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Chapter 1

Introduction

A colloidal particle moving in a fluid induces a local flow field that affects other particles suspended in the
fluid. These interactions are called hydrodynamic interactions (HI), which are long-range, many-body
interactions [1]. The interactions with the fluid are known to affect the dynamics of soft matter, e.g. they
modify the values of diffusion coefficients [2]. Currently, interest has grown in the study of self-propelling
particles. Many examples of self-propelling particles are known from biology such as sperm cells and
numerous bacteria. Many bacteria self-propel using one or multiple helical flagella [3, 4].

Much has been written on the fluid dynamics of the helical flagellum. Theoretical models have been
employed with the main focus on describing the coupling between the force and torque on a helix and
its resulting motion [5, 6]. It is shown that a torque applied on the helix is converted via hydrodynamic
friction into translational motion along the helix axis and vice versa [7]. Recent developments in micro
swimming robots with applications in located drug delivery in human bodies, have renewed the interest
in flagellum-like devices [8]. The self-propulsion of artificial bacterial flagella could be controlled via a
low-strength rotating magnetic field [8]. The mobility matrix was estimated experimentally under the
light microscope. When the particles were oriented vertically and the magnetic field was switched off,
the flagella fell downward in the water due to gravity while rotating around its long axis.
The interest in the self-propulsion is not only of physical interest. To understand the evolution of bac-
teria and to explain the shape of their helical flagella, the propulsion efficiency of the known shapes was
analysed. The helical shape which is most common in nature, corresponds to the largest efficiency [9].
Since hydrodynamic interactions are long-ranged, many-body interactions, finding a solution is in most
cases only possible if approximations are made. One of the theories developed to include the effect
of hydrodynamic interactions, is slender-body theory. This theory uses the slenderness of the body to
approximate the flow field around the body [6]. A comparison between experiments and slender-body
theory on a rotating helix at low Reynolds number showed agreement [10].
To understand the self-propulsion of bacteria with multiple flagella, the bundling operation of flagella
was already studied in 1976 [11]. Analysis of digital video images of rotating helices shows that the initial
rate of bundling is proportional to the motor frequency, when the torque is applied to the top of two
helices [12]. For two helices driven by constant torque, their terminal beads fixed in space in harmonic
traps, it was numerically shown that their phases synchronise, with a speed decreasing with increasing
trap stiffness [13].

Multiple simulation methods have been developed to approximate the hydrodynamic interactions. In
1911 the Stokes flow generated by a point particle in unbounded space was described by Oseen [14]. This
tensor was used by Kirkwood in 1954 to compute the hydrodynamic interactions of a chain of molecules
[5]. But problems arise when the beads were too close together, the matrix becomes non-positive definite.
This is unphysical, since the positivity of diffusion is imposed by the second law of thermodynamics.
In 1969 Rotne and Prager modified the Oseen tensor to describe finite sized beads for which the tensor
stays positive definite even when the beads overlap [15]. The same expression was obtained by Yamakawa
a year later [16]. Their mobility matrix describing the translational coupling between all the beads is
called the Rotne-Prager-Yamakawa tensor (RPY). This tensor is one of the most commonly used meth-
ods to numerically describe the hydrodynamic interactions between beads. We use a generalisation of
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the Rotne-Prager-Yamakawa tensor derived by Wajnryb et al. [17] in which also the rotational degrees
of freedom are included.

Other methods commonly used are Stokesian Dynamics and lattice-Boltzmann simulations. Stoke-
sian Dynamics (SD) takes into account the lubrication forces, which play a role when the beads are
nearly touching [1]. While both the RPY method as the SD method describe the fluid indirectly, lattice-
Boltzmann simulations calculate the interactions with the fluid explicitly, although in a simplified manner
[18].

As we have discussed above, most research has been done on how an applied torque effects the be-
haviour of the helix. However, in every system, unless the density of the helix is equal to the fluid in
which the particle is suspended, gravity induces a force on the helix. We want to study the effect of
the gravitational force on one and two helices, by studying the sedimentation behaviour. For a single
helix we are interested to find out how the behaviour is influenced by the thickness of the helix. From
bacteria it is known that the helical flagella with which they self-propel, is thin. The ratio between the
helical radius and the diameter of the flagella varies between 1/30 to 1/10 [9, 10]. We are interested to
find out whether this could have an effect on the behaviour. The sedimentation behaviour is investigated
as function of the starting orientation of the helix, and the parameter settings of the helix, such as the
aspect ratio and chirality. For two helices, we are interested in their combined behaviour. We want
to know how the distance and the initial orientation changes their trajectory. Previous studies on two
helices, controlled the distance between them. We are interested to learn what happens if they can freely
move.

We find that a single helix suspended in a fluid under the influence of gravity, describes a helical tra-
jectory while spinning around its long axis. The radius and pitch of the trajectory depend on the
parameter settings of the helix and the initial orientation. They take values between zero, for which
the helix sediments in a straight line, and infinity, for which the helix moves diagonally. The values in
between give a helical trajectory. A helical trajectory was predicted as well by the theoretical approach
of Dr. A. Morozov. However, the comparison between the theoretical calculations and simulation results
shows only limited agreement. It especially fails if the orientation of the helix w.r.t. the xy-plane is var-
ied. Since the comparison with lattice-Boltzmann simulations shows qualitative agreement, this indicates
that the theory needs to be adapted to include the time-dependency of the helical axis w.r.t the xy-plane.

For two helices, we find that independent of the initial orientation or distance, the helices almost align
with gravity and display a circular movement along their trajectory. The initial conditions determine
the trajectory and relative z-position, as well as the relative frequency shift of the two helices.

The outline of this thesis is described below. We will first introduce the relevant parts of the the-
ory of fluid dynamics necessary to study the sedimentation of a helix in low-Reynolds regime in chapter
2. In chapter 3 we will explain the Rotne-Prager-Yamakawa formalism used to model the system. First,
we will explain the theoretical expressions and how these can be applied on a rigid object comprised
of spheres. Then, we will consider the numerical implementation. At the end of the chapter two other
simulation techniques to describe hydrodynamic interactions are briefly explained.
To verify our model, we have compared the sedimentation behaviour of simple rigid bodies to literature.
The parametrisations of these bodies, as well as the helix are described in chapter 4. The second part
of the chapter discusses the theory for the sedimentation. For the simple bodies, a sphere, dumbbell
and L-shape, these are obtained from literature. For the sedimentation of a helix theoretical calculations
performed by Dr. A. Morosov based on slender body theory are introduced. Then, the methods used to
analyse the trajectory are explained. Finally, the de-dimensionalisation of the simulation is given and
the choices for the parameter space are discussed.
Chapter 5 treats the verification of our model. The results for the simple rigid bodies, and the compari-
son to other simulation techniques and literature are discussed.
Chapter 6 is divided into two sections. The first section examines the results for one helix. It includes
a comparison to the theoretical calculations performed by Dr. A. Morozov and lattice-Boltzmann simu-
lation results performed by Dr. J. de Graaf. The second section treats the sedimentation of two helices.
The thesis ends with the conclusion, discussion and outlook.
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Chapter 2

Hydrodynamic Theory

In this chapter we introduce the relevant parts of the theory of fluid dynamics necessary to study the
sedimentation of a helix in low-Reynolds regime.

To fully understand the interactions between the fluid and the colloidal particles, we could investigate
the interactions between all fluid molecules and all colloids. That is, examine the change in direction
and velocity of all particles in the system for all collisions and then find out fully deterministically the
evolution of the system. However, we do not do this, for the following reasons. (i) This would require
an infinite amount of computer time, due to the immense amount of fluid particles. (ii) Our predictions
could not be tested experimentally, due to the small size of fluid molecules. Fortunately, the size of the
fluid molecules is much smaller and their number is much larger than the size and number of the colloids,
that a continuum approximation can be made. That is, the fluid can be described as a continuous phase,
with a density ρ and flow velocity u, on the order of the length scale of the colloidal particles [2]. We
describe this continuum theory next.

Matter cannot be destroyed or created out of nothing. Thus a change in fluid density should be caused
by fluid flow, which is described by the Continuity Equation [2]:

∂ρ(r, t)

∂t
= ∇ · (ρ(r, t)u(r, t)) , (2.1)

in which r is the position, t the time, ρ(r, t) the fluid density and u(r, t) the flow velocity. In the case of
an incompressible fluid (ρ(r, t) ≡ ρ), which water is to a good approximation [19], this equation reduces
to:

∇ · u(r, t) = 0. (2.2)

The colloids and fluid exchange momentum when they interact. If we look at a specific volume, then a
change in fluid momentum is caused either by momentum flowing in or out of the surface, or by forces
acting on the fluid. These forces can be external forces working on the fluid molecules, such as gravity,
or internal forces. The external forces can be described as a change in potential: -∇Φ. For the internal
forces we have to look at the stress tensor σ. Its components σij describe the force per unit area in
direction i through a surface area with normal j. A pressure difference in the fluid creates a net change in
momentum perpendicular to the surface of contact. Shear forces, forces which are parallel to the contact
area, are caused by a velocity difference in the fluid. Friction between two pieces of liquid with different
velocities will cause the slower piece of liquid to gain speed and the faster piece of liquid to lose speed.
Combining this means that the internal force, FH , can be written as [2, 19]:

FH =

∮
∂V

dr2σ · n =

∫
V

dr3∇ · σ, (2.3)

where we used Gauss’ theorem to arrive at the final expression, with V a volume, and ∂V its surface area.
As discussed before σ is a combination of the hydrodynamic pressure and stress caused by friction. For
Newtonian fluids the latter is directly proportional to the gradients of the flow in all directions, ∂ui/∂xj

6



with i, j ∈ x, y, z [20]. For an isotropic, incompressible fluid this results in:

σij = −pδij + η

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.4)

with η the dynamic viscosity (kg m−1s−1). The Navier-Stokes equation for an incompressible, isotropic,
Newtonian fluid is then [2]:

ρm
∂u

∂t
+ ρm(u · ∇)u = −∇p+ η∇2u−∇Φ (2.5)

The Navier-Stokes equation is a non-linear partial differential equation. It is impossible to solve analyti-
cally in general. However, there exist reductions which can be made to make the problem more tractable.
It is useful to examine whether the flow is dominated by inertia or by viscous forces. The ratio of the
inertia and viscous forces is made quantitatively by the Reynolds number [2]:

Re =
u2

L
/
ηu

ρmL2
=
uLρm
η

, (2.6)

in which u is the typical flow velocity, L the length scale of the flow, η the viscosity and ρm the mass
density of the fluid. For colloidal particles in water, L is of the size of the colloids (100 nm), the flow
velocity is the thermal velocity of the colloids and plugging in all numbers results in Re ≈ 10−3.

In the low Reynolds number regime, which we are typically in on the colloidal length scale, the in-
ertia terms in Eq. 2.5 can be ignored. On the time-scale we are interested in, the change in velocity is
instantaneous and the colloidal particles are in equilibrium with the surrounding fluid. Therefore the left
side of Eq. 2.5 can be neglected. This is called the over-damped regime. Together with the Continuity
Equation 2.2 this results in the Stokes equations:

−∇p−∇Φ + η∇2u = 0 (2.7)

∇ · u = 0 (2.8)

The system is now completely defined by its boundary conditions and potential. Typically, a no-slip at
the surface of the particles is imposed, as well as that the flow created by a particle vanishes at infinity.
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Chapter 3

The Rotne-Prager-Yamakawa
Formalism

In our study we want to model the sedimentation of one and two helices. The helix is built up out of
beads of equal radius and distance to calculate the hydrodynamic interactions of a helix with the fluid.
With the Rotne-Prager-Yamakawa tensor the hydrodynamic interactions between all the beads can be
calculated. In this chapter, we explain the RPY formalism. First, we give the solution of the Stokes
equation for a single sphere. Next, we explain how the motion of multiple spheres in a viscous fluid
can be approximated using the RPY formalism. The method is subsequently adapted to be applicable
to rigid bodies made out of beads. Thereafter the numerical implementation is discussed. Finally, we
briefly explain two other hydrodynamic methods, which are used in the verification of the model.

3.1 A Single Sphere in a Fluid

For a single sphere the solution of the Stokes
equations is well known. A force F applied to a
sphere causes a sphere to move at constant velocity
u, which is given by [2]:

u =
1

6πηa
F. (3.1)

A torque T imposed on a sphere induces a constant
angular velocity ω:

ω =
1

8πηa3
T. (3.2)

F

Figure 3.1: Schematic overview of the flow field of a
single sphere which is pulled through a fluid [21]. F
is the force. The small arrows denote the direction
of the flow. The velocity of the sphere is given by
Eq. 3.1.

3.2 Interactions between Several Spheres

To approximate the hydrodynamic interactions between two spheres, the Oseen tensor can be used. This
tensor describes the flow field due to a point source [17]. To find the translational and rotational flow
field generated by a sphere, the Oseen tensor can be integrated over the surface of a sphere. The affect
on the velocity of another sphere can be found using Faxen’s laws [19] which give an expression for
the velocities as function of an external flow. Now a relation is found between the force and torque on
one sphere and the translational and angular velocity of another sphere. This two-body hydrodynamic
interaction tensor is often referred to as the Rotne-Prager tensor.
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Note that the RPY tensor is a far-field approx-
imation, of order 1/r3 with r the characteristic
particle separation. If the spheres are very close,
the approximation breaks down. In reality the sec-
ond sphere also affects the flow field of the first one,
and the analytical expression includes an infinite
number of reflections.

For a collection of spheres, hydrodynamics results
in many-body interactions, a schematic overview
is shown in Fig. 3.2. As a first-order approxima-
tion, the many-body interactions can be replaced
by two-body interactions. These two-body inter-
actions are collected in matrix form: the RPY
tensor. The derivation can be found in [17]. Three-
body interactions and higher are neglected in this
approach, but that does not affect the order of
the approximation, because they only turn up for
higher orders [22].

