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Abstract

Recommender systems try to predict users’ preferences for certain items,
given a set of historical data. Multiple different techniques are available that
make these systems accurate and one of them that delivers promising results
is matrix factorization. This thesis explores how these systems work and
presents a method to incorporate contextual data into a factorization tech-
nique to get predictions based on context. Specifically, a music recommender
based on Candecomp/Parafac tensor factorization is proposed that uses im-
plicit feedback collected from music listeners. The results are empirically
tested and compared with other non-contextual recommender techniques.
The prediction quality of the matrix factorization technique is unfortunately
not improved by our proposed tensor factorization recommender on the used
Last.fm dataset. However, an adjusted dataset with artificially made con-
textual data does get better results, but this may not reflect a real-world
situation.
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1 Introduction

Recommender systems try to predict what items a user will like. It estimates
the user’s preferences based on some information it collected. These systems
are more and more present in our daily lives, whether we realize it or not.

In its most simple form recommender systems use some kind of global
information to recommend items for every user at once. For example the
top 10 most downloaded songs are presented to customers at online music
stores, or the highest rated articles are listed on a blog’s front page. These
systems provide an easy way of recommending the most popular items – all
that’s needed is aggregating item ratings and selecting the top-k items with
the highest rating.

Another way of recommending items is by serving hand curated lists.
These lists are created by domain experts, who have knowledge of the items
in their field. In this case the recommender system is a human, who predicts
what users will like based on his own preferences and experience.

Both popularity and expert based recommendations treat all users as the
same and exploit the global preferences or the preference/knowledge of a
single person. Online stores, however, require a more personal approach to
recommendations, due to an abundance of items available. Most brick-and-
mortar stores cannot tailor the shop to the needs of each individual customer,
because there is a limit to the amount of items they can store and have on
display. While the popular top 10 lists can be used in physical stores, personal
recommendations are simply not worthwhile.

Online stores can have a lot more items in their catalog: physical music
stores may have several thousands of CDs, whereas the iTunes store and
streaming service Spotify both contain multiple millions of songs [3, 56]. A
large range of those items is not very popular, but together they might deliver
a bigger business than the most popular items. Where previously the Pareto
Principle was in effect – also known as the 80%/20% rule: the small top
fragment (20%) of products delivers a large portion (80%) of the sales – for
online shops the less popular niche merchandise can produce the bigger part
of the business. It is therefore of interest to get the right items from these
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niche markets to the right users. [68]
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Figure 1.1: The long tail problem: getting niche items to the right users.
Physical stores only display the most popular items, while online stores can
provide a lot more.

This problem is called the long tail, see Figure 1.1. It shows the (sorted)
popularity of different items. Where physical stores mostly just focus on the
small portion of most popular items, online stores can provide the full range
of less popular products in the long tail as well. Due to the benefits of serving
items from the long tail and the practical impossibility of showing all these
items to the user, online stores reach for personal recommender systems. [48]

1.1 Goals

There has been plenty of research towards recommender systems. In Chap-
ter 2 we’ll give a concise overview of multiple commonly used techniques and
some implementations. Traditionally recommendation systems only use the
historical preferences of users to recommend music. Our goal is to create a
context-aware recommendation system, which uses (historical) context infor-
mation (time of day, weather, mood etc.) as well, to recommend music for a
certain moment. This way we expect to improve the prediction results and
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make a system that can give better recommendations. We specifically focus
on time as context, since it is easily obtainable.

Another goal is to make use of implicit feedback data, instead of the
higher quality and more often used explicit feedback. We will need to take
this into account when designing a recommender system, since they don’t
work in the same way.

Finally we would like to implement a system that is usable in real-world
applications, therefore the running time and memory usage should be rea-
sonable. We aim for a system that can make live predictions, but training
can be done offline.

1.2 Overview

First we will give a synopsis of recommender systems in general (Chapter
2). Chapter 3 continues on matrix factorization, a dimensionality reduction
technique with promising results. We’ll talk about the underlying idea of
this approach and show how to implement such a system for implicit feed-
back datasets with alternating least squares, based on previous work by Hu
et al. [28]. Then we’ll analyze context in general (Chapter 4), explore tensor
decomposition techniques (Chapter 5) to add context information into the
model and show how we implement this in our application. Finally we will
discuss our evaluation method and the results collected from our implemen-
tation in Chapter 6.

1.3 Notation

There are a lot of different notations used in this research field, so to avoid
confusion we’ll list the notations we have adopted here. They are largely
similar to Kolda in [32].

• Higher order tensors uppercase bold cursive: A

• Matrices uppercase bold: A

• Vectors lowercase bold: a

• Scalars lowercase regular: a

• Subscripts denote rows, columns and elements and use the same nota-
tion as above, thus: column i of matrix A is shown as ai and element
j in vector ai is shown as aij
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• Uppercase characters denote the upper bound of indices: n ∈ 1 . . . N

• Predicted rating/preference for item i by user u in context t is shown
with a hat: r̂uit

• Regularization terms: λ
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2 Recommender systems

Personal recommender systems try to make educated guesses about what
items a user likes by looking at the users’ historical preferences. This means
that by using a (large) dataset of (historical) preferences between users and
items, recommender systems try to estimate the preference values for which
currently no data is available. The system needs to find relations in the
dataset such that it gets knowledge about how much the user likes certain
items. There are multiple ways of finding these relations and we can cat-
egorize recommender systems by the two main methods they use: content
based or collaborative based. We’ll cover both systems in Sections 2.2 and 2.3
respectively, but first we’ll discuss what forms the basis of each recommender
system: the utility matrix.

2.1 Utility matrix

As mentioned before, recommender systems use the preferences of users for
certain items to recommend other items the user might like. (Here “items”
is a generic term and most systems are focused on and optimized for just
a specific type of items, e.g. music, movies, news articles, etcetera.) These
known preferences are stored in a so-called utility matrix, where each user-
item pair is comprised of a value depicting the degree of preference of that
user for that item. An example is given in Table 2.1, where the ratings for
different movies are given. A rating of 5 stars represents that a user likes a
movie, whereas a low rated movie is not liked by the corresponding user.

We can acquire the data to fill the utility matrix in two ways: with ex-
plicit ratings from users, or with implicit ratings inferred from user behavior.
Explicit feedback requires extra user action. After watching a movie a user
might go to a movie database website such as IMDB and express his ap-
preciation (or criticism) by giving the movie a rating in the form of 1 to 5
stars. These ratings are valuable since the user himself explicitly provides
them, however, they might be biased since only the data from users taking
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LOTR Harry Potter Pulp Fiction Titanic Forrest Gump

Alice 1 5 4

Bob 5 1 2

Cherryl 5 4 1

Dave 1 4 5

Eddy 5 5 2

Frank 2 4 3

Table 2.1: Utility matrix, with user ratings for different movies. Empty cells
denote that the user has not rated the corresponding movie.

the effort to rate is represented.
The other method, implicit feedback, has the advantage of not requiring

any extra interaction from the user: the recommender system can work be-
hind the curtains and the user doesn’t need to worry about it, it just works.
We can for example keep track of which TV shows a user watches and how
long he is watching them as a measure of preference. A user that watches
a specific show frequently indicates that he likes that show. This type of
feedback is generally easier available than the higher quality explicit ratings.
A typical inconvenience however, as we will discover later in Section 3.3, is
that the blank positions in the utility matrix are actually zero. In the explicit
feedback case we now nothing about those user-item pairs, but with implicit
feedback it might mean the user dislikes the item

Whether we choose implicit or explicit feedback, utility matrices are often
very sparse (much sparser than in Table 2.1), which means that there are a lot
of unknown values. This is due to the often vast amount of items and users
and the relatively low number of ratings per item. The goal of a recommender
system is to fill in these unknown values of the utility matrix. For example:
will Alice like The Lord of the Rings? As we will see in the next sections,
a content based recommender might for instance notice that LOTR is quite
similar to the Harry Potter movie, but Alice doesn’t like that one, so she
probably won’t like The Lord of the Rings either.

Formally the recommender system is modeled by a function F that pre-
dicts the unknown rating rui ∈ R for item i ∈ I by a user u ∈ U :

F : U × I → R (2.1)
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Figure 2.1: Content based recommender system

2.2 Content based

Content based recommender systems look at the properties of items or users
in the dataset. We can for instance categorize books in different genres:
thriller, romance, adventure etc. If a user has a high preference for books in
the thriller genre, he probably also likes other books in that genre. We can
do the same for users: if users aged < 10 generally like animation movies,
another user aged < 10 would probably also like animation movies. Recom-
mender systems that use a content based approach create item and/or user
profiles based on their properties and use these profiles to find other similar
items/users, see Figure 2.1.

Content based recommender systems have a number of advantages com-
pared to other systems [40]:

1. The recommender system can be used right away: it does not depend
on ratings from other users.

2. It’s able to recommend new items that no user has heard of before,
simply because those items have similar profiles to another known item.

3. The recommended items are easy to explain, it is possible to list the
features of the item profiles and the similar items themselves.
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adventure adventure crime romance romance

fantasy fantasy drama drama drama

LOTR Harry Potter Pulp Fiction Titanic Forrest Gump

Bob 5 1 2

Dave 1 4 5

Table 2.2: Utility matrix with item profiles added.

However it is not always trivial to create good profiles for all items. For
example it can be hard to extract features from images or songs since their
properties are often vague and subject to interpretation (is it rock? pop-
rock? electronic-pop-rock-with-al-little-bit-of-punk?). Furthermore, users
won’t discover items outside of their profile. The classic exploration ver-
sus exploitation problem relates to many recommender systems and prevents
users to step out of a bubble of similar items. Items a user might like, but
have a completely different profile than currently liked items won’t be rec-
ommended. [48]

Example

In Table 2.2 the item profiles for each movie are added to the example utility
matrix. They consist of two genre classifiers and can be used to compare
the movies. What will be Bob’s value for the The Lord of the Rings movie?
Since he liked Harry Potter and its item profile matches that of The Lord of
the Rings, Bob will probably also like the The Lord of the Rings movie. On
the other hand, Dave will most likely not appreciate Harry Potter, but will
probably like Titanic better, whose item profile matches Forrest Gump’s.
Note that we use genre here for illustrative purposes, there can be many
different properties added to the item-profile, such as director, actors, writers,
etcetera.

One approach to getting the predicted preferences is by comparing item
and user profiles as vectors. Each element of the item profile vector represents
a property and is either 0 or 1. A 1 if the item matches that property, 0
otherwise. For users we can do the same while using the rating weights for
the individual properties. In Table 2.3 we highlight the profile vectors for
the movies Titanic and Harry Potter and the user Dave.

As we can see from the results, Dave’s vector is more closely related
to Titanic’s than to Harry Potter’s. Measuring the similarity between two
vectors can be done with for example the cosine distance, which we will
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Titanic

adventure 0

fantasy 0

crime 0

drama 1

romance 1

Harry Potter

adventure 1

fantasy 1

crime 0

drama 0

romance 0

Dave

adventure 1/5 = 0.1

fantasy 1/5 = 0.1

crime 4/5 = 0.80

drama 9/10 = 0.90

romance 5/5 = 1

Table 2.3: Profile vectors for Titanic, Harry Potter and user Dave.

further expand upon in the next section. When the similarities between
all users and their not-rated movies are calculated the recommender system
can recommend which movies the user should go see, by simply sorting the
resulting values.

2.3 Collaborative filtering

Where content based recommender systems find similar properties, collab-
orative filtering (CF) systems find similar ratings. These systems compare
users and items only by past user behavior (i.e. the rows and columns of the
utility matrix), without looking at their properties. The term collaborative
filtering was first used by Goldberg et al., authors of one of the earliest rec-
ommender systems: Tapestry [22]. The system was created to filter e-mails
from mailing lists and newsgroups, where users collaborated by writing anno-
tations about the messages. Later, more automated systems were developed
like GroupLens [33], which gave personalized recommendations on Usenet
posts (using k-Nearest Neighbors, see Section 2.3.1). [53, 18]

Of course, for those types of items for which it is difficult to get the right
properties and features, a collaborative approach is more suited than a con-
tent based one. Another conceptual advantage over content based methods
is that collaborative filtering recommendations are based on the quality of
items, not on just the properties some items might have in common. If two
items share the same properties, that does not necessarily have to mean that
a user who likes one will like the other as well, since it might be a low quality
item. It isn’t likely that a collaborative filtering recommender on the other
hand, would suggest items that are rated low by other users, despite that
item having features the user likes. High ratings are typically an indication
of high quality, or high preference. [19]

Furthermore, collaborative methods don’t have the problem of not being
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able to recommend items outside of the user’s profile. When other (similar)
users simply like those items outside of another user’s profile they can be
considered for recommendation.

