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Preface

This thesis document is part of my graduation project for a MSc title in Game &
Media Technology. It consists of a preface, a technical paper and an appendix. It
presents the research of a model that quantifies the sound quality in loudspeaker
reproduction. However, this topic is rarely touched upon in Computer Science.
This is reflected by the fact that the curriculum of the bachelor and master
programs in Computer Science only have a single course related to audio, called
“Sound and music technology”. This is in contradiction with the essence of
Game & Media Technology, as the ability to perceive sound is one of the most
important aspects in the field of (traditional) gaming and media. So, I found
that it was important to broaden my knowledge on a topic that, while extremely
important in the field of gaming and media, I had never touched upon in my
study.

One important aspect of audio is the quality of the way it is perceived by the
listener. This is determined by two aspects; i) the quality of the signal itself (e.g.
codec distortions, recording techniques) , and ii) the quality of the medium used
to play the audio. The second aspect is an interesting topic, as there are many
different ways to consume audio (e.g. different quality headphones, different
quality speakers in different environments). The research I have performed in
the last nine months focuses on loudspeakers and has led to a robust model that
is a suitable candidate to accurately and objectively quantify the sound quality
in loudspeaker reproduction in different environments (e.g. professional record-
ing rooms, average quality livings rooms, low quality hallways), by assessing
their acoustic output. It is the first model that works in the acoustic domain
that quantifies the sound quality of individual loudspeakers as a whole, and can
be used by manufacturers to judge and optimize the quality of loudspeakers
for consumers. As a result, it is possible to assess, and indirectly improve, the
auditory quality of a portion of gaming and media consumption.
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ABSTRACT

We present an objective perceptual measurement method for the assessment
of the perceived sound quality of loudspeakers, based on the core elements
found in the perceptual evaluation models as developed within ITU. In-
stead of quantifying the loudspeaker system itself, the model quantifies the
overall perceived sound quality of loudspeakers by assessing their acous-
tic output. This approach introduces a major problem. We cannot provide
an acoustic reference signal to the subject that can be directly compared
to the acoustic degraded loudspeaker output. A solution for this problem is
proposed by creating binaural recordings of the reproduced reference signal
with a Head and Torso Simulator (HATS), using the best quality loudspeak-
ers available, in the ideal listening spot in the best quality listening environ-
ment available. The reproduced reference signal with the highest subjective
quality given by subjects is compared to the acoustic degraded loudspeaker
output. The model is developed using three large databases that contain bin-
aural recorded music fragments played over very low, to very high quality
loudspeakers in very low, to very high quality listening rooms. The average
error in percentage between the training (r = 0.90) and the validation of the
model (r = 0.85) is 5.6%, showing the high stability of the model. As such,
the model is a suitable candidate to accurately quantify the sound quality in
loudspeaker reproduction.

1 INTRODUCTION

Over the past decades, models for the perceptual evaluation of audio sig-
nals have been introduced for a wide range of application areas. They allow
to assess the quality of time variant, nonlinear systems. As such, they are
essential for quality assessment of low bit rate speech and audio coding, as
used in the telecommunication [1][2][3][4][5] and music [6][7][8][9] indus-
try. These models take the signal adaptive properties of the system under
test into account by feeding it with real world signals. They measure the
quality of the output signals by processing a reference and a degraded sig-
nal using a psychoacoustic model, resulting in a representation resembling
the internal representation of signals inside our head. The difference be-
tween the internal representations is processed by a cognitive model. The
result is used to create an objective rating that predicts the subjective rating
of the quality of the degraded signal (see Figure 1). This subjective quality
is expressed in terms of subjects’ Subjective Mean Opinion Score (sMOS),
on a scale from 1 to 5 [10] (see Table 1). So, this approach quantifies the
quality of the output of a system under test and does not characterize it
directly.

Traditional research in loudspeaker reproduction quality follows a classi-
cal approach. Instead of characterizing the perceived sound quality pro-
duced by loudspeakers, one quantifies the loudspeaker system directly. An
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Figure 1: Overview of the basic principle used in models for the perceptual
evaluation of audio signals. The psychoacoustic and cognitive model are
used to create an objective quality measure that uses the reference signal
X(t) and the degraded output, Y (t), of the device under test. This objective
quality measure is used to predict the subjective quality of the degraded
signal in terms of a mean opinion score.

extensive overview of this approach is given by Toole [11]. Although a
loudspeaker is to a large extent a linear time invariant system, assessing its
quality is difficult. This is due to the fact that a one dimensional input mu-
sic signal (i.e. amplitude as a function of time) produces a four dimensional
output (i.e. a pressure as a function of space and time). This output is only
assessed using two pressure waves at the entrance of our ears, as a function
of time. Furthermore, most music is enjoyed through the use of two or more
loudspeakers that interact with the room and with each other. Comb filter-
ing and room resonances have a major impact on the reproduction quality.

When placed in an anechoic room, loudspeaker reproduction quality is un-
satisfying. In stereo, we get comb filtering between the outputs of the
two loudspeakers and there is no sense of envelopment due the lack of
diffuse field. Characterization of how a loudspeaker radiates into space
has only limited value because the interaction between the listening room
and the loudspeaker will determine the pressure waves at the entrance
of our ears. Thus, when a loudspeaker is reproducing a music signal
in a room, all system measurements (e.g. on- and off-axis pressure re-
sponse, power response, directivity index, harmonic distortion, rub and
buzz [12][13][14][15]) will not be able to predict the perceived sound qual-
ity. A loudspeaker in a room may sound excellent with one music signal,
while the same set up may show low quality with another music signal. Fur-
thermore, additional complications are introduced by our intelligent binau-
ral processing of the input, giving us the possibility to separate sound source



Quality Score
Excellent 5

Good 4
Fair 3
Poor 2
Bad 1

Table 1: Absolute category rating listening quality opinion scale [10]. The
mean calculated over a set of subjects is called the Subjective Mean Opinion
Score (sMOS).

properties from listening room properties.

