
Department of Information and Computing Sciences

Variations on Boolean-width

Master Thesis
ICA-3677133

Author:
Chiel Ch.B. ten Brinke
Utrecht University
ctenbrinke@gmail.com

Supervisor:
Prof. Dr. H.L. Bodlaender

Utrecht University
H.L.Bodlaender@uu.nl

August 2015



2



Contents

1 Introduction 9

2 Preliminaries 11
2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Running time analysis . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Decompositions of a graph . . . . . . . . . . . . . . . . . . . . 13
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Boolean-width 19
3.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Exact algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Generating a boolean decomposition from a tree decom-
position . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Computing Maximum Independent Set from a decom-

position . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Computing Minimum Dominating Set from a decom-

position . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Vertex subset problems . . . . . . . . . . . . . . . . . . 25

4 Linear Boolean-width 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Improving the running time . . . . . . . . . . . . . . . 33
4.3.2 Applying the same technique for boolean-width . . . . 36

4.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Generic form of the heuristics . . . . . . . . . . . . . . 37

3



4 CONTENTS

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Comparing Heuristics on random graphs . . . . . . . . 43
4.5.2 Comparing heuristics on real world graphs . . . . . . . 45
4.5.3 Vertex subset experiments . . . . . . . . . . . . . . . . 46

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Obtained data . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Reduction Rules for Linear Boolean-width 63
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Proving reduction rules . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Validity of general boolean-width reduction rules . . . . . . . . 66

5.3.1 Islet rule . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Pendant rule . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Twin rule . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Validity of treewidth reduction rules . . . . . . . . . . . . . . 69
5.5 New reduction rules . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Sequence rule . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.2 Clique rule . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Other reduction rules . . . . . . . . . . . . . . . . . . . 75

5.6 Expanding linear decompositions using general reduction rules 75
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Cost of decompositions 79
6.1 Exact algorithm for f -cost . . . . . . . . . . . . . . . . . . . . 79
6.2 Investigating cost variants of various width parameters . . . . 82
6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 Linear boolean-cost . . . . . . . . . . . . . . . . . . . . 85
6.3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusion 87

Appendices 93

A Alternative exact algorithm for boolean-width 95

B Unfinished Tales about Multisubset Convolution 99



Abstract

This thesis is about the graph parameter boolean-width[8] and several related
parameters. In particular we investigate the restriction of boolean-width to
linear decompositions, called linear boolean-width. Improving upon existing
work, we give several new algorithms, both exact and heuristical, and test
these experimentally. We also look at reduction rules for linear boolean-width.
After that we consider cost variants of these parameters, which optimize
a decomposition by means of minimizing the sum of all cut values in a
decomposition rather than taking the maximum. We give a general non-
trivial exact algorithm to compute decompositions with minimal f -cost, for
any cut function f . Finally we evaluate these topics and give suggestions
about what is worth further investigating.
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Chapter 1

Introduction

Boolean-width is a recently introduced graph parameter [8]. Similarly to
treewidth and other parameters, it measures some structural complexity
of a graph. Many NP-hard problems on graphs become easier (i.e. Fixed
Parameter Tractable) if some graph parameter is small. We need a derived
structure which captures the necessary information of a graph in order to
exploit such a small parameter. In the case of boolean-width, this is a binary
partition tree, referred to as the decomposition tree. This decomposition is
bounded in size because the derivation of it relies on the graph parameter we
are exploiting. Then a problem specific algorithm is applied to this derived
decomposition, for instance dynamic programming or divide and conquer.
However, computing an optimal decomposition tree is usually a hard problem
in itself. A common approach to bypass this problem is to use heuristics to
compute decompositions with a low boolean-width.

Algorithms for generating boolean decompositions have been studied
before in [33, 22, 26, 2, 14]. In this thesis we investigate boolean-width and
related parameters. In particular we investigate the restriction of boolean-
width to linear decomposition, called linear boolean-width. Improving upon
existing work, we give several new algorithms, both exact and heuristic,
and test these experimentally. We also look at reduction rules for linear
boolean-width. After that we consider cost variants of these parameters,
which optimize a decomposition by means of minimizing the sum of all cut
values in a decomposition rather than taking the maximum. We give a general
non-trivial exact algorithm to compute decompositions with minimal f -cost,
for any cut function f . Finally we evaluate these topics and give suggestions
about what is worth further investigating.
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My implementation of the algorithms that were used can be found on
Github [29]. At the time of writing, the implementation of Frank van Houten
is yet to be published, but should be on Github soon as well.



Chapter 2

Preliminaries

This chapter is dedicated to introducing the various mathematical concepts
that we will be working with and to providing some examples to illustrate
these definitions.

2.1 Graph Theory
In this subsection we briefly mention the definition of the graph concepts that
we are working with.

Graph A graph G is a pair V (G) called the vertices, and E(G) called the
edges where edges are unordered pairs of the vertices. We often will write
G = (V,E) when there is no ambiguity about which graph is considered. All
graphs that we deal with in this thesis are finite, undirected, and simple.

Clique A graph G = (V,E) is called a clique or a complete graph if for
every pair of vertices u, v ∈ V we have that (u, v) ∈ E.

Connected graph A graph G = (V,E) is connected if for every pair of
vertices u, v ∈ V there exist a path from u to v. A graph that is not connected
is called a disconnected graph.

Neighborhood For a graph G = (V,E) and a vertex v ∈ V , the neighbor-
hood of v, denoted N(v), is the set of all vertices in G adjacent to v, i.e. the set
{w ∈ V | (v, w) ∈ E}. The closed neighborhood is denoted N [v] = N(v)∪{v}.

11
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The neighborhood of a set X ⊆ V is denoted N(X) = ⋃
v∈X N(v), and the

closed neighborhood of X is denoted N [X] = N(X)∪X. Denote with NG(X)
the neighborhood of X in the graph G.

Twins For a graph G = (V,E), two vertices x, y ∈ V are twins if and only
if N(x) \ y = N(y) \ x.

Vertex complement For a graph G = (V,E) and A ⊆ V , the complement
of A is denoted A = V \ A.

Complement graph The complement of a graph G, denoted G, is the
graph where V (G) = V (G) and for any pair u, v ∈ V (G) with u 6= v we have
(u, v) ∈ E(G) if and only if (u, v) 6∈ E(G).

Cut For a graph G = (V,E) and A ⊆ V , the cut in G defined by A is the
partition (A,A) of V . The neighborhood of X ⊆ A across (A,A) is N(X)∩A.
Two vertices x, y ∈ A are twins across (A,A) if N(x) ∩ A = N(y) ∩ A.

Bipartite graph We say a graph G = (V,E) is bipartite if there exist a
subset A ⊆ V such that every edge in E has one endpoint in A and the other
in A.

Induced bipartite subgraph For a graph G = (V,E) and A,B ⊆ V such
that A ∩B = ∅. The bipartite graph induced by the two subsets is denoted
G[A,B] = (A ∪ B,E ′) where E ′ ⊆ E are the edges with one endpoint in
A and one endpoint in B. Note that A ⊆ V defines the induced bipartite
subgraph G[A,A].

Tree A graph T = (V,E) is called a tree if T is connected and contains no
cycles. We name the set V nodes to distinct a tree from a regular graph. A
node v ∈ V is a leaf of T if deg(v) ≤ 1 and is an internal node otherwise.
A tree is a rooted tree if one node has been designated the root, in which
case the edges have a natural orientation towards the root. On a path from a
vertex v to the root node, the neighbor u of v on that path is called a parent
of v. Additionally, v is a child of u. A binary tree is a rooted tree in which
each node in V is either a leaf or has two children.
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2.2 Running time analysis
With respect to the running time analysis and corresponding notation, we
define the following. Let G = (V,E) be a graph with n vertices. For functions
f and g we say

• f(n) ∈ O(g(n)) if there exist c and n0 such that for all n > n0 we have
f(n) ≤ c · g(n).

• f(n) ∈ O∗(g(n)) if there exist a polynomial poly, such that f(n) ∈
O(g(n) · poly(n)).

• f(n) ∈ Õ(g(n)) if there exist a polylogarithmic expression logpoly, such
that f(n) ∈ O(g(n) · logpoly(n)).

So in fact O, O∗ and Õ suppress constant, polynomial and polylogarithmic
expressions, respectively, in asymptotic running times.

Let k be a parameter of G. When we measure the running time of
an algorithm as a function of both n and k we call it a parameterized
algorithm. A parameterized algorithm is called fixed parameter tractable
(FPT) parameterized by k if there exists a function f and a polynomial
function poly such that the algorithm finishes in time f(k)poly(n).

The algorithms in this chapter make extensive use of sets and set oper-
ations, which can be implemented efficiently by using bitsets. By using a
mapping from vertices to bitsets that represent the neighborhood of a vertex
we can store the adjacency matrix of a graph efficiently. We assume that
bitset operations take O(n) time and need O(n) space, even though in practice
this may come closer to O(1). If one assumes that these requirements are
constant, several time and space bounds in this chapter improve by a factor
n.

2.3 Decompositions of a graph
As mentioned in the introduction, we need a derived structure which captures
the necessary information of a graph in order to exploit the parameter boolean-
width. In the case of boolean-width, this is a binary partition tree, referred
to as the decomposition tree. In other literature this is also referred to as
“branch decomposition”. Please note that for treewidth the derived structure
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is called “tree decomposition”, which is very different from the decomposition
trees that we are talking about here.

Definition 2.1 (decomposition tree). A decomposition tree of a graph G =
(V,E) is a pair (T, δ), where T is a full binary tree and δ is a bijection between
the leaves of T and vertices of V . If a is a node and L are its leaves, we
write δ(a) = ⋃

l∈L δ(l). So, for the root node r of T it holds that δ(r) = V .
Furthermore, if nodes a and b are children of a node w, then (δ(a), δ(b)) is a
partition of δ(w). Alternatively, we sometimes write Vw for δ(w).

Consider the example graph in Figure 2.1. An example of a decomposition
of this graph can be found in Figure 2.3.

a

c

a

b

c

d e

Figure 2.1: Example graph

Not every decomposition is useful. What makes a decomposition good?
Please note that removing an edge in the decomposition tree results in two
subtrees, inducing a partition (A,A) of V (G), which we will call a cut. Given
a function that assigns a value to each cut, we want to find a decomposition
that minimizes these values.

Definition 2.2 (cut function). A symmetric function f : 2V → R≥0: f(A) =
f(A) for all A ⊂ V (G) is called a cut function.

Definition 2.3 (f -width). Let f be a cut function. The f -width of (T, δ) is
the maximum value of f(A) over all cuts (A,A) of G, i.e. max(A,A) f(A). The
f -width of G is the minimum f -width over all possible decomposition trees of
G.
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a b c d e

a b

a b

c d e

c d e

d e

Figure 2.2: Example decomposition

Boolean-width is a graph parameter introduced by Bui-Xuan et al. [8] It
minimizes the number of possible neighborhoods across a cut, for each cut in
the decomposition.

Definition 2.4 (neighborhood across a cut). Let G be a graph and A ⊆ V (G).
For any X ⊆ A define the neighborhood of X across the cut (A,A) as⋃
x∈X N(x) ∩ A.

Definition 2.5 (unions of neighborhoods). Let G = (V,E) be a graph and
A ⊆ V . We define the set of unions of neighborhoods across a cut (A,A) as

UN (A) =
{
N(X) ∩ A

∣∣∣X ⊆ A
}
.

The number of unions of neighborhoods is symmetric for a cut (A,A), i.e.,
|UN (A)| = |UN (A|) [15, Theorem 1.2.3].

Definition 2.6 (bool-dim). Let G be a graph and A subset V (G). Define
the function bool-dim : 2V → N, A 7→ log2 |UN (A)|. The latter function is
pronounced as boolean dimension.
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Definition 2.7 (boolean-width). Let G be a graph. Define the boolean-width
of G, written boolw(G), using definition 2.3 with f being bool-dim.

In Figure 2.3, the bool-dim value for each cut has been printed. As one
can see, for small graphs this is not very interesting, mostly because the two
cuts of the root are always the same and because cuts at leaves always have
value 1.

a b c d e

a b

a b

c d e

c d e

d e

1.58

1 1 1

1 1

1

1.58

Figure 2.3: Boolean-width values for each cut of the example decomposition

For any graph G let MIS(G) be the collection of maximal independent
sets in G. The following correspondence proves to be very useful. It was
first pointed out by Nathann Cohen, as stated in Vatshelle’s PhD thesis [33,
Theorem 3.5.5].

Lemma 2.8. Let G = (V,E) be a graph and A ⊆ V . Then |MIS(G[A,A])| =
|UN (A)|.

Proof. We show that there is a bijection between UN (A) and the maximal
independent sets of G[A,A]. For every S ∈ UN (A) we define M(S) =
{v ∈ A : N(v) ∩ A ⊆ S} the unique maximal subset of A having S as neigh-
borhood. Clearly I = M(S) ∩ A \ S is an independent set in G[A,A]. Since
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M(S) is maximal, every vertex in A \ I must have a neighbor in A \ S, hence
no vertices in A \ I can be added to I. Since A \ I = S, no vertices in A can
be added to I. This shows that I is a maximal independent set of G[A,A] and
hence |UN (A)| ≤ |MIS(G[A,A])|. For the other direction, for every maxi-
mal independent set I in G[A,A] we know that N(I ∩ A) = A \ I, otherwise
I would not be a maximal independent set. Hence A \ I ∈ UN (A), showing
that there is a bijection between UN (A) and the maximal independent sets
of G[A,A].

2.4 Examples
In this section we give some trivial propositions to make the reader familiar
with the introduced concepts.

Proposition 2.9. Let G = (V,E) be a graph with n vertices. If G is complete,
i.e. a clique, then boolw(G) = 1.

Proof. Because G is complete we have that N(x) = V \ {x} for any x ∈ V .
From this it follows that UN (A) =

{
A
}

and thus bool-dim(A) = 1 for any
∅ 6= A ( V . Therefore we have boolw(G) = maxA⊆V bool-dim(A) = 1.

A graph G is called maximal bipartite if no edge can be added without
destroying its bipartiteness.

Proposition 2.10. Let G be a graph with n vertices. If G is maximal
bipartite, then boolw(G) = 1.

Proof. Let A and A be the two subsets forming the bipartite graph G. Because
G is maximal bipartite we have that

N(x) =
{
A if x ∈ A
A if x ∈ A .

So we can take (A,A) as the first cut in the decomposition, and randomly
decompose the remaining part. Namely, bool-dim(A) = 1 and for any
∅ 6= B ( A we have bool-dim(B) = 1 as well. Therefore boolw(G) =
maxA⊆V bool-dim(A) = 1.

Proposition 2.11. Let G = (E, V ) be a graph, A ⊆ V and x ∈ V . Then the
neighborhood of x across the cut (A,A) in G is complementary to that in G,
i.e. NG(x) ∩ A = NG(x) ∩ A.
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Proof.

NG(x) ∩ A =
{
y
∣∣∣ (x, y) ∈ E(G)

}
∩ A

= {y | (x, y) /∈ E(G)} ∩ A
= {y | (x, y) ∈ E(G)} ∩ A
= NG(x) ∩ A.

However, for larger subsets the above result does not hold, i.e. it is not
necessarily true that NG(X) ∩ A = NG(X) ∩ A, for X ⊆ A ⊆ V . For
this reason, the boolean-width of a graph is in general not equal to the
boolean-width of its complementary graph.



Chapter 3

Boolean-width

In this chapter we give brief introduction about existing algorithms concerning
boolean-width. We will skip the heuristics developed by Sharmin [26], since
those will be treated in Chapter 4.

3.1 Complexity
What can we say about the complexity of the problem of computing the
boolean-width of a graph? Let us refer to this problem by BOOLW. It
is proven by Sigve Hortemo Sæther and Martin Vatshelle that BOOLW is
NP-hard, though at the time of writing this result is not yet published [27].
So now that we know that BOOLW is at least as hard as any NP-complete
problem, can we give a class of problems for which BOOLW is not harder? In
other words, can we prove the membership of BOOLW of a certain complexity
class?

Let C be some complexity class. If a problem is inNPC , a non-deterministic
Turing machine can decide it in polynomial time. So to prove the membership
of a problem in a class NPC , it suffices to show the existence of a polynomial
size certificate that can be used to verify a solution in polynomial time on a
deterministic Turing machine, using an oracle that decides problems in C.

Now let G = (V,E) be a graph and let f : P(V ) → R≥0 be some cut
function. Suppose that to problem of computing f(X) for some X ⊆ V is
member of C. We will show that the problem of computing the f -width of a
graph is then member of NPC .

19
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Theorem 3.1. If the problem of computing f(X) for some X ⊆ V is member
of C, then computing the f -width of a graph of size n is a member of NPC.

Proof. A decomposition tree has 2n− 1 = O(n) nodes, where each node has
to store sets of at most n vertices. Since all vertices can be labeled with a
number less than n, only O(log n) space is needed to store a vertex. So the
entire boolean decomposition only needs O(n · n · log n) = O(n2 log n) space,
which is polynomial in n.

The decision problem we are facing is: given graph G and a number K, is
the f -width of G less than K?

Suppose we are given a solution with a decomposition tree as certificate.
We can compute f for the cut in each node in constant time using the
#P oracle, and take their maximum M . This takes O(n) time in total,
which is polynomial in n. Now we can verify that the solution is correct by
asserting that M ≤ K. So we can verify a solution in polynomial time using
the decomposition tree as the polynomial size certificate and by using the
C-oracle to decide the problems in C. This completes the proof.

Corollary 3.2. The problem BOOLW is a member of the complexity class
NP#P .

Proof. It is known that counting the number of maximal independent sets
in a graph is #P -complete (even when restricted to chordal graphs) [19].
Therefore applying Theorem 3.1 with C = #P yields the required result.

However, since NP#P and NP are still different complexity classes, we are
left to wonder for what complexity class C BOOLW is actually C-complete.

Open question 3.3. For which complexity class C do we have that BOOLW
is C-complete?

3.2 Exact algorithms
Let G = (V,E) be a graph of size n. In this section we look at exact algorithms
to compute boolean-width of G. Trivially, we can establish a O(3n) algorithm.
Consider the following recurrence relation.

w({v}) = 0
w(A) = min

∅6=B(A
{max{|UN (B)|, |UN (A \B)|, w(B), w(A \B)}} (3.1)
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The final answer is then given by log2 w(V ).
As a preprocessing step we compute for all cuts A ⊆ V the values |UN (A)|

by computing #MIS(G[A,A]). Computing #MIS for any graph can be
done in O(1.3642n) time [13]. Doing this for all A takes O(2.7284n) time. We
solve recurrence relation (3.1) in a bottom-up fashion. For each iteration in
the recurrence relation the minimum of |2A| − 1 numbers has to be taken.
Suppose |A| = k. Then this takes of course O(2k) time for each iteration.
In solving the recurrence relation, k goes from 1 to n. Since there are

(
n
k

)

subsets of size k, it takes

n∑

k=1

(
n

k

)
2k = O(3n)

time to compute all values for boolw. The space requirements amount to
O(n · 2n), since bool-dim and boolw contain at most 2n entries of integers of
at most n bits.

The currently fastest known exact algorithm for boolean-width runs in
O∗(2.52n) [33], but it is easy to translate this into a O∗(2n+boolw(G)) algorithm.
It makes use of the following algorithm by Oum [20].

Theorem 3.4. Let V be a finite set with n elements. Let f be an integer-
valued function defined on the subsets of V . Let M = maxX⊆V |f(X)|. We
assume that f is given by an oracle and each oracle call takes time O(α). Then
we can compute the width of f on V exactly in time O(2n(n3 log n log log n logM+
log2 M + α))

Theorem 3.5. A boolean decomposition of minimum boolean-width for a
graph G can be computed in O(n3 · 2n+boolw(G)) time using O(n · 2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values
|UN (A)|, using a polynomial time delay algorithm, which lists maximal inde-
pendent sets in G[A,A] with at most O(n3) time in between two results [10].
Given an upperbound K for the boolean-width, we can use the upperbound
2K + 1 as a limit for this algorithm, such that computing max(|UN (A)|, K)
takes at most O(n32K) time. Namely, if the resulting boolean width is smaller
than K, the decomposition only used cuts for which the upper bound was
valid, so we are done. Otherwise, we report failure. By Theorem 3.4, we can
now compute the boolean-width in O(n32n2K).
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To assure that K is indeed an upperbound, we perform an incremental
search on K. Starting with K = 1, the procedure is executed boolw(G) times.
The running time therefore is

O(
dboolw(G)e∑

k=1
n32n+k) = O(n32n(2dboolw(G)e+1 − 1)) = O(n32n+boolw(G)).

The space requirements amount to O(n · 2n), since the tables for |UN | and w
contain at most 2n entries of integers of at most n bits.

It is known that for any cut function f that has the property that f(A) ≤
|A| for any A ⊆ V , the f -width is bounded by n

3 . Namely, one can simply
linearly decompose one third of the vertices in arbitrary order, after which one
splits the remaining two third exactly in half. This makes sure that for any cut
(A,A) in the resulting decomposition it holds that f(A) ≤ min(|A|, |A|) ≤ n

3 ,
since f is symmetric by definition. Thus, the f -width of this decomposition
can be at most n

3 , from the result follows. However, for boolean-width a
slightly tighter bound has been found. Rabinovich et al. established that
boolw(G) ≤ n

3 − n
672 + o(n) [22]. This makes the worst case performance of

the algorithm in Theorem 3.5 equal to O∗(2n+ n
3−

n
672 +o(n)) ⊆ O∗(2.5173n).

3.2.1 Generating a boolean decomposition from a tree
decomposition

It is possible to create a boolean decomposition D from a tree decomposition
D′ with the assertion that boolw(D) ≤ tw(D′) [26, Section 6.2]. But can we
also speed up the creation of an optimal boolean decomposition using a good
tree decomposition? We propose a simple initial way to do this. Remember
that a graph has degeneracy k if every subgraph has a vertex of degree at
most k. Eppstein et al. established that for a k-degenerate graph, all maximal
independent sets can be listed in O∗(3k/3) time [11].

Theorem 3.6. If a graph has tree-width k, then an optimal boolean-decomposition
can be computed in O∗(2n+0.528k).

Proof. If a graph has treewidth k, then the degeneracy is at most k [24].
As stated above, the number of MIS can be computed in O∗(3k/3). Using
Theorem 3.4 the total running time becomes O∗(2n3k/3) ≈ O∗(2n+0.528k).
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So if the boolean-width is more than about one half of the tree-width, this
last algorithm is faster. It is probably not useful in practice, because it is likely
that tree-width based algorithms are more suitable than boolean-width based
algorithms as soon as the tree-width is almost as low as the boolean-width,
since many application algorithms have a better running time in terms of
tree-width.

3.3 Applications
What does a typical application of boolean-width look like? We consider two
well-known problems: Maximum Independent Set and Minimum Dominating
Set. Remember that an application algorithm assumes a decomposition of the
graph, and solves the problem in a running time depending on the width of
the decomposition. In both example algorithms, the sets of partial solutions
attached to two siblings in the decomposition tree are merged to form again
a set of partial solutions for the parent. Doing this recursively, starting with
the leaves, should yield a set of solutions for the root of the decomposition
tree, which in turn should give the final solution to the problem.

3.3.1 Computing Maximum Independent Set from a
decomposition

The Maximum Independent Set problem is defined as finding the largest subset
of vertices in the graph for which no two vertices are adjacent to each other.
Let (B,A \B) be two children of a cut in the decomposition, as visualized in
Figure 3.1. Let MISB contain all candidate maximum independent sets in
the set B and similarly for MISA\B. By this we mean that MISB contains
exactly those independent subsets which could eventually be part of the final
solution. All other subsets are ruled out by a reasoning which is yet to be
explained. Given MISB and MISA\B, we want to construct MISA. If two
independent sets have the same neighborhood across A we only have to store
the larger of them. Therefore, MISA is bounded by |UN (A)|. We simply
merge MISB and MISA\B into MISA by forming all possible combinations.
This takes thus O(|UN (B)| · |UN (A \B)|) time.

Since for any cut (X,X) in the decomposition |UN (X)| is always bounded
by the boolean-width of the decomposition that we are given, each merging
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step takes O(n24k) time, and since there are only O(n) node in the decom-
position, the time for the entire algorithm is O(n34k). See Algorithm 1 for
corresponding pseudo code. In the pseudocode MISA is implemented as a
mapping from neighborhoods across (A,A) to the corresponding candidate
independent set. This is to make it easy to rule out duplicate neighborhoods
and only keep the largest candidate for each neighborhood.

A

B

A \B

Figure 3.1: Venn diagram of a merge step in an algorithm.

Algorithm 1 Compute Maximum Independent Set given a decomposition
D.

1: procedure Compute-MIS-from-decomposition(V,D)
2: return Recursion(V,D)[∅]
3: procedure Recursion(A,D)
4: (B,D1), (A \B,D2)← pop the root from D
5: MISB ← Compute-MIS-from-decomposition(B,D1)
6: MISA\B ← Compute-MIS-from-decomposition(A \B,D2)
7: MISA ← mapping from all neighborhoods across (A,A) to ∅
8: for I1 ∈MISB do . Enumerate values, not keys
9: for I2 ∈MISA\B do

10: I ← I1 ∪ I2
11: if I is independent set and |MISA[N(I) ∩ A]| < |I| then
12: MISA[N(I) ∩ A]← I

13: return MISA
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3.3.2 Computing Minimum Dominating Set from a de-
composition

The Minimum Dominating Set problem is defined as finding the smallest
subset S of vertices in the graph such that all vertices in the graph are adjacent
to at least one vertex in S. Again let (B,A\B) be two children of a cut in the
decomposition, as visualized in Figure 3.1. For R ⊆ B, let MDSB[R] denote
all partially dominating sets in the set B which dominate everything in B,
except R. Similarly define MDSA\B[R]. Note that these partial solutions are
only useful if R ⊆ N(A), since the remaining undominated vertices can never
be dominated by vertices from A. We want to merge MDSB and MDSA\B
to form MDSA, for all relevant R.

So let R ⊆ N(A) ∩ A. If two partially dominating sets in MDSA[R]
have the same neighborhood across A, we only have to store the smallest of
them. Therefore, MDSA[R] is bounded by |UN (A)|. So for each cut (A,A)
we have |UN (A)| possible subsets R, each of which corresponds to at most
|UN (A)| possible partially dominating sets. Thus, |MDSA[R]| is bounded by
|UN (A)| · |UN (A)|. At each cut (B,A \B) in the decomposition, we merge
MDSB[R] and MDSA\B[R], for each R ⊆ A. Simply form all combinations
and for all partially dominating sets with the same neighborhood across (A,A)
only keep the smallest. For each cut, this takes O(|UN (B)| · |UN (A \B)| ·
|UN (A)|) time.

Since for any cut (X,X) in the decomposition |UN (X)| is always bounded
by the boolean-width of the decomposition that we are given, each merging
step takes O(n28k) time, and since there are only O(n) node in the decom-
position, the time for the entire algorithm is O(n38k). See Algorithm 2 for
corresponding pseudo code. In the pseudocode MDSA is implemented as
a mapping from undominated sets and neighborhoods across (A,A) to the
corresponding partially dominating set. This is to make it easy to rule out
redundant solutions and only keep the smallest partially dominating set for
each neighborhood.