A disadvantage however is the need for ratings from other users. This is
called the cold start problem: the system can only recommend items if there
are enough ratings to calculate similarities. New items and new users cannot
be included immediately, since there is no preference information available
right away.

There are two main approaches to CF: memory-based (more commonly
known as neighborhood-based) and model-based methods. Neighborhood
methods are better at finding similarities in local relations, whereas model-
based approaches learn more general structures that cover a larger part (if
not all) of the data. [34]

2.3.1 Neighborhood

The neighborhood method is based on the idea that if certain users rate some
items more or less the same, they will rate other items the same as well. It
looks in the neighborhood of similar users and recommends items that the
k-Nearest Neighbors (KNN) have preferred. Since the users have preferred
similar items in the past, it is likely that they rate items similarly in the
future as well, see Figure 2.2. This form of recommending closely resembles
an automated kind of word of mouth, where users endorse items to each
other.

Of course we can do the same thing for items: if a user likes an item,
the recommender system will look in the neighborhood of similarly rated
items to recommend the best options. The advantage of this item-oriented
neighborhood method is that the predictions are easier explainable. Users
know the item they have preferred in the past where an item-oriented recom-
mendation is based on, whereas they are not familiar with the similar users
a user-oriented recommendation is based on [34] – they can be complete
strangers.

The nice thing about neighborhood-based methods compared to model-
based systems is that they don’t require costly recomputations when new
items or users are added. In real world applications items and users are
constantly being added to the database. A neighborhood approach only
needs to find the similar neighbors for the new items and users, it can keep
the already computed neighbors for other items/users. The same is true for
the addition of new ratings: only those items/users with new ratings need to
recompute their similarities [19]. For model-based systems this often requires
retraining, which is computationally expensive.
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Figure 2.2: Collaborative based recommender system

Furthermore, neighborhood-based recommender systems are relatively
easy to implement and there are few parameters to estimate compared to
model-based systems. Where model-based recommenders need extensive
training with multiple free parameters, the simplest form of neighborhood-
based systems just has a single parameter k for the number of neighbors [7].
The value for k must be carefully chosen though: if it is too small, the system
will be affected by noise. If on the other hand k is too large, neighbors get
included that should not have influence at all.

Implementation

The performance of KNN is largely influenced by the way similarities are
calculated. To measure similarity, we can compare the rows or columns from
the utility matrix and calculate the distance between these vectors. This can
be done in multiple ways.

The simplest method is the Jaccard Distance, which bases similarity on
the number of rated items that users have in common. Users with many rated
items in common are considered similar, whereas users that rated different
sets of items are not similar. This does not always make sense intuitively,
since it discards all information regarding the degree of preference for items.
Therefore, users that rated the same items completely opposite are still con-
sidered similar. If we for instance look at Table 2.1 again, Titanic and Harry
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LOTR Harry Potter Pulp Fiction Titanic Forrest Gump

Alice −7/3 5/3 2/3

Bob 7/3 −5/3 −2/3

Cherryl 5/3 2/3 −7/3

Dave −7/3 2/3 5/3

Eddy 3/3 3/3 −6/3

Frank −3/3 3/3 0/3

Table 2.4: Normalized utility matrix. Blank values can be treated as 0, which
is considered neutral.

Potter would be considered similar movies, while they actually get opposite
ratings. It really depends on what type of data is collected in the utility ma-
trix, if it contains information about recent purchases (where each purchase
means the user likes the item) the Jaccard Distance might be a good measure
of similarity.

A different measurement is Cosine similarity, which can be calculated by
dividing the dot product of two vectors (for user u and v) by the product of
their lengths.

cos(u,v) =
u · v
‖u‖‖v‖

=

N∑
i=1

rui × rvi√
N∑
i=1

r2ui ×

√
N∑
i=1

r2vi

(2.2)

It conveniently measures the angle between two vectors: if u and v are
exactly the same (not taking their magnitude into account) it will output
cos(u,v) = 1, while if they are exactly opposite it will give cos(u,v) = −1.
Note however that there are a lot of missing values in the utility matrix. We
could treat those as zeroes, but that would bias them towards disliking an
item. Another problem is that users often have differently scaled ratings, for
example in a range of 1 to 5, some might consider 3 a positive preference,
while others might think it’s a negative rating. A way to solve both problems
is to normalize all values by subtracting the user’s average rating value from
its ratings. This has the effect that unknown values are considered more
neutral and the vectors are better comparable overall. The ratings in Table
2.4 are normalized. Now, if we for example compare Alice and Bob according
to the Cosine similarity, we get:
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(−7/3)× (7/3) + (5/3)× (−5/3) + (2/3)× (−2/3)√
(7/3)2 + (−5/3)2 + (−2/3)2 ×

√
(−7/3)2 + (5/3)2 + (2/3)2

= −1

Whereas the similarity between Bob and Cherryl will be:

(2/3)× (7/3) + (−7/3)× (−5/3)√
(7/3)2 + (−5/3)2 + (−2/3)2 ×

√
(5/3)2 + (2/3)2 + (−7/3)2

≈ 0.6282

These are expected results if we take a look at the utility matrix: Bob and
Cherryl rate almost the same, while Alice and Bob rate completely opposite.
Of course we can again do the same with the columns of the matrix, when
comparing items. This way we’ll discover for example that Harry Potter and
Titanic are quite dissimilar with regard to their ratings.

The commonly used Pearson correlation coefficient directly combines the
Cosine similarity function with this normalization and is defined as:

ρuv =

N∑
i=1

(rui − r̄u)× (rvi − r̄v)√
N∑
i=1

(rui − r̄u)2 ×

√
N∑
i=1

(rvi − r̄v)2
(2.3)

After computing the similarities between all users, we can select the near-
est neighbors of each user u: the k users with highest similarity to u. The
set N(u) contains these nearest neighbors of u. In order to get the prediction
r̂ui we need the subset of neighbors that have rated item i, which we’ll call
Ni(u). Then r̂ui is given by a weighted average of the preferences for item i
by all v ∈ Ni(u).

r̂ui =

∑
v∈Ni(u)

ρuvrvi∑
v∈Ni(u)

ρuv
(2.4)

Again this can be normalized, since in Equation 2.4 the rvi values might
be scaled differently for different users as well.

r̂ui = r̄i +

∑
v∈Ni(u)

ρuv(rvi − r̄v)∑
v∈Ni(u)

ρuv
(2.5)

In [34] instead of just accounting for the mean user ratings, a baseline
estimate is added to the prediction, which includes adjustments for global
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effects in the rating dataset. This avoids predicting a too high preference
value for globally low-rated items that happen to have many neighbors with
high average ratings.

bui = µ+ bu + bi (2.6)

Where µ equals the average rating over all items and bu and bi denote
the deviation from µ for the ratings from user u and for item i respectively.
Both bu and bi are estimated by solving the least squares problem:

min
b∗

∑
u,i

(rui − µ− bu − bi)2 + λ(
∑
u

b2u +
∑
i

b2i ) (2.7)

Plugging 2.6 into 2.5 gives us the following estimation function:

r̂ui = bui +

∑
v∈Ni(u)

ρuv(rvi − bvi)∑
v∈Ni(u)

ρuv
(2.8)

Since the utility matrix is sparse and some items are rated by just a few
users, we need to check if the predictions are reliable. If lots of users prefer
an item, that item might be a better option than an item that gets a high
rating from just a single user. That’s why a support factor wuv is introduced
by many nearest neighbor systems and is included in the similarity weight
suv.

suv = wuvρuv (2.9)

Several implementations are considered for wuv, typically in the user-
based case based on how many rated items two users have in common and
for the item-based case based on how many users rated an item. [27, 19, 57]
For example:

wuv =
nuv

nuv + λ
(2.10)

Where nuv equals the number of items that two users u and v rated in
common and λ is a scaling factor: the higher λ the more important is the
amount of commonly rated items.

Item and user-based

As mentioned before, estimating the preference of user u for item i can be
done by either finding similar users and getting the average rating for i from
the neighbors, or by finding item neighbors for i and average the ratings for
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those items given by u. In the item-based case basically the same steps as in
the user-based neighborhood method are used. An adaptation of Equation
2.8 for the item-based case therefore gives:

r̂ui = bui +

∑
j∈Nu(i)

sij(ruj − buj)∑
v∈Nu(i)

sij
(2.11)

In order to find item recommendations for some user u, we need to predict
the ratings for all unrated items by u. In other words: we need to predict
the blanks for row u in the utility matrix. In the user based case once we
have found the similar users, we can compute the predicted preferences of u
for all items. Whereas in the item-based case, if we find the similar items for
the first unrated item, we can only predict the rating for that item. We need
to find similar items for all other items, before we can recommend items to
u.

On the other hand, items are better comparable than users. For instance,
where an item mostly belongs to a single genre, a user can have a preference
for multiple genres. Note that these underlying properties are inferred from
the rating behaviors from users and not collected from their meta data itself.
Since it is harder to find users with the same preference for multiple genres,
than it is to find items with the same single genre, finding similar items can
get better results [48]. However, this may as well be a drawback, since only
items similar to already liked items are recommended. This gives us the same
problem as with content-based approaches: the user is not likely to explore
items outside of their personal bubble [19]. With user-based neighbors such
items outside of the comfort zone can be recommended, exactly because a
similar user may like multiple genres. The choice basically boils down to an
exploration versus exploitation problem.

Clearly in favor of the item-based approach, as said in the beginning of
this section, is that they can better explain their predictions. A user is not
familiar with their neighbors, these are mostly just strangers, but he does
know what items he has used or rated before. An item based system can
therefore explain a prediction by listing the items it is based on. Compare
for example: “the movie LOTR is recommended to Bob, because he liked
Harry Potter” and “the movie LOTR is recommended to Bob, because Eddy
liked it as well”. The second case does not mean anything to Bob if Eddy is
a stranger. Note that word of mouth recommending only works if the rec-
ommending party is a close friend, family or otherwise an authority. In [62],
the importance of explanations for recommendations is discussed further.

The choice between item and user-based is often due to their performance.
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Both have the same computational complexity, but if a system has more items
than users, than a user-based approach is preferred, since it is less expensive
to compute the similarities between all users. This is of course the other way
around when there are more users than items. [19]

Further reading

We’ve only covered the basics of neighborhood-based collaborative filtering
here – numerous variations and improvements to the steps in calculating
the predictions exist. For example Stefanidis et al. [57] consider domain
experts and close friends as well, instead of just similar users. Or Töscher
et al. [63] calculate similarities by solving a regression problem and the
neighborhood method is combined with matrix factorization (Chapter 3) to
increase prediction accuracy.

See the comprehensive survey by Desrosiers and Karypis in [19] for more
variations in similarity measures and normalization techniques amongst oth-
ers.

2.3.2 Latent factors

Where memory-based recommenders use all rating information directly for
predicting, model-based systems first create a predictive model, which is then
used to estimate preferences. This model is created by learning from the
training dataset (the utility matrix), where it finds hidden patterns and fea-
tures. These are the latent factors, describing the characteristics of the users
and items (Figure 2.3). In comparison with content-based and neighborhood-
based recommenders, models find the different features of users and items
(like content-based) by only looking at the rating data (like neighborhood-
based). It creates the user-profiles and item-profiles such that in a new latent
factor space both entities can be compared. Note that, again, no meta data
from items or users is used; only the rating behavior.

Model-based systems are often more robust against the sparsity of the
utility matrix and can give superior predictions with little available data
than neighborhood methods. On the other hand, training can often take
a long time and the models are susceptible to overfitting, which should be
accounted for [60, 19].

There are multiple different approaches that have been used to learn the
models from a dataset, dividable into two main classes: classification and
dimensionality reduction.
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Figure 2.3: Model based recommender system

Classification

Classification methods, such as Bayesian Networks [45, 10], Support Vec-
tor Machines [24, 66, 44], Neural Networks [31] and Restricted Boltzmann
Machines [52], classify an item into a certain category based on the item’s
features. We can use these classifiers as content-based recommenders (using
the properties of the content), but it is also possible to apply them in a col-
laborative filtering approach. This works by viewing users as attributes and
their ratings as the values for these attributes [11].

Classification algorithms can be used if preference data in the utility
matrix is categorical [60]. We therefore need to convert the collected implicit
or explicit feedback into separate classes. Miyahara and Pazzani in [41] for
instance turn the preference data into binary categories: c ∈ {like, dislike}.
Since this removes the degree of preference, it may lead to inferior predictions.
It is also possible to just have each available rating represent a separate class
(i.e. c ∈ {1, 2, 3, 4, 5}). Since the ratings are ordered, this is an ordinal
classification. These multiclass systems might require some alterations to
the classification algorithms if they’re binary by default.