Instead of quantifying the system under test, an unconventional approach
can be chosen, which quantifies the perceived sound quality produced by
loudspeakers using the acoustic output. Tan et al. [16][17] described a
model for predicting the effect of various forms of nonlinear distortions
generated by electro-acoustic transducers on the perceived quality of speech
and music signals. However, their subjective experiments made use of
headphones to judge the audibility of distortions of loudspeakers. Hence,
they did not take into account the influence of the listening room and lis-
tening position, which both have a dominant impact on the final perceived
loudspeaker reproduction quality. Gabrielsson et al. [18][19] assessed the
sound quality of loudspeakers directly using subjective experiments, by
applying a decomposition of the acoustic output into perceptual dimen-
sions (e.g. clearness, loudness, nearness, spaciousness). However, they did
not develop an objective measurement method using this data. Conetta et
al. [20][21] used the idea of source localization, envelopment, coverage an-
gle, ensemble width and spaciousness to describe a model that successfully
assesses the spatial audio perception quality. While this model is successful
in its specified domain, it does not generalize to the overall perceived sound
quality of loudspeakers and is limited to a small number of high quality
loudspeakers and listening environments.

Whereas previous research focused on the quantification of the loudspeaker
system itself or on specific aspects of the acoustic output of loudspeakers,
the aim of this paper is to generalize to the overall perceived sound quality
of individual loudspeakers in a wide variety of environments, using a large
and diverse data set of music fragments. However, the introduction of this
generalization introduces two major problems:

Idealized Reference Signals: In the assessment of an electric input and
electric output device, the reference signal used as input of the perceptual
model can also be used in the subjective test. One can ask subjects to com-
pare the reference electric input (the ideal) to the degraded electric out-
put over a headphone. When representing the headphone in the perceptual
model as a simple system with a pre-defined frequency characteristic, the
model can exactly mimic the subjective test. However, it is very difficult
to provide an acoustic reference signal to the subject in loudspeaker repro-
duction assessment that can be directly compared to the acoustic degraded
loudspeaker output.

Theoretically, there are two different exact reference approaches possible:
i) “here and now”, where we have the illusion that the reproduced sound is
present in the listening room and ii) “there and then”, where we have the
illusion that we are present in the room where the recording was made [22].
Both approaches are valid HiFi goals, but require different recording and
play back techniques. “Here and now” requires anechoic recordings that are
evaluated in the listening room by playing them over the loudspeaker under
test. Thus, we can directly compare the “live” signal (that was recorded in
the anechoic room) with the playback of the anechoic recording. “There
and then” requires standard recordings that have to be evaluated using a
HATS recording of the “live” event and a HATS recording of the room

reproduction. Further, both of these recordings have to be assessed with a
correct, individually equalized headphone.

This paper will take a pragmatic approach; binaural recordings of the repro-
duced signals are made using a HATS, while subjects judge the loudspeaker
output on the same listening spot as the recordings. Reference recordings
are made using the best quality loudspeakers available, in the ideal listen-
ing spot in the best quality environments available. The overall sound qual-
ity of the reproduced reference signals are judged by subjects using the
sMOS, and the reference recording with the highest sMOS is compared to
the acoustic degraded loudspeaker output (see Figure 1). Note that in this
approach, the subjects have no reference available and use an unknown,
internal, ideal to judge the loudspeaker reproduction quality.

Background Noise: When assessing the loudspeaker reproduction in a
wide variety of environments, levels of background noise will differ. While
this audible background noise is only marginally taken into account by sub-
jects in their assessment of the acoustic quality, most models are not robust
against the impact of this background noise. This will be solved by intro-
ducing a noise suppression algorithm that reduces the noise found in the
recorded acoustic signals.

In order to successfully quantify the loudspeaker reproduction quality, we
present a unique model baptized the Perceptual Reproduction Quality Eval-
uation for Loudspeakers (PREQUEL). It is based on the core elements
found in the perceptual evaluation models as developed within ITU for
speech [1][2][3][4][5] and music [6][7][8] and is extended with an im-
proved masking algorithm, based on the idea of lateral inhibition [23]. It
successfully implements the solutions to the above mentioned problems and
is developed on the basis of the following criteria:

• Overall Sound Quality: Instead of focusing on the quantification of
the loudspeaker system itself or on specific aspects of the acoustic
output, the model quantifies the overall perceived sound quality of
loudspeakers as a whole.

• Robustness: The model can be used on a wide variety of loudspeakers
in a wide variety of listening environments.

• Stability: The model accurately quantifies the sMOS of loudspeaker
systems that have not been used in the training of the model.

Section 2 introduces a general overview of the model, as well as the opti-
mization of the model variables. Section 3 presents an overview of the sub-
jective tests used to develop and validate PREQUEL. Results are presented
in Section 4. Section 5 presents the conclusions based on this research.

2 THE PERCEPTUAL REPRODUCTION QUALITY EVALUA-
TION FOR LOUDSPEAKERS (PREQUEL)

A general overview of PREQUEL can be found in Figure 2. Each consecu-
tive step performed by the psychoacoustic model is explained in Subsection
2.1 and each consecutive step found in the cognitive model is explained in
Subsection 2.2. The model contains a set of variables θ that are optimized
using the approach in Section 4. The algorithm used for the optimization of
these variables is described in Subsection 2.3. The values that are found in
the optimization are used for all the data processed by the model.

2.1 Psychoacoustic Representation

Input of the Model: All signals used in this paper are in stereo and sam-
pled at 48 kHz. Each signal has at least 1 second of silence recorded before
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Figure 2: An overview of PREQUEL.

the music fragment starts. Binaural recordings of the reference signal were
made with a HATS, using the best quality loudspeakers available, in the
ideal listening spot in the best quality environments available. The overall
sound quality of the reproduced reference signal is judged by subjects using
the sMOS. The reference recording with the highest sMOS is used as the
input X(t)c for the model, where c represents the left or right channel. The
degraded signal Y (t)c is the binaural recording of the acoustic output of the
system under test.

