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Abstract

In this thesis we look at the notion of a path category as considered in
[vdBM16], and show that an instance of this structure can be found in the
category of cubical sets. In particular we investigate the model of dependent
type theory in cubical sets as constructed by Bezem, Coquand and Huber in
[BCH14], of which we show that its fibrant objects give rise to a path category.
First we rehearse the definition of a path category and some major theorems
found in [vdBM16], and also prove some additional results beyond those
given there. We then recall several of the definitions of and in cubical sets as
presented in [BCH14], the most crucial of which will be those of the uniform
Kan condition on cubical sets and morphisms, and of equivalences between
cubical sets. We demonstrate that uniform Kan fibrations and equivalences
can be taken as the fibrations and weak equivalences of a path category
whose objects are the uniform Kan cubical sets. Having established this
correspondence, we study some properties such as function extensionality on
the level of path categories, along with their instantiation in cubical sets.
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Introduction

Over the last several years, the subject of homotopy type theory has attracted
increasing attention from a wide range of mathematicians. In part this may
be correlated to the appearance of the standard work [HoTT], along with the
efforts of the small yet active foundational movement around it. Perhaps a
better explanation lies in the nature of the subject, as it finds itself at the
remarkable intersection of the fields of homotopy theory, category theory and
type theory. While we shall not attempt to provide an adequate historical
account of when and where such insights into the relations between these
branches of mathematics first arose, we shall say at least something as an
introduction for the uninitiated.

The basic connection between homotopy theory and type theory underlying
homotopy type theory is that the identity types of dependent type theory
in the style of Martin-Löf exhibit the homotopical structure of a groupoid,
as discussed in [HS96]. In particular, the objects of a type may be seen as
corresponding to the points of a space, so that the terms of the identity type
between two objects come out as paths from one such point to another. On
the other hand, the connection between category theory and type theory
comes from the fact that certain categories carry a structure much like the
one belonging to the type formers of dependent type theory, and may in fact
serve as models of such a type theory. One may consult for instance [Hof97],
[Pit01] or the first chapter of [Hub15] for more about this.

A full-fledged model of dependent type theory (including the univalence ax-
iom) in the category of simplicial sets appeared in [KLV12], in which types
are interpreted as Kan fibrations. However, this model proved unsatisfactory
for those interested in the constructive aspects of type theory, as it relies at
some stages on classical reasoning. A similar model was therefore developed
in cubical sets and published in [BCH14], in which types are interpreted as
uniform Kan fibrations. While this model is indeed entirely constructive,
it is so at the expense of the computation rule for the identity type, which
holds only propositionally here.
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As it turns out, this feature of having only propositional identity types is
shared by those models which arise from path categories, the notion of which
is introduced in [vdBM16] and further explored in [vdB16]. A path cate-
gory, short for a category with path objects, is a category equipped with two
classes of maps called the fibrations and the weak equivalences which satisfy
a number of axioms specifying their behaviour. As such, path categories
are related to model categories (which also possess a class of cofibrations),
and more closely to categories of fibrant objects (which similarly omit the
cofibrations). This correspondence between the homotopical framework of
a path category and the type-theoretically motivated model in cubical sets
thus presents a further connection between homotopy theory and type the-
ory, with category theory acting as the unifying medium.

In the present work we shall contribute to the understanding of this rela-
tion between homotopy theory and type theory in the following way. In the
first chapter we present the definition of a path category along with some
of the important practical results from [vdBM16]. We then add to these
amongst others a result which shows that the path structure within a path
category is well-behaved (Proposition 1.13), and more significantly that the
weak equivalences may be characterised in a variety of ways (Theorem 1.18),
a result which is known to obtain in stronger type theories.

This will serve as a preparation for the second chapter, in which we shall
prove that the full subcategory of uniform Kan fibrant cubical sets forms a
path category (Theorem 2.28). This requires us to define the parts which
make up the structure of a path category, which includes taking the uniform
Kan fibrations as the class of fibrations, and demonstrating that the axioms
of a path category hold for these. In doing so we consider aspects of the
cubical set model which are not treated in [BCH14] or [Hub15], hence we
obtain several new results regarding this model (including Proposition 2.20).

In the final chapter we expand our investigation to include function exten-
sionality for exponentials and Π-types in the contexts of path categories and
of cubical sets. We prove a few results in path categories which show that
function extensionality is equivalent to an alternative condition on exponen-
tials and Π-types. We conclude by giving a more detailed description of the
witness to function extensionality for Π-types which may be constructed in
cubical sets (Theorem 3.11), thereby expanding on previous results in both
contexts.
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Chapter 1

Path categories

In this chapter we concern ourselves with the notion of a path category as set
out in [vdBM16]. Besides the definition of a path category itself, we consider
additional relevant concepts and several important constructions within the
context of a path category. As one would expect, a large number of these
revolve around homotopies between maps. Hence we look at how homotopies
are defined within a path category, and mention some of the results obtained
in [vdBM16], which are often (variations of) familiar propositions from re-
lated contexts. To these we add a number of propositions which further
explicate the homotopical behaviour of certain operations, the most impor-
tant of which expresses that path objects exhibit a groupoid structure up
to homotopy. Using this fact we are able to prove the first major result of
this work, namely that the common definitions of equivalence of morphisms
are interchangeable within a path category, analogous to a result known in
homotopy type theory (cf. Chapter 4 of [HoTT]). We will become able to pre-
cisely formulate the content of this statement towards the end of this chapter.

1.1 Essential definitions

We shall start off by presenting the definition of a category with path objects,
or path category for short.

Definition 1.1. A path category is given by a category C together with two
classes of morphisms in C, the fibrations and the weak equivalences, satisfying
the seven axioms presented below. Here an acyclic fibration is any map which
is both a fibration and a weak equivalence, and a path object on an object
X is a factorisation of the diagonal X → X × X as a weak equivalence
r : X → PX followed by a fibration (s, t) : PX → X ×X.
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1. Fibrations are closed under composition.

2. The pullback of a fibration along any map exists and is a fibration.

3. The pullback of an acyclic fibration along any map is an acyclic fibra-
tion.

4. Weak equivalences satisfy 2-out-of-6, that is, if f : X → Y , g : Y → Z
and h : Z → W are composable with gf and hg weak equivalences,
then so are f, g, h and hgf .

5. Isomorphisms are acyclic fibrations and every acyclic fibration has a
section.

6. For any object X there is at least one path object PX, not necessarily
functorial in X.

7. C has a terminal object 1 and every morphism X → 1 is a fibration.

An immediate consequence of these axioms is the following proposition,
which is hardly a noteworthy result in itself, but serves to fix the reference
to a kind of object (Pf ) which will be employed in other proofs.

Proposition 1.2. Let f : Y → X be any map and (s, t) : PX → X ×X be
some path object on X. Then we have the following pullback:

Pf

p1

��

p2 // PX

s

��
Y

f
// X

Proof. Since projection maps are fibrations by Axiom 2, s : PX → X is a
fibration by Axiom 1, hence the pullback above exists by Axiom 2.

In fact, since sr = idX we have that s is an acyclic fibration by Axioms
5 and 4. This can be used to show that any such map f can be factored
as a section of an acyclic fibration (idY , rf) followed by a fibration tp2 (cf.
Proposition 2.3 in [vdBM16]), but we will not make explicit use of this result.
What we will make (indeed essential) use of is the definition of a homotopy
between two parallel morphisms, which we come to now.

Definition 1.3. We say that two morphisms f, g : Y → X are homotopic if
there is a path object PX of X and a map h : Y → PX such that f = sh
and g = th. We denote this by h : f ' g, or simply f ' g if the homotopy h
is of less importance.
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By exhibiting certain additional maps between the appropriate (path)
objects we show later on (Proposition 1.10) that this definition of homotopy
is independent of the choice of path object. Moreover, the homotopy rela-
tion ' thus obtained is a congruence relation on the morphisms of a path
category, which is proven in [vdBM16] as Theorem 2.14. Though these facts
are certainly not irrelevant, for our purposes we are more interested in the
properties of the maps constructed in these proofs, as we need to understand
these in order to proof our main result. However, before we do this we also
wish to introduce a notion of fibrewise homotopy, in which we again follow
[vdBM16]. To this end we consider how any object A of the path category
C induces another path category C(A), which is a full subcategory of the
corresponding slice category.

Definition 1.4. For C a path category and A some object in C we define
the path category C(A) as follows. Its underlying category has as objects the
fibrations (in C) with codomain A, and as morphisms from q : Y → A to
p : X → A the maps f : Y → X such that pf = q. To make this into a path
category, we take such morphisms to be fibrations or weak equivalences in
C(A) precisely when they are such in C.

One can straightforwardly verify that C(A) thus defined is indeed a path
category. We can now state what it means for two maps f, g : Y → X to be
fibrewise homotopic:

Definition 1.5. Let f, g : Y → X be morphisms and p : X → A be any
fibration, so that X has a path object (s, t) : PA(X) → X ×A X in C(A).
We say that f and g are fibrewise homotopic (over A) if there is a map
h : Y → PA(X) such that f = sh and g = th. Similar to before, we denote
this by h : f 'A g or simply f 'A g if the homotopy h is of less importance.

We conclude this section with one more definition and some remarks.

Definition 1.6. We call a map f : Y → X a homotopy equivalence if there
is a map g : X → Y such that fg ' idX and gf ' idY .

Also for reasons beyond its simplicity, the notion of a homotopy equiva-
lence is quite a natural one to consider. What is interesting in this light is
that weak equivalences and homotopy equivalences actually coincide in all
path categories (a fact which follows from 2-out-of-6 for weak equivalences:
cf. Theorem 2.16 and Remark 2.17 in [vdBM16]). In the course of this chap-
ter we shall add to this result by considering other possible definitions of
equivalences and showing that the same holds for those.
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1.2 Constructions and proofs

We begin this section by observing a certain interplay between the fibrations
and the weak equivalences of a path category, namely that weak equiva-
lences possess a kind of weak lifting property with respect to fibrations. This
property is the driving force behind the majority of the constructions which
we carry out in the context of path categories, and gives rise to the main
proof method which we subsequently use to prove that the notions which we
introduce are suitably well-behaved.

1.2.1 The weak lifting property

In [vdBM16] a number of progressively stronger lifting properties of weak
equivalences with respect to fibrations are established (Lemma 2.9, Lemma
2.25 and finally Theorem 2.38). We concern ourselves only with the last of
these, which is expressed by the following proposition.

Theorem 1.7. Suppose we have some commutative square as given below,
where the map f on the left is a weak equivalence and the map p on the right
is a fibration.

A

f
��

m // C

p
��

B n
// D

Then there is a lower filler l : B → C which is unique up to fibrewise homo-
topy over D such that n = pl and lf 'D m.

Though we shall not reproduce its lengthy proof in its entirety here, there
are two intermediate results in [vdBM16] which will feature in the other two
chapters, which we mention here again without proof. The first of these,
there called Proposition 2.31, describes how under some circumstances we
may strengthen commutativity up to homotopy.

Proposition 1.8. Suppose we have a triangle as the one below, where p is
a fibration, which commutes up to homotopy pf ' g.

Y

p
��

Z

f
>>

g
// X

Then there is a map f ′ : Z → Y which is homotopic to f for which the
triangle commutes strictly, i.e. we have f ′ ' f and pf ′ = g.
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The second (Proposition 2.33 there) is a characterisation of the acyclic
fibrations, namely as those fibrations with a section which is also a fibrewise
homotopy inverse.

Proposition 1.9. A fibration f : X → Y is acyclic precisely when it has a
section g : Y → X such that gf 'Y idX .

As stated above, these propositions will not become relevant until the next
chapter, hence we may forget about these for now. An important consequence
of Theorem 1.7 is that we can find a (fibrewise) homotopy of two maps
f, g : Y → X whenever we have a (fibrewise) homotopy h : fa ' ga for
some weak equivalence a : Z → Y , for then we obtain a lower filler in a
commutative square as the one below:

Z

a
��

h // PX

(s,t)
��

Y
(f,g)
// X ×X

This enables a proof method which can be likened to path induction in homo-
topy type theory: indeed, if Y is itself some path object PA we can consider
the weak equivalence r : A → PA, which corresponds to taking the iden-
tity path. Another application of these lower fillers is in defining additional
operations on path objects, including those which are used to show that
the homotopy relation is an equivalence relation. To begin with, any map
f : X → Y induces a suitable action on paths Pf : PX → PY :

Proposition 1.10. For any map f : X → Y and for any path objects PX
for X and PY for Y there is a map Pf : PX → PY such that we have a
commutative square:

PX

(s,t)
��

Pf // PY

(s,t)
��

X ×X
f×f

// Y × Y

In particular, whenever PX and P ′X are path objects for X there is a map
g : PX → P ′X which commutes with the respective source and target maps.
The homotopy relation therefore does not depend on the choice of path objects.

Proof. Both Pf and g arise as lower filler in the following square, where for
the particular case we take f to be idX :
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X

r
��

rf // PY

(s,t)
��

PX
(fs,ft)

// Y × Y

This proof furthermore tells us that PfrX '(Y×Y ) rY f , a fact which we
will keep in mind for later. First, however, we define inversion and composi-
tion operations on a path object PX.

Proposition 1.11. For any object X and for any path object PX for X
there is a map σ : PX → PX such that (s, t)σ = (t, s).

Proof. We obtain σ as lower filler in this commutative square:

X

r
��

r // PX

(s,t)
��

PX
(t,s)
// X ×X

Here the proof contains the additional information that σr '(X×X) r,
hence in fact σ '(X×X) idX . We define the composition map next.

Proposition 1.12. For any object X and for any path object PX there is a
map τ : PX ×X PX → PX such that (s, t)τ = (sq1, tq2).

Proof. The map τ arises as lower filler in the commutative square

X

(r,r)
��

r // PX

(s,t)
��

PX ×X PX
(sq1,tq2)

// X ×X

where (r, r) is the unique map given by pullback in the diagram below.

X

r

""

r

((
(r,r)

&&
PX ×X PX

q1
��

q2
// PX

s
��

PX
t

// X
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From the proof above we conclude that τ(r, r) '(X×X) r holds. This
expression can be used along with the other two to derive further results
regarding these constructed operations, which we will do now.

1.2.2 Establishing further properties

Here we shall demonstrate that homotopies and the previously defined oper-
ations interact in a way which can be most succinctly expressed in terms of
a groupoid structure up to homotopy on path objects. We specify and prove
this statement alongside a related result concerning the action on paths op-
eration. For these we require a lemma which is somewhat of a technical
formality and hence considered separately. We are then able to derive a con-
cisely formulated proposition and corollary which serve to abbreviate some
of the arguments contained in the final section of this chapter.

As stated above, path objects carry a groupoid structure up to homotopy,
namely in the sense of the following proposition.

Proposition 1.13. Let X be any object and PX be any path object on X.
Up to homotopy there is a groupoid structure on PX with respect to the
homotopies h : Y → PX for any Y , by which we mean that the following
conditions are satisfied:

1. The source and target maps are homotopy sections of the reflexivity
map, or rs ' id ' rt. In particular, if h : f ' g, then rf ' h ' rg.

2. Composition is associative up to fibrewise homotopy, or τ(id×τ) '(X×X)

τ(τ × id). In particular, we have τ(h, τ(k, l)) '(X×X) τ(τ(h, k), l) for
any (h, k, l) : Y → PX ×X PX ×X PX.

3. Composition with the reflexivity path on source or target acts as identity
up to fibrewise homotopy, or τ(rs, id) '(X×X) id '(X×X) τ(id, rt). In
particular, if h : f ' g, then τ(rf, h) '(X×X) h '(X×X) τ(h, rg).

4. Composition with the inverse yields an identity path up to (fibrewise)
homotopy, or τ(id, σ) '(X×X) rs and τ(σ, id) '(X×X) rt. In particular,
if h : f ' g, then τ(h, σh) '(X×X) rf and τ(σh, h) '(X×X) rg.