Figure 3.2: Schematic overview of the flow field of
three spheres moving through a flowfield [21].

If the forces and torques on the beads are known, the translational and angular velocities can be calculated
via: (

Ui

Ωi

)
=

N∑
j=1

[(
µttij µtrij
µrtij µrrij

)
·
(

Fj
Tj

)]
, (3.3)

with Ui, Ωi the translational and angular velocity of bead i, N the number of beads, and µttij , µ
rr
ij , µ

rt
ij , µ

tr
ij

the translational-translational, rotational-rotational, rotational-translational and translational-rotational
mobility matrices defined as [17]:

µttij =


1

8πηRij

[(
1 +

2a2

3R2
ij

)
1+

(
1− 2a2

R2
ij

)
R̂ijR̂ij

]
, Rij > 2a

1

ζtt

[(
1− 9Rij

32a

)
1+

3Rij
32a

R̂ijR̂ij

]
, Rij ≤ 2a

(3.4)

(3.5)

µrrij =


−1

16πηR3
ij

(
1− 3R̂ijR̂ij

)
, Rij > 2a

1

ζrr

[(
1− 27Rij

32a
+

5R3
ij

64a3

)
1+

(
9Rij
32a

−
3R3

ij

64a3

)
R̂ijR̂ij

]
, Rij ≤ 2a

(3.6)

(3.7)

µrtij = [µtrij ]
T =


1

8πηR2
ij

ε · R̂ij , Rij > 2a

1

16πηa2

(
Rij
a
−

3R2
ij

8a2

)
ε · R̂ij , Rij ≤ 2a

(3.8)

with a the radius of the bead, ζtt = 6πηa and ζrr = 8πηa3 the translational and rotational friction
coefficients of a single bead, Rij = Ri−Rj the distance vector between beads i and j, R̂ijR̂ij the outer

product of R̂ij with itself and

ε · R̂ij =

 0 R̂ijz −R̂ijy
−R̂ijz 0 R̂ijx
R̂ijy −R̂ijx 0

 . (3.9)
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3.3 Rigid Objects Comprised of RPY Spheres

For any point RCM on or outside of a rigid body, the relationship between the forces and torques on all
the beads, and the force FCM and torque TCM on that point are given by[23]:

FCM =

N∑
i=1

Fi, (3.10)

TCM =

N∑
i=1

[Ti + (Ri −RCM )× Fi], (3.11)

with Fi,Ti the force and torque on sphere i, respectively and Ti = Ri × Fi the torque on RCM due to
the force on sphere i.

The relation between TCM, FCM and the torques and forces on the individual beads can be described
by a matrix CT :

(
FCM

TCM

)
= CT



F1

...
FN
T1

...
TN


. (3.12)

Using straightforward algebra we find the correct expression for CT :

CT =

(
1 · · · 1 0 · · · 0

W1 · · · WN 1 · · · 1

)
, (3.13)

with 1 the three-dimensional identity matrix, 0 the 3× 3 zero-matrix and Wi defined as:

Wi =

 0 −(Riz −RCMz
) Riy −RCMy

Riz −RCMz 0 −(Rix −RCMx)
−(Riy −RCMy ) Rix −RCMx 0

 . (3.14)

In the same way expressions for the translational and angular velocity can be found:

U1

...
UN

Ω1

...
ΩN


= C

(
UCM

ΩCM

)
. (3.15)

Note that for simplicity we choose RCM to be equal to the center of mass, but this is not necessary, the
method is precisely the same for any fixed point in the rigid body. To find the friction matrix of the
center of mass, ζCM, we rewrite:

(
FCM

TCM

)
= CT



F1

...
FN
T1

...
TN


= CT ζ



U1

...
UN

Ω1

...
ΩN


= CT ζC

(
UCM

ΩCM

)
, (3.16)

so that
ζCM = CT · ζ · C. (3.17)
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The mobility matrix of the center of mass is then µCM = [ζCM]−1, which can be used to find the
translational and angular velocity of the center of mass of the rigid body(

UCM

ΩCM

)
= µCM

(
FCM

TCM

)
. (3.18)

3.3.1 Multiple rigid bodies

In this section, we want to extend the method to multiple rigid bodies. Hence, the grand mobility matrix
of the center of masses has to be found, so that we can find the translational and angular velocities of
the center of masses:

UCM
1
...

UCM
M

ΩCM
1
...

ΩCM
M


=



µ̃tt11 . . . µ̃tt1M µ̃tr11 . . . µ̃tr1M
...

. . .
...

...
. . .

...
µ̃ttM1 . . . µ̃ttMM µ̃trM1 . . . µ̃trMM

µ̃rt11 . . . µ̃rt1M µ̃rr11 . . . µ̃rr1M
...

. . .
...

...
. . .

...
µ̃rtM1 . . . µ̃rtMM µ̃rrM1 . . . µ̃rrMM


·



FCM
1
...

FCM
M

TCM
1
...

TCM
M


, (3.19)

with UCM
i , ΩCM

i , FCM
i , TCM

i the translational and angular velocity of the center of mass and force and
torque on the center of mass of body i respectively. M the number of rigid bodies, and µ̃pqij the mobility
matrix of the center of masses of bodies i and j, p, q ∈ r, t.

To find this mobility matrix we apply almost the same procedure as for one rigid body, only the matrices
C and CT have to be changed to take into account that there are more rigid bodies.

FCM
1
...

FCM
M

TCM
1
...

TCM
M


= CT



F1
1
...

FNBM
T1

1
...

TNB
M


, (3.20)

with CT a 6M × 6N matrix, NB the number of beads per rigid body, Fji and Tj
i the force and torque

on bead j of rigid body i respectively, i = 1, . . . ,M , j = 1, . . . , NB.

CT =



B 0 . . . . . . 0

0 B 0
...

...
. . .

. . .

0 . . . 0 B 0 0

W[1] 0 B

0 W[2] 0
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 W[M ] 0 B


, (3.21)

with B a 3NB×3 matrix B = 1 . . . 1 with 1 the 3×3 identity matrix, W[i] = W
1
i . . .W

NB
i with Wj

i defined
as:

W
j
i =

 0 −(Rjiz −R
CM
iz

) Rjiy −R
CM
iy

Rjiz −R
CM
iz

0 −(Rjix −R
CM
ix

)

−(Rjiy −R
CM
iy

) Rjix −R
CM
ix

0

 . (3.22)

With this matrix the same procedure can be used to find the mobility matrix of the center of masses.
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3.4 Numerical Implementation

In this section the numerical implementation of the RPY-method is described. The focus is on the im-
plementation for a rigid body. In every section, we briefly describe whether and how this is implemented
for independent spheres.

3.4.1 Cholesky decomposition

To invert the 6N × 6N matrices, we use the Armadillo library for C++ [24]. This library makes use of
the LAPACK++ library for decompositions of matrices and BLAS for basic linear algebra operations.
Because the grand mobility matrix is a positive definite symmetric matrix a Cholesky decomposition is
used to find its inverse. Let M be a symmetric, positive definite matrix. Then there is a unique matrix
L such that

LLT = M, (3.23)

which is called a Cholesky decomposition [25]. L is a lower-triangular matrix. To understand how to
find U let us consider one arbitrary element of the (nxn-matrix) M mij . Because M = UUT

mij = (LLT )ij =

k=n∑
k=1

likljk =

min(i,j)∑
k=1

likljk. (3.24)

Since L is a lower-triangular matrix lij = 0 for 1 < i < j < n and M is symmetric, so we can calculate

mij =
i∑

k=1

likljk. Rewriting this inductively results in

lii =

√√√√mii −
i−1∑
k=1

l2ik, (3.25)

lij =

mji −
j−1∑
k=1

likljk

ljj
. (3.26)

Now, L can be inverted using back-substitution. The inverse of M is then found by: M−1 = (LLT )−1 =
(LT )−1L−1 = (L−1)TL−1. For independent spheres there is no matrix inversion. Therefore, the inversion
procedure is not employed for independent spheres.

3.4.2 Integration procedure

With the mobility tensor(s) found for the center of mass(es), we know how to calculate the velocities
and angular velocities of the rigid body, and we want to use this to update its position and orientation.
The simplest method to update its center of mass and the spanning vectors α̂ and β̂ would be to use
the simple Euler method:

RCMn+1
= RCMn

+ undt, (3.27)

α̂n+1 = α̂n + ωn × α̂ndt, (3.28)

β̂n+1 = β̂n + ωn × β̂ndt, (3.29)

with u = ṘCMi
and ωn × α̂n = α̇n, ωn × β̂n = β̇n. But the Euler method is only stable in a small

regime [26]. Therefore, we use a fourth order Runge-Kutta integration scheme, which matches the Taylor
expansion up to fourth order [26]. This method is widely used, because it is numerically more stable
than the Euler method, which is only a first order approximation. It consists of the weighted average of
intermediate Euler steps. To update the spanning vector α̂ at time step n+1, it adds to the vector at time
step n the time derivative of alpha α̇ times the time step multiplied by a weight, for four intermediate
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steps, as is shown in Eq. 3.30.

α̂n+1 = α̂n +
dt

6
(kα̂

1 + 2kα̂
2 + 2kα̂

3 + kα4 ), (3.30)

kα̂
1 = α̇(α̂n, β̂n,RCMn

), (3.31)

kα̂
2 = α̇(α̂n +

dt

2
kα̂1 , β̂n +

dt

2
kβ̂
1 ,RCMn +

dt

2
kRCM
1 ), (3.32)

kα̂
3 = α̇(α̂n +

dt

2
kα̂2 , β̂n +

dt

2
kβ̂
2 ,RCMn

+
dt

2
kRCM
2 ), (3.33)

kα̂
4 = α̇(α̂n + dtkα̂3 , β̂n + dtkβ̂

3 ,RCMn + dtkRCM
3 ). (3.34)

Independent spheres are defined purely on their center of mass, they do not require spanning vectors.
The integration method is thus only dependent on RCM for i ∈ [0, N − 1].

3.5 Other Hydrodynamic Solvers:
Stokesian Dynamics and Lattice Boltzmann

We verify our model by comparing results to two other simulation methods; Stokesian Dynamics and
Lattice-Boltzmann. Accordingly, those two methods are briefly explained in this section.

3.5.1 Stokesian Dynamics

A more accurate method we use to verify some of our results, is Stokesian Dynamics. The method
is quite similar to the Rotne-Prager-Yamakawa method, but it does not truncate the interactions to
the two-body coupling between force-torque and translational-angular velocity, instead it also takes into
account the stresslet and strain interactions. This results in an approximation which is of order 1/r6 [22]: U

Ω
E∞

 = M∞

F
T
S

 , (3.35)

with U,Ω the translational and rotational velocity vector of all beads, E∞ the strain in far-field, F,T,S
the force, torque and stress vector respectively, M∞ the grand mobility matrix, where the∞ sign denotes
that it is a far-field approximation. The grand mobility matrix is inverted to find the grand resistance
matrix R. To this matrix the exact resistance matrix of two spheres at close proximity, R2B is added,
and the approximated resistance matrix R2B,∞ = [M2B,∞]−1 is subtracted:

R = [M∞]−1 + R2B − R2B,∞. (3.36)

In this way the method accounts for lubrication forces, which are important when two spheres are nearly
touching.

3.5.2 Lattice-Boltzmann simulations

The lattice-Boltzmann method explicitly includes the solvent, although at a simplified level. It deter-
mines the fluid flow without directly solving the Stokes equation. The LB method can be combined with
molecular dynamics simulations to model the behaviour of colloids in a viscous fluid.

The LB method numerically solves the Boltzmann transport equation [18]:

∂tf(r,v, t) + v · ∇f(r,v, t) = C(f(r,v, t). (3.37)

This is a time-dependent differential equation for the phase-space probability distribution function
f(r,v, t), with r the position, v the velocity and t the time. The redistribution of the probability
distribution due to particle collisions is modelled by a collision operator C. In the LB-method this
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equation is discretised. The position of the particles is restricted to a lattice. The velocity is restricted
to values which ensure that within one time-step the particles can only move to their neighbouring lat-
tice points. The fluid velocity can then be extracted from the found discrete probability distribution [18].

The method used by Fischer et al. [18] to achieve colloid-fluid coupling is by introducing a friction
force Fd, which depends on the velocity difference between a colloidal bead and the fluid, scaled by the
bare friction coefficient ζ0:

Fd = −ζ0(up − uf (rp), (3.38)

with up, rp the particle’s velocity and position and uf the fluid velocity. Trilinear interpolation is used
on the position of the particle to the lattice, because the liquid is only defined on lattice points. An
opposite force is applied on the fluid, to conserve momentum.
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Chapter 4

Models

The sedimentation behaviour of a helix is the main interest of this thesis. To verify our model, we first
investigate simpler rigid bodies, for which we can compare the results with literature. The first section
of this chapter introduces the parametrisations of the rigid bodies that we examine: a dumbbell, an
L-shape, and a helix. In the second section literature results are introduced for the sedimentation of a
dumbbell and L-shaped particle. For helices, we introduce the theoretical expressions based on slender
body theory, derived by Dr. A. Morozov, to which we compare our results in Chapter 6. The last section
treats the way we analyse the trajectories obtained by the sedimentation of one and two helices and the
relevant parameter settings.

4.1 Parametrisations

Figure 4.1: Example of the parametrisation of an
arbitrary rigid body. The fixed point RCM is chosen
to be in the center. The three green arrows denote
the body axes: α̂ corresponds to the long axis of the
body, β̂ and α̂× β̂ to the short axes. θ denotes the
angle between α̂ and the xy-plane.