The running times O∗(4k) and O∗(8k) were already established by Vat-
shelle [33]. We will come back to these applications in Chapter 6.

3.3.3 Vertex subset problems
The Maximum Independent Set and Minimum Dominating Set problems
belong to a class of problems called the (σ, ρ) vertex subset problems, which
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Algorithm 2 Compute Minimum Dominating Set given a decomposition D.
1: procedure Compute-MDS-from-decomposition(V,D)
2: return Recursion(V,D)[∅, ∅]
3: procedure Recursion(A,D)
4: (B,D1), (A \B,D2)← pop the root from D
5: MDSB ← Compute-MDS-from-decomposition(B,D1)
6: MDSA\B ← Compute-MDS-from-decomposition(A \B,D2)
7: MDSA ← mapping from all undominated R ⊆ A and all neighbor-

hoods across (A,A) to ∅
8: for R ∈ UN (A) do
9: for I1 ∈MDSB[(R \N(A \B)) ∩B] do . Enumerate values

10: for I2 ∈MDSA\B[(R \B) ∩ (A \B)] do
11: I ← I1 ∪ I2
12: if I dominates A \R and |MDSA[R,N(I)∩A]| > |I| then
13: MDSA[R,N(I) ∩ A]← I

14: return MDSA

were introduced by Telle [28]. This class of problems consists of finding
a (σ, ρ)-set of maximum or minimum cardinality and contains well known
problems such as the Maximum Independent Set, the Minimum Dominating
Set and the Maximum Induced Matching problem.
Definition 3.7 ((σ, ρ)-set). Let G = (V,E) be a graph. Let σ and ρ be finite
or co-finite subsets of N. A subset X ⊆ V is called a (σ, ρ)-set if the following
holds

∀v ∈ V : |N(v) ∩X| ∈



σ if v ∈ X,
ρ if v ∈ V \X.

In order to confirm if a set X is a (σ, ρ)-set we have to count the number
of neighbors each vertex v ∈ V has in X, where it suffices to count up until a
certain number of neighbors. As an example, when we want to confirm if a set
X is an independent set, which is equivalent to checking if X is a ({0},N)-set,
it is irrelevant if a vertex v has more than one neighbor in X. We capture
this property in the function d : 2N → N, which is defined as follows:
Definition 3.8 (d-function). Let d(N) = 0. For every finite or co-finite set
µ ⊆ N, let d(µ) = 1 + min(max

x∈N
x : x ∈ µ,max

x∈N
x : x /∈ µ). Let d(σ, ρ) =

max(d(σ), d(ρ)).
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Definition 3.9 (d-neighborhood). Let G = (V,E) be a graph. Let A ⊆ V
and X ⊆ A. The d-neighborhood of X with respect to A, denoted by Nd

A(X),
is a multiset of vertices from A, where a vertex v ∈ A occurs min(d, |N(v)∩X|)
times in Nd

A(X). A d-neighborhood can be represented as a vector of length
|A| over {0, 1, . . . , d}.

Definition 3.10 (d-neighborhood equivalence). Let G = (V,E) be a graph
and A ⊆ V . Two subsets X, Y ⊆ A are said to be d-neighborhood equivalent
with respect to A, denoted by X ≡dA Y , if it holds that ∀v ∈ A : min(d, |X ∩
N(v)|) = min(d, |Y ∩ N(v)|). The number of equivalence classes of a cut
(A,A) is denoted by nec(≡dA). The number of equivalence classes necd(T, δ)
of a decomposition (T, δ) is defined as max(nec(≡dA), nec(≡d

A
)) over all cuts

(A,A) of (T, δ).

Note that N1
A(X) = N(X) ∩ A. It can then be observed that |UN (A)| =

nec(≡1
A) [33, Theorem 3.5.5] Also note that X ≡dA Y if and only if Nd

A(X) =
Nd
A(Y ).

There has been developed a general algorithm for this entire class by Bui-
Xuan et al. [1] The running time of the algorithm for solving these problems
is O(n4 · necd(T, δ)3), where necd(T, δ) is the number of equivalence classes
of a problem specific equivalence relation, which can be bounded in terms of
boolean-width. In Section 4.5 we investigate how close the value of necd(T, δ)
comes to any of the theoretical bounds.

For all bounds listed below, let G = (V,E) be a graph of size n and let
d be a non-negative integer. Let (A,A) be a cut induced by any node of a
decomposition (T, δ) of G, and let k = bool-dim(A) = nec(≡1

A).

Lemma 3.11. [1, Lemma 5] nec(≡dA) ≤ 2d·k2.

Lemma 3.11 shows us that we can solve (σ, ρ) problems in O∗(8dk2). In
next chapters we come back to this.
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Chapter 4

Linear Boolean-width

In this chapter, we give a number of new exact algorithms and heuristics to
compute linear boolean decompositions, and experimentally evaluate these
algorithms. The experimental evaluation shows that significant improvements
can be made with respect to running time without increasing the width
of the generated decompositions. We also evaluated dynamic programming
algorithms on linear boolean decompositions for several vertex subset problems.
This evaluation shows that such algorithms are often much faster (up to several
orders of magnitude) compared to theoretical worst case bounds.

4.1 Introduction
Algorithms for computing boolean decompositions have been studied before
in [33, 22, 26, 14], but in this chapter we study the specific case of linear
boolean decompositions, which are considered in [2, 22, 26]. Linear decompo-
sitions are easier to compute and the theoretical running time of algorithms
for solving practical problems is lower on linear decompositions than on
tree shaped ones. For instance, vertex subset problems can be solved in
O∗(necd(T, δ)3) due to a dynamic programming algorithm by Bui-Xuan et
al. [1], but this can be improved to O∗(necd(T, δ)2) for linear decompositions.
Here, necd(T, δ) is the number of d-neighborhood equivalence classes, i.e., the
maximum size of the dynamic programming table, as defined in Section 3.3.3.
This can also be easily observed in the algorithms for Maximum Independent
Set and Minimum Dominating Set that are described in Section 3.3. Namely,
when working with a linear decomposition, always one of the branches in

29
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a cut is bounded by 1 in size, which implies that the number of unions of
neighborhoods across the cut is bounded by two. Therefore the entire running
time improves by a factor 2k.

We first give an exact algorithm for computing optimal linear boolean
decompositions, improving upon existing algorithms, and subsequently inves-
tigate several new heuristics through experiments, improving upon the work
by Sharmin [26, Chapter 8]. We then study the practical relevance of these
algorithms in a set of experiments by solving an instance of a vertex subset
problem, investigating the number of equivalence classes compared to the
theoretical worst case bounds.

4.2 Preliminaries
In this chapter we consider a special type of decompositions, namely linear
decompositions.

Definition 4.1 (linear decomposition). A linear decomposition, or caterpillar
decomposition, is a decomposition tree (T, δ) where T is a full binary tree and
for which each internal node of T has at least one leaf as a child. We can
define such a linear decomposition through a linear ordering π = π1, . . . , πn
of the vertices of G by letting δ map the i-th leaf of T to πi.

An example of a linear decomposition can be found in Figure 4.1. This is
in fact a possible decomposition of the example graph in Figure 2.1 that we
encountered before.

Definition 4.2 (linear boolean-width). The boolean-width of G is defined
as the the minimum boolean-width over all possible full decompositions of
G, while the linear boolean-width of a graph G = (V (G), E(G)) of size n is
defined as the the minimum boolean-width over all linear decompositions of
G.

boolw(G) = min
(T,δ) of G

boolw(T, δ)

lboolw(G) = min
linear (T,δ) of G

boolw(T, δ)

The restriction to linear decompositions makes linear boolean-width really
a different parameter. There are graphs for which the boolean-width is
low, but the linear boolean-width is very high. For instance, we will see in
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Figure 4.1: Example of a linear decomposition

Chapter 5 that trees have boolean-width 1. A corresponding decomposition
can be constructed in linear time. However, trees do generally have a very
high linear-boolean width. It is not known whether there is a polynomial
time algorithm to compute the linear boolean-width of trees.

Open question 4.3. Does there exists a polynomial time algorithm to com-
pute linear boolean-width on trees?

It is also an open problem whether computing linear boolean-width on a
general graph is NP-hard, although it is strongly suspected.

Open question 4.4. Is computing linear boolean-width NP-hard?

In this chapter we assume that the graphs of concern are connected, since
if the graph consists of multiple connected components we can simply compute
a linear decomposition for each connected component, after which we glue
them together, in any arbitrary order.
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4.3 Exact Algorithms
We can characterize the problem of finding an optimal linear decomposition
by the following recurrence relation, in which w contains partial solutions.

w({v}) = 0
w(A) = min

v∈A
{max{|UN (A \ {v})|, w(A \ {v})}} (4.1)

The linear boolean-width of the graph G is now given by log2(w(V )). Adapta-
tion of existing techniques lead to the following algorithms for linear boolean-
width, upon we hereafter improve:

• With dynamic programming a running time of O(2.7284n) is achieved.
(See Theorem 4.5)

• With adaptation of the exact algorithm for boolean-width by Vat-
shelle [33], a running time of O(n3 · 2n+lboolw(G)) is achieved. (See
Theorem 4.6)

Theorem 4.5. A linear boolean decomposition of minimum boolean-width
can be computed in O(2.7284n) time using O(n · 2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values
|UN (A)| by computing #MIS(G[A,A]). Computing #MIS for any graph
can be done in O(1.3642n) time [13]. Doing this for all A takes O(2.7284n)
time.

We solve recurrence relation (4.1) in a bottom-up fashion. For each
iteration, the minimum of |A| numbers has to be taken. Suppose |A| = k,
then this takes O(k) time for each iteration. When solving the recurrence
relation, |A| goes from 1 to n. Since there are

(
n
k

)
subsets of size k, it takes

∑n
k=1

(
n
k

)
k = O(n · 2n−1) = O(n · 2n) time to compute all values for lboolw.

Because the preprocessing step of computing bool-dim is the bottleneck,
the total time is O(2.7284n). The space requirements amount to O(n · 2n),
since bool-dim and lboolw contain at most 2n entries of integers of at most n
bits.

The currently fastest known exact algorithm for boolean-width runs in
O(n32n+boolw(G)), see Theorem 3.5. Theorem 4.6 is a direct adaptation to
linear boolean-width.
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Theorem 4.6. A linear boolean decomposition of minimum boolean-width for
a graph G can be computed in O(n3 · 2n+lboolw(G)) time using O(n2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values
|UN (A)|, using a polynomial time delay algorithm, which lists maximal
independent sets in G[A,A] with at most O(n3) time in between two re-
sults [10]. We can use the upperbound K as a limit for this algorithm, such
that computing max(|UN (A)|, K) takes at most O(n3K) time.

Now consider relation (4.1). This can be solved in O(n · 2n) time by the
same reasoning as in Theorem 4.5. This results in a total running time of
O(n3 · 2n+lboolw(G)) by binary search on K. The space requirements amount
to O(n · 2n), since the tables bool-dim and lboolw contain at most 2n entries
of integers of at most n bits.

4.3.1 Improving the running time
We present a faster and easier way to precompute for all cuts A ⊆ V the
values |UN (A)|, which results in a new algorithm displayed in Algorithm 4.
The observation is that once we know a union neighborhood of some cut
A, then it should not be hard to construct the union of neighborhoods in
A ∪ {v}. We refer to this as “incrementing the union of neighborhoods”. In
the following it is important that the UN sets are implemented as hashmaps,
which will only save distinct neighborhoods.

Algorithm 3 Compute UN (X ∪ {v}) given UN (X).
1: procedure Increment-UN(G,X,UNX , v)
2: U ← ∅
3: for S ∈ UNX do
4: U ← U ∪ {S \ {v}}
5: U ← U ∪

{
(S \ {v}) ∪ (N(v) ∩ (X \ {v}))

}

6: return U

Lemma 4.7. The procedure Increment-UN is correct and runs in O(n·|UNX |)
time using O(n · |UNX |) space.

Proof. For proof by induction, assume that all unions of neighborhoods
for the cut (X,X) saved inside the set UNX are computed correctly. For
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each neighborhood in UNX we only perform two actions to obtain new
neighborhoods. The first action is removing v, since v cannot be in any
neighborhood of X ∪{v}. The second operation is adding N(v) to an existing
neighborhood, which also results in a valid new neighborhood across the cut.
It is clear that if a neighborhood is added to U , then it is a valid neighborhood
across the cut (X ∪ {v}, X \ {v}). We now show that all valid neighborhoods
of the cut (X ∪ {v}, X \ {v}) are contained in U . Assume for contradiction
that S is a valid neighborhood not contained in U . By definition, there is a
set R for which N(R) ∩ (X \ {v}) = S. If v /∈ R, then N(R) ∩X ∈ UNX ,
meaning that we add N(R) ∩ (X \ {v}) to U , contradicting our assumption.
If v ∈ R, then N(R \ {v}) ∩X ∈ UNX . During the algorithm we construct
(N(R \ {v}) ∪N(v)) ∩ (X \ {v}), which is equal to N(R) ∩ (X \ {v}). This
means that N(R)∩(X \{v}) is added to U , also contradicting our assumption.
It follows that a neighborhood is contained in the set U if and only if it is a
valid neighborhood across the cut (X ∪ {v}, X \ {v}).

The time is determined by the number of sets S saved in UNX . The
number of unions of neighborhoods that we iterate over does not exceed 2k,
where k is the size of UNX . The set operations that are performed for each
S take at most O(n) time. This results in the total time for this algorithm
to be O(n · 2k). The space requirements amount to O(n · 2k), for storing U
which contains at most O(2k) sets of size at most O(n).

The reason for computing TUN (Y ) separately in a depth-first fashion is to
keep the space requirements low. If it were computed on the fly while solving
the recurrence relation, it would be evaluated in a breadth-first fashion, which
would increase the space requirements to O(n2n+K).

Lemma 4.8. Given a graph G = (V,E) of size n and an integer K, Algo-
rithm 4 computes the linear boolean width, if it is at most logK, in O(nK2n)
time using O(n2n) space.

Proof. Consider the first part of procedure Incremental-UN-exact, where
the call to the procedure Compute-count-UN is made. It may not be
immediately clear that TUN is always computed when necessary, since there
may be X such that TUN (X) is not computed, while TUN (X) ≤ K. Suppose
that X ⊆ V of size i occurs in an optimal decomposition and TUN (X)
has not been computed. Since we are dealing with linear decompositions,
there exists an ordering v1, . . . , vi of X such that for all 1 ≤ j ≤ i, the set
Xj = ⋃

0≤j′≤j vj′ also occurs in the optimal decomposition. Obviously this



4.3. EXACT ALGORITHMS 35

Algorithm 4 Return lboolw(G), if it is smaller than logK, otherwise return
∞.

1: procedure Incremental-UN-exact(G,K)
2: TUN (∅)← 0
3: Compute-count-UN(G,K, TUN , ∅, {∅})
4:
5: w(X)←∞, for all X ⊆ V
6: w(∅)← 0
7:
8: for i← 0, . . . , |V | − 1 do
9: for X ⊆ V of size i do

10: for v ∈ V \X do
11: Y ← X ∪ {v}
12: if w(X) ≤ K then
13: w(Y )← min(w(Y ),max(TUN (Y ), w(X)))
14:
15: return log2(w(V ))
16:
17: procedure Compute-count-UN(G,K, TUN , X,UNX)
18: for v ∈ V \X do
19: Y ← X ∪ {v}
20: if TUN (Y ) is not defined then
21: UN Y ← Increment-UN(G,X,UNX , v)
22: TUN (Y )← |UN Y |
23: if TUN (Y ) ≤ K then
24: Compute-count-UN(G,K, TUN , Y,UN Y )

implies that TUN (Xj) ≤ K for all j. But this means that for all these Xj the
if-statement on line 23 evaluates to true. But that means that TUN (X) must
be computed, contradiction. Thus we conclude that TUN is computed correctly
throughout the algorithm. The second part of procedure Incremental-UN-
exact simply solves the recurrence in a bottom-up dynamic programming
fashion. Finally, the procedure Increment-UN is correct by Lemma 4.7.

We now analyze the running time. Consider the procedure Compute-
count-UN. We observe that the procedure can only be called once for each
X ⊆ V , because as soon as the call is made, TUN (X) will be defined and
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line 20 prevents further calls with the same X. At every call the for-loop
has to make at most n iterations, thus we obtain O(n · 2n) iterations in total.
If line 20 evaluates false, the body of the for-loop takes constant time. If
line 20 evaluates true, the call to Increment-UN takes O(n · 2K) time (by
Lemma 4.7), as |UNX | ≤ K (otherwise by line 23 the call to Compute-
count-UN would not have been made). Because line 20 only returns true at
most O(2n) times, the time of Compute-count-UN amounts to O(n ·2n+K).
Consider the rest of the code in Incremental-UN-exact. The three outer
for-loops account for n ·2n executions of the inner code block, which take O(1)
time, resulting in O(n · 2n) time in total. Thus, in total the time amounts
O(n · 2n+K).

For the space requirements, we observe that the tables TUN and S are of size
at most 2n storing numbers of n bits. Moreover, the recursion of Compute-
count-UN can be at most n deep, so only n unions of neighborhoods have
to be stored, which are at most of size n · 2K . Since O(n · 2K) ⊆ O(n · 2n/2) (
O(n · 2n), the total space requirements amount to O(n · 2n).

Theorem 4.9. Given a graph G, Algorithm 4 can be used to compute
lboolw(G) in O(n2n+lboolw(G)) time using O(n2n) space.

Proof. Iteratively double K in Algorithm 4, starting with K = 1, until it
returns a number that is not ∞. By Lemma 4.8 this will take O(∑lboolw(G)

logK=1 n ·
2n+logK) = O(n·2n+lboolw(G)+1) = O(n2n+lboolw(G)) and take O(n2n) space.

This new algorithm improves upon the time in Theorem 4.6 by a fac-
tor n2, while the space requirements stay the same. Since the tightest
known upperbound for linear boolean-width is n

2 − n
143 +O(1) [22], this algo-

rithm can be slower than dynamic programming, since O(2n+ n
2−

n
143 +O(1)) =

O(2.8148n+O(1)) ) O(2.7284n), but this is very unlikely to happen in practice.

4.3.2 Applying the same technique for boolean-width
If we apply a similar technique for the exact algorithms for boolean-width,
we indeed get a new working algorithm as well. But it appears not to work
so great for boolean-width as it does for linear boolean-width, since unions
of neighborhoods are not simply incremented, but formed by combining two
unions of neighborhoods. Moreover, it is not as easy to implement, since the
subset convolution algorithm as to be integrated as well. See Appendix A for
the corresponding pseudo code.
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Remark 4.10. Given a graph G, Algorithm 9 can be used to compute
boolw(G) in O∗(2n+2 boolw(G)) time.

4.4 Heuristics

4.4.1 Generic form of the heuristics
The goal when using a heuristic is to find a linear ordering of the vertices in a
graph in such a way that the decomposition that corresponds to this ordering
will be of low boolean-width. A basic strategy to accomplish this is to start
the ordering with some vertex and then by some selection criteria append a
new vertex to the ordering that has not been appended yet. This strategy
is used in heuristics introduced by Sharmin [26, Chapter 8], and a similar
approach is shown in Algorithm 5.

Algorithm 5 Greedily generate an ordering based on the score function and
the given starting vertex.

1: procedure GenerateVertexOrdering(G,ScoreFunction, init)
2: Decomposition← (init)
3: Left← {init}
4: Right← V \ {init}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v
9: else

10: chosen← argmin
v∈Candidates

(ScoreFunction(G,Left, Right, v))

11: Decomposition← Decomposition · {chosen}
12: Left← Left ∪ {chosen}
13: Right← Right \ {chosen}
14: return Decomposition

At any point in the algorithm we denote the set of all vertices are contained
in the ordering by Left, and the remaining vertices by Right. While Right
is not empty, we choose a vertex from a candidate set Candidates ⊆ Right,
based on a set of trivial cases, and, if no trivial case applies, by making a
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local greedy choice using a score function that indicates the quality of the
current state Left, Right.

Selecting the initial vertex

Selecting a good initial vertex can be of great influence on the quality of
the decomposition. Sharmin proposes to use a double breadth first search
(BFS) in order to select the initial vertex. This is done by initiating a BFS,
starting at an arbitrary vertex, after which a vertex of the last level of the
BFS is selected. This process is then repeated by using the found vertex as a
starting point for the second BFS search. However, the fact that an arbitrary
vertex is used for the first BFS search already influences the boolean-width
of the computed decomposition. During our experiments we noticed that
performing a single BFS sometimes gave better results. But since we will
see later on that applications are a lot more expensive in terms of running
time, it is wise to use all possible starting vertices when trying to find a good
decomposition.

Pruning

Starting from multiple initial vertices allows us to do some pruning. If we
notice during the algorithm that the score of the decomposition that is being
constructed exceeds the score of the best decomposition found so far, we can
stop immediately and move to the next initial vertex. For this reason, it is
wise to start with the most promising initial vertices (e.g. obtained by the
double BFS method), and after that try all other initial vertices.

Candidates

The most straightforward choice for the set Candidates is to take Right
entirely. However, we may do unnecessary work here, since vertices that
are more than 2 steps away from any vertex in Left cannot decrease the
size of UN . This means that they should never be chosen by a greedy
score function, which means that we can skip them right away. By this
reasoning, the set of Candidates can be reduced to N2(Left) ∩ Right =
N(Left ∪ N(Left)) ∩ Right. Especially for larger sparse graphs, this can
significantly decrease the running time.
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Trivial cases

A vertex is chosen to be the next vertex in the ordering if it can be guaranteed
that it is an optimal choice by means of a trivial case. Lemma 4.11 generalizes
results by Sharmin [26], since the two trivial cases given by her are subcases
of our lemma, namely X = ∅ and X = {u} for all u ∈ Left. Note that
we can add a wide range of trivial cases by varying X, such as X = Left
and ∀u,w ∈ Left : X = {u,w}, but this will increase the complexity of the
algorithm.

Lemma 4.11. Let X ⊆ Left. If ∃v ∈ Right such that N(v) ∩ Right =
N(X) ∩ Right, then choosing v will not change the boolean-width of the
resulting decomposition.

Proof. The choice for v will not change the unions of neighborhoods in
any way, which means that UN (Left) = UN (Left ∪ {v}). Thus, for any
vertex in Right \ {v} it will hold that it will interact in the exact same with
with UN (Left) as it would with UN (Left ∪ {v}), resulting in the boolean
dimension of the computed ordering being the same.

Preliminary experiments show that the order of pruning, limiting the
candidate set and adding more trivial cases is very dependent on properties of a
graph. For instance, taking the distance 2 neighborhood decreases the running
time significantly for large graphs, but sometimes results in decompositions
of higher width caused by a random difference in tie-breakers. Therefore we
cannot give an optimal configuration in the general case; we simply tried
to find a good configuration depending on the available information of the
graphs uses as input.

Relative Neighborhood Heuristic

For a cut (Left, Right) and a vertex v define

Internal(v) = (N(v) ∩N(Left)) ∩Right
External(v) = (N(v) \N(Left)) ∩Right

In the original formulation by Sharmin [26] |External(v)|
|Internal(v)| is used as a score

function. However, if we use |External(v)|
|Internal(v)|+|External(v)| = |External(v)|

|N(v)∩Right| we get the
same ordering by Lemma 4.12, without having an edge case for dividing by
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zero. Furthermore, in contrast to Sharmin’s proposal of checking for each
vertex w ∈ N(v) if w ∈ N(Left) ∩ Right or not, we can compute these
sets directly by performing set operations. We will refer to this heuristic by
RelativeNeighborhood.

Lemma 4.12. The mapping a
b
7→ a

a+b is order preserving.

Proof. Suppose a
b
≤ c

d
. Then ad− bc ≤ 0. Now we see that

a

a+ b
− c

c+ d
= a(c+ d)− c(a+ b)

(c+ d)(a+ b) = ac+ ad− ac− bc
(c+ d)(a+ b) = ad− bc

(c+ d)(a+ b) ≤ 0

Thus a
a+b ≤ c

c+d .

Two variations on this heuristic can be obtained through the score func-
tions |External(v)|

|N(v)| and 1 − |Internal(v)|
|N(v)| , which work slightly better for sparse

random graphs and extremely well for dense random graphs respectively.
We will refer to these two variations by RelativeNeighborhood2 and
RelativeNeighborhood3.

One can easily see that the running time of these three algorithms is
O(n3) and the required space amounts to O(n). Notice however that this
algorithm only gives us a decomposition. If we need to know the corresponding
boolean-width we need to compute it afterwards, for instance by iteratively
applying Increment-UN on the vertices in the decomposition, and taking
the maximum value. This would require an additional O(n2 · 2k) time and
O(n · 2k) space, where k is the boolean-width of the decomposition.

Least Cut Value Heuristic

The LeastCutValue heuristic by Sharmin [26] greedily selects the next
vertex v ∈ Right that will have the smallest boolean dimension across the cut
(Left∪{v}, Right\{v}). This vertex is obtained by constructing the bipartite
graph BG = G[Left∪{v}, Right \ {v}] for each v ∈ Right, and counting the
number of maximal independent sets of BG using the CCMIS [16] algorithm
on BG, with the time of CCMIS being exponential in n.

Incremental Unions of Neighborhoods Heuristic

Generating a bipartite graph and then calculating the number of maximal
independent sets is a computational expensive approach. A different way to
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compute the boolean dimension of each cut is by reusing the neighborhoods
from the previous cut, similarly to Incremental-UN-exact. We present a
new algorithm, called the Incremental-UN-heuristic, in Algorithm 6. A
useful property of this algorithm is that the running time is output sensitive.
It follows that if a decomposition is not found within reasonable time, then
the decomposition that would have been generated is not useful for practical
algorithms.

Algorithm 6 Greedy heuristic that incrementally keeps track of the Unions
of Neighborhoods.

1: procedure Incremental-UN-Heuristic(G, init)
2: Decomposition← (init)
3: Left, Right← {init}, V \ {init}
4: UN Left ← {∅, N(init) ∩Right}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v
9: UN chosen ← Increment-UN(G,Left,UN Left, v)

10: else
11: for all v ∈ Candidates do
12: UN v ← Increment-UN(G,Left,UN Left, v)
13: if chosen is undefined or |UN v| < |UN chosen| then
14: chosen← v
15: UN chosen ← UN v

16: Decomposition← Decomposition · chosen
17: Left← Left ∪ {chosen}
18: Right← Right \ {chosen}
19: UN Left ← UN chosen

20: return Decomposition

Theorem 4.13. The Incremental-UN-heuristic procedure runs in O(n3 ·
2k) time using O(n · 2k) space, where k is the boolean-width of the resulting
linear decomposition.
Proof. The time is determined by the number of sets saved in UN Left. The
worst case consisting of Candidates = Right will result in at most n itera-
tions and calls to Increment-UN. This call takes O(n · 2|UNLeft|) time by
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Lemma 4.7. By definition |UN Left| never exceeds the boolean-width k of the
resulting decomposition, and because we need to make n greedy choices to
process the entire graph, we conclude that the total time for this algorithm
is O(n3 · 2k) For the space requirements we observe that all structures in
the algorithm require O(n) space, except for the unions of neighborhoods.
Since there are only stored two of them at any time and they require at most
O(n · 2k) space, the total space requirements amount to O(n · 2k).