Furthermore, the action on paths construction turns any map f : Y → X
into a map Pf : PY → PX which commutes with the groupoid structures
up to (fibrewise) homotopy.
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Proposition 1.14. For any map f : Y → X we have PfσY '(X×X) σXPf
and PfτY '(X×X) τX(Pf × Pf), i.e. Pf commutes up to (fibrewise) homo-
topy with the respective groupoid structures. Furthermore, action on paths is
functorial up to fibrewise homotopy, or P (fg) '(X×X) PfPg for any maps
g : Z → Y and f : Y → X.

In some parts of the proofs of these propositions (and in fact in a few
other proofs later on in this chapter), we wish to make use of the following
way of extending homotopies.

Lemma 1.15. Let (h, k) : Y → PX ×X PX, where X and Y are any two
objects and PX is any path object for X. Then h '(X×X) h

′ implies that
(h, k) '(X×X) (h′, k), and k '(X×X) k

′ implies that (h, k) '(X×X) (h, k′).

Proof. We shall only treat the first case, as the proof for the other case is
wholly analogous. Take the following pullback:

P(X×X)(PX)×X PX
u1

��

u2 // PX

s

��
P(X×X)(PX)

ts
// X

Since s and ts are acyclic fibrations, u1 and u2 are acyclic fibrations as well,
though for our purposes it suffices that either of the two is. In turn, consider
the commutative square below.

PX ×X PX
(r×X id)

��

r // P(X×X)(PX ×X PX)

(s,t)

��
P(X×X)(PX)×X PX

(s×X id,t×X id)
// (PX ×X PX)×(X×X) (PX ×X PX)

It is easily checked that this is indeed a commutative square, and moreover
that r×X id is a weak equivalence by 2-out-of-3, as either of the two projection
maps is an acyclic fibration being the pullback of s or t. The latter square
therefore has a lower filler l : P(X×X)(PX) ×X PX → P(X×X)(PX ×X PX)
such that the lower triangle commutes. To see that we are now done, note
that for any (h, k) : Y → PX ×X PX and H : h '(X×X) h

′ we obtain
a (unique) map (H, k) : Y → P(X×X)(PX) ×X PX for which we see that
(s, t)l(H, k) = (s×X id, t×X id)(H, k) = ((h, k), (h′, k)), hence l(H, k) is our
desired homotopy (h, k) '(X×X) (h′, k).

A slight variation on this proof can be found in [vdB16] which is based
on weak equivalences being preserved under pullback along fibrations. In
any case, we are able at this point to provide proofs of the Propositions 1.13
and 1.14, which we shall do so in that order.
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Proof of Proposition 1.13. 1. Since r = rsr and r = rtr, we certainly have
r ' rsr and r ' rtr, and so id ' rs and id ' rt. For the particular case,
applying this to the homotopy h we find that h ' rsh = rf and h ' rth = rg
as required.
2. Strictly speaking one would distinguish between PX ×X (PX ×X PX)
and (PX ×X PX)×X PX, but these are easily seen to be isomorphic by
the universal property of the pullback, hence we write PX ×X PX ×X PX.
Since the respective projection maps are acyclic fibrations by preservation
under pullback, (r, r, r) : X → PX×XPX×XPX is again a weak equivalence
by 2-out-of-3 on r and the projection maps which are acyclic fibrations.
Recall that τ(r, r) '(X×X) r by construction, hence by Lemma 1.15 we find

τ(id, τ)(r, r, r) = τ(r, τ(r, r)) '(X×X) τ(r, r) '(X×X) τ(τ(r, r), r) = τ(τ, id)(r, r, r)

so that τ(id, τ)(r, r, r) '(X×X) τ(τ, id)(r, r, r) as desired. Thus τ(id, τ) '(X×X)

τ(τ, id) from which the particular case follows by application to (h, k, l).
3. We have by construction that τ(rs, id)r = τ(r, r) '(X×X) r and also
τ(id, rt)r = τ(r, r) '(X×X) r, which is enough to give us the described result.
For the particular case one can again apply this to the homotopy h given.
4. We have by construction that σr '(X×X) r, so by Lemma 1.15 it fol-
lows from this that (σr, r) '(X×X) (r, r) as well as (r, σr) '(X×X) (r, r). We
therefore find τ(id, σ)r = τ(r, σr) '(X×X) τ(r, r) '(X×X) r = rsr, as well as
τ(σ, id)r = τ(σr, r) '(X×X) τ(r, r) '(X×X) r = rtr. Hence the desired results
are again found by cancelling the weak equivalence r, and the particular case
follows directly by precomposing h with the homotopies just obtained.

We employ similar arguments to establish the other proposition.

Proof of Proposition 1.14. Recall that PfrY '(X×X) rXf for any f : Y → X
by the defining construction for Pf , hence for the first part we find both

PfσY rY '(X×X) PfrY '(X×X) rXf '(X×X) σXrXf '(X×X) σXPfrY and

PfτY (r, r) '(X×X) PfrY '(X×X) rXf '(X×X) τX(r, r)f = τX(rf, rf)

'(X×X) τX(Pfr, Pfr) = τX(Pf × Pf)(r, r)

by applying Lemma 1.15 twice in the latter case. Furthermore we obtain
P (fg)rZ '(X×X) rXfg '(X×X) PfrY g '(X×X) PfPgrZ by the definitions of
Pf , Pg and P (gf), so the statements follow by cancelling weak equivalences.

Having established the truth of Propositions 1.13 and 1.14, we may con-
clude this section with a result of which the proof is now a relatively simple
one. As such, this result is significant mostly because it allows us to shorten
the proof of this chapter’s main theorem.
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Proposition 1.16. If f, g : Y → X are two maps such that h : f ' g, then
we have τ(Pf, ht) '(X×X) τ(hs, Pg), where these four are maps PY → PX.

Proof. By repeated application of Lemma 1.15 and identity we find that

τ(Pf, ht)rY = τ(PfrY , h) '(X×X) τ(rXf, h) '(X×X) h

'(X×X) τ(h, rXg) '(X×X) τ(h, PgrY ) = τ(hs, Pg)rY .

Thus the desired result is found by cancelling the weak equivalence rY .

This proposition has a particular instance which we shall need as well,
the derivation of which is not entirely immediate, hence we present it here
as a separate result.

Corollary 1.17. Given any object X and any f : X → X, we find for all
maps h : X → PX which satisfy h : f ' id that hf '(X×X) Pfh holds.

Proof. We begin by using Proposition 1.16 and Lemma 1.15 to obtain that

τ(τ(hf, h), σh) = τ(τ(hs, id)h, σh) '(X×X) τ(τ(Pf, ht)h, σh) = τ(τ(Pfh, h), σh).

This we may use in order to derive the desired result below.

hf '(X×X) τ(hf, rf) (identity)

'(X×X) τ(hf, τ(h, σh)) (inverse, 1.15)

'(X×X) τ(τ(hf, h), σh) (associativity)

'(X×X) τ(τ(Pfh, h), σh) (see above)

'(X×X) τ(Pfh, τ(h, σh)) (associativity)

'(X×X) τ(Pfh, rf) (inverse, 1.15)

'(X×X) Pfh (identity)

1.3 Equivalence of the equivalences

With the results of the previous section we can now begin to prove the the-
orem regarding the interchangeability of homotopy equivalences with other
notions of equivalence which we announced earlier. We shall consider three
such notions in total, namely the bi-invertible maps, the half-adjoint equiva-
lences and the contractible maps, whose definitions we shall give in a moment.
As remarked this is a familiar result in homotopy type theory; parts of our
proof can be viewed as a translation of the argument there into the language
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of path categories. Indeed, our Proposition 1.16 and Corollary 1.17 are anal-
ogous to Lemma 2.4.3 and its Corollary 2.4.4 from [HoTT]. Other parts are
not so immediately similar, as for instance our definition of a contractible
map may at first glance not be recognised as such. In any case, at this stage
we are ready to proceed with the direct verification of the main result of this
chapter, which is the following theorem.

Theorem 1.18. For any f : Y → X the following are equivalent:
(i) f is a bi-invertible map.
(ii) f is a homotopy equivalence.
(iii) f is a half-adjoint equivalence.
(iv) f is a contractible map.

As one would expect, we prove this by demonstrating that each of these
statements implies the next one. While doing so, we will at each step first
present a definition of the other notion of equivalence under consideration.

1.3.1 Bi-invertible maps

The definition of a bi-invertible map differs from that of a homotopy equiv-
alence only in that the homotopy inverse may in fact be two different terms,
one for each of the identities. To be precise, bi-invertible maps are defined
as follows:

Definition 1.19. A morphism f : Y → X is a bi-invertible map whenever
we have maps g, g′ : X → Y with fg ' idX and g′f ' idY .

One can immediately see that every homotopy equivalence f is a bi-
invertible map; showing that bi-invertible maps are in turn homotopy equiv-
alences is not much more difficult.

Proposition 1.20. Every bi-invertible map is a homotopy equivalence.

Proof. Let f : Y → X be a bi-invertible map with maps g, g′ : X → Y given.
We see that gf ' (g′f)gf = g′(fg)f ' g′f ' idY , hence f is a homotopy
equivalence with g as its homotopy inverse.

We may observe that the proof did not rely on any of the results which
we have previously established. This will certainly not be the case for the
other two notions of equivalence, which we are about to treat next.

14



1.3.2 Half-adjoint equivalences

Where bi-invertible maps can be viewed as a weakening of homotopy equiv-
alences, one could regard half-adjoint equivalences rather as a strengthening
of these. For half-adjoint equivalences f we require not only a homotopy
inverse g, but also a higher homotopy which relates the ways in which the
compositions of f and g are homotopic to the respective identities.

Definition 1.21. A morphism f : Y → X is a half-adjoint equivalence
if there exists a map g : X → Y along with homotopies h : gf ' idY ,
k : fg ' idX and L : Y → P(X×X)PX such that L : Pfh '(X×X) kf .

Here it is immediate that every half-adjoint equivalence is a homotopy
equivalence. The converse statement is not as obvious, which is reflected in
the proof’s invoking of some of the results from the previous section.

Proposition 1.22. Every homotopy equivalence is a half-adjoint equivalence.

Proof. Let f : Y → X be a homotopy equivalence with homotopy inverse
g : X → Y and homotopies h : gf ' idY and k : fg ' idX . We define a new
homotopy k′ : fg ' idX by k′ = τ(σkfg, τ(Pfhg, k)): observe that indeed
k′ : fg ' idX since (s, t)τ(σkfg, τ(Pfhg, k)) = (tkfg, tk) = (fg, idY ). Thus
f is a half-adjoint equivalence once we have shown Pfh ' k′f . We find

τ(Pfhgf, kf) '(X×X) τ(PfP (gf)h, kf) '(X×X) τ(PfPgPfh, kf)

by Corollary 1.17, Proposition 1.14 and Lemma 1.15, hence by Lemma 1.15

k′f = τ(σkfgf, τ(Pfhgf, kf)) '(X×X) τ(σkfgf, τ(PfPgPfh, kf)).

In turn, Proposition 1.14 along with Lemma 1.15 and Proposition 1.16 yield

τ(PfPgPfh, kf) = τ(PfPg, kt)Pfh '(X×X) τ(ks, id)Pfh = τ(kfgf, Pfh).

This allows us to conclude our proof with the following derivation:

k′f '(X×X) τ(σkfgf, τ(PfPgPfh, kf)) (see above)

'(X×X) τ(σkfgf, τ(kfgf, Pfh)) (Lemma 1.15)

'(X×X) τ(τ(σkfgf, kfgf), Pfh) (associativity)

'(X×X) τ(rfgf, Pfh) (inverse, 1.15)

'(X×X) Pfh (identity)

With half-adjoint equivalences covered, all that remains is to take a look
at contractible maps.
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1.3.3 Contractible maps

The definition of a contractible map presented here is perhaps less intuitive
than those of the other two notions of equivalence, yet it is still a natural
one to consider. We shall first give the definition and then comment on how
it may be more easily understood.

Definition 1.23. A morphism f : Y → X is a contractible map if we have
a map g : X → Y along with homotopies k : fg ' idX , H : Pf → PY with
H : gtp2 ' p1 and K : Pf → P(X×X)PX with K : τ(PfH, p2) '(X×X) ktp2.

Hence f : Y → X is a contractible map if it has a homotopy section g
which moreover satisfies the following condition: every homotopy in X can
be (inversely) lifted along the fibres of f , where the source will be the image
under g of the original target (so in particular every fibre of f is contractible
to the image of the homotopy section g), in such a way that mapping this
homotopy back along f and composing it with the original homotopy is ho-
motopic relative endpoints to the witness that g is a homotopy section of f .
Thus it is clear that such contractible maps are deserving of the name.

What makes these maps natural to consider in the context of a path cate-
gory is that using Proposition 1.9 one may show for any f that the existence
of these g, k,H and K is equivalent to the fibration tp2 in the factorisation
f = tp2(id, rf) being acyclic. By 2-out-of-3 on this factorisation this con-
dition is precisely that of f being a weak equivalence, which would render
further proofs unnecessary as we already know the latter to be the homotopy
equivalences. However, proving the equivalence of these two definitions of a
contractible map is not less difficult than showing half-adjoint equivalences
to be contractible maps in the current sense, hence this is what we shall do.

Proposition 1.24. Every half-adjoint equivalence is a contractible map.

Proof. Suppose that f : Y → X is a half-adjoint equivalence, i.e. we have
a map g : X → Y with homotopies h : gf ' idY , k : fg ' idX and
L : Pfh '(X×X) kf . We claim that we find a suitable map H : Pf → PY ,
H : gtp2 ' p1 as lower filler of the following square.

Y

(id,σkf)
��

τ(Pgkf,h)// PY

(s,t)
��

Pf
(gtp2,p1)

// Y × Y

We find (gtp2, p1)(id, σPfh) = (gsPfh, id) = (gfgf, id), and on the other
hand (s, t)τ(Pgkf, h) = (sPgkf, th) = (gfgf, id) as well, hence this square
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commutes. Now (id, σtL) is a weak equivalence by 2-out-of-3 on p1(id, σtL) =
id, hence we obtain our H : gtp2 ' p1 as a lower filler. This leaves us to
show that τ(PfH, p2) '(X×X) ktp2, or equivalently PfH '(X×X) τ(kt, σ)p2

by Proposition 1.13 and Lemma 1.15. To this end we extend the square
considered earlier with another commutative square:

Y

(id,σkf)
��

τ(Pgkf,h)// PY

(s,t)
��

Pf // PX

(s,t)
��

Pf

H

;;

(gtp2,p1)
// Y × Y

f×f
// X ×X

If we are able to prove that τ(kt, σ)p2 acts as a lower filler for the outer square,
then we have PfH '(X×X) τ(kt, σ)p2 since these are unique up to fibrewise
homotopy. Observe first that (s, t)τ(kt, σ)p2 = (sktp2, sp2) = (fgtp2, fp1),
hence it makes the lower outer triangle commute. The following derivation
furthermore shows that τ(kt, σ)p2 makes the upper outer triangle commute
up to fibrewise homotopy, hence it is indeed a lower filler, and we are done.

τ(ks, σσ)kf '(X×X) τ(ks, id)kf (Lemma 1.15)

'(X×X) τ(P (fg), kt)kf (1.16 and 1.15)

'(X×X) τ(PfPgkf, kf) (1.14 and 1.15)

'(X×X) τ(PfPgkf, Pfh) (L and 1.15)

'(X×X) Pfτ(Pgkf, h) (Proposition 1.14)

This means we have completed the proof of Theorem 1.18 after giving a
routine verification of the fact that contractible maps are bi-invertible maps.

Proposition 1.25. Every contractible map is a bi-invertible map.