In this section, we give the parametrisations of
the investigated rigid bodies. For all shapes, we
first choose a fixed point RCM and define a co-
moving frame by the axis spanning the body. Let
the unit vector α̂ correspond with the long axis
of the body and β̂ perpendicular to α̂ with the
short axis. The third spanning vector is defined
by the cross product α̂ × β̂. Let θ be the an-
gle between α̂ and the xy-plane. Then we define
α̂ = (0, cos θ, sin θ), β̂ = (0,− sin θ, cos θ). An ex-
ample is shown in Fig. 4.1. The axes are fixed
to the body, so when the body rotates, the axes
will change accordingly. How their direction is up-
dated, is described in Subsection 3.4.2.

4.1.1 Dumbbell

A dumbbell consists of two spheres with radii a1
and a2 at a fixed distance r. In our simulations the
two spheres have the same radius a, the distance
between the centres is set such that the beads
are touching r = 2.006a to be comparable to the
dumbbell studied in [18]. The two sphere centres
Rj of the dumbbell are then positioned at:

Rj = RCM + (j − 1

2
)rα̂ (4.1)

with j ∈ {0, 1} the number of the bead and α̂ = ŷ,
initially.
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Figure 4.2: Schematic representations of the L-shaped particle. (a) A geometric representation in two
dimensions. h is the height, l is the bottom length and w is the width of the shape. (b) A two-dimensional
representation of the L-shaped particle for four beads. The beads are shown as red circles, the spanning
vectors α̂ and β̂ are shown in green, θ denotes the angle the long axes makes with the y-axis. (c) A
three-dimensional representation for 32 beads. The beads are shown as red spheres and the spanning
vectors α̂, β̂ and α̂× β̂ are shown in green.

4.1.2 L-Shape

First we model the L-shaped particle as a rigid body consisting of 4 beads. We have chosen this number
of beads, to have comparable dimensions to the particle used in literature. One of the beads is chosen as
fixed point RCM. Note that it is not the center of mass, but that this is not a problem as our method of
simulating rigid bodies is applicable to any fixed point that connects the beads spanning the object. We
set the radius, a, of each of the spheres equal to 1 and the distance between the centres of neighbouring
beads r is chosen to be 2.01a:

R0(r) = RCM + rβ̂,

R1(r) = RCM,

R2(r) = RCM + rα̂,

R3(r) = RCM + 2rα̂,

(4.2)

A schematic representation of the model of the L-shape is shown in Fig. 4.2b. We want to investigate
whether the number of beads influences the result. Therefore, we also consider a model where the number
of beads is 32. For the L-shaped particle consisting of 32 beads, every bead is replaced by a block of 8
beads, compared to the schematic with 4 beads. The first four beads form a square spanned by α̂ and
β̂. The last four beads are a copy of this square in the direction perpendicular to the plane α̂× β̂:

R0
i = Ri(4.02a), R4

i = R0
i + 2.01α̂× β̂,

R1
i = R0

i + 2.01α̂, R5
i = R1

i + 2.01α̂× β̂,

R2
i = R0

i + 2.01(α̂+ β̂), R6
i = R2

i + 2.01α̂× β̂,

R3
i = R0

i + 2.01β̂, R7
i = R3

i + 2.01α̂× β̂,

(4.3)

with Ri(4.02a) defined as before, i = 0, 1, 2, 3.

4.1.3 Helix

A helix can be parametrized by its radius r, number of windings w and pitch λ:

r cosφβ̂ + r sinφα̂× β̂ +
λ

2π
φα̂ φ ∈ [−πw, πw], (4.4)

where α̂ and β̂ are the long and short axis of the helix. The sign of λ determines the chirality of the
helix: where λ > 0 is a right-handed helix (counter-clockwise rotation), and λ < 0 is a left-handed helix

(clockwise-rotation). A schematic representation is shown in Fig. 4.3, where α̂ and β̂ denote the long
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Figure 4.3: Schematic representation of a helix. The main axes of the helix are denoted α̂ and β̂, θ is
the angle between the long axis of the helix and the xy-plane, r the radius and λ the pitch. The number
of windings shown here is 3.

and short axis of the helix. θ is defined as the angle between the xy-plane and α̂. From the figure you
already can see that the fixed point RCM, which is the origin of α̂ and β̂, lays outside the helix.

Using the parametrisation of the helix, the position of the beads can be found by:

Rj = RCM + ξ1j α̂+ ξ2j β̂ + ξ3j α̂× β̂, (4.5)

ξ1j =
λ

2π

(
2πj

m
− π

m
(N − 1)

)
, (4.6)

ξ2j = r cos

[
2πj

m

]
, (4.7)

ξ3j = r sin

[
2πj

m

]
, (4.8)

(4.9)

with r the radius of the helix, λ the pitch, j ∈ [0, N − 1] the bead number, m the number of beads per
winding and N the total number of beads.

4.2 Theory for the Sedimentation

For the dumbbell and the L-shape the expected results based on simulations and experiment are pre-
sented. Theoretical calculations by dr. A. Morozov on a sedimenting helix are introduced and the
predicted sedimentation behaviour is discussed.
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Method µtt‖ /µ
tt
0 µtt⊥/µ

tt
0 µrr‖ /µ

rr
0 µrr⊥ /µ

rr
0

Raspberry, filled[18] 0.77± 0.01 0.69± 0.01 0.55± 0.01 0.27± 0.01
HYDRO++[27] 0.77± 0.01 0.70± 0.01 0.55± 0.01 0.27± 0.01

Table 4.1: Coefficients of the mobility matrix of a dumbbell taken from [18]. (author?) [18] compare the
results of their Raspberry model and the HYDRO++ program [27]. µtt and µrr are the translational-
translational and the rotational-rotational mobility matrices. ⊥ and ‖ denote that the component of the
mobility matrix is perpendicular or parallel, respectively, to the long axis of the dumbbell. The results
are non-dimensionalised by dividing the components by their corresponding terms for a sphere with the
same radius as one of the lobes, µ0.

4.2.1 Mobility Tensor for a dumbbell

For a dumbbell which has its long axis along ŷ the mobility tensor is given by:

µ =



µtt⊥ 0 0 0 0 0
0 µtt‖ 0 0 0 0

0 0 µtt⊥ 0 0 0
0 0 0 µrr⊥ 0 0
0 0 0 0 µrr‖ 0

0 0 0 0 0 µrr⊥

 . (4.10)

In this equation, µtt and µrr are the translational-translational and rotational-rotational mobility matri-
ces. ⊥ and ‖ denote that the component of the mobility matrix is perpendicular or parallel, respectively,
to the long axis of the dumbbell. All the cross-coupling terms are zero due to symmetry [18]. We want to
compare our method to results obtained by (author?) [18]. They used a Raspberry model to calculate
these coefficients and compared these with results obtained using the HYDRO++ program [27]. The
Raspberry model dumbbell in their method is built up from smaller spheres with radius a. The effective
radius of one of the bigger spheres is 3.5a and the distance between the two centres is 7a. They calculated
the coefficients for a dumbbell both for which its volume is completely filled with small spheres as well as
for which only its surface is covered. We will compare our results to the filled dumbbell, since this gives
the best correspondence to the HYDRO++ simulations, as discussed in [18]. The mobility coefficients
are non-dimensionalised by dividing them by the translational and rotational mobility matrix for a single
sphere of radius 3a. Their results are shown in Table 4.1.

4.2.2 Sedimentation of an L-Shape

We compare the terminal angle θf under which the L-shaped particle sediments without self-propulsion
with results obtained by (author?) [28]. They experimentally and theoretically studied the behaviour of
an sedimenting L-shape for different self-propulsion strengths. The self-propulsion was tuned by a thin
gold coating (Au) on the front side of the short arm. When a laser illuminates the particle, this leads to
local heating and a local demixing of a sub-critical lutadine suspension, which drives the particle forward.
The motion of the particle was restricted to two spatial dimensions by the height of the sample cell. The
gravitational strength was tuned by fixing the sample cell at an angle relative to the horizontal plane.
They used an L-shaped particle with height h = 9µm, width w = 3µm, length l = 6µm. The dimensions
are defined in Fig. 4.2a. The thickness of the particle is equal to the width. Without self-propulsion,
they found that the L-shape sediments under a final angle θf = 56◦, which is the value to which we
compare. No difference in the sedimentation angle was observed for particles without a coating, implying
that the weight asymmetry due to the gold coating did not effect the sedimentation behaviour. We can
therefore safely assume homogeneous mass distribution in our comparison..

4.2.3 Theoretical Calculations for a Helix

To predict the sedimentation behaviour of a helix Dr. A. Morozov of Edinburgh University performed
theoretical calculations. He used slender-body theory to find an expression for the translational and
angular velocity of the helix, which can be used to find the position of the center of mass as a function of
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the time. Here, we briefly describe the method and the assumptions made, and give the expressions found.

Figure 4.4: Schematic representation of slender body theory applied to a helix. The red helix is divided
into small sphero-cylinders, of which one is shown and augmented at the right. The hydrodynamic force
FH is decomposed into components parallel, FH‖ , and perpendicular, FH⊥ , to the helix. The gravitational
force Fg is directed along −ẑ.

The helix is divided into pieces of unit length, which can be seen as small sphero-cylinders. In slender
body theory the assumption is made that L� D with L the length of the segment and D the diameter.
On every piece the force due to hydrodynamic interactions must be equal to the gravitational force. This
hydrodynamic force is decomposed into components parallel and perpendicular to the helical segment,
with corresponding friction coefficients K‖ and K⊥:

dF = −
(
K‖(u · t)t +K⊥(u− (u · t)t)

)
ds (4.11)

with u the velocity of the helix, t the tangent vector of the helical segment and ds the segment length.
A schematical representation of the forces on the helical segment is shown in Fig. 4.4.

Define γ = K⊥/K‖, the ratio of the perpendicular and parallel friction coefficients. The friction co-
efficients are related to the diffusion coefficients via K‖,⊥ = kBT/D‖,⊥ [29]. We use the analytical
expressions for the parallel and perpendicular diffusion coefficient of a sphero-cylinder[30, 31]. In the
limit of p = L/D →∞ γ then becomes:

γ = lim
p→∞

2
log p− 0.207 + 0.980/p− 0.133/p2

log p+ 0.839 + 0.185/p+ 0.233/p2
(4.12)

= 2. (4.13)

The gravitational force induces no torque, but the hydrodynamic force does, which results in an angular
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velocity. To simplify the derived expressions let us first introduce some parameters:

χ = tan−1
(

2πr

λ

)
, (4.14)

c0 = γ cos2(χ) + sin2(χ), (4.15)

P = Mg
ρhelix − ρliquid

ρhelix
, (4.16)

Φ =
2π

λ

cosχ

K‖L(c0 + γ)
P, (4.17)

K =
γ − 1

2
(

1
4 tan2(χ) ((γ − 1) cos2(χ) + 2γ)− (γ−1)2 sin4(χ)

8(γ+c0)
+ 1

6 (π2w2) (γ + c0)− c0

) , (4.18)

M =
6(γ − 1) sin2(χ)

γ
(

2
cos2(χ) − 7

)
− 9((γ−1)2 sin4(χ))

2(γ+c0)
+ 2

3π
2w2(γ + c0) + 5c0

, (4.19)

in which L is the length of the helix, g the gravitational constant and ρhelix, ρliquid the mass density of
the helix and the liquid, respectively. χ is the angle between the tangent to the helix and the z-axis of
the helix, it describes the ratio between the radius and pitch of the helix. 1 ≤ c0 ≤ is a friction parameter
which takes the aspect ratio of the helix into account. In the limit that χ→ 0, the helix approaches a rod
and c0 → 2. If χ→ π/2, the helix resembles a ring and c0 → 1 . P is related to the gravitational force and
Φ is an inverse time scale parameter. M and K are dimensionless numbers describing the rate of rota-
tion around the x- and y-axis, respectively, in the body frame independent of the orientation of the helix.

For simplicity the inverse time scale parameter is set to 1, Φ = 1 . Because the fluctuation in θ is
very small, θ ≈ θ0, the initial angle. With that assumption the theory predicts the center of mass of the
helix to perform a helical motion with radius R, frequency Ω and pitch length Λ around the z-axis in
the lab frame:

R =
3λ

4πM

(
(c0 + γ)

γ + 1 + (γ − 1) cos(2χ)

4γ
− 1

)
sin(2θ0), (4.20)

Ω =
2

3
MΦ (4.21)

Λ =
3λ

2M

[
2 cos2 θ0 + (c0 + γ)

γ + 1 + (γ − 1) cos 2χ

2γ
sin2 θ0

]
, (4.22)

with θ0 defined as before. The helix will rotate very fast around its long axis with frequency

ωs =
Φ

γ
(γ − 1)(c0 + γ) cos2(χ) sin(θ0). (4.23)

The long axis itself will keep its original angle and precess around with frequency 2/3MΦ. A schematic
representation is shown in Fig. 4.5.
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Figure 4.5: Schematic representation of the sedimentation behaviour of a helix. (a) The helix (red)
rotates with frequency ωs around its long axis α̂ (green). (b) The sedimentation trajectory of the center
of mass is shown in purple. The theory predicts the helix to sediment in a helical trajectory with radius
R, pitch Λ and angular velocity Ω. For two different times, the helix and α̂ are shown. The long axis α̂
will precess, so that that the angle with the trajectory is constant. This can be seen clearly from above,
shown in (c).
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4.3 Sedimentation Trajectory Analysis

This section treats the parametrisation of the sedimentation behaviour of a helix, based on the theoretical
prediction. Subsequently, the investigated helix parameters are presented. The approaches to quantify
the influence of these parameters are explained. Finally, the characteristic units are introduced and the
explored parameter space is discussed.