Unsuccessful ideas

• First Improvement — Preliminary experiments pointed out that it not
only gave worse results in terms of boolean-width, but it also increased
the time needed to compute a decomposition, which can be explained by
the output sensitivity of the Incremental-UN-heuristic. In other
words, even though the best improvement strategy takes more time to
determine the next vertex for a single iteration, it is worthwhile to put
effort in finding a good cut, as it also decreases the time for future cuts.

• Lookaheads — This technique does not only look at the change of UN
resulting from choosing a candidate v, but also recursively considers
the changes of the algorithm after v has been chosen, up to a fixed
depth. With each level of depth added, the time complexity increases
with a factor n, but experiments turned out that the benefits were only
marginal.

• Minimal Neighborhood Cover — This heuristic tries to minimize the
number of neighborhoods in Left that are needed to cover the neigh-
borhood of the vertex to be chosen.

• Max Cardinality Search — This heuristics selects vertices in such an
order that at each step the vertex with most neighbors in Left is chosen.
In practice this heuristic performed similar to other already known
polynomial heuristics.

4.5 Experiments
The experiments in this section are performed on a 64-bit Windows 7 com-
puter, with a 3.40 GHz Intel Core i5-4670 CPU and 8GB of RAM. We
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implemented the algorithms using the C# programming language and com-
piled our programs using the csc compiler that comes with Visual Studio
12.0. For readability purposes only parts of the experiment data have been
put inline. For all experiment data please refer to Section 4.7.

4.5.1 Comparing Heuristics on random graphs
We will look at the performance of heuristics on randomly generated graphs,
for which we used the Erdös-Rényi-model [12] to generate a fixed set of
random graphs with varying edge probabilities. By using the same set of
graphs for each heuristic, we rule out the possibility that one heuristic can
get a slightly easier set of graphs than another. In these experiments we start
a heuristic once for each possible initial vertex, so n times in total. For the
RelativeNeighborhood heuristic we select the best decomposition based
upon the sum of the score function for all cuts, since computing all actual
linear boolean-width values would take O(n3 · 2k) time, thereby removing the
purpose of this polynomial time heuristic. For the set Candidates we take
N2(Left)∩Right, which avoids that we exclude certain optimal solutions, as
opposed to Sharmin [26], who restricted this set to N(Left)∩Right. However,
this does not affect the results significantly.

We let the edge probability vary between 0.05 and 0.95 with steps of size
0.05. For each edge probability value, we generated 20 random graphs. The
result per edge probability is taken to be the average boolean-width over
these 20 graphs, which are shown in Figure 4.2. It can be observed that the
Incremental-UN-heuristic procedure performs near optimal. Further-
more we see that the RelativeNeighborhood variants perform somewhere
in between the optimal value and the value of random decompositions.

Because of feasibility limitations, the Incremental-UN-exact algo-
rithm is not used for the graphs in Figure 4.3. While the optimal values are
now unknown, it is clear that Incremental-UN-heuristic outperforms
all other heuristics. Interestingly enough, RelativeNeighborhood3 peers
with Incremental-UN-heuristic as soon as the edge probability exceeds
0.4. Moreover, RelativeNeighborhood and RelativeNeighborhood2
do not perform better than a random decomposition generator after the edge
probability exceeds 0.4. We also observe that the highest boolean-width
values are reached when the edge probability is around 0.1–0.2, indicating
that the size of the graphs has an influence on the edge-probability-boolean-
width-curve. Also note that it seems that dense random graphs have lower
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linear boolean-width than sparse graphs. Therefore it may be profitable to
use RelativeNeighborhood3 when dense graphs are encountered.

Figure 4.2: Performance of different heuristics on random generated graphs
consisting of 20 vertices, with varying edge probabilities, in terms of linear
boolean-width.

Figure 4.3: Performance of different heuristics on random generated graphs
consisting of 50 vertices, with varying edge probabilities.
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4.5.2 Comparing heuristics on real world graphs
In order to get an idea of how the Incremental-UN-heuristic compares
to existing heuristics we compare them by both the boolean-width of the
generated decomposition and the time needed for computation. We cannot
compare the heuristics to the optimal solution, because computing an exact
decomposition is not feasible on these graphs. The graphs that were used come
from Treewidthlib [30], a collection of graphs that are used to benchmark
algorithms using treewidth and related graph problems.

We ran the three different heuristics mentioned in Section 4.4 with
Candidates = Right and with an additional two variations on the Incremental-
UN-heuristic (IUN) by varying the set of start vertices. The first variation,
named 2-IUN, has two start vertices which are obtained through a single
and double BFS search respectively. The n-IUN heuristic uses all possible
start vertices. For all other heuristics we obtained the start vertex through
performing a double BFS search. In Table 4.1 and 4.2 we present the results
of our experiments.

Table 4.1: Linear boolean-width of the decompositions returned by different
heuristics.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
david 87 0.11 9.38 6.27 6.27 6.27 5.86

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53

miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91
munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81

fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81
munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61

It is expected that the IUN heuristic and LeastCutValue heuristic give
the same linear boolean-width, since both these heuristics greedily select the
vertex that minimizes the boolean dimension. The RelativeNeighborhood
heuristic performs worse than all other heuristics in nearly all cases. While
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Table 4.2: Time in seconds of the heuristics used to find linear boolean decomposi-
tions.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
david 87 0.11 0.02 3.15 0.04 0.06 1.62

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32

miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43
munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85

fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63
munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

the difference might not seem very large, note that algorithms parameterized
by boolean-width are exponential in the width of a decomposition. The
2-IUN heuristic outperforms IUN in three cases while n-IUN gives a better
decomposition in 10 out of 12 cases, which shows that a good initial vertex is
of great influence on the width of the decomposition.

Looking at the times displayed in Table 4.2 for computing each decom-
position we see that the RelativeNeighborhood heuristic is significantly
faster. This is to be expected because of the O(n3) time, compared to the
exponential time for all other heuristics. The interesting comparison that we
can make is the difference between the IUN heuristic and LeastCutValue
heuristic. While both of these heuristics give the same decomposition, IUN is
significantly faster. Additionally, even 2-IUN and n-IUN are often faster than
the LeastCutValue heuristic.

4.5.3 Vertex subset experiments
We have used the linear decompositions given by the n-IUN heuristic to
compute the size of the maximum induced matching (MIM) in a selection
of graphs, of which the results are presented in Table 4.3. The maximum
induced matching problem is defined as finding the largest ({1},N) set, with
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d({1},N) = 2. The choice for the MIM problem is arbitrary, any vertex
subset problem with d = 2 will have the same number of equivalence classes
and therefore they all require the same time when computing a solution.
We present the computed value of necd(T, δ), together with theoretical up-
perbounds, since for d = 2 a tight upperbound in terms of boolean-width
is not known. Note that we take the logarithm of each value, since we
find this value easier to interpret and compare to other graph parameters.
We let UB1 = 2d·boolw2 , UB2 = (d+ 1)minntc and UB3 = ntcd·boolw, with
ntc = max

w∈T
ntc(Vw) and minntc = max

w∈T
min(ntc(Vw), ntc(Vw)).

The column MIM displays the size of the MIM in the graph, while
the time column indicates the time needed to compute this set. Missing
values for nec and MIM are caused by a lack of internal memory. The
reason for this is that the space requirement for the algorithm used to
compute the MIM is O∗(necd(T, δ)2). An interesting observation that we
can do, for instance by looking at the graphs zeroin.i.2 and boblo, is that
a lower boolean-width does not automatically imply a lower number of
equivalence classes. We even encountered this for two decompositions (T, δ)
and (T ′, δ′) of the same graph. For instance, for the graph barley we observed
boolw(T, δ) = 4.58 and boolw(T ′, δ′) = 4.81, while log2(nec2(T, δ)) = 7.00
and log2(nec2(T ′, δ′)) = 6.75.

Table 4.3: Results of using the algorithm by Bui-Xuan et al. [1] for solving (σ, ρ)
problems on graphs, using decompositions obtained using the n-IUN heuristic.

Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
david 5.86 9.37 68.63 22.19 44.61 34 919

celar04-pp 7.27 11.15 105.61 28.53 65.74 - -
1bkb-pp 9.53 - 181.47 52.30 98.49 - -

miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179
munin2-pp 7.61 11.82 115.97 19.02 54.60 - -
mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59

fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934
munin4-wpp 7.61 12.13 115.97 19.02 57.98 - -
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Another interesting observation with respect to applicability of decompo-
sitions can be done in Table 4.8, which is placed in the next section. Here
the linear boolean-width heuristics are compared to boolean-width heuristics
by Sharmin [26]. We know that for sigma-rho problems with d = 1 the
worst case running times are O(22lbw) for linear boolean-width and O(23bw)
for boolean-width. We observe that this value is usually lower for linear
boolean-width, which suggests that with the current heuristics it is better to
use linear boolean decompositions for applications.

4.6 Conclusion
We have presented a new heuristic and a new exact algorithm for finding
linear boolean decompositions. The heuristic has a running time that is
several orders of magnitude faster than the previous best heuristic and finds
a decomposition in output sensitive time. This means that if a decomposition
is not found within reasonable time, then the decomposition that would
have been generated is not useful for practical algorithms. Running the new
heuristic once for every possible starting vertex results in significantly better
decompositions compared to existing heuristics. Although the timed results
are not entirely comparable to Sharmin’s observed data, we can still see that
our new heuristic for linear boolean decompositions surpasses heuristics for
tree shaped decompositions in both time and quality.

We have seen that if lboolw(T, δ) < lboolw(T ′, δ′), then there is no guar-
antee that nec(T, δ) < nec(T ′, δ′). While in general it holds that minimizing
boolean-width results in a low value of number of equivalence classes, we
think that can be worthwhile to focus on minimizing the necd instead of the
boolean-width when solving vertex subset problems. However, the number of
equivalence classes is not symmetric, i.e., for a cut (A,A) necd(A) 6= necd(A),
which makes it harder to develop fast heuristics that focus on minimizing
necd since we need to keep track of both the equivalence classes of A and A.

Further research can be done in order to obtain even better heuristics
and better upperbounds on both the linear boolean-width and boolean-width
on graphs. For instance, combining properties of the Incremental-UN-
heuristic and the RelativeNeighborhood heuristic might lead to better
decompositions, as they make use of complementary features of a graph.
Another approach for obtaining good decompositions could be a branch and
bound algorithm that makes us of trivial cases that are used in the heuristics.
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To decrease the time needed by the heuristics one can investigate reduction
rules for linear boolean-width. We will consider new reduction rules for
linear boolean-width in Chapter 5. While most reduction rules introduced by
Sharmin [26] for boolean-width do not hold for linear boolean-width, they can
still be used on a graph after which we can use our heuristic on the reduced
graph. Although the resulting decomposition after reinserting the reduced
vertices will not be linear, the asymptotic running time for applications does
not increase [31]. Another topic of research is to compare the performance
of vertex subset algorithms parameterized by boolean-width to algorithms
parameterized by treewidth [32].

4.7 Obtained data
This section contains the full set of tables containing the experiment data.

Table 4.4: Linear boolean-width of the decompositions returned by the
heuristics described in Section 4.4, with Candidates = Right. For 2-IUN we
use two start vertices; one is obtained through a single BFS search, while the
other is obtained through a double BFS search. The n-IUN heuristic uses all
n start vertices, and all other heuristics use start vertices obtained through
performing a double BFS.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 3.32 3.00 3.00 3.00 3.00
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
BN 100 58 0.17 15.84 11.56 11.56 10.86 10.86

eil76 76 0.08 8.86 8.33 8.33 8.33 8.33
david 87 0.11 9.38 6.27 6.27 6.27 5.86
1jhg 101 0.17 12.86 8.67 8.67 8.49 8.41
1aac 104 0.25 20.29 12.40 12.40 12.40 12.33

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1a62 122 0.21 18.92 11.68 11.68 11.28 11.14

1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53
1dd3 128 0.17 16.61 9.98 9.98 9.90 9.90

miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
Continued on next page
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Table 4.4 – Continued from previous page
Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN

miles250 128 0.05 7.95 7.13 7.13 5.39 4.58
celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91

anna 138 0.05 12.65 8.67 8.67 8.51 7.94
pr152 152 0.04 12.69 11.19 11.19 10.36 8.29

munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81

boblo 221 0.01 19.00 4.32 4.32 4.32 4.00
fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81

munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61

Table 4.5: Time in seconds of the heuristics used to find the linear boolean
decompositions of which the boolean-width is displayed in Table 4.4.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 < 0.01 0.02 < 0.01 < 0.01 0.06
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
BN 100 58 0.17 < 0.01 25.10 0.41 1.24 17.17

eil76 76 0.08 0.02 5.00 0.13 0.29 8.35
david 87 0.11 0.02 3.15 0.04 0.06 1.62
1jhg 101 0.17 0.03 24.46 0.21 0.48 14.75
1aac 104 0.25 0.04 754.54 5.66 11.81 375.31

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
1a62 122 0.21 0.06 585.95 3.10 11.57 376.26

1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32
1dd3 128 0.17 0.07 117.21 0.92 2.74 91.19

miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
miles250 128 0.05 0.02 0.56 0.05 0.10 1.24

celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43
anna 138 0.05 0.06 20.81 0.22 0.57 19.95
pr152 152 0.04 0.10 50.74 1.76 5.66 120.06

munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
Continued on next page
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Table 4.5 – Continued from previous page
Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN

mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85

boblo 221 0.01 0.29 3.39 0.28 0.56 46.22
fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63

munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

Table 4.6: Results of using the algorithm by Bui-Xuan et al. [1] for solving
(σ, ρ) problems on graphs, using decompositions obtained using the IUN
heuristic using all starting vertices. The columns UB indicate theoretical
upperbounds on the number of equivalence classes, with UB1 = 2d·boolw2 ,
UB2 = (d+ 1)minntc and UB3 = ntcd·boolw, with ntc = max

w∈T
ntc(Vw) and

minntc = max
w∈T

min(ntc(Vw), ntc(Vw)).

Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)
alarm 3.00 4.32 18.00 7.92 13.93 18 < 1
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
BN 100 10.86 - 235.93 36.45 105.53 - -

eil76 8.33 12.63 138.81 22.19 65.10 - -
david 5.86 9.37 68.63 22.19 44.61 34 919
1jhg 8.41 13.53 141.58 41.21 81.75 - -
1aac 12.33 - 304.08 72.91 141.25 - -

celar04-pp 7.27 11.15 105.61 28.53 65.74 - -
1a62 11.14 - 248.09 60.23 121.61 - -

1bkb-pp 9.53 - 181.47 52.30 98.49 - -
1dd3 9.90 - 196.11 52.30 103.17 - -

miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
miles250 4.58 7.24 42.04 15.85 31.72 52 37

celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179
anna 7.94 11.94 125.98 33.28 75.48 - -
pr152 8.29 12.76 137.45 22.19 63.13 - -

munin2-pp 7.61 11.82 115.97 19.02 54.60 - -
Continued on next page
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Table 4.6 – Continued from previous page
Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)

mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59

boblo 4.00 6.17 32.00 9.51 20.68 148 41
fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934

munin4-wpp 7.61 12.13 115.97 19.02 57.98 - -
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Table 4.7: Width of linear boolean decompositions found with the IUN heuris-
tic using the start vertices returned by performing a double BFS, and with
candidates = N2(Left) ∩Right in order to decrease the computation time. The
values of the two others heuristics are taken from [26]. Missing entries are caused
by a lack of internal memory which is caused by the O(n · 2k) space requirement,
with k being the linear boolean-width of the computed decomposition. The last
column indicates the time of the IUN heuristic.

Graph |V | Edge Density LeastUnc Relative IUN Time (s)
link-pp 308 0.02 34.81 28.68 17.44 610.09

diabetes-wpp 332 0.01 8.58 18.58 5.32 1.53
link-wpp 339 0.02 35.00 29.03 16.79 374.04
celar10 340 0.02 20.81 15.00 10.17 1.83
celar11 340 0.02 19.54 14.70 10.80 1.88
rd400 400 0.01 34.73 21.32 17.01 1,007.03

diabetes 413 0.01 29.32 19.32 - -
fpsol2.i.3 425 0.10 15.87 8.92 7.67 2.11

pigs 441 0.01 24.04 18.00 12.39 20.08
celar08 458 0.02 24.95 15.00 10.17 2.12
d493 493 0.01 20.29 48.10 16.73 708.57

homer 561 0.01 36.22 28.49 - -
rat575 575 0.01 16.48 37.23 - -
u724 724 0.01 18.72 50.09 - -

inithx.i.1 864 0.05 11.98 7.22 6.81 7.31
munin2 1003 < 0.01 31.25 12.13 11.91 61.17
vm1084 1084 < 0.01 15.21 48.95 - -
BN 24 1819 < 0.01 4.91 2.32 2.58 610.72
BN 25 1819 < 0.01 4.64 2.32 2.58 601.41
BN 23 2425 < 0.01 8.48 3.17 2.58 1,808.29
BN 26 3025 < 0.01 6.98 2.32 3.58 4,532.83
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Table 4.8: Linear boolean-width upperbounds that are obtained through using
the IUN heuristic with all starting vertices and candidates = Right. The tw
column gives an upperbound on the treewidth, while the bw column gives an
upperbound on the boolean-width, which values are taken from [26]. Cursive
graph names marked with an asterisk indicate the graphs for which, in theory,
the linear boolean decomposition will give a higher bound on the running
time than the boolean decomposition, i.e., graphs for which 22lbw > 23bw.

Graph |V | Edge Density tw bw lbw lbw/bw
celar06-pp-003 4 0.5 2 1 1 1.00

diabetes-pp-001* 6 0.8 4 1 1.58 1.58
munin3-pp-001* 7 0.81 5 1 1.58 1.58
munin3-pp-002* 7 0.81 5 1 1.58 1.58
celar06-pp-000 8 0.43 3 1 1 1.00
diabetes-pp-002 8 0.61 4 2.32 2.32 1.00

mainuk-pp 9 0.78 6 1.58 1.58 1.00
rl5934-pp-001 10 0.44 4 2.81 3.17 1.13
fl3795-pp-001 10 0.44 4 2.81 3 1.07
fl3795-pp-003 10 0.44 4 2.81 3 1.07
fl3795-pp-002 10 0.44 4 2.81 3.17 1.13

pathfinder-pp-001 11 0.58 5 2.58 3.32 1.29
myciel3 11 0.36 5 3 3.46 1.15

pcb3038-pp-001 11 0.4 5 3 2.81 0.94
fl3795-pp-004 11 0.42 4 3 3.46 1.15
pathfinder-pp 12 0.65 6 2.58 2.81 1.09
celar11-pp-002 13 0.59 7 2.81 3.17 1.13

celar04-pp-001-000 15 0.74 9 1.58 2 1.27
weeduk 15 0.47 7 1.58 1.58 1.00
fungiuk 15 0.34 4 2 1.58 0.79

pcb3038-pp-002 15 0.3 5 3 2.81 0.94
mildew-wpp 15 0.3 4 2.58 3.32 1.29

celar04-pp-001 16 0.78 10 1.58 2 1.27
celar06-pp 16 0.84 11 1.58 1.58 1.00

celar10-pp-001 16 0.51 8 3 3.46 1.15
celar09-pp-001 16 0.51 8 3 3.17 1.06
celar08-pp-002 16 0.51 8 3 3.32 1.11
celar07-pp-002 16 0.45 7 3 3.32 1.11

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw

barley-pp-001 16 0.42 7 3.32 3.32 1.00
celar11-pp-004 16 0.36 6 3.17 3.58 1.13
munin2-pp-005 16 0.3 5 3 3.58 1.19
munin2-pp-006 16 0.3 5 3 3.58 1.19
munin2-pp-003 16 0.3 5 3.17 3.7 1.17
munin2-pp-004 16 0.3 5 3.17 3.7 1.17
munin2-pp-007 17 0.35 7 3.46 3.58 1.03
munin2-pp-011 17 0.35 7 3.46 3.58 1.03
munin2-pp-010 17 0.35 7 3.46 3.81 1.10
munin2-pp-008 17 0.35 7 3.46 3.58 1.03
munin2-pp-009 18 0.31 6 3.46 3.81 1.10
munin2-pp-012 18 0.31 6 3.46 3.81 1.10
celar01-pp-002 19 0.65 10 2 2.32 1.16

celar02-pp 19 0.67 10 2 2 1.00
celar05-pp-001 19 0.66 11 2 2.32 1.16
celar11-pp-001 19 0.65 10 2 2.32 1.16
fl3795-pp-005 19 0.22 4 3.32 3.58 1.08
water-pp-001 21 0.45 9 3.81 4.09 1.07

anna-pp 22 0.64 12 3.46 3.81 1.10
water-pp 22 0.42 9 4.17 4.32 1.04

water-wpp 22 0.42 9 4.17 4.32 1.04
munin4-pp-001 23 0.26 8 3.58 4 1.12
munin4-pp-002 23 0.26 8 3.58 4 1.12

myciel4 23 0.28 10 5 5.49 1.10
BN 29 24 0.18 5 2 2.32 1.16
BN 28 24 0.18 5 2 2.32 1.16

queen5 5 25 0.53 18 5.29 5.67 1.07
barley-pp 26 0.24 7 3.7 3.46 0.94

fl3795-pp-006 26 0.16 5 3.81 4.17 1.09
david-pp 29 0.47 13 4.09 4.32 1.06

barley-wpp 29 0.2 7 3.81 3.58 0.94
pcb3038-pp-003 29 0.12 5 4.32 4.75 1.10

celar02-wpp 30 0.33 10 2.81 2.58 0.92
water 32 0.25 9 4.39 4.75 1.08

BN 16-pp-015 34 0.28 11 3.58 4.39 1.23
Continued on next page
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Table 4.8 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

celar06-wpp 34 0.28 11 3 3.17 1.06
BN 16-pp-014 34 0.28 11 3.81 4.86 1.28

1bx7-pp 34 0.31 11 4.7 4.39 0.93
mildew 35 0.13 4 3 3.32 1.11

queen6 6 36 0.46 25 7.65 8.08 1.06
alarm 37 0.1 4 2.58 3 1.16

celar03-pp-001 38 0.34 14 5.81 6.11 1.05
munin4-pp-003* 38 0.16 8 3.58 5.39 1.51
munin4-pp-004 38 0.16 8 4.17 5.39 1.29
celar08-pp-001 39 0.38 16 5.09 5.21 1.02

oesoca 39 0.09 3 2.32 3 1.29
1bx7 41 0.24 11 4.91 4.75 0.97

oesoca42 42 0.08 3 2.32 3.17 1.37
celar07-pp-001 45 0.32 16 5.46 5.86 1.07
celar01-pp-001 47 0.25 15 5.88 6.36 1.08
celar05-pp-002 47 0.25 15 6.07 5.83 0.96

myciel5 47 0.22 19 8.12 6.49 0.80
1ubq-pp 47 0.16 12 5.95 8.79 1.48

pigs-pp-001 47 0.12 9 5.95 7.07 1.19
1brf-pp 48 0.36 22 7.01 7.25 1.03

1rb9 48 0.37 22 6.77 7.17 1.06
celar11-pp-003 48 0.23 15 5.73 4.58 0.80

mainuk* 48 0.18 7 3.58 6.49 1.81
barley 48 0.11 7 4 3.7 0.93
pigs-pp 48 0.12 9 5.7 6.64 1.16

1brf 49 0.35 22 7.01 7.3 1.04
queen7 7 49 0.4 35 10.36 10.97 1.06
1kth-pp 51 0.33 20 7.06 5.86 0.83
1i07-pp 51 0.28 15 5.55 7.18 1.29
eil51.tsp 51 0.11 9 5.78 5.78 1.00
1igq-pp 52 0.37 23 6.74 7.45 1.11

1kth 52 0.32 20 7.04 6.87 0.98
1g6x 52 0.31 19 6.89 7.21 1.05
1igq 54 0.35 23 6.89 7.61 1.10

zeroin.i.1-pp 54 0.89 46 1.58 1.58 1.00
Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw

1e0b-pp 55 0.33 24 7.69 8.32 1.08
munin4-pp-006 55 0.11 8 4.32 5.17 1.20
munin4-pp-005 55 0.11 8 4.39 5.17 1.18

1j75 56 0.36 27 8.51 8.94 1.05
1k61-pp 56 0.37 26 8.02 8.37 1.04
1sem-pp 56 0.37 26 8.09 8.5 1.05
1bbz-pp 56 0.35 25 8.18 8.36 1.02
1bf4-pp 57 0.39 26 7.63 7.79 1.02

1cka 57 0.38 27 8.55 8.87 1.04
1sem 57 0.36 26 8.32 8.66 1.04

zeroin.i.2-pp 57 0.69 32 2.81 3.32 1.18
zeroin.i.3-pp 57 0.69 32 3 3.32 1.11

1bbz 57 0.34 25 8.3 8.36 1.01
1oai-pp 57 0.32 22 7.94 8.28 1.04

1jo8 58 0.37 27 8.46 8.73 1.03
1oai 58 0.32 22 7.87 8.15 1.04

celar01-pp-003 58 0.19 15 6.97 6.89 0.99
1g2b-pp 59 0.37 28 8.5 8.99 1.06
1igd-pp 59 0.36 25 7.66 7.9 1.03
1kq1-pp 59 0.35 27 8.63 8.94 1.04
1pwt-pp 59 0.38 29 8.85 9.24 1.04

1i07 59 0.23 15 5.52 5.93 1.07
1k61 60 0.33 26 8.32 8.81 1.06
1kq1 60 0.34 27 8.79 8.89 1.01

1ku3-pp 60 0.33 23 7.46 7.53 1.01
1e0b 60 0.29 24 8.13 8.42 1.04

knights8 8-pp 60 0.09 16 10.77 11.3 1.05
1gut-pp 61 0.33 22 7.19 7.54 1.05

1i2t 61 0.35 27 8.38 9.03 1.08
1igd 61 0.34 25 7.75 7.9 1.02
1pwt 61 0.36 29 8.81 9.27 1.05
1ku3 61 0.32 23 7.53 7.61 1.01
1g2b 62 0.34 28 8.72 9.05 1.04

1fr3-pp 62 0.32 21 7.16 7.29 1.02
celar04-pp-002 62 0.17 16 6.86 7.26 1.06

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw
1bf4 63 0.34 26 7.9 8.09 1.02
1r69 63 0.35 30 9.12 9.51 1.04

munin1-pp-001 63 0.09 11 5.58 6.43 1.15
1gcq-pp 64 0.36 30 8.95 9.38 1.05
queen8 8 64 0.36 45 13.16 14.05 1.07

1a8o 64 0.27 25 9.11 9.3 1.02
knights8 8 64 0.08 16 11.06 11.64 1.05

1fjl 65 0.29 26 7.9 8.49 1.07
1c9o 66 0.34 29 8.75 8.88 1.01
1hg7 66 0.33 29 8.81 9.13 1.04
1ezg 66 0.25 23 8.33 7 0.84