Calibration: The first step in the psychoacoustic model is to calibrate the
level in relation to the absolute threshold (i.e. a function of frequency) by
generating a sine wave with a frequency of 1000 Hz and an amplitude of
40 dB SPL. This sine wave is transformed to the frequency domain using
a windowed Fast Fourier Transform (FFT) with a 21.34 ms frame length
(1024 samples at 48 kHz sampling). The frequency axis is converted to
a modified Bark scale and the peak amplitude of the resulting pitch power
density is normalized to a power value of 104 by multiplication with a power
scaling factor Sp.

The same 40 dB SPL sine wave is used to calibrate the psychoacoustic
(Sone) loudness scale using Zwicker’s law [24]. Further, the integral of the
loudness density, over the Bark frequency scale, is normalized to 1 Sone
using a loudness scaling factor Sl .

Level Alignment: The overall power level of the reference signal X(t)c is
scaled to match the overall power level of the degraded signal Y (t)c. The
amount of scaling is determined using the ratio of the powers in X(t)c to
Y (t)c.

Start Stop Indication: Recordings of the silent periods at the beginning
and end of X(t)c and Y (t)c only contain background noise from the record-
ing environment. Thus, they should be excluded in the calculations of the
objective quality measurement. The model assumes a normal distribution
of the background noise and uses the mean X and standard deviation σ of
the absolute power of the first 0.5 seconds at the start of the file as a foot-
print. The parts that only contain background noise are detected by sliding
a frame with a size of 21.34 ms, without overlap, over X(t)c and Y (t)c.
The samples within this frame are considered noise if their average abso-
lute power is within a range of 0 to 3σ of X . The value 3σ was found to
give the best noise detection.

Further, all consecutive samples at the beginning and end of the signal that
are classified as noise are cut from the signal. Thus, after this operation, the
reference and degraded signals only contain the music fragment without
the silence at the beginning and end of the file. This procedure mimics the
behavior of the subjects, which ignore low back ground noise levels in a
room when they judge the loudspeaker reproduction quality [25].

Temporal Aligning: Loudspeakers do not produce time warping in their
output. Thus, a simple time alignment is used that searches for a single
global estimate of the delay between the reference and degraded signal.
The lag is found using Equation 1, where f is X(t)c, g is Y (t)c and n is the
lag coefficient. The overlapping intervals of X(t)c and Y (t)c (after applying
the lag coefficient to Y (t)c) are used in the remainder of the pipeline.

( f ?g) [n] =
∞

∑
m=−∞

f ∗ [m]g [m+n] (1)

Windowed Fourier Transformation: The human ear performs a time-
frequency analysis. Therefore, the algorithm applies a windowed FFT with
a Hamming window (see Equation 2) on X(t)c and Y (t)c, where n is the
amplitude per sample of the signal and N is the frame size of 21.34 ms.

ω(n) = 0.54−0.46cos(
2πn

N −1
) (2)

The overlap between subsequent frames is 75%. The windowed FFT re-
sults in functions of time and frequency, which are transformed into power
spectra. Phase information within a single frame is discarded. The results
are the power density representations PX f ,n,c and PY f ,n,c (the power per
frequency band f and frame index n for both channels).

Noise Reduction: Acoustic recorded signals typically have a lot of back-
ground noise, which subjects do only marginally take into account in their
assessment of the loudspeaker reproduction quality [25]. Therefore, we
have to suppress this background noise. The first 0.5 seconds of the refer-
ence and degraded signals after the level alignment are classified as noise
footprints. These footprints are transformed to FFT power domain. The
average power of each frequency band in the reference and degraded noise
footprints is calculated and subtracted from PX f ,n,c and PY f ,n,c respectively.

Frequency Warping: The Bark scale (the psychoacoustic equivalent of
the frequency scale) models that the human hearing system has a finer fre-
quency resolution at low frequencies, than at high frequencies. This is im-
plemented by binning consecutive frequency bands of PX f ,n,c and PY f ,n,c,
and summing their corresponding powers. The warping function that maps
the frequency scale in Hertz to the pitch scale in Bark (see Table 2) approx-
imates the values given in the literature [26]. The resulting signals PPX f ,n,c



Frequency Range (Hz) 0 - 1,000 1,001 - 2,000
Number of Consecutive Bands 1 2
Frequency Range (Hz) 2,001 - 4,000 4,001 - 8,000
Number of Consecutive Bands 4 8
Frequency Range (Hz) 8,001 - 16,000 16,001 - 24,000
Number of Consecutive Bands 16 32

Table 2: The warping function that maps the frequency scale in Hertz to the
pitch scale in Bark (e.g. the power in every 4 consecutive bands in the range
of 2,001 - 4,000 Hz are binned together).

and PPY f ,n,c are the pitch power densities of the reference and degraded
signals.

Frequency & Temporal Smearing: Classical masking is modelled us-
ing a bio-mechanical approach in the pitch-power domain. It partially mod-
els psychoacoustic masking along the time and frequency axis and quanti-
fies how the power from one time-frequency cell smears towards neighbor-
ing time-frequency cells [6]. Smearing is applied in frequency domain on
PPX f ,n,c and PPY f ,n,c using Equation 3, where θ1 is an optimized constant
variable with a value of 0.05.

PPX f ,n,c = θ1PPX f−1,n,c +PPX f ,n,c (3)

It is applied in time domain on PPX f ,n,c and PPY f ,n,c using Equation 4
and 5, where θ2 and θ3 are optimized variables with values 0.99 and 1.0
respectively.