4.3.1 Analysis

Single helix

The theory predicts that the trajectory of the center of mass of the helix can be described as a helix
with radius R, pitch Λ, and angular velocity Ω around the z-axis. The sign of Λ determines whether
the helical trajectory is clockwise (Λ > 0), or anti-clockwise (Λ < 0). The different forms of rotation of
the helix are shown in Fig. 4.6. The helix will rotate around its long axis with frequency ωs, and α̂ will
precess around the z-axis with frequency ωp = Ω. The theory assumes that θ = θ0. We will investigate
the deviation of θ from its original value θ0. A small periodic fluctuation in θ, is called nutation. The
frequency of this nutation is defined as ωn, the amplitude of the deviation by ∆θ. The deviation of the
center of mass from the pure helical trajectory, we describe as well by a radius Rd and angular frequency
Ωd.

We analyse how the above defined properties depend on:

• Bead separation δ: The distance between the beads influences the RPY matrix, as can be seen in
Eq. 3.4. To investigate how slight changes in the distance affect the behaviour of the helix, we
want to vary the relative distance δ/d. Therefore, we alter the number of beads per winding, while
keeping all other parameters fixed at r/d = 2, λ/d = 4π, θ0 = 0.3π,w = 3.

• The ratio r/d, which we henceforward refer to as the ‘inverse thickness’ of the helix (note that in
the theoretical model the thickness is in principle vanishing). The effect of the ratio between the
radius of the helix and the diameter of the bead, r/d, is studied. The range of 1 ≤ r/a ≤ 10 is
examined, while keeping the ratio λ/r = 1.5π fixed, for a helix with w = 3 and θ0 = 0.3π. We
vary r/d by changing the bead diameter d and the number of beads N . This causes δ/d to vary
between 1.205− 1.38.

• The starting orientation θ0: The theory predicts that the behaviour depends on θ0. We examine
θ0 ∈ [−0.5π, 0.5π]. For all staring orientations, α̂ and β̂ are initially in the yz-plane, α̂ × β̂ =
(1, 0, 0).

• The aspect ratio wλ/2r: the number of windings w, radius r and pitch λ, or the aspect ratio wλ/2r

• The chirality of the helix: λ > 0 for a right-handed helix, and λ < 0 for a left-handed helix.

The coordinates of the center of mass and the components of the spanning vectors α̂ and β̂ are saved
every 150 time steps as well as the angular and translational velocity of the center of mass. The simula-
tions have run for 3 · 106 cycles, unless specified differently.

The following Mathematica 10 routines are used to determine the radii and angular frequencies. Two
different approaches are used:

(i) FindPeaks is used to find the maxima and minima of the dataset, see Fig. 4.7a. The amplitude
or radius R′ of a (co)sine is 0.5(maximum − minimum). The period T ′ is the time between two
maxima, which determines the angular frequency by Ω′ = 2π/T ′. To compare the fit to the
dataset, we also need to know the shift in position (dx) and frequency (φ′). The positional shift
dx = 0.5(maximum + minimum). Finally, φ′ can be found using the Mathematica routine FindFit
applied to the function R′ cos(Ω′t+ φ′) + dx.
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Figure 4.6: In (a), Ω is the angular velocity of the center of mass of the helix, the purple circle is the
trajectory of the center of mass in the xy-plane. The x- and y-component of the long axis of the helix,
α̂ are predicted to change with the same frequency as the helical trajectory to keep the angle with the
trajectory in the xy-plane fixed. This is called precession. The behaviour of α̂ is clarified in (b). The
spinning of the helix around its own long axis α̂ with spinning frequency ωs is displayed in (c). (d) The
angle of the long axis with the xy-plane is defined as θ. (e) A periodic deviation of θ around an average
value is called nutation. Here the average value is shown in light green, two deviating values in darker
green.

(ii) NonlinearModelFit, see Fig. 4.7b, is used for the functions R′ cos(Ω′t+φ′)+dx, R′ sin(Ω′t+φ′)+dy
with φ′ the phase shift, and dx, dy the shift in x and y, respectively. Initial guesses for the different
parameters are made by eye, in order to ensure convergence of the algorithm.

The resulting function is plotted, to determine whether it resembles the data points. The choice which
of the methods is used, is based on which method is applicable and leads to the correct results.
All the methods are applied on either the x-coordinate as a function of time, or the y-coordinate as a
function of time. Except when we indicate otherwise.
Rd and Ωd are determined by applying method (i) on the first 200 data points regarding the x-

coordinates of the center of mass. For the helical trajectory, method (i) is used on the x-coordinates, if
the number of windings regarding the trajectory is larger than 4. The data set is adapted to account
for the periodic deviation: only the data points separated by n time steps are taken into consideration,
where n is based on Ωd. The values are checked by applying method (ii). For smaller winding numbers
only method (ii) is applied. Because for most parameters Rd/R� 0.05, the error in method (ii) due to
the periodic deviation can be neglected.

To determine ωs, method (i) is applied to the dataset of the x-coordinate of the short axis β̂x. To
find the frequency of the precession ωp, first all the maxima and minima of α̂x are determined, see Fig.
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Figure 4.7: Example of the fitting methods. The figures show the x-coordinate x/d of the center of mass
of a helix as a function of time t/τ . The simulation data is shown in purple, the fitted function in green.
(a) Method (i) is applied to a helix with parameter settings N = 37, w = 3, r/d = 1.5, λ/d = 4π,
θ0 = 0.25π. (b) Method (ii) is applied to a helix with settings N = 52, w = 3, r/d = 2, λ/d = 4π,
θ0 = 0.3π. The fits correspond well with the datapoints. A small error can be seen in the value for φ for
method (i).

4.8 for an example. The spinning frequency is much higher than the precession frequency, consequently
those peaks are completely determined by the spinning frequency. The sine corresponding to the pre-
cession determines the mean of α̂x as a function of time. Therefore every maximum is averaged with
its left neighbouring minimum, to generate the mean as a function of time. Accordingly method (ii) is
applied on this new dataset to find ωp.
The nutation frequency ωn is acquired by applying method (i) to the dataset of α̂z. The mean of α̂z

is calculated, to find the angle around which α̂ nutates by θ = arcsin α̂z. We use the same equation on
the maximum and minimum of α̂z for the amplitude of the deviation δθ.
The velocity vz is used to calculate the pitch length Λ = vzT = vz2π/Ω. vz is found by fitting a linear

function a+ bt to the z-coordinate as function of time, in which b = vz, see Fig. 4.9 for an example. The
Mathematica 10 routine FindFit is used for this procedure.
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Figure 4.8: Example of a dataset of α̂x and its mean as function of time. The x-coordinate of the long
axis of the helix α̂ is displayed as function of time. The purple points display all the datapoints. The
mean of a maximum and the next minimum as a function of time are displayed in green. The mean
values are used to calculate the precession frequency.

Two helices

We briefly studied the sedimentation behaviour of two helices. We qualitatively investigated their tra-
jectory as a function of the initial distance between the two helices, ∆0. We wanted to examine the effect
of the orientation of the helices, in a controlled manner. Therefore the initial angle θ0 is equal for both
helices and the two extremal values are considered: θ0 = 0 for horizontally aligned helices, and θ0 = π/2
for vertically aligned helices. An example of two horizontally aligned helices is shown in Fig. 4.10a. For
the vertically oriented helices, we also investigated how the trajectory depends on the chirality q of the
helices.
Let the centre of helix 1, R1

CM, be positioned in the origin. For θ0 = 0, the centre of helix 2 is placed
at R2

CM = ∆0x̂, with ∆0/d = 6, 8, 10, with d the bead diameter. The chiralities of the helices, q1, q2, are
equal: q1 = q2 = 1. For θ0 = π/2, the centre of helix 2 is placed at R2

CM = ∆0ŷ, with ∆0/d = 5, 6, 8, 10
and q1 = q2 = 1. Then, for ∆0/d = 6, we investigated the possible chirality configurations: q1 = ±q2,
q2 = ±1, see Fig. 4.10b.

To analyse the behaviour of the two helices, we qualitatively investigate the trajectory of the center
of mass of the system of two helices RCM = 0.5(R1

CM + R2
CM). We study the distance between the two

helices ∆/2d as a function of time as well as the relative distance in z between the two helices. The

orientation of α̂ for both helices and the relative phase shift in β̂, δφ, are also considered. Method (ii)

of fitting is applied to the dataset of β̂x for both helices. The relative phase shift is δφ = |φ1 − φ2|.

4.4 Parameter settings

In the simulations the characteristic units are such that the bead diameter d = 1, the gravitational force
applied to the center of mass of the helix FCM = −40ẑ and the viscosity η = 1. This means that the
distance is measured in units of d, force in units of f0 = 1/|FCM, torque in units of f0d, velocity in f0/ηd,
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Figure 4.9: Example of a dataset and fit to find vz. The z-coordinate of the center of mass is plotted as
a function of time t/τ . The data is shown in purple, the fitted function z(t/τ) = −0.4455t/τ in green.
As can be seen, the fitted function describes the data well.

angular velocity in f0/ηd
2 and time in τ = ηd2/f0.

The choices for the investigated parameters are listed below:

• The gravitational force is set to 40f0 = FCM. Because a gravitational force on a rigid body induces
no torque, we can set the torque on the center of mass to zero.

• The bead separation δ/d is altered between 1.1 and 2. The RPY-method breaks down at small
bead separations, because it does not include the lubrication forces. On the other hand, the bead
model needs to resemble a solid body, so the distances cannot be too large.

• The range of 2 ≤ r/a ≤ 20 is examined, while keeping the ratio λ/r = 1.5π fixed.

• We chose parameters such that 0� χ� π/2, in order for the helix not to be too rod- or ring-like,
namely: r/d is varied between 1 and 3 and λ/d between 1.2π and 8π.

• The number of windings w is varied between 1 and 7. The computation time increases as a power
of the number of beads. Every winding is composed of at least 9 beads. The expectation is that
when the number of windings is sufficiently large, adding a winding will not have a large impact.
Therefore a balance between computation time and exemplary helical behaviour has to be found.
We have chosen to run most simulations for w = 3, to reduce the overall computation time and
allow for exploration of the maximal amount of parameter space.

• The range of the starting orientation θ0 is [−0.5π, 1.35π].

For a helix with parameter settings r = 3, λ = 3, w = 4 the results are compared to Lattice-Boltzmann
simulations done by Dr. J. de Graaf, using the ESPResSo software package [32]. The helix is build up
out of 200 beads, which have a diameter σ ≈ 1.2 lattice spacing. In the LB simulation the gravitational
force FCM = −0.1ẑ, the viscosity η = 1 and the time step dt = 0.01. The starting angles investigated are
θ0 = 1.15π, 1.25π, 1.35π. The time for the results of the LB simulations is scaled to allow for comparison.
The time is measured in units of τ = ηd2/f0: A factor of 1/40 is obtained by the difference in gravitational
force, another factor of 1/1.22 by the difference in bead diameter. Thus, the resulting time scaling factor
is 1/40 × 1/1.22 = 1/57.6. For the RPY method distances are measured in units of the bead diameter,
while for the LB method distances are measured in lattice spacings. To equalise the units, the results
for the LB simulations are scaled with a factor of 1/1.2, since the bead diameter of the LB method was
approximately 1.2.
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(a) (b)

Figure 4.10: Schematic representation of the orientation of two helices. (a) Two horizontally aligned
helices. The distance between the two helices is ∆0 is directed along the x-axis. The helices are parallel
along the y-axis. They have the same chirality q = 1. (b) Two vertically aligned helices with opposite
chirality. The left helix has chirality q1 = 1, the right helix q2 = −1.
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Chapter 5

Verification

This chapter discusses the simulation results of the simple bodies (sphere, dumbbell, L-shape) used to
verify our model. The first section treats the sedimentation of a single bead sphere, which we studied
to test the basic implementation. The implementation of the RPY method for multiple spheres is tested
in the next section. The results are compared to results obtained by Stokesian dynamics. Then, in the
third section, the coefficients of the mobility matrix of a dumbbell are investigated. Finally, the model
is tested for an L-shaped particle.

5.1 Single bead

The sedimentation of a single bead is investigated. A bead can be described by the position of its
center RCM and its radius a. When it sediments in a fluid, it should move in a straight line without
accelerating. The velocity should only have a z-component, v = 0, 0, vz, with vz = Fz/(6πηa) according
to Stokes-Einstein theory [2], with η the viscosity and where we assume that the sign is absorbed in
the gravitational force Fz, see Chapter 3. We test this for a sphere with bead radius a = 1, and
gravitational force Fz = −40ηd2/τ , with d the bead diameter and τ our time-scale parameter. We
found that the velocity of the bead indeed only had a z-component. The value of vzτ/d was found
by dividing the difference between the final z-coordinate, zf , and the initial z-component, z0, by the
time past t/τ : vzτ/d = (zf/d − z0/d)/tτ = −4.24412. We compare this to the theoretical expression
vzτ/d = Fz/(6πηa)τ/d which is Fz/(6πηa)τ/d = −40/3π = −4.24413. The theoretical value and the
simulation value are in agreement up to order 10−4. Therefore, we conclude that the method is correctly
implemented for one sedimenting bead.

5.2 Two beads

To test whether the RPY matrix was implemented correctly, we simulated two sedimenting spheres and
compared the results to Stokesian Dynamics (SD) simulations. The SD simulations were made using the
Mathematica notebooks developed by Dr. H. Binous [33], based on Fortran 77 codes made by Prof. R. J.
Philips and Dr. H. Binous [33]. For the RPY method, we used two modelling methods. We modelled the
spheres as independent spheres and as two rigid bodies, see Chapter 3 for an explanation of the methods.
The first RPY modelling method is used to verify whether the RPY method leads to the correct physical
results by comparing to the SD simulation results. The second RPY modelling method is used to verify
that the procedure for calculating the RPY-matrix for multiple rigid bodies is implemented correctly. If
this is implemented correctly, the results should be the same.