Neural network In a neural network recommender system, just like with
k-Nearest Neighbors, there is an item and user-based approach. We can
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I1
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UTILITY MATRIX

U1 U2 U3 U4

U5

Figure 2.4: Neural network example. The ratings for items (I1, I2, I3, . . .)
from the other users (U1, U2, U3, U4, . . .) are used as input, which the neural
network transforms using weights on the edges and hidden nodes into the
predicted rating for U5.

create a neural network for each user (with as input nodes all other users –
see Figure 2.4), or a neural network for each item (with as input nodes all
other items).

In the user-based case, training and recommending for user u goes as
follows: when feeding the training data into the input nodes, the network
learns the weights for its hidden nodes and their connections, such that the
output (approximately) corresponds with the ratings u gave. The resulting
model describes the behavior of the target users preference, determined with
the other users’ ratings. If we want to know the predicted rating for an item
i that u has not rated yet, we use the ratings for i from the other users as
input and get the result r̂ui from the output node. The same works the other
way around for the item-based case.

Since using all users or items as input may have an impact on perfor-
mance, Kim et al. [31] choose similar users (or similar items) as input for the
networks. This gives better results than using all users as input (or a random
sample), as irrelevant items and users are not used for the prediction.
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Figure 2.5: Support vector machine example. The ratings from two users
U1 and U2 are plotted in the graph, while each rating is displayed as a •
(U3 liked the item) or a N (U3 disliked the item). It finds the hyperplane
that separates both classes with the largest margin. Unknown ratings are
classified according to which side of the hyperplane they lie on (again using
the ratings from U1 and U2)

Support vector machine Likewise, we can create support vector ma-
chines (SVM) for each user/item. The SVM tries to separate data into two
clusters by constructing hyperplanes that have a maximum distance to the
data from both categories. Since the SVM classifies into two spaces, we need
to convert the ratings into binary data (like, dislike), or use multiple ma-
chines per user. For instance in [24], they choose to have 4 SVMs: one for
training if items lie in class 1 (positive) or class 2-5 (negative), one for class
1-2 (positive) or 3-5 (negative), another classifies 1-3 (positive) and 4-5 (neg-
ative) and the last distinguishes 1-4 (positive) and 5 (negative). With these
4 binary SVMs it is possible to classify an item into one of the five classes,
representing a rating from 1 to 5.

To learn the SVM for a user u, the model is fed the other users’ ratings
for all items that u rated. Then a hyperplane is found that splits the multi-
dimensional space into two parts. One part consists of all positives (user u
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Figure 2.6: Naive Bayesian Network example.

liked the item) and the other consists of all negatives (user u disliked the
item). These like and dislike results are for a binary system, for multiple
classes the negative and positive spaces work as described above.

When predicting a rating for item i, we simply use the ratings from the
other users and let the hyperplane decide to which class i belongs. See Figure
2.5 for an example.

Bayesian networks Bayesian networks use probabilistic graphical models
to predict ratings. Several strategies can be used to create the model, they
differ on how the parameters or the structure is learned and how the features
are selected. The network structure is a directed acyclic graph (DAG) that
encodes the dependencies between nodes. Each node represents a variable
defined by a set of mutually exclusive states: its state space. In a user-based
approach these variables are the different users, with the separate rating
classes as their state space. A node in the graph is conditionally independent
from its non-descendants given its parents. The root node represents the class
we are looking for (i.e. the rating from the current user).

A simple Naive Bayes classifier assumes all features are independent, given
the class. This means that the corresponding DAG contains a root node
with arcs to all users, but no arcs between them (see Figure 2.6). We can
calculate the probability of a certain user-item pair (u, i) being of a class
c, given the ratings that other users gave i. If we do that for all of the
available classes, we can simply choose the class with the highest probability
(maximum a posteriori hypothesis) as our prediction. Formally (using 5 star
rating classes):
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r̂ui = arg max
c∈{1,2,3,4,5}

P ( c | rv1i, rv2i, . . . , rvN i )

Where rv1i, rv2i, . . . , rvN i are the ratings for i by other users. Given the
independence assumption from the Naive Bayes classifier, this gives:

r̂ui = arg max
c∈{1,2,3,4,5}

P (c)× P ( rv1i | c )× P ( rv2i | c )× · · · × P ( rvN i | c )

Both P (c) and P ( rvji | c ) can be learned from the observed training data
[41, 60, 59, 2], such that the estimated preference for unknown items can be
predicted.

In [29, 17] they use mixture models (a special case of Bayesian Networks),
which cluster the users based on the way they rate. The Expectation Max-
imization algorithm learns the conditional probabilities (P ( r | c )) and the
number of classes (the state space of the root node, i.e. the number of classes
the users are divided in) is set such that the likelihood of the model given
the data is maximized (using the Bayesian Information Criterion to penalize
the size).

However, the assumption that features are independent is not always true,
there can be correlated attributes. That’s why often more complex Bayesian
Networks are used. For example, Breese et al. [10] create a model where
each node corresponds with an item and the conditional probability tables
for each node are represented by a decision tree. The network structure is
learned by the algorithm to find dependencies between items. It results in a
network where the parent nodes of each node are the best predictors for its
preference value.

Finally we would like to note that k-Nearest Neighbors is of course a
classification method as well, but it doesn’t generate a model. Most of the
calculation and decision making is done when predicting, which makes the
prediction step more expensive compared to model-based classification algo-
rithms.

Dimensionality reduction

Since they typically have to deal with a lot of features (i.e the rating from
each user is a feature of an item), recommender systems suffer from the curse
of dimensionality. That means that the performance of learning algorithms
(such as the before mentioned neighborhood and classification systems) de-
creases when the number of features increases. For example, the similarity
between items becomes less meaningful with a high dimensionality, while
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the computation time for these systems is often increased with the number
of features [15]. Above all that, the actual useful rating information in the
utility matrix is very sparse as well.

To deal with these problems, dimensionality reduction techniques are
used. These techniques, such as Principal Component Analysis (PCA), Lin-
ear Discriminant Analysis (LDA) and Singular Value Decomposition (SVD),
simplify the data model and transform the higher dimensional space into a
low-dimensional representation [2]. This way we can get a more compact
representation of the data, where noisy and irrelevant features are discarded,
while the important data is kept.

While dimensionality reduction can be used as a preprocess step – an-
other memory or model-based technique then uses the low dimensional result
as its input – the results are found to be very useful for predicting preferences
directly as well [2]. They have recently gained much popularity, thanks to
their accuracy and scalability: it is possible to quickly generate recommen-
dations of high quality. The trade-off, however, is that these systems require
expensive training steps to create the reduced dimensional space.

The most popular technique is based on the SVD algorithm, which de-
composes a matrix A into two orthogonal matrices U and V and a diagonal
matrix Σ:

A = UΣVT

SVD originates from the late 19th century, when it was discovered by
multiple authors independently [58]. Note that this decomposition is exact:
we get the original matrix A back from the multiplication. Unfortunately,
SVD is undefined for matrices with unknown values, like the utility matrix.
Earlier algorithms tried to fill the missing values before applying SVD, but
this can make the matrix inaccurate. Furthermore, since a lot of new data
is added this way, computing the SVD of these large dense matrices is very
expensive.

More recently, matrix factorization techniques based on SVD have been
used, which use only the observed ratings from the utility matrix [37]. This
technique was first detailed by Funk [21] and has become very popular since
[61]. It factorizes the utility matrix into two smaller matrices. Multiplying
these smaller feature matrices X and Y results in an approximated utility
matrix, where the previously unknown values are now predicted (Figure 2.7).

Intuitively the X matrix contains the user features, while the Y matrix
contains the item features. A movie feature could be an obvious feature
like action vs. drama, but might also be something that is not easily in-
terpretable. The user features represent how much the user likes the corre-
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A ≈ ×X YT

U×I U×F F×I

Figure 2.7: Matrix factorization example. The utility matrix A is decom-
posed into a users × features matrix X and an items × features matrix
Y.

sponding item features [36].
Since both feature matrices are constrained to a specific size, only the

most influencing features are kept while learning. In order to prevent over-
fitting of the sparse training data, matrix factorization techniques need to
regularize the model. Chapter 3 will further explore the details of PCA, SVD
and SVD-like factorization techniques and their relation, in order to give a
better understanding of how these methods work.

Factorization methods offer a more accurate and more scalable alternative
to neighborhood models. Yet, a lot of commercial recommenders are based
on the latter. The reason for this is not only that neighborhood models are
simpler to implement and more intuitive, but also that they are easier ex-
plainable. It is hard to extract meaning from a learned factorization model, it
is like a black box : we don’t exactly know what the model has learned. As ex-
plained before, for neighborhood models this is much simpler. Furthermore,
it is straightforward to add new users or items to the neighborhood system.
Matrix factorization techniques, however, require an expensive recomputa-
tion of the feature matrices or use a more advanced folding-in technique to
allow new users or items. [36, 60]

2.3.3 Netflix Prize

In October 2006, on-demand media streaming service Netflix launched a
competition to beat the accuracy of their recommender system by 10%. After
three years, in September 2009, Netflix awarded the prize of $1,000,000 to
the BellKor’s Pragmatic Chaos team, who was the first to beat the challenge.
During the competition Netflix awarded progress prizes to the best algorithm
thus far, provided it improved upon the previous progress prize by at least
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Advantages Disadvantages

Content-based - Does not require ratings from
other users

- Easy to explain
recommendations

- Able to recommend
new/unpopular items

- Requires domain knowledge

- Not based on item quality

- Hard to recommend items
outside user profile

Memory-based - Easy to explain
recommendations

- Intuitive and simple

- Easy to add new data

- Problems with sparsity

- Hard to recommend for new
items and users

Model-based - Able to discover latent features

- Better accuracy

- Highly scalable

- Model building is expensive

- ’Black box’: not immediately
clear what is learned

Table 2.5: Overview of recommender system techniques.

1%.
The challenge gave a big boost to research in the field of collaborative

filtering, since it gave access to a dataset containing 100 million movie ratings,
which was the first of its size that was publicly available. The large-scale
database attracted thousands of scientists and students. [34, 37]

While model-based methods outperformed memory-based ones [34], the
algorithms with best results used a blend of multiple techniques. This way,
the different methods can complement each other and provide a good overall
prediction. Bell et al. [8] show the results of different techniques and their
combinations on the Netflix Price dataset.

2.4 Summary

In this chapter we’ve seen multiple recommender techniques that solve the
prediction problem in different ways. See Table 2.5 for an overview of the
pros and cons of content, memory and model-based systems.

As mentioned in 2.3.3, the different techniques can also be used together
in a hybrid recommender system. This way the disadvantages of each ap-
proach could be avoided by the advantages of the other. For example: when
combined with a neighborhood recommender, a content-based recommender
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could recommend new items, while the neighborhood recommender could
recommend items for which enough rating data is available. Or a dimen-
sionality reduction technique can preprocess the data to avoid the scalability
problems of a neighborhood system.

While hybrid systems provide better predictions, for our goal of improv-
ing the prediction accuracy by adding contextual information, we chose to
develop on the matrix factorization technique. First of all, this method gave
good results on its own in previous research and is very scalable. It does
not require explicitly modeling the data either, so we don’t need to have
in-depth domain knowledge and it allows for generalizing the 2-dimensional
utility matrix into a higher order tensor to make it context aware.
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3 Matrix factorization

In this chapter we’ll explore the underlying techniques that form the founda-
tion of a lot of matrix factorization recommender systems: principal compo-
nent analysis and singular value decomposition. After getting a solid under-
standing of these systems, we’ll then discuss the implementation for matrix
factorization using explicit and implicit data. The alternating least squares
algorithm that is used for the implicit feedback system, serves as a basis for
the work in Chapter 5, where we’ll incorporate the contextual data.

3.1 Foundation

3.1.1 Principal component analysis

The data retrieved from experiments or other sources is often so much, that
it becomes hard to see relations and discover what is important directly. It
can be noisy and unclear, while the hidden relations can actually be very
simple. To make sense of the data we need to convert it to a more structured
and easier to understand format. A way to tackle this problem is to find the
components that describe the data best, i.e. finding the variables in the data
with the highest variance and removing those that are redundant. This is
exactly what principal component analysis (PCA) tries to do.