PPX f ,n,c = φ( f )PPX f ,n−1,c +PPX f ,n,c (4)

φ( f ) =

{
θ2, if f ≥ 500.
− θ3−θ2

500 f +θ3, otherwise.
(5)

Zwicker Transformation: The reference and degraded pitch power
densities are transformed to loudness densities in Sone per Bark using
Zwicker’s law [24] (see Equation 6), where T HR f is the absolute thresh-
old for the minimum audible field. The Zwicker power, γ , is equal to the
optimized variable θ4 with value 0.145. The function transforms PPX f ,n,c
and PPY f ,n,c to their corresponding loudness densities LX f ,n,c and LY f ,n,c
as functions of time and frequency.

LX f ,n,c = Sl

(
10T HR f

0.5

)γ [
0.5+0.5

PPX f ,n,c

10T HR f

γ

−1
]

(6)

Frequency & Temporal Inhibition: Masking at a bio-mechanical level
is implemented using time-frequency smearing. However, masking is also
the result of a lateral suppression at a neural level, where firing neurons
suppress the firing rate of nearby neurons [23]. This is implemented in
the loudness domain by reducing the loudness of a single time-frequency
cell as a result of nearby loud time-frequency cells. Inhibition is applied
in frequency domain on LX f ,n,c and LY f ,n,c using Equation 7, where θ5 has
the optimized value of 0.3.

LX f ,n,c = LX f ,n,c −θ5
(
LX f−1,n,c +LX f+1,n,c

)
(7)

It is applied in time domain on LX f ,n,c and LY f ,n,c using Equation 8, where
the optimized variable θ6 has a value of 0.4.

LX f ,n,c = LX f ,n,c −θ6LX f ,n−1,c (8)

Timbre Indicators: An important aspect of sound quality is the balance
between low and high frequencies. This is characterized as its tone color
or timbre. If this balance sounds unnatural, subjects will perceive a low
sound quality. The ratio of the average loudness between the low (24 Hz -
θ7 Hz) and high (θ8 Hz - 24,000 hz) frequencies in LX f ,n,c and LY f ,n,c is
calculated, resulting in global timbre values T 1Xc and T 1Yc. θ7 and θ8 are
variables with optimized values of 3,400 and 3,000 Hz respectively. The
ratio τ1 (see Equation 9) is later used in the prediction of the sMOS.

τ1 = MAX
(

T 1Xle f t

T 1Yle f t
,

T 1Xright

T 1Yright

)
(9)

A second global timbre indicator is calculated using the ratio of the average
loudness between the low (24 Hz - θ9 Hz) and high (θ10 Hz - 24,000 Hz)
frequencies in LX f ,n,c and LY f ,n,c. θ9 and θ10 are variables with the opti-
mized value of 1,000 Hz. The results are the timbre values T 2Xc and T 2Yc.
The ratio τ2 (see Equation 10) is later used in the prediction of the sMOS.

τ2 = MAX
(

T 2Yle f t

T 2Xle f t
,

T 2Yright

T 2Xright

)
(10)

Calculation of the Internal Difference: Two signals that only differ in
overall loudness need a minimum difference in order to be discriminated.
This is modelled in the form of a self-masking algorithm that uses the raw
disturbance density RD f ,n,c (see Equation 11).

RD f ,n,c = ABS
(
LX f ,n,c −LY f ,n,c

)
(11)

The self-masking algorithm is applied using Equation 12 and 13, where θ11
and θ12 are equal to the optimized values of 0.3 and 0.6 respectively. The
algorithm pulls the raw disturbance density towards zero. This represents a
dead zone (i.e. before a time-frequency cell is perceived as distorted) and
models the process of small time-frequency level differences being inaudi-
ble. The result is a disturbance density D f ,n,c as a function of time and
frequency.

D f ,n,c =

{
MAX(0,RD f ,n,c −M f ,n,c), if LY f ,n,c > LX f ,n,c
MAX(0,RD f ,n,c −M f ,n,c)θ11, otherwise.

(12)

M f ,n,c = MAX
(
LX f ,n,c,LY f ,n,c

)
θ12 (13)

2.2 Cognitive Model

Asymmetry: When the system under test introduces a distortion in the
input, it will in general result in an output that is clearly composed of two
different percepts, the input signal and the introduced distortion. When
the distortion is introduced by leaving out a time-frequency component,
the resulting output signal cannot be decomposed into two different per-
cepts. This results in a distortion that is less objectionable. This effect is
modelled by calculating an asymmetrical disturbance density DA f ,n,c using
Equation 14, which is applied to the reference and degraded signals LX f ,n,c
and LY f ,n,c. θ13 is a variable that is optimized to a value of 0.1.

DA f ,n,c = D f ,n,c

(
LY f ,n,c

LX f ,n,c

)θ13

(14)

Aggregation over Time and Frequency: The asymmetrical disturbance
density DA f ,n,c is integrated along the frequency axis. The result is DALi,n,c,
where Li is the Lp norm used for the integration, ranging from L1 to L10.



Further, the left and right channel of DALi,n,c are merged by calculating
the maximum disturbance over left and right in each frame n. The merged
disturbance density, DALi,n, is integrated along the time axis. This results
in DALi,L j , where L j is the Lp norm used for the integration, ranging from
L1 to L10. The output of the model is a vector Ω that consists of DALi,L j ,
τ1 and τ2. Ω is used in Section 4 to predict the overall sound quality of
loudspeakers using multiple linear regression.

2.3 TRAINING OF THE MODEL

The algorithm that optimizes all model variables is implemented in C#,
and runs on a 2.4 GHz Intel(R) Core(TM) i7-3630QM CPU with 16 GB of
RAM using 64-bit Windows 8.1. The optimization includes the 13 variables
described in Section 2 and 16 variables that are needed to prevent instabili-
ties of the model. Each variable is given a lower and an upper bound (based
on the existing perceptual evaluation models as developed within ITU for
speech [1][2][3][4][5] and music [6][7][8]), and a ∆ value defined by the
user that describes a finite increment of the variable. These values are used
in the optimization algorithm.