We set the radius of the beads to be a = 1. Bead 1 is placed in the origin, bead 2 at (0,∆0 cos θ,∆0 sin θ),
with ∆0 the initial distance between the beads and θ the angle between the line connecting the centres of
the beads and the y-axis. For ∆0/a = 4, θ = π/6, the comparison between the results for the trajectory
of two sedimenting spheres obtained by the RPY method and the SD method is shown in Fig. 5.1a. The
behaviour is similar for both methods: the beads sediment diagonally in the direction of the bead which
has the smallest z-component. However the angle between the trajectory of the beads and the z-axis, φ,
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Figure 5.1: Comparison between the results obtained with the RPY method and the SD method for the
sedimentation of two spheres. (a) The yz-trajectory of the two spheres at an initial distance ∆0/a = 4,
and angle θ = π/6 is shown. The trajectories for the RPY method are displayed in red, the SD method
in green. The beads move diagonally. (b) The relative angle between the trajectories obtained by the
RPY and the SD method, ∆φ/φ, is plotted as a function of the distance between the two spheres, ∆0/a.
The difference ∆φ/φ between the two trajectories exponentially decays with the distance. In far-field
both methods agree.

is smaller for the SD method, than for the RPY method. We have plotted the relative difference in the
trajectory angle, ∆φ/φ, as a function of the initial distance ∆0/d, see Fig. 5.1b. The difference is small
for ∆0/a = 4, namely ∆φ/φ = 0.005, and decreases exponentially with ∆0/a. Thus, in the far-field the
results for both methods are the same, in the near-field there is a small deviation. This is precisely what
we expected, because the RPY method does not take into account lubrication forces, which play a role
when the beads are in close proximity to one another.

To test whether we had implemented the procedure to calculate the RPY matrix for multiple rigid bodies
correctly, we did the simulations for the same parameter settings, now including the coupling as described
in Chapter 3. The results agreed up to numerical precision. Thus, we can conclude that the matrix to
calculate the hydrodynamic interactions between multiple rigid bodies is implemented correctly.

5.3 Dumbbell

In the previous section, we have seen that at small distances, where lubrication forces start to play a
role, the error in the results for the RPY method increases. To test how this error affects the behaviour
of a rigid body, we study the coefficients of the mobility matrix for a dumbbell shaped particle. These
coefficients describe the couplings between translations and rotations. The coefficients of the mobility
matrix of a dumbbell are compared to the values obtained by Fischer et al. [18]. In our simulations the
two spheres have the same radius a, the distance r between the centres is set such that the beads are
touching r = 2.006a. The results are shown in Table 5.1.

The translational-translational and the rotational-rotational mobility matrices are indicated with µtt

and µrr respectively. The components of the mobility matrix parallel to the long axis of the dumbbell is
denoted by ‖ and the component perpendicular to the long axis by ⊥.

The cross-coupling terms of the mobility matrix are all zero or < 10−16, thus within numerical ac-
curacy equal to zero, which is what we expected. The values for µtt⊥, µ

rr
‖ and µrr⊥ agree within the error.

For the RPY method µtt‖ is higher than the values obtained by the other methods. The error is 5% of the
literature value. A disagreement between the components is in line with our expectations, as we have
already seen that for two spheres, a slight difference in sedimentation angle could be observed. However,
it is remarkable that the other components are in good agreement. We conclude that the agreement is
good enough to trust the validity of the results obtained by the RPY method.
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Method µtt‖ /µ
tt
0 µtt⊥/µ

tt
0 µrr‖ /µ

rr
0 µrr⊥ /µ

rr
0

Raspberry, filled[18] 0.77± 0.01 0.69± 0.01 0.55± 0.01 0.27± 0.01
HYDRO++[27] 0.77± 0.01 0.70± 0.01 0.55± 0.01 0.27± 0.01

RPY 0.81 0.70 0.56 0.27

Table 5.1: Comparison between the coefficients of the mobility matrix of a dumbbell obtained by the
RPY method, the Raspberry model [18] and HYDRO++ model [27]. µtt and µrr are the translational-
translational and rotational-rotational mobility matrices. ⊥ and ‖ denote that the component of the
mobility matrix is perpendicular or parallel, respectively, to the long axis of the dumbbell. The results
are non-dimensionalised by dividing the components by their corresponding terms for a sphere with the
same radius as one of the lobes, µ0. The values for µtt⊥, µ

rr
‖ and µrr⊥ agree within the error. For the RPY

method µtt‖ is slightly higher than the values obtained by the other methods.

5.4 L-shaped particle

As a final test we study the final angle under which an L-shaped particle sediments. The starting angle
θ0 is varied between 0 and π/2. The L-shape was modelled for four beads and for 32 beads, as described
in subsection 4.1.2. The results are compared to the value experimentally obtained by Hagen et al. [28].
The results can be found in Table 5.2. The terminal angle θf under which the L-shape sediments is
the same for every starting angle θ0 varying between 0 and π/2, but depends slightly on the number of
particles. The final angle under which the L-shape sediments is 0.6◦ higher than the experimental value

Method Angle θf
RPY NB=4 56.6◦

RPY NB=32 54.6◦

Experimental by [28] 56◦

Table 5.2: Comparison of the terminal angle θf of a sedimenting L-shaped particle between simulation
results and experimental results. For the RPY method the L-Shape was modelled using NB beads, with
NB = 4, 32. The experimental value was obtained by [28].

of [28] for NB = 4 and 1.4◦ lower for NB = 32. A possible explanation for the differences could be the
roughness of the modelled shape, which influences the flow around the particle. Since the deviation in
the terminal angle is small, we conclude that the RPY method for rigid bodies built up out of beads
leads to satisfying physical results.
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Chapter 6

Results

In this chapter we treat the results for the sedimentation of one and two helices. The results for a single
helix are introduced and discussed in the first section. To verify the results, they are also compared to
theory and results obtained from lattice-Boltzmann simulations. The second section introduces several
results for the sedimentation of two helices.

6.1 Single Helix

This section treats the sedimentation of a single helix. In the first subsection we investigate the influence
of the distance between the beads, by which we approximate the helix, on the results. In the following
subsections we study the influence of the thickness, starting orientation, chirality, and aspect ratio on the
sedimentation behaviour. Finally, to verify the results, we compare these to the theoretical expressions
derived by Dr. A. Morozov and lattice-Boltzmann simulation results performed by Dr. J. de Graaf.

6.1.1 Distance between beads

Here, the distance, δ, between the beads by which we approximate the helix is studied. Specifically, we
investigate the change in the helix’ trajectory, which itself is helical. To tune δ, we have varied the num-
ber of beads N between 37 and 52 for a helix with parameter settings r = 2, λ = 4π,w = 3, θ0 = 0.3π.
Figure 6.1b shows the radius of the helical movement, R, and the pitch length, Λ, as a function of the
bead distance δ/d, with d the bead diameter. R and Λ increase with increasing bead distance. The data
show convergence of the result for both parameters when δ/d→ 1, although the helix is still not smooth.

In Fig. 6.1c the deviation of the angle θ from its original value is shown as a function of the bead
distance. θ is the angle that the long axis α̂ of the helix makes with the xy-plane. We have plotted
the average orientation angle, 〈θ〉t, and the maximum and minimum orientation angle, Max[θ],Min[θ].
These values are constant for δ/d < 1.38. The difference between the extrema and the average angle is
the nutation amplitude. A schematic picture is shown in Fig. ??, where the long axis is displayed for
three different angles θ. The amplitude and average of θ do not change for δ/d < 1.38, thus the nutation
is not influenced by differences in bead distance, which indicates that the nutation is not caused by the
irregularities of the helix.

Note, that these data are obtained for specific parameter settings for the helix, it is possible that the
results differ for other settings, but as long as the separation is kept small, δ/d ≈ 1, this should not
be an issue. The RPY-method is actually a far-field approximation. This means that while the result
converges for small bead separations, the quality of the RPY approximation breaks down. However, the
comparison of the results for the dumbbell and the L-shape in Chapter 5 showed good agreement for a
bead distance ≈ 1.005d. In the light of the above, a bead distance of 1.01 ≤ δ/d ≤ 1.1 is preferable.
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Figure 6.1: Change of the trajectory as a function of the relative distance between the beads. The bead
distance δ/d is modified by varying the number of beads N between 37− 52 while the other parameters
determining the helix are kept constant. (a) The trajectory radius R and (b) the trajectory pitch Λ are
displayed as a function of the bead distance δ/d. Convergence is observed for both parameters when
δ/d → 1. Visualisations of the helix are displayed below the horizontal axis for the corresponding bead
distances. (c) The average orientation angle, 〈θ〉t, and the maximum and minimum orientation angle,
Max[θ],Min[θ] are plotted as function of δ/d. These measure the orientation of the helix’ long axis w.r.t.
the xy-plane. For comparison also the starting orientation θ0 is displayed. The values are constant
for δ/d < 1.38, for δ/d = 1.38, 〈θ〉t decreases, and the nutation amplitude, the difference between the
extrema and the average angle, increases. (d) A schematic picture of the long axis of the helix α̂ for
different values of θ. The helix has parameter settings r = 2, λ = 4π,w = 3, θ0 = 0.3π.

6.1.2 Thickness

The thickness of the helix, described by the inverse thickness parameter r/d, is studied, by considering
the change in helical trajectory and nutation. The range of 1 ≤ r/d ≤ 10 is examined, while keeping the
ratio λ/r = 1.5π fixed for a helix with w = 3 and θ0 = 0.3π. We vary r/d by changing the bead diameter
d and the number of beads N , whereas r is kept fixed.

The results for the behaviour of the center of mass, as well as the effect on the nutation are shown
in Fig. 6.2. Three different regimes can be distinguished from the results for the trajectory radius R and
pitch Λ. For very thick helices, r/d < 1.45, there is no helical trajectory: R = Λ = 0. The helix orients
itself with the long axis α̂ in the xy-plane and drops straight down. Then for 1.45 < r/d ≤ 2.15, R and
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Λ strongly increase with r/d. The handedness of the helical trajectory is equal to the handedness of the
helix. For r/d = 2.5 the trend is broken and the handedness of the helical trajectory has changed sign.
For r/d > 2.5, R and Λ slightly decrease as a function of r/d. However, the error in the analysis is larger
for the thin helices, because less of the trajectory was completed. Thus, more and longer measurements
are needed to determine the trend for thin helices.

To check that differences in bead distance did not influence the observed behaviour, we have run two
simulations with different N for some values of r/d. Although the difference in δ/d leads to quantitative
changes, the overall trend (i.e., the qualitative result) is the same.

These results indicate that the sedimentation behaviour is strongly dependent on the thickness of the
helix. We suspect this to be a physical property of the system, and not a flaw in our model. When the
thickness decreases the friction of the helix will reduce significantly. The ratio between the perpendicular
and parallel friction coefficients is much smaller for thick helices then for thin helices.

In Fig. 6.2c, the change in the angle θ — which measures the orientation of the helix’ long axis w.r.t.
the xy-plane — from its original value is shown as a function of r/d. The maximum, minimum and
average value of θ are presented, just as the initial angle. The average orientation angle, 〈θ〉t, is lower
than the starting orientation, θ0, and the difference is larger if the helix is thicker. However, if we ignore
the thickest regime, where the helices just sediment down, 〈θ〉t follows a smooth curve. The difference in
nutation could be caused by the roughness of the helix. But we have seen in Subsection 6.1.1 that the
nutation does not change if the bead distance δ/d is sufficiently small: δ/d < 1.38. Therefore, we think
it is more likely that the nutation is caused by the physics of the system. The friction with the fluid is
stronger for thick helices.

Although the thin helices are less dependent on the precise values of r/d and the theoretical approach
was based on infinitely thin helices, they also require more beads. Since the computation time scales
with N2.5, the number of beads we can use is limited. Therefore, we decide to examine mainly the regime
of thick helices, r/d ≤ 2.
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Figure 6.2: The sedimentation behaviour as function of the thickness of the helix. The thickness r/d is
varied while keeping the other parameters fixed; λ/r = 3/2π,w = 3, θ0 = 0.25π. (a) The radius of the
trajectory R and (b) its pitch Λ are shown as function of r/d. The horizontal axis has a logarithmic
scale, to visualise that their behaviour can be divided into three regimes. Below the horizontal axis the
helices with corresponding thickness are shown. For r/d < 1.45, R = 0,Λ = 0, which means that the
helix drops straight down. Then both parameters steeply increase for 1.45 < r/d ≤ 2.15 until r/d ≈ 2.15.
Finally, for r/d ≥ 2.55, their values gradually decrease. (c) The fluctuation of the angle θ is shown as
function of r/d. The starting angle θ0 is shown in blue, the time-average of the angle, 〈θ〉t in green, the
maximum angle in the simulation, Max[θ], in red and the minimum, Min[θ], in pink. The deviation from
the starting angle θ0 is higher for lower values of r/d, thus for thicker helices. The values for r/d < 1.45
are obtained after their initialisation period, so when the helices have started falling straight down.
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6.1.3 Starting Orientation

We investigate the influence of the starting orientation on the behaviour of the helix. For a number of
positive and negative values of θ0 we compare the radius R and the pitch Λ of the helical movement.
The parameter settings used in this subsection are r/d = 2, λ/d = 3π, w = 3, N = 37.

The difference for positive and negative values in θ0 is shown in Table 6.1. The radius R, the pitch
Λ and the handedness of the helical trajectory are equal. The center of the helical trajectory MP is
mirrored in the xy-plane. The trajectories for θ0 = ±0.3π are visualised in Fig. 6.3. It can be seen that
the behaviour is the same, but that the starting point in the trajectory is shifted over half a period. This
causes the centres MP± to be mirrored in the xy-plane, and is simply an effect of the geometry of the
helix. For opposing signs in the starting orientation, α̂ is mirrored in the y-axis, and β̂ is mirrored in
the z-axis, which results in a helix which is rotated 180◦ degrees in the xy-plane, as is visualised in Fig.
6.4. Since the direction of gravity is along ẑ, we study the same physical, but rotated, system.

