
Bachelor Thesis

The stable gonality of finite graphs

Ragnar Groot Koerkamp

Supervisor:
Prof. dr. Gunther Cornelissen

January 2016

Abstract

This thesis is devoted to finding a finite algorithm to calculate the stable gonality of graphs.
The stable gonality was first defined by Cornelissen et al. in [6]. A finite harmonic morphism
ϕ is a map from a refinement H of a graph G to a tree T obeying several properties. Together
with this comes a map rϕ : E(H)→ N which assigns indices to all edges of H. It turns out that
we can assign a degree to every finite harmonic morphism. The stable gonality sgon(G) is the
minimal degree of a finite harmonic morphism from a refinement of G to a tree.

The naive algorithm to calculate the stable gonality of a graph does not terminate, because we
have to consider all refinements H, all trees T and all maps rϕ, which are three infinite loops.
I describe a new algorithm to calculate sgon(G) in finite time, using several new theorems that
reduce the set of refinements and trees we have to consider. First, I give a bound on the size of
T is terms of G. Then, I replace T by a minor-universal tree containing all trees of a given size
as a minor. Finally, I prove that we may assume that the indices of the edges of H have a nice
property, and that they can be bounded from above by |E(G)|.

Contents

1 Introduction 4

2 Multisets 6

3 Graphs 9
3.1 Undirected graphs . 9
3.2 Operations on graphs . 14
3.3 Directed graphs . 15

4 Refinements 17
4.1 Stable graphs . 21

5 Finite harmonic morphisms 24

6 Properties of the stable gonality 28

7 The algorithm 33
7.1 Pseudocode . 33
7.2 Constructing H and ϕ from f and r 37
7.3 Asymptotic runtime . 38
7.4 Performance . 40

8 Bounding the tree size 42
8.1 Contracting edges in finite harmonic morphisms 42
8.2 Contraction lemma . 44

9 Minimal universal trees 48

10 Uniform indices on refinements 54

11 Upper bound on the indices 56

12 Discussion 61

References 62

3

1 Introduction

The stable gonality of finite loopless graphs was first defined by Cornelissen et al.
in [6] in 2015 as an analogy of the gonality of smooth projective curves. In this
thesis, my goal is to find an algorithm to calculate this new invariant of graphs.
Such an algorithm could be used to compare the stable gonality with other kinds
of gonality, like the divisorial gonality and the treewidth of graphs. Furthermore,
results on small graphs could give rise to new conjectures relating these and other
kinds of graph invariants.

This thesis consists of three parts. In the first part, I will introduce finite har-
monic morphisms and the stable gonality. For this, we need multisets and multi-
graphs, which I cover in the first two sections. These sections mostly contain a list
of well known definitions, although some definitions are my own.

Next, we need refinements. These are special modifications graphs that we need
in order to define the stable gonality. The notion of refinements is well known, but
I define them in a formal inductive way that allows easy proofs of their proper-
ties. Also, using this inductive definition, it becomes easier to prove lemmas using
refinements.

Using all this theory, I define finite harmonic morphisms, as defined in [6]. A
finite harmonic morphism is a map ϕ from a refinement H of a graph G to a tree T ,
together with a map rϕ : E(H)→ N assigning indices to the edges of H. These maps
ϕ and r have to obey some special properties to make ϕ a finite harmonic morphism.
These properties allow us to define the degree of a finite harmonic morphism. Then,
I define the stable gonality of a graph G as the minimal degree of a finite harmonic
morphism from a refinement of G to a tree.

This is followed by a proof that the stable gonality is equal for refinement-
equivalent graphs, Theorem 6.5.

The naive algorithm to calculate the stable gonality of a graph does not terminate
in finite time, because, for example, we have to iterate over all refinements of the
given input graph. In the second part of this thesis, Section 7, I describe the
algorithm I developed to calculate the stable gonality in finite time. This section
gives pseudo code of the algorithm, and I will explain why this algorithm works. It
relies on some theorems about special properties of finite harmonic morphisms. If we
assume that m, the number of edges of the input graph, grows at most polynomially
in n, the number of vertices, the runtime of the algorithm is

nO(n lgn+m)

The new theorems I have come up with are explained in the third part, following
the algorithm. These results are not only useful for the algorithm, but are also
general results about properties of finite harmonic morphisms.

The most important results are Theorem 8.6 and Theorem 11.4. The former
states that we can bound the number of nonleaf vertices (vertices with at least 2
edges incident to it) of the trees T by |V (G)|. Theorem 11.4 gives an upper bound
on the indices of the vertices of H, which are defined together with finite harmonic
morphisms. This theorem might be a first step towards a graph theoretic proof that

sgon(G) ≤
⌊
|E(G)| − |V (G)|+ 4

2

⌋
,

4

which Cornelissen et al. [6, Theorem B] have proven using theorems on smooth
projective curves.

I thank Gunther Cornelissen for his valuable remarks and discussions while su-
pervising me. Also, I thank my friends who proofread this thesis for finding several
mistakes in grammar and maths, and suggesting clarifications where needed.

5

2 Multisets

Multisets are a generalization of sets where an element may occur multiple times.
We will need this to define multigraphs in the next section.

This section is loosely based on Section 2 of [9]. Because multisets are less widely
known than plain sets, the definitions and used notation vary among authors. The
notation I introduce may not be compatible with those of other authors, but are
most natural in the context of this thesis.

Definition 2.1 (Multiset). A multiset M over Ω is a tuple M = (Ω,m) where Ω is
some set and m is a function m : Ω → Z≥0. The set Ω is called the domain of M .
For ω ∈ Ω, the counting function m gives the multiplicity of ω as m(ω).

We write mM for the counting function of M . ♦

Remark 2.2. Since the codomain of m is Z≥0, every element of Ω has a finite mul-
tiplicity. However, Ω itself may be infinite.

Remark 2.3. A set S can also be seen as a multiset where every element in S has
multiplicity 1, and all elements not in S have multiplicity 0. Thus m is just the
indicator function 1S in this case. The domain Ω of m is implicit here, but it is
usually clear from the context what the domain of m is.

Definition 2.4 (Empty multiset). The empty multiset is written ∅, just like for
normal sets. ♦

There are several ways to write down a multiset. Because every element can only
occur finitely many times, we can explicitly list the contents of a multiset. This is
done using a set like notation, where we use square brackets instead of curly braces.
Like for sets, the order of the elements does not matter.

Example 2.5. The multiset A = ({a, b, c, d}, f), with f : a 7→ 2, b 7→ 3, c 7→ 0, d 7→ 1
may also be written as

[a, a, b, b, b, d].

Because a multiset is basically just a function on a given domain, we may also
write it as an ordinary relation as given by the graph of the function m. More
precise, we can write

M =
{

(ω,m(ω))
∣∣ω ∈ Ω

}
.

Example 2.6. Continuing the previous example, we may also write A as

A =
{

(a, 2), (b, 3), (c, 0), (d, 1)
}
.

Remark 2.7. In the examples above, the multiplicity of c is 0. When we explicitly
write down multisets, we often omit elements with multiplicity 0. Because of this,
all elements for which no multiplicity is given may be assumed to have multiplicity
0. Hence, the last example could also have been written as

A =
{

(a, 2), (b, 3), (d, 1)
}
.

When dealing with multisets, we will mostly use the set like notation when the
multisets only have a few elements. We will use the pairwise notation when there
are a few elements with higher multiplicities. The more formal notation as given in

6

the definition will only be used in this section to define all common operations on
multisets.

First, we define the element relation and the cardinality of multisets. Next, we
define sub-multisets, the analogon of subsets.

Definition 2.8 (Element). For a multiset M = (Ω,m), we write x ∈M when x ∈ Ω
and m(x) > 0. We say that x is an element of M . ♦

Remark 2.9. Note that when x 6∈ Ω, we can still write x 6∈ M , but usually the
emphasis is on the fact that m(x) > 0. Otherwise, we could just have written
x 6∈ Ω.

Definition 2.10 (Cardinality). The cardinality or size of a multiset M = (Ω,m) is

|M | =
∑
ω∈Ω

m(ω). ♦

Remark 2.11. In this thesis, we will only consider finite multisets, so |M | is always
finite. Hence the sum is well-defined.

Remark 2.12. When writing M as a subset of Ω × N, it may be tempting to read
|M | as the number of elements of Ω, or the number of elements for which m(ω) > 0.
However, one should remember that M is a multiset.

Definition 2.13 (Sub-multiset). A multiset M = (Ω, f) is a sub-multiset of a
multiset N = (Ω, g), written M ≤ N , if for all ω ∈ Ω we have

f(ω) ≤ g(ω).

If, additionally, there is an ω such that f(ω) < g(ω), M is called a proper or strict
sub-multiset of N and we write M < N . ♦

Naturally, multisets arise when elements of a given set must be counted more
than once. We would therefore like some notation to express that M is a multiset
containing elements in the set S. For this, we will first define the support of a
multiset.

Definition 2.14 (Support). The support of a multiset M = (Ω,m) is the set

supp(M) = {ω|m(ω) > 0} = {ω|ω ∈M}. ♦

Definition 2.15 (Multiset in set). We write M C S when

supp(M) ⊂ S.

This relation is written as M is a multiset in S. ♦

Remark 2.16. The definitions above allows us to say things like let M C S be a
multiset in S. Often, S itself is a subset of a larger set Ω, for example a subset of
the set of vertices of a graph. When this is the case, the domain of M is implicitly
assumed to be Ω, and not S. Therefore, m is defined on all of Ω, and in particular
m(ω) is also defined for ω ∈ Ω\S.

7

Now that all relations between multisets are given, we are ready for the operations
on multisets. These behave similar to the corresponding operations on normal sets.

The union and intersection of two multisets act as if the occurrences of an ω in
two multisets is the same, and takes the maximum respectively minimum over the
multiplicity in both multisets.

Definition 2.17 (Intersection). The intersection of two multisets M = (Ω, f) and
N = (Ω, g) is given by

M ∩N = (Ω,min(f, g)),

where min(f, g)(ω) = min(f(ω), g(ω)). ♦
Definition 2.18 (Union). Similarly, the union of two multisets M and N is given
by

M ∪N = (Ω,max(f, g)),

where max(f, g)(ω) = max(f(ω), g(ω)). ♦
We may also add and subtract multisets. For addition, the occurrences of an ω

in both operands are considered to be different, and we add the multiplicities. The
subtraction of multisets corresponds to the difference M\N of normal sets, where
we remove all elements of N from M .

Definition 2.19 (Addition). The sum of two multisets M and N is

M +N = (Ω, f + g),

where (f + g)(ω) = f(ω) + g(ω). ♦
Remark 2.20. We may now write

∑
i∈I Mi for the sum of several multisets. Similarly,⋃

and
⋂

can be used for the union respectively intersection of several multisets.

For the difference, we have to be a bit more careful, since we can not have
negative multiplicities.

Definition 2.21 (Subtraction). The difference of two multisets M and N is

M −N = (Ω,max(0, f − g)),

where max(0, f − g)(ω) = max(0, f(ω)− g(ω)). ♦
Remark 2.22. Now that we have defined subtraction for multisets, we will use \ for
the difference of two normal sets to avoid confusion.

Notation 1: Multisets

Formal notation M = (Ω,m : Ω→ Z≥0)
Set notation A = [a, a, a, b, b]
Graph notation A = {(a, 3), (b, 2)}
Counting function mM

Element x ∈M
Cardinality (size) |M |
Sub-multiset M ≤ N
Support supp(M)
Multiset in set M C S
Union, intersection M ∪N and M ∩N
Addition, subtraction M +N and M −N
Repeated operations

∑
,
⋃

,
⋂

8

3 Graphs

In this section, I will explain what graphs are. There are a lot of properties of
graphs that will be defined. Unless otherwise stated, all graphs after this section
are assumed to be connected undirected multigraphs.

3.1 Undirected graphs

An undirected graph is like a network of nodes (the vertices) connected to each other
by lines (edges). An example is shown in Figure 3.1.

Definition 3.1 (Undirected multigraph). An undirected multigraph G is a tuple
G = (V,E) consisting of a set of vertices or nodes V and a multiset of edges E. An
edge is a multiset eC V with size |e| = 2. Thus E is a multiset containing multisets
with two vertices,

E C
{
eC V

∣∣|e| = 2
}

=
{

[u, v]
∣∣u, v ∈ V }.

The sets of vertices and edges of a graph are also denoted V (G) and E(G). ♦

Remark 3.2. Since I will only use multigraphs in this thesis, I will just call them
graphs.

Remark 3.3. A multiset containing two elements is also called an unordered pair.
These are very similar to sets containing two elements, with the only difference that
both elements may be equal. Therefore, we will write the edges of a graph using the
usual set notation. This is also to avoid confusion with intervals and more general
multisets. We will also write uv for an edge between u and v, to avoid several layers
of nested braces.

{u, v} = {v, u} = uv = vu

Remark 3.4. The two elements of an edge (an unordered pair) are also called the
endpoints of that edge. Two vertices are neighbours when there is at least one edge
having those vertices as endpoints.

Now we introduce some notation for some special sub-multisets of edges.

Definition 3.5 (Edge multisets). The multiset of edges from a vertex u ∈ V (G) to
v ∈ V (G) is given by

E(u, v) =
{(
uv,mE(uv)

)}
,

where mE is the counting function for the multiset of edges of G.
The multiset of edges adjacent to a given vertex u is

E(u) =
{

(e,mE(e))
∣∣u ∈ e ∈M} ♦

In a similar way, we define the set of neighbours of a vertex.

Definition 3.6 (Neighbours). The set N(v) of neighbours of v ∈ V (G) is given by

N(v) = {u ∈ V (G)|(v, u) ∈ E(G)}. ♦

Intuitively, the degree of a vertex is the total number of edges incident to it,
where edges that have both ends at the same vertex are counted twice.

9

u

l

v

w

e
x

f

Figure 3.1: The black dots represent the vertices of the graph, and the
lines between them the edges. Vertex x is only connected to itself by a loop,
and therefore has degree 2. The leaf is l, because it is the only vertex that is
connected to exactly one other vertex.

Definition 3.7 (Degree). For a graph G = (V,E), the degree of a vertex u ∈ V is
given by

deg(u) =
∑

(e,mE(e))∈E,
e=(V,me)

mE(e) ·me(u).

In each term we multiply the number of identical edge e with the number of times u
occurs in e. This ensures that loops, which are defined below, are counted twice. ♦

Some types of nodes and edges have special names. When a node has degree 1
it is called a leaf.

Definition 3.8 (Leaf). A vertex u ∈ V in a graph G is called a leaf when deg(u) =
1. ♦

Edges that have a single vertex as endpoint twice are called loops.

Definition 3.9 (Loops). An edge e = {u, v} is called a loop when u = v. ♦

Example 3.10. Suppose the graph G is given as

V (G) = {u, v, w, l, x} ,
E(G) = [uv, uw, ul, vw, vw, xx].

We may visualize this graph as a drawing as shown in Figure 3.1. The vertices of
the graph are represented by dots. The edges are shown as lines connecting the dots
corresponding to the endpoints of the edge. The edge e = {u, v} = {v, u} connects
vertices u and v, and is shown as a line connecting the dots labelled u and v.

Vertex l is a leaf because is has degree 1. The degree of x is 2, because the edge
f = {x, x} is a loop based at x. Because E is a multiset of edges, there may be
multiple edges between vertices. This is the case for v and w.

Remark 3.11. It is important to remember that a drawing is only a visualization of
a graph. This means that there can be very distinct drawings of the same graph.
Thus, when two drawings differ, you can not conclude that the graphs they represent
are different.

Now we define some more properties of graphs.

Definition 3.12 (Size). The size of a graph |G| is the number of vertices

|G| = |V (G)|. ♦

Definition 3.13 (Finite graph). A graph G is finite when both the number of
vertices |V (G)| and the number of edges |E(G)| are finite. ♦

10

Figure 3.2: An example of a tree: a connected graph without cycles.

