Coarsening functional parallelism using
intelligent search algorithms
Utrecht University

= Utrecht University

Oscar Leijendekker!

July 1, 2016

ISupervised by Ana-Lucia Varbanescu

Abstract

The increase in parallelism in modern-day computer architectures requires
programs capable of exploiting that parallelism. With the goal of automating
the process of creating parallel implementations, we want to extract implicit
parallelism from a program. This can be done easily when dealing with func-
tionally pure languages but doing so may generate a parallel implementation
that spends more time on communication than it saves on computation. To
this end, we present a method capable of iteratively reducing the amount of
parallelism until a proper balance between computation and communication
is reached. Our method may be able to find more useful implicit parallelism
than simply selecting tasks based on their size, as has been done in previous
work.

Acknowledgements

I want to thank my supervisor, Ana-Lucia Varbanescu for our inspiring and
fruitful discussions and managing to keep my enthusiasm intact despite my
initial underestimation of the problem. I'd also like to thank my examiners
Gerard Vreeswijk and Atze Dijkstra, for putting up with my desire of writing
a thesis steeped in a field outside both my and their own comfort zones.

Contents

1 Introduction 4
2 Background 6
2.1 The need for parallelism 6
2.2 Data parallelism and task parallelism 8
2.3 Parallel architectures 9
2.4 Data-races, data-flow dependencies and functionally pure lan-
GUAZES .« « o o o e e e e e e e e 10
2.5 Task granularity and load-balancing 11
2.6 Scheduling 11
2.7 Execution time estimation and profiling 12
3 Design 14
3.1 Overview. 14
3.2 The execution-order graph 15
3.3 The data-flow dependency graph 17
3.4 Allowed merge operations 18
3.5 Task execution time estimation 24
3.6 Stop criterion 24
3.7 Execution-order graph evaluation 26
4 Implementation 28
4.1 Language design and syntax 29
4.2 Task and data-flow dependency extraction 30
4.3 Initial task cost estimation 31
4.4 Search algorithm 32
4.5 Visualizationo 32

5 Case study
5.1 Setup.
52 Results.

6 Discussion
6.1 Data-parallelism
6.2 Language requirementso
6.3 Search strategy comparison
6.4 Graph evaluationo
6.5 LVars.

7 Related Work
7.1 Coarseness-based parallelization decisions
7.2 Stream languageso

8 Conclusion
Appendices
A Mergesort program

B Mergesort C++ program
B.1 Compiled file
B2 mainfile
B.3 library files

33
33
38

42
43
44
45
45
45

46
46
47

48

53

54

Chapter 1

Introduction

Future microprocessors are expected to be increasingly parallel [1]. More-
over, while parallel processing power is still expected to increase, sequential
execution times are not. This creates a need to write programs that can
exploit this parallelism.

Unfortunately, writing such programs is a hard task for programmers
and new methods must be developed to ensure the broad adaptation of par-
allelism, such as ensuring the correctness of parallel implementations and
improving current programmer productivity [2].

A key part of writing parallel implementations is deciding which parts, or
tasks, will run concurrently with each other. Such decisions are made based
on two criteria. First, we must know which tasks can run concurrently based
on how they depend on each other’s outputs. Secondly, we must consider
how parallelizing the tasks will affect the program’s overall execution time.

Since communication between processing units takes some amount of
time, the design of parallel programs requires balancing the time spent on
computation with the time spent on communication. Using tasks with a fine
granularity, i.e. tasks which take little time to compute, will increase the
time spent on communication, whereas using tasks with a coarse granularity
will reduce the amount of parallelism available and may therefore increase
the time spent on computation.

Traditionally, methods have attempted to address this issue by restricting
which tasks are allowed to incur a communication overhead. Only those
tasks who’s expected execution time is greater than some threshold value
were allowed to be offloaded to other processing units. This has a major
drawback in that opportunities for parallelism are only considered if they

can be found in single large tasks.

We attempt to improve on such approached by defining a method capable
of creating coarse-grained tasks from fine-grained one. This could be used
to decompose a program into its smallest elements and assembling suitable
tasks from them, thereby considering more situations than just singular big
tasks.

Our research will therefore attempt to answer the following question:
how can fine-grained tasks be merged intro coarser ones while respecting
execution-order restrictions so that a balance is found between computation
and communication.

The rest of this paper is structured as follows. In chapter 2 we will
provide the background knowledge required in the other chapters. Chapter
3 contains the details of our method, explaining which tasks may be merged,
when to stop merging and how to quantify how ‘good’ a merge is. We discuss
how this method is implemented in chapter 4, where we also present a sample
language used to decompose program into its smallest parts. A case study for
a sample program is introduced in chapter 5. We discuss the strengths and
weaknesses of our method in chapter 6 and provide ideas on how it could be
extended. In chapter 7 we place our work in the context of previous research
efforts. We conclude in chapter 8.

Chapter 2

Background

In this chapter, we introduce the background information required to fully
understand the rest of this paper.

Section 2.1 elaborates on why parallelism is required.

Section 2.2 explains the distinction between data parallelism and task
parallelism.

Section 2.3 describes some existing parallel architectures and what their
strengths and limitations are.

Section 2.4 explains what data races are and some ways to avoid them.

Section 2.5 elaborates on the importance of having tasks with the right
granularity

Section 2.6 briefly mentions what schedulers are and what types of sched-
ulers exist.

Section 2.7 describes some methods that can be used to estimate the
execution time of a task.

2.1 The need for parallelism

In the past, speed improvements in program execution times could be achieved
by simply running it on a faster machine. An increase in instruction through-
put was achieved through higher clock speeds and architecture design im-
provements that detected and exploited parallelism at instruction level. This
trend ensured programs were expected to run faster on future machines with-
out having to rewrite them. In recent years, this increase in execution speed
has been stalled.

Increasing the clock frequency requires more electrical power. Further-
more, the energy requirement increases faster than the clock frequency. This
is due, among other things, to ’leak’ currents. These are small leaks of elec-
tricity that become larger as more power is put on a microprocessor. Along
with the obvious cost of using additional power comes the increased cooling
requirement as microprocessors essentially convert electric energy into heat.
This situation leads to a practical maximum for clock frequency which is
often called the power wall.

Another problem with increasing processor frequency lies in relatively
slow memory. Although small memory, e.g. registers, exist that can match
a processor’s speed, the larger main memories have lacked behind. Not only
is its frequency generally much lower than the processor’s, communicating
with main memory also takes a relatively long time. Although this issue is
partially addressed through the use of caches, these caches are subjected to
the same physical limitations as main memory; fetching data from them is
relatively slow and it will only become slower as caches increase in size. As a
task must wait for data to be loaded, a processor which can perform no other
operations in the meantime will stall, limiting it’s instruction throughput.
This limitation is called the memory wall and its impact is further elaborated
in [3].

Although some tricks have been used to improve sequential execution
times, there is a limit to how far we can take them. Scalar processors,
which pipeline instructions, are now commonplace. They allow for multiple
subsequent instructions to be processed at every clock tick, each in a different
stage in the pipeline. This approach requires us to fill the pipeline and as
such, to predict what instructions will be executed in the future, before the
current one has been fully computed. The larger the pipeline, i.e. the more
parallelism, the more instructions we need to predict. Superscalar processors
will try to execute multiple instructions concurrently in separate pipelines
if they detect that this is possible, i.e., that instructions don’t rely on each
other’s results. Such systems can only analyse a program at instruction
level, after it has been compiled. This means that high-level parallelism
between instructions that are farther apart is unknown to them, which limits
their usability. Superscalar processors suffer the same prediction problems
as scalar processors as they too require us to know what instructions will be
executed in the future, so that we may compute them now instead.

Besides the limitations in their use, neither of these approaches helps us
deal with the memory wall.

So as past strategies reach their limits, further speed improvements must
be found elsewhere. Specifically, in explicit parallel programs. If we have
many tasks that can execute concurrently we could process multiple of them
at the same time instead of processing each one faster, reducing the need for
a higher clock frequency. Furthermore, while one task waits for data from
memory, we can process another one. For this reason, future microprocessors
are expected to be explicitly parallel [1], requiring program implementations
capable of exploiting this parallelism. Writing such programs, however, is
a difficult task requiring new approaches aimed at increasing programmer
productivity while ensuring the results’ correctness [2].

2.2 Data parallelism and task parallelism

There are, broadly speaking, two types of parallelism: data parallelism and
task parallelism.

Data parallelism occurs when the same operation is applied to multi-
ple data-points. For example, when rotating a geometry made of triangles,
every point, i.e. vertex, needs to be multiplied with a matrix, the multipli-
cations are not interdependent so they may be executed out of order and
consequently, in parallel.

Figure 2.1 is a graphic representation of a data parallel operation; we
apply the same function, Az — f(x), to every data-point to get our result.

do dy dy ds dy ds ds d;

fldo) | fldy) | f(da) | flds) | f(da) | fds) | FO) | fldr)

Figure 2.1: A data parallel operation

An interesting member of data-parallel operations are vector operations.
Vector operations are not only data parallel, they perform exactly the same
instructions for every data-point. The example about geometry transforma-
tion we gave is a vector operation. If instructions executed differ due to
e.g. the presence of conditionals, a data-parallel operation is not a vector
operation.

Task parallelism occurs when two, potentially different, tasks do not di-
rectly or indirectly depend on each other’s outputs. Figure 2.2 is a graphical
representation of task parallelism.

dy da

Az — f(x) Az — g(z)

f(dy) 9(da)

Figure 2.2: An example of task parallelism

In that situation, Az — f(x) can be executed on one processing unit
while Az — g(x) is offloaded to another.

In our method we will look exclusively at task parallelism. In chapter
6 we will theorize how the method could be expanded by considering data-
parallelism as a special case.