θ0=-0.3π

θ0=0.3π

Figure 6.3: Comparison between the two trajectories of single sedimenting helix. The red trajectory is
for θ0 = −0.3π, θ0 = 0.3π is displayed in green. The starting point of the trajectory is rotated over 180◦.

(a) xz-view

(b) yz-view

Figure 6.4: The orientation of a single helix with opposing signs for the starting orientation. For θ0 = 0.4π
the helix is shown in red, the green helix has θ0 = −0.4π. The helix is rotated 180◦ degrees around ẑ for
the different starting orientations.

The starting orientation is varied between a horizontally oriented helix (θ0 = 0) and vertical helix
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|θ0| R+/d R−/d Λ+/d Λ−/d MP+/d MP−/d
0.1π 0 0 - - (1.14899,−6.25893) (−1.14899, 6.25893)
0.25π 355.46 355.46 491.45 491.45 (−350.1, 55.76) (350.1,−55.76)
0.3π 1050.58 1050.58 1365.81 1365.81 (−1034.2, 181.60) (1034.2,−181.60)
0.4π ∞ ∞ ∞ ∞ (−0.14144,−0.43861)t/τ (0.14144, 0.43861)t/τ
0.5π 1113 1113 6323 6323 (0,−1114.5) (0, 1114.5)

Table 6.1: The trajectory parameters for different starting orientations. Values for positive (+) and
negative (−) θ0 are compared. MP denotes the center of the helical trajectory in the xy-plane. The
radius R and the pitch Λ of the helical trajectory do not depend on the sign of θ0, but MP does. The
center of the trajectory is rotated 180◦ in the xy-plane for opposing signs.
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Figure 6.5: The behaviour of the helix as function of the starting orientation. (a) The trajectory
radius R and (b) pitch Λ are shown as a function of the starting orientation angle θ0. For θ0 ≤ 0.2π,
R = Λ = 0, then both increase until θ0 = 0.4π where R = Λ =∞ (c) The ratio of the angular velocities
of the precession of the helix, ωp, and the helical trajectory, Ω, are plotted as a function of the starting
orientation θ0. Within the error bars ωp/Ω = 1, thus those angular velocities are equal.

(θ = 0.5π). The results are shown in Figure 6.5. In Figs. 6.5a, 6.5b the radius R and the pitch Λ of the
trajectory are plotted as a function of θ0. For 0 ≤ θ0 ≤ 0.2π the helix orients itself horizontally. Then
the center of mass moves parallel to gravity, while the helix rotates in the xy-plane, see Fig. 6.6a. For
0.25π ≤ θ0 < 0.4π the helix rotates clockwise around the z-axis, while sedimenting, see Fig. 6.6b. The
radius and pitch of the trajectory increase with θ0. At θ0 = 0.4π, R→∞,Λ→∞; thus the helix moves
in a diagonal path, as shown in Fig. 6.6d. This marks a transition point, since the direction of rotation
changes and the radius and pitch decrease for increasing θ0. The trajectory shown in Fig. 6.6c shows
an example of this behaviour. Note, however, that we have chosen to show the trajectory obtained with
other parameter settings, w = 4, θ0 = 0.25π for clarity reasons.

We have studied the ratio of the precession frequency, ωp, of the long axis of the helix. and the an-
gular velocity of the center of mass, Ω. The results are shown in Fig. 6.5c. Within the error bars,

36



ωp/Ω = 1, thus the frequencies are equal. This means that the angle of the long axis with the trajectory
is fixed. Because the inertia terms are neglected, this is necessary to describe a circular path. The
behaviour of the axis of the helices is further investigated in Fig. 6.7. The amplitude of the nutation,
∆θ, and the ratio of the spinning frequency, ωs, and nutation frequency, ωn, are plotted as a function
of θ0 in Fig. 6.7a. The amplitude of nutation decreases for increasing θ0. The ratio ωs/ωn ≈ 1. Thus,
the frequency of the nutation is equal to the spinning frequency of the helix around its long axis, which
means that they induce each other. All rotations and horizontal translations are induced by hydrody-
namic friction. The nutation and spinning are caused by the same effect. If one of the axis of the helix
changes, the flow field around the helix changes and therefore the other axis will change as well. For
|θ0| < 0.2π, β̂ = (0, 0, 1), no nutation is observed. The amplitude ∆θ decreases, when β̂ aligns more
perpendicular to gravity. Nutation will induce spinning and vice-versa.

(a) θ0 = 0.1π, w = 3 (b) θ0 = 0.25π, w = 3

(c) θ0 = 0.25π, w = 4 (d) θ0 = 0.4π, w = 3

Figure 6.6: The trajectory of the center of mass for a sedimenting helix. The figures show the four
observed trajectory styles. The parameter settings are r/d = 2, λ/d = 3π. (a) The helix orients itself
horizontally and then drops down vertically. The helix rotates (b) clockwise, (c) anti-clockwise respec-
tively around the z-axis while moving downwards describing a helical trajectory. For clarity, we have
chosen to a higher winding number for (d). (d) The center of mass moves diagonally.

We have seen that the orientation of the helix around its long axis influences the flow field of the helix.
It would therefore be interesting to investigate whether an initial rotation around the long axis would
change the sedimentation behaviour.

6.1.4 Chirality

The difference in behaviour of a right- and left-handed helix, (λ > 0 and λ < 0, respectively) is in-
vestigated. The starting orientation is varied for a helix with parameter setting r/d = 2, w = 3 and
λ/d = ±3π. The gravitational force is equal for all simulations. The results are shown in Table 6.2. The
radius of the trajectory and the nutation amplitude ∆θ are the same for both chiralities. The angular
velocities of the precession and the spinning have opposing signs for the different chiralities. The absolute
values are the same. Thus, the chirality only regulates the direction of motion. This is precisely what
you would expect on the basis of geometry.
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Figure 6.7: The behaviour of the spanning axis of the helix as function of the starting orientation. (a)
The amplitude of the nutation ∆θ is plotted as function of the starting orientation angle θ0. ∆θ decreases
for increasing θ0. (b) The ratio of the spinning frequency and nutation frequency, ωs/ωn, is plotted as a
function of the starting orientation. The ratio is for every angle ≈ 1, which means that the frequency of
the nutation of the long axis and spinning of the helix around its long axis are equal.

R/d ωpτ ωsτ ∆θ
PPPPPPPPθ0

λ/3πd −1 +1 −1 +1 −1 +1 −1 +1

0.2π 0 0 -0.0127 0.0127 0 0 0 0
0.3π 1050 1050 0.00066 -0.00066 0.177 -0.177 0.114 0.114
0.4π ∞ ∞ 0 0 0.231 -0.231 0.104 0.104
0.5π 1113.5 1113.5 -0.00013 0.00013 0.247 -0.247 0.102 0.102

Table 6.2: Influence of the chirality on distinctive parameters. The sign of λ defines the chirality, ωp is
the angular precession velocity of α̂ around ẑ, ωs the angular spinning velocity and ∆θ the amplitude
of nutation. The magnitudes of the parameters does not depend on the chirality, but the sign of the
angular velocities are a function of the sign of λ. Thus, the chirality regulates the direction of motion.

6.1.5 Aspect ratio

We study the influence of the aspect ratio of the helix on the sedimentation trajectory. First by changing
the aspect ratio of the winding itself, while keeping the number of windings fixed. Then, by changing
the number of windings, whilst keeping the radius r and the pitch length λ of the helix fixed.

Pitch length

For r/d < 4 the radius r of the helix influences the results significantly given a fixed pitch-radius ratio
λ/r, as shown in subsection 6.1.2. Therefore, we kept the radius r fixed, while varying λ/d between
1.2π and 8π to tune the aspect ratio described by the angle χ = arctan 2πr/λ. The results for r/d =
3, w = 4, θ0 = 0.25π are shown in Fig. 6.8. The radius R and the pitch Λ of the trajectory decrease for
increasing values of χ. Thus, a helix with a larger pitch describes a larger helical trajectory. A simple
explanation could be that when the pitch length increases, the resemblance of the helix tends to look
like a rod for which the sedimentation behaviour is a straight diagonal line.

Winding number

Another way to change the aspect ratio of the helix, is to change the number of windings. The parameter
settings used are r = 2, λ = 3π, θ0 = 0.25π, the number of beads per winding is 12 except for w = 6,
there the number is 11. The influence of the number of windings on the trajectory radius R and pitch
Λ as well as the nutation is shown in Fig. 6.9. For w = 1, 2 there is no helical trajectory. The helix
orients its long axis horizontal and sediments vertically. For more winding numbers, a helical trajectory
is observed. However, from the graphs it is not clear how the trajectory depends on the number of
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Figure 6.8: The sedimentation behaviour as function of the angle χ. χ = arctan 2πr/λ and indicates the
aspect ratio of the winding of the helix. The corresponding helices are visualised below the horizontal
axis. (a) The trajectory radius R and (b) pitch Λ are plotted as function of χ. R increases with increasing
χ, while Λ < 0 decreases. Thus, a helix with a larger pitch length will have a larger helical trajectory.
The helix has parameter settings r = 3, w = 4, θ0 = 0.25π, λ > 0 was varied to tune χ.

windings. The handedness of the trajectory even changes sign when w increases from 3 to 4. We would
have expected both the radius and the pitch to increase with the winding number, since there is more
friction, when the number of windings is increased.

In Fig. 6.9c the average orientation angle, 〈θ〉t and the maximum and minimum angle are plotted
as a function of the number of windings. The difference between 〈θ〉t and θ0 decreases for larger values
of w, just as the difference between the extrema and the average, which defined the amplitude of the
nutation. That the amplitude of the nutation decreases, could have been expected. We have seen in
subsection 6.1.3 that the nutation is related to the spinning of the helix along its long axis. For an infinite
number of windings, no nutation would be expected, because every rotation of the helix around its long
axis would lead to the same physical situation. Therefore no nutation can occur. Thus, increasing the
number of windings, decreases the hydrodynamic effect of a change in β̂.

The plots for R and Λ show that their values change, but how they depend on w is not clear from
the figures. More measurements are needed, preferably for thinner helices, to draw conclusions on the
effect of the winding number on the sedimentation radius and pitch. However, we can conclude that the
long axis of the helix has a more stable angle with the z-axis for larger winding numbers.
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Figure 6.9: The effect of the number of windings on the sedimentation behaviour. (a) The radius R and
(b) the pitch Λ are plotted as a function of the winding number w. R first increases until w = 4, then
drops and increases again for w = 7. Λ changes sign at w = 4, thus the direction of the helical trajectory
changes. (c) The maximum, Max[θ], minimum, Min[θ], and average orientation angle 〈θ〉t are plotted as
a function of w. The starting orientation θ0 is indicated in blue. The deviation in θ decreases when the
number of windings increases. The parameter settings used are r = 2, λ = 3π, θ0 = 0.25π
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Figure 6.10: The trajectory pitch length Λ as function of the thickness. (a) The theoretically calculated Λ
is shown as function of the aspect ratio L/D, with L the length and D the diameter of the rod, which are
used to theoretically model the helix. Lower values of L/D correspond to thicker helices. (b) The pitch
length Λ obtained with the RPY method as function of the ratio r/d. The results display comparable
behaviour as function of the thickness. The helix has parameter settings λ/r = 1.5π,w = 3, θ0 = 0.25π.

6.1.6 Comparison to theory

Now that we have fully described the results of our RPY simulation model, let us make the connection
with the theoretical predictions by Dr. Morozov.

Thickness

Let us first consider the thickness of the helix. In the previous section we have seen that the simulation
results indicate that this has a significant influence on the sedimentation behaviour. Recall the theoretical
expressions from Chapter 4. R, Λ and Ω depend on γ, the ratio of the perpendicular and parallel friction
coefficients. In the theoretical approximation it was assumed that the helix can be divided into small,
thin, sphero-cylinders. The limit of the aspect ratio L/D, with L the length and D the diameter of
the sphero-cylinder, was taken to infinity, and therefore γ → 2. This approximation clearly does not
hold for thick helices. When L/D decreases, γ will become smaller. We have shown the theoretical
predicted behaviour of the trajectory pitch length Λ as function of the aspect ratio L/D in Fig. 6.10.
For L/D < 0.9, Λ steeply increases with L/D and then changes sign for L/D > 0.91 where it behaves
more gradually. This behaviour is similar to the simulation results as function of r/d, see Fig. 6.10b.
But more simulation data are needed to draw definite conclusions on the quantitative behaviour of the
helix as function of the thickness.
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Starting Orientation

The theory predicts that the radius of the helical movement is zero for an initially horizontally and an
initially vertically oriented helix, and maximum for a helix initially oriented at 45 degrees. The theory
also predicts that the pitch Λ will increase with θ0 and is maximal in θ0 = 0.5π. In our simulations we
have seen that this is not the case for a helix with r = 2, λ = 3π,w = 3. Namely, we found that R and
Λ asymptotically increase when the starting orientation θ0 → 0.4π. The comparison can be seen in Fig.
6.11. The results are completely different, and we will discuss the possible sources next.