One approach for optimization is to use a brute force algorithm to find the
best solution. The time complexity when calculating all possible combi-
nations of values for all variables is O(MN), where N is the number of
variables and M is the number of different values of each variable, based
on ∆, the lower bound and the upper bound. Thus, the time to calculate
the global optimum has a growth factor defined by the granularity M of
the system. This makes it infeasible to calculate with higher values of M,
due to hardware restrictions. In order to maintain a high value of M and
a time complexity independent on the exponential relation between M and
N, a heuristic optimization algorithm, called Random Restart Hill Climb-
ing, was implemented. While this algorithm does not guarantee to find the
optimal solution, it is a lightweight optimization strategy that provided ex-
cellent results. The algorithm starts with a random state of variables, with
values between their lower and upper bound, and iteratively attempts to
find a better solution by incrementally changing a single variable of the so-
lution with its corresponding ∆. The change is accepted if the correlation
coefficient of the current solution, calculated using the monotonic linear re-
gression of the output X of the model and the sMOS of all data used in the
training, is higher than the previous iteration. The search is terminated and
restarted with a new random state if it stagnates over a user defined num-
ber of iterations. So, instead of indefinitely trying to optimize a solution
from one initial condition, a wider area of the solution space is searched.
The search is terminated if the correlation coefficient of the best solution
is above a user defined threshold. Thus, the time complexity of the algo-
rithm is no longer dependent on the granularity of the system. Instead, it is
defined as O(d), where d is the longest path to a solution above the given
threshold.

3 SUBJECTIVE EXPERIMENTS

Three different experiments were run for the training and validation of PRE-
QUEL. Each experiment used a sequence of 6 music fragments, which were
chosen on the basis of their high quality as judged by expert listeners. A
total of 12 musical fragments were used that included classical large or-
chestras, opera/choir, solo instruments and pop/rock recordings. The six
fragments in each experiment had a duration of about 30 seconds and were
played consecutively with silences of about four seconds between each
fragment. Each fragment was individually level aligned for the optimal play
back level relative to the other fragments. The loudest fragment (rock) was
played at a level of about 90 dB (A), fast averaging. The softest fragment
(solo harpsichord) was played at a level of about 65 dB (A), fast averaging.
All fragments in each experiment were binaurally recorded using a HATS.

Each experiment was performed by six subjects, ranging from naive and
trained listeners, to expert listeners. A total of 18 subjects were used, con-
sisting of 16 males and 2 females, with an age ranging from 22 to 74. Sub-
jects were instructed to judge the overall sound quality produced by sev-
eral loudspeaker reproduction systems relative to each other. Note that the
subjects had no direct “ideal” reference available and used an unknown,
internal, ideal to judge the loudspeaker reproduction quality. A 10 point
evaluation scale, based on the school reporting system used in The Nether-
lands, was used for the judgments, where 1 stands for “bad” and 10 stands
for “excellent”. This scale was chosen because it provided the most natural
opinion scale to express a quality opinion in The Netherlands. Each subject
had a training session before each experiment started, by providing them a
direct comparison of music fragments played over any system they would
like to hear.

The first two experiments were performed using two high quality profes-
sional listening rooms with excellent acoustic properties. Subjects were
seated at 3 to 4 different positions in each room and judged the quality of
9 loudspeaker systems, ranging from high quality standard studio moni-
tors (electro dynamic and electro static) and high quality surround radiat-
ing systems, to average consumer type systems and very low quality PC
loudspeakers. There were a total of 36 different loudspeaker reproduction
evaluation setups, which resulted in a total of 216 fragments that had to be
judged.

The third experiment was performed using three average to low quality lis-
tening rooms (e.g. standard living room, hallway, kitchen). Subjects were
seated at 2 different positions and judged the quality of 8 loudspeaker sys-
tems, ranging from high quality surround radiating systems (electro dy-
namic), to normal consumer type systems and very low quality loudspeak-
ers. Furthermore, the experiment included a 4 channel surround system and
a number of 2 channel room reverberation algorithms. There were a total
of 22 different loudspeaker reproduction evaluation setups, which resulted
in a total of 132 fragments that had to be judged.

Consistency checks of each experiment show that all subjects have a corre-
lation of at least 0.77 (the worst naive subject) between their private opinion
and the average opinion of the group, while the best subject (the best expert)
has a correlation of about 0.96. Thus, despite the fact that subjects men-
tioned that they had issues regarding the difficulty of taking into account
all possible degradation parameters (e.g. timbre, envelopment, localization,
room resonances), the consistency in judgement is very high, verifying the
high relevance of the subjective data when describing the overall perceived
sound quality.

The subjective scores given by the subjects are standardized per experiment
using Equation 15, where Z is the standardized subjective score, X the orig-
inal subjective score, µ the mean and σ the standard deviation of the data
of each subject.

Z =
X −µ

σ
(15)

The sMOS for each fragment is the mean of its corresponding standardized
subjective scores. Further, the sMOS of each fragment was normalized for
each experiment individually to the ITU five point scale (see Table 1) to
adjust the results presented in this paper (see Section 4) to a widely ac-
cepted standard scale. The normalization was performed using Equation
16, where Z is the standardized sMOS, L the lowest standardized sMOS
and H the highest standardized sMOS in each experiment. The result is the
normalized sMOS.

Normalized sMOS =
4(Z −L)

H −L
+1 (16)



4 RESULTS

The three experiments described in Section 3 are used to create three loud-
speaker databases. A database consists of a collection of binaural recorded
music signals, with corresponding index k, and the normalized sMOS per
signal, sMOSk. These signals are used in the model as the degraded record-
ing Y (t)c. The signal with the highest sMOSk in the database that uses
the same music fragment as Y (t)c is used as the reference recording X(t)c.
The data from the first two experiments is used to create database DB1 and
DB2. The data from the third experiment is used to create DB3. Further-
more, each database is split in two parts by dividing each database in four
equal intervals based on the sMOS, and splitting each interval in two equal
parts. This method enforces the full range of sMOS in each new database,
making sure that they remain as balanced as the originals. This results in
two sets, A and B, that each contains one half of the databases.