2.3 Parallel architectures

Different parallel architecture exists, each with their own advantages and
drawbacks. We will briefly mention a few common ones.

Multi-core processors are the industry’s answer to hitting the limitations
of sequential instruction execution [2]. They essentially have multiple semi-
independent processing units. It varies per architecture what resources are
shared as there is no exact definition of a ’core’. Multiple cores are capable
of exploiting both data and task parallelism.

SMT cores may have multiple threads in their pipeline at the same time.
This is an efficient form of hardware multithreading, essentially simulating
multiple cores. Sharing a core between threads means that while one thread
is waiting for a memory read or unsure about future instructions, the core can
run another one. Since multiple hardware threads share a pipeline, they are
generally expected to be slower in throughput than multiple cores, although
this may not always be the case as cache-sharing may reduce communication
overhead. Some of the benefits of SMT cores are further explained in [4].

SIMD processing units, such as GPUs, execute an instruction on multiple
data-points with a single operation. This makes them exceptionally fast
for vectorization but incapable of task parallelism. Other forms of data-
parallelism can sometimes be simulated, but this is slower than real vector
operations.

FPGAs are programmable hardware components which can be used to
create program-specific pipelines.

Most present-day systems are heterogeneous, e.g. they contain both mul-
tiple cores and a SIMD unit.

2.4 Data-races, data-flow dependencies and
functionally pure languages

When tasks are run concurrently we no longer know when they will access
data in memory. If tasks read and write to the same memory location,
scheduling them concurrently can change the order in which this happens. A
tasks may read data that does not exist yet, as the task that should write that
data has not done so yet, resulting in undefined behaviour. Such a situation
is called a data race. We can avoid data races through synchronisation, e.g.
not running one task before all the data it requires has been written. To do
this we must be able to identify what a task’s data-flow dependencies are. A
task has a data-flow dependency from another task if it requires data which
that other task provides.

The difficulty of extracting data-flow dependencies from a program varies
based on what programming language is used.

Functionally pure languages such as Haskell and Mercury ensure that a
function! will not read or modify any global state; it depends entirely on
its inputs and outputs. Thanks to this property, we know that functions
written in those languages only have data-flow dependencies with tasks that
provide their inputs or read their outputs. Data-flow dependencies have been
extracted for functionally pure languages abundantly in previous research
[5, 6, 7]. Furthermore, new languages developed with the intention of easing
the creation of parallel program implementations are often functionally pure
6, 8, 9].

On the other hand, traditional imperative languages such as C do allow

Lor predicate in the case of Mercury

10

for global state access. This adds a degree to uncertainty concerning what
parts of memory a function will use. Methods used to find data-flow depen-
dencies for such languages, e.g. [10], will therefore require confirmation from
a programmer who knows which tasks are indeed data-flow independent.

By finding all data-flow dependencies we can extract all the parallelism
that is implicitly present in a program’s code.

2.5 Task granularity and load-balancing

Even if we can extract all the implicit parallelism present in a program, this
will create tasks with a very fine granularity. As mentioned in the chapter
1, having many parallel tasks will require more communication operations.
If the tasks are particularly small, we may be spending more time commu-
nicating than was saved on computation time.

On the other hand, if we have very large tasks, load balancing, i.e. dis-
tributing the tasks over available hardware so that the program will run
fastest, becomes more difficult. For example, if a system has 4 cores and we
wish to execute 5 equally-sized tasks on them, there is no way to distribute
them evenly.

This dichotomy of reducing communication overhead and maintaining
parallelism, using coarse or fine granularity, is often addressed by selecting
tasks. The effect of offloading a task to another processing unit is estimated
based on e.g. input sizes, heuristics or profiling. If the effect is expected to
be positive for program execution time, we allow the task to be offloaded.
Any other task is run sequentially, avoiding communications overhead. This
approach has been implemented in various ways [11, 7, 5]. One possibility
is to compare a task’s expected execution time with a threshold. If the
threshold is at least the time spent on communication for a particular task,
the time saved by offloading that task will be greater than the communication
time, provided there is enough unused hardware to execute the task. Our
method will try to improve on this approach.

2.6 Scheduling

After having divided a program into tasks we must decide how to distribute
them over the available hardware resources. Although it is possible to make

11

a static schedule, doing so in an efficient manner would require us to know
at compile time what the execution time of each task is. This is difficult for
multiple reasons:

e Execution times of tasks may vary depending on their inputs.

e Other processes may contend the hardware we plan to use, slowing
down a task.

e The effect of caches can be very hard to predict, especially if multiple
cores share one or more caches.

e [ts often the case that not all targeted systems have the same hardware.

These problems can be mitigated by using a dynamic scheduler. Sched-
ulers will distribute the workload over available hardware at runtime. This
can be based on the expected execution time of tasks or simply by letting
inactive threads check if they can take over any work from active threads.
Examples of schedulers are Cilk [12, 13], Wool [14], StarPU [15] and StarSS
[16].

We will not use schedulers in our work but the task we generate should
be fed to a scheduler to create a working parallel program implementation.

2.7 Execution time estimation and profiling

Execution time estimation is a broad problem in informatics.

For critical systems it is sometimes required to know an upper bound of
the execution time of certain programs. This is a much researched topic [17,
18, 19], but proposed methods do not work for more advanced instructions
which introduce a degree of uncertainty. Although execution time estimates
can be made for modern linear languages [20], estimating the run-time of
complex parallel systems is a difficult problem. Such estimates have been
made, but are often on a very coarse scale [21] or require running the program
first [22].

An obvious way to estimate the execution time of a program or task is to
run it, measure how long it takes and expect this value to be indicative of the
execution times of future runs. This is called profiling. There are two main
ways of profiling code: instrumentation profiling, where the time between
specific instructions is measured, and statistical profiling, where the program

12

is interrupted multiple times and its stack is analysed. This gives us an idea
of which functions are executed the most and therefore take the most time.
Instrumentation profiling is simpler but increases the program’s execution
time, making the profiling results less accurate. Statistical profiling on the
other hand requires a sufficiently large number of samples to be accurate.
Furthermore it only gives us the total execution time of a task, i.e. its
execution time multiplied by the number of times it has run, not the time
required to run the task once.

13

Chapter 3

Design

To ease the creation of parallel implementations of programs, we require a
way to ensure tasks selected for concurrent execution have the right granu-
larity, so that we may balance computation time and communication time.

In this chapter we will elaborate the design of our method. We will first
give a brief overview of how our method works.

3.1 Overview

We design a method that can take a set of fine-grained task with data-flow
dependencies and from them generate sufficiently coarse-grained tasks, fit for
parallel execution. The method will attempt to preserve parallelism as much
as possible and it will respect the restrictions set by data-flow dependencies.
Thus we will improve on previous methods that relied on simple selection of
tasks, thereby requiring these tasks to be sufficiently coarse to start with in
order to find any useful parallelism. That is, these methods do not consider
the possibility of merging multiple tasks together, which would incur the
communication overhead only once for all the merged tasks.

Our method can be used to decompose a program into very small parts
and merge these parts into tasks of an acceptably coarse granularity. It finds
which tasks may be merged based on data-flow dependency restrictions, as
we detail in section 3.4. The merging of tasks needs to stop at some point,
or we would end up with a sequential implementation. To this end we will
define a stop criterion in section 3.6. Since there are multiple ways in which
tasks can be merged we need to find the best one. This is done using an

14

intelligent search algorithm. Any such algorithm requires a fitness function
to determine how good a certain result is. We will present our search function
in section 3.7.

A naive solution could be constructed by using profiled execution time
as a fitness function. The stop criterion could be reached once no merges
exist that further improve the fitness value. However, this would require a
lot of profiling which may be too computationally expensive. This problem
is further increased as values yielded by profiling may be noisy and require
many runs to be representative. The stop criterion and fitness function we
present can be performed statically provided we can estimate the sequential
execution time of single tasks. How we make this estimation can be found in
section 3.5, it will require only one profiling run.

Our method requires a data-flow dependency graph, defined in section 3.3,
and produces an execution order graph, defined in section 3.2.

Our method does not commit to one search algorithm or another but
instead provides a context which may be used by different algorithms. In
chapter 4 we will further elaborate what algorithm we used for the imple-
mentation.

3.2 The execution-order graph

The output and intermediate results of our method are expressed as an
execution-order graph. This is a graph that denotes what tasks exist and
how they depend on each other. We formally define the graph in definition
1.

Definition 1 A program execution-order graph G = {T, D,r} is an acyclic,
directed, antitransitive graph representing a program’s task execution order.
In the above formula, T is a set of tasks and D the set of data-flow depen-
dencies between them. r is a root node s.t. v ¢ T but It € T'(r € Dy, (t)).
Fort € T we have Dy, (t) € D, defining all outgoing data-dependencies for
t and Dy, (t) defining the input dependencies. We note that iff. t* € Dy (t1)
then t; € Dy, (ts). An execution-order graph is always antitransitive.

An example execution order graph is provided in figure 3.1. This is a
possible graph for a program that computes values for some variables x;
and w9, uses xo to compute y and finally computes z using all previously
computed variables.

15

start

Figure 3.1: An example of an execution-order graph

A task may require data provided from multiple tasks, but may not be
connected to all these tasks. A connection between two tasks can only exist
if there is no chain of tasks already connecting them. This means every
task is only connected to those tasks that it must explicitly wait for, which
makes visual representations of the graph prettier as it is closer to a possible
implementation. Although this property is stronger than antitransitivity!,
we denote it as antitransitivity in the rest of this document.

The graph is also acyclic. Recursion, such as in function calls or loops,
is represented by a task that starts another graph. In the case of loops this
graph is ‘run’ multiple times.