Remark 3.14. In fact, all graphs I have defined are finite, since we are only using
finite multisets. If we were to allow infinite multisets, we could also obtain infinite
graphs, but this thesis does not need them.

Graphs can be divided into several classes, depending on their properties. Here
we give two of them.

Definition 3.15 (Loopless graph). A graph is called loopless if it is contains no
loops. ♦

Definition 3.16 (Simple graph). A graph G = (V,E) is simple if it is loopless and
has no multiple edges. It has no multiple edges when for all edges e ∈ E we have

mE(e) ≤ 1. ♦

Now we define paths and cycles in graphs. A path is just a sequence of distinct
vertices connected by edges. When a path ends in the vertex where is started, it is
also called a cycle.

Definition 3.17 (Path). A path is a sequence u0, . . . , uk of distinct vertices of
G = (V,E) such that for all 0 ≤ i < k there is an edge from ui to ui+1,

{ui, ui+1} ∈ E.

The vertices u0 and uk are the start and end of the path. We also say that u0 and
uk are connected by this path. ♦

Definition 3.18 (Cycle). A cycle is a path with u0 = uk, but otherwise distinct
vertices. When k = 2, the cycle uses the same edge twice. This is only allowed when

mE({u0, u1}) = mE({u1, u2}) ≥ 2,

to make sure all edges along the cycle are different too. ♦

Example 3.19. In Figure 3.1, the edges wu, uv, and one of the edges between v and
w form a cycle.

Using these new concepts we define some more classes of graphs.

Definition 3.20 (Connected graph). A connected graph is a graph in which there
exists a path between every pair of vertices. ♦

Remark 3.21. From now on, we will assume all graphs are connected.

Definition 3.22 (Tree). A tree is a connected graph without cycles. This happens
precisely when there is exactly one path between each pair of vertices. ♦

Example 3.23. The graph in Figure 3.1 is not connected, because there is no path
from x to any of the other vertices. Figure 3.2 shows an example of a tree.

11

r

u

v

Figure 3.3: This is an example of a rooted tree. The root is r. u is one of
the two children of r. The distance from v to r is 2, so v has depth 2.

Definition 3.24 (Rooted tree). A rooted tree is a tree T together with a single
special vertex r of T , which is called the root of T . ♦

Rooted trees have lots of interesting properties. Here, we define the depth of a
vertex and the children of a vertex. An example is shown in ??.

Definition 3.25 (Depth). The depth of a vertex u in a rooted tree T is the number
of edges in the unique path from the root r to u. The kth level consists of all vertices
with depth k. ♦

Definition 3.26 (Height). The height of a tree is the maximum depth of the vertices
in the tree. ♦

Definition 3.27 (Children). The set of children of a vertex u with depth d consists
of all neighbours of u with depth d+ 1. ♦

Now we define subgraphs in order to define connected components.

Definition 3.28 (Subgraph). A graph H is a subgraph of a graph G, written
H ⊂ G, when

V (H) ⊂ V (G),

E(H) ≤ E(G).

Because H is a graph itself, we furthermore have that u ∈ V (H) for all u ∈ e ∈
E(H). ♦

The induced subgraph of a given subset U of the vertices of G is the subgraph
consisting of the vertices U and all edges between vertices in U .

Definition 3.29 (Induced subgraph). Given a set of vertices U ⊂ V (G), the induced
subgraph G[U] of G is defined as

V (G[U]) = U,

E(G[U]) = {(e,mE(e))|e ∈ E(G), supp(e) ⊂ U} . ♦

The connected component of a given vertex consists of all edges and vertices that
are connected to the given vertex by a path.

Definition 3.30 (Connected component). When v is a given vertex in a graph G,
let U be the set of all vertices u for which there is a path that starts v and ends in
u. Then, the connected component is the induced subgraph of U , G[U].

For a given graph G and vertex v ∈ V (G), C(G, v) denotes the connected com-
ponent of G containing v. ♦

12

Remark 3.31. A graph is connected, if and only if it has exactly one connected
component.

Example 3.32. The graph shown in Figure 3.1 has two connected components. One
component consists of the vertex x together with the edge f . The other connected
component consists of all other vertices and edges of G.

Using this, we can define v-subgraphs of G in a similar way to the v-subtrees
defined in [3]. Roughly, a v-subgraph is a connected component of G\{v}, together
with v.

Definition 3.33 (v-subgraph). A v-subgraph of G is the induced subgraph of a
connected component of G together with v. More precise, the v-subgraph containing
u ∈ V (G)\{v}, written Gv(u), is given by

Gv(u) = G
[
V
(
C(G\{v}, u)

)
∪ {v}

]
.

When Gv(u) is a tree, this is called a v-subtree of G. ♦

Remark 3.34. When we say v-subgraph, we will usually mean a v-subgraph that is
not a v-subtree.

In a similar way, we define a uv-subtree of a tree T as the connected component
of T\{u, v} that connects to both u and v. Because T is a tree, this component is
unique.

Definition 3.35 (uv-subtree). For a tree T and two different vertices u and v, the
uv-subtree of T is defined as

Tuv = T ′v(u), where T ′ = Tu(v). ♦

Using connected components, we can also define subtrees of rooted trees.

Definition 3.36 (Rooted subtrees). Given a rooted tree T with root r, the subtree
rooted at u ∈ V (T) is the induced subgraph of the set of all vertices v for which u
lies on the unique path from v to r.

The subtrees of u are all subtrees rooted at a child of u. ♦

We would also like a notion of subgraphs for rooted trees, where the root of the
subgraph must be the root of the original graph. Because subtree is already used, we
call this embedded trees, like in [7]. We first need the notion of graph isomorphisms.

Definition 3.37 (Graph isomorphism). Two graphs G and H are isomorphic, writ-
ten G ' H when there exists a bijective function ϕ : V (G) → V (H) such that the
number of edges between u and v in G is equal to the number of edges between ϕ(u)
and ϕ(v) in H,

mE(G)(uv) = mE(H)(ϕ(u)ϕ(v)).

♦

Definition 3.38 (Embedded rooted trees). A rooted tree A with root a is embedded
in a rooted tree T with root r when A is isomorphic to a subgraph of A in such a
way that the isomorphism maps a to r. ♦

13

Remark 3.39. We often consider functions between graphs that can act on both
vertices and edges. For example, f may send vertices of G to vertices of H and
similar for edges:

f : V (G)→ V (H), f : E(G)→ E(H).

Then, we often write f : G → H for both these functions at once. We define a
function f : G → H by first defining the image of all vertices and then the image
of all edges. When both the domain and codomain of a function are graphs, this
should be read as two separate functions acting on the vertices respectively edges of
the domain. Note that this is different from a function

f : V (G) ∪ E(G)→ V (H) ∪ E(H),

since that would allow edges to be send to vertices and the other way around.
Functions which do map edges to vertices are considered in [1] for example, but we
will not use them.

Notation 2: Undirected graphs

Graph G = (V,E)
Undirected edge e = {u, v} = uv
Vertices and edges of G V (G) and E(G)
Edges connecting u and v E(u, v)
Edges incident to u E(u)
Number of vertices |G| = |V (G)|
Degree of vertex deg(u)
Subgraph G ⊂ H
Induced subgraph G[U]
Connected component of u C(G, u)
v-subgraph containing u Gv(u)
uv-subtree Tuv

3.2 Operations on graphs

We define some useful shorthand notations for adding and removing vertices and
edges to a graph. In order to define the removal of vertices, we will first define
induced subgraphs.

Definition 3.40 (Modification of vertices). Given a graph G and a set U of vertices,
we write G ∪ U for the graph we get when we add all vertices of U to G,

V (G ∪ U) = V (G) ∪ U,
E(G ∪ U) = E(G).

When U ⊂ V (G), we can remove the vertices in U and all edges incident to them
from G. This is written G\U ,

G\U = G[V (G)\U]. ♦

14

Definition 3.41 (Modification of edges). When F C {[u, v]|u, v ∈ V (G)} is a mul-
tiset of edges between vertices of G, we write G+ F for the graph G together with
all edges in F ,

V (G+ F) = V (G),

E(G+ F) = E(G) + F.

When F ≤ E(G) is a sub-multiset of the edges of G, we may remove those edges
from G, resulting in G− F ,

V (G− F) = V (G),

E(G− F) = E(G)− F. ♦

Instead of adding or removing edges, we may also contract edges. When we
contract an edge e = (u, v) ∈ E(G) in G, we identify the endpoints u and v of the
edge by a single new vertex w and we remove all edges between u and v in G. This
definition is a modification for multigraphs of the first definition in [10]. This paper
also proves some intuitive lemmas about contractions in a formal way.

Definition 3.42 (Edge contraction). Given a graph G and an edge e = uv ∈ E(G),
we define the edge contraction G/e of G by

V (G/e) = V (G)− {u, v}+ we,

E(G/e) =
⋃

f∈E(G)
f 6=e

(f/e,m(f)),

where the contraction f/e of an edge f is defined as

f/e =

{
f f ∩ e = ∅
we + (f ∩ e) f ∩ e 6= ∅.

Since the contracting of edges commutes, as shown in [10], we also define G/S as
the result of contracting all edges in S = {e1, . . . , ek} ⊂ E(G),

G/S = G/e1/ . . . /ek. ♦

Notation 3: Operations on graphs

Add vertices G ∪ U
Remove vertices G\U
Add or remove edges G± F
Contract an edge e G/e
Contract edges in S G/S

3.3 Directed graphs

We can also consider directed graphs, where every edge has a given direction. These
are defined analogously to undirected graphs, except that the edges are now ordered
pairs of nodes, instead of unordered pairs.

15

Figure 3.4: The directed graph D(T) corresponding to the tree T in Fig-
ure 3.2. In this graph, we have replaced every undirected edge of T by two
directed edges in opposite directions.

Definition 3.43 (Directed graph). A directed graph G is a tuple G = (V,E) con-
sisting of a set of vertices V and a multiset of directed edges E. A directed edge is
a pair e ∈ V × V . Thus E is a multiset containing pairs of vertices of V ,

E C V × V. ♦

Remark 3.44. Since directed edges are pairs of vertices, we write the edge from u
to v as (u, v). Again, uv can be written for short when it is clear from the context
that the edge is directed.

The definitions of the sets of edges between nodes needs to be modified too,
because edges now have a direction.

Definition 3.45 (Edges multisets). The multiset of edges from u to v ∈ V (G) in a
directed graph G is given by

E(u, v) =
{(
uv,mE(uv)

)}
.

The set of edges starting in u is denoted E(u) and defined by

E(u) =
{

(e,mE(e))
∣∣e ∈ E, e ∈ {u} × V }. ♦

Because edges are directed, we may look at the reverse of an edge.

Definition 3.46 (Reverse). The reverse e of an edge e = (u, v) is given by

e = (v, u) . ♦

Directed graphs often appear because undirected graphs are stored as directed
graphs in most algorithms. Therefore, we now define the equivalent directed graph
for a given undirected graph. In this graph, every undirected edge in the original
graph is replaced by two directed edges in opposing directions.

Definition 3.47. The equivalent directed graph D(G) of an undirected graph G is
given by

V (D(G)) = V (G),

E(D(G)) =
∑

uv∈E(G)

{(uv,mE(uv)), (vu,mE(vu))}. ♦

Example 3.48. The directed graph of the tree in Figure 3.2 is shown in Figure 3.4.

Notation 4: Directed graphs

Equivalent directed graph D(G)
Directed edge e = (u, v) = uv
Edges from u to v E(u, v)
Edges starting at u E(u)
Reverse of edge e e

16

4 Refinements

A graph H is a refinement of G when it can be obtained from G by repeatedly
adding leaves or subdividing edges a finite number of times. We first define two
functions that describe these operations, and then define refinements rigorously.

The adding of leaves is shown in Figure 4.1. This is done by adding a new vertex
l to G and connecting it to a given vertex u ∈ V (G) via an undirected edge {u, l}.
Together with this comes a natural inclusion ι of the original graph into the new
graph. We need this inclusion to keep the structure of the graph, so that we can
identify the vertices and edges of the original graph in the refinement.

Definition 4.1 (Adding leaves). For a given vertex u ∈ V (G) in a graph G, the
leaf addition tuple is Lu = (Lu; ι : G→ Lu(G)). This tuple consists of a function Lu

that adds a leaf to G and an inclusion ι of G into Lu(G). The leaf addition function
Lu is defined by

V (Lu(G)) = V (G) ∪ {l},
E(Lu(G)) = E(G) + [{u, l}].

The inclusion ι is defined by

ι : G→ Lu(G)

u 7→ u,

e 7→ e,

and sends vertices and edges in G to the corresponding vertices respectively edges
in Lu(G).

When S C V (G) is a finite multiset of vertices of G, we write LS for the tuple
that adds mS(u) leaves to every vertex u. More precise, when S = [u1, . . . , uk] we
have

LS = Luk
◦ · · · ◦ Lu1 ,

and

ι = ιuk
◦ · · · ◦ ιu1 .

We will also write this as

LS = Luk
◦ · · · ◦ Lu1 . ♦

The subdividing of an edge is shown in Figure 4.2. We replace an edge e = {u, v}
by a new vertex s connected to both old neighbours via new edges eu = {u, s} and
ev = {v, s}. Again we also have an inclusion of G into the new graph H. This
time we have to be more careful, because the edge e does not exist any more in H.
Therefore, we restrict the domain of ι to all of G except for this edge.

u Adding leaf u l

Figure 4.1: We add a leaf l to vertex u. The dotted edges indicate that the
vertex u may be connected to other vertices not shown in the picture.

17

u ve Subdividing u se v

Figure 4.2: Here, we subdivide edge e = {u, v}, resulting in a new vertex
se and two new edges connecting se to u and v. The (v, y) edge on the left
has index 2.

Definition 4.2 (Subdividing edges). For an edge e = {u, v} ∈ E(G), the subdivision
tuple is the pair of functions Se = (Se; ι : G − [e] → Se(G)). The function Se

subdivides edge e in two parts and ι is an inclusion of G minus the edge e into
Se(G). The new vertex will be called se. The image of Se(G) is defined as

V (Se(G)) = V (G) ∪ {se},
V (Se(G)) = E(G)− [uv] + [use, vse].

The domain of ι is all of G except for the edge e, because it does not exist in Se(G).
This restriction will often be implicit and we will just write ι : G→ Se(G).

ι : G→ Se(G)

u 7→ u,

e 7→ e.

When S is a finite multiset of edges of G, we may write SS for the consecutive
subdividing of the edges in S. More precise, when S = [e1, . . . , ek] we have

SS = Sek ◦ · · · ◦ Se1 ,

and

ι = ιek ◦ · · · ◦ ιe1 .

The domain of this new inclusion is the intersection of the domains of all ιei . This
is just G− (S,1S), where (S,1S) is the multiset corresponding to the set S of edges
we remove.

Again, we shorten the composition of Sei and ιei to

SS = Sek ◦ · · · ◦ Se1 . ♦

Remark 4.3. As is clear from the definition of Se, we only remove the edge uv once
from G. When the multiplicity of uv in G is greater then one, we only subdivide
one occurrence of the edge. Thus, the new multiplicity of uv is mE(uv) − 1. Since
we consider all edges between u and v to be the same, it does not matter which one
we choose to subdivide when viewing a graph as a drawing.

Remark 4.4. In Definition 4.1 above, we can add multiple leaves to a single vertex
because the leaves do not interact with each other. However, after subdividing an
edge, it does not exist any more. Therefore, we can not subdivide a single edge
twice in one pass. When and edge e = uv occurs twice in S, we do not subdivide
one edge from u to v twice, but instead subdivide two edges from u to v once.

For completeness, we also define a function corresponding to edge contractions.

18

u v

wx

e

Refining

u

se

v

wx

lw

Figure 4.3: This is an example of a refinement. We subdivide edge e and
add a leaf to the new node se. Furthermore, we subdivide {x,w} twice, and
add some more leaves recursively.

