])/
(Bii[[1]]-Ci[[1]])}],
int = Interval[{(Ci[[2]]-Bii[[2]])/(Bii[[1]]-Ci[[1]]),
Infinity}]];

AppendTo[Int,{i,-1,int}]]];
(*The -1 indicates that we have to perform a swap*)

Return[Int]
]

Performs the shift xr → xr + axs.

In[17]:= Shift[rr_,ss_,aa_]:=Module[{r,s,a,B,C,i},
r=rr;
s=ss;
a=aa;
(*Update transformmatrix*)
For[i=1,i≤≤≤n, i++,
transform[[i,s]]+=a transform[[i,r]]];
(*Update determinants*)

If[r==s-1,
A[[2,r]]+=2 a A[[1,r,s]]+a^2 A[[1,r,r]]];

For[i=1,i≤≤≤r,i++,
A[[1,i,s]]+=a*A[[1,i,r]]]

]

Performs the swap xr ↔ xr+1.

In[18]:= Swap[rr_]:=Module[{r,old,Br1r1,Br2r2,Brijb,Bjj1,Bjj,mjj1,shift,
oldtrans,i,j},

r=rr;
(*Update the transformmatrix*)
For[i=1,i≤≤≤n, i++,
oldtrans=transform[[i,r]];
transform[[i,r]]=transform[[i,r+1]];
transform[[i,r+1]]=oldtrans;

];
(*Update determinants*)

(*update rule 4 and 5*)
For[j=r+2,j≤≤≤n,j++,
old=A[[1,r,j]];
If[r==1,Br1r1={0,1},Br1r1=A[[1,r-1,r-1]]];
If[A[[1,r,r,2]]==0,A[[1,r,j,2]]=(A[[1,r,r+1,2]]*A[[1,r,j,1]]+
A[[1,r,r+1,1]]*A[[1,r,j,2]]+Br1r1[[2]]*A[[1,r+1,j,1]]+Br1r1[[1]]*
A[[1,r+1,j,2]])/A[[1,r,r,1]];
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A[[1,r,j,1]]=(A[[1,r,r+1,1]]*A[[1,r,j,1]]+Br1r1[[1]]*
A[[1,r+1,j,1]])/(A[[1,r,r,1]]);
A[[1,r+1,j,2]]=(A[[1,r+1,r+1,2]]*old[[1]]+A[[1,r+1,r+1,1]]*old[[2]]-
A[[1,r,r+1,2]]*A[[1,r+1,j,1]]-A[[1,r,r+1,1]]*A[[1,r+1,j,2]])/
(A[[1,r,r,1]]);
A[[1,r+1,j,1]]=(A[[1,r+1,r+1,1]]*old[[1]]-A[[1,r,r+1,1]]*
A[[1,r+1,j,1]])/(A[[1,r,r,1]]);,
(*else*)
A[[1,r,j,2]]=(A[[1,r,r+1,2]]*A[[1,r,j,2]]+Br1r1[[2]]*
A[[1,r+1,j,2]])/A[[1,r,r,2]];
A[[1,r,j,1]]=(A[[1,r,r+1,2]]*A[[1,r,j,1]]+A[[1,r,r+1,1]]*old[[2]]+
Br1r1[[2]]*A[[1,r+1,j,1]]+Br1r1[[1]]*
A[[1,r+1,j,2]]-A[[1,r,j,2]]*A[[1,r,r,1]])/A[[1,r,r,2]];
Brijb=A[[1,r+1,j,2]];
A[[1,r+1,j,2]]=(A[[1,r+1,r+1,2]]*old[[2]]-A[[1,r,r+1,2]]*
A[[1,r+1,j,2]])/A[[1,r,r,2]];
A[[1,r+1,j,1]]=(A[[1,r+1,r+1,2]]*old[[1]]+A[[1,r+1,r+1,1]]*
old[[2]]-A[[1,r,r+1,2]]*A[[1,r+1,j,1]]-A[[1,r,r+1,1]]*Brijb-
A[[1,r+1,j,2]]*A[[1,r,r,1]])/A[[1,r,r,2]]]];

(*update rule 8*)
If[r>1,
If[r==2,Br2r2={0,1},Br2r2=A[[1,r-2,r-2]]];
If[A[[1,r-1,r-1,2]]==0,
A[[2,r-1,2]]=(Br2r2[[2]]*A[[2,r,1]]+Br2r2[[1]]*A[[2,r,2]]+
2*A[[1,r-1,r+1,2]]*A[[1,r-1,r+1,1]])/A[[1,r-1,r-1,1]];