1en2-pp 66 0.21 17 7.46 8.54 1.14
munin1-pp 66 0.09 11 5.58 6.43 1.15

1c4q 67 0.34 31 9.45 9.71 1.03
1fse 67 0.33 27 8.58 8.75 1.02

1kw4 67 0.3 28 9.39 5.73 0.61
1gut 67 0.28 22 7.47 7.36 0.99
1fr3 67 0.28 21 7.29 7.47 1.02

1b67-pp 67 0.25 16 6.61 9.61 1.45
1gcq 68 0.33 30 9.36 9.65 1.03

1ail-pp 68 0.28 24 8.11 8.33 1.03
1d3b-pp 68 0.3 25 8.54 5.78 0.68

1b67 68 0.25 16 6.61 8.52 1.29
1c75 69 0.29 30 9.88 8.31 0.84
1ail 69 0.27 24 8.07 9.68 1.20

1d3b 69 0.29 25 8.44 8.53 1.01
1en2 69 0.2 17 7.24 7 0.97
1cc8 70 0.34 32 9.35 9.63 1.03

1dj7-pp 70 0.3 27 8.12 8.22 1.01
1i27-pp 70 0.3 27 8.67 8.82 1.02

1l9l 70 0.29 29 9.26 10 1.08
1ljo-pp 71 0.31 30 8.92 9.02 1.01
1dp7-pp 71 0.3 27 9.21 9.15 0.99

graph03-pp-001 71 0.11 20 12.53 12.24 0.98
1mgq-pp 72 0.31 28 8.98 9.08 1.01

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw
1i27 73 0.28 27 8.78 9.06 1.03

mulsol.i.1-pp 73 0.83 50 2.32 2.58 1.11
1dj7 73 0.28 27 9.66 8.22 0.85
1ldd 74 0.31 32 9.6 9.73 1.01
1ljo 74 0.29 30 8.88 9.06 1.02

1mgq 74 0.3 28 8.91 9.06 1.02
huck 74 0.11 10 2.81 3.32 1.18
1ubq 74 0.08 12 6.61 7.75 1.17
1ig5 75 0.29 33 10.45 10.64 1.02
1dp7 76 0.27 27 9.01 9.3 1.03

celar10-pp-002 76 0.15 16 7.25 6.58 0.91
celar08-pp-003 76 0.15 16 7.41 6.58 0.89
celar09-pp-002 76 0.15 16 7.46 6.58 0.88

1iqz 77 0.29 33 10 10.1 1.01
1qtn-pp 77 0.25 24 8.56 8.33 0.97

munin3-pp-003* 79 0.09 7 4.17 12.73 3.05
graph03-pp 79 0.1 20 12.99 5.61 0.43

sodoku-elim1 80 0.28 45 9.47 12 1.27
jean* 80 0.08 9 3.91 6.54 1.67

celar05-pp 80 0.13 15 7.2 4.58 0.64
sodoku 81 0.25 45 9 12.7 1.41

celar03-pp 81 0.13 14 6.19 6.11 0.99
graph03-wpp 84 0.09 20 12.74 12.92 1.01

1fk5 85 0.23 31 10.76 10.1 0.94
1aba 85 0.25 29 10.13 10.81 1.07

graph01-pp-001 85 0.09 24 13.4 13.66 1.02
1ctj-pp 86 0.25 33 10.78 11.07 1.03

1ctj 87 0.25 33 10.74 11.04 1.03
1ptf 87 0.3 38 11.21 10.86 0.97
1qtn 87 0.21 24 9.15 8.97 0.98
david 87 0.11 13 5.32 5.86 1.10

graph05-pp-001 87 0.1 24 12.68 13.31 1.05
1awd 89 0.28 38 10.8 11.13 1.03

celar03-wpp 89 0.11 14 6.17 6.49 1.05
celar05-wpp 89 0.11 15 7.52 6.54 0.87

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw

graph01-pp 89 0.08 24 14.62 13.96 0.95
munin1-wpp 90 0.05 11 7.23 7.58 1.05

1jhg-pp 91 0.19 25 8.34 8.41 1.01
graph05-pp 91 0.1 24 13.84 13.49 0.97
celar07-pp 92 0.12 16 6 6 1.00

a280.tsp-pp 92 0.06 14 8.23 7.38 0.90
kroE100.tsp-pp* 92 0.06 10 6.48 14.84 2.29

1g2r-pp 93 0.26 37 11.87 11.51 0.97
graph01-wpp 93 0.07 24 14.69 11.41 0.78

1czp 94 0.27 38 11.47 11.6 1.01
1g2r 94 0.25 37 12.17 14.19 1.17

graph05-wpp 94 0.09 24 14.38 13.18 0.92
1c5e 95 0.26 36 11.06 10.83 0.98

myciel6 95 0.17 35 13.4 7.86 0.59
homer-pp 95 0.17 31 14.61 13.88 0.95

kroA100.tsp-pp 95 0.06 10 7.61 6.58 0.86
celar11-pp 96 0.1 15 6.64 5.98 0.90
munin3-pp 96 0.07 7 4.32 5.86 1.36
celar07-wpp 97 0.01 16 6 7.17 1.20

kroC100.tsp-pp* 97 0.06 10 6.94 11.97 1.72
1plc 98 0.25 35 11.28 11.1 0.98

1lkk-pp 99 0.24 34 11 10.84 0.99
1d4t-pp 99 0.23 35 11.88 6.58 0.55

celar11-wpp 99 0.1 15 7.17 4.91 0.68
1i0v 100 0.24 41 12.21 12.47 1.02

celar02 100 0.06 10 3.32 4.91 1.48
celar06* 100 0.07 11 3.81 14.85 3.90
graph05 100 0.08 24 13.7 13.36 0.98
graph01 100 0.07 24 14.61 14.21 0.97
graph03 100 0.07 20 13.29 8.41 0.63

1erv 101 0.25 41 12.26 12.44 1.01
1jhg 101 0.17 25 8.87 11.97 1.35

1iib-pp 102 0.27 40 11.98 11.76 0.98
1d4t 102 0.22 35 12.87 10.31 0.80
1iib 103 0.26 40 12.62 11.79 0.93

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw
1b0n 103 0.19 32 10.81 11.17 1.03
1lkk 103 0.22 34 11.89 13.56 1.14
1aac 104 0.25 41 12.29 12.33 1.00

1bkf-pp 105 0.23 36 11.1 11.4 1.03
1bkf 106 0.23 36 11.69 11.44 0.98
1bkr 107 0.24 44 14.4 13.75 0.95
1rro 107 0.23 43 15.36 3.58 0.23
1f9m 109 0.23 45 14.27 13.56 0.95

pathfinder* 109 0.04 6 3.32 10.83 3.26
celar04-pp 110 0.09 16 7.29 7.27 1.00

1fs1 114 0.21 34 13.79 7.36 0.53
celar04-wpp 116 0.07 16 7.95 11.1 1.40

1gef-pp 117 0.22 43 12.93 13.35 1.03
1gef 119 0.21 43 13.6 13.35 0.98

mulsol.i.5-pp 119 0.36 31 3 3 1.00
1a62-pp 120 0.21 37 14.7 11.14 0.76

1a62 122 0.21 37 13.62 9.68 0.71
1dd3-pp 124 0.17 31 14.6 9.25 0.63

ch130.tsp-pp 125 0.05 12 8.67 9.53 1.10
1bkb-pp 127 0.18 30 15.55 9.9 0.64

miles1500 128 0.64 77 4.86 5.29 1.09
1dd3 128 0.17 31 11.68 4.58 0.39

miles500 128 0.14 22 9.42 7.04 0.75
miles250* 128 0.05 9 4.95 9.61 1.94

1bkb 131 0.17 30 14.53 6.91 0.48
celar10-pp 133 0.07 16 9.08 7.7 0.85

anna 138 0.04 12 6.67 7.25 1.09
celar09-wpp 142 0.06 16 8.49 7 0.82
celar01-pp 157 0.07 15 7.39 7 0.95

celar01-wpp 158 0.06 15 7.09 7.61 1.07
munin2-pp 167 0.03 7 5.49 6.91 1.26
mulsol.i.3 184 0.23 32 4.95 3.58 0.72
mulsol.i.4 185 0.23 32 4.81 3.58 0.74
mulsol.i.5 186 0.23 31 4.95 3.58 0.72
mulsol.i.2 188 0.22 32 4.81 3.58 0.74

Continued on next page
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Graph |V | Edge Density tw bw lbw lbw/bw

celar08-wpp 190 0.05 16 9.64 11.48 1.19
mulsol.i.1 197 0.2 50 4 4.17 1.04
zeroin.i.3 206 0.17 32 5.39 3.81 0.71
zeroin.i.1 211 0.19 50 3.7 3.32 0.90
zeroin.i.2 211 0.16 32 5.39 3.81 0.71

fpsol2.i.1-pp 233 0.4 66 4.91 4.81 0.98



Chapter 5

Reduction Rules for Linear
Boolean-width

Finding decompositions of low boolean-width is a difficult problem in itself,
which is why we have looked at heuristics in Chapter 4. To ease this process,
we can make use of preprocessing steps in order to speed up the computation
of decompositions. The idea behind these preprocessing steps is that we apply
a certain number of reduction rules to our input graph. These rules remove
certain vertices and all edges incident to these vertices from the graph. By
doing this we obtain a new graph called the reduced graph, which can be used
as input for a heuristic. We make sure that the linear boolean-width of the
reduced graph is equal to the linear boolean-width of the original input graph.
We then reverse the applied reduction rules to expand the decomposition
of the reduced graph into a decomposition of the original graph of equal
boolean-width. A schematic overview is presented in Figure 5.1, where at
each step the linear boolean-width is required to remain unchanged. Because
the reduced graph will have less vertices, it will speed up the computation of
a decomposition, since there are less options when deciding the next vertex
for a linear ordering of the vertices of the graph that is being constructed by
a heuristic.

We start this chapter with a number of definitions in Section 5.1. In
Section 5.2 we explain how reduction rules can be found and proven to be
correct. In Section 5.3 we investigate known reduction rules for boolean
decompositions. The rules do not automatically apply to linear boolean
decompositions, since linear decompositions are more restrictive in their tree
construction. In Section 5.4 we look at reduction rules for treewidth and
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Graph G reducing−−−−−→ Graph H decomposing−−−−−−−→ π′ of H expanding−−−−−−→ π of G

Figure 5.1: Steps for applying reduction rules.

check their validity for boolean-width. In Section 5.5 we provide a number of
new reduction rules. In Section 5.6 we present ways to combine properties of
linear decompositions with reduction rules for general decompositions.

5.1 Definitions
Definition 5.1 (Reduction rule). A rule r is called a reduction rule if it can
do the following: Given a graph G = (V (G), E(G)), r can derive a reduced
graph H = (V (H), E(H)) by removing a certain number of vertices and all
edges incident to these vertices. We denote G r−→ H to indicate that H is
obtained by reducing G using rule r.

Definition 5.2 (Safe reduction rule). Let G = (V (G), E(G)) be a graph and
let r be some reduction rule. Let H = (V (H), E(H)) and G r−→ H. Then r is
called safe if lboolw(G) = lboolw(H).

Note that by applying a reduction rule to a graph G it always holds that
lboolw(H) ≤ lboolw(G). This follows from the property of boolean-width
that removing vertices cannot increase the boolean-width of a graph.

In order to revert the changes made by a safe reduction rule, there should
be a reverse operation on a linear decomposition obtained from the reduced
graph that gives us a valid linear decomposition of the original graph.

Definition 5.3 (Expansion method). Let G = (V (G), E(G)) be a graph
and let r be some reduction rule. Let H = (V (H), E(H)) and G

r−→ H. A
method e is called an expansion method for rule r if e can construct a linear
decomposition (T, δ) of G for each linear decomposition (T ′, δ′) of H We
denote this by (T ′, δ′) e−→ (T, δ).

Since there is a bijection between a linear ordering π and a linear decom-
position (T, δ) it is sufficient if a rule e can construct a linear ordering π of
V (G) out of a linear ordering π′ of V (H), denoted by π′ e−→ π.
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Definition 5.4 (Safe expansion method). Let e be some expansion method for
a reduction rule r. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs
with G

r−→ H. Then e is called safe if for all linear decompositions (T ′, δ′) of
H it holds that if (T ′, δ′) e−→ (T, δ) then lboolw(T, δ) ≤ lboolw(T ′, δ′).

Even though adding vertices cannot decrease the boolean-width, we do
not require strict equality for expansion methods. Rather, we allow for the
obtained decomposition of G to be of an even lower boolean-width than the
decomposition of H on which we are expanding. The reason for this is that we
might reorder a decomposition π′ of H into a new decomposition π′′ of H, after
which we expand into a decomposition π of G with lboolw(π) = lboolw(π′′) ≤
lboolw(π′). We consider this reordering to be part of the expansion method.

Definition 5.5 (Position in a linear decomposition). Let π be a linear ordering
of the vertices of a graph. Let v and w be two distinct vertices contained in
π. Let i be the position of v and j be the position of w in π, i.e., πi = v and
πj = w. We use v <π w to denote i < j, meaning that v appears before w in
π.

5.2 Proving reduction rules
In order for a reduction rule to be valid and safe, we need to show that
both the reduction and expansion step will not change anything to the linear
boolean-width of a decomposition. This motivates the following lemma:

Lemma 5.6. Let G = (V (G), E(G)) be a graph and let r be some reduction
rule. Let H = (V (H), E(H)) and G r−→ H. Let e be the expansion method of
r. If e is a safe expansion, then r is a safe reduction from G to H.

Proof. Let π′ be the optimal linear ordering of V (H) with lboolw(π′) =
lboolw(H). We know that there is some linear ordering π of V (G) for which
π′

e−→ π. Since e is safe, it holds by definition that lboolw(π) ≤ lboolw(π′). We
know that by adding vertices to a decomposition, the boolean-width cannot
decrease, so we can conclude that lboolw(π′) = lboolw(π) = lboolw(G). Thus
lboolw(H) = lboolw(G), which makes r a safe reduction rule.

To prove the safeness of a reduction rule it is sufficient to show that the
expansion method of a reduction rule is safe for all linear decompositions of
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H to linear decompositions of G. The safeness of the reduction rule follows
from Lemma 5.6.

In order to disprove existing reduction rules, we make use of the following
observation that follows directly from Definition 5.2.

Observation 5.7. For a reduction rule r and two graphs G and H, if G r−→ H
and lboolw(H) < lboolw(G), then r is not a safe reduction rule.

In other words, it suffices to show that after applying the reduction the
resulting graph has a lower linear boolean-width than the original graph. We
can also conclude this from the fact that there is no safe expansion method
for this reduction rule, since for the linear ordering π′,with lboolw(π′) =
lboolw(H), there will be no linear ordering π of V (G) with lboolw(π) =
lboolw(π′).

5.3 Validity of general boolean-width reduc-
tion rules

A starting point for finding reduction rules for linear boolean decompositions
is the validating or disproving of known reduction rules for general boolean
decompositions. We focus on the three reduction rules described in [26,
Chapter 5]. In this section we show that two of the three rules that hold
for boolean decompositions do not hold when applied to linear boolean
decompositions. We consider the following three rules.

1. Islet rule. If deg(v) = 0 then v can be removed.

2. Pendant rule. If |E(G)| > 1 and deg(v) = 1 then v can be removed.

3. Twin rule. If |E(G)| > 1 and NG(u) = NG(v) or NG[u] = NG[v] then
u can be removed.

5.3.1 Islet rule
Lemma 5.8. Let G = (V (G), E(G)) be a graph and let r be the islet rule.
Let H = (V (H), E(H)) and G

r−→ H. We can construct a safe expansion
method e for r.
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Proof. Let v be the vertex of degree 0 that has been removed from G. By
definition of a degree 0 vertex it holds that NG(v) = ∅. Let π′ be any linear
ordering of V (H). For any value of i, it holds that ∅ ∈ UN (ωi(π′)). It follows
that at any position in π′, we can insert v without increasing the boolean
dimension, hence the linear boolean-width of any linear ordering π where we
have inserted v at any position will be equal to the linear boolean-width of
π′, and π is a valid linear ordering of V (G). Thus inserting v at any position
in π′ to obtain π is a safe expansion method.

5.3.2 Pendant rule
Lemma 5.9. Let G = (V (G), E(G)) be a graph and let r be the pendant rule.
Let H = (V (H), E(H)) and G r−→ H. Applying the pendant rule can result in
lboolw(H) < lboolw(G).

Proof. Assume we are constructing a decomposition of graph H pictured in
Figure 5.2. Any optimal decomposition will have a boolean-width of 1, for
instance the decomposition obtained from the linear ordering π′ = (a, b, e, c, d).
If we obtained this graph by applying the pendant rule to some initial graph,
then a possible initial graph would be graph G. However, any optimal
decomposition from an ordering π of G will have at least one cut (ωi, ωi)
where |UN (ωi)| = 3, for instance π = (a, b, e, c, d, v), resulting in a boolean-
width of log2(3) ≈ 1.58. Thus lboolw(H) < lboolw(G), meaning we cannot
reduce a graph using the pendant rule without assuring the boolean-width
does not change.

5.3.3 Twin rule
Lemma 5.10. Let G = (V (G), E(G)) be a graph and let r be the twin rule.
Let H = (V (H), E(H)) and G

r−→ H. Applying the twin rule can result in
lboolw(H) < lboolw(G).

Proof. Assume we are constructing a linear decomposition of graph H pictured
in Figure 5.3. Any optimal linear decomposition will have a maximum boolean-
width of 1, for instance by using the linear ordering π′ = (a, b, c, d, e). If the
twin rule is used to obtain graph H, then it is possible that graph G was our
original input graph. If {c, v} /∈ E(G), then we obtain the same graph as in
Figure 5.2, of which the boolean-width is approximately 1.58. If {c, x} ∈ E(G),
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a b

c

d

e v r−→ a b

c

d

e

G(V (G), E(G)) H(V (H), E(H))

Figure 5.2: Counterexample to the pendant rule. The linear ordering (a, b, e, c, d)
of V (H) would have no safe expansion method to obtain a linear ordering of V (G).

a b

c

v

d e r−→ a b

c

d e

G(V (G), E(G)) H(V (H), E(H))

Figure 5.3: Counterexample to the twin rule. The linear ordering (a, b, c, d, e)
would have no safe expansion method to obtain a linear ordering of V (G).

then it also holds that we cannot construct a linear decomposition in which we
will not reach |UN (ωi)| = 3 for some cut (ωi, ωi). This means that regardless
of {c, x} ∈ E(G) or not, lboolw(G) ≈ 1, 58, thus lboolw(H) < lboolw(G).

Following from Lemma 5.8, 5.9 and 5.10, we conclude that only the islet
rule can be applied on graphs in order to reduce the number of vertices when
finding an optimal linear boolean decomposition.

Theorem 5.11. The islet rule is a safe reduction rule for linear boolean-width.
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5.4 Validity of treewidth reduction rules
There are multiple preprocessing rules known for treewidth [6, 4, 5], that
often work well in practice. While it has been shown that removing simplicial
vertices cannot be used as a preprocessing step for boolean-width [26], for a
number of other treewidth reduction rules it is still an open problem whether
they are valid (linear) boolean-width. In this section we investigate several of
these known rules for treewidth.

Definition 5.12. (Almost simplicial vertex) A vertex v is called almost
simplicial if all neighbors of v except one form a clique.

For treewidth there exists a rule to reduce almost simplicial vertices. This
is done by taking the single neighbor w of v that is not in the clique, after
which we remove v and connect w to every vertex in the clique, see Figure 5.4
for an example. Note that vertices of degree 2 are always almost simplicial
by definition.

v

w

a

b

c

→ w

a

b

c

Figure 5.4: Application of the almost simplicial reduction rule for tree-width.

We present a counterexample to the almost simplicial rule for (linear)
boolean-width, shown in Figure 5.5. If we remove the almost simplicial vertices
v1 and v2, then the remaining graph will be a clique. The boolean-width of a
clique is 1, whereas the boolean-width of the original graph is larger than 1.
Therefore we cannot remove almost simplicial vertices without assuring that
the boolean-width does not decrease.

Definition 5.13. (Separator) Let G = (V (G), (E(G)) be a graph. Let
S ⊆ V (G). The set S is called a separator of G if G[V (G) \ S] has more
than one connected component. S is called a minimal separator if there is no
proper subset of S that is also a separator.

For treewidth we have the following property for separators that are also
a clique.
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v1

w1

c1

c2

v2

w2

Figure 5.5: Counterexample to the almost simplical vertex rule.

Proposition 5.14. [5] Given a clique separator S and a graph G, the
treewidth of G is equal to the maximum over all connected components Z of
G[V (G) \ S] of the treewidth of G[Z ∪ S].

If a graph has a clique separator then it is possible to compute tree
decompositions for parts of the graph. Afterward, the decompositions for
these parts can be merged together. If one wants to quickly find a bound on
the treewidth, then it is sufficient to check the components induced by these
clique separators. A similar property also holds for minimal almost clique
separators. An almost clique separator is a separator in which all vertices
minus one form a clique. It has been shown that reducing minimal almost
clique separators is safe for treewidth [5].

Unfortunately, linear boolean-width does have the property that we can
determine the linear boolean-width by looking at separate connected com-
ponents. We refer to Figure 5.6 and Figure 5.7 for a counterexample for
clique separators and almost clique separators respectively. In both cases,
the graph induced by a connected component together with the separator
{s1, s2, s3} will have a linear boolean-width that is strictly lower than the
linear boolean-width of the original graph.

u v s1

s2

s3 w x

Figure 5.6: Counterexample to the clique separation rule.

The boolean-width of a graph H, with H being a minor of a graph G,
is not always smaller than the boolean-width of G itself [26]. This property
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u v s1

s2

s3 w x

Figure 5.7: Counterexample to the almost clique separation rule.

does hold for treewidth and is used as a building block for most reduction
rules, which lead us to believe that most treewidth reduction rules do not
hold for boolean-width. Furthermore, this result shows that it is harder to
find valid reduction rules for boolean-width, since contracting edges is often
an unsafe operation when reducing graphs.

5.5 New reduction rules
In this section we present two new reduction rules that are valid for linear
boolean-width. We also present a few ideas for other reduction rules for which
we omit the proof of correctness. The approach we take for proving these
reduction rules is to show that there is a safe expansion method for every
decomposition of a reduced graph, after which it follows from Lemma 5.6
that the reduction rule is safe.

When computing a decomposition, a choice is made at every step of which
vertex should be selected at that point. We use the terminology of “making
a choice” in our proofs; we investigate the change in the boolean dimension
cuts when a vertex gets chosen at that position, i.e., we consider the influence
of a vertex v on all the unions of neighborhoods of (A,A) and all other cuts
when v gets chosen for the cut (A ∪ {v}, A \ {v}).

5.5.1 Sequence rule
Definition 5.15 (Sequence rule). Let G = (V (G), E(G)) be a graph. Let
s, u, v, w, x ∈ V (G) such that all are distinct. Let {s} be a separator of
the graph. Let NG(u) = {s, v}, NG(v) = {u,w}, NG(w) = {v, x} and
NG(x) = {y}. Applying the sequence rule to G removes the vertex x and the
edge {w, x} from the graph.

To clarify, if r is the sequence rule and G r−→ H, then V (H) = V (G) \ {x}
and E(H) = E(G) \ {w, x}. An example of the sequence rule is illustrated in
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Figure 5.8.

s u v w x → s u v w

Figure 5.8: The sequence rule applied to a graph G.

Lemma 5.16. Let G = (V (G), E(G)) be a graph. Let r be the sequence rule
and let G r−→ H. For any linear decomposition π′ of H we can construct a
decomposition π′′ of H for which lboolw(π′′) ≤ lboolw(π′).

Proof. Let s, u, v, w ∈ V (H) be vertices described as in Definition 5.15. Let
y be defined as the vertex of the set {u, v, w} that has the lowest index in π′,
with πi = y. We construct π′′ by copying π′ up until position i, leaving the
boolean dimension for all cuts up until i unchanged.

Assume s <π′ y. If y = w, then we can see that the boolean dimension
can increase more than when y = u. For π′′ we therefore choose to put vertex
u at position i, after which we directly insert v and w. When v gets inserted,
every neighborhood that has v in it, which are only neighborhoods that have
u as a representative, are replaced with neighborhoods with w and v being
the representative. Once w is chosen, the boolean dimension decreases and
the boolean dimension of all later cuts will remain unchanged. Thus for π′′,
we have π′′i = u, π′′i+1 = v and π′′i+2 = w, which will possibly result in a lower
boolean width.

Assume y <π′ s. Regardless of which vertex y represents, the influence on
the boolean dimension is the same. Thus a valid choice for step i for π′′ would
be vertex w. We now apply the same reasoning as in the previous case. After
w we can directly insert v and u without increasing the boolean dimension
of any cut prior to step i. Furthermore, the boolean dimension for all cuts
after w, v and u also remains unchanged or will decrease. Thus for π′′, we let
π′′i = w, π′′i+1 = v and π′′i+2 = u.

Both cases lead to lboolw(π′′) ≤ lboolw(π′).

Theorem 5.17 (Sequence rule). The sequence rule is a safe reduction rule
for linear boolean-width.

Proof. Let G = (V (G), E(G)) be a graph and let r be the sequence rule. Let
G

r−→ H. We show that a safe expansion method exists for r. Let π′ be any



5.5. NEW REDUCTION RULES 73

linear boolean decomposition of H and let s, u, v, w, x ∈ V (G) be vertices
as described in Definition 5.15. We first construct the decomposition π′′

for which lboolw(π′′) ≤ lboolw(π′) by applying the rearrangement technique
described in Lemma 5.16 to π′. In order to construct a decomposition π of G,
we distinguish between two different cases. For both these cases let π′′i = w.

Assume s <π′′ w. We construct π by copying π′′ and inserting x directly
after w. This will not influence the boolean-dimension of any later cuts, since
NG(x) ∩ ωi+1 = ∅. Any cuts before step i will also remain unchanged, since
w is the only neighbor of x. Only the cut (ωi, ωi) could possibly have an
increased boolean dimension, but it can be observed that bool-dim(ω′′i−1) =
bool-dim(ωi), i.e., the boolean dimension when v is chosen in π′′ is equal to
the boolean dimension of when w is chosen in π. It follows that lboolw(π′′) =
lboolw(π).

Assume w <π′′ s. We construct π by copying π′′ and inserting x directly in
front of w. Because w is the only neighbor of x, no cuts before step i− 1 have
a change in boolean dimension. Both w in π′′ and x in π have one neighbor
across their respective cut, which gives us bool-dim(ω′′i ) = bool-dim(ωi−1),
i.e., the boolean dimension when w is chosen in π′′ is equal to the boolean
dimension of when x is chosen in π. The boolean dimension when w is chosen
in π gives us the same situation as when v is chosen in π′′. Since the remainder
of the decompositions are equal, we can conclude that the boolean dimension
remains the same across all later cuts. It follows that lboolw(π′′) = lboolw(π).

In summary, lboolw(π) = lboolw(π′′) and lboolw(π) ≤ lboolw(π′), mean-
ing that we can safely insert x using this expansion method.

Note that we can reduce any path starting in a separator and ending in a
pendant vertex, with the other vertices of the path being of degree 2, to a
path of length 4 by applying the sequence rule multiple times.