Definition 4.5. Given a graph G and an edge e ∈ E(G), the edge contraction tuple
is defined as Ce = (G/e; ι : G→ G/e). Here, ι is the inclusion given by

ι : V (G)→ V (G/e)

ι(u) =

{
u u 6∈ e
we u ∈ e

ι : E(G)\{(e,mE(G)(e))} → E(G/e)

ι(f) = f/e.

As before, we also define CS = (G/S; ι : G→ G/S) for the function corresponding
to the contraction of all edges in S. ♦

Now, a graph H is a refinement of G when we can make it from G by repeatedly
adding leaves or subdividing edges.

Definition 4.6 (Refinements). A graph H is a refinement of G, written G � H, if
and only if there is a finite sequence of graphs

G = G0, G1, . . . , Gk ' H

such that for each 0 ≤ i < k we have that

• either Gi+1 = Lu(Gi) for some vertex u ∈ V (Gi),

• or Gi+1 = Se(Gi) for an edge e ∈ E(Gi).

Note that in the last step, we only need H to be isomorphic to Gk.
We write Ri = (Ri; ιi : Gi → Gi+1) for the ith leaf addition or subdivision

tuple. Furthermore, R = (R; ι : G → H) is the tuple associated with the complete
refinement,

R = Rk ◦ · · · ◦R1. ♦

An example of a refinement can be seen in Figure 4.3.

Remark 4.7. We will often write R : G→ H instead of ιR : G→ H. This allows us
to draw commutative diagrams on graphs with refinements on the arrows. Hence,
the bold functions should be read as the corresponding inclusions.

We will now state a lemma on the commutative behaviour of refinements.

Lemma 4.8 (Commutative refinements). Adding leaves u and v to a graph G can
be done in any order when both u and v are vertices of G. Thus, Lu and Lv commute
when v is not a leaf based at u or the other way around.

19

Adding a leaf l to u commutes with the subdividing of an edge e when e is not
{u, l} and u is not se, the vertex created in the subdivision.

Finally, the subdividing of two different edges e and f commutes precisely when
e is not an edge created by Sf and f is not an edge created by Se.

Remark 4.9. To summarize, when R2◦R1 is a refinement of G, R1 and R2 commute
when R2 is also a well-defined refinement of G.

Currently, the refinement function R on a graph G is defined for all vertices of
G and a subset of the edges of G. When an edge is subdivided once or more and
leaves are added to the new vertices, we would like to define the image of an edge e
(excluding endpoints) under the refinement as the subgraph of R(G) that originated
in e. In fact, we can do this more generally and define a function that gives the
image of a subgraph of G under R.

This definition corresponds to the definition of the restricted refinement in Def-
inition 5.2 in [6].

Definition 4.10 (Image of subgraph). When we are given a subgraph A of G, we
write RG(A) for the image of A under the refinement R of G. We define this for
leaf addition as

LG
u (A) =

{
Lu(A) u ∈ V (A)

A u 6∈ V (A).

For subdivisions, we define

SG
e (A) =

{
Se(A) e ∈ E(A)

A e 6∈ E(A).

For an arbitrary refinement R with

R = Rk ◦ · · · ◦R1

we have

RG = RG
k ◦ · · · ◦RG

1 . ♦

Remark 4.11. We are mostly interested in RG(e), for some edge e ∈ E(G). Here, A
is not a real subgraph, because the endpoints of e are not included. This is not a
problem however, because A does not have to be a subgraph of G.

We now define the set of refinements Rf(G) of a graph G.

Definition 4.12 (Set of refinements). The set Rf(G) of refinements of G is defined
as

Rf(G) = {H|G � H} . ♦

Remark 4.13. We should be calling Rf(G) the class of refinements of G, but I will
just treat it as set instead.

The relation � also induces a poset on the set of all graphs.

Definition 4.14 (Poset). The set of all graphs is a poset with respect to the binary
relation �. ♦

20

Proof. Reflexivity is trivial. Transitivity follows from the fact that we may compose
refinements. Antisymmetry holds too, because G � H implies that the number of
vertices of G is not larger than the number of vertices of H. The same holds for
edges. Because we have H � G as well, they must have the same number of vertices
and edges. Since strict refinements always increase the number vertices, we must
have G = H.

We may now call two graphs refinement-equivalent when they are in the same
component of this poset.

Definition 4.15 (Refinement-equivalent). We call two graphs G and H refinement-
equivalent, or just equivalent, if there is a sequence of graphs G = G0, G1, . . . , Gk =
H such that for each 0 ≤ i < k, either Gi � Gi+1 or Gi � Gi+1 holds. ♦

Remark 4.16. We will say that two graphs have the same structure when they belong
to the same equivalence class. This allows us to talk about operations on a graph
that do not change the structure of the graph.

4.1 Stable graphs

It turns out that every equivalence class of refinement-equivalent graphs has a single
smallest element in the sense that every other graph in the equivalence class is a
refinement of this graph. In this section, I give my own proof of this theorem. The
definition of a stable graph is based on the one given in [6, Definition 3.4].

Definition 4.17 (Stable graph). A stable graph is a connected graph with

• either a single vertex,

• or no vertices of degree less than 3. ♦

Theorem 4.18 (Unique stable graph). Every refinement-equivalent class of graphs
contains exactly one stable graph, and every graph in the equivalence class is a
refinement of this stable graph.

We start with the definition of the stable degree. This counts the number of
edges from a vertex v to v-subgraphs of G that contain a cycle.

Definition 4.19 (Stable degree). The stable degree of a vertex v ∈ V (G) is defined
as

sdeg(v) =
∣∣∣{e∣∣e = uv,Gv(u) is not a tree

}∣∣∣
♦

Remark 4.20. Below, we show that the stable degree is constant under refinements.
This justifies the name stable.

Lemma 4.21. The stable degree is constant under refinements.

Proof. Let v ∈ V (G) be given. It suffices to show that the stable degree of v does
not change we we add a leaf to G or subdivide an edge of G.

Case 1: leaf addition. If we add a leaf l to v, (Lv(G))v(l) is a tree, and hence vl
is not counted. If we add l to a different vertex u,

(
Lu(G)

)
v
(u) is a tree if and only

if Gv(u) is a tree. Hence, this does not change the stable degree of v.

21

(a) (b)

Figure 4.4: A graph with two cycles will always contain at least two vertices
with stable degree 3, which are shown as red in these graphs. Furthermore,
any graph with a vertex with stable degree at least three contains as least 2
cycles.

Case 2: edge subdivision. If we subdivide an edge e = xy in G, we will never
create a new cycle. Hence, every Gv(u) is a tree after the subdivision if and only if
it was a tree before the subdivision.

We conclude that the stable degree is constant under refinements.

Definition 4.22 (Stabilisation). A stabilisation of a connected graph G is a stable
graph S such that G is a refinement of S. ♦

Theorem 4.23 (Unique stabilisation). Every graph has a unique stabilisation.

Proof. We start with a constructive prove of the existence of a stabilisation for every
graph G. Start with S = G. While S has at least two vertices, and at least one
vertex v with degree less than 3, we contract this vertex to a neighbour. We can
reverse this operation by adding a leaf or subdividing an edge. Hence, G will always
be a refinement of S. We end with a stabilisation S of G.

For the uniqueness, we first consider the cases where all vertices of G have a
stable degree less than 3. In this case, G has at most 1 cycle, because otherwise,
there would be a vertex with stable degree at least 3. This is shown in Figure 4.4.

G is a tree. The trivial graph consisting of a single vertex is a stabilisation of
G. Any stabilisation S of G with at least two vertices must have a leaf, and hence
would not be stable. Furthermore, a graph with one vertex and at least one edge
would have a cycle, so that G could not be a refinement of S. We conclude that
trees have a single stabilisation.

G has 1 cycle. In this case, the graph S consisting of a single vertex with a loop
is a stabilisation of G, because G is a refinement of this graph. Any other graph S
will have at least two cycles or at least one vertex of degree less than 3, so the given
graph is the only stabilisation of G.

G has a vertex with stable degree at least 3. We will prove that S contains all
vertices of G with stable degree at least 3 and none of the other vertices. If we add
a new vertex to S by a leaf addition, the stable degree of the new vertex will be 1.
When we subdivide an edge, the new vertex has stable degree at most 2. Because
both these degrees are less than 3, S must contain all vertices of G with stable
degree at least 3. It remains to show that S contains no vertices with stable degree
less than 3. Because S is stable, we know that all vertices have at least degree 3.
A subgraph Sv(u) is never a tree, because S has no leaves. This implies that all
vertices of S have stable degree at least 3.

From this, we conclude that S contains precisely the vertices of G with stable
degree at least 3. We still need to prove that the edges of S can be uniquely
determined from G as well.

22

Let e(u, v) denote the number of paths in G between two vertices u, v ∈ V (G)
with stable degree at least 3, such that no other vertices with stable degree at least 3
lie on these paths. It is easily seen that this quantity is constant under refinements,
because we can not add or remove such vertices. This implies that e(u, v) must be
equal in S and G. Because every vertex in S has stable degree at least 3, e(u, v)
counts the number of edges from u to v in S. This implies that S can be uniquely
determined from G.

Now we prove that every equivalence class contains a unique stable graph.

Proof of Theorem 4.18. It is sufficient to prove that every pair of stable graphs is in
a different equivalence class, because Theorem 4.23 implies the existence of at least
one stable graph in every equivalence class.

We proceed with a proof by contradiction. Suppose S and S ′ are different but
equivalent stable graphs. Then, there exist graphs G0, . . . , Gk with G0 = S, Gk = S ′

and Gi � Gi+1 or Gi � Gi+1. Each of these graphs Gi has a unique stabilisation
Si. Suppose Gi � Gi+1. Then, Si is also a stabilisation of Gi+1. Thus, Si = Si+1.
The same holds when Gi � Gi+1. This implies that S = S ′. Since we assumed
that S 6= S ′, this is a contradiction. We conclude that every equivalence contains a
unique stable graph.

We have introduced the following notations in this chapter.

Notation 5: Refinements

Leaf addition Lu = (Lu; ι : G→ Lu(G))
Subdivision Se = (Se; ι : G− [e]→ Se(G))
Edge contraction Ce = (G/e; ι : G→ G/e)
Refinement R = (R; ι : G→ R(G))
Image of subgraph RG(A)
Refinement relation G � R(G)
Set of refinements Rf(G)
Stable degree sdeg(u)

23

5 Finite harmonic morphisms

In this section I present finite harmonic morphisms and the stable gonality, as first
defined in chapter 3 of [6]. My definitions will be very similar to those in [6], except
for some changes in wording and some new notations.

A finite morphism is a map from a graph to another graph sending vertices to
vertices and edges to edges. Such a morphism is harmonic when it obeys some addi-
tional restrictions. We will see that because of these restrictions, a finite harmonic
morphism has a lot of interesting properties.

Definition 5.1 (Finite harmonic morphism). Let G and H be two loopless graphs.
A finite morphism between G and H, denoted ϕ : G→ H is a triple of maps

ϕ : V (G)→ V (H),

ϕ : E(G)→ E(H),

rϕ : E(G)→ N

such that every edge {u, v} ∈ E(G), maps to another edge {ϕ(u), ϕ(v)} ∈ E(H) in
H. The last map, rϕ(e), is called the index of ϕ at e. When ϕ is clear from the
context, we will usually just write the index of e and r(e).

We define the index of a vertex v ∈ V (G) at an edge e′ ∈ E(ϕ(v)) neighbouring
the image of v as

mϕ,e′(v) =
∑

e∈E(v), ϕ(e)=e′

rϕ(e).

A finite morphism is called harmonic if mϕ,e′(v) is independent of the edge e′ in
E(ϕ(v)) we choose. When ϕ is harmonic, we drop the e′ from the subscript and
write mϕ instead. When there are no edges adjacent to v′, we define mϕ(v) = 1.
The equation above is also called the harmonic property.

Lemma 5.5 below will show that for a finite harmonic morphism ϕ to a connected
loopless graph H, the following number is independent of v′ ∈ V (H) or e′ ∈ E(H):

degϕ =
∑

v∈ϕ−1(v′)

mϕ(v) =
∑

e∈ϕ−1(e′)

rϕ(e).

This is called the degree of ϕ. ♦

Remark 5.2. The degree of a finite harmonic morphism is only defined when the
image of ϕ is connected. In practice, we will only consider finite harmonic morphisms
to trees, so this is not a problem.

Definition 5.3 (Stable gonality, [6, Definition 3.7]). A connected graph G that has
a refinement H with a degree d harmonic morphism ϕ : H → T to a tree T is called
stably d-gonal. The stable gonality of a graph G is defined as

sgon(G) = min{degϕ|ϕ : H → T, H ∈ Rf(G), T a tree}

where ϕ is a finite harmonic morphism from a refinement H of G to a tree T . Note
that, although not explicitly written down, we also have to consider all possible
rϕ. ♦

24

u v ϕ1 u′ v′

u v ϕ2 u′

Figure 5.1: The first image shows a finite harmonic morphism from the
banana graph B5 to a single edge. The degree of this morphism is 5, because
the single edge in the resulting graph has 5 edges mapping to it.
When we subdivide each edge in B5 once, we obtain a finite harmonic mor-
phism with degree 2. Since B5 is not a tree, the stable gonality is at least 2,
so it is 2.

Remark 5.4. The stable gonality is even defined for graphs containing loops, because
we can refine these loops away.

Now, we will prove that the degree of a finite harmonic morphism is well defined.
This lemma was already proven in [1], but I will present my own proof.

Lemma 5.5 (Degree). For a finite harmonic morphism ϕ : G→ H to a connected
graph H, we have that

degϕ =
∑

v∈ϕ−1(v′)

mϕ(v) =
∑

e∈ϕ−1(e′)

rϕ(e) (5.1)

is independent of v′ ∈ V (H) or e′ ∈ E(H).

Proof. Since G and H are loopless, two neighbouring vertices in G never map to
the same vertex in H, as that would imply that there is a loop in H. Thus, an edge
e ∈ E(G) mapping to e′ = {u′, v′} ∈ E(H) will be adjacent to exactly one vertex
mapping to u′. Therefore, we can partition the set ϕ−1(e′) based on the preimage
of one of the endpoints of e′.∑

e∈ϕ−1(e′)

rϕ(e) =
∑

u∈ϕ−1(u′)

∑
e∈E(u),
ϕ(e)=e′

rϕ(e) =
∑

u∈ϕ−1(u′)

mϕ(u)

Analogously, we could also have chosen the other end v′ of e′ to induce the parti-
tioning. Therefore, we have∑

u∈ϕ−1(u′)

mϕ(u) =
∑

e∈ϕ−1(e′)

rϕ(e) =
∑

v∈ϕ−1(v′)

mϕ(v).

This implies that the quantity
∑

v∈ϕ(v′) mϕ(v) is equal for neighbouring vertices in
H. Since H is connected and every edge in H is adjacent to at least one vertex of
H, the degree must be equal for all vertices of H, and hence for all edges in H.

Remark 5.6. The proof I have given above only works if both G and H are loopless
graphs. Since we are only interested in finite harmonic morphisms to trees, this is
not a problem.

One property of finite harmonic morphisms is that we may subdivide an edge in
H and all edges of G mapping to it without changing its properties. For a loop based

25

(a)

u2

u′

(b)

v

v′

(c)

v2

2

v′

(d)

Figure 5.2: These are some examples of morphism that we might consider
as finite harmonic morphisms if we were to allow loops. Only (a) satisfies
the property that it is still a valid finite harmonic morphism after we refine
the loop and all edges mapping to it. This is explained in Remark 5.6.

at u, this would create two edges from u to a new vertex l. If we look at the four
candidates for finite harmonic morphisms shown in Figure 5.2, only Figure 5.2(a)
satisfies this requirement. Case (b) fails because after subdividing the loops, u has
index 2 to the left, but only one edge of index 1 maps to the new edges u′l′. Cases
(c) and (d) fail because v′ has degree 3 after subdividing the loop, while v still has
degree 2. Thus, there is no way the edges surrounding v can cover all edges adjacent
to v′.