A[[2,r-1,1]]=(Br2r2[[1]]*A[[2,r,1]]+A[[1,r-1,r+1,1]]*
A[[1,r-1,r+1,1]])/A[[1,r-1,r-1,1]];,(*else*)

A[[2,r-1,2]]=(Br2r2[[2]]*A[[2,r,2]]+A[[1,r-1,r+1,2]]*
A[[1,r-1,r+1,2]])/A[[1,r-1,r-1,2]];

A[[2,r-1,1]]=(Br2r2[[2]]*A[[2,r,1]]+Br2r2[[1]]*
A[[2,r,2]]+2*A[[1,r-1,r+1,2]]*A[[1,r-1,r+1,1]]-A[[2,r-1,2]]*
A[[1,r-1,r-1,1]])/A[[1,r-1,r-1,2]];

]];
(*update rule 2 and 3*)
For[i=1,i<r,i++,
old=A[[1,i,r]];
A[[1,i,r]]=A[[1,i,r+1]];
A[[1,i,r+1]]=old];

(*update rule 9*)
If[r<n-1,
If[A[[1,r+1,r+1,2]]==0,A[[2,r+1,2]]=(A[[1,r+2,r+2,2]]*
A[[2,r,1]]+A[[1,r+2,r+2,1]]*A[[2,r,2]]+2*A[[1,r+1,r+2,2]]*
A[[1,r+1,r+2,1]])/A[[1,r+1,r+1,1]];

A[[2,r+1,1]]=(A[[1,r+2,r+2,1]]*A[[2,r,1]]+A[[1,r+1,r+2,1]]*
A[[1,r+1,r+2,1]])/(A[[1,r+1,r+1,1]]);

,(*else*)
A[[2,r+1,2]]=(A[[1,r+2,r+2,2]]*A[[2,r,2]]+A[[1,r+1,r+2,2]]*
A[[1,r+1,r+2,2]])/A[[1,r+1,r+1,2]];
A[[2,r+1,1]]=(A[[1,r+2,r+2,2]]*A[[2,r,1]]+A[[1,r+2,r+2,1]]*
A[[2,r,2]]+2*A[[1,r+1,r+2,2]]*A[[1,r+1,r+2,1]]-A[[2,r+1,2]]*
A[[1,r+1,r+1,1]])/A[[1,r+1,r+1,2]]];
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];
(*update rule 1 and 7*)
old=A[[1,r,r]];
A[[1,r,r]]=A[[2,r]];
A[[2,r]]=old;

(*After a swap,we always need to check for possible shifts,
hence it is included in the Swap method.*)

For[j=(r-1),j≤≤≤(r+1),j++,
If[(j<1||j>n-1),Continue[]];

Bjj1=A[[1,j,j+1,1]]*t+A[[1,j,j+1,2]];
Bjj=A[[1,j,j,1]]*t+A[[1,j,j,2]];
If[2*Abs[Bjj1]>Bjj,
mjj1=Bjj1/Bjj;
shift=Floor[0.5-mjj1];
Shift[j,j+1,shift];

]]
]

After computing the new t and performing the corresponding critical shift or swap, we sometimes
have to perform more shifts or swaps to make the new form LLL-reduced. Reductionstep2 executes
the required swaps, Reductionstep3 executes the required shifts.

In[19]:= ReductionStep2[]:=Module[{Bii,Ci,i},
For[i=1,i<n,i++,
Bii=A[[1,i,i,1]]*t+A[[1,i,i,2]];
Ci=A[[2,i,1]]*t+A[[2,i,2]];
If[3/4Bii>Ci,
Swap[i];
i=0;]]

]

In[20]:= ReductionStep3[]:=Module[{Bij,Bii,mij,shift,i,j},
For[j=n,j>1,j--,
For[i=j-1,i>0,i--,
Bij=A[[1,i,j,1]]*t+A[[1,i,j,2]];
Bii=A[[1,i,i,1]]*t+A[[1,i,i,2]];
If[2*Abs[Bij]>Bii,
mij=Bij/Bii;
shift=Floor[0.5-mij];
Shift[i,j,shift]

]]]
]

Directions performs the ’reduction in directions’ algorithm on the formQ, where steps_ is the number
of steps and size_ is the size of each vector.