Proof. Let f : Y → X be a contractible map with maps g, k,H,K given.
In order to show that f is bi-invertible, it suffices to provide a homotopy
gf ' idY . To this end, observe that we have a map (idY , rf) : Y → Pf .
Now (s, t)H(idY , rf) = (gtp2(idY , rf), p1(idY , rf)) = (gtrf, idY ) = (gf, idY ),
so H(idY , rf) : gf ' idY as required. Note that this proof in fact shows the
stronger statement that contractible maps are homotopy equivalences.

While Theorem 1.18 is a valid result in itself, it will also play a back-
ground role in the next chapter. Though it is of less relevance there, the
notion of equivalence between cubical sets considered in [BCH14] is that of a
contractible map. Knowing that this definition is equal to that of homotopy
equivalence also from the perspective of a path category, we may use the
latter in identifying a path category within the category of cubical sets.
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Chapter 2

Cubical sets

In this chapter we shall look into the presheaf category of cubical sets, or
more precisely, we will consider the model of dependent type theory in cu-
bical sets as described in [BCH14]. The definition of a cubical set contained
therein differs from the usual one in some important regards, and several
other variations have been proposed and investigated over the last few years.
We therefore begin with a detailed treatment of the notion of cubical set used
at present, where we have adopted some notation from [Hub15] over that of
[BCH14], and at certain inessential points introduced our own. Once this
is done, we proceed by discussing the equally crucial notion of uniform Kan
fibration, which are used to interpret types in the model under consideration.
The remainder of this chapter will then be dedicated to determining a sub-
model within this model of which we shall demonstrate that it is an instance
of a path category. This is done by identifying the necessary structural el-
ements and proving that the axioms of a path category are satisfied, which
requires us to establish a number of results which are actually derivable from
these axioms.

2.1 Essential definitions, part two

This section is split into two parts. In the first of these we specify the
definition of cubical sets with which we shall concern ourselves, along with
some notational conventions. In the second one we provide an extensive
treatment of the uniform Kan condition for maps between cubical sets, which
is extended to cubical sets themselves.
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2.1.1 Cubical sets as covariant presheaves

In defining cubical sets we first fix a name space N , which is a countably
infinite discrete set not containing 0 and 1 whose elements we denote with
lowercase letters x, y, z, . . .. Based on this name space we introduce a cate-
gory CN as below.

Definition 2.1. Given a name space N we define the category CN in the
following way. The objects I, J,K, . . . of this category are the decidable finite
subsets of N , while the morphisms f : I → J are functions f : I → J ∪{0, 1}
which are injective on f−1(J). Composition of morphisms f : I → J and
g : J → K is given by gf(x) = g(f(x)) for x ∈ f−1(J) and gf(x) = f(x) for
x ∈ I − f−1(J).

We omit the trivial verification that CN is indeed a category. Note that
by the domain of a morphism f : I → J , on which we say that f is de-
fined, we shall mean f−1(J) and not necessarily I itself. Furthermore, when
considering the objects of CN we leave out set brackets, so that for instance
I, x − y is short for (I ∪ {x}) − {y}. Finally, we assume that to any object
I of CN there is associated some particular xI ∈ N which does not lie in I,
and write yI = xI,xI , zI = xI,xI ,yI and so on.

There are a number of canonical or otherwise relevant maps in CN , for which
we provide the following definitions.

Definition 2.2. For any object I, any x ∈ I and any a ∈ {0, 1} we have a
face map (x = a) : I → I − x which sends x to a and fixes the rest of I. For
any x 6∈ I we have instead an inclusion map ıx : I ↪→ I, x. For any x, y ∈ I
we have a swap map (x y) : I → I which sends x and y to one another and
fixes the rest of I. Lastly, morphisms f : I → J which are defined on the
whole of I are called degeneracy maps.

Thus any inclusion map is also a degeneracy map, and to any object
I are associated a total of 2|I| different face maps. Besides these special
kinds of maps there are certain important operations which we may perform
using a given morphism. For any morphism f : I → J and any x ∈ I we can
construct the morphism f−x : I−x→ J−f(x), which takes the same values
as f does. One should keep in mind that J − f(x) may actually be the same
as J , namely when f is not defined on x. On the other hand, for any x 6∈ I
and y 6∈ J we can instead construct the morphism (f, x = y) : I, x → J, y
which extends f by f(x) = y. Yet the most crucial definition for our current
purposes is of course that of a cubical set, which we come to now.
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Definition 2.3. The category CNSet of cubical sets is the category of covari-
ant presheaves on CN , i.e. it is the category of functors CN → Set and natural
transformations between them. We use capital Greek letters Γ,∆,Θ, . . . to
denote cubical sets, lowercase Greek letters α, β, ω, . . . to denote elements of
Γ(I) for some Γ and I, and σ, τ, ϕ, . . . to denote natural transformations.

Since the particular name space N is of no special significance, we will
no longer mention it from now on, so that we may simply write C and CSet.
As a presheaf category, results known for these will also hold for cubical
sets, hence in particular we ought to have a model of dependent type theory.
However, we are interested in a restricted version of this naturally arising
model, which involves the uniform Kan condition introduced in [BCH14].
This condition will be the subject of the remaining part of this section.

2.1.2 The uniform Kan condition

The uniform Kan condition describes certain well-behaved filling procedures
in the context of a cubical set or natural transformations between these.
What exactly is being filled are called open boxes, which are collections of
data belonging to cubical sets satisfying a particular coherence requirement.
In [BCH14] (Section 4) and [Hub15] (Section 3.1) the uniform Kan condition
is defined separately for cubical sets and their morphisms, after which one
recognises that a cubical set is uniform Kan whenever the map to a terminal
object in CSet is. Here we shall rather restrict ourselves to giving the uniform
Kan condition for morphisms, which we then use to define uniform Kan
cubical sets. We begin by determining what we mean by an open box shape.

Definition 2.4. Let I and J be any objects of C and x any name such that
J, x ⊆ I with x 6∈ J . An open box shape on I is a triple S = ((x, a); J ; I),
which has indices 〈S〉 = {(x, 1− a)} ∪ (J × {0, 1}). We call S a +-shape or
a −-shape when a = 1 or a = 0 respectively.

Having defined open box shapes, we can state what an open box for a
morphism between cubical sets is. After some additional remarks, we may
finally come to the uniform Kan condition for morphisms.

Definition 2.5. Let σ : ∆ → Γ be any morphism, S = ((x, a); J ; I) be
any open box shape and take any α ∈ Γ(I). An S-open box for σ over α is
then an 〈S〉-indexed family ~u consisting of uyb ∈ σ−1

I−y(Γ(y = b)(α)) for every
(y, b) ∈ 〈S〉, which moreover satisfies ∆(z = c)(uyb) = ∆(y = b)(uzc) for all
pairs of indices (y, b), (z, c) ∈ 〈S〉 such that y 6= z. We shall refer to the latter
requirements as the adjacency conditions of an open box.
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Note that whenever ~u is an S-open box for σ over α and f : I → K is
defined on J, x, there is an open box shape fS = ((f(x), a), f(J), K) on K.
Correspondingly we also find an fS-open box f~u for σ over Γ(f)(α) given
by (f~u)yb = ∆(f − y)(uyb). Such open boxes are essential to the definition of
the uniform Kan condition for morphisms, which we are now able to present.

Definition 2.6. Let σ : ∆ → Γ be any morphism. We say that σ is a
uniform Kan fibration if the following holds. For any open box shape S on I
and any S-open box ~u for σ over α, there is a uniform Kan filler σ−1(α) ↑S ~u
or σ−1(α) ↓S ~u in σ−1

I (α) (if S is a +-shape or a −-shape respectively) such
that ∆(y = b)(σ−1(α) ↑S ~u) = uyb for any (y, b) ∈ 〈S〉. These fillers must
satisfy the uniformity condition that for any f : I → K which is defined on
J, x we have that ∆(f)(σ−1(α) ↑S ~u) = σ−1(Γ(f)(α)) ↑fS f~u, and similarly
for −-shapes and the corresponding fillers ↓S, ↓fS.

Now if σ : Γ→ 1 where 1 is a terminal object in CSet, then we need not
specify the element α over which an open box lies, as there can be only one
for all open box shapes on a particular I. Thus in such cases we may drop the
mention of this data, with the following caveat. The terminal object in CSet is
only unique up to isomorphism, hence even though a uniform Kan structure
on one terminal map induces such a structure on all terminal maps from Γ,
it may be possible that distinct terminal maps are endowed with different
uniform Kan structures. The following definition therefore presupposes a
specific choice of terminal object, say 1(I) = {I}, in order to unambiguously
fix a uniform Kan structure.

Definition 2.7. A cubical set Γ is called uniform Kan if the morphism
1Γ : Γ → 1 is a uniform Kan fibration. We write Γ ↑S ~u and Γ ↓S ~u as
appropriate for the uniform Kan fillers provided.

As any identity morphism is trivially (and uniquely) a uniform Kan fi-
bration, we recognise that the terminal object is itself uniform Kan. For
completeness’ sake we mention that the model of dependent type theory
studied in [BCH14] uses the uniform Kan fibrations to interpret types, but
allows all cubical sets as contexts. We shall see in the next section that we
must restrict ourselves to uniform Kan cubical sets in order to obtain a path
category. Finally, we trust that the reader is by now sufficiently aware of the
uniformity condition that from here on we may simply write “Kan” to mean
“uniform Kan”.
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2.2 A path category in cubical sets

Now that we have a basic understanding of cubical sets, Kan structures and
the model of dependent type theory which they give rise to, we shall work
towards showing that it has a submodel which is also a path category. This
requires us to specify amongst other things what the fibrations and weak
equivalences of this path category should be. The obvious candidates for
the former are the Kan fibrations which we have just defined, which we will
indeed take to be the fibrations. It is then immediate that we need to con-
sider a proper submodel of the model in question which is given by the Kan
cubical sets, for Axiom 7 of a path category demands that all objects are
fibrant, i.e. that every cubical set in the underlying category is Kan. Thus
this restriction to Kan cubical sets is necessary and sufficient to guarantee
the truth of Axiom 7 for the path category which we aim to construct (which
we shall therefore refer to as K), since as remarked the terminal object is
Kan. At this stage we may already verify that Axioms 1 and 2 hold as well,
but we postpone this until we have defined the path category K in its en-
tirety. First, we shall take a look at what the weak equivalences of K shall be.

As mentioned earlier, the notion of an equivalence between cubical sets which
is considered in [BCH14] is derived from that of a contractible map. How-
ever, we have seen that such maps are interchangeable with homotopy equiv-
alences from the perspectives of both type theory and path categories (see
Theorem 1.18). Thus we would like to define a map σ : ∆→ Γ to be a weak
equivalence if it is a homotopy equivalence, which means we shall have to
define a homotopy relation in the context of cubical sets. We therefore need
to look at what the path objects of K could be, which we do next.

2.2.1 Defining the path structure

Here we shall define a homotopy relation, show that it is a congruence rela-
tion, and take the weak equivalences of K to be maps which are equivalences
with respect to this relation. Afterwards we also prove a few results which are
necessary for checking that the axioms of a path category now hold, amongst
which the characterisation of acyclic fibrations expressed in Proposition 1.9.
First, we must introduce the notion of a path object on a cubical set.

Definition 2.8. Let Γ be a cubical set. We define a path object PΓ on Γ
by PΓ(I) = Γ(I, xI) and PΓ(f : I → J) = Γ(f, xI = xJ). The reflexivity
map r : Γ→ PΓ is defined by rI = Γ(ıxI ), while the source and target maps
s, t : PΓ→ Γ are defined by sI = Γ(xI = 0) and tI = Γ(xI = 1) respectively.
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Though it is easy to see that PΓ is well-defined as a cubical set, we require
moreover that PΓ is Kan whenever Γ is. We may conclude that this is the
case once we verified that PΓ is indeed a path object on Γ in the context of
a path category. For if we know that (s, t) : PΓ→ Γ× Γ is a Kan fibration,
and that Kan fibrations are closed under pullback and conjunction, then Γ
being Kan implies that Γ×Γ and in turn PΓ are Kan. With this in mind, we
proceed by adapting the notion of homotopy to the setting of cubical sets.

Definition 2.9. Two parallel morphisms σ, τ : ∆→ Γ between cubical sets
are defined to be homotopic if there is a map ` : ∆ → PΓ such that s` = σ
and t` = τ . In this case we write ` : σ ' τ , or σ ' τ if the homotopy is of
less importance.

Now to show that this notion of homotopy again gives rise to a congru-
ence relation we must construct inversion and composition operations like
those which we have seen for path categories. To streamline our discussion
we introduce some notational devices. Whenever σ : ∆ → Γ we shall write
Pσ : P∆→ PΓ for the morphism given by (Pσ)I = σI,xI (like a strict version
of Proposition 1.10). Similarly, when f : I → J we shall use Pf to mean
the morphism (f, xI = xJ) : I, xI → J, xJ , Lastly, we shall use ω : α → β
to denote the case when ω ∈ PΓ(I) is such that sω = α and tω = β. In
fact, we will sometimes even use the latter notation for arbitrary elements,
where it should be clear from the context in which name x the source and
target are related. Furthermore, we will regularly omit indices and (even
more frequently) variable corrections, especially in visual representations, as
including these would lead to rather unwieldy diagrams. With these formal-
ities out of the way, we establish the existence of an inversion map.

Proposition 2.10. Whenever Γ is Kan, we have an inversion morphism
p : PΓ→ PΓ such that (s, t)p = (t, s) and r ' pr.

Proof. For arbitrary I, consider the +-shape ṠI = ((yI , 1);xI ; I, xI , yI). Given
any ω ∈ PΓ(I) where ω : α → β we define an ṠI-open box ~uω in PΓ by
uωxI0 = Γ(xI = yI)(ω), uωxI1 = Γ(xI = yI)rI(α) and uωyI0 = rI(α). We then
obtain a Kan filler Γ ↑ṠI ~uω ∈ PPΓ(I) represented by the square below,
which we use to define pI(ω) = PtI(Γ ↑ṠI ~uω).

β

Γ↑
ṠI
~uω

pω // α

α

ω

OO

rα
// α

rα

OO

To check that p thus defined is natural, let f : I → J be any morphism.
We write ω′ for PΓ(f)(ω), so that pJPΓ(f)(ω) = PtJ(Γ ↑ṠJ ~uω

′
), where we

23



see that ṠJ = PPfṠI and ~uω
′

= PPf~uω by naturality. Thus by uniformity
we find that (Γ ↑ṠJ ~uω

′
) = Γ(PPf)(Γ ↑ṠI ~uω), so we have pJPΓ(f)(ω) =

PtJΓ(PPf)Γ(X ↑ṠI ~uω) = Γ(Pf)PtIΓ(X ↑ṠI ~uω) = PΓ(f)pI(ω). Therefore
p is indeed natural, while (s, t)p = (t, s) is immediate from the definition.
Finally, that r ' pr is witnessed by p̂r, where p̂ : PΓ→ PPΓ is the morphism
such that p̂I(ω) = Γ ↑ṠI ~uω.

Once we have defined the notion of a fibrewise homotopy in the context
of cubical sets, we see that in fact p̂r : r '(Γ×Γ) pr, hence p corresponds
exactly to the map σ as defined in Proposition 1.11. The same remark holds
for the composition map which we exhibit next in relation to the map τ from
Proposition 1.12.

Proposition 2.11. Whenever Γ is Kan, we have a composition morphism
q : PΓ ×Γ PΓ → PΓ such that (s, t)q = (sd1, td2) and r ' q(r, r), where
PΓ×Γ PΓ arises as the following pullback.