Every task in the graph has a set of sub-tasks. Initially this set contains
one sub-task for every task. When two tasks are merged together the result-
ing task will contain the sub-tasks of both merged tasks. Sub-tasks within
the same task are executed sequentially and they are ordered.

Visually we will represent both tasks ¢ € T" and r by nodes and D by
edges between those nodes. The root nodes r will be coloured differently.

We point out the absence of a connection between nodes 2 and 4, even
though the latter depends on data (x3) from the former. This is because
there already exists a chain of nodes connecting them, as explained above.

Mfor antitransitivity this only holds for chains with a single intermediate node

16

3.3 The data-flow dependency graph

Input to our method is a data-flow dependency graph, which we will use to
construct a first execution-order graph. A data-flow dependency graph is a
graph representing how tasks depend on each other’s inputs and outputs.
It is similar to an execution-order graph but it is not necessarily antitransi-
tive. Furthermore, tasks in a data-flow dependency graph have exactly one
sub-task. This is not a necessity for our method, but, ideally, a data-flow
dependency graph would contain the maximal implicit parallelism of a pro-
gram, so tasks should not be pre-merged. Figure 3.2 depicts the data-flow
dependency graph that generated the execution-order graph from figure 3.1.

start

Figure 3.2: An example of a data-flow dependency graph

The dependency graph is defined in definition 2

Definition 2 A data-flow dependency graph Ggue = {7, Daata, T} consists
of all tasks T a program must execute and how they depend on each other.
Iff. task t* € T requires data provided by t' € T, then (t',t*) € Dayata-
Additionally, iff. task t* € T requires no data from other task, then (r,t') €
Dgara. No other elements exist in D g,

The dependency graph is directed and acyclic. It is directed because
an edge expresses that one node (a task) requires data from another, it is
acyclic because cyclic data-flow dependencies would be unresolvable: we can’t

17

execute any tasks in the cycle as all such tasks would depend on data that
is not computed yet.

To get from a data-flow dependency graph to an execution-order graph,
we must also make the former antitransitive by pruning any superfluous
dependencies.

For this we define the transitive operator >, given Dg.,. We note that
this operator has higher priority than any others.

ot e (t1,1%) € Dyara V It > 12 AP > 17)

This operator essentially denotes that > must execute after ¢!, although it
may not directly depend on it. Given a data-flow dependency graph Gaua =
{T, Dgata,r}, we construct an execution-order graph G = {T', D,r}. Only
the edges

{(t",¢*) € Dyata | =3 ((t*,1*) € Dyara Nt > %)}

are in D, all others are pruned.

The execution-order graph so constructed is the starting point for our
search algorithms. It will gradually be improved.

A data-flow dependency graph can be constructed from a program through
either static analysis or supervised profiling of memory accesses such as in
[10].

3.4 Allowed merge operations

When deciding which tasks may be merged together, it is important to en-
sure that merging those tasks will not result in any data-flow dependency
violations. That is, if an execution-order graph denotes that task ¢! should
be executed after task ¢2, any acceptable merge operation should result in a
graph were this is still the case. Furthermore, merging should not create any
cycles, as this would be unresolvable, as explained in section 3.2. In figure
3.3 we see an obvious example of a bad merge: not only have we inversed
the order in which ¢! and t* are executed, we have created a cycle, meaning
none of the task will ever start executing as they all wait for data from other
tasks.

To formally define these restrictions, we first reintroduce the > opera-
tor, used earlier in the context of a data-flow dependency graph, within the

18

merge (¢4, 1) e

O—0C—C—0b

Figure 3.3: An obvious example of a bad merge

context of an execution-order graph:
thot? «— (t' € Dy, (t2) v 33t € Dy () AP > 12)) (3.1)

To denote how tasks and their connections change after a merge operation,
we use the subscript m. For some t € T', ,, is the task containing all subtasks
of t after the merge operation is executed. That is, if m merges the pair
(t',¢?), then t! = 2 = (t';¢?), for any task ¢ that is not being merged
t, = t. We clarify that (t';¢?) is a task which executes the subtasks from ¢!
first, followed by the subtasks from ¢*. Note that t,, = t F& D;,(t;n) = Din(t),
in other words, the connections of a task may change even if the task itself
does not.

Now we can formalize our restrictions. Each of the following must hold:

ot =t >3 Vi =1 (3.2)
G
thot? =t otl
To ensure a merge meets these requirements, we only merge a pair of
tasks if it matches any patterns described in definition 3. We will prove that

these pairs meet our restrictions later, after we have further detailed how a
merge is performed.

19

Definition 3 For a graph G = {T, D,r}, we allow the following tasks to be
merged together:

e Siblings.
{{t",*} | 3 (t* € Din(t") A (t? € D (£7)) }
Le. tasks which both depend on a third task to provide some data.
e Co-parents.
{{t", £} | 3% (£* € Doue(t") A (t* € Doue(t?)) }
L.e. tasks that provide data to a common third task.

e Parent-child pairs.
{(",¢%) | t* € Dous(t")}
Le. two task of which one provides a data to the other.

We can merge a pair (t!,1?) creating a new task t!, = 2, = (t';¢*) with
the following connections:

Din(tL)) = make Antitransitive(D, (t") U Dy, (t*)) (3.5)
Dot (1) = makeAntitransitive(Doy (1) U Dy (1)) (3.6)

Where makeAntitransitive() is a function which prunes superfluous con-
nections in the same manner as is used for the creation of execution-order
graphs from a data-flow dependency graphs, explained in section 3.3. It also
removes reflexive connections.

We will now prove our restriction is met for all pairs considered in defi-
nition 3. By equation (3.5) and (3.6), a merge will only affect tasks directly
connected to those that are being merged. We will limit our proof to only
these affected tasks for the sake of brevity.

Proof 1 We note that t' and t* are not necessarily the nodes being merged,
unless otherwise stated.

20

First, we will prove that the way we merge tasks respects the order of
operations between the nodes after a merge, the restriction in equation (3.2).
From equation (3.5):

t' € D () & (ty, € Din(t2,)) V (th, > t2) V (82, = 1t,,) (3.7)

That is, if t* was an input dependency to some other task, the new node will
be as well, unless it was pruned by makeAntitransitive, which would also

remove reflexive dependencies.
By the definition of >, i.e. equation (3.1), we can abbreviate this to:

th € Dy (1) Eth >3 Vi =t

We can use this equation as the base case for a proof by induction. For
the sequential case we will prove t* € Dy, (t3), 13 > 12 [t >3 Vil =12 :

1€ Dinll), B0 b (th € D)V s = 2) AL, > 2,
= (1 € D) A o2 Vil =1,
=t >t2 Vi, =t

With this we have proven:
ot =t >t2 Vil =12 (3.8)

Which is our first restriction.
Now we must prove that each of the proposed merge-pairs will not cause
any cycles when merged (3.4) and that merging such pairs will respect any

order restrictions that exists between them (3.3).
For this we will require the following observation. Since the graph is

antitransitive:
t' € D () |E -3t > P AP 17) (3.9)

The proof for siblings and co-parents.
We will first prove that there exist no order requirement between siblings.

21

3 (t* € Din(t') A (12 € Dy (12)), tH o t* = (1P € Dy (tY) A =3 (#P > t* At > 12))
= 33((17 € Dy (t) A =(s th At > 12))
E3 (ot At e A (B st At b 1Y)
=1
(2 € Din(t') A (t* € D (7)) = —t! > 12
(3.10)

This obuviously satisfies (3.3).

We can also use it for our proof that restriction (3.4) is respected. Since
only connections to and from the merged nodes will be altered, those nodes
would have to be part of any cycles created:

Bott thotd =t =t Vil =t (3.11)
Where t' and t? are the nodes we chose for our merge while t and t* are
unbound, i.e. they may be any task € T'. We also note that

ottt EttotP viist? (3.12)

follows from (3.5). This means the execution order restrictions of the new
task must originate from either or both of the merged tasks.

We will now prove that merging tasks with no order-restriction between
them will not result in any cycles in G.

ELV(tet?) Vv (st L
=
—tl >t 2 et = (8 et At st3)
(3.13)

22

Similarly, we can prove that co-parents have no order restrictions between
them:

(% € Dot (t') A (t° € Doe(t%)) , ' > 87 = I3 (1" € Dy (82) A (2 1%))
=3 (=3t s A S P A (P P))
=3 (-t e P AP A (P t%))
=1
33 (1> € Do (1Y) A (£ € Dous(t?)) = —t' > 12
(3.14)

Thereby proving our restrictions are met in the same manner as for sib-
lings.

The proof for parent-child pairs. For parent-child pairs, the correct
order is enforced, so the proof for restriction (3.3) is obvious:

th € Dy (1), th = (5%, th o2, = th = (¢4 %)

As for cycles:

th€ Dy (1), th =12, C =3t >3 A2 > 1)
EI((t ot VESE)A (st Vi t?))
E3 (LVE e AP)V (et APtV L)
E3 (e APV (i)
E3 (et AP t?) V(P th)) At st
=3t > AP 1?)
E3EH s AL 2) A B P AP > 1)
=1
th € Dy (1), 1L =12 = -C
(3.15)
Where C' = 33t o2, A (83, > tL), for brevity. In this last proof we ve

used equation (3.12), the acyclic property of our input graph, transitivity of
>, equation (3.1) and the antitransitivity of our graph, in that order.

23

3.5 Task execution time estimation

Although we can now merge tasks without causing errors in the order they
are executed, we still need a stop criterion and a fitness function. As we will
explain later, we need to estimate the execution time of a task for either of
these.

We expect profiling to generally be too expensive to be used whenever we
require a new task’s execution time, so we will need a way to estimate their
execution times, or costs, through some kind of static analysis.

Although methods exist to estimate the execution time of a sequential
program based on static analysis of the code, as mentioned in 2.7, such
methods are much too complex and language-specific for the scope of our
research.