In[21]:= Directions[Q_,steps_,size_]:=Module[{direction,directions,j,i},
elements={}; (* global ’association’, the found elements grouped
together by their norms *)
(* generate directions to reduce in *)
directions={};
If[steps>0,
directions=RandomVectors[r1+r2,steps,size], (* generate random
directions with powers of two *)
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directions=SystematicVectors[r1+r2,size] (* systematically
generate directions with powers of two *)

];
(* reduce in generated directions *)
For[i=1,i≤≤≤Length[directions],i++,
(* we want direction[i]=direction[i+r2] for i>r1
(the complex conjugate direction gets the same power) *)
direction=Array[1&,n];
For[j=1,j≤≤≤r1,j++, (* real *)
direction[[j]]=directions[[i,j]]];
For[j=1,j≤≤≤r2,j++, (* complex *)
direction[[r1+2*j-1]]=directions[[i,r1+j]];
direction[[r1+2*j]]=directions[[i,r1+j]]];
ReduceDirection[Q,direction] (* reduce and collect elements *)

];
(* now ’elements’ contains all elements found by reducing *)
Return[elements];

]

Create all vectors of the form {2i1 , 2i2 , . . . , 2in}with n = size_ and ij < power_.

In[22]:= SystematicVectors[size_,power_]:=Module[{res2,i,j},
(* get the digits of a number converted to base power_, padded
with zeros so it has the right size *)

Return[2^(2*
Table[If[MemberQ[IntegerDigits[i, power, size], 0],
IntegerDigits[i, power, size], ## &[]], i, 0, power^size - 1])];

]

Returns number random vectors of length size with powers of 2 smaller than power.

In[23]:= RandomVectors[size_,power_,number_]:=Module[{res,arr,a,i},
res=Array[1,number]; (* array of directions *)
For[i=1,i≤≤≤number,i++,
a=RandomInteger[{1,size}]; (* one position gets a 1 *)
arr=RandomInteger[power,size]; (* direction *)
arr[[a]]=0;
res[[i]]=2^arr;

];
Return[res];

]

LLL-reduce the quadratic form Q in "direction" ts.

In[24]:= ReduceDirection[Q_,ts_]:=Module[{done,Q1,i}, (* LLL reduce in
"direction" ts *)
transform=IdentityMatrix[n]; (* keep track of the
transformation *)
Q1=FillTs[Q,ts]; (* numerical matrix with ts filled in for t,
obtaining a not necessarily reduced matrix *)
A=Determinants2[Q1] ; (* matrix containing Bij and matrix
containing Cij *)
(* we reduce this matrix and keep
track of the shifts and swaps in transform *)
done=False; (* check if the result is reduced *)
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While[done==False,
done=LLLReduce[];
(* perform a reduction step *)

];
(* collect the units *)
For[i=1,i≤≤≤Length[transform[[1,All]]],i++,
AppendTo[elements,transform[[All,i]].b]]

]

Creates matrix B and array C consisting of determinants.

In[25]:= Determinants2[QQ_]:=Module[{Q,B,C,i,j},
Q=QQ;
B=ConstantArray[0,{n,n}];
C=ConstantArray[0,{n-1}];
For[i=1,i<n,i++,
For[j=i,j≤≤≤n,j++,
B[[i,j]]=MakeBij2[Q,i,j];
];
C[[i]]=MakeCi2[Q,i];

];
B[[n,n]]=MakeBij2[Q,n,n];
Return[{B,C}]

]

Creates Bij for matrix B.

In[26]:= MakeBij2[QQ_,ii_,jj_]:=Module[{Q,i,j,B,k,l},
Q=QQ;
i=ii;
j=jj;
B=ConstantArray[0,{i,i}];
For[k=1,k≤≤≤i,k++,
For[l=1,l≤≤≤i-1,l++,
B[[l,k]]=Q[[l,k]];
];
B[[i,k]]=Q[[j,k]];

];
Return[Det[B]]

]

Creates Ci for matrix C.

In[27]:= MakeCi2[QQ_,ii_]:=Module[{Q,i,j,C,k,l},
Q=QQ;
i=ii+1;
j=ii+1;
C=ConstantArray[0,{i,i}];
For[k=1,k≤≤≤i,k++,
For[l=1,l≤≤≤i-1,l++,
C[[k,l]]=Q[[k,l]];
];
C[[k,i]]=Q[[k,j]];

];
C=Drop[C,{ii}]; (* remove i’th row and column *)
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C=Drop[C,{}, {ii}];
Return[Det[C]];

]

Numerical matrix with tsi filled in for ti, obtaining a not necessarily reduced matrix A.