The performance of the model is measured in terms of the correlation coeffi-
cient r between the vector Ω of each fragment and its corresponding sMOS
using multiple polynomial regression. The final results are expressed as the
mean of the prediction of each music signal per loudspeaker in each room.
The following two paragraphs will explain the training and validation of the
model.

Training: The training set A is used to develop a robust model that is
trained context independently on the data in A in such a way that it is able
to quantify the subjective sound quality of loudspeaker systems. First, all
model variables are trained (see Subsection 2.3) using A, resulting in the
optimized variables θ . Next, each signal in the training set is processed by
the model using the optimized variables, resulting in Ωk per signal.

Further, multiple polynomial regression is used to model the relationship
between a vector of predictor variables ωk ⊂ Ωk and the sMOSk. This is
done by transforming ωk to a single predictor ψk using a nonlinear function,
and fitting a monotonic polynomial P through the data points (ψk,sMOSk).
The nonlinear function that is optimized in the regression can be found in
Equation 17. A 3rd order monotonic polynomial is used for the fit as it
provided the best results while maintaining monotonicity.

ψ =−1
[
DAL1,L1 τ1

]
−0.045

[
DA2

L2,L2
+ τ1τ2

]
+0.034

[
τ2 + τ

−1
2

]
(17)

However, this approach introduces a problem due to the robust nature of
the model. The model should be able to predict the quality of a wide vari-
ety of loudspeakers in a wide variety of environments. Thus, the optimized
variables θ , the nonlinear function used to calculate ψk, and the monotonic
polynomial P must be identical for all data processed by the model. These
constraints guarantee that the context of each experiment does not influence
the performance of the model. Though, due to the context of each experi-
ment, the same degradation in each database may result in a different sMOS
due to voting preferences or the balance of conditions in a test. This prob-
lem can be illustrated with the following example. Assume that we have a
robust model that gives an average objective measurement score of 2.5 on
the ITU scale to a signal. Further, this signal is presented in two different
experiments. The signal has the highest quality in the context of one exper-
iment and the lowest quality in the context of the second experiment. This
results in two different sMOS given by subjects to the same signal due to
the difference in context of each experiment.

The solution to this problem is to perform the multiple polynomial regres-
sion using the same optimized values for θ and the same nonlinear function
to calculate ψk for all data in A, while using a context dependent polynomial
Pm for each database, where m is the index of each database. The result is a

robust model that can predict the sMOS context independently. The result-
ing r values of the multiple polynomial regression are 0.94, 0.90 and 0.88
for DB1 ⊂ A, DB2 ⊂ A, and DB3 ⊂ A respectively.

Validation: The validation of the model is performed using a blind pre-
diction of the sMOS on the signals in the validation set B. Each signal is
processed by the model using the optimized variables θ found in the train-
ing, resulting in an Ωk per signal. Equation 17 is used to transform ωk ⊂ Ωk
to the single predictor ψk. Further, Pm is used to transform ψk to the pre-
diction of the sMOS. The results can be found in Figures 3, 4 and 5. The
Figures show the 95% confidence interval and the ideal linear regression
Y = X . The resulting r values between the prediction and the sMOS for
DB1 ⊂ B, DB2 ⊂ B and DB3 ⊂ B are 0.86, 0.92 and 0.78 respectively.

The stability of the model is validated by comparing the r values of the
training with the r values of the validation. The error in percentages be-
tween these values is 8.5%, 2.2% and 11.0% respectively. The results for
DB3 are slightly less stable than the other two databases. This could be
due to the higher difficulty of taking into account all possible degrada-
tion parameters in the third experiment. This is reflected by the fact that
subjects had a harder time to form a coherent opinion with other subjects
(lowest r = 0.50), as well as with the average opinion of the group (low-
est r = 0.77). These values are significantly higher in the first and second
experiment, where the lowest correlation between two subjects’ opinion is
0.65 for both experiments and the lowest correlation between a subjects’
opinion and the average opinion of the group is 0.86 and 0.84 respectively.
Thus, it is expected that the stability of the model decreases as subjects have
a harder time predicting the subjective quality. Nonetheless, the results
show high stability of the model when quantifying the subjective sound
quality of loudspeaker systems that produce the same type of distortions
introduced in the training set A.

Predicon

Figure 3: The blind prediction for database DB1 ⊂ B, plotted per loud-
speaker. The graph shows the 95% confidence interval and the ideal linear
regression Y = X . The correlation coefficient between the predictor values
and the sMOS is 0.86.



Predicon

Figure 4: The blind prediction for database DB2 ⊂ B, plotted per loud-
speaker. The graph shows the 95% confidence interval and the ideal linear
regression Y = X . The correlation coefficient between the predictor values
and the sMOS is 0.92.

Predicon

Figure 5: The blind prediction for database DB3 ⊂ B, plotted per loud-
speaker. The graph shows the 95% confidence interval and the ideal linear
regression Y = X . The correlation coefficient between the predictor values
and the sMOS is 0.78.

5 DISCUSSION

This paper presents a unique loudspeaker reproduction quality measure-
ment model baptized the Perceptual Reproduction Quality Evaluation for

Loudspeakers (PREQUEL). Whereas previous research focused on the
quantification of the loudspeaker system itself or on specific aspects of the
acoustic output of loudspeakers, this paper focuses on the overall perceived
sound quality of individual loudspeakers in a wide variety of listening en-
vironments, using a large and diverse data set of music fragments.

This perceptual measurement approach introduces two major problems.
The first one is that we cannot provide the subject with an acoustic ref-
erence that can be directly compared to the degraded loudspeaker output.
A solution for this problem is proposed by creating binaural recordings of
the reference signal using the best quality loudspeakers available, in the
ideal listening spot in the best quality listening environments available. The
recorded reference signal with the highest subjective quality given by sub-
jects is compared to the acoustic degraded loudspeaker output. The second
problem is the presence of different levels of background noise in the lis-
tening environments. This is solved by introducing a noise suppression
algorithm that operates on both the recorded reference and degraded sig-
nals.