Considering the fact that our tasks consist of multiple subtasks that are
executed sequentially, it is fair to assume the cost of a task is the sum of the
cost of its subtasks:

c(t) =) clt;) (3.16)
tit

For instance, a task created by some merges c ((t'; ;%)) = c(t') +c(t?) +
c(t?). This requires knowing the costs for tasks in the original data-flow
dependency graph. How these costs are computed exactly is irrelevant to
our method, although they should be somewhat accurate for the result to be
useful. We propose profiling tasks with a non-minimal execution time and
assuming short tasks with O(1) complexity, consisting of few instructions to
have a cost of 0.

We note that using equation (3.16) as execution time estimation is not
entirely correct. The effect of cache misses, for one, may have unknown
consequences for the actual execution time of a particular task when it follows
some other one. We don’t expect this to be a real problem, but if greater
accuracy is necessary, the formula could be replaced by a new profiling run
once it depends on too many terms.

3.6 Stop criterion

As we mentioned earlier in this chapter we need to know when to stop merging
nodes. Otherwise we will end up with a linear program again. We wish to

24

stop when there is a good balance between time spent for communications
and time spent for computations. This happens when there are no tasks
for which we spend more time communicating than we save by offloading
their computation. So, assuming we have a minimal cost for tasks that
are allowed to be offloaded, called s, we have to ensure that no task which
causes a communication overhead is smaller than s. We note that s is at
least as large as the overhead of offloading a task, we cannot increase the
total execution time by doing so with tasks that take longer than s.
With this in mind, we define our stop criterion:

Definition 4 Stop criterion:
A graph G = {T, D, r} is accepted iff. It € T orVt € T any of the following
holds:

c(t) >s (3.17)
Ft? € Dous(t) (Din(t?) = {t} A c(t?) > s) (3.18)
Ft* € Din(t) (Dout(t?) = {t} A c(t?) > s) (3.19)

The notion that we should stop if 3¢ € T is trivial: if the graph is
completely sequential we stop merging. For the second part, we check if
every node matches one of three conditions: it is larger than s, it has a task
depending on it and it alone that is larger than s or a task larger than s
provides data to it and it alone.

The first condition is obvious, if a task is large enough we do not mind
an overhead. But this condition alone would be too strict, as demonstrated
in figure 3.4.

In this figure, if c(t!) < s, c¢(t?) < s, ¢(t?) > s and c(t?) > s, using
only (3.17) we would have to merge ¢' and ¢* with something to trigger our
criterion, either operation reducing the parallelism more than desired.

More generally, if a task follows or is followed by another task with no
waiting operations between them, those two tasks can be scheduled on the
same processing unit, causing an overhead only once. We get, as it were, the
smaller task ‘for free’.

The inclusion of criteria 3.18 and 3.19 does have the effect of accepting
some strictly sequential connections that are not fully merged, as in figure
3.5, where if ¢(t') > s or ¢(t?) > s, the stop criterion would trigger. Although
this is not a case of excessive parallelism, it may be undesirable. Luckily it
is trivial to merge such cases further.

25

Figure 3.4: An execution-order graph that should sometimes trigger our
criterion

®

Figure 3.5: Another execution-order graph that could trigger our criterion

3.7 Execution-order graph evaluation

Although we know which nodes can be merged together to reduce parallelism
and when to stop merging them, not all results are going to be equally
efficient. For instance, if we continually merge small tasks into a specific
big one, the stop criterion will trigger once only the big task remains, even
though we may have been able to merge the small tasks with each other and
end up with 2 big tasks that could run in parallel.

We need a way to compare graphs and decide which one is ‘best’; a fitness
function. Ideally, this function should yield a one-dimensional value as this
makes implementing intelligent algorithms much simpler and leaves us with
a single clear ‘winner’ instead of a set of them.

Considering that our end-goal is to improve the speed of concurrent pro-
grams, we use the expected execution time of the critical path as a fitness
measure. This time is the minimum we will require to compute every task
in the graph, given the current connections. It is what we would get on a
machine with no communication overhead and infinite processing units. It is

26

therefore a good measure to keep useful parallelism high and avoid creating
too many sequential dependencies.

We note that there might be better evaluation strategies if the target
machine is known. We will elaborate on this in our discussion in chapter 6.

27

Chapter 4

Implementation

In this chapter we will specify which parts of our method and its requirements
we implemented and how we did so.

First of all, we had to be able to extract a data-flow dependency graph
from a program. This meant either implementing a complex method that
profiles memory accesses to speculate which functions are independent or just
using a functionally pure, eagerly evaluated language and know for sure. A
choice was easily made for the second option.

Since being able to parse a full, modern language would constitute a lot of
work that is outside the scope of our research, we have created a very simple
language for demonstration purposes. We present it in section 4.1. Our
method is, however, applicable to other functionally pure, eagerly evaluated
languages as well. Section 4.2 explains how we extracted tasks from programs
in our language.

We have created a simple profiler to get the costs of our initial tasks,
it is described in section 4.3. We have also implemented a greedy maxi-
mizing algorithm and all the functions our method requires (e.g. creating
an execution-order graph from a data-flow dependency graph, finding merge
pairs, comparing graphs by their critical path and deciding whether a graph
meets our stop criterion).

Our code is written in C++, a repository with the source code and
the sample program used for the validation in chapter 5 is available at
https://bitbucket.org/DrBearhands/master-thesis.

28

4.1 Language design and syntax

The grammar for our simple language is as follows:

(programy) := (function) +

(function) ::=“function” (name) “(” ({arg) (“,” (arg)) = |“7)“) {” (statement) + “}”
(arg) =(“in"|“out”) (type) (name)
(statement) ::= (declaration)
| (while)
| (conditional)
| (function call)
| (assignment)
(declaration) = (type) (name) (“,” (name))x*
| (type) “[” (expression) “|” (name) (“,” (name))x
| (name) (“,” (name)) x “isSplit” (name) “at” (expression)
(while) ::=“while (7 (expression) “) {" (statement) + “}”
(conditional) ::="“if (7 (expression) “) {” (statement) + “}”
(function call) ::= (name) “(” ({expression) (“,” (expression))* | <7)«)”
(assignment) ::= (variable) “<-" (expression)
(variable) ::= (name)

| (name) “[” {(expression) “|”

Most of the syntax should be familiar to imperative programmers. We
also point the reader to the sample program in appendix A. We have omit-
ted the rules for expressions, types and names as they are not particularly
interesting but are somewhat complex.

One unusual feature of our language is splitting declaration for arrays.
This declaration creates two arrays by dividing the accessible indices of a
third one so that the two new arrays do not share any memory. A graphical
depiction is available in figure 4.1.

We use this feature to pass parts of arrays to a function without re-
quiring memory copy operations. This potentially allows to discover more
parallelism since the parts are disjoint: if two function calls require access to
disjoint parts of a data-structure, passing the whole structure might create
a dependency between them even though this is not necessary, obfuscating
opportunities for parallelism.

29

Although thinking about these split operations and how memory is ac-
cessed may seem like an additional burden on the programmer, which is
something we want to avoid by automating parallelization, making good use
of them can be summarized with one simple rule of thumb: to only give
functions access to data they actually need. We believe this is generally a
good design strategy in any case.

4.2 Task and data-flow dependency extrac-
tion

To extract a data-flow dependency graph for a program in our language, we
have implemented a parser. A graph is made for every scoped statement
block, i.e. the bodies of functions, conditionals and while loops. The state-
ments inside a block are the tasks of the graph. Conditionals and while
loops are both nodes and graphs. To extract the actual dependencies, i.e.,
the edges, we track the order in which variables are being read and written. If
a statement reads a variable, we add a dependency to the last statement that
wrote that variable. If a statement writes a variable, we add a dependency
to all the statements that have read that variable since it was previously
written.

This process is slightly more complex when split declarations are con-
cerned. In figure 4.1 we see an array A which has been split in two different
ways. Division B splits the array into B; and Bs, while division C' splits it
in C] and Cs. The locations in memory Ay — Ag are the same for all arrays.

We know that modifying By will not affect By, but it might affect A, C4
and Cy. For this reason, we group arrays we created from one split operations
into a division. We know that if we modify one array of a division the other
arrays of that division will remain unchanged, but that might not be the
case for arrays in other divisions. Therefore, if we read a variable from the
division of an array, we also consider to have read that original array and all
arrays in any other divisions we have created from that original array.

Although in our example we know that modifying B; will not affect (5,
these kind of situations are not necessarily known at compile-time since split
operations depend on non-constant expressions.

30

By By

C: Ao | A1 | Az | As | Ay | As | As ‘ A7| Ag | Ag

Cl 02

Figure 4.1: Multiple splits for array A

4.3 Initial task cost estimation

To estimate the costs of tasks in a graph, we compile programs from our
language to C++, adding the necessary instructions for instrumentation pro-
filing.

We profile tasks containing loops, conditional statement blocks and func-
tions. The costs of all other tasks we initialized to 0, as they have complexity
O(1) and should consist of few instructions.

We have chosen instrumentation profiling over statistical profiling be-
cause, even though it is less accurate, we are interested in the cost of running
a task once, not how much time it takes in our program in total.

We have chosen for C++ over C as a target language because it allowed
us to use some more advanced features, specifically templates and operator
overloading, which made implementing the source-to-source compiler much
easier. Since those are the only features of C++ we use that are not in the
common subset with C, we do not expect our decision to have negatively
affected execution times.

We can profile either the average or maximal execution times of tasks.
This will result in either realistic or pessimistic estimates, respectively. Using
maxima, the graph’s nodes’ costs will be higher, causing us to hit the stop
criterion sooner and therefore retaining more parallelism. In our tests, we

31

will use maximal values.
The generated C++ code is compiled into binaries using the g++ compiler
with flags -std=c++11 -02.