PΓ×Γ PΓ

d1

��

d2 // PΓ

s
��

PΓ
t

// Γ

Proof. For arbitrary I, consider again the +-shape ṠI = ((yI , 1);xI ; I, xI , yI).
Given any (ω, η) ∈ PΓ ×Γ PΓ where ω : α → β and η : β → γ, define the
ṠI-open box ~uωη in PΓ by uωηxI0 = X(xI = yI)rI(α), uωηxI1 = X(xI = yI)(η)
and uωηyI0 = ω. We then obtain a Kan filler Γ ↑ṠI ~uωη ∈ PPΓ(I) represented
by the square below, which we use to define qI(ω, η) = PtI(Γ ↑ṠI ~uωη).

α

Γ↑
ṠI
~uωη

q(ω,η) // γ

α

rα

OO

ω
// β

η

OO

Showing that q is natural proceeds along the same lines as for p in Propo-
sition 2.10. Let f : I → J be arbitrary, and write ω′ and η′ for PΓ(f)(ω)
and PΓ(f)(η) respectively. We have ṠJ = PPfṠI and ~u(ω′η′) = PPf~u(ωη) as
before by naturality. Therefore we find (Γ ↑ṠJ ~u(ω′η′)) = Γ(PPf)(Γ ↑ṠI ~u(ωη))
by uniformity, from which the naturality of q almost immediately follows.
That (s, t)q = (sd1, td2) is again apparent from the construction; the fact
that r ' q(r, r) is here witnessed by q̂(r, r), where q̂ : PΓ ×Γ PΓ → PPΓ is
the morphism such that q̂I(ω, η) = Γ ↑ṠI ~uωη.

Thus the homotopy relation given in Definition 2.9 is an equivalence re-
lation. No further proofs are required to show that it is also a congruence,
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as whenever ` : σ ' τ we have for any appropriate ϕ that `ϕ : σϕ ' τϕ and
Pϕ` : ϕσ ' ϕτ , which is sufficient. Having established that our notion of
homotopy is sound, we define the notion of a homotopy equivalence of Kan
cubical sets.

Definition 2.12. We say that σ : ∆→ Γ is a homotopy equivalence of Kan
cubical sets whenever we have a map τ : Γ → ∆ such that στ ' idΓ and
τσ ' id∆.

This provides us with a means of defining the last structural element of a
path category, namely the weak equivalences, which means we are now able
to precisely specify the data which should make K into a path category.

Definition 2.13. We define the category K to be the full subcategory of CSet
consisting of the uniform Kan cubical sets. In this category K, the fibrations
are the uniform Kan fibrations, the weak equivalences are the homotopy
equivalences, and the path objects are as defined in Definition 2.8.

The rest of this chapter is dedicated to proving that K is indeed a path
category. As we have remarked earlier, Axiom 7 holds by definition, and
some of the others may already be verified at this point. However, Axiom 3
in particular can be dealt with more easily if we have some additional results
at hand; proving these shall be done in the next subsection.

2.2.2 Quasi-connections and fibrewise homotopies

Our main goal for this subsection is to prove the characterisation of acyclic
fibrations in K as in Proposition 1.9: this result will be Proposition 2.20.
However, this involves the notion of a fibrewise homotopy, which means we
have to extend our treatment in order to include it. Before we do this, we first
discuss a class of maps which arises in a similar fashion as p and q, or more
precisely as p̂ and q̂ did. We shall refer to these maps as quasi-connections,
since they are strongly reminiscent of the additional degeneracy maps which
are part of a connection structure on a cubical set. The only practical dif-
ference between them is that the quasi-connections arise for each particular
Kan cubical set, which means they need not commute with morphisms be-
tween cubical sets. Fortunately, as in the case of p and q, this fact does not
preclude us from using the quasi-connections as we mean to.

Proposition 2.14. Whenever Γ is Kan, we have two quasi-connections ć, c̀ :
PΓ → PPΓ, called the forward and backward connection maps respectively.
The former satisfies ć : rs ' id and (x y)ć : rs ' id, while the latter satisfies
c̀ : id ' rt and (x y)c̀ : id ' rt, where (x y) : PPΓ → PPΓ is given by
(x y)I = Γ(xI yI). Recall that (xI yI) is the swap map from Definition 2.2.
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Proof. We first construct ć, which we use in turn to obtain c̀. For arbitrary
I, consider the −-shape S̈I− = ((zI , 0);xI , yI ; I, xI , yI , zI). Now for any given

ω ∈ PΓ(I) such that ω : α → β we let ~́uω be the S̈I−-open box in Γ which
is obtained by taking úωxI0 = Γ(xI = zI)(Prr)I(α), úωxI1 = Γ(xI = zI)p̂I(ω),
úωyI0 = Γ(yI = zI)(Prr)I(α), úωyI1 = Γ(yI = zI)Γ(xI yI)p̂I(ω) and as last one

úωzI1 = (Prr)I(α). We then find a Kan filler Γ ↓S̈I− ~́uω ∈ PPPΓ(I) like the

hypercube below and define ćI(ω) as its bottom face (PPt)I(Γ ↓S̈I− ~́u
ω).

α rα // α

α

rα

??

rα
// α

rα

??

α

rα

OO

ω // β

pω

OO

α

rα

OO

rα

??

rα
// α

rα

OO

ω

??

One can readily check that these ćI taken together form a natural trans-
formation ć : PΓ → PPΓ with the desired properties. In order to define
the backward connection map c̀ : PΓ → PPΓ we shall proceed as fol-
lows. Consider the +-shape S̈I+ = ((zI , 1);xI , yI ; I, xI , yI , zI), so that for

any ω ∈ PΓ(I) with ω : α → β we may take the S̈I+-open box ~̀uω in Γ by
ùωxI0 = Γ(xI = zI)ćI(ω), ùωxI1 = Γ(xI = zI)PrI(ω), ùωyI0 = Γ(yI = zI)ćI(ω),
ùωyI1 = Γ(yI = zI)Γ(xI yI)PrI(ω) and ùωzI0 = (Prr)I(α). Here we find a Kan

filler Γ ↑S̈I+ ~̀uω ∈ PPPΓ(I) represented by the hypercube below, whose top

face (PPt)I(Γ ↑S̈I+ ~̀uω) is taken to define c̀I(ω). We claim that this again

results in the required natural transformation c̀ : PΓ→ PPΓ.

β
rβ // β

α

ω

??

ω
// β

rβ

??

α

ω

OO

rα // α

ω

OO

α

rα

OO

rα

??

rα
// α

ω

OO

rα

??
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Observe that these connection maps can be regarded as specific witnesses
to an equivalent of the first statement of Proposition 1.13, which was that
rs ' id ' rt. In order to arrive at our desired characterisation of acyclic
fibrations, we shall in fact prove (stronger) versions of Propositions 1.13
and 1.14 for our current setup, which of course requires us to specify what
our fibrewise homotopies are.

Definition 2.15. Given any Kan fibration ϕ : Γ → Θ, we construct the
path object PΘ(Γ) with respect to ϕ as the pullback of Pϕ and r : Θ→ PΘ.
We say that σ, τ : ∆ → Γ are fibrewise homotopic over Θ if these exists
` : ∆→ PΘ(Γ) such that s` = σ and t` = τ . In that case we write ` : σ 'Θ τ ,
or σ 'Θ τ if the homotopy is of less importance.

With a slight abuse of notation, we will use this relation for particular
elements of a path object as well. It is easily seen that the definition again
gives rise to a congruence relation, as the only difference is that in order to
define inversion and composition we now use p̂I(ω) = ϕ−1((Prϕ)I(ω)) ↑ṠI ~uω
and q̂I(ω, η) = ϕ−1((Prϕ)I(ω)) ↑ṠI ~uωη. However, there is a lot more to
say in the particular case where ϕ is the Kan fibration (s, t) : PΓ → Γ × Γ
for some Γ. As mentioned earlier, we shall establish Proposition 2.19 as a
counterpart to Propositions 1.13 and 1.14, though for this we require a pair
of lemmas which we prove first.

Lemma 2.16. For any Γ which is Kan we have a morphism p̌ : PΓ→ PPΓ
such that p̌I(ω), where ω : α→ β, is of the form represented by the following
square.

α

p̌I(ω)

ω // β

β

pω

OO

rβ
// β

rβ

OO

Proof. Given arbitrary I and ω ∈ PΓ(I) such that ω : α → β we con-
sider the S̈I+-open box ~̌uω in Γ given by ǔωxI0 = Γ(xI = zI)Γ(xI yI)p̂I(ω),
ǔωxI1 = Γ(xI = zI)PrI(ω), ǔωyI0 = Γ(yI = zI)Γ(xI yI)PrI(ω), along with
ǔωyI1 = Γ(yI = zI)ćI(ω) and ǔωzI0 = (Prr)I(α). Then we have a Kan filler in

PPPΓ(I) which we use to define p̌I(ω) = (PPt)I(Γ ↑S̈I+ ~̌u
ω). That is, it arises

as the top face of the hypercube below. We omit the routine verification that
p̌ thus defined is a natural transformation.
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α ω // β

β

pω
??

rβ
// β

rβ

??

α

rα

OO

rα // α

ω

OO

α

ω

OO

rα

??

rα
// α

ω

OO

rα

??

Informally speaking, p̌ reverses the order of composing a path and its
inverse in p̂. We have a similar result where the composition of two paths is
composed with with reflexivity at the target rather than at the source.

Lemma 2.17. For any Γ which is Kan we have a map q̌ : PΓ×Γ PΓ→ PPΓ
such that q̌I(ω, η), where ω : α→ β and η : β → γ, is of the form represented
by the following square.

γ

q̌I(ω,η)

rγ // γ

α

q(ω,η)

OO

ω
// β

η

OO

Proof. For arbitrary I and (ω, η) ∈ (PΓ ×Γ PΓ)(I) such that ω : α → β
and η : β → γ, we have the S̈I+-open box ~̌uωη in Γ given by the data ǔωηxI0 =
Γ(xI = zI)Γ(xI yI)q̂I(ω, η), ǔωηxI1 = Γ(xI = zI)ćI(η), ǔωηyI0 = Γ(yI = zI)PrI(ω),
ǔωηyI1 = Γ(yI = zI)Γ(xI yI)PrI(η) and ǔωηzI0 = c̀I(ω). Here we find a Kan filler

in PPPΓ(I) which we use to define q̌I(ω, η) = (PPt)I(Γ ↑S̈I+ ~̌uωη). In other

words, it arises as the top face of the following hypercube, where we again
omit the verification that p̌ thus defined is a natural transformation.

γ
rγ // γ

α

q(ω,η)
??

ω
// β

η

??

β

η

OO

rβ // β

η

OO

α

rα

OO

ω

??

ω
// β

rβ

OO

rβ

??
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For both of these lemmas (and any of the upcoming results) the same
remark applies as for p̂ and q̂, namely that in the case of fibrewise homotopy
we relativise the filler to the fibration under consideration. Besides these two
lemmas we need to demonstrate the truth of one more proposition which is
noteworthy enough on its own. One may have been tempted to regard the
diagrams used to represent higher-dimensional paths as though they were
commutative diagrams: the following shows that this perspective is justified
up to fibrewise homotopy.

Proposition 2.18. Let Γ be Kan. Whenever κ ∈ PPΓ(I) is of the form

δ

κ

ζ // γ

α

ξ

OO

ω
// β

η

OO

we have that qI(ω, η) '(Γ×Γ) qI(ξ, ζ).

Proof. In order to obtain the desired witness to qI(ω, η) '(Γ×Γ) qI(ξ, ζ) us-
ing a Kan filler, we must in fact carry out such a filler construction three
times, since we require two intermediate paths. These paths have no special
significance of their own and shall therefore not be considered as particular
natural transformations. The first of these is

α

M(κ)

ξ // δ

α

rα

OO

ω
// β

q(pω,ξ)

OO

which is obtained as (PPt)I(Γ ↑S̈I+ ~mκ), where ~mκ is the S̈I+-open box in Γ

given by mκ
xI0 = Γ(xI = zI)(Prr)I(α), mκ

xI1 = Γ(xI = zI)Γ(xI yI)q̂I(pω, ξ),
mκ
yI0 = Γ(yI = zI)PrI(ω), mκ

yI1 = Γ(yI = zI)ćI(ξ) and mκ
zI0 = Γ(xI yI)p̂I(ω).

In terms of diagrams, it is the top face of the hypercube below.

α
ξ // δ

α

rα

??

ω
// β

q(pω,ξ)

??

α

rα

OO

rα // α

ξ

OO

α

rα

OO

α

??

ω
// β

rβ

OO

pω

??
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The second path which we need is

δ

N(κ)

ζ // γ

β

q(pω,ξ)

OO

η
// γ

rγ

OO

which is obtained as (PPt)I(Γ ↑S̈I+ ~nκ). Here ~nκ is the S̈I+-open box in Γ

given by nκxI0 = Γ(xI = zI)Γ(xI yI)q̂I(pI(ω), ξ), nκxI1 = Γ(xI = zI)PrI(η),
nκyI0 = Γ(yI = zI)ćI(η), nκyI1 = Γ(yI = zI)(κ) and nκzI0 = p̌I(ω). Thus N(κ)
is the top face of the following hypercube.

δ
ζ // γ

β

q(pω,ξ)
??

η
// γ

rγ

??

α

ξ

OO

ω // β

η

OO

β

rβ

OO

pω

??

rβ
// β

η

OO

rβ

??

Note that instead of qI(pI(ω), ξ) we could also have considered qI(η, pI(ζ)).
We are now able to find our desired witness to qI(ω, η) '(Γ×Γ) qI(ξ, ζ),

which will be (PPt)I(Γ ↑S̈I+ ~wκ). Here ~wκ is the S̈I+-open box in Γ which is

given by the elements wκxI0 = Γ(xI = zI)(Prr)I(α), wκxI1 = Γ(xI = zI)N(κ),
wκyI0 = Γ(yI = zI)q̂I(ω, η), wκyI1 = Γ(yI = zI)q̂I(ξ, ζ) and wκzI0 = M(κ). Re-
garded as the top face of this hypercube, we see immediately that it is of the
required form.

α
q(ξ,ζ) // γ

α

rα

??

q(ω,η)
// γ

rγ

??

α

rα

OO

ξ // δ

ζ

OO

α

rα

OO

rα

??

ω
// β

η

OO

q(pω,ξ)

??
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We are now able to compensate for the tedium of the previous proofs with
streamlined ones of a few important results. We begin with providing the
promised counterpart to Propositions 1.13 and 1.14, which we in turn use to
derive Proposition 2.20, the characterisation of acyclic fibrations in K.

Proposition 2.19. Whenever Γ is Kan, we have that the following holds:

1. Composition is associative up to fibrewise homotopy, which is to say
that q(id× q) '(Γ×Γ) q(q× id).

2. Composition with reflexivity acts as identity up to fibrewise homotopy,
or q(rs, id) '(Γ×Γ) id and q(id, rt) '(Γ×Γ) id.

3. Composition with inverse yields an identity path up to (fibrewise) ho-
motopy, or q(id, p) '(Γ×Γ) rs and q(p, id) '(Γ×Γ) rt.

4. Morphisms commute with the path structure up to fibrewise homotopy,
or for any σ : ∆→ Γ between Kan cubical sets we have Pσp '(Γ×Γ) pPσ
and Pσq '(Γ×Γ) q(Pσ × Pσ).

Proof. 1. A witness for associativity up to fibrewise homotopy may be ob-
tained locally for any (ω, η, ξ) ∈ (PΓ ×Γ PΓ ×Γ PΓ)(I) as follows, where
ω : α → β, η : β → γ and ξ : γ → δ. Let ~uωηξ be the S̈I+-open box in

Γ given by uωηξxI0 = Γ(xI = zI)(Prr)I(α), uωηξxI1 = Γ(xI = zI)Γ(xI yI)q̌I(η, ξ),

uωηξyI0 = Γ(yI = zI)q̂I(ω, qI(η, ξ)), u
ωηξ
yI1 = Γ(yI = zI)q̂I(qI(ω, η), ξ) and lastly

uωηξzI0 = q̂I(ω, η). Then we obtain Γ(zI = 1)(Γ ↑S̈I+ ~u
ωηξ), which is the top face

of the hypercube below.