In our thickness measurements we have seen that the handedness of the helix changes when the thickness
r/d changes from 2 to 2.5. We have seen that the deviation from the original orientation angle, θ0, is
larger for thicker helices. In the theory it is assumed that θ is fixed at its starting value. For the RPY
results, this approximation does not hold. The fluctuation in θ has a significant effect on the behaviour.
Because the nutation decreases for thinner helices, it could be interesting to compare the theory for
different starting orientations with RPY simulation results for r/d = 10.
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Figure 6.11: Comparison between the theoretical predicted dependency on the starting orientation and
the results obtained by the RPY method. (a) The trajectory radius R and (b) the pitch Λ are plotted
as function of θ0. The theoretical calculated results are shown in blue, the results obtained by the RPY
method in red. The theoretically calculated R is 0 when the helix is horizontally or vertically oriented
and maximal for θ0 = 0.25 and is symmetric in this value. The theoretical Λ grows with θ0. The
results are not comparable to the results obtained with the RPY method. Calculations were made for
r = 2, λ = 3π,w = 3.

Pitch length

The pitch length λ is varied between 1.2π − 8π for a helix with r = 3, w = 4, θ0 = 0.25π, to compare R
and Λ with the results obtained by the RPY method. Note that we did these measurements in the regime
where the helix is already thin r/d > 2.5. The results are shown in Fig. 6.12. R and Λ are displayed for
different values of the angle χ = arctan 2πr/λ. χ describes the aspect ratio of a helical winding. The axis
are scaled to compare both methods. Our results from the RPY-method show qualitatively comparable
behaviour to the theory for χ < 1.1. R decreases and Λ < 0 increases for increasing χ. This means that
a helix with a smaller pitch length indeed has a smaller helical trajectory.

However, for χ > 1.1 the theory still predicts a helical trajectory. The radius of this path will be
small. With our RPY-method, we find that for χ = 1.4 the helix will rotate to a horizontal position and
then will sediment in a straight line. This, again, could be caused by the fluctuation in θ, which will allow
the helix to rotate to its preferred orientation, which is not included in the theoretical approximation.

Winding number

The theory predicts that when the number of windings is increased, R and Λ grow, see Fig. 6.13. This
means that when a helix has more windings, it will have a larger helical trajectory. This is expected,
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Figure 6.12: Comparison of the results between the theoretical and RPY method for varying χ. The
angle χ = arctan 2πr/λ and indicates the aspect ratio of the helical winding. The simulation results are
shown in red, the calculated results in blue. (a) The radius R and (b) the pitch Λ are plotted as function
of χ. R decreases until χ ≈ 1.1 and stays small for larger χ. Λ decreases smoothly with χ. The results
show a similar trend, except for χ = 0.45π, where no helical trajectory occurs for the RPY method. The
parameter settings of the helix were r/d = 3, w = 4, θ0 = 0.25π, λ was varied to tune χ.

since there is more friction with the fluid when the number of windings increases. We have seen that
the RPY method shows no helical trajectory for w = 1, 2. For larger w a helical trajectory is found,
with R increasing for w = 3, 4 and then an unclear (fluctuating) trend for greater w, see Fig. 6.13.
Between w = 3 and w = 4 Λ even changes sign. Therefore the results are difficult to compare. For the
RPY-method more measurements are needed for R and Λ, to draw any definite conclusions, preferably
for higher r/d .
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Figure 6.13: The theoretical predicted dependency on the number of windings of the helix. (a) The
trajectory radius R and (b) the pitch Λ are plotted as function of the number of windings w. Both
increases with w. Thus a helix with more windings has a larger helical trajectory.

Since our results deviate for a number of parameter settings from the theoretically calculated behaviour,
we also want to compare them with another method. Modification of the theory to include a fluctuating
θ should also be considered for future investigation.

6.1.7 Comparison to Lattice-Boltzman Simulations

In the previous section, we found that there was only limited agreement between our RPY results and
the theoretical predictions based on the model by Dr. Morozov. Therefore, we compared to another
simulation technique, namely lattice-Boltzmann (LB), in order to validate our method.

For a helix with radius r = 3, pitch λ = 1 and 4 windings, the trajectory of the center of mass ob-
tained from the RPY method is compared with results from an LB simulation. The trajectory of the
center of mass is shown in Fig. 6.14. The movement of the helix initially has x-, y- and z-components,
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Figure 6.14: The center of mass trajectory of a helix with r = 3, λ = 1, 4 windings obtained from an LB
simulation. After an initial period in which the velocity of has an x, y, and z component, the movement
of the helix transitions into a vertical sedimentation.

but eventually transitions into a vertical sedimentation. The initial path is compared for both methods.

The x- and y-coordinate as a function of time are shown in Figs. 6.15a, 6.15b. The time of the LB
simulations is scaled with a factor 1/57.6 to allow for comparison. This factor consists of two contribu-
tions: A factor of approximately 1/40 was expected because of the difference in force on the helix and
the difference in time step for both methods. An extra factor of approximately 1.22 is obtained from the
difference in bead size. A time-independent plot is shown in Fig. 6.15c.

The trajectories agree qualitatively, but difficulties in parameter matching (such as the bead diameter),
prevented us from obtaining a quantitative match. The trend for the different starting angles is the same.
Through this comparison, we are confident that the RPY-method predicts the right physical trends.
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Figure 6.15: Comparison between the trajectories obtained using the RPY and LB method for various
starting angles θ0. Diagrams for the center of mass of a helix with r = 3, λ = 1, w = 4 for the LB
method (bright coloured, dotted lines) and RPY method (darker coloured, joined lines). We plot the
x-component as a function of time in (a) and the y-component in (b). Time was scaled differently for
the LB and RPY methods to facilitate comparison, see the text for an explanation. In (c) the trajectory
is plotted in the xy-plane, which is independent of the time. The behaviour agrees qualitatively.
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6.2 Two helices

Now that we have described the behaviour of a single helix and have convinced ourselves of the quality
of our RPY method, let us turn our attention to the interaction between two helices. The helices have
the following parameter settings: r/d = 2, λ1/d = λ2 = 3π, w = 2, with λ1, λ2 the pitch of helix 1 and
helix 2 respectively. The initial angle θ0 is equal for both helices. We have considered θ0 = 0, π/2. The
initial distance, ∆0, between the two centres of the helices is varied. ∆0/d ∈ {5, 6, 8, 10}, with d the bead
diameter. For θ0 = 0, the distance is in the x-direction, for θ0 = 0.5π, the distance is in the y-direction.
For θ0 = 0.5π, ∆0/d = 6, we have investigated how the trajectory depends on the chiralities of the two
helices, the sign of λ1 and lambda2.

6.2.1 Vertically oriented helices

In Fig. 6.16 we have shown the trajectory of two initially vertically oriented helices, θ0 = 0.5π. Their
initial distance is ∆0/d = 10. At t = 0, helix 1 is placed in the origin and helix 2 at (0, 10, 0). The
trajectories of the two helices in the xy-plane are almost overlapping, see Fig. 6.16a. In the xy-plane
the trajectory of both helices is approximately equal. Note that their initial y-component is different,
but that it is hardly visible, because of the length scale of the trajectory. From Fig. 6.16b we conclude
that the distance between the two helices increases as function of time.
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Figure 6.16: Trajectory of two initially vertically oriented helices. The trajectory of the two helices is
shown in (a) the xy-plane and (b) the xz-plane. At t = 0, helix 1 is placed in the origin and helix 2 at
(0, 10, 0). In the xy-plane the trajectory of both helices is approximately equal. Note that their initial
y-component is different, but that it is hardly visible, because of the length scale of the trajectory. In
the xz-plane the distance between the two helices increases as function of time. Their initial distance
was ∆0/d = 10.

Before we study how the trajectory changes as a function of ∆0, let us take a closer look at the trajectory
of one of the helices. In Fig. 6.17, the initial trajectory of the first helix is displayed in the xy-plane
and the xz-plane. In the xy-plane a clear periodic movement is observed while the x- and y-component
increase as time processes. For the trajectory in the xz-plane the z−component decreases as a function
of time and the x-component displays a periodic movement while x increases in time. Thus, the helix
describes a rotational motion in the xy-plane while translating in the three dimensions. Let us define
the radius of this periodic movement R and the angular velocity Ω. This periodic movement is difficult
to see in Fig. 6.16, because the radius is small compared to the length of the entire trajectory.

Note that there are a couple of data points in both plots near the origin, which seem to be random
points. These points are the coordinates in the first t/τ = 60 time steps. To explain this behaviour
we have shown the orientation angle θ for the first 225τ time steps in Fig. 6.18a. The helix is initially
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Figure 6.17: Trajectory of one of the sedimenting helices for ∆0/d = 10, θ0 = 0.5π. The initial trajectory
of the helix is shown in (a) the xy-plane and (b) the xz-plane. At t = 0 the helix is oriented in the origin.
In the xy-plane a clear periodic movement is observed while the x- and y-component increase as time
processes. For the trajectory in the xz-plane the z−component decreases as a function of time while the
x-component displays a periodic movement while x increases in time.

oriented at θ0 = 0.5π. Within t/τ = 75, θ decays to approximately −0.5π. From tτ = 75, θ = −1.518
and the long axis nutates around this value. The amplitude of the nutation decreases with time, which
is shown in Fig. 6.18b. Thus, the long axis of the helix rotates to align with gravity and for the rest of
the trajectory the helix nutates around this value.

In section 6.1 we have seen that the nutation and spinning of the helix have the same frequency. We are
interested to see whether that equality still holds. Method (ii) of the analysis is used on the dataset of

β̂x and α̂z to determine the spinning and nutation frequency, respectively. We found that ωnτ = ωsτ =
−0.02564± 0.00001 for both helices. Thus, the nutation and spinning of the helix have indeed the same
frequency. We also compare this frequency to the angular celocity of the trajectory, Ω. Ω is found by
applying method (i) of the analysis on the dataset of the x-coordinate of both helices. We found that
Ωτ = ωnτ = −0.02564±0.00001. Thus, the angular velocity of the helical trajectory equals the spinning
and nutation frequency. This behaviour is different from the behaviour of a single helix.

Initial distance

We have discussed the sedimentation behaviour of two initially vertically oriented helices at a distance
of ∆0 = 10. Now we want to investigate how the trajectory changes when the initial distance is changed.

In Fig. 6.19a the trajectories of the center of mass of the system for different ∆0 are plotted in the
xy-plane. It can be seen that the initial trajectory is different: the rotation of the center of mass in the
xy-plane depends on ∆0. For t >> 0 the curvature of the trajectories seems to be comparable. In Fig.
6.19b we have zoomed in on the first 60τ time steps. The initial velocity is very high and the center
of mass changes direction discontinuously. Then the behaviour smooths. The changes in direction are
caused by a rotation of the long axis of the helices which align with gravity. To investigate the initial
trajectory more precisely, the simulation results for the time steps in between should be considered.

For different values of the initial distance ∆0, we have plotted the distance between a helix and the center
of mass of the system as a function of time in Fig. 6.20. The distance increases with time. Initially the
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Figure 6.18: The orientation angle θ as function of time. (a) θ is shown for the first t/τ = 225. Within
t/τ = 60, θ decays from θ0 = 0.5π to θ ≈ −0.5π. The helix orients its long axis parallel to the direction
of gravity. (b) θ is shown as a function of time to indicate the amplitude of the nutation. The amplitude
decreases with time.

change is very steep, but for t/τ > 1 × 105 the distance increases approximately linear with time. The
trend is the same for all initial distances, but the quantitative values are slightly different. However, the
dependency is not linear; the blue line displays the maximal distance, which corresponds to ∆0/d = 10,
but the minimal line (purple) corresponds to ∆0/d = 8. Therefore, we cannot conclude how the distance
depends on the initial distance.

In Fig. 6.16b we could see that there was a difference in z-component between the two helices. We
have plotted the difference (z1−z2)/d as function of time for the different initial distances ∆0/d, see Fig.
6.21. At first the sign and value of the difference in z-coordinate fluctuate as time develops. But then
the difference tends to an average value around which it fluctuates. The average value depends on the
initial distance. For increasing ∆0/d, (z1 − z2)/d increases, then drops for ∆0/d = 10. Therefore more
measurements are needed to conclude on the trend of (z1− z2)/d as function of the initial distance. The
average values lay between 6.5 − 9.5 which is interesting if we compare this to the length of the helix:
L = w ∗ λ = 6π ≈ 18.8. The difference in z-component is between 1/3L and 1/2L.
We have investigated the frequency of the spinning, nutation and helical trajectory and found for all
starting distances the same value, within the error: Ωτ = ωsτ = ωnτ = −0.02564 ± 0.0001. Note that
the angular velocity depends on the gravitational force, which was kept constant in these simulations.

Chirality

For ∆0/d = 6 we have investigated the influence of the chirality of the helices on the trajectory, which
are defined by the signs of the pitches: λ1 and λ2. The trajectories of the center of mass are shown in
Fig. 6.22. The direction of the trajectory depends on the chirality of helix 2, λ2: For λ2 > 0 the center
of mass moves in the positive x-direction, for λ2 < 0 in the negative x-direction. The sign of λ1λ2 deter-
mines the curvature of the trajectory. For λ1λ2 > 0 the center starts with a rotation of approximately
360◦ in the xy-plane, and after this rotation the path is curved. For λ1λ2 < 0 the center initially rotates
approximately 180◦ and moves in a straight line afterwards.

The distance ∆/2d shows the same path as function of t/τ for all chirality combinations. Thus the
distance does not depend on the chirality. However, the relative distance in z-component does depend
on the chirality. For λ1λ2 > 0, t/τ >> 1, (z1 − z2)/d fluctuates between 9 and 9.1, for q1 = q2 = −1,
between 8.8 and 8.9.