Say we have collected the ratings of n users for two items α and β, then
we can create two sets a and b that contain those n measurements for each
item. The variance for either individual set is defined as:

σ2
a =

1

n

∑
i

(ai − µa)2, σ2
b =

1

n

∑
i

(bi − µb)2

Where µa and µb are the means of both sets. So if we assume a and b are
sets with zero mean (µa = µb = 0) we get:

σ2
a =

1

n

∑
i

a2i , σ2
b =

1

n

∑
i

b2i
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A high variance indicates that the users do not agree on the rating for
the item, while a low variance means that the users rate the item largely the
same. This means we can reduce the information for low variance items (a
lot of rating information is redundant, since it is the same), while the data
for high variance items is important data which we should keep.

The covariance, the degree of linear relationship between two variables
(in this case between two items), is defined as follows:

cov(a, b) =
1

n

∑
i

aibi

A high positive or negative value indicates that a and b are highly correlated
and therefore contain redundant information (a lot of ratings are the same),
while a value close to zero means that a and b show an independent relation
(a lot of ratings differ).

So far we’ve used two items α and β. In most cases however, there are
more than two variables, we can have thousands or even millions of items
which are rated. To generalize to more variables let’s change the measure-
ment sets into vectors:

x1 = [a1, a2, . . . , an]

x2 = [b1, b2, . . . , bn]

...

xm = [. . .]

and merge those into a m× n matrix X:

X =


x1

x2
...

xm


Intuitively this means that each row in X contains the ratings for a single
item (by n different users) and each column in X contains the ratings from
a single user (for m different items). Note that this can be seen as a utility
matrix.

Now the variance and covariance for different items can be computed as
follows in vector format:

29



σ2
xi

=
1

n
xix

T
i

cov(xi,xj) =
1

n
xix

T
j

It is easy to combine both into a so-called covariance matrix for X:

cov(X) =
1

n
XXT

Here the diagonal terms of cov(X) contain the variance of items, while the
off-diagonal terms contain the covariance between two items (note that on
the diagonal cov(a, a) = σ2

a). This means that the highest values on the
diagonal are most important (high variance), while the highest off-diagonal
magnitudes depict high redundancy between item pairs and are therefore
least important.

Ideally we would like the covariance matrix to only have (positive) values
on the diagonal, while the rest is zero, i.e. we want cov(X) to be a diagonal
matrix. The question now becomes: how to modify X, such that cov(X) is
diagonal?

To get there we first need to see that any symmetric matrix S can be
diagonalized by an orthogonal matrix of its eigenvectors (see Theorem 4 in
[55]).

S = EDET

Where each column of orthogonal matrix E is an eigenvector of S and D
is a diagonal matrix (containing the eigenvalues of S). Since the covariance
matrix of X is symmetric, we can also diagonalize that by an orthogonal
matrix of its eigenvectors:

cov(X) = EDET

Now, if we construct a matrix P = ET (thus: P contains the eigenvectors
of cov(X) as rows) and multiply X by P:

Y = PX

we can see that the covariance matrix of the result, cov(Y), is diagonal. [55]
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cov(Y) =
1

n
YYT

cov(Y) =
1

n
PX(PX)T

cov(Y) =
1

n
PXXTPT

cov(Y) = P(
1

n
XXT )PT

cov(Y) = P(cov(X))PT

cov(Y) = P(EDET )PT

cov(Y) = P(PTDP)PT

cov(Y) = (PPT )D(PPT )

cov(Y) = (PP−1)D(PP−1)

cov(Y) = D

(Since P is orthogonal, by definition PT = P−1)
Recall that the goal was to find the components which describe the data

best, i.e. the components that have the highest variance and remove redun-
dancy. Since multiplying X by P, the eigenvectors of cov(X), gives us a
diagonal covariance matrix, we can conclude that the principal components
of X therefore are the eigenvectors of cov(X) (i.e. the eigenvectors of XXT ).

In Figure 3.1 the principal components for the ratings of two items i1 and
i2 are shown. As we can see, the first feature F1 presents the largest variance
and is therefore the most significant component. The second feature describes
the next most variance, and so on for the other eigenvectors (note that Figure
3.1 only exemplifies two dimensions; for more items there are consequentially
more eigenvectors).

To reduce the dimensionality of the utility matrix, we can simply calculate
the eigenvectors and eigenvalues of its covariance matrix and throw away the
eigenvectors corresponding to the smallest eigenvalues [48]. These smallest
components contribute the least to the data. We could for example remove
F2 from the data in Figure 3.1, since there is much more variance in the F1

direction. All rating points will subsequently be lying on F1, which results
in a loss of information, but the loss is aimed to be minimized. It is often
the case that the first k principle components correspond to a large portion
of the variances, while the remaining principle components contribute much
less [55].
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Figure 3.1: Principal components analysis finds a new orthonormal basis that
maximizes the variance of the measurements along its axes. Here the mean
ratings for two items i1 and i2 and two features that explain their variance
are depicted.

One of the assumptions PCA makes is that the data is linearly related
to the variables. Furthermore, it expects the principal components to be
orthogonal. Of course this is often not the case and in those situations PCA
may give poor results [2].

3.1.2 Singular value decomposition

As said before, singular value decomposition (SVD) is closely related to the
above described PCA. Recall that we previously mentioned that any sym-
metric matrix S can be decomposed into EDET . SVD loses the symmetric
constraint and says that any real matrix X can be decomposed into:

X = UΣVT

Where U is a orthogonal matrix containing the left-singular values, V is an
orthogonal matrix containing the right-singular values and Σ is a diagonal
matrix with the so-called singular values. Note that this is an exact decom-
position: the original matrix X can be fully reconstructed given U, Σ and
V.
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To demonstrate the relation with PCA, we’ll express the covariance ma-
trix of X in terms of the SVD:

X = UΣVT

XXT = (UΣVT )(UΣVT )T

XXT = (UΣVT )(VΣUT )

XXT = UΣ2UT

Recall that cov(X) = XXT = EDET (normalization term 1/n is omitted
for readability), thus we can see that U actually contains the eigenvectors of
XXT and Σ is a diagonal matrix consisting of the square roots of the eigen-
values of XXT . If we do the same for XTX (which calculates the variance
and covariance between columns of X), we’ll see that V contains the eigen-
vectors of XTX and Σ contains the eigenvalues of XTX as well (these are the
same as the eigenvalues of XXT ). Compare U and V to the direction of the
principal components and the values in Σ to their length, i.e. the variance
of the principal components. [64]

X = × ×U Σ VT

ITEMS

USERS FEATURES

FEATURES

Figure 3.2: A singular value decomposition for utility matrix X. Diagonal
matrix Σ contains the eigenvalues of the covariance matrix, these values
depict the strength of their corresponding features.

Intuitively, the left and right-singular values represent a mapping to fea-
tures. If we let X be a users × items utility matrix, then U maps users to
features, while V maps items to features. For example: when an item has
a strong (positive) connection to a certain feature, it will get a high value
for that feature. Likewise, the user features show how much a user prefers
a corresponding item feature. Finally, the values in the central Σ matrix
represent the strength of the features. If there is a lot of evidence in the
observed data for a certain feature (i.e. there are many ratings for movies in
the romance genre) than the value for this feature will be high. [48]
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The values in Σ are always positive and are sorted from highest to lowest.
Just like in PCA, the highest values depict the most important features to
X and we can discard the less important components to reduce the dimen-
sionality.

The Eckart-Young theorem [20] says that if we take the largest k singu-
lar values in Σ and compute the approximated resulting matrix X̂, then X̂
is the best rank-k (defined in next sentences) approximation for X. Here,
best approximation means that the Frobenius norm of the difference be-
tween X̂ and the original matrix X is minimized (i.e. minx̂ij ‖X − X̂‖ =

minx̂ij

√∑
ij(xij − x̂ij)2). The rank of a matrix denotes the number of in-

dependent rows (or equivalently: independent columns) it contains, i.e. the
maximum number of rows which cannot be constructed by a linear combina-
tion of other rows [48].

Let’s take for example Figure 3.3, which shows the singular value decom-
position of our movie ratings utility matrix from Table 2.1. Since the utility
matrix is rank-5, there are 5 singular values in the decomposition. We can
see, however, that the smallest singular value (0.41) is a lot smaller than the
others. That means that the corresponding feature is not that important for
the overall utility matrix. If we remove that value (and the corresponding
columns of U and V), the SVD will give us a rank-4 approximation of X,
which will be the best rank-4 approximation possible (See Figure 3.4).

We can see that the result is very close to X (note that the result would
be even closer if we used a higher precision). Although the reduction of
dimensionality is not very large here - in fact the storage size of the SVD in
the example is larger than the storage size of the utility matrix itself - for
bigger real-world databases the reduction will be more obvious. While the
number of users and items will be huge, the number of features can more or
less stay the same (intuitively: the amount of movie genres does not grow
beyond a certain point if more movies are added). For example if we have a
database with 1000 items and 1000 users (106 values) and take 20 features,
the SVD will store just 20(1+1000+1000) = 4 ·104 values – a 96% reduction!

Let us discuss how we can recommend items from the SVD. Both items
and users can be represented in the feature space by multiplying their rating
vector with respectively U and V. Consider for example Dave, with rating
vector d =

[
1 0 4 0 5

]
. To represent Dave in the feature space we’ll

multiply d by V (mapping item ratings to feature space) and Σ (adjusting
the weights in the feature space) from Figure 3.4.

δ = dVΣ =
[
−31.80 −31.68 22.37 −0.14

]
We can see Dave dislikes movies with the first two features, while he
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X
0 1 0 5 4
0 5 0 1 2
5 4 0 1 0
1 0 4 0 5
5 5 0 2 0
0 2 0 4 3

=
U

−0.39 −0.51 −0.38 0.34 0.33
−0.39 0.00 −0.11 −0.89 0.16
−0.46 0.43 0.19 0.23 0.62
−0.23 −0.50 0.83 −0.02 −0.07
−0.55 0.44 0.06 0.17 −0.59
−0.37 −0.34 −0.34 0.04 −0.36


Σ

11.69 0.00 0.00 0.00 0.00
0.00 7.98 0.00 0.00 0.00
0.00 0.00 5.19 0.00 0.00
0.00 0.00 0.00 3.42 0.00
0.00 0.00 0.00 0.00 0.41


VT

−0.45 −0.65 −0.08 −0.46 −0.39
0.48 0.34 −0.25 −0.32 −0.69
0.40 −0.11 0.64 −0.59 0.27
0.59 −0.66 −0.02 0.45 −0.11
0.22 −0.12 −0.72 −0.37 0.53



Figure 3.3: Singular value decomposition for the utility matrix. Note that
for readability the values are rounded, with infinite precision this rank-5
decomposition will be exact.

U
−0.39 −0.51 −0.38 0.34
−0.39 0.00 −0.11 −0.89
−0.46 0.43 0.19 0.23
−0.23 −0.50 0.83 −0.02
−0.55 0.44 0.06 0.17
−0.37 −0.34 −0.34 0.04


Σ

11.69 0.00 0.00 0.00
0.00 7.98 0.00 0.00
0.00 0.00 5.19 0.00
0.00 0.00 0.00 3.42


VT

−0.45 −0.65 −0.08 −0.46 −0.39
0.48 0.34 −0.25 −0.32 −0.69
0.40 −0.11 0.64 −0.59 0.27
0.59 −0.66 −0.02 0.45 −0.11

=
X̂

0.00 1.03 0.10 5.09 3.93
0.03 5.04 0.06 1.06 1.96
4.93 4.03 0.19 1.15 −0.09
0.98 −0.04 3.97 −0.06 4.97
5.05 4.96 −0.18 1.91 0.10
0.02 1.99 −0.11 3.96 3.07



Figure 3.4: The lowest singular value is removed and the approximated utility
matrix X̂ is calculated, which is close to X in Figure 3.3.
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prefers movies connected to the third feature. Note again that we don’t
know exactly what the features represent, although we can guess the first
two features corresponds to fantasy and adventure, since Dave rated The
Lord of the Rings poorly.

There are a couple of things we can do with this result. We can find
similar users, by comparing the feature space vectors of others with the
one from Dave. That is, we can use the k-Nearest Neighbors algorithm
on the feature space instead of on the raw ratings. Another thing we can
do is recommend movies with a similar feature space vector. For example
the movie Titanic has feature space vector

[
−62.89 −20.75 −15.88 5.27

]
,

which has a cosine distance of 0.328231 with Dave’s, while Harry Potter
(
[
−89.66 21.79 −2.85 −7.73

]
) has cosine distance 0.548383. That means

the features of Titanic are closer to Dave’s feature preferences than those of
Harry Potter are. This is expected if we consider that LOTR is related to
Harry Potter and Titanic to Forrest Gump (Dave rated the latter high and
LOTR low). Notice how we can directly compare movies and users this way,
using just ratings!