The solutions to these problems led to the development of a model that
uses an objective quality measurement to predict the sMOS of subjects that
were asked to judge the overall quality of a set of loudspeaker reproduc-
tion systems. Consistency checks performed on the subjective data show a
correlation of at least 0.77 between subjects’ private opinion and the aver-
age opinion of the group, verifying the high relevance of the subjective data
when describing the overall perceived sound quality.

Three databases, based on the gathered subjective data, were created for the
training and validation of PREQUEL. The model is trained in such a way
that it is able to accurately predict the sMOS context independently. Results
from the validation show that the model is stable and is a suitable candidate
to accurately quantify the sound quality of individual loudspeakers, in a
wide variety of settings, based on the distortions introduced in the training
phase.

However, the model is also able to quantify the sound quality of individual
fragments. The average correlation coefficient in the training phase when
plotted per individual fragment is 0.86. The average correlation coefficient
in the validation phase when plotted per individual fragment is 0.79. The
error in percentage between the average correlation of the training and val-
idation is 8.1%, which is comparable to the average error when plotted per
loudspeaker (7.2%). Thus, the model assess the quality of a single frag-
ment recorded using a certain loudspeaker in a certain environment with an
accuracy comparable to the prediction per loudspeaker.

It is important that further model validations are carried out by taking into
account the combined effect of loudspeaker distortions, as well as other
types of distortions (e.g. amplitude clipping, low bit rate audio coding,
time clipping). It is expected that the performance of the model will drop
when the model is validated on these type of distortions that are unknown
to the model. However it is also expected that a retraining will allow the
model to cope with these new distortions.

Furthermore, it is important to investigate the influence of different HATS
on the performance of the model. Possible influential parameters are the
size of the ears, the size of the head and the difference in quality of the
microphones used in the HATS. It is interesting to observe to what extent
each of these parameters will influence the results of the model. For in-
stance, it is expected that the usage of two different HATS to record the
reproduced reference signals and the degraded acoustic output respectively
results in significantly lower correlations of the model, if the HATS have
different types of ears. We expect that the current model needs to be re-
trained slightly when dealing with these types of variations, to cope with
the differences in Head Related Transfer Functions.



Finally, the optimization strategy used in this paper does not guarantee an
optimal solution. Instead, it produces a local optimum that is presumed
to be good enough. This optimization strategy is used due to hardware
restrictions. A simple solution is to improve the capabilities of the hard-
ware using vertical or horizontal scaling. Scaling vertically results in an
upgrade of hardware, which improves the computing power. Scaling hori-
zontally introduces more hardware, resulting in more efficient paralleliza-
tion. Sufficient scaling may lead to the feasibility of a brute force approach
in reasonable time. Furthermore, variations of our current algorithm have
the possibility to perform better, depending on the situation. An example
would be to introduce a form of relaxation that accepts solutions that are
worse than the current optimum found in the algorithm. This allows for a
more extensive search in the solution space.
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Appendix

1 INTRODUCTION

The appendix contains information that cannot be found in the paper. Sec-
tion 2 gives an overview of the content of the deliverables for this research.
Section 3 gives instructions on how to use the application of the model and
gives an in-depth overview of the time and memory complexity of the algo-
rithms used in the model. Section 4 gives an overview of the materials used
in the experiments.

2 DELIVERABLES

The following list contains the structure of the folders of the deliverables.
This list, called “Readme.pdf”, can also be found in the root folder. The
root folder has the following structure:

Model:

Config Data:
* Contains the Config.xml file needed to run the application.

Databases:
* Contains two databases that can be used to run the application.

Documentation:
* Contains the documentation website for the code.

Click on “index.html” to open the website.

Project:
* Contains the Visual Studio 2013 project for the application.

* Contains a “Readme.pdf” for the application.

Build:
* Contains an executable of the application.

* Contains an “.cmd” file used to start the application.

Do not forget to change the path of the argument in this file.

Documents:

Results:
* Contains the correlation coefficients of all experiments.

* Contains the results of the training & validation phase.

Paper:
* Contains the paper bundled with the preface and the appendix.

3 MODEL

This Section is divided in two Subsections. Subsection 3.1 presents
an overview of how the application works. Subsection 3.2 presents an
overview of the time and memory complexity of the application.

3.1 Overview

The executable of the application accepts a single argument. The argument
is the absolute path to the configuration “.xml” file that is needed to run
the application. An example of this file can be found in the “Model\Config
Data” folder. It is important to change this file, as the application uses
absolute paths to find certain files and folders.

The model uses the databases described in the configuration file as the input
of the model. A database is described with the following information. The
name of the database should be a unique identifier. This name is used as the
identifier of the database in the application and when writing the results to
disk. There is also a field with the size of the database. It is important that
this number is correct, because it is used to validate the cache. The path to
the database points to a folder with all the reference and degraded signals
in this database. The audio data path is the path to the cached “.xml” signal
files that are written to disk. If there are no cached “.xml” files, the applica-
tion will create these files the first time it is run. Note that this feature can
be turned off at the top of the configuration file. The documentation path is
used for the documentation about the database. Examples of these files can
be found in the “Model\Databases\Subset Database X\ Documentation”
folder. This file is responsible for all information regarding the signal in
this database (e.g. sMOS, CI95, sample rate, relative reference & degraded
paths).

The predictors describe the function that produces ψk (see Section 4 of the
paper) and the polynomial P. It is important to note that the configuration
file only accepts a single polynomial that is used for all input. It is recom-
mended to leave this polynomial as default and apply the polynomials for
each database context dependently using a statistical program (e.g. excel).

The variables are categorized per component in the pipeline. You can refer
to the paper when needing to change a parameter of a certain component.
The actual purpose of the variables can be found in the code.