We conclude that the only time when loops are possible in G and H is when all
loops in G map to a loop in H and nonloops in G never map to loops in H. But
then, we can just remove all loops from G and H, and the restriction of ϕ to the
remainder of G would still be a finite harmonic morphism to the remainder of H.

The origin of these problems is that it is more intuitive to refine loops to a single
edge to a new leaf, instead of two edges to a new vertex. To save ourselves from a
lot of unintuitive edge cases, we disallow loops completely.

Remark 5.7. When all edges have index 1, the degree of a finite harmonic morphism
is just the number of edges mapping to any edge e′ ∈ E(H), that is, |ϕ−1(e′)| =
|{e : ϕ(e) = e′}|. The index mϕ(v) of a vertex v is the number of times the edges in
E(V) cover the edges in E(ϕ(v)). The degree of ϕ is the sum of mϕ(v) of all vertices
mapping to a given v′ ∈ V (H).

Lemma 5.8. The stable gonality of a tree G is 1, because we can use H = T = G,
with the identity refinement and finite harmonic morphism which assigns index 1 to
all edges. Trees are the only graphs with stable gonality 1, because a cycle in G will
always cover some edge in T twice.

26

Example 5.9. The banana graph Bn consists of two vertices u and v, both connected
to n other vertices. The graph B5 is shown in Figure 5.1. As shown in the picture,
there is a finite harmonic morphism from B5 to a tree with degree 5. By subdividing
each edge once, we obtain a refinement of B5. This new graph can be mapped to the
tree shown on the bottom right. The degree of this new finite harmonic morphism
is 2, because each edge is covered twice. Since B5 is not a tree, there is no finite
harmonic morphism from a refinement of B5 to a tree with degree 1. Therefore, the
stable gonality of B5 is 2.

Often, it is useful to talk about all vertices of G that map to the same vertex
of H. To make this easier, we now define an equivalence relation on G where two
vertices are equivalent when they have the same image under ϕ.

Definition 5.10. Given a finite harmonic morphism ϕ : G → H, we have an
induced equivalence relation ∼ on the vertices of G defined by:

u ∼ v ⇐⇒ ϕ(u) = ϕ(v).

It is easy to check that this is indeed an equivalence relation. We write [u] =
ϕ−1(ϕ(u)) for the equivalence class of a vertex u in G.

Using the inclusion ι of V (G) into V (G̃) for some refinement G̃ of G, we can

partition the vertices of G̃ that are in the image of ι by

ι(u) ∼ ι(v) ⇐⇒ u ∼ v. ♦

In the algorithm I will describe, we will need the following lemma, which is
Lemma 5.4 (i) from [6].

Lemma 5.11 (Refinement of finite harmonic morphism). For a given finite har-

monic morphism ϕ : H → T , and a refinement T̃ of T , there exist a finite harmonic
morphism ϕ̃ : H̃ → T̃ for a refinement H̃ of H with the same degree as ϕ.

Proof. Suppose that R = Rk ◦ · · · ◦ R1 is the refinement from T to T̃ . We will
proceed by induction on k. When k = 0, T̃ = T and we are done. Otherwise, let
T ′ = Rk−1 ◦ · · · ◦ R1(T) be the refinement of T before applying Rk, and H ′ and
ϕ′ the corresponding refinement of H and morphism. We know that Rk = Lu′ or
Rk = Se′ for some vertex u′ respectively edge e′ in T ′.

Case 1: Rk = Lu′ . We construct H̃ by adding a leaf lu to every vertex in ϕ′−1(u′).
We map all new leaves to lu′ , the new leaf in T ′, and the index of every new edge
ulu is given by mϕ′(u), so that ϕ̃ is a harmonic morphism again.

Case 2: Rk = Se′ . Now, we subdivide every edge e = uv in ϕ′−1 with a new
vertex ue mapping to e′. The indices of all new edges uue and vue are given by
rϕ′(e). Then, the harmonic property of ϕ̃ is satisfied in all ue.

From the construction, it is obvious that deg(ϕ̃) = deg(ϕ).

Notation 6: Harmonic morphisms

Harmonic morphism ϕ : G→ H
Index of ϕ of an edge rϕ(e)
Index of a vertex mϕ(v)
Degree of a morphism deg(ϕ)
Stable gonality sgon(G)
Equivalence class of a vertex [u] = ϕ−1(ϕ(u))

27

6 Properties of the stable gonality

The stable gonality has a lot of interesting properties. It is useful to take a look at
them, because we might be able to use them to calculate the stable gonality.

The main result of this section will be that the stable gonality is invariant under
refinements. We start by proving that it does not decrease under refinements, and
next we show that it does not increase as well. For this, we proof that the stable
gonality remains the same for both allowed operations to make refinements.

First we show that the stable gonality increases under refinements.

Lemma 6.1 (Refining). For a refinement H of G, we have sgon(H) ≥ sgon(G).

Proof. When H is a refinement of G, it follows from the definition of refinements
that Rf(H) ⊂ Rf(G). Therefore

sgon(H) = min{degϕ|ϕ : H → T,H ∈ Rf(H)}
≥ min{degϕ|ϕ : H → T,H ∈ Rf(G)} = sgon(G).

Now we know that the stable gonality does not decrease when we take refine-
ments, it would be nice to prove it does not increase as well. For that, we first show
that it does not increase when we add leaves.

Lemma 6.2 (Leaf addition). Adding leaves to a graph does not increase the stable
gonality of the graph. Thus, for u ∈ V (G), we have

sgon(Lu(G)) ≤ sgon(G).

Proof. Write G̃ for Lu(G). To prove that sgon(G̃) ≤ sgon(G), we will show that

there exists a finite harmonic morphism from a refinement of G̃ to a tree with degree
sgon(G).

Let H be a refinement of G such that there is a finite harmonic morphism ϕ
from H to a tree T with degϕ = sgonG. For the given vertex u ∈ V (G), we define

H̃ = L[u](H) and T̃ = Lϕ(u)(T). These are shown in Figure 6.1. Figure 6.2 shows
the same diagram for explicit graphs G, H and T . We will show that we can define
R̃ and ϕ̃ in such a way that this diagram commutes and that deg ϕ̃ = degϕ.

First take a look at R̃. Since u ∈ [u] ⊂ H, L[u] adds a leaf lu ∈ H̃ to u ∈ H.
Hence, we can define

R̃ = L[u]\{u} ◦R.

G H T

G̃ H̃ T̃

Lu

R

L[u]

ϕ

Lϕ(u)

R̃ ϕ̃

Figure 6.1: The commutative diagram we use in the proof of Lemma 6.2.
The lower three graphs are defined in such a way that there exists a refine-
ment R̃ and finite harmonic morphism ϕ̃ such that the diagram commutes.

28

u

v

u

v

u′

u lu

v

u lu

v lv

u′ l′

R

Lu

ϕ

L[u] Lu′

R̃ ϕ̃

Figure 6.2: This is the same diagram as figure Figure 6.1, but with explicit
graphs. The dotted lines indicate that the vertices may be connected to
other parts of the graphs. We have [u] = {u, v} and ϕ(u) = ϕ(v) = u′.

Because the domain of R̃ is G̃ and not G, we extend the inclusion of R̃ by

ιR̃(lu) = lu, ιR̃({u, lu}) = {u, lu} .

Because the addition of leaves to vertices of G commutes with other operations on
refinements of G, we immediately have

R̃ ◦ Lu = L[u]\{u} ◦R ◦ Lu = L[u]\{u} ◦ Lu ◦R = L[u] ◦R,

and thus the left square in the diagram commutes.
Now that we know that H̃ is indeed a refinement of G̃, we will define ϕ̃. It will

be identical to ϕ on H ⊂ H̃, and we extend it by sending all new leaves lv with
v ∈ [u] to the newly added leaf l′. The corresponding edges {v, lv} are sent to the
edges {u′, l′},

ϕ̃|H = ϕ,

ϕ̃(lv) = l′,

ϕ̃(vlv) = u′l′.

We also have to define the index of all new edges {v, lv},

rϕ̃(vlv) = mϕ(v).

Since ϕ̃|H = ϕ, it is clear that the right cycle in the diagram commutes too.
Now, the only thing left to show is that ϕ̃ is indeed a finite harmonic morphism.

Thus, we have to show that mϕ̃,e′(v) is independent of e′ for the vertices v in [u] ⊂ H̃
and the new leaves lv. In particular, we have to show that mϕ̃,{u′,l′}(v) is equal to
mϕ(v), because e′ = {u′, l′} is the only new edge surrounding ϕ̃(v). Since {v, lv} is
the only edge in E(v) mapping to e′, we have

mϕ̃,{u′,l′}(v) =
∑

e∈E(v), ϕ̃(e)=e′

rϕ̃(e) = rϕ̃({v, lv}) = mϕ(v).

29

Hence, we have that mϕ̃,e′(v) is independent of e′ and equal to mϕ(v).
For the new leaves lv, there is only one edge surrounding the image l′. Thus, the

requirement that mϕ̃,e′ is independent of e′ surrounding l′ is void.
This concludes the proof that ϕ̃ is a finite harmonic morphism. It remains to

show that deg ϕ̃ = degϕ. This is trivial, because the vertices v ∈ [u] mapping to u′,
all have mϕ̃(v) = mϕ(v), and [u] = ϕ−1(u′) = ϕ̃−1(u′):

deg ϕ̃ =
∑

v∈ϕ̃−1(u′)

mϕ̃(v) =
∑

v∈ϕ−1(u′)

mϕ(v) = degϕ.

Now we prove a similar lemma for the subdivision of edges. The proof is also
very similar, although a bit more complicated. Therefore, we will only highlight the
differences with the proof of the previous lemma.

Lemma 6.3 (Subdivision). Subdividing an edge does not increase the stable gonality
of a graph. That is, for every e ∈ E(G), we have

sgon(Se(G)) ≤ sgon(G).

Proof. Again, let H be a refinement R of G with a degree sgon(G) finite harmonic

morphism ϕ to a tree T . We will give a refinement H̃ of G̃ = Se(G) and a finite

harmonic morphism from H̃ to T̃ with the same degree as the stable gonality of G.
Unlike before, we have to consider two cases, depending on whether the edge e that
we subdivide in G̃ is still present in H.

Case 1: R subdivides e. We will show that H already is a refinement of G̃, so
that ϕ is a finite harmonic morphism from a refinement of G̃ to a tree with degree
sgon(G).

Write

R = Rk ◦ · · · ◦R1.

where each of the Ri is of the form Lu or Se for some u ∈ V (G) or e ∈ E(G). Since
R subdivides the edge e, there is an index j such that Rj = Se. Using Lemma 4.8
we may rewrite R as

R = Rk ◦ · · · ◦Rj+1 ◦ Se ◦Rj−1 ◦ · · · ◦R1

= Rk ◦ · · · ◦Rj+1 ◦Rj−1 ◦ · · · ◦R1 ◦ Se

=
(
Rk ◦ · · · ◦Rj+1 ◦Rj−1 ◦ · · · ◦R1

)
◦ Se

= R̃ ◦ Se.

Here, R̃ is defined as the expression between parenthesis. Now, R̃ sends G̃ to
H̃ = H, and we can use ϕ again.

Case 2: e is present in H. This case is very similar to the proof of Lemma 6.2.

We will focus on the definitions of R̃ and ϕ̃ and show that ϕ̃ is indeed a finite
harmonic morphism . The new commutative diagram is shown in Figure 6.3 and an
explicit example can be seen in Figure 6.4.

We have H̃ = S[e](H). Since the refinement S[e] subdivides {ul, ur} = e ∈ [e], we
can define

R̃ = S[e]\{e} ◦R.

30

G H T

G̃ H̃ T̃

Se

R

S[e]

ϕ

Sϕ(e)

R̃ ϕ̃

Figure 6.3: We use this diagram in the proof of Lemma 6.3. Instead of
adding leaves, this time we subdivide edges.

ul ure
ul ure

vl vrf

u′l u′re′

ul se ur ul se ur

vl sf vrgi

u′l se′ u′rg′

R

Se

ϕ

S[e] Se′

R̃ ϕ̃

Figure 6.4: Again, this is the same diagram as figure Figure 6.3, but with
explicit graphs. In this example, ϕ(e) = ϕ(f) = e′. Remark 6.4 explains
why we cannot label f in the left two graphs.

Because R does not alter e, R and Se commute and therefore left part of the diagram
commutes,

R̃ ◦ Se = S[e]\{e} ◦R ◦ Se = S[e]\{e} ◦ Se ◦R = S[e] ◦R.

Now H̃ is a refinement of G̃ and thus we can define ϕ̃. The image of ϕ̃ is the tree
T̃ = Se′(T). Again, ϕ̃ coincides with ϕ on H. For any edge {vl, vr} = f ∈ [e] we
define

ϕ̃(sf) = se′ ,

ϕ̃(vlsf) = u′lse′ ,

ϕ̃(vrsf) = u′rse′ ,

rϕ̃(vlsf) = rϕ(f),

rϕ̃(vrsf) = rϕ(f).

To show that ϕ̃ is a finite harmonic morphism, we must show that mϕ̃,e′(v) is inde-
pendent of e′ ∈ E(ϕ̃(v)) for v. When v is not an endpoint of an edge in [e] or of the
form sf for f ∈ [e], nothing changed so this is true.

When v = sf , there are two edges adjacent to ϕ̃(v), and they both have one
edge neighbouring v mapping to it. Since both edges adjacent to v have index rϕ(e),
mϕ̃(sf) is well defined.

Now, let v be an endpoint of some edge f ∈ [e] ⊂ H. We would like to show that
the index mϕ̃(v) is well-defined and equal to the index mϕ(v) of v ∈ H. Let v′ = ϕ̃(v)

31

be the image of v in T̃ . Since the edges in H̃ mapping to edges h′ in E(v′) − [g′],
with g′ = {u′l, se′}, have not changed, the corresponding indices mϕ,h′(v) just equal
mϕ(v). Hence, we must show that

mϕ̃,g′(v) = mϕ(v).

Enumerate all edges in E(v) ⊂ H̃ mapping to g′ by g1, . . . , gk. Then, we have that

mϕ̃,g′(v) =
∑

e∈E(v),
ϕ̃(e)=g′

rϕ̃(e) =
k∑

i=1

rϕ̃(gi).

We know that every gi is an edge from v to some new vertex sfi , where fi is an edge
in [e] ⊂ H adjacent to v. Since we defined rϕ̃({v, sfi}) = rϕ(fi), we obtain

mϕ̃,g′(v) =
k∑

i=1

rϕ̃(gi) =
k∑

i=1

rϕ(fi) =
∑

f∈E(V),
ϕ(f)=e′

rϕ(f) = mϕ(v).

We conclude that ϕ̃ is a finite harmonic morphism again, and as before, the equality
of degree follows trivially.

Remark 6.4. The edge f as shown in Figure 6.4 might not be present in G, because
it can be part of a subdivided edge. This is not a problem, because [e] contains only
edges in H.

Now we are finally ready to state the main result of this section.

Theorem 6.5. Refinement-equivalent graphs have the same stable gonality.

Proof. Lemma 6.2 and Lemma 6.3 together imply that the stable gonality does not
increase when we take refinements. Lemma 6.1 states that is does not decrease, so
we conclude that the stable gonality is constant under refinements. When G1 and
G2 are refinement-equivalent they are refinements of the stable same graph H by
Theorem 4.18. We thus have that

sgonG1 = sgonH = sgonG2,

as required.

32

7 The algorithm

Before proceeding with further theorems, I will explain the algorithm to calculate
the stable gonality of graphs. This section describes the algorithm itself in full
detail, but it omits arguments as to why it works. These arguments are presented
in the sections following this one and I will refer to them when necessary. Also, I
informally introduce some new notation which is formally defined later on.

7.1 Pseudocode

All pseudocode is explained in the paragraph below the code.

1: procedure Stable gonality(G)

The input of the algorithm will be a connected multigraph G. The output will
be the stable gonality of G, sgon(G). Furthermore, the algorithm results in two
functions f and r, that can be used to construct a refinement H of G and a finite
harmonic morphism to a tree.