The last method of predicting ratings is transforming the feature space
back to rating space, i.e. multiplying δ by VT .

δVT =
[
7.97 7.53 24.78 11.50 40.32

]
These are the predicted ratings for Dave according to the SVD. It results
in recommending Titanic (rating score 11.50) as well, since it is the highest
not-rated movie.

So far we’ve treated unknown values as zero, but that does give a negative
bias to unrated movie-item pairs. Unfortunately the SVD is not well defined
for sparse matrices like the utility matrix. A solution is to use the average
rating for items, normalized by substracting the user average in place of the
unknown values [2]. However, computing the full SVD is rather computation-
ally expensive (especially for the very large datasets recommender systems
are dealing with) and also not very efficient: we only need the largest singular
values. Methods exist to directly get a truncated SVD and only compute k
singular values, but for an n×m matrix that still takes O(mn log(k)). [25]

3.2 Explicit feedback

For collaborative filtering it turns out we don’t actually need to find an
exact SVD. Again, the SVD isn’t well defined for sparse matrices and since
we want only the top singular values it is overkill to compute a full singular
value decomposition. This, together with the realization that the Frobenius
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norm of the difference between the original and the approximated matrix is
minimized, led Funk [21] to a different technique of factorizing.

This method decomposes R into just the two feature matrices X ∈ R|U |×f
and Y ∈ R|I|×f . The orthogonality constraint as seen in the SVD is dropped
as it is not necessary for CF either.

R̂ = XYT

The singular values in Σ (which are essentially scaling factors) are in this
case merged into X and YT .

Conceptually it works the same as the SVD, with the two feature matrices
mapping items and users into a feature space. Choosing the amount of
features (the number of columns in X and Y) is analogous to selecting the
top k singular values. Using many features will describe the data well, but
will also model the noise, while less features only take into account the most
influencing factors of the data.

However, finding the feature matrices is a little different. There is no
need for calculating eigenvectors and eigenvalues: we can simply create them
by minimizing the Frobenius norm of the difference between R and XYT ,
i.e. minimizing the root mean squared error (RMSE) of all predictions. This
can be computed by for example applying a stochastic gradient descent or
alternating least squares algorithm. Roweis shows (as cited in [6]) that the
iterative process results in a global minimum and therefore XYT is the closest
rank-f approximation of the utility matrix.

Predicting a rating is done by multiplying a user feature vector xu by a
item feature vector yi, i.e. r̂ui = xuyi. Then we can calculate the error of
each prediction with (rui − r̂ui)2. Note that minimizing the RMSE is in this
case equal to minimizing the sum of squared errors. A benefit of this model
is that it only considers known ratings while learning (a lot less values to
consider than in the full matrix!). It is defined as follows:

arg min
x∗,y∗

∑
ru,i known

(rui − xTuyi)
2 (3.1)

To find the solution the gradient descent algorithm computes the error
and tries to decrease it in the next step by adjusting the prediction value in
the direction of the error gradient. That is, the derivative of the error (eui) for
a single prediction value is calculated with respect to the corresponding values
in the user (xuk) and item (yik) feature matrices. Then in the next iteration
both (xuk) and (yik) are updated according to the derivative. Formally:

1

2

∂eui
∂xuk

= (rui − xTuyi) · −yik
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Note that xuy
T
i =

∑K
k=1 xukyik. Similarly we’ll find:

1

2

∂eui
∂yik

= (rui − xTuyi) · −xuk

Now xuk and yik are updated as follows (in opposite direction of the gradient):

x′uk = xuk + γ · (rui − xTuyi) · yik
y′ik = yik + γ · (rui − xTuyi) · xuk

Here, γ is the learning rate. The algorithm keeps iterating and lowering the
error for all predictions (and thus the RMSE) until conversion.

By learning the model with Equation 3.1 we can get a result that perfectly
resembles the utility matrix, but that means there is a high risk of overfitting
the training data. In that case, the model learns the noise of the data instead
of the underlying structure. Therefore a regularization term is added, which
penalizes the size of the feature matrices.

arg min
x∗,y∗

∑
ru,i known

(rui − xTuyi)
2 + λ(‖xu‖2 + ‖yi‖2)

With parameter λ we can set the weight of the regularization.
Again we can compute the derivatives and update the feature values ac-

cording to the gradient in each iteration [61, 21]:

1

2

∂eui
∂xuk

= (rui − xTuyi) · −yik + λ · xuk

1

2

∂eui
∂yik

= (rui − xTuyi) · −xuk + λ · yik

x′uk = xuk + γ · (rui − xTuyi) · yik − λ · xuk
y′ik = yik + γ · (rui − xTuyi) · xuk − λ · yik

In addition to the feature matrices, we can add the baseline estimates
introduced in Equation 2.6 here as well. The parameters bu and bi can be
learned together with the feature matrices [37, 46]:

arg min
b∗,x∗,y∗

∑
ru,i known

(rui−µ−bu−bi−xTuyi)
2+λ(b2u+b2i +‖xu‖2+‖yi‖2) (3.2)

Finally, after learning the model we can recommend items. The predic-
tions for a user u are obtained by multiplying the user features (xu) by the
feature vector of each item i (yi) and adding the baseline estimates.
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r̂ui = µ+ bu + bi + xTuyi

The predictions with the highest scores are recommended to the user.
Several adaptations of this SVD-like method have been introduced, such

as NSVD1 and NSVD2 [46], which lower the number of parameters by rep-
resenting users as the items they prefer and SVD++ [34] which also con-
siders implicit feedback. Maximum margin matrix factorization makes sure
the predictions are discreet values within {1, . . . , r} and Non-negative ma-
trix factorization makes sure all values in X and Y are positive [65]. These
methods predict the explicit ratings from users, the next section will focus
on recommending with implicit data.

3.3 Implicit feedback

In [28] an adaptation is proposed on the explicit feedback model to make it
possible to use implicit feedback. Recall that implicit feedback means that
we collect rating data from user behavior. It doesn’t require user interaction
and is generally more available than the higher quality explicit ratings [42].

Unfortunately the drawback of this type of feedback is that we need to
take into account the unknown ratings. If a song has not been listened to by
a specific user, it can mean two things:

1. The user does not like the song and does not listen to it

2. The user does not know the song and has not listened to it yet

In the explicit ratings model an unknown rating means just that the item
is not known to the user. If the user does not like the item, he would rate
it explicitly negative. Where we could skip learning unknown ratings in the
explicit model (Equation 3.2), now we cannot dismiss them; the ’unknown’
values in the utility matrix are now actually zero. This means that the
stochastic gradient descent algorithm is not efficient anymore and we need
to find another way to compute feature matrices X and Y. The following
section describes how the implicit model works.

Let rui be the implicit rating for item i by user u:

rui ∈ N

These implicit ratings are split into two components: a preference and a
confidence. The binary preference of user u to item i (the user likes the item
or not) is denoted by pui.
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pui =

{
1, rui > 0

0, rui = 0

Then cui indicates the confidence of observing pui, i.e. a high number of
implicit feedback should mean that the system is confident the user likes the
item (pui = 1). On the other hand, for an item that has not been used at all
there is a low confidence that the user dislikes it (pui = 0) (it might be an
unknown item to the user).

cui = 1 + αrui

Here constant α regulates how much larger observed preferences should con-
tribute to the confidence relative to lower observed preferences. This gives
a minimal confidence of 1, while more evidence of preference increases the
confidence in pui = 1 linearly.

The predicted preference for user u to item i is calculated by the dot
product of the user features xu and item features yi.

r̂ui = xTuyi

We want xTuyi to be as close to pui as possible for each u, i, while those
relations with a higher confidence are more important and have a higher
weight. This brings us to the cost function, which is defined as follows [28]:

S =
∑
u,i

cui(pui − xTuyi)
2 + λ(

∑
u

‖xu‖2 +
∑
i

‖yi‖2) (3.3)

Included is again the regularization term, which makes sure we don’t overfit
the data. It penalizes the length of the feature vectors and is adjustable by
parameter λ.

Instead of gradient descent, the alternating least squares (ALS) algorithm
is used to minimize S. ALS exploits the fact that if we fix either xu or yi in
3.3, the minimization of the cost function becomes a least squares problem.
In other words: S becomes quadratic, for which we can easily find a global
minimum. Therefore, if we assume yi is fixed, to find xu such that S is
minimized we need to set the derivative of S with respect to xu equal to
zero. We’ll first differentiate S with respect to xku and work from there to
get an expression for xu (the derivation is ours, resulting in Equation 3.4
from Hu et al. [28]):
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1

2

∂S

∂xku
= 0 ∀u, k

1

2
· 2
∑
i

cui(pui − xTuyi) · −yki + 2λ · xku = 0 ∀u, k∑
i

cui(pui − xTuyi) · −yki + λ · xku = 0 ∀u, k∑
i

yki · cui(xTuyi − pui) + λ · xku = 0 ∀u, k∑
i

yki · cui · yTi xu + λ · xku =
∑
i

yki · cui · pui ∀u, k

To write this in matrix form and rearrange it to solve for xu, we’ll first
have to construct n× n matrix Cu, which contains the confidence values cui
on the diagonal, i.e. Cu

ii = cui. We also need the vector pu containing all n
preference values for user u.

YTCuYxu + λxu = YTCupu ∀u
(YTCuY + λI)xu = YTCupu ∀u

xu = (YTCuY + λI)−1YTCupu ∀u (3.4)

The features for each user can now be computed. A naive calculation of
xu will take:

• O(f 2n) for the calculation of (YTCuY + λI)

• O(f 3) for the matrix inversion (YTCuY + λI)−1

• O(fnu) for the computation of YTCupu

Where nu equals the number of observations for user u (i.e. the number of
items for which rui > 0) and f equals the number of features. This totals to
O(f 2n + f 3 + fnu) for a single user, or O(f 2nm + f 3m + fN) for m users
(where N equals the total amount of observations).

Fortunately we can bring this down by noticing that Cu− I contains just
nu non-zero entries (recall that cui = 1+αrui ). Now we can rewrite Equation
3.4 to:

xu = (YTY + YT (Cu − I)Y + λI)−1YTCupu ∀u (3.5)

41



Enabling us to precompute YTY (since it is not dependent of u) which
takes O(f 2n) time. The computation of YT (Cu − I)Y takes just O(f 2nu).
Computing the full feature matrix X for all users then takes O(f 2N +f 3m+
f 2n).

After all user features are updated, they are in turn fixed in order to get
the item features. We can use the same derivation for 1

2
δS
δyki

which gives:

yi = (XTCiX + λI)−1XTCipi

This, by using the same technique as above for X, is computable in
O(f 2N + f 3n+ f 2m) for all n items.

Alternating the computation of X and Y until conversion (typically only
a few iterations are needed until no improvement is noticeable) gives us a
good approximation of the preference matrix P in reasonably fast running
time.
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4 Context-aware recommenda-
tions

So far we’ve only talked about users, items and their relation represented
by ratings. We’ve assumed that the predictions are valid for each situation,
given the preferences and properties of those users and items. There are
many factors however, that could influence the preference of a user. A user
might for instance prefer books about his hobbies in the weekend, while he
reads work related topics on workdays.

These situational properties (time, weather, mood, location etc.) can
change predictions significantly, e.g. someone looking for a vacation des-
tination in the summer does probably not want to go to a skiing resort.
Consumer decision making is influenced by context, according to behavioral
research [1]. Therefore it is important to also consider the context when pre-
dicting. Furthermore, using context in recommender systems provides more
trust in recommendations as concluded by Gorgoglione et al. [23]. This
increased trusts leads in turn to customers willing to pay higher prices for
products, which improves sales.

The notion of context has been studied in multiple disciplines and many
gave a different definition [1]. For recommender systems we can think of
context as the additional information that may be relevant for making a
recommendation [4].

This chapter briefly describes different kinds of contextual information
(4.1) and possible implementations for recommender systems (4.2). Then
we propose a way to incorporate context into the implicit feedback matrix
factorization method from Section 3.2.

4.1 Contextual information

Just like rating information, we can obtain context information explicitly or
implicitly. For explicit information the user has to intentionally specify the
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context. The user can for example specify with whom he watched a movie
or the action of setting a phone on silent or audible can be explicit context
information. This might not always be reliable information however, since a
user might forget information or actions, especially when asked about a lot
of contextual variables and the consumption of the item was some time ago
[9].

On the other hand, implicit context information is gathered without extra
user interaction. This of course perfectly fits to the implicit way of collecting
rating information. We can for example use different kinds of sensors to
measure weather (hot, rainy), user activity (running, sitting), location (work,
home), company (family, friends) etc. This information can be recorded
directly when the user consumes an item.