The optional part of the configuration file is only needed when optimizing.
Thus, if one wants to use the model as it is supposed to (i.e. processing
signals), this can be deleted. However, this should be filled in when op-
timizing. The information needed is straight forward. There is room for
expansion for different optimization algorithms. The configuration file, and
the corresponding parser in the code, is built in such a way that it is easy
to add or delete information. The same can be done when implementing a
polynomial per database instead of how it is currently.

The application can be run when everything is filled in correctly. It is a
simple console application that displays all the necessary information in the
console window. Note that the application should be compiled in x64, if the
Visual Studio 2013 project fails to compile with the default settings. The
results of the application can be found in the specified results folder after
the application is done with the calculations. The results consist of a log
file and the results per database, categorized per folder. When performing



the optimization, the results are bundled based on the hill climbing instance
in the code that produced the results.

3.2 Complexity

The complexity of the application is defined as the time and memory the
application consumes when executing the pipeline and its components (see
Figure 2 of the paper) for a single output vector Ω. It does not include
the optimization of the variables (see Subsection 2.4 of the paper) and the
multiple polynomial regression. The multiple polynomial regression is per-
formed by an external program called “Uni Huge”, which is a statistical
program developed within TNO.

Time Complexity: The pipeline can be divided in two categories; i) all
operations before the Fast Fourier Transformation (FFT), and ii) the FFT
and all operations after the FFT. The first category performs all operations
on 1 dimensional signals (a function of time). The second category per-
forms all operations on two dimensional signals (a function of time and
frequency). The number of signals and channels processed by the pipeline
can be regarded as constant values, because they are both fixed at a value of
2.

Almost all components in the first category have a time complexity that is
linear in the number of samples N per signal. However, the calculation of
the cross correlation is more complicated. It is calculated by reduction to
the convolution of f ∗(−t) ∗ g (see Equation 1), where f is X(t)c and g is
Y (t)c.

f ?g = f ∗(−t)∗g (1)

One of the fastest ways to calculate this, is by calculating the circular convo-
lution of two signals using the FFT of each signal (padded with zero values
at the end of the signals), multiplying them pointwise, and then performing
the inverse FFT. This algorithm has a time complexity of O(NLogN).

The calculation of the FFT in the second category can be done efficiently
with a time complexity of O(MLogM) if the length of the signal used for
the FFT, M, is a power of two. Further, the pipeline uses windowed FFT,
which divides the signal in N

M segments based on a window, where M is the
size of the window, and performs a FFT on these segments. Thus, the time
complexity to calculate the FFT on a signal is O(NM

M LogM). This can be
simplified to O(NLogM). The result of the FFT is a signal as a function
of the time frames n and frequency bands f , where n is equal to N

M and
f is equal to M

2 − 1. The rest of the components in this category have a
time complexity based on f and n, O( N

M
(M

2 −1
)
). This can be reduced to

O(NM
M ), resulting in O(N).

The upper bound of the whole pipeline can be written as O(NLogN) if
N ≥ M. This is always true, due to the mandatory 1 second of silence at
the beginning of each signal. Further, each signal is sampled at 48 kHz,
resulting in a signal of at least 48.000 samples. However, this upper bound
is only valid when reading the audio files from disk, due to the cache the
application uses. The cache saves the state of all signals processed by the
application after the frequency warping, and writes it to disk. These files
are loaded in memory and any subsequent calculations for these signals will
use the cache. Thus, the components in the first category are not calculated
in this approach, resulting in a time complexity of O(NLogM).

The time complexity of the application changes to O(DNLogM) when pro-
cessing multiple signals, where D is the number of signals that need to be
processed. The increase of the factor D is compensated by the fact that
each vector Ω is calculated on a separate thread, resulting in a significant
increase of speed depending on the hardware used.

Memory Complexity: The cache has no upper bound on its size. Thus,
all signals that are processed by the application are loaded in memory. This
is important when optimizing the model variables, because the I/O per op-
timization round is a significant bottleneck. Thus, the cache results in a sig-
nificant increase in performance, at the cost of a larger memory footprint.
The memory complexity depends on the number of signals D processed
by the application and the size S in memory of each fragment. Thus, the
memory complexity of the algorithm is O(DS).

Each signal used in the application is in stereo and is sampled at 48 kHz.
Each sample in a signal has a size of 16 bits and has a duration of about
30 seconds, with at least 1 second of silence recorded before the music
fragment starts. This results in a size of approximately 6 MB per signal.
The input of the model consists of a reference and degraded signal, resulting
in an input of size 12 MB. A total of 348 pairs were processed by the model,
resulting in a memory footprint of 4 GB. This could be a problem, due to the
fact that this footprint grows linearly with the number of signals processed
by the application. A previous iteration of the application had a cache that
loaded blocks of information in memory, resulting in a maximum memory
footprint that could be controlled by the user. Thus, a solution to a potential
memory problem is to define an upper bound on the size of the cache by
swapping blocks of information in and out of memory.

4 EXPERIMENTS

This section gives an overview of the materials used in the experiments.
This includes the different loudspeaker systems and the music fragments
used in the experiments. The fragments that are used in the first experiment
were used in the development of the MPEG standard. The corresponding
MPEG database did not save the original names of these fragments. Instead,
they are described by the type of music signal (e.g. accordion, trumpet).
The loudspeakers and the fragments used for each experiment can be found
in Figures 1, 2 and 3.



EXPERIMENT 1

Figure 1: The materials used for the first experiment. Each fragment was played over all the loudspeaker systems in a high quality listening environment with
excellent acoustics.

EXPERIMENT 2

Figure 2: The materials used for the second experiment. Each fragment was played over all the loudspeaker systems in a high quality listening environment
with excellent acoustics.

EXPERIMENT 3

Figure 3: The materials used for the third experiment. Each fragment was played over all the loudspeaker systems in three low, to average quality listening
environments (i.e. living room, kitchen, hallway).
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