α
q(q(ω,η),ξ) // δ

α

rα

??

q(ω,q(η,ξ))
// δ

rγ

??

α

rα

OO

q(ω,η) // γ

ξ

OO

α

rα

OO

rα

??

ω
// β

q(η,ξ)

OO

η

??

Combining these paths to a natural transformation of the proper form, we
have found our desired homotopy q(id× q) '(Γ×Γ) q(q× id).

2. Observe that (x y)q̌(rs, id) : q(rs, id) '(Γ×Γ) id, whereas for the other part
we have simply q̂(id, rt) : id '(Γ×Γ) q(id, rt).
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3. We know that rs '(Γ×Γ) q(rs, rs) by construction, and applying Proposi-
tion 2.18 to p̂ gives q(rs, rs) '(Γ×Γ) q(id, p). Applying it instead to p̌ gives
q(rt, rt) '(Γ×Γ) q(p, id), and rt '(Γ×Γ) q(rt, rt) also holds by construction.
4. We see that rsPσ '(Γ×Γ) q(Pσ,Pσp) by applying Proposition 2.18 to
PPσp̂. This implies that pPσ '(Γ×Γ) q(pPσ, q(Pσ,Pσp)) by identity up to
fibrewise homotopy. In turn, we have q(pPσ, q(Pσ,Pσp)) '(Γ×Γ) Pσp by asso-
ciativity, inverse and identity up to fibrewise homotopy, thus pPσ '(Γ×Γ) Pσp
as required. Finally, we find q(Pσ × Pσ) '(Γ×Γ) q(rsPσq,Pσq) '(Γ×Γ) Pσq
by applying Proposition 2.18 to Pσq̂.

We may now finally come to proving the characterisation of acyclic fibra-
tions in K, which has been the motivating result for this subsection.

Proposition 2.20. A Kan fibration σ : ∆ → Γ is acyclic precisely when it
has a section τ : Γ→ ∆ such that τσ 'Γ id∆.

Proof. As it is immediate that Kan fibrations satisfying the latter are acyclic,
suppose σ : ∆→ Γ is an acyclic fibration, with τ : Γ→ ∆, ` : στ ' idΓ and
`′ : τσ ' id∆. For any I we may consider the +-shape SI = ((xI , 1); ∅; I, xI),
so that for any α ∈ Γ(I) we have that τI(α) is an SI-open box for σ over `I(α).
Since σ is a Kan fibration, we find a Kan filler σ−1(`I(α)) ↑SI τI(α) which
we use to define our section ψ : Γ→ ∆ by ψ̂I(α) = σ−1(`I(α)) ↑SI τI(α) and
ψI(α) = tIψ̂I(α). We have σIψI(α) = α as required, and this construction is
natural by the familiar uniformity argument, hence ψ is well-defined.
Thus we are left to show that ψσ 'Γ id∆, for which we note first that
p`′ : id∆ ' τσ, Pτp`σ : τσ ' τστσ, `′τσ : τστσ ' τσ and ψ̂σ : τσ ' ψσ.
This means we may compose these and take the inverse in order to obtain
pq(p`′,Pτp`σ, `′τσ, ψ̂σ) : id∆ ' ψσ. The precise order of this composition
will be irrelevant for our purposes due to the associativity up to fibrewise
homotopy of composition, which was established in Proposition 2.19.
Applying Proposition 2.18 to P``σ, P(Pσ`′)`′ and P(`σ)`′ respectively, we
find q(P(στ)`σ, `σ) '(Γ×Γ) q(`στσ, `σ) and so P(στ)`σ '(Γ×Γ) `στσ; secondly
q(P(στσ)`′,Pσ`′) '(Γ×Γ) q(Pσ`′τσ,Pσ`′) and thus P(στσ)`′ '(Γ×Γ) Pσ`′τσ;
finally q(`στσ,Pσ`′) '(Γ×Γ) q(P(στσ)`′, `σ). This enables us to carry out
the following derivation.

Pσpq(p`′,Pτp`σ, `′τσ, ψ̂σ) '(Γ×Γ) pq(pPσ`′, pP(στ)`σ,Pσ`′τσ, `σ) (2.19, 4)

'(Γ×Γ) pq(pPσ`′, p`στσ,P(στσ)`′, `σ) (see above)

'(Γ×Γ) pq(pPσ`′, p`στσ, `στσ,Pσ`′) (see above)

'(Γ×Γ) pq(pPσ`′, rστσ,Pσ`′) (inverse)

'(Γ×Γ) pq(pPσ`′,Pσ`′) (identity)

'(Γ×Γ) pPσ (inverse)
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Now let λ : Pσpq(p`′,Pτp`σ, `′τσ, ψ̂σ) '(Γ×Γ) Pσr be such a homotopy.

Then for any κ ∈ ∆(I) we may consider ~vκ, the ṠI+-open box for σ over
λI(κ) given by vκxI0 = Γ(xI = yI)P(ψσ)I(κ), vκxI1 = Γ(xI = yI)rI(κ) and

vκyI0 = (Pσ)IpIqI(pI`
′
I , (Pτ)IpI`IσI , `

′
IτIσI , ψ̂IσI)(κ). This gives rise to a Kan

filler λ′I(κ) = σ−1(λI(κ)) ↑ṠI ~vκ, from which we are able to bring forth
PtIλ

′
I(κ) ∈ PΓ(∆)(I) as a suitable path for which PtIλ

′
I(κ) : ψIσI(κ)→ κ.

Thus Ptλ′ : ψσ 'Γ id∆, which shows that any acyclic fibration σ has a
section ψ as described.

This was the last result required in order to prove that the axioms of a
path category are satisfied in K, which we shall do in the next subsection.
Had we been able to do this without Proposition 2.20, then we could have
simply noted it to be the instance of Proposition 1.9 for K. We are led to
believe that our current proof strategy is nevertheless the most efficient.

2.2.3 Verifying the axioms

In this final subsection of the current chapter, we verify that the axioms
of a path category for the Kan fibrations and homotopy equivalences in K.
More than once we are merely required to check that the constructions which
mostly suggest themselves meet the requirements. The only axiom for which
Proposition 2.20 is strictly required is Axiom 3, though some other results
are used elsewhere. We shall now treat the axioms in their given order.

Proposition 2.21. Kan fibrations are closed under composition, which means
Axiom 1 holds in K.

Proof. Let σ : ∆ → Γ and τ : Θ → ∆ be Kan fibrations. Let S be any
open box shape on some arbitrary I, and suppose ~u is an S-open box for
στ over some α ∈ Γ(I). We shall assume that S is a +-shape, as the proof
for −-shapes differs only in notation. We write τ~u for the S-open box for σ
over α given by (τ~u)yb = τI−y(uyb): that this is indeed an open box follows
by the naturality of τ from the fact that ~u is. Because σ is a Kan fibration,
we obtain a Kan filler β = σ−1(α) ↑S (τ~u) ∈ σ−1

I (α). We find now that ~u is
an S-open box for τ over β, since uyb ∈ τ−1

I−y(τI−y(uyb)) = τ−1
I−y(∆(y = b)(β))

as required. Thus by τ being a Kan fibration as well, we obtain another
Kan filler γ = τ−1(β) ↑S ~u ∈ Θ(I). We define (στ)−1(α) ↑S ~u to be this
filler γ, and note that Θ(y = b)(γ) = uyb is immediate, whereas unifor-
mity follows from the uniformity of the two filler operations and the natu-
rality of τ . That is, for any f : I → K with suitable domain we have that
Θ(f)(γ) = τ−1(∆(f)(β)) ↑fS f~u = τ−1(σ−1(Γ(f)(α)) ↑fS τf~u) ↑fS f~u as re-
quired, hence this definition yields a Kan structure on στ as intended.

33



For Axiom 2 (and likewise for Axiom 3) we note that CSet has pullbacks
as it is a presheaf category, hence for the existence part we only need to show
that this pullback also lies in K. This follows once we have shown that the
pullback of a Kan fibration is again Kan, by virtue of the following lemma.

Lemma 2.22. If σ : ∆→ Γ is a Kan fibration, then ∆ is Kan if Γ is.

Proof. By definition ∆ is Kan whenever 1∆ : ∆ → 1 is a Kan fibration.
But 1∆ = 1Γσ, hence if Γ is Kan the composition 1Γσ is again Kan by
Proposition 2.21, so that ∆ is Kan whenever Γ is.

That Kan fibrations are closed under pullback along any map can be
found (in a somewhat different formulation) in [BCH14] as Theorem 6.1, but
we will present a more detailed argument here.

Proposition 2.23. Kan fibrations are closed under pullback along any map,
hence Axiom 2 holds in K.

Proof. Let τ : Θ→ Γ be a Kan fibration and σ : ∆→ Γ any map. Consider
the pullback ∆×Γ Θ with projections τ ′ : ∆×Γ Θ→ ∆ and σ′ : ∆×Γ Θ→ Θ.
Then for any I the elements of (∆×Γ Θ)(I) are pairs (α, κ) ∈ (∆(I)×Θ(I))
such that σI(α) = τI(κ), with τ ′I(α, κ) = α and σ′I(α, κ) = κ. Now let S
be any open box shape on I (we again only treat the +-shape case), and
suppose ~u is an S-open box for τ ′ over some α ∈ ∆(I). Then σ′~u (cf. the
proof of Proposition 2.21) is an S-open box for τ over σI(α), hence since τ is
a Kan fibration we have a filler τ−1(σI(α)) ↑S σ′~u ∈ Θ(I). We can use this
to define τ ′−1(α) ↑S ~u = (α, τ−1(σI(α)) ↑S σ′~u), which is well-defined since
τI(τ

−1(σI(α)) ↑S σ′~u) = σI(α) as required. That it is of the right form with
respect to τ ′ is immediate; uniformity follows by componentwise naturality
(and uniformity of the filler belonging to τ). Thus τ ′ with these fillers is a
Kan fibration as desired.

By combining this result with Proposition 2.20, we are rewarded for our
efforts in establishing the latter with the following concise proof that acyclic
fibrations are preserved under pullback along any map as well.

Proposition 2.24. Acyclic fibrations are preserved under pullback along any
map, hence Axiom 3 holds in K.

Proof. Consider the situation as in Proposition 2.23 where we take the pull-
back ∆ ×Γ Θ of σ : ∆ → Γ and τ : Θ → Γ, except now τ is an acyclic
fibration. Let ψ : Γ → Θ be a section of τ such that ` : ψτ 'Γ idΘ, which
exists by Proposition 2.20. This gives rise to a map ψ′ : ∆ → ∆ ×Γ Θ such
that ψ′I(α) = (α, ψIσI(α)), which we immediately recognise to be a section
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of τ ′. Moreover, the map `′ = (r, `) : ∆ ×Γ Θ → P (∆ ×Γ Θ) is well-defined
since (Pσ)(Pτ ′)`′ = rστ ′ = rτσ′ = (Pτ)`σ′ = (Pτ)(Pσ′)`′ as required, and
consequently `′ : ψ′τ ′ '∆ id. Since we know that τ ′ is a Kan fibration because
τ is, this shows that τ ′ is in fact an acyclic fibration as well.

Now for Axiom 4 we know that the isomorphisms of any category satisfy
2-out-of-6. Since we have already shown that the homotopy equivalence
relation is a congruence relation, it is possible to take the homotopy category
Ho(K) of K in which we quotient the morphisms of K up to this homotopy
equivalence. The isomorphisms of this homotopy category are then precisely
(the homotopy classes of) those maps which are homotopy equivalences, so
this construction reflects the property of 2-out-of-6 to the class of homotopy
equivalences. As a result, we may conclude the following.

Proposition 2.25. Homotopy equivalences satisfy 2-out-of-6, which means
Axiom 4 holds in K.

Since we already established in Proposition 2.20 that every acyclic fi-
bration has a section, we only need to show that isomorphisms are acyclic
fibrations to complete the proof for Axiom 5. Since this fact is rather evident,
we shall provide only partial details.

Proposition 2.26. Isomorphisms are acyclic fibrations, hence Axiom 5 holds
in K.

Proof. Let σ : ∆→ Γ be an isomorphism with its inverse τ : Γ→ ∆. That it
is a homotopy equivalence is immediate, as we may simply take the respective
reflexivity maps. It is not much more difficult to see that σ is also a Kan
fibration. For arbitrary I, let S be any open box shape on I, and take ~u
to be an S-open box for σ over some α ∈ Γ(I): we claim that it suffices
to define the desired Kan filler as τI(α). Since σIτI(α) = α, we have that
τI(α) ∈ σ−1

I (α). Furthermore uyb = τI−y(Γ(y = b)(α)) = ∆(y = b)(τI(α)) as
well as ∆(f)(τI(α)) = τK(Γ(f)(α)) for any f : I → K by naturality, hence
τI(α) is of the appropriate form.

Finally we establish that the path object as given in Definition 2.8 is a
factorisation of the diagonal as a weak equivalence followed by a uniform
Kan fibration, thereby checking the validity of Axiom 6. Once this is done,
we will have proven that K is indeed a path category, as Axiom 7 has already
been ensured to hold.

Proposition 2.27. The map r : Γ→ PΓ is a weak equivalence and the map
(s, t) : PΓ→ Γ is a Kan fibration for any Γ, hence Axiom 6 holds in K.
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Proof. To see that r : Γ → PΓ is a homotopy equivalence, we may take
s : PΓ → Γ and observe that we have ć : rs ' id and sr = idΓ. Thus
it remains to show that the map (s, t) : PΓ → Γ × Γ which is given by
sI = Γ(xI = 0), tI = Γ(xI = 1) is indeed a Kan fibration. To this end, let S
be an arbitrary open box shape on a given I, and let ~u be an S-open box for
(s, t) over some (α, β) ∈ Γ(I)×Γ(I). This means we have a family of adjacent
elements uyb ∈ Γ(I, xI−y − y) such that X(xI−y = 0)(uyb) = X(y = b)(α)
and X(xI−y = 1)(uyb) = X(y = b)(β). Taking S∗ = ((x, a); J, xI ; I, xI), we
may therefore instead consider the S∗-open box ~u∗ in Γ which is defined by
u∗yb = X(xI−y = xI)(uyb) ∈ X(I, xI − y) for all y ∈ J , along with u∗xI0 = α
and u∗xI1 = β. Now if Γ is Kan, then we find a Kan filler of ~u∗ in PΓ(I) which
has the right properties to serve as a Kan filler of ~u for (s, t) over (α, β).

This leaves us to conclude this chapter by summarising our efforts in the
following theorem.

Theorem 2.28. The category K with its additional structure as presented
in Definition 2.13 is a path category. That is, the full subcategory K of
CSet consisting of the uniform Kan cubical sets, where the fibrations are the
uniform Kan fibrations as defined in Definition 2.6, the weak equivalences are
the homotopy equivalences as defined in Definition 2.12, and the path objects
are as defined in Definition 2.8, is a path category.

As discussed during the Introduction, the importance of this result lies
in the fact that it allows us to understand the propositional character of the
identity types belonging to the cubical set model of type theory in terms of the
latter being an instance of a path category. Although this provides us with
a different perspective on the more type-theoretically motivated approach of
[BCH14], at the same time we should keep in mind that this identification
is not a perfect one. For instance, our path category K is only a full sub-
model of the original one. Furthermore, we have seen at times that stronger
statements are true than those which were required to show that K is a path
category, which is unsurprising given that the category of cubical sets pos-
sess a far richer model structure than a path category demands. We shall see
similar disparities in the next chapter, in which we first treat exponentials
and Π-types in the context of a path category, after which we study those
encountered in cubical sets along the same lines.
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Chapter 3

Exponentials and product types

So far we have only considered the bare structure of a path category which is
sufficient for interpreting the identity types. Although these make up what
is perhaps the most interesting part of dependent type theory, this does not
mean that there is nothing worthwhile to be said about other kinds of types.
For instance, one may study the Π-types and the related topic of function
extensionality, which is what we will do in this final chapter. We shall follow
the structure of the previous two chapters in that we begin by working in
the abstract setting of a path category, after which we observe how the
results there translate to the specific case of our category K of Kan cubical
sets. In particular we examine what function extensionality looks like in
path categories, after which we identify well-behaved witnesses to function
extensionality in cubical sets. In this way we expand both on the results
treated in [vdBM16] and those in [Hub15].