We have investigated the angular velocity of the trajectory. Ω changes sign if the chirality changes,
and so do the spinning and nutation of the helix. This agrees with the results of section 6.1, in which
we concluded that the chirality determines the direction of the rotation.
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Figure 6.19: The sedimentation behaviour of two initially vertically oriented helices as function of their
initial distance ∆0/d. (a) The trajectory of the center of mass in the xy-plane is shown for different initial
distances ∆0. The initial trajectory depends on the distance and therefore the direction of movement.
However, the curvature of the paths for t >> 0 seems to be comparable. (b) The behaviour of the
center of mass for the first 60τ time steps. The direction of the trajectory is indicated by arrows. The
initial velocity is very high and the center of mass changes direction discontinuously. Then the behaviour
smooths.
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Figure 6.20: The change in distance between two initially vertically oriented helices for different initial
distances. The distance between a helix and the center of mass of the system, ∆/2d, is shown as a
function of the time. The distance initially increases fast with time, but from t/τ ≈ 6× 104 ∆/2d scales
approximately linear with time.
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Figure 6.21: The relative difference in z-position for θ0 = 0.5π in time for different initial distances.
After an initial period of t/τ ≈ 200, the relative difference (z1 − z2)/d tends to stabilise around a value
which depends on the initial distance. For increasing ∆0/d, (z1 − z2)/d first increases, but the trend is
broken for δ0/d = 10.
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Figure 6.22: The xy-trajectory for the different combinations of chirality for two initially vertical oriented
helices. The sign of λ1, λ2 indicate the chiralities of the two helices. The curvature of the path is larger
for equal chiralities.
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6.2.2 Horizontally oriented helices

In Fig. 6.23 we have shown the trajectory of two initially horizontally oriented helices. Their initial
distance is ∆0/d = 10. At t = 0, helix 1 is placed in the origin and helix 2 at (10, 0, 0). From Fig. 6.17a
we see that the translational movement of the helices is rotated 180 degrees in the xy-plane. They move
in opposite direction while rotating clockwise around that direction. The behaviour in the xz-plane
seems symmetric in x = 5, see Fig. 6.23b. This is significantly different from the behaviour for two
initially vertically oriented helices, see Fig. 6.16. There the trajectories in the xy-plane overlapped and
the difference in z-component grew up to half the length of the helix. Thus the initial orientation does
influence the trajectory of the two helices.
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Figure 6.23: Trajectory of two initially horizontally oriented helices. The trajectory of the two helices is
shown. At t = 0, helix 1 is placed in the origin and helix 2 at (10, 0, 0). (a) The helices move away from
each other, the trajectory is rotated over 180 degrees in the xy-plane. (b) The distance between the two
helices increases as well. The behaviour in the xz-plane seems symmetric in x = 5.

However, the behaviour of the long axis of the helix is the same: within t/τ = 60, α̂ almost aligns with
the gravitational force: θ = −1.518. The distance between the helix and the center of mass of the system,
∆/2d, displays similar behaviour as well, see Fig. 6.24a. This is remarkable, as we have seen that the
trajectories are qualitatively different. On the other hand, the orientation of the long axis of the helices
after t/τ = 60 is independent of the starting orientation. Therefore, the change in distance is expected
to behave similarly.

The trajectories of the center of mass are plotted for the different initial distances in Fig. 6.24b. They ro-
tate while moving in the xy-plane. The rotation is caused by the rotation of the two helices, which move
in opposite direction. Their average coordinates therefore rotate as well. Because they move in opposite
direction, the center of mass does not move very far away from the origin in the time period we considered.

The frequency of the rotation is equal to the frequency found for initially vertically oriented helices.
We therefore think that the frequency is determined by the parameter settings of the helix.
When we consider the relative distance in z-component, something interesting happens. At first (z1 −
z2)/d behaves like a sinusoidal function, the amplitude of the fluctuation decays with time, see Fig.
6.25a. The average of the difference decreases with increasing ∆0/d. However, at later times, there is no
difference in average or amplitude between the different in initial distances, see Fig. 6.25b. (z1 − z2)/d
fluctuates between 0 and −0.10.
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Figure 6.24: Behaviour of two initially horizontally aligned helices. (a) The distance between a helix
and its center of mass, ∆/2d is plotted as a function of time for the different ∆0. The results overlap.
(b) The trajectory of the center of mass of the system is plotted for the different initial distances. The
results show a circular movement. The direction depends on the initial distance.
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Figure 6.25: The relative z-component as a function of time for θ0 = 0. The relative difference in
z-component, (z1 − z2)/d is plotted as a function of time for the different initial distances ∆0/d. (a)
Initially (z1−z2)/d behaves like a sinusoidal function, the amplitude of the fluctuation decays with time.
The average of the difference decreases with increasing ∆0/d. (b) At later times, there is no difference
in average or amplitude between the different in initial distances. (z1 − z2)/d fluctuates between 0 and
−0.10.
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6.2.3 Phase Shift
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Figure 6.26: The shift in orientation δφ between the two helices as function of the distance ∆0/d. The
initially vertically oriented helices are displayed in purple, the horizontally oriented helices in green. The
shift decreases as a function of the distance.

We have seen that the long axis of the helix orients itself almost parallel to gravity, independent of the
initial conditions. Let us now look at the relative phase shift in β̂, δφ = |φ1−φ2|, which tells us how the
helices are rotated around their long axis with respect to each other. The results for the initially hori-
zontally and vertically oriented helices with varying distance are shown in Fig. 6.26. For the vertically
oriented helices, the frequency shift decreases for increasing ∆0. For ∆0/d = 10 the phase shift is 0.055.
If the frequency shift is 0, this means that the helices are spinning in phase, a shift means that their
rotation is out of phase. The decay in phase shift suggests that the helices will start to rotate in phase
for large enough distances. However, more measurements are needed to draw a definite conclusion. The
frequency shift for the initially horizontally oriented helices decreases as well, for larger values of ∆0,
but the slope of this behaviour is smaller. This is in agreement with the rest of our results, where we
have seen that for θ0 = 0 the behaviour of the helices is less dependent on the initial distance, than for
θ0 = 0.5π.

6.2.4 Conclusion

The above results show that a number of parameters such as the orientation of the long axis and the
spinning frequency do not depend on the initial orientation or distance of the helices. For all the ini-
tial conditions we considered, the helices orient with their long axis almost along the negative z-axis,
θ = −1.518, and nutate around this value with a frequency of ωn = 0.02564 ± 0.00001. The spinning
frequency and angular velocity of the trajectory are equal to the nutation frequency. The flow field of
the helices seems to stabilise the orientation of their long axes which almost align with the direction of
gravity. We think that the angle between the gravitational force and the long axis causes a movement
in the xy-plane. The rotational movement is caused by the nutation and spinning of the helices.

The chirality only influences the direction of the rotation, which is what you would expect on the
basis of the results of a single helix. However, the initial distance and orientation do define the relative
phase shift of the two helices. The trajectory of the center of mass is clearly dependent on the initial
orientation. On the other hand, the initial distance between the two helices affects the beginning of their
trajectory, and the relative distance in z, but it is not clear how it affects the trajectory for longer times.
The simulation time should therefore be increased. For the initial trajectory, the data points in between
should also be saved to determine the precise trajectory.
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We have only investigated helices with two windings, due to limited time. It would be interesting
to consider higher winding numbers. An initial phase shift in the orientation would be an interesting
parameter to test as well. We have seen that the frequencies do not depend on the initial orientation or
distance. We think these depend on the parameter settings of the helix. It would therefore be interesting
to vary the radius and pitch of the helix, to determine whether the frequencies change.
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Chapter 7

Conclusion

Summarising, in this thesis we have used the RPY method to study the sedimentation of rigid bodies
consisting of spherical beads: of our main interest was the sedimentation of one and two helices. The
method was verified for simple bodies (single sphere, two spheres, dumbbell, L-shape), which showed
good agreement with literature. The results for a single helix were compared with theoretical calculations
using slender-body theory, and lattice-Boltzmann simulations. For some of the parameters investigated,
the results were completely different from the theoretical expressions. However, since the qualitative
comparison to the results of the LB simulations was very well, we are confident that the RPY method
predicts the right physical trends. Below we will discuss our main results and will give an outlook on
the use of this method.

For the center of mass of a single helix we found four qualitatively different sedimentation trajecto-
ries:

• A vertical sedimentation trajectory after the helix has aligned its long axis with the xy-plane.

• A helical sedimentation trajectory of which the handedness was equal to the handedness of the
helix.

• A diagonal trajectory: the center of mass moves in a straight line with an x-, y- and z-component.

• A helical sedimentation trajectory of which the handedness opposes the handedness of the helix.

For the single helix we observe three forms of rotation:

• Precession: The long axis of the helix will rotate in the xy-plane to fix its angle with the trajectory.

• Spinning: The helix rotates around its long axis.

• Nutation: The angle of the long axis with the xy-plane periodically fluctuates around an average
value.

For a single helix we showed that the distance between the beads which we use to model the helix,
converges when the beads approach each other. The nutation is not influenced by the differences in
bead distance (except when it is very large), indicating that the observed nutation is not caused by the
irregularities of the helix.

The thickness of the helix, r/a, strongly influences the sedimentation behaviour. For very thick he-
lices, no helical trajectory is observed. The radius and pitch of the trajectory then strongly increase
until the trend is broken and the handedness changes sign. We compared this to slender-body theory
and found a qualitatively similar trend. The trend is explained by the change in friction components if
the thickness increases. The ratio between the perpendicular and parallel friction coefficients us much
smaller for thick helices than for thin helices. The deviation of the average orientation angle from the
starting orientation and the amplitude of the nutation decrease when the helices get thinner. The fluid
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friction is stronger for thick helices, which could explain this behaviour.

We found that the starting orientation angle of the long axis of the helix with the xy-plane has a
big influence on the sedimentation trajectory. For helices which have an angle up to 0.2π their long axis
rotates to align perpendicular to the gravitational force and the sedimentation trajectory is vertical. The
long axis of the helix rotates in the xy-plane. When the starting angle θ0 is increased, the radius and
pitch of the helical trajectory increase up to ∞ for θ0 = 0.4π, while the helix spins around its long axis.
The long axis precesses, such that the angle with the trajectory is kept constant, as was predicted by
theory. For θ0 = 0.4π, the helix sediments diagonally, while spinning along its long axis. This marks a
transition point, since the handedness of the trajectory changes and the radius and pitch start decreasing
with increasing θ0. The results do not agree with the theoretical prediction. One of the main reasons
is that the theoretical approximation does not include deviations in θ. Another cause for the deviation
could be that the helix we investigated is thick, while the theoretical approximation is based on very
thin helices. We have seen that the thickness influences the results significantly.

The nutation and spinning of the axis have the same frequency, indicating that they induce each other.
All rotations and horizontal translations are induced by hydrodynamic friction. The nutation and spin-
ning are caused by the same effect. If one of the axis of the helix changes, the flow field around the
helix changes and therefore the other axis will change as well. Thus, the orientation of the short axis,
β̂, with respect to gravity influences the flow field of the helix. It would be interesting to test whether
a difference in initial orientation in β̂ would affect the sedimentation trajectory. We have shown that
the chirality of the helix, only changes the direction of the rotation, which is expected on the basis of
geometry.

The aspect ratio of the helix was varied by changing the pitch and the number of windings. When
the pitch length of the helix increases, the helical trajectory increases. In the limit of very large pitch
lengths, the helix resembles a rod for which the sedimentation trajectory is diagonally, dependent on
the initial orientation. The results show a similar trend to the theoretical predictions. For an increasing
number of windings, we would have expected a larger helical trajectory, because there is more fluid
friction. However, our data show indecisive trend. More simulations are needed, preferably for thinner
helices, as those are more stable.

We have also verified some of the results to LB simulations performed by Dr. J. de Graaf. These
agreed well qualitatively, although quantitative agreement was not obtained, because of difficulties in
parameter matching. Through this comparison, we are confident that the RPY-method predicts the
right physical trends.

We have seen that the theory not always predicts comparable results. It would be interesting to test
whether the agreement improves if thinner helices are simulated. We suggest to include the time-
dependency of θ in the theoretical approximation, as we have seen that it influences the sedimentation
behaviour significantly.

For the sedimentation of two helices, we have investigated the behaviour as a function of the initial
orientation, distance and chirality. We have shown that independent of the initial settings, the long axes
almost align with the z-axis: θ = −1.518, around which they nutate. The frequency of the nutation is
independent on the initial settings, the chirality only changes the sign, analogous to the results for a
single helix. The trajectories depend on the initial orientation and chirality. For the initially vertically
oriented helices a relative difference in z-component stabilises the trajectory, while for initially oriented
helices, the difference is close to 0. The relative phase shift of the two helices is influenced by the orien-
tation and distance as well. To understand the origin of the difference in behaviour, a closer look should
be made at the initial trajectory. The time step for which the data are saved, should be decreased to
visualise this. However, the distance between the two helices shows similar behaviour, as well as the
rotational motion of the helices. The angular velocity of this motion is equal to the nutation and spinning
frequency. This indicates that the flow field of the helices stabilise each other in an orientation almost
parallel to gravity. The deviation from the vertical orientation, is probably caused by the asymmetry of
the helix along its long axis. We have already seen for a single helix that the nutation and spinning in-
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duce each other. The small component of the long axis in the xy-plane results in the rotational trajectory.

We have only investigated helices with two windings, due to limited time. As most flagella exist of
at least three windings, it is interesting to consider higher winding numbers. An initial phase shift in the
orientation would be an interesting parameter to test as well. We have seen that the frequencies do not
depend on the initial orientation or distance. We think these depend on the parameter settings of the
helix. It would therefore be interesting to vary the radius and pitch of the helix, to determine whether
the frequencies change. For equal starting orientation, the helices align. What happens if the initial angle
is not equal? Is the vertical position stable for all configurations, would be an interesting question to ask.

This method could easily be extended to study the sedimentation behaviour of other rigid particles,
such as cone-shaped helices. The main advantage in comparison with the lattice-Boltzmann simulations
is that it is faster and allows larger parameter space. The RPY method is not affected by boundary
effects, because the simulation box is not bounded.
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