5.5.2 Clique rule
Definition 5.18 (Clique rule). Let G = (V (G), E(G)) be a graph. Let S =
{s1, . . . , s|S|} be a minimal separator of G. Let s1, . . . , s|S|, v, w, c1, . . . , cn ∈
C ⊆ V (G) such that all are distinct members of the same clique C of size
|S| + n + 2. Let v, w, c1, . . . , cn have no other neighbors besides vertices in
the clique. Applying the clique rule to G removes all vertices c1, . . . , cn and
incident edges from G.
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In other words, if r is the clique rule and G
r−→ H, then V (H) = V (G) \

{c1, . . . , cn} and E(H) = {{x, y} | {u, v} ∈ E(G) ∧ u 6= c1 ∨ · · · ∨ cn}. An
example is illustrated in Figure 5.9, where the separator S is the singleton
{s}.

s

w

c1

v

(V (G), E(G))

→ s

w

v

(V (H), E(H))

Figure 5.9: Clique rule applied to a graph G.

Theorem 5.19 (Clique rule). The clique rule is a safe reduction rule for
linear boolean-width.

Proof. Let G = (V (G), E(G)) be a graph and let r be the clique rule. Let
G

r−→ H. We show that a safe expansion method exists for r.
Assume we are given a decomposition π′ of H and that we have identified

the vertices s1, . . . , s|S|, v, w, c1, . . . , cn ∈ C ⊆ V (G) as described in Defini-
tion 5.18. Let π′i = v. Without loss of generality, it holds that v <π′ w. To
construct π we copy π′ and leave the order of vertices unchanged. We expand
π by inserting all vertices c1, . . . , cn directly after v, meaning πi+j = cj for
j = 1, . . . , n. A change in boolean dimension can only happen for neighbor-
hoods where a neighbor of a vertex cj suddenly is a unique representative for
this vertex, while it was not a unique representative before. However, since
∀s, s′ ∈ S : NG[s]∩C = NG[s′]∩C and because each vertex in S already is a
representative of v, it follows for all cuts before step i the boolean dimension
does not change. Because NG[v] = NG[w] = NG[cj], every vertex cj will not
contribute a neighborhood to the union of neighborhoods. Thus for every
cut (ωi+j, ωi+j), it holds that bool-dim(ωi+j) = bool-dim(ωi), meaning the
expansion method has no influence on any later cuts either. In summary,
no neighbor of cj will have an increase of the boolean dimension at their
corresponding cut, which results in lboolw(π) = lboolw(π′). We conclude
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that we can always construct a linear boolean decomposition π of G from π′

of H while keeping the boolean-width equal.

Additionally, we can apply the same rearrangement technique as we did
with the sequence rule by assuring that vertex w gets chosen directly after
v in π′. This can have a positive effect on the boolean-width, resulting in
lboolw(π) ≤ lboolw(π′).

5.5.3 Other reduction rules
The technique to find reduction rules is to first identify the stage at which a
choice for a vertex is guaranteed to be optimal for a decomposition. We then
see if we can expand this sequence of optimal choices to a larger sequence while
keeping the boolean dimension unchanged. A graph structure that exhibits
this property is for instance a caterpillar tree. A caterpillar tree is a tree in
which all vertices are within distance 1 of a central path. We believe that any
caterpillar tree that is separated from the rest of the graph can be reduced
through the sequence rule, since we make a sequence of optimal choices when
applying the sequence rule. For structures such as caterpillar trees or cliques,
the optimal choice for a linear decomposition is very obvious, which led us to
the reduction rules of the previous section. Another interesting question is
if we can shorten a path of arbitrary length of degree 2 vertices to a fixed
length. For a path between two separators it also holds that, once we have
chosen a vertex of that path, we consider vertices neighboring to the chosen
vertex to be the next vertex for our decomposition. All in all, we believe that
the two reduction rules from the previous section can be expanded upon and
more cases can be found with additional research.

5.6 Expanding linear decompositions using gen-
eral reduction rules

The reason for choosing linear decomposition over general decompositions is
that linear decompositions make dynamic programming algorithms easier and
result in a lower theoretical running time. Furthermore, using the heuristics
presented in Chapter 4 it is much easier to construct a linear decomposition.
However, as can be seen in the previous section, the reduction rules for linear
boolean-width are far from practical, in contrast to the reduction rules that
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hold for boolean-width. Therefore we propose to combine the best of both
worlds.

1. Start with a graph G = (V (G), E(G)).

2. Apply reduction rules for boolean-width (islet, pendant and twin rule)
on G to obtain a reduced graph H. Since the reduction rules that are
valid for linear boolean-width are sub cases of the reduction rules for
boolean-width, we do not need to apply them.

3. Use a heuristic on H to obtain a linear decomposition (T ′, δ′).

4. Expand (T ′, δ′) to a decomposition (T, δ) of G using expansion methods
described in [26, Chapter 5]. By definition of reduction rules we know
that boolw(T, δ) = lboolw(T ′, δ′).

Note that the decomposition that we end up with at step 4 is not a linear
decomposition. However, this decomposition does exhibit linear properties,
and therefore we call them semi-linear decompositions. Consider the dynamic
programming algorithm for solving the dominating set problem as described
in Section 3.3. The advantage of using a linear decomposition is that instead
of a O(23k) algorithm we can get a O(22k) algorithm, with k being the boolean-
width of a decomposition. This follows from the fact that at each combine
step of two nodes of the linear decomposition we know that one of the two
nodes is a leaf node. This bounds the number of representatives that can
occur for this node by two; the empty set and the neighborhood of the vertex
itself. When working with semi-linear decompositions we have added vertices
to a linear decomposition in a way that guaranteed the boolean-width to
remain equal. Moreover, the number of representatives at each cut remains
unchanged, which means that even though the decompositions is not linear
anymore, at each combine step we can still guarantee that the number of
representatives in one of the child nodes is bounded by two. We can conclude
that algorithms on semi-linear decompositions have the same theoretical
running time as linear decompositions. We refer to Figure 5.10 for an example
of the construction of such a decomposition.
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(a) Pendant rule applied to a graph G. Note that lboolw(H) < lboolw(G).
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(b) Expansion of a linear decomposition of H to a semi-linear decomposition of G by
using the expansion method of the pendant rule for boolean-width.

Figure 5.10: Application of the pendant rule.

5.7 Conclusion
The reduction rules described in this chapter occur in very specific cases,
which we believe do not happen often in practical applications. What these
rules do show is that preprocessing for linear boolean-width is much harder
than for boolean-width or treewidth. This can be a barrier when trying to
find decompositions for very large graphs where preprocessing is a necessity.
Therefore we suggest the approach of using reduction rules for general boolean
decompositions, after which a heuristic for linear decompositions can be used
on the reduced graph. We believe that this will give very good bounds in
practice, but additional research is required to verify our intuition. For this
reason we propose more investigation into what makes certain rules valid and
if there are more practical rules that can be applied for boolean-width.
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Chapter 6

Cost of decompositions

A large number of width measures of decompositions of graphs has been
studied, e.g. rank-width, carving-width, branch-width, matching-width and
boolean-width. These are defined as the maximum over all cuts defined by
the decomposition of a function of the cut. If we instead take the sum of
these values, we obtain cost variants, that may better reflect the running time
of dynamic programming algorithms using the decompositions. Compare
this to the notion of tree-cost, introduced by Bodlaender et al., which better
reflects the time of algorithms using tree decompositions [7]. In this chapter,
we give an exact algorithm for a large class of cut-functions f to compute
a decomposition with minimum cost with respect to f . In the remaining of
this chapter, let G = (V,E) be a graph and let n = |V |,m = |E|.

Definition 6.1 (f -cost). Let f be a cut function. The f -cost of (T, δ) is the
sum of f(A) over all cuts (A,A) of G, i.e. ∑(A,A) f(A). The f-cost of G is
the minimum f -cost over all possible decomposition trees of G.

It is an open problem whether computing f -cost is NP-hard for many
functions f .

Open question 6.2. Is computing boolean-cost NP-hard?

6.1 Exact algorithm for f-cost
This problem is defined on the graph G and a function f : P(V )→ N as the
solution to the following recurrence relation. As you can see it is similar to

79
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the f -width problem, except that we sum the values instead of taking the
maximum.

c(f, {v}) = 0
c(f, A) = min

∅6=B(A
{f(B) + f(A \B) + c(f,B) + c(f, A \B)} (6.1)

A decomposition of minimum f -cost can be computed in O(3n + α) time
using dynamic programming, where O(α) is the time needed to compute f .
This is done as follows. As a preprocessing step we compute all values of f
in O(α) time. Now we solve the recurrence relation in Equation 6.4 bottom
up. For each iteration in the recurrence relation the minimum of |2X | − 1
numbers has to be taken. Suppose |X| = k. Then this takes of course O(2k)
time for each iteration. In solving the recurrence relation, |X| goes from 1 to
n. Since there are

(
n
k

)
subsets of size k, it takes

n∑

k=1

(
n

k

)
2k = O(3n)

time to compute all c(f,X). Adding both running times yields O(3n + α).
We will improve on this trivial algorithm by using a concept called subset

convolution. The technique that we use is partially inspired by the f -width
exact algorithm by Oum [20].

Definition 6.3. Let R be a semi ring. Let V be a set of size n and let
f, g : P(V )→ R be two functions. The subset convolution f ∗ g is defined as

(f ∗ g)(X) =
∑

Y⊆X
f(Y )g(X \ Y )

As one can see, it is easily possible to compute this convolution in O(3n)
semi ring operations by direct evaluation for each subset. Björklund et al.[3]
have developed a faster algorithm to compute convolutions for when R is a
ring.

Theorem 6.4. [3, Theorem 1] Let V be a set of size n and let f, g : P(V )→
R be two functions where R is a ring. Then the subset convolution f ∗ g can
be computed in O(n22n) ring operations.

From this, they have derived a similar result for the min-sum semi ring,
which we will use to establish our new exact algorithm.
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Theorem 6.5. [3, Theorem 3] Let V be a set of size n and let f, g : P(V )→
R be two functions where R is the min-sum semi ring. Then the subset
convolution f ∗ g can be computed in Õ(M2n) time, provided that the range
of the functions f, g is {−M,−M + 1, . . . ,M}.

In order to be able to apply the subset convolution technique, we rewrite
the recurrence relation to the following one. Note that these are equivalent.

c(f, {v}) = f({v})
c(f, A) = f(A) + min

∅6=B(A
{c(f,B) + c(f, A \B)} (6.2)

With this definition, f(V ) can always taken to be 0, since this value will be
present in any decomposition while it is not really a cut.

Lemma 6.6. Given a graph G = (V,E), a cut-function f and an integer K.
If c(f, V ) ≤ K the value c(f, V ) can be computed in Õ(n2nK) time.

Proof. To make sure the numbers involved in our computations do not get too
big, we work with a bounded versions of f and c. Let f̃(X) = min(f(X), K+1)
and c̃(f̃ , X) = min(c(f̃ , X), K+1). We define the following family of functions.
For all 1 ≤ i ≤ n and A ⊆ V such that |A| ≤ i define

gi(A) =
{
c̃(f̃ , A) : 1 ≤ |A| ≤ i
K + 1 : otherwise

We show how to compute gn. We find that gi+1 can be directly derived
from gi ∗ gi, where ∗ is convolution in the min-sum semiring. If |A| > i+ 1
or |A| = 0 then gi+1(A) = K + 1. If |A| = 1, gi+1(A) = f̃(A). Suppose
2 ≤ |A| ≤ i + 1. Then (gi ∗ gi)(A) = minB⊆A {gi(B) + gi(A \B)}. Because
we know that gi(A) = K + 1 if for the critical B it would hold that |B| = 0
or |B| = i+ 1 we can safely rewrite this to

(gi ∗ gi)(A) = min
∅6=B(A

{gi(B) + gi(A \B)}

= min
∅6=B(A

{
c̃(f̃ , B) + c̃(f̃ , A \B)

}

Thus, we can derive gi by gi+1(A) = min((gi ∗ gi)(A) + f̃(A), K + 1). Fur-
thermore, g1(A) = f̃(A). Finally, we note that c̃(f̃ , V ) = gn(V ). So if
c(f, V ) ≤ K, then it is given by c̃(f̃ , V ). Conversely, if c̃(f̃ , V ) ≤ K, then it
equals c(f, V ). Thus, if c̃(f̃ , V ) ≤ K we return it, otherwise report failure.
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By Theorem 6.5 we know that computing a convolution in the min-sum
semiring can be done in Õ(2nM) time, provided that the range of the input
functions is {−M,−M + 1, . . . ,M}. Because we work with the bounded
functions f̃ and c̃ we see that the values of gi never exceed K + 1. Thus every
convolution can be computed in Õ(2nK) time. Since there are n convolutions
carried out in total, the running time Õ(n2nK) follows.
Theorem 6.7. Given a graph G = (V,E) and a cut-function f , the f-cost
of G can be computed in Õ(n2nk), where k is the resulting cost value.
Proof. Start with K = 1 and double its value while the procedure de-
scribed in Lemma 6.6 reports failure. The resulting running time will be∑dlog ke

logK=0 Õ(n2nK) ⊆ Õ(n2nK).

6.2 Investigating cost variants of various width
parameters

We apply the result from Theorem 6.7 to the cost variants of the width pa-
rameters branch-width [23], carving-width [25], matching-width [18], module-
width [9], maximum-matching-width [33], maximum-induced-matching-width [33],
rank-width [21] and boolean-width [33]. We give a brief definition of the
corresponding cut functions, but for a more thorough treatment we refer to
the respective publications. Let G = (V,E) be a graph and n = |V |,m = |E|.

The branch-cost can be defined as the cost of mid on E, where mid is
defined as follows. For X ⊆ E let mid(X) be the number of vertices meeting
an edge in X as well as an edge in E \X.

The carving-cost can be defined as the cost of η on V , where η(X) is the
number of edges of G having one end in X and the other end in V \X.

The matching-cost can be defined as the cost of π on V , where π is defined
as follows. Suppose G has at least one perfect matching. For a X ⊆ V , let
π(X) be the maximum |δ(X)∩M | over all perfect matchings M , where δ(X)
is the set of all edges having one end in X and the other end in V \X.

The module-cost can be defined as the cost of ntc on V , where ntc(X)
is the size of the twin class partition of X. A twin class partition of X is
a partition of X such that for all x, y ∈ X we have x and y in the same
partition class if and only if N(x) ∩X = N(y) ∩X.

The maximum-matching-cost can be defined as the cost of mm on V ,
where mm(X) is the size of a maximum matching in G[X, V \X].
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The maximum-induced-matching-cost can be defined as the cost of mim on
V , where mim(X) is the size of a maximum induced matching in G[X, V \X].

The rank-cost can be defined as the cost of 2cut-rank on V , where cut-rank(X) =
log2 | {(4y∈YN(y)) ∩ (V \X) |Y ⊆ X} |. Since f is required to be integer val-
ued, we consider f = 2cut-rank instead.

The boolean-cost can be defined as the cost of 2bool-dim on V , where
bool-dim(X) = log2 |

{
(⋃y∈Y N(y)) ∩ (V \X)

∣∣∣Y ⊆ X
}
|. Since f is required

to be integer valued, we consider f = 2bool-dim instead.

Corollary 6.8. Given a graph G, the branch-cost, carving-cost, matching-
cost, module-cost, maximum-matching-cost, maximum-induced-matching-cost,
rank-cost and boolean-cost can be computed in O∗(2m), O∗(2n), O∗(2n), O∗(2n),
O∗(2n), O∗(2.784n), O∗(k2n) and O∗(k2n) time respectively, where k is the
corresponding cost value.

Proof. For branch-cost it holds that α ∈ O(m2m) and since all values are
bounded by m, k can never exceed nm, from which the result follows. The pre-
computations α for carving-cost, matching-cost, module-cost and maximum-
matching-cost take all polynomial time per subset, so O∗(2n) in total. Because
all function values are polynomially bounded by n, k can never grow exponen-
tial in terms of n and so the result follows. For maximum-induced-matching-
cost α ∈ O∗(2.784n) [33]. Since all values are bounded by n, k can never
exceed n2, from which the result follows. For rank-cost the precomputations
take polynomial time in n per subset, so α ∈ O∗(2n). Since for rank-cost
the bound on the value k is exponential in n, the result follows. Finally, for
boolean-cost α ∈ O∗(k2n) [33]. Since for boolean-cost the bound on the value
k is exponential in n, the result follows.

6.3 Applications
Corollary 6.8 should mostly be considered as a theoretical result. Many
applications do not linearly depend on their f -cost value, and to make use of
the tighter bound that minimum cost decompositions can provide one has to
consider adapted functions. However, this adapted function may not be a cut
function. In the following we give an example of that. Since we are mostly
concerned with boolean decompositions in this thesis, we restrict ourselves
to applications for boolean-cost. This should already clearly illustrate how
minimum cost decomposition may need an adapted function in order to be
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tighter than minimum width decompositions and how this may not be a cut
function. In that case our f -cost algorithm is useless, since it relies on f
being a cut function.

Again consider the problem Maximum Independent Set from Section 3.3
and the corresponding algorithm. Remember that the time-critical part of
that algorithm is the merge of two partial solutions. At each cut (B,A\B) in
the decomposition, we merge MISB and MISA\B to form MISA by making
all possible combinations. This takes O(|UN (B)| · |UN (A \B)|) time.

In the following we refer to the boolean-cost and the linear boolean-cost
of G as boolc(G) and lboolc(G) respectively. Now if we were working on
a decomposition with minimized boolean-cost, we wouldn’t have a better
upperbound guarantee on the size of |UN (X)| for any X occurring in the
decomposition compared to a decomposition with minimized boolean-width.
Namely, the upperbounds we have for |UN (X)| are simply boolc(G) and
2boolw(G) respectively. So since boolc(G) ≥ 2boolw(G) the notion of boolean-cost
doesn’t help us here to improve the running time.

Having another look at the Maximum Independent Set algorithm, we see
that we actually want to minimize |UN (A \B)| · |UN (B)| over all nodes in
the decomposition. However, this is not a cut function because this value
depends on two subsets instead of one. So the recurrence to solve becomes

c(f, {v}) = f({v})
c(f, A) = min

∅6=B(A
{f(B,A \B) + c(f,B) + c(f, A \B)} (6.3)

with f(X, Y ) = |UN (X)| · |UN (Y )|. How can we solve this fast? In general
we can not, for these kind of functions, since 3n function values are needed,
i.e. for each pair B ⊆ A ⊆ V f can have a unique value. But maybe it is
possible to exploit the special form f(A,B) = |UN (A)| · |UN (B)| in the
above recurrence. This remains open for now.

Open question 6.9. Is it possible to solve Equation 6.4 in time faster than
O(3n) if f(X, Y ) = |UN (X)| · |UN (Y )|?

The same question can be asked for any other vertex subset problem,
like Minimum Dominating Set, for which f(X, Y ) = |UN (X)| · |UN (Y )| ·
|UN (X ∪ Y )|.
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6.3.1 Linear boolean-cost
What if we restrict ourselves to linear boolean decompositions? I.e. does
minimizing linear boolean-cost make sense? Yes, it does if our application
is Maximum Independent Set. Since we can safely assume our graph is
connected (otherwise we can decompose each component independently and
glue the resulting decompositions together), we have that |UN ({y})| = 2, for
any y ∈ V . Thus, we always have either |UN (B)| ≤ 2 or |UN (A \ B)| ≤ 2
for each node in the decomposition, since the decomposition is linear. So the
recurrence then becomes

c(f, {v}) = f({v})
c(f, A) = min

b∈A
{2 · |UN (A \ {b})|+ c(f, {b}) + c(f, A \ {b})} (6.4)

If we embed this equation into the Incremental-UN-Exact algorithm which
is described in Algorithm 4, we get a O∗(2n · lboolc(G)) algorithm. Looking
at the Maximum Independent Set algorithm as described in Algorithm 1,
we see that its running time actually equals O(n2 lboolc(G)), if we use a
linear decomposition with minimal boolean-cost. If we compare this to the
linear boolean-width variant, we would have an algorithm of O(n22lboolw(G))
time. Since lboolc(G) ≤ n · 2lboolw(G), we have indeed tightened the worst case
asymptotic running time bound.

Theorem 6.10. Given a graph G and a minimal linear boolean-cost decompo-
sition, the Maximum Independent Set problem can be solved in O(n2 lboolc(G))
time.

Unfortunately, this approach does not work for general vertex subset
problems.

6.3.2 Conclusion
We have seen a faster than trivial exact algorithm for computing a decompo-
sition of a graph with minimum cost with respect to f , where f ranges over
a large class of cut functions. There is room for some further investigation.
It would be relevant to investigate for which width parameters and to what
extent the cost variants allow to reflect the running time of applications more
closely. Moreover, improvements may be made in the polynomial factor of
the algorithm, possibly by looking at specific properties of cut functions.



86 CHAPTER 6. COST OF DECOMPOSITIONS

If we restrict ourselves to boolean-cost, we see that minimizing cost rather
than width is generally not very useful for solving vertex subset problems. An
exception to this is Maximum Independent Set, for which the use of optimal
linear boolean-cost decompositions would actually tighten the asymptotic
running time. For the other vertex subset problems it would be interesting
to investigate possibilities for faster than trivial algorithms minimizing the
actual cost of solving a vertex subset problem from a decomposition D, i.e.∑

(A,B)∈D necd(A) · necd(B) · necd(A ∪ B), where d depends on the problem
being solved. As we have seen, the problem with this is that these values can
not be represented by cut functions, as they depend on more than one subset.
A topic for further research would be to investigate possibilities to bypass
this problem by somehow making use of the fact that these functions have
overlapping information in their values.

Regarding heuristics minimizing cost instead of width, we can say that
these would probably be the same. Namely, heuristics usually try to minimize
the cut value for each individual cut in a greedy manner. So heuristics do
generally no distinguish between cost and width.



Chapter 7

Conclusion

Starting with the facts, we have seen that linear boolean decompositions are
easier to generate compared to tree shaped boolean decompositions. Not only
are the exact algorithms faster, the linear heuristics also seem to surpass their
tree shaped counterparts in generation speed. And even though the linear
heuristics are restricted in the sense that the solution space is smaller, the
applications were most of the cases faster to solve using linear decompositions,
since their asymptotic running times are better for linear decompositions.

The other conclusion that we have drawn from the experiments is that
the theoretical upperbounds for nec in terms of boolean-width is in practice
far away from the actual value of nec. This encourages to start looking for
ways to optimize decompositions using nec instead of boolean-width. Since
there are several problems to be solved before this can be done, this remains
a topic for further research.

For linear boolean-width, we have looked at reduction rules. We found
that it is not easy to find and prove reduction rules that are broad enough
to be useful. However, we put forward that using reduction rules for gen-
eral, tree shaped, decompositions in combination with a heuristic for linear
decompositions may be a fruitful approach. Namely, although the result-
ing decompositions will not be linear, they still will exhibit certain linear
properties. Additional research is required to verify our intuition.

We have also seen a new non trivial exact algorithm to minimize the so
called f -cost over decompositions, for arbitrary cut functions f . Looking
at applications in the boolean-width domain, we could conclude that the
applicability of this result is minimal for this particular area. An interesting
research topic would be to determine for which functions f and for which
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corresponding applications minimizing f -cost over decompositions would
actually tighten the worst case running time bound.
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Appendix A

Alternative exact algorithm for
boolean-width

In this chapter we describe the exact algorithm for computing boolean-width
in the same fashion as our new linear boolean-width exact algorithm, as
referred to in Chapter 4. The proof of correctness is very similar to that of
the linear variant, and for the correctness of the Möbius Transform functions
we refer to Björklund et al. [3]. As one can see, the running time does not
work out so well as it does for linear boolean-width. Therefore, Vatshelle’s
approach, as described in Chapter 3 remains the fastest algorithm.

Consider the following function.

gi(X) =





1 : 1 ≤ |X| ≤ i < n ∧ w(f,X) ≤ K ∧ f(X) ≤ K
1 : |X| = i = n ∧ w(f,X) ≤ K
0 : otherwise

(A.1)

This function will be used and recursively constructed in Algorithm 9.

Remark A.1. Given a graph G = (V,E) of size n and a integer K, the
procedure Decide-bool-width (Algorithm 9) decides whether there is a boolean
decomposition with width at most K in O(n32n+2K).
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Algorithm 7 Compute Möbius Transform
1: procedure Mobius-Transform(f, V [, r])
2: # If r is given, perform a ranked transform
3: # Subsets that do not have cardinality r are not counted
4: if r then
5: for X ⊆ V do
6: if |X| = r then
7: f̂0(X)← f(X)
8: else
9: f̂0(X)← 0

10: else
11: f̂0 ← f

12:
13: for i ∈ V do
14: for X ⊆ V do
15: if i ∈ X then
16: f̂i(X)← f̂i−1(X) + f̂i−1(X \ {i})
17: else
18: f̂i(X)← f̂i−1(X)
19: return f̂1, . . . , f̂n

Algorithm 8 Compute Ranked Möbius Inversion
1: procedure Ranked-Mobius-Inversion(f ~ g, V [, r])
2: (f ∗ g)0 ← (f ~ g)
3:
4: for i ∈ V do
5: for X ⊆ V do
6: if i ∈ X then
7: (f ∗ g)i(r,X)← (f ∗ g)i−1(r,X)− (f ∗ g)i−1(r,X \ {i})
8: else
9: (f ∗ g)i(r,X)← (f ∗ g)i−1(r,X)

10:
11: for X ⊆ V do
12: (f ∗ g)(X)← (f ∗ g)n(|X|, X)
13: return (f ∗ g)
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Algorithm 9 Decide boolean-width
1: procedure Decide-boolw(V,K)
2: boolw(X)← No, for all X ⊆ V
3: boolw(∅)← Yes
4: bool-dim(X)← No, for all X ⊆ V
5: bool-dim(∅)← Yes
6: UN (∅)← ∅
7:
8: for i← 1 . . . |V | do
9: ĝi(i, . . . )← Mobius-Transform(gi, V, i)

10: for X ⊆ V do
11: (ĝi ~ ĝi)(i+ 1, X)← ∑

0≤j≤i+1 ĝi(j,X)ĝi(i+ 1− j,X)
12: (gi ∗ gi)← Ranked-Mobius-Inversion(ĝi ~ ĝi, V, i)
13:
14: ĥ1, . . . , ĥn ←Mobius-Transform(gi ∗ gi, V )
15: for X ⊆ V do
16: if ĥn(X) > 0 then
17: Y ← Binary search in ĥ
18: UN (X)← Combine-UN(Y,X \ Y )
19: if |UN (X)| ≤ K then
20: bool-dim(X)← Yes
21:
22: for X ⊆ V do
23: if |X| ≤ i+ 1 ∧ (gi ∗ gi)(X) > 0 ∧ bool-dim(X) then
24: gi+1(X) = 1
25: else
26: gi+1(X) = 0
27:
28: for X ⊆ V do
29: if gn(X) then
30: boolw(X)← Yes
31:
32: return boolw(V )
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Algorithm 10 Combined union of neighborhoods
1: procedure Combine-UN(A,B)
2: UA ← ∅
3: UB ← ∅
4: for S ∈ UN (A) do
5: UA ← UA ∪ {S \B}
6: for S ∈ UN (B) do
7: UB ← UB ∪ {S \ A}
8:
9: U ← ∅

10: for SA ∈ UA do
11: for SB ∈ UB do
12: U ← U ∪ {SA ∪ SB}
13: return U



Appendix B

Unfinished Tales about
Multisubset Convolution

In the following we conjecture a new algorithm for computing multisubset
convolutions, with a proposed technique which should still be worked out.