2: while There is a v ∈ V (G) with 1 ≤ deg(v) ≤ 2 do
3: Contract v to a neighbour
4: end while

The algorithm we will describe depends on the number of vertices and edges of
G. Thus, we would like to make G as small as possible before proceeding. Since
we know that the stable gonality of refinement-equivalent graphs is equal, we start
by looking at the graph with the least number of vertices that is equivalent to G.
This is the stabilisation of G (Definition 4.22), and it can be obtained by repeatedly
contracting vertices of degree 1 and 2 to (one of) their neighbour(s). From now on,
we will assume that G is a stable graph.

5: if |E(G)| = 0 then
6: return sgon(G) = 1
7: end if

When the input graph G is a tree, we are left with a single vertex with no edges.
In this case, the stable gonality is 1.

8: if |V (G)| = 1 then
9: return sgon(G) = 2

10: end if

R ϕ

Figure 7.1: This shows the special case where G only has a single vertex
after stabilizing it. We subdivide each edge once and map it to the star
graph shown on the right. This finite harmonic morphism has degree 2.

33

When G is not a tree, but has only one vertex remaining after stabilizing it,
all edges must be loops. We obtain a degree 2 finite harmonic morphism if we
subdivide each loop once, and because G is not a tree, sgon(G) = 2. This is shown
in Figure 7.1.

11: T ← T|V (G)| . Tn is defined below
12: r′ ← the root of T
13: sgon←∞

Now, we consider a minor-universal tree Tn, where n = |V (G)| is the number of
vertices of G. The minor-universal tree on n vertices is the smallest tree containing
all trees on at most n vertices as a minor. Section 9 gives some bounds regarding
the size of minimal rooted-universal trees, which are rooted trees containing all
rooted trees on at most n vertices as a rooted subtree. Also, we give a construction
of Rn, the minimal rooted-universal tree. We will write α(n) for the number of
vertices of a minimal minor-universal tree. Since every rooted-universal tree is also
a minor-universal tree, equation 9.1 in Section 9 gives us

α(n) ≤ n
1

2 ln 2
(lnn−2 ln lnn+O(1)).

We write r′ for the root of Tn, and initialize the stable gonality to infinity, because
we will minimize it over all finite harmonic morphisms.

In Section 8 we will show that for any refinement R and finite harmonic morphism
ϕ to a tree T , we can construct a new refinement and morphism such that ϕ′ has the
same degree as ϕ and T ′ has at most n nonleaf vertices. Because Tn contains all trees
on n vertices as a minor, we know that the induced subtree of the nonleaf vertices of
T̃ will be a minor of Tn, or equivalently, that T̃ is a minor of Tn when we add enough
new leaves. There is only one case in the proof of this theorem where we actually
need the vertices to be nonleaves, and we will deal with this case separately in the
algorithm. Because of Lemma 5.11, we can extend any finite harmonic morphism
to a tree T ′ to a finite harmonic morphism to Tn, provided that we add some extra
leaves for the special case. This allows us to use Tn, instead of a larger universal
tree that also accounts for the leaves we might need to add.

14: for all (u, v) ∈ V (T)2 with u 6= v do
15: dir(u, v)← the edge incident to u in the direction of v
16: end for

Since T is a tree, for every pair of distinct vertices u, v ∈ V (T), there is a unique
neighbour of u that is closer to v than u is. All these neighbours can be calculated
in V (T)2 time using a simple depth first search from every vertex in V (T). The
edges follow directly from these neighbours.

We will need these values later in the algorithm.

17: for all f : V (G)→ V (T) do
18: for all r : E(G)→ {1, . . . , β(G) do

Instead of iterating over all refinements H of G and finite harmonic morphisms
ϕ from H to T , we iterate over functions f : V (G) → V (T) and r : E(G) →
{1, . . . , β(G)} for some β(G) that will be specified later.

In Section 7.2 I explain how we find R and ϕ from f and r in more detail. We
will use that f = ϕ ◦ RV (G) and that the indices of H can be calculated from r.
We say that (R, ϕ) is the reconstruction of (f, r). Now, I will prove that this map

34

(f, r) 7→ (R, ϕ) contains an optimal finite harmonic morphism in its image. Or,
more precise, that there is a pair (f, r) such that the ϕ we create from it has degree
sgon(G).

Suppose that ϕ̃ is a finite harmonic morphism from a refinement H̃ = R̃(G) to
T with degree sgon(G).

Let f̃ be given by ϕ̃ ◦ R̃|V (G), the image of the vertices of G in T . We iterate
over all possible functions f , so this does not yet make any assumptions about ϕ̃.

In Section 10, I show that we may assume that R̃ is such that for all e ∈ E(G),

all of R̃G(e) (the image of e under R, Definition 4.10) has the same index. Therefore,
we iterate r over all possible assignments of indices to the edges of G, and construct
H and ϕ in such a way that this condition is satisfied.

The actual shape of H is determined by T , and we will refine each edge e = uv ∈
E(G) to Tf(u)f(v) in H.

Next, I prove that we may assume there is some upper bound on the indices of
ϕ̃. In particular, Corollary 11.5 bounds the indices of ϕ̃ at β(G) = |E(G)|.
19: degree← 0
20: for all u ∈ V (G) do
21: mϕ,min(u)← 1
22: for all e′ ∈ E(f(u)) do
23: mϕ,e′(u)← 0
24: end for
25: end for

All we have to do now is to determine the degree of the finite harmonic morphism
that corresponds to (f, r). We calculate the degree incrementally, so we initialize
it to 0. Furthermore, we initialize the minimum value of mϕ(u) to 1 for each u,
because this can never be 0.

Finally, we initialize all values of mϕ,e′(u) to 0, because they will also be calcu-
lated while processing all edges.

26: for all e = uv ∈ E(G) do
27: u′ ← f(u)
28: v′ ← f(v)
29: if u′ = v′ then
30: if u = v then
31: mϕ,min(u) = 2
32: end if

We loop over all edges e ∈ E(G) we set u′ = f(u) and v′ = f(v). If u = v, e
is a loop. Note that this is allowed, because G may have cycles after stabilizing it.
This is the special case of Theorem 8.6. In this case, we subdivide the loop once
with vertex s and add a new leaf s′ to u′ = v′. Then, we map the edges us and vs
to u′s′ = v′s′. Now, mϕ,u′s′(u) equals 2. Hence, mϕ(u) must be at least 2, so we set
mϕ,min(u) = 2.

When u′ = v′, but u 6= v, we also subdivide uv with s and add a new vertex s′ that
is connected to u′ = v′. We extend ϕ as in the previous case. Now, mϕ,u′s′(u) =
mϕ,v′s′(v) = 1, so we must have mϕ(u) ≥ 1. This is a trivial condition, because
mϕ(u) = 0 will never happen. Because of this, mϕ,min(u) is initialized to 1.

35

33: else
34: e′ ← dir(u′, v′)
35: mϕ,e′(u)← mϕ,e′(u) + r(e)
36: f ′ ← dir(v′, u′)
37: mϕ,f ′(v)← mϕ,f ′(v) + r(e)

If u′ 6= v′, e is a normal edge. We refine e to the subtree Tu′v′ of T with index
r(e). We add r(e) to the indices mϕ,e′(u) and mϕ,f ′(v), with e′ the edge leaving u′

in the direction of v′, and f the edge leaving v′ in the direction of u′.

38: if Tu′,v′ covers r′ then
39: degree← degree+ index
40: end if
41: end if
42: end for . End of loop over e

If the subtree we add covers the root r′, we add r(e) to the degree. Note that
this does not interfere with the addition of new leaves when u′ = v′, because we only
have to know whether r′ is contained in the subtree.

43: for all u ∈ V (G) do
44: mϕ(u)← max

(
mϕ,min(u),maxe′∈E(u′){mϕ,e′(u)}

)
Now, we iterate over all vertices u ∈ V (G) to make sure the harmonic property

is satisfied everywhere. We calculate the final value of mϕ(u) as the maximum over
e′ of all mϕ,e′(u). If this maximum is 1, but mϕ,min(u) is 2, we set mϕ(u) to 2.

45: if u′ = r′ then
46: degree← degree+mϕ(u)
47: else
48: e′ ← dir(u′, r′)
49: degree← degree+mϕ(u)−mϕ,e′(u)
50: end if
51: end for . End of loop over u

If u′ is the root r′ of T , we have to add mϕ(u) to the degree. We have not counted
this before, because we only increased the degree for Tu′v′ subtrees where r′ is an
internal node.

When u′ is not r′, we add subtrees to u for all e′ ∈ E(u′) where mϕ,e′(u) < mϕ(u).
The only time this subtree covers r′ is when e′ is the edge from u′ to dir(u′, r′). Thus,
we set e′ to that edge and add the corresponding number of subtrees to the degree
of ϕ.

52: if degree < sgon then
53: sgon← degree
54: Save f and r as optimal functions
55: end if

If the degree of the finite harmonic morphism corresponding to the current (f, r)
pair is strictly smaller than the best degree we have found so far, we update the
stable gonality. We save f and r, so that they can be used to obtain the actual
graph H and finite harmonic morphism ϕ.

36

56: end for . End of loop over r
57: end for . End of loop over f
58: return sgon(G) = sgon
59: end procedure

We complete the algorithm by returning the stable gonality we have found.

7.2 Constructing H and ϕ from f and r

We are given
f : V (G)→ V (Tn)

and
r : E(G)→ {1, . . . , β(G)}

for some β(G). We would like to construct a refinement H of G and a finite harmonic
morphism ϕ from H to Tn such that

ϕ ◦R|V (G) = f

and
rϕ(f) = r(e)

for all edges f in H that are in the image of RG(e), the image under R of the
subgraph consisting of the endpoints of e and e itself for some edge e ∈ E(G).

Start with H = G. We process all edges of G separately.
Case 1: f(u) = f(v). We add a new leaf w′ to Tn at f(u) = f(v), and subdivide

uv once with a new vertex w. We set ϕ(w) = w′ and the indices of the edges uw
and vw will be 1.

The tree obtained from Tn after adding the necessary new leaves will be denoted
T , and the refinement from G to H will be written R.

Case 2: f(u) 6= f(v). For each edge e = uv ∈ E(G) with f(u) 6= f(v), we replace
e ∈ E(H) by

Tf(u)f(v),

which is the part of Tn between f(u) and f(v) (Definition 3.35). An example of this
is shown in Figure 7.2 Note that this is a refinement of H, since we first subdivide
the edge e, k − 1 times, were k is the length of the path from f(u) to f(v). Then,
we add leaves to match the subtrees along the path from f(u) to f(v). We set
ϕ(u) = f(u), ϕ(v) = f(v), and ϕ is the identity on the subtree of T we used to
replace e. Furthermore, we prove in Section 11 that we may assume that ϕ has the

u

v

Figure 7.2: When we are given a tree T and two vertices u and v, the
uv-subtree is the part of T between u and v, as show in red in this image.

37

same index on all edges that originated at the same edge in G. Thus, we assign
index r(e) to all edges in the newly added T,f(u)f(v).

At this moment, we can already prove that ϕ is harmonic at all vertices in H that
are not in G. Let x be such a vertex. Assume that x was added in the refinement
of an edge e = uv ∈ G. There are two cases, just like in the construction of H.

Case 1: f(u) 6= f(v). The index of all edges surrounding x is a constant r = r(e),
because all edges surrounding x were created in a single replacement of an edge e in
G. Also, we know that the degree of x equals the degree of ϕ(x), because RG(e) is a
copy of Tf(u)f(v). Hence, every edge incident to ϕ(x) is the image of exactly on edge
incident to u, and thus mϕ(x) = r is independent of the edge e′ incident to ϕ(x) we
choose.

Case 2: f(u) = f(v). Since the image of x is a leaf w′ in this case, the harmonic
property is trivially satisfied at x.

We are left with the case that x ∈ V (H) is also a vertex in G. We keep a
counter mϕ,e′(x) for every edge e′ incident to ϕ(x) = f(x). For every edge xy in
H we will increment the counter mϕ,ϕ(xy)(x) by r(e), where e is the edge in G that
created xy. Then, we will set mϕ(x) = maxe′∈E(ϕ(x))mϕ,e′(x). Now, for every edge
e′ = ϕ(x)y′ ∈ E(ϕ(x)) we have mϕ,e′(x) ≤ mϕ(x). When the inequality is strict, we
will add a subtree to H. More precise, we add a copy of Tϕ(x)(y

′) to H such that
ϕ(x) corresponds to x. This is again a refinement of H, since we can add the new
tree by the repeated addition of leaves. The index of the edges in this new subtree
will be mϕ(x)−mϕ,e′(x).

Just like before, the harmonic property is satisfied for the vertices in the new
subtree we added. In x itself, we added new subtrees to H is such a way that all
mϕ,e′(x) have become equal, so ϕ is harmonic in x too.

If we do this procedure for all vertices x ∈ V (G) ⊂ V (H), we obtain the final
refinement H of G and a finite harmonic morphism from H to T . We still have to
determine the degree of the finite harmonic morphism. We do this by calculating
the sum

∑
r∈ϕ−1(r′) mϕ(r) for a certain vertex r′ ∈ Tn. In practice, we choose the

root r′ of T .

In the actual implementation of the algorithm, we do not have to construct H,
since this is not needed to calculate the degree of ϕ. Instead, we calculate the
degree on the fly, by keeping track of

∑
r∈ϕ−1(r′) mϕ(r), the sum of the indices of

the vertices mapping to the root r′ of Tn. When we add a subtree between f(u)
and f(v) that covers r′, f(u) 6= r′ and f(v) 6= r′, we increment the degree with the
index of the subtree we add. When f(u) = f(v) and u 6= v, we force mϕ(u) ≥ 1 and
mϕ(v) ≥ 1, since we need some room in mϕ for the edges we add to the new leaf.
When f(u) = f(v) and u = v, that is, G has a loop at u, mϕ(u) must be at least 2,
because we need two edges in the direction of the new leaf we add. These constraints
are only evaluated after the calculation of the maximum mϕ,e′(u) for each u.

In the last phase, when we add the extra subtrees to make all mϕ,e′(u) equal, we
add the indices of the subtrees covering r′ to the degree. Furthermore, we need to
add mϕ(u) for all vertices u in ϕ−1(r′) ∩ V (G).

7.3 Asymptotic runtime

Having described the full algorithm, we are ready to analyse its asymptotic runtime.

We assume that the input graph G is stable. Otherwise, we start by contracting

38

vertices in G until G is stable. This operation is linear in the number of vertices and
edges of the input graph G, since the number of vertices of G decreases after each
contraction. From now on, we will assume G is stable. We write n = |V (G)| and
m = |E(G)| for the number of vertices and edges of the stable graphG. Furthermore,
we assume that a minimal (minor-)universal tree can be constructed in linear time
in its size α(n).

We start by iterating over all maps f : V (G) → V (Tn). There are α(n)n such
maps. Because each map can be constructed from the previous one, each function
is constructed in amortized constant time, yielding

O(α(n)n)

for the loop over all maps f .
For each map f , we iterate over maps r : E(G)→ {1, . . . , β(n)}. This takes

O(β(n)m)

time.
Finally, we have to determine the degree of the finite harmonic morphism. This

is done by keeping track of all counters mϕ,e′(u) for u ∈ V (G) and e′ ∈ E(f(u)).
There are at most n2 such counters. After initializing these counters, we loop over
all edges of G to add the necessary subtrees. For each subtree of Tn between two
vertices f(u) and f(v), we need to determine whether it contains r′. This can be
done in constant time if, at the start of the algorithm, we create a V (Tn)2 table,
containing for each pair of vertices of Tn whether the subtree they induce contains
r′.

Then, for each v ∈ V (G) we have to calculate the maximum of all counters
surrounding f(v) to determine mϕ(v). This costs O(n2) time. Finally, we calculate
the degree of ϕ by a loop over all vertices of G, which takes O(n) time.

All together, this results in the following run time

O
(
α(n)2 + α(n)n · β(G)m · (n2 +m)

)
= O

(
(n2 +m)α(n)nβ(G)m

)
.