After the contextual information is collected, we have to decide how to
represent the data. Some information can be continuous (e.g. temperature,
time), while others are categorical (e.g. company, activities). The recom-
mender system should be able to handle these different types of information,
or we can convert to a single type. We can for instance categorize the tem-
perature by specifying intervals which play an important role in influencing
the rating data (hot: t ≥ 23◦, moderate: 11◦ < t < 23◦, cold: t ≤ 11◦). Of
course the challenge is to find good partitions for the collected data.

It is easier however, to convert continuous data to categorical than the
other way around. A recommender using categorical context data is therefore
generally more suitable for different kinds context information.

4.1.1 Temporal information

One of the most useful and often easily accessible pieces of contextual infor-
mation is time [12]. When user behavior is implicitly collected, the temporal
data of the behavior can be recorded as well. For example when browsing
websites the access times for the different webpages are stored along the
website data with little extra effort.

With explicit rating data time is used a little differently. Here the tem-
poral data of the action of rating an item can be stored, but that is different
from the temporal data of the consumption of the item; a user might rate a
movie weeks after he has seen it. It is of course possible to exploit this kind
of data as well (e.g. the time between rating a movie and its release [47]),
but it is important that it’s a different kind. Another possibility is of course
explicitly asking for time data when a user rates an item.

There is a couple of ways we can use the temporal data. We can use it in
a more absolute way, where we assume that older ratings are less important
then newer ratings (preferences drift over time), or we can use it in a more
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relative way, where we find patterns in the ratings matching the periodic
nature of time (i.e. ratings differ by season).

For the absolute (fresh-based) approach we can use a damped or sliding
window model, to give newer ratings more weight than older ratings [57].
The damped window gradually decays the weight of ratings the older they
are, whereas the window model is more abrupt and does not consider ratings
once they fall outside of a chosen timeframe.

Since temporal information is continuous we can directly use it for the
fresh-based approach, but for the periodic method we need to partition it
into separate categories. It depends on the domain which partitions make
sense, for example a vacation recommender may choose seasonal partitions
(winter, spring, summer, autumn), while day of the week or time of the day
makes more sense for a music recommender [12, 5].

We focus on time as contextual information, because it is easily obtainable
and can be used continuous as well as categorical. Furthermore using time
in recommender systems has previously improved the prediction quality of
recommender systems [35, 5], although some results may be contradictory
[12]. The dataset we use for evaluating contains temporal data for the implicit
feedback (Section 6.1).

4.2 Using context

For context-aware recommenders the problem F of predicting ratings (Equa-
tion 2.1) is extended with a set of contextual dimensions C:

F : U × I × C → R (4.1)

The dimensions in C can be of a different type and can have different values.
Incorporating this context into recommender systems can be done in three

ways [1]: contextual pre-filtering, contextual post-filtering and contextual
modeling (see Figure 4.1). Each of these techniques can be combined with
the memory or model-based recommenders as described earlier.

Contextual pre-filtering filters the rating data on a certain context before
the recommender system calculates the predictions. This means the ratings
are predicted using a constructed subset of the training data, which contains
just the ratings relevant to the given context. For example if a user wants
to find a vacation in the summer, the recommender system only considers
ratings from other users for vacations in the summer (and possible spring),
but not winter, in order to calculate predictions. Then the highest ranked
predictions can be proposed to the user. Baltrunas and Amatriain [5] pro-
pose a pre-filtering technique which creates micro profiles for each user. Each
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CONTEXTUAL
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Figure 4.1: Three possible ways to incorporate contextual information in a
recommender system.

micro profile represents the user for a different time context. Another imple-
mentation is by splitting items according to contexts, if they show significant
differences between those context conditions [4]. That way a single item can
be virtually split into multiple items for different contexts.

Post-filtering on the other hand uses the full rating data for predicting,
but only recommends results that are relevant for the given context. In the
previous vacation example, the system now predicts ratings for all vacations,
using all rating data, but once the predictions are done only those vacations
relevant to the summer (and possibly spring) are proposed. This can be
done by either filtering out irrelevant recommendations, or by adjusting the
ranks of the predictions based on their context relevance. Hariri et al. [26]
use post-filtering to rerank neighborhood based predictions by computing a
contextual score for each item, that represents the suitability of the item for
the user’s context.

The advantage of both pre-filtering and post-filtering is that they can
be implemented by using traditional context-unaware recommenders. The
additional filtering of the data can simply be added respectively before or
after the prediction step of the system.

With multiple context dimensions it is important to not always filter the
data based on the context exactly. The given contextual situation might
after all be too specific to get enough results. For instance recommending
a vacation destination in The Netherlands where the weather type is sunny.
Furthermore, some context variables might not be significant and should be
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replaced by a broader variable (e.g. recommend music at 5:53 PM).
Finally, contextual modeling uses context directly while predicting. This

requires a different kind of recommender in which multidimensional data can
be used to make predictions. For example the neighborhood approach can be
extended to a multidimensional recommender by using a multidimensional
similarity method. The simplest way to achieve this is by setting the distance
to infinity if the context does not match, which basically results in an exact
pre-filtering technique.

Another method is the temporal dynamics model (timeSVD++) [35],
which is built upon SVD++ and incorporates two temporal effects: (1) an
item’s popularity changes over time, (2) users change their baseline ratings
over time. The baseline estimate (Equation 2.6) is therefore updated with
time-dependent biases:

bui(t) = µ+ bu(t) + bi(t) (4.2)

While the user features are also made time-aware: xu(t). This model im-
proved the predictions on the Netflix Prize dataset compared to the context-
unaware SVD++ model.

Since pre or post-filtering the data based on the context can lead to loss of
information [30] and the model-based recommender approaches outperformed
the memory-based ones, we’ll focus on extending the matrix factorization
technique outlined in Section 3.3 with context awareness using contextual
modeling. In the next section we’ll propose a linear blend of multiple 2D
matrix factorization systems. Chapter 5 uses tensor factorization to learn
the time context together with the user and item preferences.

4.2.1 Context-aware matrix factorization

A simple and naive adaptation of the 2 dimensional matrix factorization to
the 3 dimensions – users, items, time – is to create two feature matrices per
dimension, see Figure 4.2. We can compute the preferences between items-
users, between users-time and between items-time individually the same way
as in the 2D case. When we need to find the preference prediction for some
user, item, time combination, we can blend the three results.

The user-time features however, don’t hold extra useful information.
Since recommendations will always be for a certain user in a certain con-
text, the preferences for a context is intuitively not something we need. For
example, discovering that a user likes to listen in the evenings, does not in-
fluence the predictions for that user. On the other hand, if a certain item is
more popular on Fridays that does give us useful information, which we can
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Figure 4.2: Two feature matrices per dimension

use for the predictions. That’s why we don’t learn the user-time features,
but only blend the results from the user-item and item-time dimensions.

The predicted preference function becomes:

r̂uit = α · r̂ui + β · r̂it
r̂uit = α · uTu iui + β · ituT tt

Where U ∈ R|U |×f and Iu ∈ R|I|×f are the feature matrices for the user-item
interaction and It ∈ R|I|×f and T ∈ R|T |×f are the feature matrices for the
item-time interaction. Parameters α and β are estimated after the user-item
and item-time interactions both are learned separately according to Equation
3.4. When α = 1 and β = 0 this model will be equal to the non-contextual
matrix factorization.

A somewhat similar model, the Pairwise Interaction Tensor Factorization
(PITF), has been proposed by Rendle and Schmidt-Thieme [50], which mod-
els user-tags and item-tags interactions. The PITF model is learned at once
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using a Bayesion Personalized Ranking algorithm, which applies stochastic
gradient descent on random samples.

Our naive approach calculates each dimensional preference individually,
but ideally we would like to train all three dimensions at once, such that we
can discover latent factors that span all dimensions. Chapter 5 will explore
tensor decomposition techniques, which try to do just that.
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5 Tensor decomposition

A tensor is a generalized name for a multi-dimensional array. The order of
a tensor represents the number of dimensions (also known as modes). Thus,
an Nth-order tensor consists of the product of N vector spaces, e.g. a simple
array is a first-order tensor and a matrix is a second-order tensor. Tensors
with higher dimensions (three or more) are called higher-order tensors.

Tensor decomposition is the generalization of matrix factorization to
higher-order tensors. It allows for decomposition of N -dimensional tensors,
such that any number of context variables can be added to the utility ma-
trix. Similar to 2D matrix factorization, the decomposed tensor consists of
the features of the different dimensions in the same latent factor space. That
means that the contextual dimensions can be directly compared with the
item and user dimensions and it is possible to discover latent features that
span all dimensions. Since we focus on just the time variable as context, we’ll
use third-order tensors as example.

Related work such as Multiverse recommendations [30] and Bayesian
probabilistic tensor factorization [67] show promising results compared to
other context-aware systems and recommenders without context. With Mul-
tiverse recommendations Karatzoglou et al. report a 5%-30% improvement
over non-contextual recommenders.

Multiple ways to decompose a tensor exist and many are closely related,
see the comparison by Ceulemans and Kiers [14]. In this chapter we’ll discuss
two main methods of tensor decomposition: Tucker Decomposition (Section
5.1) and Candecomp/Parafac (Section 5.2). In 5.2.1 we’ll show our imple-
mentation of Candecomp/Parafac for implicit feedback datasets.

5.1 Tucker Decomposition

The Tucker Decomposition is also known as Higher-Order SVD (HOSVD)
and is – as that name indicates – a generalization of SVD to higher order
tensors. It decomposes an Nth-order tensor into a single core tensor mul-
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Figure 5.1: Tucker Decomposition of a third-order tensor X

tiplied by N component matrices (i.e. a matrix for each dimension of the
tensor). The core tensor acts as a scaling factor, which depicts the relation-
ships between the component matrices, just like the singular values in SVD.
The component matrices can be compared with the principal components
(singular vectors) for each mode (dimension) of the matrix, see Figure 5.1.

For a utility tensor R ∈ RI×J×K the prediction of a rating r̂ijk is calculated
as follows:

r̂ijk =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr (5.1)

Here, G ∈ RP×Q×R is the core tensor and A ∈ RI×P , B ∈ RJ×Q and C ∈
RK×R are the component matrices [32]. Although the component matrices
are often orthogonal, for recommender systems this is not necessary [30].

Parameters P , Q and R represent the number of features for each dimen-
sion. These can be individually adjusted and give the Tucker decomposition
full control over the number of features used for the users, items and context
dimension. This is especially useful for large-scale databases, where the vast
number of users or items can give storage problems.

An exact Tucker decomposition can be computed by setting P , Q and
R to the corresponding n-rank of the tensor (denoted by rankn(R)). The
n-rank of a tensor is defined as the rank of its n-mode unfolding. Here, the
n-mode unfolding is a flattened representation of the tensor in the form of a
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matrix. For example, a third-order tensor X ∈ Rx×y×z can be flattened to
the matrices X(1) ∈ Rx×yz, X(2) ∈ Ry×xz and X(3) ∈ Rz×xy, each containing
all the elements of X. Then rankn(X) = rank(X(n)) [16]. The n-rank is
in other words, the rank of the tensor in one of its dimensions. For all
dimensions Combined, a tensor is defined to be rank-(R1, R2, ..., RN), where
Rn = rankn(X).

The component matrices are then computed one-by-one by taking the
rankn(R) leading left singular vectors of R(n). Once the component matrices
are calculated, the core tensor G can be constructed as follows:

G = R×1 A×2 B ×3 C (5.2)

Where ×n is the n-mode product, element-wise defined as [32]:

(X×n U)i1...in−1jin+1...iN =
In∑
in1

xi1i2...iNujin (5.3)

In the same way as with a SVD, we then can compute a Tucker de-
composition with a lower rank (i.e. a rank-(R1, R2, ..., RN) decomposition
where one or more Rn < rankn(R)), by removing less important features.
This truncated Tucker decomposition is also not exact and approximates the
decomposed tensor, but requires less storage [39]. Unfortunately, while trun-
cating a HOSVD does give a good approximation of the given tensor, it does
not guarantee to lead to the best approximation for the given rank. Thus,
unlike what SVD does for matrices, a truncated HOSVD does not result in a
minimized Frobenius norm of the differences between the original tensor and
the approximation for the given rank.

De Lathauwer et al. propose Higher-Order Orthogonal Iteration (HOOI)
[16] to compute a low-rank decomposition with a better fit. The component
matrices are initialized in the same way as with HOSVD, but an ALS-based
algorithm is used to iterate to a better approximation. HOOI however, does
not always lead to a global optimum either.