Preliminaries
Let N be a set with n elements. Without loss of generality, we can relabel
N to be {1, . . . , n}. Let m : N → N be a multiplicity function on N .
The pair M = (N,m) defines a multiset. Given a multiset M , we denote
the corresponding multiplicity function by mM and the corresponding set
containing the distinct elements in M by NM . If there is no ambiguity we
simply refer to m and N respectively. We generalize the normal set operators
to multisets. Let A = (NA,mA), B = (NB,mB) be two multisets. Then

A ]B = (NA ∪NB,mA +mB)
A ∪B = (NA ∪NB,max(mA,mB))
A ∩B = (NA ∩NB,min(mA,mB))
A \B = (NA \NB,max(0,mA −mB))
A ⊆ B ⇔ ∀a ∈ NA : mA(a) ≤ mB(a)

For readability purposes we will sometimes write mi for m(i). We can
also write a subset of A ⊆M as a tuple of multiplicities (mA(1), . . . ,mA(n)).
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Multisets literals are written like {a, b2, c3}, where a, b, c are elements and
the upper right number denotes the corresponding multiplicity. If M is a
multiset, we denote by M≤i the subset of M containing only elements that
are smaller than i.

Definition B.1. For a multiset M = (N,m), a commutative ring R and two
functions f, g : P(M)→ R, the convolution f ∗ g is defined as

(f ∗ g)(A) =
∑

B⊆A
f(B)g(A \B)

An equivalent notation, using multiplicities as parameters instead of multi-
subsets, would be as follows.

(f ∗ g)(a1, . . . , an) =
a1∑

b1=0
· · ·

an∑

bn=0
f(b1, . . . , bn)g(a1 − b1, . . . , an − bn)

As one can see, multisubset convolution is equivalent to discrete convo-
lution over multiple variables. Trivially, f ∗ g can be computed by explicit
evaluation of (f ∗ g)(A) for all A ⊆M , which would take O(∑A⊆M |P(A)|) ⊆
O(|P(M)|2) time. In the next sections we investigate faster methods.

Discrete Convolution using Kronecker’s Trick
In this section, we will see a faster-than-trivial algorithm for computing the
multisubset convolution of two functions. In the remainder of this section,
let M = (N,m) be a multiset, R a commutative ring and f, g : P(M) →
R two functions. It is a well known fact that computing a singlevariate
discrete convolution f ′ ∗ g′ in R with domain size d, defined as (f ′ ∗ g′)(k) =∑k
l=0 f

′(l)g′(k − l), is equivalent to multiplying two polynomials in R with
maximal degree d. Namely, in the product of f ′(0)+f ′(1)x+ · · ·+f ′(d)xd and
g′(0)+g′(1)x+· · ·+g′(d)xd, the coefficients of xa are exactly ∑a

b=0 f(b)g(a−b).
This means that we can apply any polynomial multiplication algorithm to
obtain the singlevariate discrete convolution. However, note that our original
multisubset convolution problem is a discrete convolution in multiple variables.
To address this, we use a well known technique that is often referred to
as Kronecker’s Trick. Kronecker’s Trick is used to convert a multivariate
polynomial multiplication problem into singlevariate one, e.g. as demonstrated
by Moenck [17]. The above similarity between multiplying polynomials and
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computing a convolution suggests that this trick also applies to multivariate
convolution problems, which indeed is the case. Since this procedure will be
part of the final hybrid algorithm, we demonstrate it here in terms of our
multisubset convolution problem.

Define the mapping

ϕ : {0, . . . , 2m1} × · · · × {0, . . . , 2mn} → {0, . . . ,mn

n−1∏

i=1
(2mi + 1)},

(a1, . . . , an) 7→ a1 + (2m1 + 1)a2 + (2m1 + 1)(2m2 + 1)a3 + · · ·+
n−1∏

i=1
(2mi + 1)an

Lemma B.2. ϕ is bijective and has an inverse ϕ−1.

Proof. For every element a ∈ codomain(ϕ), it is readily seen that a corre-
sponding origin (a1, . . . , an) ∈ domain(ϕ) can be constructed by iteratively
dividing a with remainder by ∏i

j=1(2mj + 1), with i running from n− 1 to 1,
where the division results yield an to a1 subsequently.

The mapping ϕ should be seen as the converter between the domain of the
original multivariate convolution, and the derived singlevariate convolution.
Furthermore, define

f ′ : {0, . . . ,mn

n−1∏

i=1
(2mi + 1)} → R, a 7→

{
f(ϕ−1(a)) if ϕ−1(a) ∈ domain(f)
0 if otherwise

The function g′ is defined similarly.

Lemma B.3. f ∗ g = (f ′ ∗ g′) ◦ ϕ

Proof. Let (a1, . . . , an) ∈ domain(f) arbitrary but fixed and let a = ϕ(a1, . . . , an).
We have to show that (f ′ ∗ g′)(a) = (f ∗ g)(a1, . . . , an), i.e.

a∑

b=0
f ′(b)g′(a− b) =

a1∑

b1=0
· · ·

an∑

bn=0
f(b1, . . . , bn)g(a1 − b1, . . . , an − bn)

Claim: f ′(b)g′(a−b) is counted in (f ′∗g′)(a) iff f(b1, . . . , bn)g(a1−b1, . . . , an−
bn) is counted in (f ∗ g)(a1, . . . , an). Proof : Trivially, if (b1, . . . , bn) ⊆
(a1, . . . , an) then also ϕ(b1, . . . , bn) ≤ ϕ(a1, . . . , an). Conversely, if b ≤ a
it may happen that (b′1, . . . , b′n) = ϕ−1(b) 6⊆ ϕ−1(a) = (a′1, . . . , a′n). Suppose
this is the case. Then it must be that there is some i such that b′i > mi
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or (a′i − b′i) > mi. Namely, if not, b′i + (a′i − b′i) = ai, for all i, which
implies ϕ−1(b) ⊆ ϕ−1(a). But that means that ϕ−1(a) /∈ domain(f) or
ϕ−1(a− b) /∈ domain(g). By definition of f ′ and g′ this implies that f ′(b) or
g′(a− b) is 0, such that f ′(b)g′(a− b) is not counted.

Lemma B.3 tells us that the multivariate convolution f ∗g can be computed
by evaluating the singlevariate convolution f ′ ∗ g′. This leads to the following
result.

Theorem B.4. Let d = mn
∏n−1
i=1 (2mi + 1). Then f ∗ g can be computed in

O(T (d)) ring operations, where T (d) is the number of operations needed to
multiply two singlevariate polynomials in R of degree at most d.

Proof. By Lemma B.3, f ∗ g is given by (f ′ ∗ g′) ◦ ϕ. Note that the size of
the domains of ϕ, ϕ−1, f ′, g′ is d = mn

∏n−1
i=1 (2mi + 1), such that computing

ϕ, ϕ−1, f ′, g′ takes at most O(d) time. Computing a singlevariate convolution
f ′ ∗ g′ in R with domain size d is equivalent to multiplying two polynomials
in R with maximal degree d.

Multiplying two polynomials of degree at most d in R can be done in
O(d log d log log d) time using a variant of the well known Schönhage-Strassen
algorithm, as described by Von zur Gathen & Gerhard [34, Chapter 8, Theorem
8.23]. This immediately gives the following corollary.

Corollary B.5. f ∗ g can be computed in O(d log d log log d) ring operations,
where d = mn

∏n−1
i=1 (2mi + 1).

Adapting Fast Subset Convolution to Multi-
subset Convolution
It appears that one cannot modify the fast subset convolution algorithm of
Björklunds et al. to work with multisets, which is what the author tried to do
on his first attempt. Due to lack of time, this remains a conjecture, although
we would like to give a brief sketch of a strategy that may work.

Conjecture B.6. For two functions f, g : P(M)→ R, the convolution f ∗ g
can be computed in O(|M |2 · |P(M)|) ring operations.
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The proposed solution is as follows.
Consider the group algebra of the direct product group

G = Zm1+1 × Zm2+1 × · · · × Zmn+1.

The group structure of G naturally adds/subtracts element multiplicities
(as is desirable with multisets), and ranking (cf. ranked Möbius transform)
enables one to eliminate unwanted wrapping modulo mi + 1 for each i.

To sum up, use the group algebra of G and with fast convolution (that
is, the algebra product) executed via the standard sequence: FFT (on G) →
pointwise product → inverse FFT (on G). Similarly to ranked transforms
in the Möbius (also called zeta) setting, ranking the transforms by the size
of the input multisets enables detection and elimination of wrapping (=the
sum of two multiplicities in at least one coordinate i exceeds mi and hence
wraps around modulo mi + 1, which can be detected by observing that the
total multiplicity in the result does not match the sum of sizes of the inputs).
If this strategy works out, the running time would be roughly the same as
what is stated in the conjecture. To execute the FFTs one needs to be careful
to have sufficient roots of unity available in the underlying coefficient field.
Thus it may be necessary to assume that the functions f, g take values over
an appropriate field F in place of the ring R, e.g. over the complex numbers
will certainly do.

Hybrid Algorithm
In this section we compare the two previously presented algorithms and try
to construct a hybrid algorithm which takes the best of both worlds. In the
remainder of this section, let M = (N,m) be a multiset, R a commutative
ring and f, g : P(M)→ R be two functions.

Comparing the two algorithms
In Corollary B.5 we established that the convolution f ∗ g can be com-
puted in O(d log d log log d) time, where d = mn

∏n−1
i=1 (2mi + 1). Suppose

k is the maximal multiplicity that occurs in M . Then we can bound d by
k(2k + 1)n−1 ≤ (2k + 1)n. So the running time is then bounded by

O((2k + 1)nn log k log(n log k)) (B.1)
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In Conjecture B.6 we stated that the convolution f ∗ g can be computed
in O(|M |2P(M)). We can bound |M | by nk and P(M) by (k + 1)n. This
results in a running time of

O(n2k2(k + 1)n) (B.2)

Let us compare these running times in different settings. For both k and n be-
ing unbounded, we see that the running time in Equation B.2 is asymptotically
faster than Equation B.1.

Suppose k is bounded and n is unbounded. Then Equation B.1 reduces
to O((2k + 1)nn log n). Equation B.2 reduces to O(n2(k + 1)n). As you can
see, the latter is asymptotically faster than the former.

Suppose k is unbounded and n is bounded. Then Equation B.1 reduces to
O(kn log k log log k). Equation B.2 reduces to O(kn+2). As you can see, now
the former is asymptotically faster than the latter.

Thus, neither of the two algorithms outperforms the other in all of the
cases. In order to create an algorithm that performs strong in all cases, we
combine the two algorithms into an allround hybrid algorithm.

Constructing a hybrid algorithm
In constructing the hybrid algorithm, we use the algorithm from Section B to
compute the convolution over a derived ring that has the original convolution
operator as multiplication. This latter convolution operator is then evaluated
using the conjectured multisubset convolution algorithm as stated in Conjec-
ture B.6. The algorithm is given and proved in Conjecture B.8. To make this
possible, we first need the following observation.

Lemma B.7. Let F be a set of functions M → R closed under ∗ (multisubset
convolution over M) and + (function addition). Then F is a commutative
ring under these operations.

Proof. First we note that F is an abelian group under function addition, since
function addition is associative, commutative, has an identity I+(X) = 0 for
all X ⊆M , and for every f ∈ F there exists a (−f) ∈ F .

Second, we prove that F is a commutative monoid under integer convolu-
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tion ∗.
(f ∗ (g ∗ h))(X) =

∑

Y⊆X
f(Y ) · (g ∗ h)(X \ Y )

=
∑

Y⊆X
f(Y ) ·

∑

Z⊆(X\Y )
g(Z)h((X \ Y ) \ Z)

=
∑

Y⊆X

∑

Z⊆(X\Y )
f(Y )g(Z)h((X \ Y ) \ Z) (· distributes over +)

=
∑

Y ]Z]W=X
f(Y )g(Z)h(W )

Since f , g and h can be arbitrarily swapped in the last expression due to the
associativity and commutativity of normal multiplication, ∗ is associative and
commutative. Furthermore, F has a multiplicative identity as well

I∗(X) =
{

1 if X = ∅
0 if otherwise

because

(f ∗ I∗)(X) =
∑

Y⊆X
f(Y )I∗(X \ Y ) = f(X)I∗(∅) = f(X)

Finally, we note that ∗ distributes over +, since

(f ∗ (g + h))(X) =
∑

Y⊆X
f(Y ) · (g + h)(X \ Y )

=
∑

Y⊆X
f(Y )g(X \ Y ) + f(Y )h(X \ Y ) (· distributes over +)

=
∑

Y⊆X
f(Y )g(X \ Y ) +

∑

Y⊆X
f(Y )h(X \ Y )

= (f ∗ g + f ∗ h)(X)

asserting that F indeed fulfills the axioms of a commutative ring.

In the following, we denote partial function application by putting the
partial arguments in subscript. For example, if f : Z× Z→ Z is the function
defined by f(a, b) = a + b, then f1 : Z → Z is the function defined by
f1(b) = 1 + b. Because one of the sub algorithms is still a conjecture, the
following result is also named conjecture, although the proof is valid and
complete provided that the sub algorithms are correct.
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Conjecture B.8. Divide M into M1 = (N1,m1) and M2 = (N2,m2). Sup-
pose n1 = |N1|, n2 = |N2| and k1 and k2 are the maximum multiplicities occur-
ring in m1 and m2 respectively. Furthermore, suppose that n1 is bounded by
some constant. Then f∗g can be computed inO(k1

n1(k2 + 1)n2n2
2k2

2 log k1 log log k1)
ring operations.

Proof. Denote by ∗M2 the convolution operator which only convolutes over
M2. Let F be a set of functions M2 → R closed under ∗M2 and + (function
addition). By Lemma B.7, F is a commutative ring under these operations.

Without loss of generality we can assume that N1 consists of the first n1
elements in N . Let (a1, . . . , an) = A ⊆ M , and write A1 = A ∩M1, A2 =
A ∩M2. We can split the convolution as follows.

(f ∗ g)(a1, . . . , an) =
a1∑

b1=0
· · ·

an∑

bn=0
f(b1, . . . , bn)g(a1 − b1, . . . , an − bn)

=
a1∑

b1=0
· · ·

an1∑

bn1 =0

∑

Y2⊆A2

fb1,...,bn1
(Y2)ga1−b1,...,an1−bn1

(A2 \ Y2)

=
a1∑

b1=0
· · ·

an1∑

bn1 =0
(fb1,...,bn1

∗M2 ga1−b1,...,an1−bn1
)(A2)

The last expression can be recognized as convolution in the commutative ring
F . By Corollary B.5 this can be computed inO((2k1 + 1)n1n1 log k1 log(n1 log k1))
ring operations in F . Since by definition n1 is bounded, this reduces to
O(k1

n1 log k1 log log k1) ring operations in F .
How expensive are ring operations in F in terms of ring operations in R?

The multiplication ∗M2 in F , takes O(n2
2k2

2(k2 + 1)n2) ring operations in R,
by Conjecture B.6. Function addition in F takes at most O(n2k2) time, since
the domain of functions in F is of size at most n2k2. Since ∗M2 is the most
expensive operation, the result follows.
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Abstract
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean
decompositions, and experimentally evaluate these algorithms. The experimental evaluation
shows that significant improvements can be made with respect to running time without increasing
the width of the generated decompositions. We also evaluated dynamic programming algorithms
on linear boolean decompositions for several vertex subset problems. This evaluation shows that
such algorithms are often much faster (up to several orders of magnitude) compared to theoretical
worst case bounds.
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1 Introduction

Boolean-width is a recently introduced graph parameter [2]. Similarly to treewidth and other
parameters, it measures some structural complexity of a graph. Many NP-hard problems on
graphs become easy if some graph parameter is small. We need a derived structure which
captures the necessary information of a graph in order to exploit such a small parameter. In
the case of boolean-width, this is a binary partition tree, referred to as the decomposition
tree. However, computing an optimal decomposition tree is usually a hard problem in itself.
A common approach to bypass this problem is to use heuristics to compute decompositions
with a low boolean-width.

Algorithms for computing boolean decompositions have been studied before in [17, 10,
12, 7], but in this paper we study the specific case of linear boolean decompositions, which
are considered in [1, 10, 12]. Linear decompositions are easier to compute and the theoretical
running time of algorithms for solving practical problems is lower on linear decompositions
than on tree shaped ones. For instance, vertex subset problems can be solved in O∗(nec3)
due to a dynamic programming algorithm by Bui-Xuan et al. [3], but this can be improved to
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2 Practical Algorithms for Linear Boolean-width

We first give an exact algorithm for computing optimal linear boolean decompositions,
improving upon existing algorithms, and subsequently investigate several new heuristics
through experiments, improving upon the work by Sharmin [12, Chapter 8]. We then study
the practical relevance of these algorithms in a set of experiments by solving an instance of
a vertex subset problem, investigating the number of equivalence classes compared to the
theoretical worst case bounds.

2 Preliminaries

A graph G = (V,E) of size n is a pair consisting of a set of n vertices V and a set of edges
E. The neighborhood of a vertex v ∈ V is denoted by N(v). For a subset A ⊆ V we denote
the neighborhood by N(A) =

⋃
v∈AN(v). In this paper we only consider simple, undirected

graphs and assume we are given a total ordering on the vertices of a graph G. For a subset
A ⊆ V we denote the complement by A = V \A. A partition (A,A) of V is called a cut of
the graph. Each cut (A,A) of G induces a bipartite subgraph G[A,A].

The neighborhood across a cut (A,A) for a subset X ⊆ A is defined as N(X) ∩A.
I Definition 1 (Unions of neighborhoods). Let G = (V,E) be a graph and A ⊆ V . We define
the set of unions of neighborhoods across a cut (A,A) as

UN (A) =
{
N(X) ∩A

∣∣X ⊆ A
}
.

The number of unions of neighborhoods is symmetric for a cut (A,A), i.e., |UN (A)| =
|UN (A)| [8, Theorem 1.2.3]. Furthermore, for any cut (A,A) of a graph G it holds that
|UN (A)| = #MIS(G[A,A]), where #MIS(G) is the number of maximal independent sets
in G [17, Theorem 3.5.5].

I Definition 2 (Decomposition tree). A decomposition tree of a graph G = (V,E) is a pair
(T, δ), where T is a full binary tree and δ is a bijection between the nodes of T and subsets
of vertices of V . For the root node r of T it holds that δ(r) = V . Furthermore, if nodes a
and b are children of a node w, then (δ(a), δ(b)) is a partition of δ(w). For a decomposition
(T, δ) let Vw denote the vertices contained in a node w ∈ T , i.e., Vw = δ(w).

In this paper we consider a special type of decompositions, namely linear decompositions.

I Definition 3 (Linear decomposition). A linear decomposition, or caterpillar decomposition,
is a decomposition tree (T, δ) where T is a full binary tree and for which each internal node
of T has at least one leaf as a child. We can define such a linear decomposition through a
linear ordering π = π1, . . . , πn of the vertices of G by letting δ map the i-th leaf of T to πi.

I Definition 4 (Boolean-width). Let G = (V,E) be a graph and A ⊆ V . The boolean
dimension of A is a function bool-dim : 2V → R.

bool-dim(A) = log2 |UN (A)|.
Let (T, δ) be a decomposition of a graph G. We define the boolean-width of (T, δ) as the

maximum boolean dimension over all cuts induced by nodes of (T, δ).

boolw(T, δ) = max
w∈T

bool-dim(δ(w))

The boolean-width of G is defined as the minimum boolean-width over all possible full
decompositions of G, while the linear boolean-width of a graph G = (V (G), E(G)) of size n
is defined as the the minimum boolean-width over all linear decompositions of G.

boolw(G) = min
(T,δ) of G

boolw(T, δ)
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lboolw(G) = min
linear (T,δ) of G

boolw(T, δ)

It is known that for any graph G it holds that boolw(G) ≤ treewidth(G)+1 [17, Theorem
4.2.8]. The linear variant of treewidth is called pathwidth [11], or pw for short.

I Theorem 5 (Appendix A.1). For any graph G it holds that lboolw(G) ≤ pw(G) + 1.

The algorithms in this paper make extensive use of sets and set operations, which can
be implemented efficiently by using bitsets. By using a mapping from vertices to bitsets
that represent the neighborhood of a vertex we can store the adjacency matrix of a graph
efficiently. We assume that bitset operations take O(n) time and need O(n) space, even
though in practice this may come closer to O(1). If one assumes that these requirements are
constant, several time and space bounds in this paper improve by a factor n.

In this paper we assume that the graph G is connected, since if the graph consists of
multiple connected components we can simply compute a linear decomposition for each
connected component, after which we glue them together, in any arbitrary order.

3 Exact Algorithms

We can characterize the problem of finding an optimal linear decomposition by the following
recurrence relation, in which P is a function mapping a subset of vertices A to the linear
boolean-width of the induced subgraph G[A,A].

P ({v}) = |UN ({v})| =
{

1 if N(v) = ∅
2 if N(v) 6= ∅

P (A) = min
v∈A
{max{|UN (A)|, P (A \ {v})}}

(1)

The boolean-width of the graph G is now given by log2(P (V )). Adaptation of existing
techniques lead to the following algorithms for linear boolean-width, upon we hereafter
improve:

With dynamic programming a running time of O(2.7284n) is achieved. (See Theorem 19,
Appendix A.2)
With adaptation of the exact algorithm for boolean-width by Vatshelle [17], a running
time of O(n3 · 2n+lboolw(G)) is achieved. (See Theorem 20, Appendix A.2)

3.1 Improving the running time
We present a faster and easier way to precompute for all cuts A ⊆ V the value |UN (A)|,
which results in a new algorithm displayed in Algorithm 2. In the following it is important
that the UN sets are implemented as hashmaps, which will only save distinct neighborhoods.

Algorithm 1 Compute UN (X ∪ {v}) given UN (X).
1: procedure Increment-UN(G,X,UNX , v)
2: U ← ∅
3: for S ∈ UNX do
4: U ← U ∪ {S \ {v}}
5: U ← U ∪

{
(S \ {v}) ∪ (N(v) ∩ (X \ {v}))

}

6: return U
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I Lemma 6 (Appendix A.3). The procedure Increment-UN is correct and runs in O(n·|UNX |)
time using O(n · |UNX |) space.

Algorithm 2 Return lboolw(G), if it is smaller than logK, otherwise return ∞.
1: procedure Incremental-UN-exact(G,K)
2: TUN (∅)← 0
3: Compute-count-UN(G,K, TUN , ∅, {∅})
4:
5: P (X)←∞, for all X ⊆ V
6: P (∅)← 0
7:
8: for i← 0, . . . , |V | − 1 do
9: for X ⊆ V of size i do
10: for v ∈ V \X do
11: Y ← X ∪ {v}
12: if P (X) ≤ K then
13: P (Y )← min(P (Y ),max(TUN (Y ), P (X)))
14:
15: return log2(P (V ))
16:
17: procedure Compute-count-UN(G,K, TUN , X,UNX)
18: for v ∈ V \X do
19: Y ← X ∪ {v}
20: if TUN (Y ) is not defined then
21: UN Y ← Increment-UN(G,X,UNX , v)
22: TUN (Y )← |UN Y |
23: if TUN (Y ) ≤ K then
24: Compute-count-UN(G,K, TUN , Y,UN Y )

I Theorem 7 (Appendix A.4). Given a graph G, Algorithm 2 can be used to compute
lboolw(G) in O(n · 2n+lboolw(G)) time using O(n · 2n) space.

This new algorithm improves upon the time in Theorem 20 by a factor n2, while the space
requirements stay the same. Since the tightest known upperbound for linear boolean-width
is n

2 − n
143 + O(1) [10], this algorithm can be slower than dynamic programming, since

O(2n+ n
2− n

143 +O(1)) = O(2.8148n+O(1)) ) O(2.7284n), but this is very unlikely to happen in
practice.

4 Heuristics

4.1 Generic form of the heuristics
The goal when using a heuristic is to find a linear ordering of the vertices in a graph in such
a way that the decomposition that corresponds to this ordering will be of low boolean-width.
A basic strategy to accomplish this is to start the ordering with some vertex and then by
some selection criteria append a new vertex to the ordering that has not been appended
yet. This strategy is used in heuristics introduced by Sharmin [12, Chapter 8], and a similar
approach is shown in Algorithm 3.
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Algorithm 3 Greedily generate an ordering based on the score function and the given
starting vertex.
1: procedure GenerateVertexOrdering(G,ScoreFunction, init)
2: Decomposition← (init)
3: Left← {init}
4: Right← V \ {init}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v

9: else
10: chosen← argmin

v∈Candidates
(ScoreFunction(G,Left,Right, v))

11: Decomposition← Decomposition · {chosen}
12: Left← Left ∪ {chosen}
13: Right← Right \ {chosen}
14: return Decomposition

At any point in the algorithm we denote the set of all vertices contained in the ordering
by Left, and the remaining vertices by Right. While Right is not empty, we choose a vertex
from a candidate set Candidates ⊆ Right, based on a set of trivial cases, and, if no trivial
case applies, by making a local greedy choice using a score function that indicates the quality
of the current state Left,Right.

4.1.1 Selecting the initial vertex
Selecting a good initial vertex can be of great influence on the quality of the decomposition.
Sharmin proposes to use a double breadth first search (BFS) in order to select the initial
vertex. This is done by initiating a BFS, starting at an arbitrary vertex, after which a vertex
of the last level of the BFS is selected. This process is then repeated by using the found
vertex as a starting point for the second BFS. However, the fact that an arbitrary vertex is
used for the first BFS already influences the boolean-width of the computed decomposition.
During our experiments we noticed that performing a single BFS sometimes gave better
results. But since we will see in Chapter 5 that applications are a lot more expensive in
terms of running time, it is wise to use all possible starting vertices when trying to find a
good decomposition.

4.1.2 Pruning
Starting from multiple initial vertices allows us to do some pruning. If we notice during
the algorithm that the score of the decomposition that is being constructed exceeds the
score of the best decomposition found so far, we can stop immediately and move to the next
initial vertex. For this reason, it is wise to start with the most promising initial vertices (e.g.
obtained by the double BFS method), and after that try all other initial vertices.

4.1.3 Candidates
The most straightforward choice for the set Candidates is to take Right entirely. However,
we may do unnecessary work here, since vertices that are more than 2 steps away from any
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vertex in Left cannot decrease the size of UN . This means that they should never be chosen
by a greedy score function, which means that we can skip them right away. By this reasoning,
the set of Candidates can be reduced to N2(Left) ∩Right = N(Left ∪N(Left)) ∩Right.
Especially for larger sparse graphs, this can significantly decrease the running time.

4.1.4 Trivial cases
A vertex is chosen to be the next vertex in the ordering if it can be guaranteed that it is an
optimal choice by means of a trivial case. Lemma 8 generalizes results by Sharmin [12], since
the two trivial cases given by her are subcases of our lemma, namely X = ∅ and X = {u}
for all u ∈ Left. Note that we can add a wide range of trivial cases by varying X, such
as X = Left and ∀u,w ∈ Left : X = {u,w}, but this will increase the complexity of the
algorithm.