4.4 Search algorithm

We have implemented a simple greedy search algorithm to determine what
nodes to pick. We have chosen a greedy approach because it is simple and
requires few fitness function evaluations. This makes it a logical choice for
a first algorithm as it would be wasteful to use a slower and more complex
algorithm without knowing if a simpler one might suffice. We simply do
not know yet how problematic local optima might be in the field of implicit
parallelism extraction and reduction, if at all.

At every iteration, we find the set of all allowed merges. For each of
them, we evaluate the fitness function for the graph created by applying that
merge. This gives us a score for every merge, we then chose the merge with
the best score. The algorithm stops iterating when the graph meets our stop
criterion.

After this, we merge whatever sequential tasks are left into a single
task/node.

4.5 Visualization

We have written functions to export a graph to the dot format, used by e.g.
Graphviz. Graphs presented in chapter 5 were created in such a way.

32

Chapter 5

Case study

5.1 Setup

In this chapter we perform a case-study of our method using a merge-sort
algorithm. We have chosen this algorithm for three reasons:

e [t is easy to implement

e Thanks to its similarity to a naive Fibonacci program, it is obvious
for a human programmer what the correct parallelization is, making it
easy to validate our results.

e [t has a very consistent execution time, making profiling results a good
estimation of future runs for similar data-sizes.

The program’s implementation in our testing language can be found in
appendix A. The generated C++ program that was used for profiling is at-
tached in appendix B.1, appendix B also contains other source files used for
profiling, e.g. to initialize the values to be sorted.

As input to the merge-sort program we use an array of 10 million float
values.

We extract the program’s data-flow dependency graphs and turn them
into execution-order graphs. We then feed the execution-order graphs to
our search algorithm. We will examine the resulting graphs to determine
whether they coincide with our expectation of what a human programmer
would create.

33

Although comparing execution times may seem obvious, we do not do
this. Our method is aimed at finding more opportunities for parallelism than
simple selection of tasks does, if the opportunities it finds are equally fast, a
faster alternative may simply not exist. Execution time comparisons would
therefore only be meaningful on a large, representative dataset of programs,
which we do not have for our language. Furthermore, our method does
not require the use of any specific parallel programming paradigm, so an
exporting the execution-order graph into a program for a particular paradigm
may well yield biased results. Considering these issues, creating an exporter
is more work than we believe it’s worth.

Figures 5.1, 5.2, 5.3 and 5.4 show the execution-order graphs our method
generated for the various functions. These are the graphs we start with,
before any tasks have been merged.

function TopDownMergeSort(inout float[] A)

long size a;
{0}
ArraySize(size a, A)
{0}
float[size a] B
{0}
TopDownSplitMerge (A, B)
{29.748807}

Figure 5.1: The execution-order graph for the TopDownMergeSort function
at iteration 0

In these graphs, we have represented tasks containing statements which
have both a scoped statement block and a tree of their own by creating a
dashed edge between that node and the root of its tree. Root nodes are
represented by coloured, rectangular nodes. The execution time estimations
are written in the nodes within curly braces.

In figure 5.1 we see the graph for TopDownMergeSort. This graph is
essentially sequential and therefore not interesting for our method.

function CopyArray(in float[] B, inout float[] A)

long i, size.a;

{o}

ArraySize(size_a, A)
{0}
while ((i<size_a))
{0.020525}

while ((i<size_a))

A[i] <- B[i]

0

Figure 5.2: The execution-order graph for the CopyArray function at itera-
tion 0

35

function TopDownMerge(in float[] AO, in float[] A1, inout float[] B)

long i0, i1, j, size_ a0, size al, max_ iterationms;

{0}

ArraySize(size_al, A1)
{0}

ArraySize(size_ a0, AO)
{0}

max_iterations <- (size_aO+size_al)

{0}

while ((j<max_iterations))
{0.810714}

o]
while ((j<max_iterations))

if (((i0<size_a0)&((il>=size_al)|(A0[i01<=A1[i1]))))
{0.031632}

if (((i0<size_a0)&((il>=size_al) | (A0[i0]<=A1[i1]1)))) if (((i0<size_a0)&((il>=size_al) | (A0[i0]<=A1[i1]1))))
FALSE TRUE

B[j] <- A1[i1] B[j] <- A0[i0]
{0} {0}

i0 <= (i10+1)

{0}

Figure 5.3: The execution-order graph for the TopDownMerge function at
iteration 0

36

function TopDownSplitMerge(inout float[] A, inout float[] B)

long size a;
{o}

ArraySize(size_a, A)

{0}

if ((size_a>=2))
{29.748806}

I
o

if ((size_a>=2))
TRUE

long iMiddle;
{0}

iMiddle <- (size_a/2)

{o}

BO, B1l, isSplit B at iMiddle Q, A1, isSplit A at iMiddle
{0} {0}
TopDownSplitMerge (A1, B1) TopDownSplitMerge (A0, BO)
{29.748807} {29.748807}
TopDownMerge (A0, A1, B)
{0.810714}
CopyArray (B, A)
{0.020525}

Figure 5.4: The execution-order graph for the TopDownSplitMerge function
at iteration 0

37

In figure 5.2 we see the graph for a CopyArray function. This graph
illustrates a weakness of our method: a vector operation, copying one array
to another, something that can often profit easily and massively from parallel
architectures, is expressed as a linear loop. Although it is not relevant in this
specific example as its estimated cost is relatively low, our method should
eventually be improved to deal with these cases. We will discuss how we
might improve on this later, in section 6.1.

In figure 5.3 we see a clear example of too fine granularity. The depicted
TopDownMerge function should be linear for maximal efficiency.!

Finally, in figure 5.4 we see the graph of the function TopDownSplitMerge.
This is the function in which we’d like to keep some parallelism. Specifically,
the recursive function calls TopDownSplitMerge (AO, BO) and TopDownSplitMerge (A1,
B1) should stay parallel to each other, as these are two large tasks that will
take longer than the communication overhead incurred by offloading them.

Besides those two function calls, we want to get rid of all parallelism from
these graphs.

We have used a threshold value s = 0.5. In our test case however, we
expect that any non-zero value lower than the cost of TopDownSplitMerge
should yield the same results since all other non-zero cost tasks are sequential.

5.2 Results

After feeding the execution-order graphs from last section to our search al-
gorithm, we ended up with the graph depicted in figures 5.5, 5.6, 5.7 and
5.8.

It is immediately obvious that we have reached our goal for figures 5.5 and
5.6, they are both completely sequential as evident from the graph, although
this was already the case for the former.

Figure 5.5 also shows a completely linear graph. Although there appear
to be two parallel nodes, those are actually two separate graphs of which
either the one or the other is called, depending on the result of evaluating of
the conditional.

Finally, in figure 5.7 we see that the parallelism between statements
TopDownSplitMerge (A0, BO) and TopDownSplitMerge(Al, B1) has been

'barring, perhaps, VLIW machines or similar architectures where single threads execute
multiple instructions as one, creating no communication.

38

function TopDownMerge(in float[] AO, in float[] A1, inout float[] B)

long i0, i1, j, size_ a0, size al, max_iterationms;
ArraySize(size_al, A1)
ArraySize(size_a0, AO)
max_iterations <- (size_aO+size_al)
i0 <- 0
i1 <- 0
j<-0
while ((j<max_iterations))
{0.810714}

while ((j<max_iterations))

if (((i0<size_a0)&((il>=size al)|(A0[i0]1<=A1[i1]1))))
j <= G+
{0.031632}

if (((i0<size_a0)&((il>=size_al) | (A0[101<=A1[i1]1))))
FALSE

if (((i0<size_a0)&((il>=size_al) | (A0[i0]<=A1[i1]))))
TRUE

l

B[j]1 <- A1[i1]
il <= (11+1)

{0}

B[j] <- A0[i0]
i0 <= (i0+1)

{0}

Figure 5.5: The resulting graph for the TopDownMerge function

39

function CopyArray(in float[] B, inout float[] A)

long i, size_a;
i<-0

ArraySize(size_a, A)

while ((i<size_a))

{0.020525}

O
while ((i<size_a))

A[i] <- B[i]
i <= (i+1)

{o}

Figure 5.6: The resulting graph for the CopyArray function

preserved while everything else has become sequential, which is exactly what
we wanted.

In short, our method managed to meet our expectations in finding useful
parallelism for the program presented in this case study.

40

function TopDownSplitMerge(inout float[] A, inout float[] B)

l

long size a;
ArraySize(size a, A)
if ((size_a>=2))
{29.748806}

é
if ((size_a>=2))
TRUE

long iMiddle;
iMiddle <- (size_a/2)

BO, B1, isSplit B at iMiddle

A0, A1, isSplit A at iMiddle

{0}

TopDownSplitMerge (A1, B1) TopDownSplitMerge (A0, BO)
{29.748807} 129.748807)

TopDownMerge (A0, A1, B)
CopyArray (B, A)
{0.831239}

Figure 5.7: The resulting graph for the TopDownSplitMerge function

function TopDownMergeSort (inout float[] A)

long size a;
ArraySize(size a, A)
float[size_a] B
TopDownSplitMerge (A, B)
{29.748807}

Figure 5.8: The resulting graph for the TopDownMergeSort function

41

Chapter 6

Discussion

We created a method to extract implicit parallelism from a program with
a good balance between time spent on communication and time spent on
computation. Our method improves on existing approaches, such as the one
used in [5], as it is capable of considering more cases and may therefore find
better parallel program implementations.

Our case study has shown that, for the tested program, the method is
capable of generating an execution-order graph similar to what we expected
a human programmer would design. Unfortunately, the lack of a sufficient
sample programs prevents us from drawing any final conclusion about the
effectiveness of this method. Similarly, while a greedy search algorithm ap-
peared sufficient to produce correct results, this may not be the case for more
complex programs.