In this thesis (equation 9.1), we show that

α(n) ≤ exp

(
lnn · lnn− 2 ln lnn+ c

2 ln 2

)
.

for some unknown constant c, using minimal rooted-universal trees. Also, we prove
(Corollary 11.5) that the indices of the edges of the optimal finite harmonic mor-
phism are bounded by

β(G) ≤ |E(G)| = m.

Substituting these values results in

O

(
(n2 +m) exp

(
n lnn · lnn− 2 ln lnn+ c

2 ln 2

)
mm

)
.

Note that there is still a unknown constant c in the exponent, which means that we
could be off by a power of nn.

39

If we use the best bounds known in the literature (equation 9.2), we obtain

α(n) ≤ 2
√

2

n
nlnn/2 ln 2.

by using minimal unrooted trees as in [5]. Cornelissen et al. have shown in [6]
(Theorem B) that the stable gonality of a graph is bounded by

sgon(G) ≤
⌊
m− n+ 4

2

⌋
.

This implies that the indices of all edges will be at most

β(G) ≤
⌊
m− n+ 4

2

⌋
too. Because we assume G is stable, m ≥ 3

2
n (excluding trivial graphs), which

implies that m−n+ 4 is asymptotically equal to m. Using these bounds, we obtain
the following theorem.

Theorem 7.1 (Runtime). The stable gonality of a stable graph with n vertices and
m edges can be calculated in

O
(
(n2 +m)nn lnn/2 ln 2−nmm

)
time.

If we assume that m = O(nk) for some constant k, which holds for simple graphs,
this can be simplified to

nO(n lnn+m)

where the n lnn comes from the loop over maps f and the m comes from the loop
over the indices r.

7.4 Performance

I made a C++ implementation of this algorithm, which is available upon request.
In this section, I present some runtimes of the algorithm using the rooted-universal
trees Rn as the image of ϕ. Because Rn contains all rooted trees on n vertices, we
may assume that the image of a given vertex in G is r′, the root of Rn. This reduces
the runtime by a factor α(n). The upper bound on the indices I used is the one
derived from the upper bound on the stable gonality given by Cornelissen et al.

The runtime for the complete graphs K1, K2 and K3 is only a few milliseconds.
Calculating sgon(K4) takes 0.1 seconds. Calculating sgon(K5) already takes more
than an hour.

I also ran the algorithm on complete bipartite graphs Ka,b. When a = 1, the
graph is a tree, and hence sgon(Ka,b) = 1 is detected in linear time. When a = 2
and b ≤ 9, the algorithm finishes within a second. When a = b = 3, the algorithm
again takes much more than an hour.

Since the current algorithm already struggles with K5 and K3,3, it is quite unfea-
sible to use in practice. This is easily explained if we consider the sizes of the loops.

40

Because the number of maps we try for the indices r grows as
⌊
m−n+4

2

⌋m
. For K5,

we have n = 5 and m =
(
n
2

)
= 10, so we have to try⌊

m− n+ 4

2

⌋m
= 410

such maps for each map f . Since R5 has 12 vertices, there are α(n)n−1 = 124 maps
we have to try for f . Multiplying these two numbers yields over 2 · 1010 pairs of f
and r we will consider. For each of these pairs, we have to calculate the degree of
the corresponding finite harmonic morphism, which takes O(n2 +m) time too.

If we consider that a modern computer can do about 108 operations per second,
it is not surprising that this takes quite a long time.

41

8 Bounding the tree size

Now, we will investigate ways to reduce the number of trees we have to consider
as an image of ϕ. We start by proving a lemma concerning edge contractions in
refinements, and use this lemma to bound the number of nonleaf nodes of the trees
we have to try.

8.1 Contracting edges in finite harmonic morphisms

We start with the following lemma, which states that when we contract edges in T
and H in a special way, the new morphism induced from ϕ is still harmonic and has
at most the same degree as ϕ.

Lemma 8.1. Let a finite harmonic morphism ϕ : H → T to a tree T and an
edge e′ = u′v′ ∈ E(T) be given. Then there exists a finite harmonic morphism
ϕ̃ : H/ϕ−1(e′) → T/e′ with at most the same degree as ϕ, with equality when T
contains at least 2 edges.

Proof. The variables we use are shown in Figure 8.2. We will write H̃ = H/ϕ−1(e′)

and T̃ = T/e′. The new vertex in T̃ will be denoted ũ′ = ṽ′ Let ϕ̃ be given by

ϕ̃ : V (H̃)→ V (T̃)

ϕ̃(w) =

{
ϕ(w) ϕ(w) 6∈ e′

ũ′ ϕ(w) ∈ e′,

ϕ̃ : E(H̃)→ E(T̃)

ϕ̃(f) =

{
ϕ(f) ϕ(f) ∩ e′ = ∅
ϕ(f)− [u′, v′] + ũ′ ϕ(f) ∩ e′ 6= ∅,

rϕ̃ : E(H̃)→ N
rϕ̃(f) = rϕ(f).

We will now show that ϕ̃ is a finite harmonic morphism and has at most the same
degree as ϕ. Thus, consider a vertex w̃ ∈ V (H̃). We have to show that

mϕ,f (w̃) =
∑

e∈E(w̃),
ϕ(e)=f

rϕ̃(e)

is independent of f ∈ E(ϕ(w̃)).

H T

H̃ T̃

ϕ

Cϕ−1(e′) Ce′

ϕ̃

Figure 8.1: This is the commuting diagram containing the graphs used in
the proof of Lemma 8.1.

42

x

u1

u2

v y
2

x′ u′ v′ y′

e′

x ũ = ṽ y
2

x′ ũ′ = ṽ′ y′

ϕ

Cϕ−1(e′) Ce′

ϕ̃

Figure 8.2: An example of the commuting diagram in Figure 8.1. The
proof of the lemma uses the same labels as shown in this picture.

We first deal with the case where T consists of a single edge. In this case, all
vertices of H are contracted to a single vertex. Hence, the degree of ϕ̃ becomes 1,
which is smaller than degϕ when H is not a tree.

From now on, we assume T has at least two edges. We will show that the
harmonic property is satisfied at all vertices in H̃ by considering several cases.

Case 1: ϕ(w̃) 6= ũ′. In this case, w̃ was not merged with any neighbours, so w̃ is
also present in H. We call the occurrence of w̃ in H just w. Since T is a tree, ϕ(w)
is not adjacent to both u′ and v′ and hence, w can not have neighbours mapping
to u′ and neighbours mapping to v′. If the set N(w) of neighbours is disjunct
from ϕ−1(u′) ∪ ϕ−1(v′), ϕ̃ is equal to ϕ on all neighbours of w̃ = w, and thus the
condition is satisfied at w̃. Otherwise, assume without loss of generality that there
is a nonempty subset S ⊂ N(w) of neighbours of w that map to u′. In H̃, some
of the points in S may have been merged to a single point. Also the edges to the
points in S now map to w′ũ′ instead of w′u′. Since any edge wũ ∈ E(H̃) has the
same index as the original edge wu ∈ E(H), it is immediate that

mϕ̃,w′ũ′(w) = mϕ,w′u′(w).

This proves the required equality when ϕ(w) 6= ũ′.

Case 2: ϕ(w̃) = ũ′ = ṽ′. We will show that

mϕ̃,ũ′x′(w̃) = mϕ̃,ṽ′y′(w̃)

for all vertices x′ ∈ N(u′)\{v′} and y′ ∈ N(v′)\{x′}. If exactly one of these sets is
empty, u′ or v′ is a leaf and only one side of this equality makes sense. When u′ is a
leaf, this means that mϕ̃,ṽ′y′(w̃) is constant over y′, and mϕ̃ will still be well-defined.
When y′ is a leaf, this holds the other way around. Because T has at least 2 edges,
u′ and v′ can not both be leaves, so at least one of these sets is nonempty.

Let U ⊂ V (H) consist of those vertices u that have been contracted to w̃ with
ϕ(u) = u′. Similarly, V ⊂ V (H) consists of the vertices that have been contracted

43

to w̃ that originally mapped to v′. Using these sets, we have

mϕ̃,ũ′x′(w̃) =
∑
u∈U

mϕ,u′x′(u) =
∑
u∈U

mϕ,u′v′(u)

=
∑

e∈E(U,V)

rϕ(e)

=
∑
v∈V

mϕ,v′u′(v) =
∑
v∈V

mϕ,v′y′(v) = mϕ̃,ṽ′y′(w̃).

The first and last equalities are immediate from the contraction. The second and
fifth equalities hold because ϕ is harmonic. The summation over the edges from
U to V just counts the edges is a different way. This completes the proof that
mϕ̃,ũ′x′ is independent of the way we choose x′ ∈ E(ũ′). Hence ϕ̃ is a finite harmonic

morphism from H̃ to T̃ with the same degree as ϕ.

8.2 Contraction lemma

Now we will prove the main result of this section, which states that there exists a
finite harmonic morphism of minimal degree from a refinement H of G to a tree T
where the number of nonleaf vertices of T is at most |V (G)|.

Before stating the theorem, we define some new terminology.

Definition 8.2 (Internal). An internal vertex of a tree T is a vertex v that is not
a leaf, that is,

deg(v) > 1. ♦

Definition 8.3 (Native). When we are given G
R→ H

ϕ→ T with R a refinement
and ϕ a finite harmonic morphism, a vertex v ∈ V (H) is called native when there
exists a vertex u ∈ V (G) such that v = R(u). A vertex v′ ∈ V (T) is called native
when there exists a u ∈ V (G) such that v′ = ϕ ◦R(u). Thus, every native vertex is
the image of some vertex in G. The sets of native vertices in H respectively T are
given by

R(V (G)) ϕ ◦R(V (G)). ♦

Definition 8.4 (Alien). A vertex in H or T that is not native is called an alien
vertex. ♦

Remark 8.5. Native and alien vertices only exists in the context of a sequence G
R→

H
ϕ→ T . For brevity, I will not always write this as a prerequisite.

Theorem 8.6 (No internal aliens). Given a finite harmonic morphism ϕ : H → T ,

with H a refinement of G, there exists a refinement H̃ of G, a tree T̃ , and a finite
harmonic morphism ϕ̃ : H̃ → T̃ such that T̃ has no internal alien vertices, and
deg(ϕ̃) = deg(ϕ).

Because trees in H are not very interesting (they can be removed without chang-
ing the equivalence class of H), we will only consider edges to parts of H that contain
loops. For this, we use the stable degree defined in Definition 4.19.

Lemma 8.7. The stable degree of an alien vertex v ∈ H is at most 2.

44

Proof. We know that H = R(G), and that v 6∈ V (G). This implies that v was added
somewhere in the refinement. If v was added as a leaf to vertex u, all v-subgraphs
Hv(w) with w 6∈ V (Hv(u)) must be v-subtrees in fact. This implies that there is at
most one v-subgraph that is not a v-subtree, and thus, sdeg(v) ≤ 1.

Now suppose that v was added as a subdivision of an edge uw. All Hv(x) with
w 6∈ V (Hv(u))∪V (Hv(w)) are trees, since they were added after v was added. This
implies that sdeg(v) ≤ 2, as required.

Now we can prove Theorem 8.6.

Proof of Theorem 8.6. We will use a constructive proof where we remove all internal
alien vertices of T one by one. We remove such a vertex from T by contracting it
to a neighbour. We know that the resulting ϕ̃ : H̃ → T̃ is a harmonic morphism
because of Lemma 8.1, but that lemma does not say anything about the changes of
H. In particular, H̃ may not be a refinement of G any more. We will show that H̃
is a refinement of G when we contract an internal alien vertex. Then, the theorem
follows immediately.

Suppose that v′ is the internal alien vertex in T that we would like to remove.
We will contract it to a neighbour u′ ∈ N(v′). To show that the structure of H does
not change, we will consider two vertices u, v ∈ V (H) that map to u′ and u′, and

show that we can always make sure that H̃ is equivalent to H. We will consider
several cases. First we look at the stable degree of v, which can be 0, 1 or 2. The
first two cases are quite straightforward, while the last case is more involved and
requires several subcases.

Case 1: sdeg(v) = 0. The component of v in H must be a tree, and since H is
connected, H is a tree. This implies that G is a tree, and we know that trees have
a stable gonality of 1.

Case 2: sdeg(v) = 1. There is precisely one edge vu to a v-subgraph that is not
a v-subtree. This implies that Hu(v) is a u-subtree. When we contract edges in a
tree, we can not create cycles, and thus will be left with a tree. Hence, Hu(v)/uv
is still a tree. Because all trees are equivalent, this contraction does not change the
equivalence class of H.

Case 3: sdeg(v) = 2. This case is divided in three subcases which we will treat
separately. These cases are based on whether the two v-subgraphs (non-v-subtrees)
contain vertices mapping to u′. We will assume that the two v-subgraphs are dif-
ferent to simplify the proof, but in cases 1 and 3, where the two subgraphs could
actually be the same, it does not matter. The three different cases are shown in
Figure 8.3.

Subcase 3a. In this case, both v-subgraphs do not cover u, so that Hv(u) is a
v-subtree. This case is similar to the case where sdeg(v) = 1, so we do not have to
do anything here.

Subcase 3b. Now suppose that exactly one v-subgraph covers u. Let Hv(u) be
the v-subgraph containing u and let Hv(a) be the other subgraph, not containing
u, with a a neighbour of v. Again, we can just contract uv without changing the
equivalence class of H. To see that the structure of H does not change, first note
that it is invariant under the addition or removal of x-subtrees for vertices x. Then,
the only difference between the graph H before the contraction of uv and the graph
H̃ after the contraction is that the edge aũ = aṽ in H̃ is subdivided in H. Because

45

uv
a

b
ũ = ṽ

a

b

(a) Case 3a: both v-subgraphs do not cover u.

uv
a

b
ũ = ṽ

a

b

(b) Case 3b: only one v-subgraph covers u.

va

u1

u2

v1

v2

a

u1

u2

a

ũ1

ũ2

(c) Case 3c: both v-subgraphs cover vertices mapping to u′.

Figure 8.3: The proof of the sdeg(v) = 2 case of Theorem 8.6 requires three
subcases, as shown in these graphs. The dotted lines indicate the start of
a v-subtree, while bold lines indicate v-subgraphs. In the first case, a and
b may actually coincide, as is the case for u1 and u2 in the third case. The
graphs on the right show the result after applying the contraction.

subdivisions of edges do not change the equivalence class of a graph, we conclude
that the contraction of uv does not change the equivalence class of H.

Subcase 3c. The last case we have to consider is when both v-subgraphs cover
a vertex mapping to u′. Denote these vertices in H by u1 and u2. The vertices
u1 and u2 may be equal, but that does not change the proof. We would like to
contract v to u1 and u2 without changing the structure of H. This raises a problem,
because these contractions will merge u1 and u2. When both u1 and u2 have a stable
degree greater than 2, this will change the structure of H. It is here that we need
that v′ is an internal node. Because v′ is internal, we know that the image of the
neighbourhood of any vertex v mapping to v′ contains at least two vertices. Hence,
u1 and u2 can not be the only neighbours of v. Thus, suppose that a is a neighbour
of v not mapping to u′. Then, we can do the transformation shown in Figure 8.3(c).

First note that we may assume that all v-subtrees have edges with index mϕ(v),
since k v-subtrees with index 1 can be replaced with one v-subtees with index k.
(Here we assume that there a no v-subtrees covering u′.)

Because the index of v is rϕ(vu1) + rϕ(vu2), we can split it to two new vertices
v1 and v2, one connecting to u1 and a, and the other connecting to u2 and a. Thus,
v1u1 and v1a have index rϕ(vu1), and v2u2 and v2a have index rϕ(vu2). Then, we
split the v-subtrees over v1 and v2, such that there is a copy based at v1 and a copy
at v2, with degrees rϕ(vu1) respectively rϕ(vu2). It is easy to see that this new
graph, which is shown in the center of Figure 8.3(c) is equivalent to H, because, up
to subtrees, we only subdivided two edges, together with a relabeling of the vertices.
Now, v1 and v2 are vertices like those in case 3b, which we may contract into u1 and
u2 respectively.