I Lemma 8 (Appendix A.5). Let X ⊆ Left. If ∃v ∈ Right such that N(v)∩Right = N(X)∩
Right, then choosing v will not change the boolean-width of the resulting decomposition.

4.1.5 Relative Neighborhood Heuristic
For a cut (Left,Right) and a vertex v define

Internal(v) = (N(v) ∩N(Left)) ∩Right
External(v) = (N(v) \N(Left)) ∩Right

In the original formulation by Sharmin [12] |External(v)|
|Internal(v)| is used as a score function.

However, if we use |External(v)|
|Internal(v)|+|External(v)| = |External(v)|

|N(v)∩Right| we get the same ordering by
Lemma 9, without having an edge case for dividing by zero. Furthermore, in contrast to
Sharmin’s proposal of checking for each vertex w ∈ N(v) if w ∈ N(Left) ∩Right or not, we
can compute these sets directly by performing set operations. We will refer to this heuristic
by RelativeNeighborhood.

I Lemma 9 (Appendix A.6). The mapping a
b 7→ a

a+b is order preserving.

Two variations on this heuristic can be obtained through the score functions |External(v)|
|N(v)|

and 1 − |Internal(v)|
|N(v)| , which work slightly better for sparse random graphs and extremely

well for dense random graphs respectively. We will refer to these two variations by
RelativeNeighborhood2 and RelativeNeighborhood3.

One can easily see that the running time of these three algorithms is O(n3) and the required
space amounts to O(n). Notice however that this algorithm only gives us a decomposition.
If we need to know the corresponding boolean-width we need to compute it afterwards, for
instance by iteratively applying Increment-UN on the vertices in the decomposition, and
taking the maximum value. This would require an additional O(n2 · 2k) time and O(n · 2k)
space, where k is the boolean-width of the decomposition.

4.1.6 Least Cut Value Heuristic
The LeastCutValue heuristic by Sharmin [12] greedily selects the next vertex v ∈ Right
that will have the smallest boolean dimension across the cut (Left ∪ {v}, Right \ {v}). This
vertex is obtained by constructing the bipartite graph BG = G[Left ∪ {v}, Right \ {v}] for
each v ∈ Right, and counting the number of maximal independent sets of BG using the
CCMIS [9] algorithm on BG, with the time of CCMIS being exponential in n.
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4.1.7 Incremental Unions of Neighborhoods Heuristic
Generating a bipartite graph and then calculating the number of maximal independent sets
is a computational expensive approach. A different way to compute the boolean dimension of
each cut is by reusing the neighborhoods from the previous cut, similarly to Incremental-
UN-exact. We present a new algorithm, called the Incremental-UN-heuristic, in
Algorithm 4. A useful property of this algorithm is that the running time is output sensitive.
It follows that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms.

Algorithm 4 Greedy heuristic that incrementally keeps track of the Unions of Neighborhoods.
1: procedure Incremental-UN-Heuristic(G, init)
2: Decomposition← (init)
3: Left,Right← {init}, V \ {init}
4: UNLeft ← {∅, N(init) ∩Right}
5: while Right 6= ∅ do
6: Candidates← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen← v

9: UN chosen ← Increment-UN(G,Left,UNLeft, v)
10: else
11: for all v ∈ Candidates do
12: UN v ← Increment-UN(G,Left,UNLeft, v)
13: if chosen is undefined or |UN v| < |UN chosen| then
14: chosen← v

15: UN chosen ← UN v

16: Decomposition← Decomposition · chosen
17: Left← Left ∪ {chosen}
18: Right← Right \ {chosen}
19: UNLeft ← UN chosen

20: return Decomposition

I Theorem 10 (Appendix A.7). The Incremental-UN-heuristic procedure runs in
O(n3 · 2k) time using O(n · 2k) space, where k is the boolean-width of the resulting lin-
ear decomposition.

4.1.8 Unsuccessful ideas
First Improvement — Preliminary experiments pointed out that it not only gave worse
results in terms of boolean-width, but it also increased the time needed to compute a
decomposition, which can be explained by the output sensitivity of the Incremental-
UN-heuristic. In other words, even though the best improvement strategy takes more
time to determine the next vertex for a single iteration, it is worthwhile to put effort in
finding a good cut, as it also decreases the time for future cuts.
Lookaheads — This technique does not only look at the change of UN resulting from
choosing a candidate v, but also recursively considers the changes of the algorithm after v
has been chosen, up to a fixed depth. With each level of depth added, the time complexity
increases with a factor n, but experiments turned out that the benefits were only marginal.
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Minimal Neighborhood Cover — This heuristic tries to minimize the number of neighbor-
hoods in Left that are needed to cover the neighborhood of the vertex to be chosen.
Max Cardinality Search — This heuristics selects vertices in such an order that at each
step the vertex with most neighbors in Left is chosen. In practice this heuristic performed
similar to other already known polynomial heuristics.

5 Vertex subset problems

Boolean decompositions can be used to efficiently solve a class of vertex subset problems
called (σ, ρ) vertex subset problems, which were introduced by Telle [13]. This class of
problems consists of finding a (σ, ρ)-set of maximum or minimum cardinality and contains
well known problems such as the maximum independent set, the minimum dominating set
and the maximum induced matching problem. The running time of the algorithm for solving
these problems is O(n4 ·necd(T, δ)3) [3], where necd(T, δ) is the number of equivalence classes
of a problem specific equivalence relation, which can be bounded in terms of boolean-width.
In Section 6 we investigate how close the value of necd(T, δ) comes to any of the theoretical
bounds.

5.1 Definitions
I Definition 11 ((σ, ρ)-set). Let G = (V,E) be a graph. Let σ and ρ be finite or co-finite
subsets of N. A subset X ⊆ V is called a (σ, ρ)-set if the following holds

∀v ∈ V : |N(v) ∩X| ∈
{
σ if v ∈ X,
ρ if v ∈ V \X.

In order to confirm if a set X is a (σ, ρ)-set we have to count the number of neighbors
each vertex v ∈ V has in X, where it suffices to count up until a certain number of neighbors.
As an example, when we want to confirm if a set X is an independent set, which is equivalent
to checking if X is a ({0},N)-set, it is irrelevant if a vertex v has more than one neighbor in
X. We capture this property in the function d : 2N → N, which is defined as follows:

I Definition 12 (d-function). Let d(N) = 0. For every finite or co-finite set µ ⊆ N, let
d(µ) = 1 + min(max

x∈N
x : x ∈ µ,max

x∈N
x : x /∈ µ). Let d(σ, ρ) = max(d(σ), d(ρ)).

I Definition 13 (d-neighborhood). Let G = (V,E) be a graph. Let A ⊆ V and X ⊆ A. The
d-neighborhood of X with respect to A, denoted by Nd

A(X), is a multiset of vertices from A,
where a vertex v ∈ A occurs min(d, |N(v) ∩X|) times in Nd

A(X). A d-neighborhood can be
represented as a vector of length |A| over {0, 1, . . . , d}.

I Definition 14 (d-neighborhood equivalence). Let G = (V,E) be a graph and A ⊆ V . Two
subsets X,Y ⊆ A are said to be d-neighborhood equivalent with respect to A, denoted by
X ≡dA Y , if it holds that ∀v ∈ A : min(d, |X ∩ N(v)|) = min(d, |Y ∩ N(v)|). The number
of equivalence classes of a cut (A,A) is denoted by nec(≡dA). The number of equivalence
classes necd(T, δ) of a decomposition (T, δ) is defined as max(nec(≡dA), nec(≡d

A
)) over all

cuts (A,A) of (T, δ).

Note that N1
A(X) = N(X) ∩ A. It can then be observed that |UN (A)| = nec(≡1

A) [17,
Theorem 3.5.5] Also note that X ≡dA Y if and only if Nd

A(X) = Nd
A(Y ).
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5.2 Bounds on the number of equivalence classes
We present a brief overview of the most relevant bounds that are currently known, for which
we make use of a twin class partition of a graph.

I Definition 15 (Twin class partition). Let G = (V,E) be a graph of size n and let A ⊆ V .
The twin class partition of A is a partition of A such that ∀x, y ∈ A, x and y are in the same
partition class if and only if N(x) ∩A = N(y) ∩A. The number of partition classes of A is
denoted by ntc(A) and it holds that ntc(A) ≤ min(n, 2bool-dim(A)) [2].

For all bounds listed below, let G = (V,E) be a graph of size n and let d be a non-negative
integer. Let (A,A) be a cut induced by any node of a decomposition (T, δ) of G, and let
k = bool-dim(A) = nec(≡1

A).

I Lemma 16. [3, Lemma 5] nec(≡dA) ≤ 2d·k2 .

I Lemma 17. [17, Lemma 5.2.2] nec(≡dA) ≤ (d+ 1)min(ntc(A),ntc(A)).

I Lemma 18 (Appendix A.8). nec(≡dA) ≤ ntc(A)d·k.

By Lemma 16 we conclude that we can solve (σ, ρ) problems in O∗(8dk2). This shows that
applications are more computationally expensive than using heuristics to find a decomposition.

6 Experiments

The experiments in this section are performed on a 64-bit Windows 7 computer, with a 3.40
GHz Intel Core i5-4670 CPU and 8GB of RAM. We implemented the algorithms using the
C# programming language and compiled our programs using the csc compiler that comes
with Visual Studio 12.0.

6.1 Comparing Heuristics on random graphs
We will look at the performance of heuristics on randomly generated graphs, for which
we used the Erdös-Rényi-model [5] to generate a fixed set of random graphs with varying
edge probabilities. By using the same set of graphs for each heuristic, we rule out the
possibility that one heuristic can get a slightly easier set of graphs than another. In these
experiments we start a heuristic once for each possible initial vertex, so n times in total. For
the RelativeNeighborhood heuristic we select the best decomposition based upon the
sum of the score function for all cuts, since computing all actual linear boolean-width values
would take O(n3 · 2k) time, thereby removing the purpose of this polynomial time heuristic.
For the set Candidates we take N2(Left) ∩ Right, which avoids that we exclude certain
optimal solutions, as opposed to Sharmin [12], who restricted this set to N(Left) ∩Right.
However, this does not affect the results significantly.

We let the edge probability vary between 0.05 and 0.95 with steps of size 0.05. For each
edge probability value, we generated 20 random graphs. The result per edge probability is
taken to be the average boolean-width over these 20 graphs, which are shown in Figure 1. It
can be observed that the Incremental-UN-heuristic procedure performs near optimal.
Furthermore we see that the RelativeNeighborhood variants perform somewhere in
between the optimal value and the value of random decompositions.
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Figure 1 Performance of different heuristics on random generated graphs consisting of 20 vertices,
with varying edge probabilities, in terms of linear boolean-width.

6.2 Comparing heuristics on real-world graphs
In order to get an idea of how the Incremental-UN-heuristic compares to existing
heuristics we compare them by both the boolean-width of the generated decomposition and
the time needed for computation. We cannot compare the heuristics to the optimal solution,
because computing an exact decomposition is not feasible on these graphs. The graphs that
were used come from Treewidthlib [14], a collection of graphs that are used to benchmark
algorithms using treewidth and related graph problems.

We ran the three different heuristics mentioned in Section 4 with Candidates = Right

and with an additional two variations on the Incremental-UN-heuristic (IUN) by varying
the set of start vertices. The first variation, named 2-IUN, has two start vertices which are
obtained through a single and double BFS respectively. The n-IUN heuristic uses all possible
start vertices. For all other heuristics we obtained the start vertex through performing a
double BFS. In Table 1 and 2 we present the results of our experiments.

Table 1 Linear boolean-width of the decompositions returned by different heuristics.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
david 87 0.11 9.38 6.27 6.27 6.27 5.86

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53
miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91
munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81
boblo 221 0.01 19.00 4.32 4.32 4.32 4.00

fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81
munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61
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Table 2 Time in seconds of the heuristics used to find linear boolean decompositions.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
david 87 0.11 0.02 3.15 0.04 0.06 1.62

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32
miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43
munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85
boblo 221 0.01 0.29 3.39 0.28 0.56 46.22

fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63
munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

It is expected that the IUN heuristic and LeastCutValue heuristic give the same
linear boolean-width, since both these heuristics greedily select the vertex that minimizes
the boolean dimension. The RelativeNeighborhood heuristic performs worse than all
other heuristics in nearly all cases. While the difference might not seem very large, note that
algorithms parameterized by boolean-width are exponential in the width of a decomposition.
The 2-IUN heuristic outperforms IUN in three cases while n-IUN gives a better decomposition
in 11 out of 13 cases, which shows that a good initial vertex is of great influence on the width
of the decomposition.

Looking at the times displayed in Table 2 for computing each decomposition we see
that the RelativeNeighborhood heuristic is significantly faster. This is to be expected
because of the O(n3) time, compared to the exponential time for all other heuristics. The
interesting comparison that we can make is the difference between the IUN heuristic and
LeastCutValue heuristic. While both of these heuristics give the same decomposition,
IUN is significantly faster. Additionally, even 2-IUN and n-IUN are often faster than the
LeastCutValue heuristic.

6.3 Vertex subset experiments
We have used the linear decompositions given by the n-IUN heuristic to compute the size
of the maximum induced matching (MIM) in a selection of graphs, of which the results
are presented in Table 3. The maximum induced matching problem is defined as finding
the largest ({1},N) set, with d({1},N) = 2. The choice for the MIM problem is arbitrary,
any vertex subset problem with d = 2 will have the same number of equivalence classes
and therefore they all require the same time when computing a solution. We present the
computed value of necd(T, δ), together with theoretical upperbounds, since for d = 2 a tight
upperbound in terms of boolean-width is not known. Note that we take the logarithm of each
value, since we find this value easier to interpret and compare to other graph parameters. We
let UB1 = 2d·boolw2 , UB2 = (d+ 1)minntc and UB3 = ntcd·boolw, with ntc = max

w∈T
ntc(Vw)

and minntc = max
w∈T

min(ntc(Vw), ntc(Vw)).
The column MIM displays the size of the MIM in the graph, while the time column

indicates the time needed to compute this set. Missing values for nec and MIM are caused by
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a lack of internal memory, because of the O∗(necd(T, δ)2) space requirement. An interesting
observation we can make by looking at the graphs zeroin.i.2 and boblo, is that a lower boolean-
width does not imply a lower number of equivalence classes. We even encountered this for
decompositions of the same graph: for the graph barley we observed boolw(T, δ) = 4.58 and
boolw(T ′, δ′) = 4.81, while log2(nec2(T, δ)) = 7.00 and log2(nec2(T ′, δ′)) = 6.75.

Table 3 Results of using the algorithm by Bui-Xuan et al. [3] for solving (σ, ρ) problems on
graphs, using decompositions obtained using the n-IUN heuristic.

Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
david 5.86 9.37 68.63 22.19 44.61 34 919

celar04-pp 7.27 11.15 105.61 28.53 65.74 - -
1bkb-pp 9.53 - 181.47 52.30 98.49 - -
miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179
munin2-pp 7.61 11.82 115.97 19.02 54.60 - -
mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59
boblo 4.00 6.17 32.00 9.51 20.68 148 41

fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934
munin4-wpp 7.61 12.13 115.97 19.02 57.98 - -

7 Conclusion

We have presented a new heuristic and a new exact algorithm for finding linear boolean
decompositions. The heuristic has a running time that is several orders of magnitude faster
than the previous best heuristic and finds a decomposition in output sensitive time. This
means that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms. Running the new
heuristic once for every possible starting vertex results in significantly better decompositions
compared to existing heuristics.

We have seen that if lboolw(T, δ) < lboolw(T ′, δ′), then there is no guarantee that
nec(T, δ) < nec(T ′, δ′). While in general it holds that minimizing boolean-width results
in a low value of number of equivalence classes, we think that can be worthwhile to focus
on minimizing the necd instead of the boolean-width when solving vertex subset problems.
However, the number of equivalence classes is not symmetric, i.e., for a cut (A,A) necd(A) 6=
necd(A), which makes it harder to develop fast heuristics that focus on minimizing necd
since we need to keep track of both the equivalence classes of A and A.

Further research can be done in order to obtain even better heuristics and better up-
perbounds on both the linear boolean-width and boolean-width on graphs. For instance,
combining properties of the Incremental-UN-heuristic and the RelativeNeighbor-
hood heuristic might lead to better decompositions, as they make use of complementary
features of a graph. Another approach for obtaining good decompositions could be a branch
and bound algorithm that makes us of trivial cases that are used in the heuristics. To
decrease the time needed by the heuristics one can investigate reduction rules for linear
boolean-width. While most reduction rules introduced by Sharmin [12] for boolean-width do
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not hold for linear boolean-width, they can still be used on a graph after which we can use
our heuristic on the reduced graph. Although the resulting decomposition after reinserting
the reduced vertices will not be linear, the asymptotic running time for applications does
not increase [15]. Another topic of research is to compare the performance of vertex subset
algorithms parameterized by boolean-width to algorithms parameterized by treewidth [16].
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A Omitted proofs

A.1 Proof of Theorem 5
I Claim. For any graph G it holds that lboolw(G) ≤ pw(G) + 1.

Proof. We give a method of construction that gives us a linear boolean decomposition of a
graph G from a path decomposition of G. Recall that a linear boolean decomposition can
be defined through a linear ordering π = π1, . . . , πn of V . The idea is that given a path
decomposition X1, . . . , Xn we select vertices one by one from a subset Xi and append them
to the linear ordering π, after which we move on to Xi+1. For shorthand notation we denote

χi =
i⋃

j=1
Xi.

Let Si = {u |u ∈ χi : N(u) ∩ χi 6= ∅}. For each u ∈ Si it holds that ∃j > i ∃w ∈ Xj for
which {u,w} ∈ E. By definition of a path decomposition we know that there is a subset Xj

with u,w ∈ Xj , and since all subsets containing a certain vertex are subsequent in the path
decomposition, it follows that u ∈ Xi and u ∈ Xi+1, implying that Si ⊆ Xi and Si ⊆ Xi+1.
By definition, the unions of neighborhoods of χi can only consist of neighborhoods of subsets
of Si, thus it follows that |UN (χi)| = 2bool-dim(χi) ≤ 2|Si| ≤ 2|Xi| ≤ 2pw(G)+1. What remains
to be shown is that while appending vertices one by one from a subset Xi+1, the number of
unions of neighborhoods will not exceed 2|Xi+1| at any point. For each vertex v ∈ Xi+1 there
are two possibilities. If v ∈ Si, then appending v to the linear ordering will not increase
the boolean dimension, since v’s neighborhood was already an element of the unions of
neighborhoods constructed so far. If v /∈ Si, then it is possible that v will contribute a new
neighborhood to the unions of neighborhoods, which will cause factor 2 increase in the worst
case. There are at most |Xi+1 \ Si| such vertices, and because Si ⊆ Xi+1, it follows that
|Xi+1 \ Si| = |Xi+1| − |Si|. We conclude that at any point during construction it holds that

UN (χi+1) = 2bool-dim(χi+1) ≤ 2|Si| · 2|Xi+1|−|Si| = 2|Xi+1| ≤ 2pw(G)+1

J

A.2 Adaptation of existing exact algorithms
Straighforward dynamic programming leads to the following result.

I Theorem 19. A linear boolean decomposition of minimum boolean-width can be computed
in O(2.7284n) time using O(n · 2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values |UN (A)| by
computing #MIS(G[A,A]). Computing #MIS for any graph can be done in O(1.3642n)
time [6]. Doing this for all A takes O(2.7284n) time.

We solve recurrence relation (1) in a bottom-up fashion. For each iteration, the minimum
of |A| numbers has to be taken. Suppose |A| = k, then this takes O(k) time for each iteration.
When solving the recurrence relation, |A| goes from 1 to n. Since there are

(
n
k

)
subsets of

size k, it takes
∑n
k=1

(
n
k

)
k = O(n · 2n−1) = O(n · 2n) time to compute all values for lboolw.

Because the preprocessing step of computing bool-dim is the bottleneck, the total time is
O(2.7284n). The space requirements amount to O(n · 2n), since bool-dim and lboolw contain
at most 2n entries of integers of at most n bits. J

The currently fastest known exact algorithm for boolean-width runs in O∗(2n+K) [17],
where K is a known upperbound for the boolean-width of the current graph. By performing a
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binary search on K, we can achieve an output sensitive asymptotic running time. Theorem 20
is a direct adaptation to linear boolean-width.

I Theorem 20. A linear boolean decomposition of minimum boolean-width for a graph G
can be computed in O(n3 · 2n+lboolw(G)) time using O(n · 2n) space.

Proof. As a preprocessing step we compute for all cuts A ⊆ V the values |UN (A)|, using a
polynomial time delay algorithm, which lists maximal independent sets in G[A,A] with at
most O(n3) time in between two results [4]. We can use the upperbound K as a limit for
this algorithm, such that computing max(|UN (A)|,K) takes at most O(n3 ·K) time.

Now consider relation (1). This can be solved in O(n · 2n) time by the same reasoning as
in Theorem 19. This results in a total running time of O(n3 · 2n+lboolw(G)) by binary search
on K. The space requirements amount to O(n · 2n), since the tables bool-dim and lboolw
contain at most 2n entries of integers of at most n bits. J

A.3 Proof of Lemma 6
I Claim. The procedure Increment-UN is correct and runs in O(n · |UNX |) time using
O(n · |UNX |) space.

Proof. For proof by induction, assume that all unions of neighborhoods for the cut (X,X)
saved inside the set UNX are computed correctly. For each neighborhood in UNX we only
perform two actions to obtain new neighborhoods. The first action is removing v, since v
cannot be in any neighborhood of X∪{v}. The second operation is adding N(v) to an existing
neighborhood, which also results in a valid new neighborhood across the cut. It is clear that if
a neighborhood is added to U , then it is a valid neighborhood across the cut (X∪{v}, X \{v}).
We now show that all valid neighborhoods of the cut (X ∪ {v}, X \ {v}) are contained in U .
Assume for contradiction that S is a valid neighborhood not contained in U . By definition,
there is a set R for which N(R) ∩ (X \ {v}) = S. If v /∈ R, then N(R) ∩ X ∈ UNX ,
meaning that we add N(R) ∩ (X \ {v}) to U , contradicting our assumption. If v ∈ R, then
N(R \{v})∩X ∈ UNX . During the algorithm we construct (N(R \{v})∪N(v))∩ (X \{v}),
which is equal to N(R) ∩ (X \ {v}). This means that N(R) ∩ (X \ {v}) is added to U , also
contradicting our assumption. It follows that a neighborhood is contained in the set U if and
only if it is a valid neighborhood across the cut (X ∪ {v}, X \ {v}).

The time is determined by the number of sets S saved in UNX . The number of unions
of neighborhoods that we iterate over does not exceed |UNX |. The set operations that are
performed for each S take at most O(n) time. This results in the total time for this algorithm
to be O(n · |UNX |). The space requirements amount to O(n · |UNX |), for storing U which
contains at most O(|UNX |) sets of size at most O(n). J

A.4 Proof of Theorem 7
I Claim. Given a graph G, Algorithm 2 can be used to compute lboolw(G) in O(n ·
2n+lboolw(G)) time using O(n · 2n) space.

Proof. Iteratively double K in Algorithm 2, starting with K = 1, until it returns a number
that is not∞. By Lemma 21 this will take O(

∑lboolw(G)
logK=1 n·2n+logK) = O(n·2n+lboolw(G)+1) =

O(n · 2n+lboolw(G)) and take O(n · 2n) space. J

I Lemma 21. Given a graph G = (V,E) of size n and an integer K, Algorithm 2 computes
the linear boolean width, if it is at most logK, in O(n ·K · 2n) time using O(n · 2n) space.
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Proof. Consider the first part of procedure Incremental-UN-exact, where the call to
the procedure Compute-count-UN is made. It may not be immediately clear that TUN is
always computed when necessary, since there may be X such that TUN (X) is not computed,
while TUN (X) ≤ K. Suppose that X ⊆ V of size i occurs in an optimal decomposition and
TUN (X) has not been computed. Since we are dealing with linear decompositions, there
exists an ordering v1, . . . , vi of X such that for all 1 ≤ j ≤ i, the set Xj =

⋃
0≤j′≤j vj′ also

occurs in the optimal decomposition. Obviously this implies that TUN (Xj) ≤ K for all j. But
this means that for all these Xj the if-statement on line 23 evaluates to true. But that means
that TUN (X) must be computed, contradiction. Thus we conclude that TUN is computed
correctly throughout the algorithm. The second part of procedure Incremental-UN-exact
simply solves the recurrence in a bottom-up dynamic programming fashion. Finally, the
procedure Increment-UN is correct by Lemma 6.

We now analyze the running time. Consider the procedure Compute-count-UN. We
observe that the procedure can only be called once for each X ⊆ V , because as soon as the
call is made, TUN (X) will be defined and line 20 prevents further calls with equal X. At every
call the for-loop has to make at most n iterations, thus we obtain O(n · 2n) iterations in total.
If line 20 evaluates false, the body of the for-loop takes constant time. If line 20 evaluates
true, the call to Increment-UN takes O(n · 2K) time (by Lemma 6), as |UNX | ≤ K

(otherwise by line 23 the call to Compute-count-UN would not have been made). Because
line 20 only returns true at most O(2n) times, the time of Compute-count-UN amounts
to O(n · 2n+K). Consider the rest of the code in Incremental-UN-exact. The three outer
for-loops account for n ·2n executions of the inner code block, which take O(1) time, resulting
in O(n · 2n) time in total. Thus, in total the time amounts O(n · 2n+K).

For the space requirements, we observe that the tables TUN and S are of size at most
2n storing numbers of n bits. Moreover, the recursion of Compute-count-UN can be at
most n deep, so only n unions of neighborhoods have to be stored, which are at most of size
n · 2K . Since O(n · 2K) ⊆ O(n · 2n/2) ( O(n · 2n), the total space requirements amount to
O(n · 2n). J

A.5 Proof of Lemma 8
I Claim. Let X ⊆ Left. If ∃v ∈ Right such that N(v) ∩ Right = N(X) ∩ Right, then
choosing v will not change the boolean-width of the resulting decomposition.

Proof. The choice for v will not change the unions of neighborhoods in any way, which
means that UN (Left) = UN (Left ∪ {v}). Thus, for any vertex in Right \ {v} it will hold
that it will interact in the exact same with with UN (Left) as it would with UN (Left∪{v}),
resulting in the boolean dimension of the computed ordering being the same. J

A.6 Proof of Lemma 9
I Claim. The mapping a

b 7→ a
a+b is order preserving.

Proof. Suppose a
b ≤ c

d . Then ad− bc ≤ 0. Now we see that

a

a+ b
− c

c+ d
= a(c+ d)− c(a+ b)

(c+ d)(a+ b) = ac+ ad− ac− bc
(c+ d)(a+ b) = ad− bc

(c+ d)(a+ b) ≤ 0

Thus a
a+b ≤ c

c+d . J
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A.7 Proof of Theorem 10
I Claim. The Incremental-UN-heuristic procedure runs in O(n3 ·2k) time using O(n ·2k)
space, where k is the boolean-width of the resulting linear decomposition.