We believe that this method, with some additions, may in the future be
used to extract efficient implicit parallelism from programs automatically.
This in turn could make the development of parallel implementations for
these programs much easier.

One particular field that could benefit from this is game development.
In video games performance is very important and the existence of multiple
subsystems provides plenty of useful functional parallelism. Additionally,
data-parallelism is often already very well exploited as GPUs often tend to
be a system’s bottleneck when running video games.

There are several improvements that could be made to our method, of
which we consider two to be most relevant. First, it is currently unable to
deal with data-parallelism and vector operations. Second, data-flow depen-
dency graph extraction is not implemented for any useful languages. We will

42

address these two issues in the next sections, followed by other, lesser issues.

6.1 Data-parallelism

Since data-parallel operations are a great source for parallelism, we want our
method to be compatible with it. That means we must be able to somehow
represent data-parallel operations in our graph to determine the critical path,
even if we do not wish to merge them in any way.

Data-parallel operations are characterized by the fact that one function
is applied to many data-points. As such, we could represent them as many
nodes/tasks that are parallel to each other, e.g. as depicted in 6.1.

for each (z € X) do f(x)

@

Figure 6.1: A possible data-parallel execution-order graph

In this case, we could merge the data-parallel nodes together until they
reach the desired granularity, but this is something which can be done more
effectively by merging tasks so that each new task consists of a fixed amount
of initial tasks. How many tasks should be grouped can be easily determined
asn = [T‘})} This means we do not gain anything by this representation.
Furthermore, it is not so trivially implemented if the number of tasks is not
known at compile-time.

We propose instead, to represent parallel operations as a special type of
task with additional attributes, similar to how some tasks now execute other
graphs. We would then require new merge definitions for merging these
data-parallel tasks together and with non-data-parallel tasks. For example,
a merge could combine two for loops executing different operations on the
same array into a single for loop that executes both operations.

Another problem with data-parallel operations is that the critical path
will no longer be satisfactory: the cost of the critical path of a data-parallel
operation is the cost for applying it to one of its elements, which is often tiny
compared to the actual run time of the operation. Even if we score the task

43

based on the total time of the operation, data-parallel operations are much
more likely to be spread out across all processing units, leaving none for our
other task and making the critical path less meaningful.

Considering the above, it would be easier if we only needed to implement
special nodes for parallel tasks that will always run on specialized hardware
such as GPGPUs or FPGAs, thereby not filling our ‘main’ processing units
to capacity.

It might be the case that the critical path remains a useful fitness function,
provided we use a good scheduler, but this is unknown and would require
further experimentation.

6.2 Language requirements

For our implementation we required a very simple functionally pure, eagerly
evaluated language. The language we implemented is too simplistic to be
used directly. Furthermore, even though we could compile program from
traditional languages, e.g. ¢, by simulating a stack and heap using arrays,
this is not very useful as all operations using stack variables would depend
on each other, even if they logically do not have to. Our method should
therefore be implemented for a more complex language before it can really
be useful.

Unfortunately most popular languages are not functionally pure and ea-
gerly evaluated. We expect, in fact, the functional purity is often undesired
in systems programming languages. During the development of the Rust lan-
guage, for instance, functional purity was the default at some point, but this
was later changed. One example where functional purity might get in the
way is debugging, when programmers might want to perform 10 operations
to output certain details about the program’s execution.

It is, however, overzealous to purge all impurities from a program for the
glory of parallelism. It is sufficient that any impure operations be sanctioned
by the programmer. That is, the programmer should mark them to denote
that while they are indeed impure, the order in which they are executed
is irrelevant. That is, they are reorderable. Examples of such operations
include debug logging, random number generation and reductor operations,
such as appending elements to an unordered list. By thus weakening the
restriction of functional purity, languages that exploit implicit parallelism
may be designed more easily.

44

6.3 Search strategy comparison

In our experiment we have limited ourselves to a greedy algorithm. This
proved sufficient for our case study. However, greedy search algorithms are
known to get stuck in local optima. More complex programs may therefore
be optimized better using different algorithms. To this end, it would be
beneficial to make a comparison of many such algorithms to identify which
ones are most successful. These tests were well outside the scope of our
research as it would require a large code-base, which we do not have, to
produce accurate results.

6.4 Graph evaluation

Our fitness function is based on execution time of a sequential program,
making the assumption that this will be representative of the tasks’ execution
time in a parallelized version. It is possible that different processing units
share hardware, as may be the case when hyperthreading or by sharing a
memory bus. This would make sequential speed a bad estimate for concurrent
execution speed. Improvements on the fitness function based on knowledge
about target architecture might therefore improve our method.

6.5 LVars

In [23] and [24], methods are discussed to partially run tasks with data-flow
dependency to each other concurrently. Essentially the dependent task runs
until it actually requires data from the provider, then waits until such data
is made available by the provider. Exploiting this new type of dependency
would require a (slightly) different fitness function, where the critical path is
not computed based on the full cost of a task but only on the part required
to write the LVar.

45

Chapter 7
Related Work

In this chapter we will place our research within the context of previous
work in the field of automated or assisted program parallelization. Generally
speaking, parallelization consists of two parts: identifying tasks and their
dependencies and managing how these tasks are executed on the available
hardware. Many approaches that focus on the second part, e.g. [13, 14, 15,
16], leave the first part to the programmer.

Cilk [12, 13], for instance, expands the C and C++ languages so that a
keyword can be used to denote that a function call may be executed on a
different thread. It also sports keywords to denote certain vector and data-
parallel operations. The runtime libraries then take care of distributing work
over threads by using a work-stealing approach.

Although such methods remove the burden of making parallelism explicit
and managing thread communication from the programmer, he must still
split the program into parallel parts and ensure that these parts are suffi-
ciently coarse-grained. This is partially due to the fact that they often use
languages from which dependencies can not be trivially extracted. While it
is possible to speculate on what the dependencies are by profiling memory
accesses [10], this essentially still leaves the relevant decision-making to the
programmer.

7.1 Coarseness-based parallelization decisions

There are multiple approaches that select which tasks are run in parallel
based on their execution time. We list two representative ones and explain

46

how they relate to and differ from our work.

In [5] researchers first profile programs written in Haskell to measure
the execution time of various tasks. This part is similar to what we do,
although their method only selects tasks, it does not aggregate them. The
researchers then parallelize tasks using a work-stealing approach. If work is
indeed stolen the parallelism has been exploited and was therefore useful.
Our approach differs from this in that it does aggregate, potentially finding
more promising opportunities for parallelism. We do not check if tasks are
indeed run concurrently as the cost of creating a task that is not stolen is
relatively low [13]. Furthermore, if the system is not saturated, our fitness
function will perform a similar role by preferring high amounts parallelism
when this matters, i.e. to reduce the critical path.

In [11], researchers make run-time decisions about whether to parallelize
a map function, based on the size of its input data-structure and the costs
of the function that is mapped. The method can therefore only detect par-
allelism expressed with a map function, as the cost-function for other tasks
may scale differently with input size. Regardless, the idea of making run-
time parallelization decisions based on task inputs is an interesting one as
it potentially avoids communication overhead for tasks that turn out to be
much smaller than we expected at compile-time.

7.2 Stream languages

The program execution-order graph created by our method is similar to how
stream languages handle programming. An example of such a language is
StreamlIt [25]. In Streamlt, a program is expressed in terms of actors, execut-
ing a specific task, and FIFO data-channels between those actors. Since all
communications between actors are made explicit through these channels,
opportunities for parallelism can be extracted easily. In [26], the authors
address problems concerning balancing communication and computation as
well as reducing the critical path, similar to how we did. Stream languages
however, may be too static for many applications [27].

47

Chapter 8

Conclusion

We have created a method capable of coarsening the granularity of fine-
grained tasks through the iterative merging of tasks. This is an improvement
on previous selection approaches in that it does not rely on coarse-grained
tasks already explicitly existing in a program.

Our contributions are the following:

e We have defined three types of merge operations that will preserve
necessary execution order restraints, thereby avoiding data-races.

e We have provided a fitness function and a stop criterion that can be
used to iteratively merge tasks using intelligent/heuristic maximizing
strategies.

e We implemented a parser, profiler and functions required to test such
maximizing strategies.

In our case study with a merge-sort program, we have shown that iterative
task merging, guided by greedy selection using our fitness function and stop
condition, may produce execution-order graphs similar to what a human
programmer might design. We may tentatively conclude that the method
described could increase the automatically detectable, useful parallelism of a
program. However, as we have used a single, relatively simple, test case, we
do not know how our method will behave for larger programs. More complex
programs may have local optima in which a greedy search algorithm will get
stuck. Other search algorithms on the other hand may be more successful in
terms of results, but might be much slower.

48

To make a final conclusion about the applicability of our method more
work is required so that tests can be performed on a larger variety of pro-
grams.

49

Bibliography

1]

2]

H Peter Hofstee. Future microprocessors and off-chip sop interconnect.
Advanced Packaging, IEEE Transactions on, 27(2):301-303, 2004.

Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik
Sen, John Wawrzynek, et al. A view of the parallel computing landscape.
Commaunications of the ACM, 52(10):56-67, 2009.

Wm A Wulf and Sally A McKee. Hitting the memory wall: implications
of the obvious. ACM SIGARCH computer architecture news, 23(1):20—
24, 1995.

Stijn Eyerman and Lieven Eeckhout. The benefit of smt in the multi-
core era: Flexibility towards degrees of thread-level parallelism. ACM
SIGARCH Computer Architecture News, 42(1):591-606, 2014.

Tim Harris and Satnam Singh. Feedback directed implicit parallelism.
In ACM SIGPLAN Notices, volume 42, pages 251-264. ACM, 2007.