3.1 ...in path categories

In this section we shall look at exponentials and Π-types in the context of a
path category, for which [vdBM16] is again our primary reference. We then
come to the notions of function extensionality for these objects, which will
feature in a pair of equivalence results. We begin by providing the definition
of a (weak) homotopy exponential.

Definition 3.1. Whenever X and Y are objects of a path category C, a
weak homotopy exponential for X and Y is an object XY along with a map
ev : XY × Y → X such that for any map h : A × Y → X there is a map
H : A → XY such that ev(H × idY ) ' h. If H is unique up to homotopy
with this property, we say that XY is a homotopy exponential.
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We say that C has (weak) homotopy exponentials if it has a (weak) ho-
motopy exponential for every two objects X and Y . Similarly, we say that a
path category C has (weak) homotopy Π-types if it has a (weak) homotopy
Π-type ΠaX for every pair of fibrations b : X → Y and a : Y → Z, where
(weak) homotopy Π-types are defined as follows.

Definition 3.2. Whenever b : X → Y and a : Y → Z are fibrations in a
path category C, a weak homotopy Π-type for a and b is an object ΠaX with
a fibration Πab : ΠaX → Z along with a map ev : a∗ΠaX → X such that
bev = a∗Πab, which satisfies the following: if c : W → Z and m : a∗W → X
are such that bm = a∗c, then there is a map n : W → ΠaX such that
Πabn = c and eva∗n 'Y m. If n is unique up to fibrewise homotopy with
these properties, we say that ΠaX is a homotopy Π-type.

There is an alternative way of distinguishing between the weak and non-
weak homotopy exponentials and Π-types of a path category C which is al-
ready hinted at in Remark 6.2 in [vdBM16], although the statement there is
(in its current state) incomplete. We formulate and prove this characterisa-
tion for homotopy exponentials first, and afterwards for homotopy Π-types.

Proposition 3.3. A weak homotopy exponential XY in C is a homotopy
exponential precisely when there is a weak homotopy exponential (PX)Y along
with a map e : (PX)Y → P (XY ) such that the square

(PX)Y × Y

ev′

��

(s′,t′)e×idY// (XY ×XY )× Y
(ev×ev)(π1×idY ,π2×idY )

��
PX

(s,t)
// X ×X

commutes and induces the following quasi-pullback square for any object A:

Ho(C)(A, (PX)Y )

ev′( ×idY )

��

(s′,t′)e◦ // Ho(C)(A,XY ×XY )

(ev×ev)(π1×idY ,π2×idY )( ×idY )

��
Ho(C)(A× Y, PX)

(s,t)◦
// Ho(C)(A× Y,X ×X)

Proof. Suppose XY is a homotopy exponential. We show that P (XY ) is a
weak homotopy exponential (PX)Y and choose id : P (XY )→ P (XY ) as our
map e. This requires us to define an evaluation map ev′ : P (XY )× Y → PX
as follows. We see that (s, t)rev(s′ × id) ' (ev × ev)(s′ × idY , t

′ × idY ), hence
by Proposition 1.8 we obtain a map ev′ ' rev(s′ × id) such that the desired
identity (s, t)ev′ = (ev × ev)(s′ × idY , t

′ × idY ) holds. Therefore P (XY ) is in-
deed a weak homotopy exponential (PX)Y , as for any h : A× Y → PX there
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is an H : A→ XY such that ev(H × idY ) ' sh, so r′H : A→ P (XY ) satisfies
ev′(r′H × idY ) ' rev(H × idY ) ' rsh ' h. This leaves us to show that

Ho(C)(A,P (XY ))

ev′( ×idY )

��

(s′,t′)◦ // Ho(C)(A,XY ×XY )

(ev×ev)(π1×idY ,π2×idY )( ×idY )

��
Ho(C)(A× Y, PX)

(s,t)◦
// Ho(C)(A× Y,X ×X)

is a quasi-pullback square, which is that the induced map to the pullback
is an epimorphism in Set, i.e. a surjection. Thus we must demonstrate
that for any two maps (f : A× Y → PX, g : A→ XY ×XY ) which satisfy
(s, t)f ' (ev × ev)(π1 × idY , π2 × idY )(g × idY ) there is some h : A→ P (XY )
such that (f, g) ' (ev′(h× idY ), (s′, t′)h). Since XY is a homotopy exponent,
the fact that ev(π1g × idY ) ' sf ' tf ' ev(π2g × idY ) implies π1g ' π2g.
Hence there is a map h : A→ P (XY ) with (s′, t′)h = g which then moreover
satisfies ev′(h× idY ) ' rev(s′h× idY ) ' rsf ' f as required.
For the converse implication, suppose XY and (PX)Y are weak homotopy
exponentials, and let e : (PX)Y → P (XY ) be a map such that the two given
squares are commutative and a quasi-pullback respectively. In order to show
that XY is now a homotopy exponential, consider any maps h : A× Y → X
and H1, H2 : A→ XY such that ev(H1 × idY ) ' h ' ev(H2 × idY ). Then
we find that (s, t)rh ' (ev × ev)(π1 × idY , π2 × idY )((H1, H2)× idY ), so by
quasi-pullback there is a mapK : A→ (PX)Y satisfying (s′, t′)eK ' (H1, H2).
By Proposition 1.8 there is then a map K ′ ' eK satisfying the identity
(s′, t′)K ′ = (H1, H2), which means XY is a homotopy exponential.

Regarding the map e : (PX)Y → P (XY ) as being a type-theoretic proof
term, this result tells us that the homotopy exponentials are precisely those
which satisfy a form of function extensionality. The homotopy Π-types are
similarly characterised by the following proposition, the proof of which pro-
ceeds along the same lines as the previous one.

Proposition 3.4. A weak homotopy Π-type ΠaX in C for a pair of fibrations
b : X → Y and a : Y → Z is a homotopy Π-type precisely when there is a
weak homotopy Π-type ΠaPY (X) along with a map e : ΠaPY (X)→ PZ(ΠaX)
such that the square

a∗ΠaPY (X)

ev′

��

a∗((s′,t′)e)// a∗(ΠaX ×Z ΠaX)

(ev×ev)(a∗π1,a∗π2)

��
PY (X)

(s,t)
// X ×Y X

commutes and induces the following quasi-pullback square for any object W :
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Ho(C(Z))(W,ΠaPY (X))

ev′a∗

��

(s′,t′)e◦ // Ho(C(Z))(W,ΠaX ×Z ΠaX)

(ev×ev)(a∗π1,a∗π2)a∗

��
Ho(C(Y ))(a∗W,PY (X))

(s,t)◦
// Ho(C(Y ))(a∗W,X ×Y X)

Proof. Suppose ΠaX is a homotopy Π-type for b : X → Y and a : Y → Z.
We show that PZ(ΠaX) is a weak homotopy Π-type ΠaPY (X), with fibration
Πabs : PZ(ΠaX)→ Z. As (s, t)reva∗s′ 'Y (eva∗s′, eva∗t′), by Proposition 1.8
there is ev′ 'Y reva∗s′ such that (s, t)ev′ = (eva∗s′, eva∗t′). Now if c : W → Z
and m : a∗W → PY (X) are such that bsm = a∗c, then there is n : W → ΠaX
such that Πabn = c and eva∗n 'Y sm. Thus r′n : W → PZ(ΠaX) is such that
Πabs

′r′n = Πabn = c and eva∗(r′n) 'Y reva∗n 'y rsm 'Y m as required.
Now let e : PZ(ΠaX) → PZ(ΠaX) be the identity map, and consider the
diagram given below.

Ho(C(Z))(W,PZ(ΠaX))

ev′a∗

��

(s′,t′)◦ // Ho(C(Z))(W,ΠaX ×Z ΠaX)

(ev×ev)(a∗π1,a∗π2)a∗

��
Ho(C(Y ))(a∗W,PY (X))

(s,t)◦
// Ho(C(Y ))(a∗W,X ×Y X)

To see that this is a quasi-pullback, suppose we have f : a∗W → PY (X) and
g : W → ΠaX ×Z ΠaX such that (s, t)f 'Y (ev × ev)(a∗π1, a

∗π2)a∗g. Then
eva∗(π1g) 'Y sf 'Y tf 'Y eva∗(π2g) implies that π1g 'Z π2g since ΠaX is
a homotopy Π-type. Thus we have our required map h : W → PZ(ΠaX)
such that (s′, t′)h = g and moreover ev′a∗h 'Y reva∗(s′h) 'Y rsf 'Y f .
For the converse implication, suppose that ΠaX and ΠaPY (X) are weak
homotopy Π-types and e : ΠaPY (X) → PZ(ΠaX) is as described. To see
that ΠaX is now a homotopy Π-type, let c : W → Z and m : a∗W → X be
such that bm = a∗c, and take any (n1, n2) : W → ΠaX ×Z ΠaX satisfying
eva∗n1 'Y m 'Y eva∗n2. Then (s, t)rm 'Y (ev × ev)(a∗π1, a

∗π2)a∗(n1, n2),
hence by quasi-pullback there is some k : W → ΠaPY (X) for which we find
(s′, t′)ek 'Z (n1, n2). By Proposition 1.8 there is now some k′ 'Z ek with
(s′, t′)k′ = (n1, n2), which shows that n1 'Z n2 as required.

These two propositions enable us to talk about function extensionality for
homotopy exponentials and Π-types in a way which avoids having to specify a
choice of path object and exponential or Π-type. This is rather useful as these
are at best unique up to homotopy equivalence. Conversely, this tells us that
the homotopy exponentials and Π-types for which function extensionality
does not hold are very weak indeed. In the next section we shall find that
the exponentials and Π-types in cubical sets are more well-behaved, as we
are able to explicitly construct a suitable proof term for both.

40



3.2 ...in cubical sets

In this section we shall concern ourselves with the way in which the exponen-
tials and Π-types are instantiated in our path category K of Kan cubical sets.
We begin by treating the exponentials by giving a definition and explicitly
constructing a proof term witnessing function extensionality for these. In
order to express path objects as exponentials as well, we consider a slight
variation on the definition of an exponential which is also found in [Hub15]:
we shall call these path exponentials and prove a few additional results about
them. We then continue by treating the Π-types as we did the exponentials,
which is to say that we define them and exhibit a proof term for function
extensionality for Π-types. Though such a witness to function extensional-
ity is already considered in [Hub15] as well, our discussion extends the one
provided there as we consider this proof term in a broader context.

3.2.1 Exponentials and path exponentials

The exponentials in K are given in the following way.

Definition 3.5. Whenever Γ and ∆ are two cubical sets, their exponential
Γ∆ is the cubical set such that Γ∆(I) = CSet(y(I)×∆,Γ).

What is important to note about these exponentials is that they do not
behave in the same way as they would in say simplicial sets. Taking y(x∅) as
the obvious candidate for an interval object in cubical sets, one is able to give
a Kan cubical set Γ for which Γy(x∅) is not Kan, as is done in [BCH14]. Since
exponentials are Kan whenever both cubical sets are (which derives from the
analogous result for Π-types), this reflects the fact that representable cubical
sets are not Kan, hence in particular y(x∅) is not in K. Moreover, this shows
that Γy(x∅) cannot be isomorphic to PΓ, which is a cubical set if Γ is.
We therefore require an alternative kind of exponential for which this is the
case, to which must correspond an alternative notion of product as well,
hence we first introduce the latter.

Definition 3.6. For any two cubical sets Γ and ∆ we define the degeneracy
product Γ⊗∆ to be the cubical set where (Γ⊗∆)(I) is the subset of those
(u, v) ∈ Γ(I) × ∆(I) which are co-degenerate. That is, we have (u, v) ∈
(Γ⊗∆)(I) precisely when there are two disjoint subsets I1, I2 ⊆ I along with
u′ ∈ Γ(I1) and v′ ∈ ∆(I2) such that u = Γ(ıI−I1)(u′) and v = ∆(ıI−I2)(v′).

Hence the degeneracy product is what is called the separated product in
[Hub15]. While one readily sees that the degeneracy product is indeed a
cubical set, Γ⊗∆ is Kan only if at least one of Γ and ∆ is trivial.
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However, this will not be an issue as we intend to use the degeneracy product
only indirectly in defining the notion of a path exponential in which the
degeneracy product takes the place of the usual product, which is what we
do next.

Definition 3.7. The path exponential of two cubical sets Γ and ∆ is the
cubical set [∆,Γ] given by [∆,Γ](I) = CSet(y(I)⊗∆,Γ).

We claim that [y(x∅),Γ] is isomorphic to PΓ, or more generally [y(I),Γ] is
isomorphic to PnΓ where n = |I| and Pn indicates n iterations of taking the
path object. For clearly y(I) ∼= y(J) whenever |I| = |J |, and furthermore
y(I)⊗ y(J) ∼= y(I ∪ J) whenever I and J are disjoint, since pairs of func-
tions f : I → H and g : J → H co-degenerate on H correspond bijectively
with functions h : I ∪J → H. Thus y(I)⊗ y(x∅) ∼= y(I)⊗ y(xI) ∼= y(I, xI),
hence we obtain [y(x∅),Γ](I) ∼= CSet(y(I, xI),Γ) ∼= Γ(I, xI) = PΓ(I) by the
Yoneda lemma, where the general case follows along the same lines. Thus
[y(I),Γ] is Kan whenever Γ is, despite that fact that y(I) is not Kan. We are
able to show that for [∆,Γ] to be Kan it is indeed sufficient that Γ is Kan.

Proposition 3.8. The path exponential [∆,Γ] is Kan whenever Γ is.

Proof. Let Γ be Kan and ∆ be any cubical set, and take S to be any given
+-shape on I, with ~F an S-open box in [∆,Γ]. This means we have Fyb ∈
[∆,Γ](I − y) for all y ∈ J and Fx0 ∈ [∆,Γ](I − x) satisfying adjacency
conditions, which come down to FybH((k, z = c), v) = FzcH((k, y = b), v) for
all H and all k : I − y, z → H. We wish to construct a Kan filler F =
[∆,Γ] ↑S ~F ∈ [∆,Γ](I). Before we can do so, we first determine a suitable
Fx1 ∈ [∆,Γ](I−x), which we define as follows. If for any y ∈ J we have g(y) =
b then Fx1H(g, v) is taken to be FybH((g− y, x = 1), v), which is well-defined
by and guarantees adjacency. Now assume g is defined on J . Consider g′ =
(g, x = xH) : I → H, xH , which we may use to define a g′S-open box ~uFgv in Γ
as follows. For y ∈ J we let uFgvg(y)b = FybH,xH−g(y)(g

′ − y, rH∆((g(y) = b))(v)),

and uFgvxH0 = Fx0H(g, v). We check that the adjacency conditions are satisfied:
we have

Γ(g(z) = c)uFgvg(y)b = FybH,xH−g(y,z)((g
′−(y, z), z = c), rH∆(g(y) = b, g(z) = c)(v))

= FzcH,xH−g(y,z)((g
′−(y, z), y = b), rH∆(g(y) = b, g(z) = c)(v)) = Γ(g(y) = b)ug(z)c

whenever both y, z ∈ J . If only y ∈ J , then again as required we find

sHug(y)b = FybH−g(y)((g − y, x = 0),∆(g(y) = b)(v))

= Fx0H−g(y)((g(y) = b)g,∆(g(y) = b)(v)) = Γ(g(y) = b)uxH0.
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Thus we obtain a Kan filler Γ ↑g′S ~uFgv ∈ Γ(H, xH), which allows us to take
Fx1H(g, v) = tH(Γ ↑g′S ~uFgv). This is represented by the following diagram
(though note that only one of the y ∈ J is shown here).