In[28]:= FillTs[B_,ts_]:=Module[{A,i,j},
A=ConstantArray[0,{n,n}];
For[i=1,i≤≤≤n,i++,
For[j=1,j≤≤≤n,j++,
A[[i,j]]=B[[i,j]].ts;

]];
Return[A];

]

LLLReduce matrix Q.

In[29]:= LLLReduce[]:=Module[{i,j,mid,a,done},
done=True;
(* check if 2|Bij|≤≤≤Bij is satisfied *)
For[i=1,i<n,i++,
For[j=i+1,j≤≤≤n,j++,
If[2*Abs[A[[1,i,j]]]>A[[1,i,i]],
mid=A[[1,i,j]]/A[[1,i,i]];
a=Floor[0.5-mid];
Shift2[i,j,a]; (* if not, we shift *)
done=False;

]]];
(* check if 2Bii≤≤≤Ci is satisfied *)
For[i=1,i<n,i++,
If[(3/4)*A[[1,i,i]]>A[[2,i]],
Swap2[i];
done=False;
]

];
Return[done]

]

Performs the shift xr → xr + axs.

In[30]:= Shift2[rr_,ss_,aa_]:=Module[{r,s,i,j,a},
r=rr;
s=ss;
a=aa;
(*Update transformmatrix*)
For[i=1,i≤≤≤n, i++,
transform[[i,s]]+=a transform[[i,r]]];

(*Update determinants*)
If[r==s-1,
A[[2,r]]+=2 a A[[1,r,s]]+a^2 A[[1,r,r]]];

For[i=1,i≤≤≤r,i++,
A[[1,i,s]]+=a*A[[1,i,r]]]

]
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Performs the swap xr ↔ xr+1.

In[31]:= Swap2[rr_]:=Module[{r,old,Br1r1,Br2r2,Brijb,Bjj1,Bjj,mjj1,shift,
oldtrans,i,j},
r=rr;
(*Update the transformmatrix*)
For[i=1,i≤≤≤n, i++,
oldtrans=transform[[i,r]];
transform[[i,r]]=transform[[i,r+1]];
transform[[i,r+1]]=oldtrans;

];
(*Update determinants*)
(*update rule 4 and 5*)
For[j=r+2,j≤≤≤n,j++,
old=A[[1,r,j]];
A[[1,r,j]]=(A[[1,r,r+1]]*A[[1,r,j]]+A[[1,r-1,r-1]]*A[[1,r+1,j]])/
(A[[1,r,r]]);
A[[1,r+1,j]]=(A[[1,r+1,r+1]]*old-A[[1,r,r+1]]*A[[1,r+1,j]])/
(A[[1,r,r]]);

];
(*update rule 8*)
If[r>1,
Br2r2=A[[1,r-2,r-2]];
A[[2,r-1]]=(Br2r2*A[[2,r]]+A[[1,r-1,r+1]]*A[[1,r-1,r+1]])/
A[[1,r-1,r-1]]

];
(*update rule 2 and 3*)
For[i=1,i<r,i++,
old=A[[1,i,r]];
A[[1,i,r]]=A[[1,i,r+1]];
A[[1,i,r+1]]=old

];
(*update rule 9*)
If[r<n-1,
A[[2,r+1]]=(A[[1,r+2,r+2]]*A[[2,r]]+A[[1,r+1,r+2]]*A[[1,r+1,r+2]])/
A[[1,r+1,r+1]];

];
(*update rule 1 and 7*)
old=A[[1,r,r]];
A[[1,r,r]]=A[[2,r]];
A[[2,r]]=old;

(*After a swap, we always need to check for possible shifts, hence
it is included in the Swap method.*)

For[j=(r-1),j≤≤≤(r+1),j++,
If[(j<1||j>n-1),Continue[]];
Bjj1=A[[1,j,j+1]];
Bjj=A[[1,j,j]];
If[2*Abs[Bjj1]>Bjj,
mjj1=Bjj1/Bjj;
shift=Floor[0.5-mjj1];
Shift2[j,j+1,shift];

]]
]
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