Paul Bone. Automatic Parallelisation for Mercury. PhD thesis, De-
partment of Computing and Information Systems, The University of
Melbourne, Australia, Decemeber 2012.

Tim Harris and Satnam Singh. Feedback directed implicit parallelism.
In ACM SIGPLAN Notices, volume 42, pages 251-264. ACM, 2007.

Clemens Grelck and Sven-Bodo Scholz. Saca functional array language
for efficient multi-threaded execution. International Journal of Parallel
Programming, 34(4):383-427, 2006.

50

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Henri E Bal, Jennifer G Steiner, and Andrew S Tanenbaum. Program-
ming languages for distributed computing systems. ACM Computing
Surveys (CSUR), 21(3):261-322, 1989.

Georgios Tournavitis, Zheng Wang, Bjorn Franke, and Michael FP
O’Boyle. Towards a holistic approach to auto-parallelization: integrat-
ing profile-driven parallelism detection and machine-learning based map-
ping. In ACM Sigplan Notices, volume 44, pages 177-187. ACM, 2009.

Brian Reistad and David K Gifford. Static dependent costs for estimating
execution time, volume 7. ACM, 1994.

Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul,
Charles E Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An ef-
ficient multithreaded runtime system, volume 30. ACM, 1995.

Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implemen-
tation of the cilk-5 multithreaded language. In ACM Sigplan Notices,
volume 33, pages 212-223. ACM, 1998.

Karl-Filip Faxén. Wool-a work stealing library. SIGARCH Comput.
Archit. News, 36(5):93-100, 2008.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. Starpu: a unified platform for task scheduling on
heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience, 23(2):187-198, 2011.

Judit Planas, Rosa M Badia, Eduard Ayguadé, and Jesus Labarta. Hi-
erarchical task-based programming with starss. International Journal
of High Performance Computing Applications, 23(3):284-299, 2009.

Eugene Kligerman and Alexander D Stoyenko. Real-time euclid: A
language for reliable real-time systems. Software Engineering, IEEFE
Transactions on, (9):941-949, 1986.

Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static
timing analysis of embedded software. In Proceedings of the 34th annual
Design Automation Conference, pages 147-152. ACM, 1997.

51

[19]

[20]

[21]

[22]

[25]

[26]

[27]

Peter Puschner and Ch Koza. Calculating the maximum execution time
of real-time programs. Real-Time Systems, 1(2):159-176, 1989.

Carlo Brandolese, William Fornaciari, Fabio Salice, and Donatella Sci-
uto. Source-level execution time estimation of ¢ programs. In Proceedings
of the ninth international symposium on Hardware/software codesign,
pages 98-103. ACM, 2001.

Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, and Debra
Hensgen. Task execution time modeling for heterogeneous computing
systems. In Heterogeneous Computing Workshop, 2000.(HCW 2000)
Proceedings. 9th, pages 185-199. IEEE, 2000.

Michael A Iverson, Fusun Ozguner, and Lee C Potter. Statistical predic-
tion of task execution times through analytic benchmarking for schedul-

ing in a heterogeneous environment. In Heterogeneous Computing Work-
shop, 1999.(HCW’99) Proceedings. Eighth, pages 99-111. IEEE, 1999.

Paul Bone, Zoltan Somogyi, and Peter Schachte. Estimating the overlap
between dependent computations for automatic parallelization. Theory
and Practice of Logic Programming, 11(4-5):575-591, 2011.

Lindsey Kuper and Ryan R Newton. Lvars: lattice-based data struc-
tures for deterministic parallelism. In Proceedings of the 2nd ACM SIG-
PLAN workshop on Functional high-performance computing, pages 71—
84. ACM, 2013.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit:
A language for streaming applications. In Compiler Construction, pages
179-196. Springer, 2002.

Michael I Gordon, William Thies, and Saman Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream programs.
In ACM SIGOPS Operating Systems Review, volume 40, pages 151-162.
ACM, 2006.

Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Comparing the
streamit and oc languages for manycore processors. In Int. | Workshop
on Data-Flow Models (DFM) for Extreme Scale Computing. IEEE, 2014.

52

Appendices

53

Appendix A

Mergesort program

function TopDownMergeSort (out float [] A)

{
var long size_a;
ArraySize (size_a , A);
var float [size_a] B;
TopDownSplitMerge (A, B);
}

function TopDownSplitMerge (out float [|] A, out float[] B
)
{
var long size_a;
ArraySize(size_a , A);
if (size_a >= 2) {
var long iMiddle;
iMiddle <— size_a / 2;
var A0, Al isSplit A at iMiddle;
var BO, Bl isSplit B at iMiddle;
TopDownSplitMerge (A0, BO) ;
TopDownSplitMerge (A1, Bl1);
TopDownMerge (A0, Al, B);
CopyArray (B, A);

o4

function TopDownMerge(float [| A0, float[] Al, out float

[] B)

{
var long i0, il, j, size_al0 , size_al ,
max_iterations;
i0 <= 0;
il <— 0;
<= 0
ArraySize (size_a0 , A0);
ArraySize (size_al , Al);
max_iterations <— size_al + size_al;
while (j < max_iterations) {
if (i0 < size_a0 && (il >= size_al || A0[i0] <=
ALfil])) |
B[j] <= A0[i0];
i0 <— i0 + 1;
} else {
B[] < AI[il];
il <— il + 1;
}
J <=+
}
}

function CopyArray(float[] B, out float[] A)

{

var long i, size_a;
ArraySize(size_a , A);

i <— 0;

while (i < size_a) {
Ali] <= B[i];
i <— i41;

}

95

Appendix B

Mergesort C+-+ program

B.1 Compiled file

double PROFILING_VARIABLE_AVERAGE_TopDownMergeSort ;
unsigned long

PROFILING_VARIABLE _NTESTS_TopDownMergeSort ;
double PROFILING_VARIABLE_AVERAGE_TopDownSplitMerge ;
unsigned long

PROFILING_VARIABLE_NTESTS TopDownSplitMerge ;
double PROFILING_-VARIABLE_ AVERAGE_COND.0;
unsigned long PROFILING_VARIABLE NTESTS_COND.O;
double PROFILING_VARIABLE_AVERAGE_TopDownMerge;
unsigned long PROFILING_VARIABLE NTESTS TopDownMerge;
double PROFILING_VARIABLE_ AVERAGE_WHILE 0;
unsigned long PROFILING_VARIABLE NTESTS_WHILE 0;
double PROFILING_-VARIABLE_ AVERAGE_COND._1;
unsigned long PROFILING_VARIABLE NTESTS_COND_1;
double PROFILING_VARIABLE_AVERAGE_CopyArray ;
unsigned long PROFILING_VARIABLE NTESTS CopyArray ;
double PROFILING_.VARIABLE_ AVERAGE_WHILE_1;
unsigned long PROFILING_-VARIABLE NTESTS WHILE_1;
myTimer PROFILING TIMER;

void TopDownMergeSort (Array<float>& A);
void TopDownSplitMerge (Array<float >& A, Array<float>& B

56

) ;

void TopDownMerge (Array<float> const A0, Array<float>
const Al, Array<float>& B);

void CopyArray (Array<float> const B, Array<float>& A);

void PROFILER_INIT_VALUES() {
initTimer (&PROFILING_TIMER) ;
PROFILING_VARIABLE_AVERAGE _TopDownMergeSort = 0.0;
PROFILING_VARIABLE_NTESTS _TopDownMergeSort = 0;
PROFILING_VARIABLE_AVERAGE_TopDownSplitMerge = 0.0;
PROFILING_VARIABLE_NTESTS_TopDownSplitMerge = 0;
PROFILING_VARIABLE_ AVERAGE_COND.O = 0.0;
PROFILING_VARIABLE NTESTS_.COND.0 = 0;
PROFILING_VARIABLE_AVERAGE _TopDownMerge = 0.0;
PROFILING_VARIABLE NTESTS TopDownMerge = 0;
PROFILING_VARIABLE_ AVERAGE_ WHILE O = 0.0;
PROFILING_VARIABLE NTESTS WHILE 0 = 0;
PROFILING_VARIABLE_ AVERAGE_COND_1 = 0.0;
PROFILING_VARIABLE NTESTS_.COND_1 = 0;
PROFILING_VARIABLE_AVERAGE CopyArray = 0.0;
PROFILING_VARIABLE NTESTS CopyArray = 0;
PROFILING_VARIABLE_ AVERAGE_ WHILE 1 = 0.0;
PROFILING_VARIABLE NTESTS WHILE_1 = 0;
}
void TopDownMergeSort (Array<float>& A){
myTimestamp
PROFILING_VARIABLE_TIMER _TopDownMergeSort_start ;
myTimestamp
PROFILING_VARIABLE_TIMER_TopDownMergeSort_stop ;
getTime (&
PROFILING_VARIABLE_TIMER_TopDownMergeSort_start) ;
long size_a;
ArraySize (size_a , A);
Array<float > B = Array<float >(size_a);
TopDownSplitMerge (A, B);
getTime(&PROFILING_VARIABLE_TIMER_TopDownMergeSort_stop

)
PROFILING_VARIABLE_AVERAGE_TopDownMergeSort=

o7

updateTimer (timeDiffSeconds (
PROFILING_VARIABLE_TIMER_TopDownMergeSort_start ,
PROFILING_VARIABLE_TIMER_TopDownMergeSort_stop ,
PROFILING_TIMER) ,
PROFILING_VARIABLE_AVERAGE_TopDownMergeSort, ++
PROFILING_VARIABLE NTESTS_TopDownMergeSort) ;