Similarly to the conversion of SVD to matrix factorization, Karatzoglou
et al. [30] adapt HOSVD for recommender systems and use a stochastic gra-
dient descent algorithm to learn their tensor model. Since they use explicit
feedback the algorithm considers just the N known ratings and the com-
ponent matrices and core tensor are regularized based on their Frobenius
norm just like 2D matrix factorization. The computation time to create the
decomposition is O(NPQR). As noted before, this Multiverse recommenda-
tions method gives promising results and delivers a 2.5% to 12% increase in
performance compared to other context-aware recommender techniques such
as item-splitting.
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The disadvantage of Tucker decomposition is the computation time of a
prediction. Since Equation 5.1 has three nested loops, the prediction time
for a single rating is cubic in the number of features O(PQR). Learning the
model can be done offline, but predicting should be done on-demand. Pre-
computing all predictions is infeasible due to the large storage requirements.

5.2 Candecomp/Parafac

Recall that we mentioned that the rank of a matrix denotes the number
of independent rows it contains. Formally the rank of an Nth-order tensor
X is defined as the smallest number of Nth-order rank-one tensors, whose
sum equals X (not to be confused with the n-rank of a tensor as introduced
previously). Here, an Nth-order tensor is rank-one if it can be decomposed
into an outer product of N vectors. For example, a matrix X (i.e. a second-
order tensor) has rank R if it can be decomposed into a sum of R rank-one
matrices (i.e. outer products of two vectors):

X = (a1 ◦ b1) + (a2 ◦ b2) + · · ·+ (ar ◦ br) (5.4)

Notice how this is by definition of the matrix product another way of
describing matrix factorization:

X = ABT =
R∑
r=1

ar ◦ br (5.5)

Where R equals the number of features in A and B. Generalizing to a
third-order tensor X ∈ RI×J×K this gives:

X =
R∑
r=1

ar ◦ br ◦ cr (5.6)

Where ar ∈ RI ,br ∈ RJ , cr ∈ RK . This is called the Candecomp/Parafac
decomposition, see Figure 5.2. It results in a factorization of an Nth-order
tensor into a sum of R rank-one Nth-order component tensors. The concept
was first proposed by Hitchcock in 1927 and later popularized independently
in 1970 as Candecomp (canonical decomposition) by Carrol and Chang and
Parafac (parallel factors) by Harshman. We therefore refer to it as Cande-
comp/Parafac, or in short CP.

CP decomposition can be seen as a special case of Tucker decomposi-
tion, where the core tensor G is superdiagonal (1 on the diagonal, 0 other-
wise) and the component matrices all have an equal number of features (i.e.
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Figure 5.2: CP decomposition of a third-order tensor X

P = Q = R) [32]. Tucker decomposition is therefore more general, but as
discussed before the computation time is O(R3), while CP requires O(R) for
a third-order tensor. Also note that CP for second-order tensors is equal
to matrix factorization (see relation between Equations 5.4, 5.5 and 5.6),
whereas Tucker decomposition is not.

To find an exact CP decomposition we need to know the before mentioned
rank of a tensor. Where computing the rank of a matrix is relatively easy by
for instance calculating the SVD, for tensors this is unfortunately NP-hard.
Most solutions just try for R = 1, 2, 3 . . . until they find a 100% matching
rank, but this is first of all not really efficient, and second of all there can be
approximations of lower rank that fit arbitrarily close [32].

Once we know the rank and therefore the number of components needed,
it is relatively straightforward to compute the CP decomposition: we can
simply use an alternating least squares method as we do in the matrix case,
solving for a single factor matrix while fixing the others until convergence
[32].

For recommender systems we are once again not looking for an exact CP
decomposition. A close approximation is what we need. Unfortunately the
Eckart and Young theorem that shows that the best rank-k approximation of
a matrix A is given by the highest k factors of the SVD [20], does not apply
to tensors as well. Setting R smaller than the rank of a tensor and selecting
the best factors of the CP decomposition does therefore not guarantee the
best approximation.
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While the Tucker decomposition is the most used tensor factorization
technique for recommender systems [51], there are some implementations
of CP. Xiong et al. propose a Bayesian probabilistic tensor factorization
[67], which in their evaluations consistently outperforms the corresponding
Bayesian probabilistic matrix factorization. They use amongst others the
Netflix dataset with explicit ratings and the associated time variables as
context. On this dataset however, the authors don’t manage to improve the
performance of timeSVD++.

Shi et al. propose TFMAP [54], a tensor factorization for mean aver-
age precision (MAP) maximization. Compared to the matrix factorization
method from Section 3.3 and Bayesian Personalised Ranking [49] (both non-
contextual) TFMAP gives respectively a 14% and 8% improvement in MAP
for the dataset they used.

Both approaches outperforming non-contextual recommender systems shows
that CP decomposition is a good candidate for adding context to recom-
menders, despite not always giving an optimal solution in terms of fit with
the original tensor. This, together with the faster computation times com-
pared to the Tucker decomposition, made us choose CP for adding contextual
data. The following section will propose an adaptation of the non-contextual
matrix factorization method for implicit feedback, using CP decomposition.

5.2.1 CP for implicit feedback

We use the alternating least squares algorithm to compute the CP decompo-
sition and follow the same technique as the implicit feedback model without
context from Section 3.3.

Let P be a binary third-order tensor, containing the preferences for items:

pijk =

{
1, rijk > 0

0, rijk = 0
(5.7)

For user i, item j and time k. Note that the time context is split in multiple
time bins to make it categorical. The third-order tensor C contains the
confidence of observing pijk:

cijk = 1 + αrijk (5.8)

Observing pijk = 0 gives a low confidence of the user i actually disliking
item j for time k. The confidence in user i liking item j for time k when
observing pijk = 1 is linear proportionate to the number of times the user
consumed j in time k.
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We use the preference values, confidence values and a regularization term,
which penalizes large component vectors to prevent overfitting, to define the
cost function:

S =
∑
ijk

cijk(pijk −
∑
r

xiryjrzkr)
2 + λ

∑
r

(‖xr‖2 + ‖yr‖2 + ‖zr‖2) (5.9)

Then we can fix Y and Z, such that we get a quadratic function in the
terms of X, which can be minimized by setting the derivative of S with
respect to xijk to zero:

1

2

∂S

∂xir
= 0 ∀i, r

∑
jk

cijk(pijk −
R∑
ρ=1

xiρyjρzkρ) · −yjrzkr + λxir = 0 ∀i, r

∑
jk

yjrzkrcijk(
R∑
ρ=1

xiρyjρzkρ − pijk) + λxir = 0 ∀i, r

∑
jk

yjrzkrcijk(
R∑
ρ=1

xiρyjρzkρ) + λxir =
∑
jk

yjrzkrcijkpijk ∀i, r

R∑
ρ=1

(
∑
jk

yjrzkrcijk · yjρzkρ)xiρ + λxir =
∑
jk

yjrzkrcijkpijk ∀i, r

(5.10)

To solve this for xi we’ll construct matrix Ω(i) ∈ RR×R and vector ψ(i) ∈
RR, where

ω
(i)
αβ =

∑
jk

yjαzkαcijk · yjβzkβ

ψ(i)
α =

∑
jk

yjαzkαcijkpijk

This allows us to rewrite Equation 5.10 to:

(Ω(i) + λI)xi = ψ(i) ∀i
xi = (Ω(i) + λI)−1ψ(i) ∀i (5.11)
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Naive implementation gives us a running time of O(R2IJK), which is
very high. Luckily we can use the same technique as before to lower the time
needed to compute xi. Since Pi has only ni non-zero terms (ni equals the

number of ratings given by i), we can calculate ψ
(i)
α in O(ni). Constructing

ψ(i) therefore takes O(Rni).
If we rewrite Ω(i), such that:

ω
(i)
αβ =

∑
jk

yjαzkα(cijk − 1) · yjβzkβ +
∑
jk

yjαzkα · yjβzkβ

ω
(i)
αβ =

∑
jk

yjαzkα(cijk − 1) · yjβzkβ + γαβ

Where the matrix Γ ∈ RR×R is precomputed in O(R2JK) time and is inde-
pendent of i, thus:

γαβ =
∑
jk

yjαzkα · yjβzkβ

Since cijk−1 = 0 for all ijk without implicit feedback (i.e. where rijk = 0), we
can construct Ω(i) much faster. The running time for computing xi according
to Equation 5.11 is therefore:

• O(R2ni) for constructing and calculating Ω(i) + λI

• O(Rni) for constructing ψi

• O(R3) for the matrix inversion (Ω(i) +λI)−1 and matrix multiplication
(Ω(i) + λI)−1ψ(i)

• O(R2JK) for computing Γ ∈ RR×R

To update the features for each user i and compute the full matrix X
we get a running time of O(R2N +R3I +R2JK), where N equals the total
number of implicit feedback. In the same way, we can compute Y by fixing
X, Z and compute Z by fixing X and Y in similar time. Note that the
running time is linear in the input size. We finally alternate the updating of
the features for each dimension until convergence.
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Initialization

Since the algorithm does not guarantee that a global optimum is reached,
the initialization of the feature matrices is important. We can randomly ini-
tialize them, but we might end op in a suboptimal local minimum. Running
the decomposition multiple times and picking the best result with random
initialization is not an option, because that would simple take too much time.

A better and also more intuitive option is to use the data from the utility
tensor for initialization, since that’s what the feature matrices should predict
anyway. We therefore use a method similar to random Acol initialization [38].
The feature columns are filled according to averages from the corresponding
values in the utility tensor. These averages are used as variance and mean
for a gaussian distribution, which makes sure not every value is the same.

We compared this initialization method to multiple random and mean
methods with different variances and the Acol variant consistently resulted
in the best predictions. This makes us believe that we can consistently find
the best predictions for the CP decomposition.
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6 Evaluation

There are various options available to evaluate recommender systems and
since each research can take a different approach, it is important to specify
exactly how the evaluation is done to be able to compare results. The next
sections will give a short description of the diverse protocols, while we explain
the choices we made.

6.1 Conditions

The evaluation of recommender systems can be done either online (with user
interaction), or offline (without user interaction). Online evaluations com-
pare the opinions of the users for the item recommendations, which gives
arguably the most valuable feedback since it directly gets user satisfaction
levels. It is however hard to set up such a system and it requires a large
number of users willing to give their feedback. An offline evaluation doesn’t
bring such a high cost and just uses a part of the historical data to analyze
the prediction quality of the recommender system. The tests are easily re-
producible and comparing different recommender systems is straightforward
[12]. That’s why many other research publications use the offline type of
evaluation and why we’ll use it here as well.

To test the prediction capabilities of our CP method we used a dataset
containing the music listening history for Last.fm users. Last.fm is a music
recommendation service that collects scrobbles from their signed-up users.
Each scrobble means that a user has listened to a specific song, which is our
implicit feedback. The dataset is obtained by using the Last.fm api and is
freely available to download [13]. It contains a little over 19 million individual
scrobbles for 992 users and around 15 million songs.

Because we want an offline evaluation, the dataset should be split in a
training, validation and test set. This partitioning of the data is done to
prevent overfitting. When estimating the free parameters of the model, the
training set is used to train the factorization model, while the validation
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part is used to measure the performance. After the parameters that give the
best results are found, we use the combined training and validation set for
another round of training and finally measure the quality of the predictions
on the test set. Again this is done to prevent overfitting of the validation
set, since that is used to select the best parameter settings. It is important
that the parameters won’t be changed after the validation phase, since that
could overfit the test set. Therefore, the outcome of the evaluation of the
test set is the final value we’ll use as a performance measurement and to
compare other recommender systems. In other words: the model tries to
fit the training data as well as possible, while the parameters are tweaked
to fit the validation set as well as possible. The test set will give the final
performance on a never-seen-before part of the data.

While cross-validation (the process of splitting into multiple subsets and
using each subset as test data and the remaining subsets as training data)
prevents overfitting even more, we believe there is no real need for it, since the
dataset is large enough. The test and validation set contain enough implicit
feedback to give statistically significant results. We choose a 20% split for
the test data and another 20% split of the remainder for the validation set.
This leaves 64% of the full dataset as training data, see Figure 6.1 for a small
overview.

Figure 6.1: Training, validation and test set

In order to separate the training and test sets we can choose to do a
community-centered split, or a user-centered split. The community-centered
split will simply take the full dataset of all users and separate the ratings.
This could mean however, that some users (or items) are not included in
either the training or test set, due to for example large differences in the
amount of ratings between users. The recommender system can’t evaluate

60



users not in the training set, since it has no knowledge about their preference.
Likewise, it can’t evaluate users not in the test set, since there is nothing to
compare our predictions with. A user-centered split tries to prevent that and
splits the ratings for each user separately. That makes sure that each user
will be represented in both the training and test set.