In all these cases, we have omitted any other v-subtrees potentially covering u′.

46

These do not pose any problems for the contraction of the uv edge, because edges
in v-subtrees can always be contracted, as we have seen before.

Again, we summarize all newly introduced notation.

Notation 7: Contraction lemma

Internal vertex deg(v) > 1
Native vertex v ∈ ϕ ◦R(V (G))
Alien vertex v 6∈ ϕ ◦R(V (G))

47

9 Minimal universal trees

In this section we will take a look at trees containing all trees on n vertices. Such
trees are called universal trees.

We first define the class of trees containing at most n vertices.

Definition 9.1 (Class of trees). The class of graphs Tn contains all trees with n
vertices. The class Rn contains all rooted trees on n vertices. ♦

Remark 9.2. Some papers [3, 5] define Tn as the class containing all trees with
n edges, while others do not explicitly define this class, but calculate the size of
universal trees for trees containing n vertices.

Because the focus is more on vertices in this thesis, we let n denote the number
of vertices of a tree, and not the number of edges.

Now, we will define several kinds of universal trees.

Definition 9.3 (Universal trees). A universal tree is a tree containing all trees in
T (n) as a subtree. The minimal number of vertices of a universal tree is written
u(n).

A rooted-universal tree is a rooted tree containing all rooted trees in Rn as a
rooted subtree. Its minimal size is written r(n).

Finally, a minor-universal tree is a tree containing all trees in Tn as a minor. ♦

In this section, we will show that r(n) satisfies

r(1) = 1

r(n+ 1) = 1 +
n∑

i=1

r
([n

i

])
.

using a proof by Gol′dberg and Livšic [7]. They were the first to prove this recursion,
and they argue that

ln r(n) ∼ ln2 n

2 ln 2
.

By a more careful analyses of the recursion involved, Chung and Graham [4] sharp-
ened this to

r(n) = exp

(
lnn · lnn− 2 ln lnn+O(1)

2 ln 2

)
. (9.1)

Furthermore, in [5] they prove that unrooted-universal trees also satisfy this equa-
tion, but are in fact polynomially smaller than rooted-universal trees,

u(n) ≤ 2
√

2

n
exp

(
ln2 n

2 ln 2

)
. (9.2)

Also, they stated in [4] that it can be shown that

u(n) = n−3/2+O(1)r(n),

but they never published the proof.
For the purposes of our algorithm, we only need a tree in which all trees of up

to n vertices are a minor. Sadly, no research has been done on minor-universal trees
yet. Therefore, I will give a construction of minimal rooted-universal trees. Then, I
will give a proof of their minimality.

48

r

r1

R[n
1

]

r2

R[n
2

] r3

R[n
3

]

rn−1

R[n
n−1

]

rn
R[n

n
]

Figure 9.1: This figure shows the inductive construction of the minimal
rooted-universal tree Rn+1. The root is r, and the subtrees below r are
smaller rooted universal trees.

r1 r2 r3 r4 r5

Figure 9.2: This shows the first five rooted universal trees. As can be seen
in R5, we add R 5−1

2
= R2 as second subtree.

Definition 9.4 (Construction of Rn). The rooted-universal tree for n = 1, R1, is
given by a single point. For n ≥ 1, Rn+1 is the rooted tree with root r and n subtrees
R[nk] for k = 1, . . . , k = n. Here, [x] denotes the entier of x. The root of the kth

subtree is called rk. This construction is shown in Figure 9.1. Some small examples
are shown in Figure 9.2. ♦

We will first show that Rn is indeed a universal tree. Then, we prove that Rn is
in fact a minimal rooted-universal tree.

Lemma 9.5. All rooted trees on n vertices are embedded in Rn.

Proof. The tree R1 only has to cover the tree consisting of a single vertex, which it
does because it R1 has 1 vertex.

We will show using induction that Rn+1 is a universal tree when Rk is a universal
tree for 1 ≤ k ≤ n. Let T ∈ Rn+1 be a given rooted tree on n+1 vertices. We prove
that T is embedded in Rn+1. The root of T must be mapped to r. Now, we are
left with n other vertices of T . Let c be the number of components of T\{r}. (We
will identify the vertices in T with those in Rn+1 via the embedding we construct.)
Order the c components in decreasing order of the number of vertices. We know
that the kth largest component has at most

[
n
k

]
vertices, which is can be proven

using a proof by contradiction:
Suppose to the contrary the kth component has more than

[
n
k

]
vertices. Then,

the first k components would have at least
[
n
k

]
+ 1 vertices each. This gives a total

49

n 1 2 3 4 5 6 7 8 9 10 11
r(n) 1 2 4 7 12 18 28 39 55 74 100

Table 9.3: The first values of r(n) = r′(n), the number of vertices of Rn.
This is sequence A03318 in the Online Encyclopedia of Integer Sequences.

r

Figure 9.4: An example of a uniform tree. In every layer, all vertices have
the same number of children. The characteristic sequence is (2, 3, 1).

of at least

k
([n
k

]
+ 1
)
> k · n

k
= n

nonroot vertices. But we know that there are only n nonroot vertices in T , which
is a contradiction.

Since the kth component has at most
[
n
k

]
vertices, we know that it is embedded

in R[nk], because each component of T\{r} is a rooted subtree. Because the kth

largest subtree of Rn+1 is the rooted-universal tree on
[
n
k

]
vertices, the kth subtree

of T can be embedded in the kth subtree of Rn+1. Hence, T can be embedded in
Rn+1, completing the proof.

In the end, we are interested in the sizes of the universal trees we have con-
structed. The recurrence relation in the following lemma follows directly from their
construction.

Lemma 9.6 (Recurrence relation for r′). Writing r′(k) = |V (Rk)|, we have r′(1) =
1 and for n ≥ 1

r′(n+ 1) = 1 +
n∑

i=1

r′
([n

i

])
.

Now we know that Rn is a universal tree, it would be nice if we could show its
minimality. Gol′dberg and Livšic have shown this in [7] using uniform trees. Below,
I present this proof. Some small values of r′ = r are shown in Table 9.3.

We start with the definition of uniform trees, which form the basis of this proof.

Definition 9.7 (Uniform trees). A rooted tree is uniform if in each level of the tree,
all vertices have the same number of children. ♦

Figure 9.4 shows an example of a uniform tree.

We will write a(n) for the number of uniform trees with at most n vertices.
Obviously, a(1) = 1. For a(n + 1), we have a single root and n remaining vertices.
The number of children of the root can be at most n, and when we fix it at 1 ≤ k ≤ n,

50

r

u

v w

r

merge trees

Figure 9.5: The tree on the left contains two different embeddings of the
uniform tree with characteristic sequence (1, 2, 1), A1 is red and A2 is blue.
To create the uniform tree B with characteristic sequence (1, 3, 1), which is
shown in red on the right side, we keep the path to u, all of A1 below u, and
the remaining subtrees of A2.

all k subtrees must be the same uniform tree of at most
[
n
k

]
vertices. This leads to

a(n+ 1) = 1 +
n∑

k=1

a
([n
k

])
.

A uniform tree is characterised by the number of children of the nodes in every
layer.

Definition 9.8 (Characteristic sequence). The characteristic sequence of a uniform
tree T of height h is a sequence

(t0, . . . , th−1)

where ti > 0 is the number of children of a node at depth i. ♦

Uniform trees having the same characteristic sequence are isomorphic.
We will now put an order on the characteristic sequences of the same length.

Definition 9.9. A characteristic sequence (a0, . . . , ah−1) is larger than a character-
istic sequence (b0, . . . , bh−1) when there exists an 0 ≤ i < h such that ai > bi and
aj = bj for all i < j < h. ♦

Lemma 9.10. Given a rooted tree T , if a uniform tree A can be embedded in T in
two different ways, there exists a uniform tree B with a larger characteristic sequence
that can be embedded in T .

Proof. Suppose that A1 and A2 are two different rooted subtrees of T that are
isomorphic to A. There must be a pair of vertices u, v ∈ T such that v is a child
of u, u lies in both A1 and A2, and v is only present in A1. Since u has the same
number of children in A2 as in A1, there must be some other child w of u such that
w ∈ A2 and w 6∈ A1. These are shown in ??. We can construct B as the rooted tree
consisting of the path from r to u, together with the subtrees of A1 rooted at u and
the subtrees of A2 rooted at u that are disjoint from A1. It is easy to see that B is
uniform:

Let d be the depth of u. For all depths d′ at most d there is only a single vertex
in level d′, so that the tree is trivially uniform at those levels. At levels d′ larger

51

than d, we merged two uniform trees with the same characteristic sequence, so that
the characteristic sequence of B is equal to that of A. Since B has more children in
u then A1 or A2, we have bd > ad and bd′ = ad′ for d′ > d. Thus, the characteristic
sequence of B is larger than the characteristic sequence of A.

Corollary 9.11. The above lemma implies that the uniform tree with the largest
characteristic sequence that can be embedded in a rooted tree T has a unique embed-
ding.

Now we prove the most important result of [7].

Proposition 9.12. The number of pairwise nonisomorphic uniform trees embedded
in a tree T equals the number of vertices of T .

Proof. We will prove this by induction on the number of vertices of T . When T has
only a single vertex, the statement is true. When T is larger, assume that M is the
uniform tree embedded in T with maximal characteristic sequence. Let h be the
height of T . Then the height of M will be h too. Let x be a vertex of M at level h.
We will show that the number of uniform trees that can be embedded in T ′ = T −x
is exactly one less than the number of uniform trees in T .

Since there exists only one embedding of M in T , and x ∈ M , M can not
be embedded in T ′. It remains to show that all other uniform trees that can be
embedded in T can also be embedded in T ′. Thus, suppose a given uniform tree A
different from M can be embedded in T , and assume one such embedding. When
x 6∈ A, A can also be embedded in T ′ and we are done. When x ∈ A, the path
from the root r to x must lie completely in A and the height of A will be h. Let
(a0, . . . , ah−1) and (m0, . . . ,mh−1) the characteristic sequences of A and M . Because
M is the maximal uniform tree in T and A has a smaller characteristic sequence,
we must have ad < md with ai = mi for d < i < h for some 0 ≤ d < h. Now
consider the vertex u on the path from r to x at depth d, which lies in both M
and A. The uniform tree with characteristic sequence (md,md+1, . . . ,mh−1) can be
embedded in the subtree S of T rooted at u. All md subtrees of M at u have
characteristic sequence (md+1, . . . ,mh−1). Also, all ad subtrees of A at u have the
same characteristic sequence, because ai = mi for i > d. Because A has fewer
subtrees at u than M , we can choose a new embedding A′ of A in T that is equal
to A, except that in u we do not use the subtree of M that contains x, but instead
use another subtree of u.

Thus, we can construct an embedding of A in T − x that does not contain x for
all uniform trees A 6= M that can be embedded in T . By induction, we conclude
that the number of nonisomorphic uniform trees embedded in T equals the number
of vertices of T .

Theorem 9.13 (Size of minimal rooted-universal tree). We have r(1) = 1 and

r(n+ 1) = 1 +
n∑

i=1

r
([n

i

])
.

Proof. The construction of Rn gives an upper bound r(n) ≤ r′(n).
Because all rooted trees on at most n vertices are embedded in a minimal rooted-

universal tree, all uniform trees on at most n vertices must be embedded in a minimal
rooted-universal tree as well. Hence, the above proposition implies that

r(n) ≥ a(n).

52

Since a(n) = r′(n), we must have a(n) = r(n) = r′(n).

Notation 8: Minimal universal trees

Minimal rooted-universal tree Rn

Size of minimal rooted-universal tree r(n) = |Rn|

53

10 Uniform indices on refinements

In this section we prove that the following theorem

Theorem 10.1 (Uniform indices). When we are given a refinement H = R(G) of
G and a finite harmonic morphism ϕ to a tree T , there exists a finite harmonic
morphism ϕ̃ from a refinement H̃ to T with degree at most degϕ, such that the
index of the edges in RG(e) is constant, for every edge e in G.

Proof. For every edge in G, we will modify H to satisfy the stated requirement.
Consider e = xy ∈ E(G) and RG(e) in H. Suppose that r is the minimal index on
the path from x to y in RG(e). Let the path from x to y be given by x = x0, . . . ,
y = xk. Denote ex = x0x1 and ey = xk−1xk. We have rϕ(ex) ≥ r and rϕ(ey) ≥ r.
This is show in the upper half of Figure 10.1. Now replace RG(e) by Tϕ(x)ϕ(y), the
part of T between ϕ(x) and ϕ(y). We assign index r to all the edges added in this
way. The harmonic property is satisfied in all vertices in the newly added subgraph,
apart form x and y. In x, add Tϕ(x)(y) as a new subtree with index rϕ(ex)− r on all
edges if this quantity is at least 1. Otherwise, the harmonic property was already
satisfied at x. Analogously, add Tϕ(y)(x) as a subtree to y with index rϕ(ey) − r if
this is at least 1. We define ϕ̃ equal to ϕ on all of H except RG(e). On the three
newly added subgraphs, we let ϕ̃ be the identity.

Because of the way we have replaced these subgraphs, ϕ̃ is again a finite harmonic
morphism. We still have to show that the degree of ϕ̃ is at most the degree of ϕ.
We do this by looking at the changes in∑

u∈[x]

mϕ(u).

By construction, mϕ(x) is the same in H and H̃. Because we added the Tϕ(y)(x)

subtrees in H̃, we added a new term of rϕ(ey) − r to the sum. We also removed
RG(e) from H. Every time rϕ(xixi+1) is larger than rϕ(xi−1xi) on the path from x
to y, there must be one or more xi-subtrees in H going out of xi that covers x. The
sum of the indices on these subtrees wil be at least rϕ(xixi+1)− rϕ(xi−1xi). Because

x=x0 x5=y
3 3 4 2 2

2

x=x0 x5=y
2 2 2 2 2

Figure 10.1: This is an example of the replacement we do in H in the proof
of Theorem 10.1. We only show the path from x to y, which is the image
of a single edge e in G. We replace all indices on the path by the minimum
index of r = 2. Then, we add a subtree at x to make up for the difference
with the index of x0x1. It can be seen that the degree of the new harmonic
morphism will one lower than before.

54

r was chosen as the minimal index on the edges between x and y, the sum of these
(positive) differences will be at least rϕ(ey) − r. Thus, the sum decreases with at
least rϕ(ey)− r, which compensates for the increase by this amount.

Thus, we conclude that ϕ̃ is a finite harmonic morphism with degree not larger
than degϕ.

55

11 Upper bound on the indices

In this section we prove that it suffices to consider finite harmonic morphisms with
indices (both rϕ(e) and mϕ(u)) at most |E(G)|. We start with an upper bound of
|E(H)|, and later use a similar argument for the |E(G)| bound.

Lemma 11.1. If we are given a finite harmonic morphism ϕ : H → T , there exists
a finite harmonic morphism ϕ̃ : H → T with deg ϕ̃ ≤ degϕ and mϕ̃(u) ≤ |E(H)|
for all u ∈ V (H).

We first need the following lemma.

Lemma 11.2. When we are given a finite harmonic morphism ϕ : H → T and a
vertex u ∈ V (H) with index m = mϕ(u), there exist m subtrees T1, . . . , Tm of H
such that

• u ∈ V (Ti) for all i;

• ϕ|Ti
is a bijection from Ti to T ;

• for every edge f ∈ E(H), the number of trees such that f ∈ Ti is at most
rϕ(f).

Proof. We will prove this using a greedy argument. Start the construction of T1 by
choosing u. Let u′ = ϕ(u) be the image of u in T . Now, repeated the following
process for all vertices in V (T)\{u′}.

Choose a vertex y′ ∈ T such that y′ is a neighbour of some vertex x′ ∈ V (ϕ(T1)),
but y′ is not yet covered by T1. These variables are show in Figure 11.1. Let x be
the preimage of x′ in T1. There must be some edge xy ∈ E(H) such that ϕ(y) = y′,
because ϕ is harmonic. Thus, extend T1 by adding the edge xy and the vertex y to
it.