Fy0(tg′ − y, sv)

Γ↑g′S~uFgv

Fx1H(g,v)// Fy1(tg′ − y, tv)

Fy0(sg′ − y, sv)

Fy0(g′−y,rsv)

OO

Fx0(g,v)
// Fy1(sg′ − y, tv)

Fy1(g′−y,rtv)

OO

We check that Fx1 thus defined is natural. Let h : H → K. If g(y) = b for
some y ∈ J , then we use the naturality of Fyb to calculate as required that

Γ(h)Fx1H(g, v) = Γ(h)FybH((g − y, x = 1), v)

= FybK((hg − y, x = 1),∆(h)(v)) = Fx1K(hg,∆(h)(v)),

so suppose g is defined on J . If h(g(y)) = b for some y ∈ J , then

Γ(h)Fx1H(g, v) = Γ(k − g(y))FybH−g(y)((g − y, x = 1),∆(g(y) = b)(v))

= FybK((hg − y, x = 1),∆(h)(v)) = Fx1K(hg,∆(h)(v)).

Finally, if h is defined on g(J), then naturality follows from the uniformity
of the Kan filler involved.

Now to define F from this. If f(y) = b for any y ∈ J, x, then by tak-

ing FH(f, v) = FybH(f − y, v) we ensure that F is a Kan filler of ~F as
desired. Hence we only need to deal with the case where f is defined on
J, x. Consider the +-shape Sf = ((xH , 1); f(J, x);H, xH). We define an
Sf -open box ~wFfv in Γ by wFfvf(y)b = rHFybH−f(y)(f − y,∆(f(y) = b)(v)) for

y ∈ J, x and wFfvxH0 = Γ(xH−f(x) = f(x))(Γ ↑(f−x)′S ~u
z), where z is the string

F (f − x)∆(f(x) = 0)(v). We check that adjacency holds for y, z ∈ J, x:

Γ(f(z) = c)wf(y)b = rHFybH−f(y,z)((f−y, z, z = c),∆(f(y) = b, f(z) = c)(v))

= rHFzcH−f(y,z)((f−y, z, y = b)),∆(f(y) = b, f(z) = c)(v) = Γ(f(y) = b)wf(z)c.

Furthermore sHwf(y)b = FybH−f(y)(f − y,∆(f(y) = b)(v)), which has to be

Γ(f(y) = b)wxH0 = FybH−f(y)(f − y,∆(ıf(x)(f(x) = 0, f(y) = b))(v)). At first
glance, these two seem to be different. However, v must be degenerate in
f(x), which means ∆(ıf(x)(f(x) = 0))(v) = v and so adjacency holds af-
ter all. It is here that the crucial difference with the usual exponent lies,
for then we would have to involve v in some filler construction in ∆ at
this point in the argument, hence we would require that ∆ is Kan as well.
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In this case, we now have Γ ↑SF ~wFfv ∈ Γ(H, xH), so that we may take
FH(f, v) = tH(Γ ↑Sf ~wFfv). This construction is captured in the diagram
below, where we only show the variable x.

Fx0(f − x, sv)

Γ↑
Sf

~wFfv

FH(f,v)// Fy1(tg′ − y, tv)

Fx0(f − x, sv)

rFx0(f−x,sv)

OO

Γ↑(f−x)′S~u
z
// Fx0(f − x, tv)

rFx1(f−x,tv)

OO

In order to complete the proof, we need to verify that F thus defined is
indeed natural, and moreover that it meets the uniformity requirements. Let
h : H → K. If f(y) = b for some y ∈ J, x, then we find as required that
Γ(h)FH(f, v) = Γ(h)FybH(f − y, v) = FybK(hf − y, v) = FK(hf, v). Suppose
therefore that f is defined on J, x. If h(f(y)) = b for some y ∈ J, x, then

Γ(h)FH(f, v) = Γ(h− f(y))FybH−f(y)(f − y,∆(f(y) = b)(v))

= FybK(hf − y,∆(h)(v)) = FK(hf,∆(h)(v)).

When h is instead defined on J, x naturality follows from the uniformity of
the Kan filler involved. Finally, to prove uniformity of the filler F , suppose
k : I → K is defined on J, x. If f(k(y)) = b for some y ∈ J, x, then
FH(fk, v) = FybH((fk− y), v) = FybH((f − k(y))(k− y), v) as required; note
that we do not need to treat the constructed case of f(k(x)) = 1 separately. If
instead f is defined on k(J, x), then the open box used in defining FH(fk, v)
is precisely the same as the one which is obtained when carrying out the
construction using k ~F , hence our construction ensures uniformity as well.

Thus we may use the path exponential [y(x∅),Γ] as the path object PΓ
when constructing a witness to function extensionality for exponentials in K,
which is what we will do next. Supposing Γ and ∆ to be Kan cubical sets,
we are after maps µ : P(Γ∆)→ (PΓ)∆ and ν : (PΓ)∆ → P(Γ∆) which act as
lower fillers in the diagram below.

Γ∆

r
��

r∆
// (PΓ)∆

(s∆,t∆)
��

P(Γ∆)
(s,t)
// Γ∆ × Γ∆

First we determine how these maps are actually defined. For M ∈ Γ∆(I) we
find rI(M)H(f, g)K(h, v) = MK(hf, v), while for F ∈ P(Γ∆)(I) (considered
as path exponential) we have sI(F )H(f, v) = FH(f, x∅ = 0)H(idH , v) and
similarly tI(F )H(f, v) = FH(f, x∅ = 1)H(idH , v).
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On the other hand we take r∆
I (M)H(f, v)K(h, g) = MK(hf,∆(h)(v)), while

for G ∈ (PΓ)∆ we use s∆
I (G)H(f, v) = GH(f, v)H(idH , x∅ = 0) and similarly

t∆I (G)H(f, v) = GH(f, v)H(idH , x∅ = 1) (again in terms of a path exponen-
tial). Now we have function extensionality for exponentials as follows.

Proposition 3.9. Let Γ and ∆ be Kan cubical sets. Then function exten-
sionality for Γ∆ is witnessed by a pair of maps µ : P(Γ∆) → (PΓ)∆ and
ν : (PΓ)∆ → P(Γ∆) which commute with the respective source and target
maps. Moreover µ commutes strictly and ν commutes up to fibrewise homo-
topy over Γ∆ × Γ∆ with the reflexivity maps.

Proof. We begin by defining the map µ : P(Γ∆)→ (PΓ)∆ using the identity
µI(F )H(f, v)K(h, g) = FK(hf, g)K(idK ,∆(h)(v)), which we may straightfor-
wardly show to be natural. This has to be done on three different levels: µ
must be natural, but in order to be well-defined, µI(F ) is also required to be
natural for any F ∈ P(Γ∆)(I), and in turn µI(F )H(f, v) ought to be natural
for any (f, v) ∈ (y(I)⊗∆)(H). For the first, if k : I → J , then

µI(F )H(fk, v)K(h, g) = FK(hfk, g)K(idK ,∆(h)(v))

= µJ(P(Γ∆)(k)(F ))H(f, v)K(h, g)

as required. Secondly, if k : H → H ′, then we find in turn that

µI(F )H(f, v)K(hk, g) = FK(hkf, g)K(idK ,∆(hk)(v))

= µI(F )H′(kf,∆(k)(v))K(h, g)

again as required. For the last of these, if k : K → K ′, then we conclude

Γ(k)µI(F )H(f, v)K(h, g) = Γ(k)FK(hf, g)K(idK ,∆(h)(v))

= FK(hf, g)K′(k,∆(kh)(v)) = FK′(khf, kg)K′(idK′ ,∆(kh)(v))

= µI(F )H(f, v)K′(kh, kg).

Now to define ν : (PΓ)∆ → P(Γ∆) we need to reason in terms of a case
distinction. We take νI(G)H(f, g)K(h, v) = GK(hf, v)K(idK , hg) if hg(x∅)
is undefined. If hg(x∅) is defined, let ~u be the P(hg)Ṡ∅-open box in Γ
given by the data uhg(x∅)0 = GK(hf, v)K,xK−hg(x∅)(ıxK (hg(x∅) = 0), x∅ = 0),
along with uhg(x∅)1 = GK(hf, v)K,xK−hg(x∅)(ıxK (hg(x∅) = 1), x∅ = xK) and fi-
nally uxK0 = GK(hf, v)K(idK , x∅ = 0). We now take νI(G)H(f, g)K(h, v) to
be tK(Γ ↑P(hg)Ṡ∅ ~u), which corresponds to the diagram below.

G(hf, v)(s, s)

Γ↑
P(hg)Ṡ∅~u

ν(G)(f,g)(h,v)// G(hf, v)(t, t)

G(hf, v)(s, s)

rG(hf,v)(s,s)

OO

G(hf,v)(id,s)
// G(hf, v)(t, s)

G(hf,v)(rs,x)

OO
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We verify that ν is also a natural transformation in the same way as we did
for µ, though now we have to distinguish between certain cases, hence we
shall proceed in the reverse order. Let k : K → K ′ be any map, for which
we must show that Γ(k)νI(G)H(f, g)K(h, v) = νI(G)H(f, g)′K(kh,∆(k)(v)).
If hg(x∅) is undefined, then we have

Γ(k)GK(hf, v)K(idK , hg) = GK(hf, v)K′(k, khg)

= GK′(khf,∆(k)(v))K′(idK′ , khg)

as required. If on the other hand hg(x∅) is defined yet khg(x∅) = b, then the
left hand side is Γ(k − hg(x∅))GK(hf, v)K−hg(x∅)(hg(x∅ = b), x∅ = b) by uni-
formity, which is GK(hf, v)K′(k, khg) = GK′(khf,∆(k)(v))K′(idK , khg), i.e.
the right hand side. Lastly, if khg(x∅) is defined, then the equality again holds
due to uniformity of the Kan filler. So let k instead be any map k : H → H ′,
which means we must have νI(G)H′(kf, kg)K(h, v) = νI(G)H(f, g)K(hk, v).
We are in either of the two cases depending on whether hkg(x∅) is defined,
and in each of these we can use the naturality of G to prove the desired
equalities as we did for µ. The same remark applies to maps k : I → J and
showing that νI(G)H(fk, g) = νJ((PΓ)∆(k)(G))H(f, g), which concludes this
part of the proof.

Having established that µ and ν are well-defined, we now have to demonstrate
that they satisfy all the requirements. First, we check that they commute
with the source and target maps. For the source maps we find that

s∆
I µI(F )H(f, v) = µI(F )H(f, v)H(idH , x∅ = 0)

= FH(f, x∅ = 0)H(idH , v) = sI(F )H(f, v)

as well as that

sIνI(G)H(f, v) = νI(G)H(f, x∅ = 0)H(idH , v)

= GH(f, v)H(idH , x∅ = 0) = s∆
I (G)H(f, v).

The cases for t and t∆ differ only in the value assigned to x∅, hence we find
that µ and ν indeed commute with the source and target map. All that
remains then is to show that they behave as described with respect to r and
r∆. We have indeed that µIrI = r∆

I , since

µIrI(M)H(f, v)K(h, g) = rI(M)K(hf, g)K(idK ,∆(h)(v))

= MK(hf,∆(h)(v)) = r∆
I (M)H(f, v)K(h, g).
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Finally, we can define a homotopy ` : r '(Γ∆×Γ∆) νr
∆, by doing so in each

of several cases. Here the crucial observation is that νr∆ is strictly identical
to r in those instances where it is not given by means of a uniform Kan
filler, and that when it is given as such the uniform Kan filler involved in
fact constitutes part of the required fibrewise homotopy. Whenever hg(x∅)
is undefined we have that

νIr
∆
I (M)H(f, g)K(h, v) = r∆

I (M)K(hf, v)K(idK , hg)

= MK(hf, v) = rI(M)H(f, g)K(h, v).

On the other hand, when hg(x∅) is defined, the open box in Γ which is being
filled has r∆

I (M)K(hf, v)K(idK , x∅ = 0) = MK(hf, v) as side opposite the
part being filled, and the two other sides are reflexivity paths of the form

r∆
I (M)(hf, v)K,xK−hg(x∅)(ıxK (hg(x∅) = b), k)

= MK,xK−hg(x∅)(ıxK (hg(x∅) = b)hf, rK∆(hg(x∅) = b)(v))

= rKMK−hg(x∅)(hf,∆(hg(x∅) = b)(v)).

Now let us see how we can use this to define `I(M)H(f, g)K(h, v). First,
we distinguish between whether f(xI) is defined or not. If f(xI) = 0,
we take it to be rI(M)H(f − xI , g)K(h, v), whereas if f(xI) = 1 we take
it to be νIr

∆
I (M)H(f − xI , g)K(h, v). Now if f(xI) is defined, we look

at whether hg(x∅) and hf(xI) are defined. If neither of these is defined,
we take it to be rI(M)H−f(xI)(f − xI , g)K(h − f(xI), v), which we also do
when hg(x∅) is defined and hf(xI) = 0; if instead hf(xI) = 1 we take it
to be νIr

∆
I (M)H−f(xI)(f − xI , g)K(h − f(xI), v). When it is rather hg(x∅)

which is undefined and hf(xI) which is defined, we shall take it to be
rI(M)H−f(xI)(f − xI , g)K(ıhf(xI)(h− f(xI)), v). Finally, if both of these are
defined, we shall take it to be the preserving composition of the two paths
rI(M)H−f(xI)(f − xI , g)K(ıhf(xI)(h− f(xI)), v) and (notice the adjustment)
Γ(xK−hf(xI) = hf(xI))(Γ ↑P((h−f(xI))g)Ṡ∅ ~u), where ~u is the open box used to

obtain νIr
∆
I (M)H−f(xI)(f − xI , g)K−hf(xI)(h− f(xI),∆(hf(xI) = 1)(v)). By

preserving composition we mean here the composition such that applying
hg(x∅) = b to it yields the same terms which are found by applying it
to rI(M)H−f(xI)(f − xI , g)K(ıhf(xI)(h− f(xI)), v). This composition exists
since we have determined above that applying hg(x∅) = b to the Kan filler
Γ(xK−hf(xI) = hf(xI))(Γ ↑P((h−f(xI))g)Ṡ∅ ~u) yields the right reflexivity paths.

Due to all these different cases, verifying naturality for ` is somewhat of
a tedious exercise, hence we shall not provide fully explicit calculations at
every step. Let k : K → K ′ be any map, so that we must have naturality of
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the form Γ(k)`I(M)H(f, g)K(h, v) = `I(M)H(f, g)K′(kh,∆(k)(v)). Suppose
first that hg(x∅) and hf(xI) are defined, so that the left hand side is Γ(K)
applied to the preserving composition. If both khg(x∅) and khf(xI) are
defined, then the equality immediately holds by the uniformity of the Kan
fillers involved; we will not treat the similar cases in which k can be thought
of as extending h. If khg(x∅) is defined yet khf(xI) = b, then the right hand
side is rI(M)H−f(xI)(f−xI , g)K′(kh−f(xI),∆(k)(v)) or νIr

∆
I (M)H−f(xI)(f−

xI , g)K′(kh−f(xI),∆(k)(v)) respectively, which as required are precisely the
endpoints of the preserving composition with Γ(k−hf(xI)) applied to them.
If instead khg(x∅) = b and khf(xI) is defined, then the right hand side is

rI(M)H−f(xI)(f − xI , g)K′(ıkhf(xI)(kh− f(xI)),∆(k)(v)) =

Γ(k−hf(xI))rI(M)H−f(xI)(f−xI , g)K−hg(x∅)(ıhf(xI)(h−f(xI)),∆(hg(x∅) = b)(v))

which as required are the edges of the preserving composition with respect
to khg(x∅) with Γ(k − hf(xI)) applied to them. Now suppose that hg(x∅) is
defined and hf(xI) = b, with k undefined on hg(x∅). The result is immediate
for b = 0, hence we look at b = 1 to find as required that

Γ(k)νIr
∆
I (M)H−f(xI)(f − xI , g)K(h− f(xI), v)

= Γ(k − hg(x∅))MK−hg(x∅)(hf − xI ,∆(hg(x∅) = 1)(v))

= MK′(kh(f − xI),∆(k)(v)) = rI(M)H−f(xI)(f − xI , g)K′(kh,∆(k)(v)).