Proof. The time is determined by the number of sets saved in UNLeft. The worst case
consisting of Candidates = Right will result in at most n iterations and calls to Increment-
UN. This call takes O(n · 2|UNLeft|) time by Lemma 6. By definition |UNLeft| never exceeds
2k, where k is the boolean-width of the resulting decomposition. Because we need to make n
greedy choices to process the entire graph, we conclude that the total time for this algorithm
is O(n3 · 2k) For the space requirements we observe that all structures in the algorithm
require O(n) space, except for the unions of neighborhoods. Since there are only stored two
of them at any time and they require at most O(n · 2k) space, the total space requirements
amount to O(n · 2k). J

A.8 Proof of Lemma 18
I Claim. nec(≡dA) ≤ ntc(A)d·k.

Proof. We make use of a graph parameter called maximum induced matching-width [1]. Let
mim(A) denote the maximum matching-width of A. It has been shown that for a graph G and
for any subset A ⊆ V it holds that mim(A) ≤ bool-dim(A) [17, Theorem 4.2.10]. From [17,
Lemma 5.2.3] we know that nec(≡dA) ≤ ntc(A)d·mim(A), thus nec(≡dA) ≤ ntc(A)d·k. J
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B Figures and Tables

B.1 Figures

Figure 2 Performance of different heuristics on random generated graphs consisting of 20 vertices,
with varying edge probabilities, in terms of linear boolean-width.

Figure 3 Performance of different heuristics on random generated graphs consisting of 50 vertices,
with varying edge probabilities. Because of feasibility limitations, the Incremental-UN-exact
algorithm is only used for the in Figure 3. While the optimal values are now unknown, it is
clear that Incremental-UN-heuristic outperforms all other heuristics. Interestingly enough,
RelativeNeighborhood3 peers with Incremental-UN-heuristic as soon as the edge probability
exceeds 0.4. Moreover, RelativeNeighborhood and RelativeNeighborhood2 do not perform
better than a random decomposition generator after the edge probability exceeds 0.4. We also observe
that the highest boolean-width values are reached when the edge probability is around 0.1–0.2,
indicating that the size of the graphs has an influence on the edge-probability-boolean-width-curve.
Also note that it seems that dense random graphs have lower linear boolean-width than sparse
graphs. Therefore it may be profitable to use RelativeNeighborhood3 when dense graphs are
encountered.
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B.2 Tables

Table 4 Linear boolean-width of the decompositions returned by the heuristics described in
Section 4, with Candidates = Right. For 2-IUN we use two start vertices; one is obtained through
a single BFS search, while the other is obtained through a double BFS search. The n-IUN heuristic
uses all n start vertices, and all other heuristics use start vertices obtained through performing a
double BFS.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 3.32 3.00 3.00 3.00 3.00
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
BN_100 58 0.17 15.84 11.56 11.56 10.86 10.86
eil76 76 0.08 8.86 8.33 8.33 8.33 8.33
david 87 0.11 9.38 6.27 6.27 6.27 5.86
1jhg 101 0.17 12.86 8.67 8.67 8.49 8.41
1aac 104 0.25 20.29 12.40 12.40 12.40 12.33

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1a62 122 0.21 18.92 11.68 11.68 11.28 11.14

1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53
1dd3 128 0.17 16.61 9.98 9.98 9.90 9.90

miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
miles250 128 0.05 7.95 7.13 7.13 5.39 4.58
celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91

anna 138 0.05 12.65 8.67 8.67 8.51 7.94
pr152 152 0.04 12.69 11.19 11.19 10.36 8.29

munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81
boblo 221 0.01 19.00 4.32 4.32 4.32 4.00

fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81
munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61

Table 5 Time in seconds of the heuristics used to find the linear boolean decompositions of which
the boolean-width is displayed in Table 4.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
alarm 37 0.10 < 0.01 0.02 < 0.01 < 0.01 0.06
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
BN_100 58 0.17 < 0.01 25.10 0.41 1.24 17.17
eil76 76 0.08 0.02 5.00 0.13 0.29 8.35
david 87 0.11 0.02 3.15 0.04 0.06 1.62
1jhg 101 0.17 0.03 24.46 0.21 0.48 14.75
1aac 104 0.25 0.04 754.54 5.66 11.81 375.31

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
Continued on next page
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Table 5 – Continued from previous page
Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
1a62 122 0.21 0.06 585.95 3.10 11.57 376.26

1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32
1dd3 128 0.17 0.07 117.21 0.92 2.74 91.19

miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
miles250 128 0.05 0.02 0.56 0.05 0.10 1.24
celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43

anna 138 0.05 0.06 20.81 0.22 0.57 19.95
pr152 152 0.04 0.10 50.74 1.76 5.66 120.06

munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85
boblo 221 0.01 0.29 3.39 0.28 0.56 46.22

fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63
munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

Table 6 Results of using the algorithm by Bui-Xuan et al. [3] for solving (σ, ρ) problems on
graphs, using decompositions obtained using the IUN heuristic using all starting vertices. The
columns UB indicate theoretical upperbounds on the number of equivalence classes, with UB1 =
2d·boolw2 , UB2 = (d+ 1)min ntc and UB3 = ntcd·boolw, with ntc = max

w∈T
ntc(Vw) and minntc =

max
w∈T

min(ntc(Vw), ntc(Vw)).

Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)
alarm 3.00 4.32 18.00 7.92 13.93 18 < 1
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
BN_100 10.86 - 235.93 36.45 105.53 - -
eil76 8.33 12.63 138.81 22.19 65.10 - -
david 5.86 9.37 68.63 22.19 44.61 34 919
1jhg 8.41 13.53 141.58 41.21 81.75 - -
1aac 12.33 - 304.08 72.91 141.25 - -

celar04-pp 7.27 11.15 105.61 28.53 65.74 - -
1a62 11.14 - 248.09 60.23 121.61 - -

1bkb-pp 9.53 - 181.47 52.30 98.49 - -
1dd3 9.90 - 196.11 52.30 103.17 - -

miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
miles250 4.58 7.24 42.04 15.85 31.72 52 37
celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179

anna 7.94 11.94 125.98 33.28 75.48 - -
pr152 8.29 12.76 137.45 22.19 63.13 - -

munin2-pp 7.61 11.82 115.97 19.02 54.60 - -
mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59
boblo 4.00 6.17 32.00 9.51 20.68 148 41

fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934
Continued on next page
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Table 6 – Continued from previous page
Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)

munin4-wpp 7.61 12.13 115.97 19.02 57.98 - -

Table 7 Width of linear boolean decompositions found with the IUN heuristic using the start
vertices returned by performing a double BFS, and with candidates = N2(Left)∩Right in order to
decrease the computation time. The values of the two others heuristics are taken from [12]. Missing
entries are caused by a lack of internal memory which is caused by the O(n · 2k) space requirement,
with k being the linear boolean-width of the computed decomposition. The last column indicates
the time of the IUN heuristic.

Graph |V | Edge Density LeastUncommon Relative IUN Time (s)
link-pp 308 0.02 34.81 28.68 17.44 610.09

diabetes-wpp 332 0.01 8.58 18.58 5.32 1.53
link-wpp 339 0.02 35.00 29.03 16.79 374.04
celar10 340 0.02 20.81 15.00 10.17 1.83
celar11 340 0.02 19.54 14.70 10.80 1.88
rd400 400 0.01 34.73 21.32 17.01 1,007.03

diabetes 413 0.01 29.32 19.32 - -
fpsol2.i.3 425 0.10 15.87 8.92 7.67 2.11

pigs 441 0.01 24.04 18.00 12.39 20.08
celar08 458 0.02 24.95 15.00 10.17 2.12
d493 493 0.01 20.29 48.10 16.73 708.57
homer 561 0.01 36.22 28.49 - -
rat575 575 0.01 16.48 37.23 - -
u724 724 0.01 18.72 50.09 - -

inithx.i.1 864 0.05 11.98 7.22 6.81 7.31
munin2 1003 < 0.01 31.25 12.13 11.91 61.17
vm1084 1084 < 0.01 15.21 48.95 - -
BN_24 1819 < 0.01 4.91 2.32 2.58 610.72
BN_25 1819 < 0.01 4.64 2.32 2.58 601.41
BN_23 2425 < 0.01 8.48 3.17 2.58 1,808.29
BN_26 3025 < 0.01 6.98 2.32 3.58 4,532.83

Table 8 Linear boolean-width upperbounds that are obtained through using the IUN heuristic
with all starting vertices and candidates = Right. The tw column gives an upperbound on the
treewidth, while the bw column gives an upperbound on the boolean-width, which values are taken
from [12]. Cursive graph names marked with an asterisk indicate the graphs for which, in theory,
the linear boolean decomposition will give a higher bound on the running time than the boolean
decomposition, i.e., graphs for which 22lbw > 23bw.

Graph |V | Edge Density tw bw lbw lbw/bw

celar06-pp-003 4 0.5 2 1 1 1.00
diabetes-pp-001* 6 0.8 4 1 1.58 1.58
munin3-pp-001* 7 0.81 5 1 1.58 1.58
munin3-pp-002* 7 0.81 5 1 1.58 1.58

Continued on next page
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Table 8 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

celar06-pp-000 8 0.43 3 1 1 1.00
diabetes-pp-002 8 0.61 4 2.32 2.32 1.00

mainuk-pp 9 0.78 6 1.58 1.58 1.00
rl5934-pp-001 10 0.44 4 2.81 3.17 1.13
fl3795-pp-001 10 0.44 4 2.81 3 1.07
fl3795-pp-003 10 0.44 4 2.81 3 1.07
fl3795-pp-002 10 0.44 4 2.81 3.17 1.13

pathfinder-pp-001 11 0.58 5 2.58 3.32 1.29
myciel3 11 0.36 5 3 3.46 1.15

pcb3038-pp-001 11 0.4 5 3 2.81 0.94
fl3795-pp-004 11 0.42 4 3 3.46 1.15
pathfinder-pp 12 0.65 6 2.58 2.81 1.09
celar11-pp-002 13 0.59 7 2.81 3.17 1.13

celar04-pp-001-000 15 0.74 9 1.58 2 1.27
weeduk 15 0.47 7 1.58 1.58 1.00
fungiuk 15 0.34 4 2 1.58 0.79

pcb3038-pp-002 15 0.3 5 3 2.81 0.94
mildew-wpp 15 0.3 4 2.58 3.32 1.29

celar04-pp-001 16 0.78 10 1.58 2 1.27
celar06-pp 16 0.84 11 1.58 1.58 1.00

celar10-pp-001 16 0.51 8 3 3.46 1.15
celar09-pp-001 16 0.51 8 3 3.17 1.06
celar08-pp-002 16 0.51 8 3 3.32 1.11
celar07-pp-002 16 0.45 7 3 3.32 1.11
barley-pp-001 16 0.42 7 3.32 3.32 1.00
celar11-pp-004 16 0.36 6 3.17 3.58 1.13
munin2-pp-005 16 0.3 5 3 3.58 1.19
munin2-pp-006 16 0.3 5 3 3.58 1.19
munin2-pp-003 16 0.3 5 3.17 3.7 1.17
munin2-pp-004 16 0.3 5 3.17 3.7 1.17
munin2-pp-007 17 0.35 7 3.46 3.58 1.03
munin2-pp-011 17 0.35 7 3.46 3.58 1.03
munin2-pp-010 17 0.35 7 3.46 3.81 1.10
munin2-pp-008 17 0.35 7 3.46 3.58 1.03
munin2-pp-009 18 0.31 6 3.46 3.81 1.10
munin2-pp-012 18 0.31 6 3.46 3.81 1.10
celar01-pp-002 19 0.65 10 2 2.32 1.16
celar02-pp 19 0.67 10 2 2 1.00

celar05-pp-001 19 0.66 11 2 2.32 1.16
celar11-pp-001 19 0.65 10 2 2.32 1.16
fl3795-pp-005 19 0.22 4 3.32 3.58 1.08
water-pp-001 21 0.45 9 3.81 4.09 1.07

anna-pp 22 0.64 12 3.46 3.81 1.10
water-pp 22 0.42 9 4.17 4.32 1.04
water-wpp 22 0.42 9 4.17 4.32 1.04

munin4-pp-001 23 0.26 8 3.58 4 1.12
Continued on next page
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Table 8 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

munin4-pp-002 23 0.26 8 3.58 4 1.12
myciel4 23 0.28 10 5 5.49 1.10
BN_29 24 0.18 5 2 2.32 1.16
BN_28 24 0.18 5 2 2.32 1.16

queen5_5 25 0.53 18 5.29 5.67 1.07
barley-pp 26 0.24 7 3.7 3.46 0.94

fl3795-pp-006 26 0.16 5 3.81 4.17 1.09
david-pp 29 0.47 13 4.09 4.32 1.06

barley-wpp 29 0.2 7 3.81 3.58 0.94
pcb3038-pp-003 29 0.12 5 4.32 4.75 1.10
celar02-wpp 30 0.33 10 2.81 2.58 0.92

water 32 0.25 9 4.39 4.75 1.08
BN_16-pp-015 34 0.28 11 3.58 4.39 1.23
celar06-wpp 34 0.28 11 3 3.17 1.06

BN_16-pp-014 34 0.28 11 3.81 4.86 1.28
1bx7-pp 34 0.31 11 4.7 4.39 0.93
mildew 35 0.13 4 3 3.32 1.11

queen6_6 36 0.46 25 7.65 8.08 1.06
alarm 37 0.1 4 2.58 3 1.16

celar03-pp-001 38 0.34 14 5.81 6.11 1.05
munin4-pp-003* 38 0.16 8 3.58 5.39 1.51
munin4-pp-004 38 0.16 8 4.17 5.39 1.29
celar08-pp-001 39 0.38 16 5.09 5.21 1.02

oesoca 39 0.09 3 2.32 3 1.29
1bx7 41 0.24 11 4.91 4.75 0.97

oesoca42 42 0.08 3 2.32 3.17 1.37
celar07-pp-001 45 0.32 16 5.46 5.86 1.07
celar01-pp-001 47 0.25 15 5.88 6.36 1.08
celar05-pp-002 47 0.25 15 6.07 5.83 0.96

myciel5 47 0.22 19 8.12 6.49 0.80
1ubq-pp 47 0.16 12 5.95 8.79 1.48

pigs-pp-001 47 0.12 9 5.95 7.07 1.19
1brf-pp 48 0.36 22 7.01 7.25 1.03
1rb9 48 0.37 22 6.77 7.17 1.06

celar11-pp-003 48 0.23 15 5.73 4.58 0.80
mainuk* 48 0.18 7 3.58 6.49 1.81
barley 48 0.11 7 4 3.7 0.93
pigs-pp 48 0.12 9 5.7 6.64 1.16
1brf 49 0.35 22 7.01 7.3 1.04

queen7_7 49 0.4 35 10.36 10.97 1.06
1kth-pp 51 0.33 20 7.06 5.86 0.83
1i07-pp 51 0.28 15 5.55 7.18 1.29
eil51.tsp 51 0.11 9 5.78 5.78 1.00
1igq-pp 52 0.37 23 6.74 7.45 1.11
1kth 52 0.32 20 7.04 6.87 0.98
1g6x 52 0.31 19 6.89 7.21 1.05
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Graph |V | Edge Density tw bw lbw lbw/bw

1igq 54 0.35 23 6.89 7.61 1.10
zeroin.i.1-pp 54 0.89 46 1.58 1.58 1.00
1e0b-pp 55 0.33 24 7.69 8.32 1.08

munin4-pp-006 55 0.11 8 4.32 5.17 1.20
munin4-pp-005 55 0.11 8 4.39 5.17 1.18

1j75 56 0.36 27 8.51 8.94 1.05
1k61-pp 56 0.37 26 8.02 8.37 1.04
1sem-pp 56 0.37 26 8.09 8.5 1.05
1bbz-pp 56 0.35 25 8.18 8.36 1.02
1bf4-pp 57 0.39 26 7.63 7.79 1.02
1cka 57 0.38 27 8.55 8.87 1.04
1sem 57 0.36 26 8.32 8.66 1.04

zeroin.i.2-pp 57 0.69 32 2.81 3.32 1.18
zeroin.i.3-pp 57 0.69 32 3 3.32 1.11

1bbz 57 0.34 25 8.3 8.36 1.01
1oai-pp 57 0.32 22 7.94 8.28 1.04
1jo8 58 0.37 27 8.46 8.73 1.03
1oai 58 0.32 22 7.87 8.15 1.04

celar01-pp-003 58 0.19 15 6.97 6.89 0.99
1g2b-pp 59 0.37 28 8.5 8.99 1.06
1igd-pp 59 0.36 25 7.66 7.9 1.03
1kq1-pp 59 0.35 27 8.63 8.94 1.04
1pwt-pp 59 0.38 29 8.85 9.24 1.04
1i07 59 0.23 15 5.52 5.93 1.07
1k61 60 0.33 26 8.32 8.81 1.06
1kq1 60 0.34 27 8.79 8.89 1.01

1ku3-pp 60 0.33 23 7.46 7.53 1.01
1e0b 60 0.29 24 8.13 8.42 1.04

knights8_8-pp 60 0.09 16 10.77 11.3 1.05
1gut-pp 61 0.33 22 7.19 7.54 1.05
1i2t 61 0.35 27 8.38 9.03 1.08
1igd 61 0.34 25 7.75 7.9 1.02
1pwt 61 0.36 29 8.81 9.27 1.05
1ku3 61 0.32 23 7.53 7.61 1.01
1g2b 62 0.34 28 8.72 9.05 1.04

1fr3-pp 62 0.32 21 7.16 7.29 1.02
celar04-pp-002 62 0.17 16 6.86 7.26 1.06

1bf4 63 0.34 26 7.9 8.09 1.02
1r69 63 0.35 30 9.12 9.51 1.04

munin1-pp-001 63 0.09 11 5.58 6.43 1.15
1gcq-pp 64 0.36 30 8.95 9.38 1.05
queen8_8 64 0.36 45 13.16 14.05 1.07

1a8o 64 0.27 25 9.11 9.3 1.02
knights8_8 64 0.08 16 11.06 11.64 1.05

1fjl 65 0.29 26 7.9 8.49 1.07
1c9o 66 0.34 29 8.75 8.88 1.01
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Graph |V | Edge Density tw bw lbw lbw/bw

1hg7 66 0.33 29 8.81 9.13 1.04
1ezg 66 0.25 23 8.33 7 0.84

1en2-pp 66 0.21 17 7.46 8.54 1.14
munin1-pp 66 0.09 11 5.58 6.43 1.15

1c4q 67 0.34 31 9.45 9.71 1.03
1fse 67 0.33 27 8.58 8.75 1.02
1kw4 67 0.3 28 9.39 5.73 0.61
1gut 67 0.28 22 7.47 7.36 0.99
1fr3 67 0.28 21 7.29 7.47 1.02

1b67-pp 67 0.25 16 6.61 9.61 1.45
1gcq 68 0.33 30 9.36 9.65 1.03

1ail-pp 68 0.28 24 8.11 8.33 1.03
1d3b-pp 68 0.3 25 8.54 5.78 0.68
1b67 68 0.25 16 6.61 8.52 1.29
1c75 69 0.29 30 9.88 8.31 0.84
1ail 69 0.27 24 8.07 9.68 1.20
1d3b 69 0.29 25 8.44 8.53 1.01
1en2 69 0.2 17 7.24 7 0.97
1cc8 70 0.34 32 9.35 9.63 1.03

1dj7-pp 70 0.3 27 8.12 8.22 1.01
1i27-pp 70 0.3 27 8.67 8.82 1.02
1l9l 70 0.29 29 9.26 10 1.08

1ljo-pp 71 0.31 30 8.92 9.02 1.01
1dp7-pp 71 0.3 27 9.21 9.15 0.99

graph03-pp-001 71 0.11 20 12.53 12.24 0.98
1mgq-pp 72 0.31 28 8.98 9.08 1.01

1i27 73 0.28 27 8.78 9.06 1.03
mulsol.i.1-pp 73 0.83 50 2.32 2.58 1.11

1dj7 73 0.28 27 9.66 8.22 0.85
1ldd 74 0.31 32 9.6 9.73 1.01
1ljo 74 0.29 30 8.88 9.06 1.02
1mgq 74 0.3 28 8.91 9.06 1.02
huck 74 0.11 10 2.81 3.32 1.18
1ubq 74 0.08 12 6.61 7.75 1.17
1ig5 75 0.29 33 10.45 10.64 1.02
1dp7 76 0.27 27 9.01 9.3 1.03

celar10-pp-002 76 0.15 16 7.25 6.58 0.91
celar08-pp-003 76 0.15 16 7.41 6.58 0.89
celar09-pp-002 76 0.15 16 7.46 6.58 0.88

1iqz 77 0.29 33 10 10.1 1.01
1qtn-pp 77 0.25 24 8.56 8.33 0.97

munin3-pp-003* 79 0.09 7 4.17 12.73 3.05
graph03-pp 79 0.1 20 12.99 5.61 0.43
sodoku-elim1 80 0.28 45 9.47 12 1.27

jean* 80 0.08 9 3.91 6.54 1.67
celar05-pp 80 0.13 15 7.2 4.58 0.64
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Table 8 – Continued from previous page
Graph |V | Edge Density tw bw lbw lbw/bw

sodoku 81 0.25 45 9 12.7 1.41
celar03-pp 81 0.13 14 6.19 6.11 0.99

graph03-wpp 84 0.09 20 12.74 12.92 1.01
1fk5 85 0.23 31 10.76 10.1 0.94
1aba 85 0.25 29 10.13 10.81 1.07

graph01-pp-001 85 0.09 24 13.4 13.66 1.02
1ctj-pp 86 0.25 33 10.78 11.07 1.03
1ctj 87 0.25 33 10.74 11.04 1.03
1ptf 87 0.3 38 11.21 10.86 0.97
1qtn 87 0.21 24 9.15 8.97 0.98
david 87 0.11 13 5.32 5.86 1.10

graph05-pp-001 87 0.1 24 12.68 13.31 1.05
1awd 89 0.28 38 10.8 11.13 1.03

celar03-wpp 89 0.11 14 6.17 6.49 1.05
celar05-wpp 89 0.11 15 7.52 6.54 0.87
graph01-pp 89 0.08 24 14.62 13.96 0.95
munin1-wpp 90 0.05 11 7.23 7.58 1.05

1jhg-pp 91 0.19 25 8.34 8.41 1.01
graph05-pp 91 0.1 24 13.84 13.49 0.97
celar07-pp 92 0.12 16 6 6 1.00
a280.tsp-pp 92 0.06 14 8.23 7.38 0.90

kroE100.tsp-pp* 92 0.06 10 6.48 14.84 2.29
1g2r-pp 93 0.26 37 11.87 11.51 0.97

graph01-wpp 93 0.07 24 14.69 11.41 0.78
1czp 94 0.27 38 11.47 11.6 1.01
1g2r 94 0.25 37 12.17 14.19 1.17

graph05-wpp 94 0.09 24 14.38 13.18 0.92
1c5e 95 0.26 36 11.06 10.83 0.98

myciel6 95 0.17 35 13.4 7.86 0.59
homer-pp 95 0.17 31 14.61 13.88 0.95

kroA100.tsp-pp 95 0.06 10 7.61 6.58 0.86
celar11-pp 96 0.1 15 6.64 5.98 0.90
munin3-pp 96 0.07 7 4.32 5.86 1.36
celar07-wpp 97 0.01 16 6 7.17 1.20

kroC100.tsp-pp* 97 0.06 10 6.94 11.97 1.72
1plc 98 0.25 35 11.28 11.1 0.98

1lkk-pp 99 0.24 34 11 10.84 0.99
1d4t-pp 99 0.23 35 11.88 6.58 0.55

celar11-wpp 99 0.1 15 7.17 4.91 0.68
1i0v 100 0.24 41 12.21 12.47 1.02

celar02 100 0.06 10 3.32 4.91 1.48
celar06* 100 0.07 11 3.81 14.85 3.90
graph05 100 0.08 24 13.7 13.36 0.98
graph01 100 0.07 24 14.61 14.21 0.97
graph03 100 0.07 20 13.29 8.41 0.63
1erv 101 0.25 41 12.26 12.44 1.01
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Graph |V | Edge Density tw bw lbw lbw/bw

1jhg 101 0.17 25 8.87 11.97 1.35
1iib-pp 102 0.27 40 11.98 11.76 0.98
1d4t 102 0.22 35 12.87 10.31 0.80
1iib 103 0.26 40 12.62 11.79 0.93
1b0n 103 0.19 32 10.81 11.17 1.03
1lkk 103 0.22 34 11.89 13.56 1.14
1aac 104 0.25 41 12.29 12.33 1.00

1bkf-pp 105 0.23 36 11.1 11.4 1.03
1bkf 106 0.23 36 11.69 11.44 0.98
1bkr 107 0.24 44 14.4 13.75 0.95
1rro 107 0.23 43 15.36 3.58 0.23
1f9m 109 0.23 45 14.27 13.56 0.95

pathfinder* 109 0.04 6 3.32 10.83 3.26
celar04-pp 110 0.09 16 7.29 7.27 1.00

1fs1 114 0.21 34 13.79 7.36 0.53
celar04-wpp 116 0.07 16 7.95 11.1 1.40

1gef-pp 117 0.22 43 12.93 13.35 1.03
1gef 119 0.21 43 13.6 13.35 0.98

mulsol.i.5-pp 119 0.36 31 3 3 1.00
1a62-pp 120 0.21 37 14.7 11.14 0.76
1a62 122 0.21 37 13.62 9.68 0.71

1dd3-pp 124 0.17 31 14.6 9.25 0.63
ch130.tsp-pp 125 0.05 12 8.67 9.53 1.10
1bkb-pp 127 0.18 30 15.55 9.9 0.64
miles1500 128 0.64 77 4.86 5.29 1.09

1dd3 128 0.17 31 11.68 4.58 0.39
miles500 128 0.14 22 9.42 7.04 0.75
miles250* 128 0.05 9 4.95 9.61 1.94

1bkb 131 0.17 30 14.53 6.91 0.48
celar10-pp 133 0.07 16 9.08 7.7 0.85

anna 138 0.04 12 6.67 7.25 1.09
celar09-wpp 142 0.06 16 8.49 7 0.82
celar01-pp 157 0.07 15 7.39 7 0.95
celar01-wpp 158 0.06 15 7.09 7.61 1.07
munin2-pp 167 0.03 7 5.49 6.91 1.26
mulsol.i.3 184 0.23 32 4.95 3.58 0.72
mulsol.i.4 185 0.23 32 4.81 3.58 0.74
mulsol.i.5 186 0.23 31 4.95 3.58 0.72
mulsol.i.2 188 0.22 32 4.81 3.58 0.74

celar08-wpp 190 0.05 16 9.64 11.48 1.19
mulsol.i.1 197 0.2 50 4 4.17 1.04
zeroin.i.3 206 0.17 32 5.39 3.81 0.71
zeroin.i.1 211 0.19 50 3.7 3.32 0.90
zeroin.i.2 211 0.16 32 5.39 3.81 0.71

fpsol2.i.1-pp 233 0.4 66 4.91 4.81 0.98
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