If we repeat this process until T1 covers all of T , we know ϕ restricted to T1 is a
bijection from T1 to T , as required.

Now we construct the other trees Ti in a similar way. We have to be a bit careful
to satisfy the third requirement in the lemma. It is sufficient to show that we can
always choose vertex y in such a way that at most rϕ(xy) trees contain xy.

Thus, consider vertices x and y′ again. If x = u, we know that the sum of the
indices of the edges from x to ϕ−1(y′) is mϕ(x). Since i ≤ mϕ(x), we can always
choose some vertex y′ ∈ ϕ−1(y) such that xy was not covered rϕ(xy) time yet.

u x
y

2

2

3

T2

T3

T1 u′ x′ y′ϕ

Figure 11.1: The left of this image shows an example of the construction
of the trees in a graph H in Lemma 11.2. Only indices different from 1 are
given. The red and green trees are already done. The next edge we will add
to the red tree is xy. The right part shows the morphism from H to T , which
is just a vertical projection.

56

u

6 2

5 9 3

7
u

6 2

4 8 2

7
Remove subtree

Figure 11.2: The left shows an example of a graph H with a vertex u. Only
indices greater than 1 are shown. All edges in the red subgraph have index
at least 2, so it may be removed from H, like in the proof of Lemma 11.1
below. This results in the graph on the right. Note that we assume that ϕ is
the harmonic morphism corresponding to a vertical projection of the vertices
and edges.

Now let x 6= u. There might already be some other trees containing x. However,
we also know that the current tree Ti has an edge, say wx, going to x. Now, let c
be the total number of edges in the trees T1 till Ti from a vertex in [w] to x. The
number of edges leaving x in the direction of y′ is only c − 1, because each of the
trees Tj with j < i has a single edge from x to ϕ−1(y′), but Ti has no such edge.
Because ϕ is harmonic, the sum of the indices from x to ϕ−1(y′) must be equal to
the same sum for [w]. Because the latter sum is at least c, we know that we can
always choose a vertex y ∈ ϕ−1(y′) such that xy is not yet covered rϕ(xy) times.
Hence, we extend Ti by adding y and the edge xy.

Proof of Lemma 11.1. Suppose that there is an vertex u ∈ E(H) with indexmϕ(u) >
|E(H)|. Write m = mϕ(u). We will then show that we can modify ϕ in such a way
that this index decreases and deg ϕ̃ ≤ degϕ.

Let T1, . . . , Tm be the m subtrees of H we obtain by applying the previous lemma
on the vertex u. If there is an i such that the index of all edges in Ti is at least 2, we
can decease the index of all edges in Ti by 1, which is explained below. Suppose to
the contrary that all trees Ti contain an edge with index 1. Each of those edges can
only occur in one of the Ti, because of property three in Lemma 11.2. Hence, there
must be m edges with index 1 in H. However, we know that H has only m edges in
total. Since H has only |E(H)| < m edges in total, there can not be m edges with
an index of 1, and thus we have a contradiction. Hence, there will always be a tree
Ti with all indices at least 2.

Now, let Ti be a tree with all indices at least 2, such as the red subtree in
Figure 11.2. After decreasing the index of all edges in Ti by 1, we obtain a new
morphism ϕ̃. This is again a finite harmonic morphism, because for each vertex
u ∈ V (Ti) and edge e′, we have∑

e∈ϕ̃−1(e′)∩E(u)

rϕ̃(e) =
∑

e∈ϕ−1(e′)∩E(u)

rϕ(e)− 1,

and thus mϕ̃(u) = mϕ(u) − 1 when u ∈ V (Ti). When u 6∈ V (Ti), nothing changes.
Note that deg ϕ̃ = degϕ− 1, so the degree of the new finite harmonic morphism is
not larger than what we started with.

Corollary 11.3. Since we may now assume that mϕ(u) ≤ |E(H)| while searching
the optimal finite harmonic morphisms, we may also assume that rϕ(e) ≤ |E(H)|
for all edges e, because rϕ(uv) ≤ mϕ(u) ≤ |E(H)|.

57

x=x0 x3=u y
3 3 4 2 2

2

x=x0 x3=u y
3 3 3 2 2

Figure 11.3: Here we show RG(e), the subtree of H that e = xy refined
to. In case 1 of the proof of Theorem 11.4 we construct the red subtree. We
may remove this subtree from H, because it does not contain any index 1
edge on the path from x to y. Again, we assume a vertical projection to a
tree.

The previous corollary implies that in order to find the optimal finite harmonic
morphism in the algorithm we describe, we only have to consider indices at most
|E(H)|. This is not a bounded quantity however, because H can be an arbitrary
refinement of G. Therefore, we would like an upper bound of |E(G)|. This is
established in the following lemma, which uses a similar proof.

Theorem 11.4 (Upper bound on indices). When we are given a nontrivial graph
G, refinement H and finite harmonic morphism ϕ to a tree T , we can construct a
new finite harmonic morphism ϕ̃ from H̃ to T with degree at most degϕ such that
mϕ̃(u) ≤ |E(G)| for all vertices u in H̃.

Proof. For every edge e = uv ∈ E(G), let r(e) be the smallest index on the path
from R(u) to R(v) in RG(e), the subgraph in H created by e including u and v.
Now, suppose there is a vertex u in H with m = mϕ(u) > |E(G)| ≥ 1. We consider
two cases.

Case 1: u 6∈ V (G) ⊂ V (H). Let u be in the image of the edge e = xy in G. If
mϕ(x) ≥ m or mϕ(y) ≥ m, we could choose u = x or u = y, so that we are in
the second case of this proof. Thus, suppose mϕ(x) < m and mϕ(y) < m. We will
construct a subtree T1 of H starting in u just like in Lemma 11.2. We do however
impose some extra restrictions. Since T1 is the first tree we can construct, and m ≥ 2
because m > |E(G)| ≥ 1, we can always avoid to choose an edge with index 1 on
the path from x to y, because there is at most 1 such edge in every direction. Also,
we can avoid covering x and y, because their indices are less than m. This is easily
seen by considering a path x = x0,. . . ,xk = u. We know that mϕ(x) < m = mϕ(xk).
Hence, there is an i such that xi has an edge to a vertex in [xi−1]\{xi−1}. Choosing
this edge prevents us from covering x with T1. A similar argument holds for y.

Now, T1 is a subtree of RG(e) isomorphic to T , and it does not contain any index
1 edges on the path from x to y. Hence, we can decrease the index of all edges in
T1 by 1. If the index of any edge becomes 0, we simply remove it. Also, vertices
that become disconnected from all other vertices are removed. An example of this
is shown in Figure 11.3. This always leaves a connected graph, since we will remove
complete w-subtrees of H for several vertices w.

Case 2: u ∈ V (G) ⊂ V (H). Now, consider m = mϕ(u) > |E(G)| subtrees T1,
. . . , Tm of H, starting in u, as given by Lemma 11.2. We start by proving that there

58

x=x0 x4=yu
2 1 1 3

ea eb

2 2

2

Figure 11.4: In case 2 of the proof of Theorem 11.4, we prove that a
situation like the one shown here can not occur. The blue and red subtree
both contain an index 1 edge on the path from x to y and both contain u.
Intuitively, once the blue subgraph has detached from xy, there is no way it
can reattach.

must be a tree Ti such that Ti contains no edges of index 1 on any path between
vertices in V (G) ⊂ V (H).

Suppose that all Ti contain at least one index 1 edge on a path between two
vertices in V (G) ⊂ V (H). As before, every index 1 edge can only be part of at most
one tree Ti. If we can prove that in fact, all index 1 edges on any xy path in H with
x, y ∈ V (G) can be part of at most one tree Ti, we know that we need at least m
such paths to have an index 1 edge in every tree Ti. Since the number of edges of G
is strictly less than m, this can not happen, and there must be a tree Ti that does
not contain an index 1 edge on a xy path. Then, we can remove that tree from H,
which decreases the degree of ϕ by 1, resulting in H̃ and ϕ̃.

It remains to be shown that on every path in H between two vertices x, y ∈
V (G) ⊂ V (H), there can be at most 1 tree covering index 1 edges. Suppose to the
contrary that two trees Ta and Tb both cover an index 1 edge. Let the path be given
by

x = x0, x1, . . . , xk = y.

Suppose Ta covers edge ea and Tb covers edge eb. Obviously, ea 6= eb. Suppose that
ea comes before eb. Then, Ta contains x but can not cover eb, and thus, y 6∈ V (Ta).
Analogously, x 6∈ V (Tb) while y ∈ V (Tb). Now, suppose without loss of generality
that in T , the distance from ϕ(u) is to ϕ(x) is less than the distance to ϕ(y). We will
show that a tree like Tb can not be constructed by the procedure from Lemma 11.2.
Here, a “tree like Tb” is a tree not containing x which does contain u and an edge
on the path from x to y.

Please have a look at Figure 11.4 for an example. We know that u, y ∈ V (Tb).
Furthermore, eb ∈ E(Tb). Thus, the edge ϕ(eb) in T is already covered by Tb. Since
ϕ|Tb

must be a bijection from Tb to T , every path from u to y in Tb must go through
eb, and hence through x. Thus, a tree like Tb can not occur.

Like before, we can derive an upper bound on the indices of the edges of H using
this theorem.

Corollary 11.5. Given a finite harmonic morphism from a refinement H of G to
a tree T , there exits a finite harmonic morphism ϕ̃ from a refinement H̃ of G to H
with degree at most degϕ and rϕ(e) ≤ |E(G)| for all e ∈ E(G).

Remark 11.6. Note that for the purposes of our algorithm, this corollary could also
be stated as:

There exists a finite harmonic morphism of degree sgon(G) such that all indices
rϕ(e) are at most |E(G)|.

59

In the algorithm, we could also use the bound on the indices of the vertices while
iterating over all possible assignments of indices of the edges of H, but in practice,
just bounding the indices of the edges themselves is easier. It is always possible to
skip a certain function r when the index at one of the vertices is more than |E(G)|.

Now that we have proven this upper bound on the indices, I would like to state
a theorem of Cornelissen et al. [6] which implies an even better bound. They prove
this using a similar theorem in algebraic geometry, proven by Kleiman and Laksov
in [8].

Theorem 11.7 (Theorem B from [6]). For any graph G, we have the Brill-Noether
bound,

sgon(G) ≤
⌊
g + 3

2

⌋
.

Here, g is the genus of G. For connected graphs, this is defined as

g = |E(G)| − |V (G)|+ 1.

Remark 11.8. In their paper, they need g ≥ 2. Here, we assume G is connected.
When g = 0, G is a tree, and sgon(G) = 1. When g = 1, G has exactly one cycle,
so sgon(G) = 2. Both these values satisfy the bound given in the theorem, so we do
not impose the restriction g ≥ 2.

We conclude this section with the corresponding bound on the indices, which is
much better than our own bound of |E(G)|. Note however, that no graph theoretic
proof of this result is known. Theorem 11.4 might be a first step towards such a
proof.

Corollary 11.9. Given a graph G, there exists a finite harmonic morphism of degree
sgon(G) such that all indices rϕ(e) of the edges in H are at most

rϕ(e) ≤
⌊
|E(G)| − |V (G)|+ 3

2

⌋
.

60

12 Discussion

The algorithm runs in finite time, but it is very slow. However, there is room for
further optimizations, some of which I explain here.

Currently, the optimal universal trees we use are unrooted-universal trees. No
research has been done yet on minor-universal trees, which is all we actually need.
They are not much smaller for small n, but in practice, all small improvements
speed up the algorithm. Furthermore, it might be faster to make a list of small
minor-universal trees using a brute force algorithm, instead of using larger universal
trees.

The loop over indices could be improved as well. Currently, we loop all the way
up to the upper bound of b(m− n+ 4)/2c, but in practice, this is to high for most
graphs. We could also use a dynamic upper bound that is at most the lowest degree
we have found so far. This should speed up the calculations for graphs with a very
low stable gonality.

Finally, there is no graph theoretic proof of the bound on the stable given above.
I did prove that we may assume that rϕ ≤ m, but this only gives a bound on the
indices, not on the stable gonality itself.

61

References

[1] Matthew Baker and Serguei Norine. “Harmonic morphisms and hyperelliptic
graphs”. In: Int. Math. Res. Not. IMRN 15 (2009), pp. 2914–2955. issn: 1073-
7928. doi: 10.1093/imrn/rnp037. url: http://dx.doi.org/10.1093/imrn/
rnp037.

[2] Lucia Caporaso. “Gonality of algebraic curves and graphs”. In: Algebraic and
complex geometry. Vol. 71. Springer Proc. Math. Stat. Springer, Cham, 2014,
pp. 77–108. doi: 10.1007/978-3-319-05404-9_4. url: http://dx.doi.
org/10.1007/978-3-319-05404-9_4.

[3] F. R. K. Chung and R. L. Graham. “On graphs which contain all small trees”.
In: J. Combinatorial Theory Ser. B 24.1 (1978), pp. 14–23.

[4] F. R. K. Chung, R. L. Graham, and D. Coppersmith. “On trees containing
all small trees”. In: The theory and applications of graphs (Kalamazoo, Mich.,
1980). Wiley, New York, 1981, pp. 265–272.

[5] F. R. K. Chung, R. L. Graham, and N. Pippenger. “On graphs which con-
tain all small trees. II”. In: Combinatorics (Proc. Fifth Hungarian Colloq.,
Keszthely, 1976), Vol. I. North-Holland, Amsterdam, 1978, 213–223. Colloq.
Math. Soc. János Bolyai, 18.

[6] Gunther Cornelissen, Fumiharu Kato, and Janne Kool. “A combinatorial Li-
Yau inequality and rational points on curves”. In: Math. Ann. 361.1-2 (2015),
pp. 211–258. issn: 0025-5831. doi: 10.1007/s00208- 014- 1067- x. url:
http://dx.doi.org/10.1007/s00208-014-1067-x.

[7] M. K. Gol′dberg and È. M. Livšic. “Minimal universal trees”. In: Mat. Zametki
4 (1968), pp. 371–379. issn: 0025-567X.

[8] Steven L. Kleiman and Dan Laksov. “On the existence of special divisors”. In:
Amer. J. Math. 94 (1972), pp. 431–436. issn: 0002-9327.

[9] Apostolos Syropoulos. “Mathematics of multisets”. In: Multiset processing.
Vol. 2235. Lecture Notes in Comput. Sci. Springer, Berlin, 2001, pp. 347–358.
doi: 10.1007/3-540-45523-X_17. url: http://dx.doi.org/10.1007/3-
540-45523-X_17.

[10] Thomas Wolle and Hans L. Bodlaender. A Note on Edge Contraction. 2004.

62

http://dx.doi.org/10.1093/imrn/rnp037
http://dx.doi.org/10.1093/imrn/rnp037
http://dx.doi.org/10.1093/imrn/rnp037
http://dx.doi.org/10.1007/978-3-319-05404-9_4
http://dx.doi.org/10.1007/978-3-319-05404-9_4
http://dx.doi.org/10.1007/978-3-319-05404-9_4
http://dx.doi.org/10.1007/s00208-014-1067-x
http://dx.doi.org/10.1007/s00208-014-1067-x
http://dx.doi.org/10.1007/3-540-45523-X_17
http://dx.doi.org/10.1007/3-540-45523-X_17
http://dx.doi.org/10.1007/3-540-45523-X_17

	Introduction
	Multisets
	Graphs
	Undirected graphs
	Operations on graphs
	Directed graphs

	Refinements
	Stable graphs

	Finite harmonic morphisms
	Properties of the stable gonality
	The algorithm
	Pseudocode
	Constructing H and from f and r
	Asymptotic runtime
	Performance

	Bounding the tree size
	Contracting edges in finite harmonic morphisms
	Contraction lemma

	Minimal universal trees
	Uniform indices on refinements
	Upper bound on the indices
	Discussion
	References