Finally, suppose hg(x∅) = b and hf(xI) is defined, with k undefined on
hf(xI). Here we find that

Γ(k)rI(M)H−f(xI)(f − xI , g)K(ıhf(xI)(h− f(xI)), v)

= rI(M)H−f(xI)(f − xI , g)K′(kh− f(xI),∆(k)(v))

again as required, which concludes this part of the verification. For the next
part, let k : H → H ′ be any map, so that we must have naturality of the
form `I(M)H′(kf, kg)K(h, v) = `I(M)H(f, g)K(hk, v). If f(xI) is undefined,
then the right hand side is as required (by naturality of r and νr∆) either
rI(M)H(f − xI , g)K(hk, v) = rI(M)H′(kf − xI , kg)K(h, v), or if f(xI = 1),
νIr

∆
I (M)H(f − xI , g)K(hk, v) = νIr

∆
I (M)(kf − xI , kg)K(h, v). If f(xI) is de-

fined yet kf(xI) = b, then the right hand side will depend on hkg(x∅). We
find rI(M)H−f(xI)(f − xI , g)K(hk − f(xI), v) = rI(M)H′(kf − xI , kg)K(h, v)
as required if hkg(x∅) is undefined; the cases where hkg(x∅) is defined are
(essentially) the same. Should both f(xI) and kf(xI) be defined, then the
left and right hand sides do not lie in separate cases, and we can again simply
appeal to the naturality of the maps involved.
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To conclude, let k : I → J be any map, which means we must have
`I(M)H(fPk, g) = `J(Γ∆(k)(M))H(f, g). Loosely speaking, applying the map
Γ∆(k)(M) also has the effect of precomposing k, and discarding xI is the
same as mapping it to xJ and then discarding the latter (which we do in
every case). We therefore claim that we again have naturality here owing
to the naturality of the constructions used. Thus ` is natural and of the
required form ` : r '(Γ∆×Γ∆) νr

∆, which means we are done.

Had we shown instead that the map (s∆, t∆) : (PΓ)∆ → P(Γ∆) is a Kan
fibration and that r∆ is a weak equivalence, then the existence of such µ and
ν would have followed on general grounds from Theorem 1.7 since K is a path
category. One of the main reasons for taking our current approach is that it
yields an explicit formulation of the proof term ν. Furthermore it provides
us with an illustration of one of the uses of path exponentials, which include
a reformulation of the uniform Kan condition in terms of sections of open
box inclusions, for which we refer to [Hub15]. Nevertheless the corresponding
function extensionality statement for Π-types is undeniably more relevant,
to which we come to in the final subsection.

3.2.2 Function extensionality for Π-types

Following [BCH14], we define the Π-types in CSet as follows.

Definition 3.10. Let τ : Θ→ ∆ and σ : ∆→ Γ be Kan fibrations of cubical
sets. For any α ∈ Γ(I), define ∆α to be the cubical set given by ∆α(H) being
the subset of those (h, v) ∈ y(I)(H) × ∆(H) such that Γ(h)(α) = τH(v).
The Π-type ΠσΘ is then the cubical set given by (ΠσΘ)(I)α being the subset
of those morphisms F : ∆α → Θ such that τF = π2; the Kan fibration
Πστ : ΠσΘ→ Γ sends such F to the corresponding α.

One may verify that these Π-types are indeed cubical sets. More im-
portantly, the fibration Πστ : ΠσΘ → Γ is Kan since σ and τ are, a result
covered in [BCH14] and more extensively in [Hub15]. Thus by Lemma 2.22
we know that ΠσΘ is Kan whenever Γ is, hence this is a valid construction
within K. We proceed by setting the stage for function extensionality for
Π-types. Let τ : Θ → ∆ and σ : ∆ → Γ be Kan fibrations, so that we have
the Π-type ΠσΘ, and consider the diagram:

ΠσΘ

r

��

r∆
// ΠσP∆(Θ)

(s∆,t∆)

��
PΓ(ΠσΘ)

(s,t)
// ΠσΘ×Γ ΠσΘ
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Here the maps r, s, t are the usual ones, while for the others we shall define
r∆
I (N)H(f, v) = rHNH(f, v) for N ∈ (ΠσΘ)(I); for G ∈ (ΠσP∆(Θ))(I) we let
s∆
I (G)H(f, v) = sHGH(f, v) for G ∈ (ΠσP∆(Θ))(I). The map t∆ is defined

similarly with tH for sH . We have function extensionality for Π-types in the
following sense.

Theorem 3.11. Let τ : Θ → ∆ and σ : ∆ → Γ be Kan fibrations.
Then function extensionality for ΠσΘ is witnessed by a pair of morphisms
µ : PΓ(ΠσΘ)→ ΠσP∆(Θ) and ν : ΠσP∆(Θ)→ PΓ(ΠσΘ) which commute with
the respective source and target maps. Moreover µ commutes strictly and ν
commutes up to fibrewise homotopy over ΠσΘ×Γ ΠσΘ with r and r∆.

Proof. The first of these maps is easily defined in terms of µI for any I by
µI(F )H(f, v) = FH,xH (Pf, rH(v)). Observe first that this term exists since
PσHrH(v) = rHΓH(v) = rHΓ(f)(Πστ)I(F ) = Γ(Pf)rH(Πστ)I(F ) and
τH,xHµI(F )H(f, v) = τH,xHFH,xH (Pf, rH(v)) = rH(v) as ought to be the case.
Thus we are left to show naturality of µI(F ) and of µ itself. The former en-
tails that we have the identity Θ(Ph)µI(F )H(f, v) = µI(F )K(hf,∆(h)(v)) for
any map h : H → K, which is the case since by naturality of F we find that
Θ(Pk)FH,xH (Pf, rH(v)) = FK,xK (P(hf), rK∆(h)(v)). For the latter we must
show (ΠσΘ)(Ph)(F )H(Pf, rH(v)) = µI(F )H(fh, v) for any map h : I → J ,
which is again immediate since FH(Pf)Ph, rH(v)) = FH(P(fh), rH(v)).

As for the other map, we define νI(G)H(f, v) by case distinction. Whenever
f(xI) = b we take νI(G)H(f, v) to be Θ(xH = b)GH(f − xI , v). If instead
f(xI) is defined, we let νI(G)H(f, v) be given by t′Hτ

−1(rH(v)) ↑PfṠI ~w.

Here ~w is a PfṠI-open box for τ over rH(v) consisting of the element
wf(xI)0 = rHΘ(xH−f(xI) = 0)GH−f(xI)(f − xI ,∆(f(xI) = 0)(v)) together with
wf(xI)1 = Θ(xH−f(xI) = xH)GH−f(xI)(f − xI ,∆(f(xI) = 1)(v)) and as last one
wxH0 = sHGH(ıf(xI)(f − xI), v). This corresponds to the diagram below.

sG(f − xI , sv)

τ−1(rv)↑
PfṠI

~w

ν(G)(f,v)// tG(f − xI , tv)

sG(f − xI , sv)

rsG(f−xI ,sv)

OO

sG(r(f−xI),v)
// sG(f − xI , tv)

G(f−xI ,tv)

OO

We begin by showing that the terms involved are well-defined. If f(xI) is
undefined then σH(v) = Γ(f)rI(Πσ(τp))I(G) = Γ(f−xI)(Πσ(τp))I(G), hence
GH(f −xI , v) exists in these cases, and furthermore we have as required that
τHΘ(xH = b)GH(f − xI , v) = (P∆(Θ))HGH(f − xI , v) = v.
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If instead f(xI) = b, then we find again that

σH−f(xI)∆(f(xI) = b)(v) = Γ(f(xI) = b)σH(v)

= Γ((f(xI) = b)f)rI(Πσ(τp))I(G) = Γ(f − xI)(Πσ(τp))I(G)

and τHνI(G)H(f, v) = v by construction, so everything is well-defined.
Now we must show naturality of νI(G) and of ν, for which we consider
some case distinctions. First we take any map h : H → K and show that
Θ(h)νI(G)H(f, v) = νI(G)K(hf,∆(h)(v)). If f(xI) is undefined we see that

Θ(h)Θ(xH = b)GH(f − xI , v) = Θ(xK = b)Θ(Ph)GH(f − xI , v)

= Θ(xK = b)GK(hf − xI ,∆(h)(v)).

When f(xI) is defined yet hf(xI) = b, then by uniformity we have

Θ(h− f(xI))Θ(xH−f(xI) = b)GH−f(xI)(f − xI ,∆(f(xI) = b)(v)) =

Θ(xK = b)Θ(h− f(xI), xH−f(xI) = xK)GH−f(xI)(f − xI ,∆(f(xI) = b)(v))

= Θ(xK = b)GK(hf − xI ,∆(h)(v)).

If hf(xI) is defined as well, the equality follows once more by uniformity.
Now let h : I → J be any map, so that we must show naturality of the
form νI(G)H(fPh, v) = νJ((ΠσP∆(Θ))(h)(G))H(f, v). As in earlier proofs,
this can be done in each of the cases using the naturality of G in these argu-
ments, but we will not carry out this verification explicitly.

Thus we have come to the part involving the respective path object maps.
For completeness’ sake, observe that (τp)Hr

∆
I (N)H(f, v) = τHNH(f, v) = v

and τHsHGH(f, v) = (τp)HGH(f, v) = v as required. That µ and ν commute
with the respective source and target maps follows from

s∆
I µI(F )H(f, v) = s′HµI(F )H(f, v) = s′HFH,xH (Pf, rH(v))

= FH((f, xI = 0), v) = sI(F )H(f, v)

and sIνI(G)H(f, v) = νI(G)H((f, xI = 0), v) = s′HGH(f, v) = s∆
I (G)H(f, v).

The case for t∆ again only differs in that 0 is replaced with 1 throughout.
As for the reflexivity maps, we find that

µIrI(N)H(f, v) = rI(N)H,xH (Pf), rH(v)) = NH,xH (Pf)ıxI , rH(v))

= NH,xH (ıxHf, rH(v)) = r∆
I (N)H(f, v)

hence we have strict equality here. For the other part we wish to show that
we have some homotopy ` : r '(ΠσΘ×ΓΠσΘ) νr

∆. We define `I(N)H(f, v) as

51



follows. First, if f(yI) = 0 then we take it to be rI(N)H(f − yI , v), whereas
if f(yI) = 1 we take it to be νIr

∆
I (N)H(f −yI , v). Now if f(yI) is defined, we

must look at whether f(xI) is defined. In those cases where it is not, we define
`I(N)H(f, v) as (Prr)I(N)H(f, v). When f(xI) is also defined, it is rather the
preserving composition (cf. the proof of Proposition 3.9) of (Prr)I(N)H(f, v)
and Θ(xH−f(xI),f(yI) = f(yI))(τ

−1(rH−f(yI)∆(f(yI) = 1)(v)) ↑P(f−yI)ṠI ~w).

Here τ−1(rH−f(yI)∆(f(yI) = 1)(v)) ↑P(f−yI)ṠI ~w is the Kan filler involved in

the definition of νIr
∆
I (N)H−f(yI)(f − yI ,∆(f(yI) = 1)(v)).

One last time we shall have to show that this is natural, namely in (f, v)
and in N . For the former, let h : H → K be any map so that we must have
Θ(h)`I(N)H(f, v) = `I(N)K(hf,∆(h)(v)), and suppose first that f(yI) = b
is undefined. Then hf(yI) = b as well, hence both sides are in the same case,
and naturality obtains through that of r and νr∆. Suppose next that f(yI)
is defined, yet hf(yI) = 0. If f(xI) is undefined, then the left hand side is

Θ(h)(Prr)I(N)H(f, v) = rI(N)K((h− f(yI))(f − yI),∆(h)(v))

= rI(N)K(hf − yI ,∆(h)(v)).

When f(xI) is also defined, the left hand side is

Θ(h− f(yI))rI(N)H−f(yI)(f − yI ,∆(f(yI) = 0)(v))

= rI(N)K(hf − yI ,∆(h)(v))

as well. If instead hf(yI) = 1 and f is undefined on xI , then so is hf − yI ,
hence by the definition of ν we again have

νIr
∆
I (N)K(hf − yI ,∆(h)(v)) = NK(hf − xI , yI ,∆(h)(v))

= (Prr)I(N)K(hf,∆(h)(v)).

Should f(xI) rather be defined, then we find that the left hand side is
Θ(h− f(yI))νIr

∆
I (N)H−f(yI)(f − yI ,∆(f(yI) = 1)(v)), which by naturality is

indeed νIr
∆
I (N)K(hf − yI ,∆(h)(v)). Now suppose hf(yI) is defined. If f(xI)

is undefined both sides are once more in the same case, hence we may assume
that f(xI) is defined yet hf(xI) = b. We find as required that the left hand
side is, by the preserving composition,

Θ(h− f(xI))NH−f(xI)((f − xI)ıyI ,∆(f(xI) = b)(v))

= NK((hf − xI)ıyI ,∆(h)(v)) = (Prr)I(N)K(hf,∆(h)(v)).

This leaves us to show naturality in N , that is, for any h : I → J we have
`J((ΠσΘ)(h)(N))H(f, v) = `I(N)H(fPPh, v). As before, h cannot separate
the left and right hand sides into different cases, hence for each of these we can
simply resolve naturality using that of the maps involved, which concludes
the proof that ` is our desired homotopy.
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As remarked before, the novelty of this theorem lies not so much in the
fact that function extensionality holds for Π-types in cubical sets, as this
follows from general considerations, such as from Theorem 1.7 if we show
that r∆ and (s∆, t∆) are a weak equivalence and a fibration respectively.
Neither is the construction of the proof term ν itself a completely original
one, as it is essentially a translation of the type-theoretic one in Theorem
3.20 of [Hub15]. The main contribution of this theorem is rather that we
have shown this proof term to be very well-behaved with respect to the path
structure involved and have sketched the background theory which explains
why such a witness to function extensionality should exist at all. With this
result we have come to the end of this chapter and of the present work.
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Conclusions

In this work we set out to study the model of type theory in cubical sets from
the perspective of a path category, thereby increasing the understanding of
the former and adding to the results known for both. We have succeeded in
this regard, with the establishing of Theorem 2.28 being our main achieve-
ment, along with other results such as Theorem 1.18 and Theorem 3.11 which
are less original though not less worthwhile. Especially in Chapter 2 we have
tread on previously uncovered grounds, as identifying a path category with
the category of cubical sets forced us to consider the cubical set model in an
alternative way.

Doubtlessly there are multiple interesting avenues left to explore. There
is for instance the direction taken by [GS15], which explores the role of the
uniformity condition in the construction of a model of type theory. Other
possibilities for further research include working with variations of cubical
sets, such as cubical sets with connections (as done by Thiery Coquand), or
Steve Awodey’s cartesian cubical sets. A topic which we would have liked
but were unable to treat adequately is that of weak function extensionality
in the context of path categories, specifically whether this is again in some
way equivalent to function extensionality in the usual sense (as per the result
from homotopy type theory). The author hopes that despite this remaining
host of unanswered questions, his humble work has been a somewhat valuable
contribution to this all.
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