Next is the choice between a time-independent and time-dependent split.
A time-independent split will randomly pick ratings, either from the full
dataset or per user according to respectively a community-centered or user-
centered split. This immediately brings the problem of having ratings in the
training set which are more recent than some ratings in the test set. That
means the recommender system has future knowledge about user preferences
and might give if the system an unfair advantage. Time-dependent splitting
of the data ensures that the rating data is ordered by their timestamps. It
prevents knowledge of future preferences, since all ratings in the test set are
more recent than those in the training set.

Note that a strict time-dependent split (where all preferences in the test
set are more recent than those in the training set) is only possible with a
community-centered split, because in a user-centered split some preferences
in the training set for one user may be more recent than the preferences
in the test set for another user. This combination of time-dependent and
community-centered is considered the most realistic split, since it would oc-
cur in real-world situations as well: up until a certain time the system will
have collected implicit feedback and the recommender predicts the future
preferences for the users. The problem of having users or items not present
in the training or test set are a common real-world situation as well – con-
sider a new album that will be out in the near future, a collaborative system
does not have any information about which users will like it. Users that have
no recorded history yet are of course not considered either.

Because of these similarities to real-world applications, we’ll use the time-
dependent community-centered split for our evaluations.

6.2 Metrics

After the data is processed we need a way to measure the performance of
the recommender system. An often used metric for explicit feedback is the
Root Mean Squared Error. This measures the distance between the predicted
ratings and the ratings in the test set. Unfortunately we can’t do this for
implicit feedback, since the implicit ratings are not as easily comparable –
there is no information about dislikes and no upper bound on the number of
times an item can be consumed.
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Another method is to represent the predictions as a ranked list of items
and compare that with the test set. An often used metric in information
retrieval is Mean Average Precision (MAP), also used in [54]. For each item
in the test set the precision is calculated. At rank k in the predictions list
the precision is defined as:

pk =
1

k

m∑
l=1

xk

Where xk equals 1 if item k is relevant (it is in the test set), or 0 if it is
not relevant (not included in test set). These precision values are averaged
for each query and finally the mean is calculated for all averages. Because it
assigns a lot more weight to items in the top of the ranking, then to those in
the bottom, it prefers systems that return relevant items fast. However, this
may not be the best metric, since it assumes that a user dislikes the items
that are not in the test set. But that is no reliable information about false
positives, recall that blanks (zeroes) in implicit data are not always dislikes.

Another metric we used is the mean weighted rank (WRank), also used
by Hu et al. [28]. Since it is recall based, it only considers the relevant
items and their predictions. For each user (and each timebin) we’ll predict
the preferences for all items and sort them to get an ordered list. Then,
rank(i, j, k) denotes the (relative) position of item j in that ordered list, for
user i and context k. Finally the ranks are weighted according to how many
times a user listened to a song. That means that the rank for a song that
the user listened to often in the test set is more important than a song the
user listened to only few times.

WRank =

∑
i,j,k ∈ test set

rijk × rank(i, j, k)∑
i,j,k ∈ test set

rijk

A WRank of 0 is considered the best score, since that means that the
right items (i.e. the songs in the test set) are the ones with the highest
prediction scores. A totally random prediction will give an expected average
rank of 0.5.

6.3 Results

To incorporate the contextual time dimension we have to split the time-
stamps associated with the item consumption into timebins. We tried sev-
eral different splits, including 24 timebins – one for each hour of the day –

62



Songs per hour

0

300000

600000

900000

1200000

0 2 4 6 8 10 12 14 16 18 20 22

Figure 6.2: Amount of songs per hour in the dataset. We split the data
between 02:00 and 16:00.

a workday/weekend binary split and a morning/evening split. We observed
that the best way to split the data was to create equal sized bins, i.e. where
each timebin held an almost equal amount of implicit feedback. This is be-
cause when there is an uneven split, the recommender system might predict
the items in the smaller timebin better, but the ones in the larger bins worse.

The best performing split turned out to be the one where we separated
songs listened to from 16:00 until 02:00. This split showed the most variance
in listening behavior and gave the best prediction results. Figure 6.2 shows
the amount of songs listened to per hour and the split we’ve chosen.

While estimating parameters α and λ (the confidence and regularization
factors, as introduced in Equation 5.8 and 5.9 respectively) we observed the
following:

• If λ is high, the predicted preference values will be closer to 0, since
there is a preference for low values in the feature matrices (i.e. a rela-
tively low penalty for false negatives)

• If α is high, the predicted preference values will be closer to 1, since
there is a large reward for a high confidence (i.e. a relatively low penalty
for false positives)

This applied to all items, whether they had high or low implicit feedback. For
explicit feedback this balance is something to take into account, but since we
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use ranking based metrics this does not really matter – as long as the order
is correct. The evaluation of multiple values on the validation set showed
that λ = 1 and α = 30 gives good results.

For both matrix factorization and tensor factorization the number of fea-
tures that gives best results lies around 10. We observed that a higher number
makes the models capture too much irrelevant features and the performance
therefore degrades, while a lower number of features captures not enough
features.

The final results for both models are plotted in Figure 6.3 and 6.4. For
comparison the popularity predictor is included as well. This predictor ranks
items based on its global popularity and is one of the simplest recommender
systems. It is therefore of interest to at least outperform this system with
the other recommenders. Results for the naive context-aware matrix fac-
torization are omitted, since they are equal to (or just slightly worse than)
the 2D matrix factorization results. This method therefore shows no further
improvements.

The values associated with random predictions are 0.00106 for MAP and
0.5 for WRank. As we can see, all three recommender systems outperform a
random algorithm by far. The MAP scores for both factorization techniques
flatten around 18 iterations. Tensor factorization improves upon the popu-
larity predictor by more than 50%. However, compared to non-contextual
matrix factorization our context-aware approach lags behind. That system
consistently keeps outperforming tensor factorization by around 17%.

The same is true for the WRank scores, albeit a little less significant.
Matrix factorization gives around 3% better predictions, compared to tensor
factorization. Although it is close, we did not expect our approach to be a
worse predictor. Increasing or decreasing the number of features does not
give a better performance either.

Our context-aware solution does not improve the results of the non-
contextual recommender, which can mean two things: the algorithm is not
not able to pick up latent-factors in higher-order dimensions, or the contex-
tual data in this particular Last.fm dataset does not contain enough structure
to be able to use it for recommending.

The latter means that the added dimension adds another layer of noise,
which does not help improving the performance. To test that the algorithm
works we artificially constructed a dataset where items are divided in time-
bins according to their artist. This means that in this set a song is always
put into the same timebin, such that we can reject the possibility that this
set contains not enough latent information in the time dimension. The tensor
based algorithm does give in this case a much better WRank (0.0428137 - a
30% improvement) compared to the matrix based one. The MAP stays al-

64



most the same however, which means that the distribution of relevant items
on the ranked prediction list stays largely equal, while some of the most pre-
ferred items (i.e. the songs with most listens in the test set) were ranked
higher.

This tells us the tensor based approach is in fact able to learn structures
in higher dimensions, albeit structures with highly dependent relations. To
test if it is at all possible to improve recommendations using the contextual
information in the Last.fm dataset, we can try other contextual pre-filtering,
post-filtering or model-based methods. This is something that we can re-
search and test further in the future.

Finally we compare the running times for the 2D and 3D methods. As
we can see in Figure 6.5 the measured running times per iteration are both
close to linear in terms of the input size, which confirms our earlier deduced
running times. Furthermore, the tensor factorization method takes a little
less than twice as much time compared to the matrix factorization (measured
with two timebins). This, together with worse prediction quality, makes our
approach to exploiting context with a CP system for the evaluated dataset
in its current form unfortunately no viable alternative.

65



MAP

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12 14 16 18 20

Tensor
Matrix
Popularity

Figure 6.3: Mean average precision for tensor factorization, matrix factor-
ization and popularity predictor after 20 iterations. Higher MAP equals a
better performance.
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Figure 6.4: Mean weighted rank scores for 20 iterations. Lower rank equals
a better performance.
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Figure 6.5: Normalized running time per iteration.
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7 Conclusion

In this thesis we have extended the 2D matrix factorization method for im-
plicit feedback datasets to 3D tensor factorization based on Candecomp/Parafac.
This way we can incorporate context in a recommender system to improve
prediction results. We explored the systems which matrix factorization is
based upon, specifically PCA and SVD, and gained a deeper understand-
ing of why this method works. Furthermore, we compared different recom-
mender techniques like neighborhood recommenders and neural networks and
discussed their advantages and disadvantages.

To incorporate context-awareness we chose to focus on adding a time
dimension to the utility matrix. This makes the utility matrix even more
sparse and more difficult to factorize. Since pre-filtering and post-filtering
techniques don’t use all available information and model-based recommenders
have previously provided good prediction results for the Netflix Prize amongst
others, we adopted contextual modeling to integrate context into matrix fac-
torization.

Two main tensor factorization techniques were presented: Tucker decom-
position and Candecomp/Parafac. While some recommender systems are
based on the Tucker decomposition, we favored CP, because of the lower
computation time of predictions and the similarities with matrix factoriza-
tion. The computation time is especially important when dealing with an
online system serving predictions for many users at once. Precomputing
predictions is infeasible due to the large storage requirements.

While most recommenders use explicit feedback, we chose to focus on
implicit feedback. This kind of data is more easily available and requires no
extra user interaction. The drawback is that implicit feedback is of a lower
quality and does not include negative feedback. This needs to be taken into
account when designing a recommender system.

Finally we listed important evaluation methodologies and explained the
metrics we used to measure our recommender’s performance. We imple-
mented the context-aware tensor factorization model for implicit feedback
and compared the results with the non-contextual matrix factorization and
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popularity predictor. Unfortunately the results show no improvements com-
pared to the non-contextual factorization method, which may be due to a
lack of latent factors in the contextual data.

To test if the tensor based algorithm actually works and can be used
to improve prediction results, we artificially created a dataset with adjusted
timebins. Results showed that in that case the solution does indeed work and
gives up to a 30% improvement over non-contextual matrix factorization.
However this artificial highly-related information may not be available in
real world datasets, which means that we cannot currently recommend our
proposed method as a viable solution in practice, but this requires testing
other datasets to be conclusive.

Investigating if the contextual data in the Last.fm dataset can be ex-
ploited in other ways to improve recommendations is something we need to
research in the future. The structure of the contextual information may be
more local, instead of the global latent features that factorization methods
try to discover.

The running time measurements showed a linear relation with the input
size, which shows that alternating least squares is a scalable solution for
large scale databases. Compared to matrix factorization it is around 50%
slower with two timebins. While this may be acceptable if it showed signif-
icant performance improvements, this is unfortunately not the case for our
measurements.

7.1 Further research

There are a couple of things we can do to improve our results. First of all,
our work only captures global latent features, spanning all data. Solutions
like SVD++ track local user drifts – assuming preferences for a single user
changes over time. This may better model the time dimension than searching
for global influences.

It would be interesting to compare our results with a solution based on
Tucker decomposition. The extra free parameters in that model may capture
the latent features more easily. The running time increase may be worth it
depending on the increase in performance.

Since the tensor decomposition is a type of dimensionality reduction, we
would like to test what the prediction quality will be for a neighborhood
recommender based on the reduced dimensionality. Users, items and context
are after all directly comparable using the corresponding feature vectors.
While performance of neighborhood recommenders may be less than model-
based ones, applying it to the reduced latent space may take away the noise
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and the difficulty of comparing users and items. This may result in improved
prediction quality.

7.1.1 Groups

While before mentioned future additions should improve performance, the
next feature is something that makes the recommender more generic and
usable for more applications. Since we can generalize the CP algorithm to
more dimensions, we can add an arbitrary amount of contexts. We would
like to research if it is possible to make one of those contextual dimension
the group of people a user is in.

In a party with a group of friends, or during the day at work with col-
leagues it is often difficult to find music that everyone (or at least the major-
ity) would like to hear. For these scenarios we want to know what multiple
people together - as a group - prefer, such that we can recommend music to
them all at once.

Most literature about recommender systems for groups only focuses on
creating individual predictions and combining them after the prediction phase
(like contextual post-filtering). Based on this combination of preferences mu-
sic is recommended: for instance least-misery will recommend music that
maximizes the lowest predicted preference in the group, while an average
combination recommends music with highest average prediction [43].

But what would be a solution to truly incorporate groups into the model?
We can see individual users as a different context dimension, but this would
create a very high-dimensional utility matrix, which would currently require
too much computing power to decompose with tensor factorization. Food for
thought for a future recommender implementation.
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