}

void TopDownSplitMerge (Array<float >& A, Array<float>& B

)4

myTimestamp
PROFILING_VARIABLE_TIMER_TopDownSplitMerge _start ;

myTimestamp
PROFILING_VARIABLE_TIMER_TopDownSplitMerge stop ;

getTime (&
PROFILING_VARIABLE_TIMER_TopDownSplitMerge_start) ;

long size_a;

ArraySize (size_a , A);

myTimestamp PROFILING_VARIABLE_TIMER_COND _0_start ;

myTimestamp PROFILING_VARIABLE_TIMER_COND_0_stop;

getTime(&PROFILING_VARIABLE_TIMER_COND_0_start) ;

if ((size_a>= 2)) {

long iMiddle;

iMiddle = (size_a/ 2);

Array<float > AO;

Array<float > Al;

SplitArrayMemory (A0, Al, A, iMiddle);

Array<float > BO;

Array<float > B1;

SplitArrayMemory (B0, Bl, B, iMiddle);

TopDownSplitMerge (A0, BO) ;

TopDownSplitMerge (Al, Bl);

TopDownMerge (A0, Al, B);

CopyArray (B, A);

} else {

}
getTime(&PROFILING_VARIABLE _TIMER_COND_0_stop) ;

PROFILING_VARIABLE AVERAGE_COND 0= updateTimer (
timeDiffSeconds (

58

PROFILING_VARIABLE_TIMER_COND_0_start ,
PROFILING_VARIABLE _TIMER_COND_0_stop,
PROFILING_TIMER) , PROFILING_VARIABLE_ AVERAGE_COND 0,
++PROFILING_VARIABLE NTESTS_COND.0) ;

getTime (&
PROFILING_VARIABLE_TIMER _TopDownSplitMerge stop) ;

PROFILING_VARIABLE_AVERAGE _TopDownSplitMerge=
updateTimer (timeDiffSeconds (
PROFILING_VARIABLE_TIMER _TopDownSplitMerge_start ,
PROFILING_VARIABLE_TIMER _TopDownSplitMerge_stop ,
PROFILING_TIMER) ,
PROFILING_VARIABLE_AVERAGE_TopDownSplitMerge , ++
PROFILING_VARIABLE_NTESTS_TopDownSplitMerge) ;

}

void TopDownMerge (Array<float > const A0, Array<float>
const Al, Array<float>& B){

myTimestamp PROFILING_VARIABLE_TIMER _TopDownMerge _start

myTimestamp PROFILING_VARIABLE_TIMER_TopDownMerge_stop ;
getTime(&PROFILING_.VARIABLE_TIMER_TopDownMerge_start) ;
long i0, i1, j, size_a0, size_al , max_iterations;

i0 = 0 ;

il = 0
= 03
ArraySize (size_a0 , A0);

ArraySize (size_al , Al);

max_iterations = (size_alO+size_al);

myTimestamp PROFILING_VARIABLE TIMER_WHILE 0 _start;
myTimestamp PROFILING_VARIABLE_ TIMER_WHILE _0_stop;
getTime(&PROFILING_VARIABLE_TIMER_WHILE_(0_start) ;
while ((j<max_iterations)) {

myTimestamp PROFILING_VARIABLE_TIMER_COND_1 start;
myTimestamp PROFILING_VARIABLE TIMER_COND_1 stop;
getTime(&PROFILING_VARIABLE_TIMER_COND_1 start) ;

if (((i0<size_-a0)&((il>=size_al)|(A0[i0]<=A1[il])))) {
B[j] = A0[i0];

i0 = (i04+ 1);

} else {

Y

59

B[j] = Al[il];
i1 = (il4+ 1);

}
getTime(&PROFILING_VARIABLE TIMER_COND_1_stop) ;

PROFILING_VARIABLE_AVERAGE_COND_1= updateTimer (
timeDiffSeconds (
PROFILING_VARIABLE_TIMER_COND_1 _start ,
PROFILING_VARIABLE_TIMER_COND_1_stop,
PROFILING_TIMER) , PROFILING_VARIABLE_ AVERAGE_COND_1,

++PROFILING_VARIABLE NTESTS_.COND_1) ;

j=0+1);

}

getTime(&PROFILING_VARIABLE_TIMER _WHILE_0_stop) ;

PROFILING_VARIABLE_AVERAGE_WHILE 0= updateTimer (
timeDiffSeconds (
PROFILING_VARIABLE_TIMER_WHILE_0_start ,
PROFILING_VARIABLE_TIMER_WHILE_0_stop,
PROFILING_TIMER) , PROFILING_VARIABLE_ AVERAGE_WHILE_ 0
, +PROFILING_VARIABLE NTESTS WHILE Q) ;

getTime(&PROFILING_VARIABLE _TIMER _TopDownMerge_stop) ;

PROFILING_VARIABLE_AVERAGE_TopDownMerge= updateTimer (
timeDiffSeconds (
PROFILING_VARIABLE_TIMER_TopDownMerge_start ,
PROFILING_VARIABLE_TIMER_TopDownMerge_stop,
PROFILING_TIMER) ,

PROFILING_VARIABLE_AVERAGE _TopDownMerge, ++
PROFILING_VARIABLE NTESTS TopDownMerge) ;

}

void CopyArray (Array<float> const B, Array<float>& A){

myTimestamp PROFILING_VARIABLE_TIMER _CopyArray_start ;

myTimestamp PROFILING_VARIABLE_TIMER_CopyArray_stop;
getTime(&PROFILING_VARIABLE _TIMER _CopyArray start) ;
long i, size_a;

ArraySize(size_a , A);

i= 0 ;

myTimestamp PROFILING_VARIABLE_TIMER_WHILE_1 start ;

myTimestamp PROFILING_VARIABLE_TIMER_WHILE_1 stop;

getTime (&PROFILING _VARIABLE TIMER_WHILE 1 start) ;

60

while ((i<size_a)) {

Ali] = B[i];

i=(i+ 1);

h

getTime(&PROFILING _VARIABLE_TIMER_WHILE_1 stop) ;

PROFILING_VARIABLE AVERAGE WHILE 1= updateTimer (
timeDiffSeconds (
PROFILING_VARIABLE_TIMER_WHILE_1 _start ,
PROFILING_VARIABLE_TIMER_WHILE_1 stop,
PROFILING_TIMER) , PROFILING_VARIABLE_ AVERAGE_WHILE_1
, +HPROFILING_VARIABLE NTESTS WHILE 1) ;

getTime (&PROFILING_VARIABLE _TIMER _CopyArray_stop) ;

PROFILING_VARIABLE AVERAGE_CopyArray= updateTimer (
timeDiffSeconds (
PROFILING_VARIABLE_TIMER _CopyArray_start ,
PROFILING_VARIABLE_TIMER_CopyArray _stop,
PROFILING_TIMER) ,
PROFILING VARIABLE AVERAGE CopyArray, 4+
PROFILING_VARIABLE_NTESTS _CopyArray) ;

}

void PROFILER REPORT VALUES() {
printf (" {7)
printf(”\” TopDownMergeSort\” : %f,” ,
PROFILING_VARIABLE_AVERAGE_TopDownMergeSort) ;
printf (”\” TopDownSplitMerge\” : %f,” |
PROFILING_VARIABLE_AVERAGE_TopDownSplitMerge) ;
printf (”\”COND.O\” : %f,”,
PROFILING_VARIABLE_ AVERAGE_COND.0) ;
printf(”\” TopDownMerge\” : %f,” ,
PROFILING_VARIABLE_AVERAGE_TopDownMerge) ;
printf("\” WHILEO\” : %f,”
PROFILING_VARIABLE_ AVERAGE_WHILE0) ;
printf(”\”COND_1\" : %f,”,
PROFILING_VARIABLE_ AVERAGE_COND_1) ;
printf (”\” CopyArray\” : %f,”,
PROFILING_VARIABLE _AVERAGE CopyArray) ;
printf (”\”WHILE_1\” : %f,”,

61

PROFILING_VARIABLE_ AVERAGE WHILE 1) ;
printf(”\” pointless_variable\”:0.0}");

}
B.2 main file

#include <stdio.h>

#include <stdlib .h>

#include <time.h>

#include ”../src/timer.h”
#include 7../src/natives.hpp”
#if PROFILE

#include "mergesort_profiler.cpp”
#else

#include "mergesort_compiled.cpp”
#endif //PROFILE

int main(int argc, charx args[]) {
unsigned long i = 0;
time_t t;
srand ((unsigned) time(&t));

#if PROFILE
PROFILER_INIT_VALUES () ;
#endif
Array<float > array (NUM_ELEMENTS) ;
for (i = 0; i < NUMELEMENTS; ++i) {
array [1] = (float)rand () /(float)(
RAND MAX) ;
}
TopDownMergeSort (array) ;
#if PROFILE
PROFILER_REPORT_VALUES() ;
#endif

}
B.3 library files

62

#ifndef NATIVES HPP
#define NATIVES HPP

template<typename Element>
class Array {

unsigned long n_elems;
Elementx data;

public:
Array () {

n_elems = 0;
¥

Array (unsigned long _n_elems) {
n_elems = _n_elems;
data = new Element[_n_elems];

}

inline Element& operator [](unsigned long index)

{

return data[index];

}

inline Element operator[](unsigned long index)
const{
return data[index];

}

template<typename __Element , typename
NumberType>

friend void ArraySize (NumberType&, Array<
__Element >);

template<typename __Element>

friend void SplitArrayMemory (Array<__Element>&
pl, Array<__Element>& p2, Array<__Element>
parent , unsigned long splitIndex);

63

template<typename Element, typename NumberType>
inline void ArraySize(NumberType& out_size , Array<
Element> in_array) {
out_size = in_array.n_elems;

}

template<typename Element>

inline void SplitArrayMemory (Array<Element>& pl, Array<
Element>& p2, Array<Element> parent, unsigned long
splitIndex) {

pl.n_elems = splitIndex;
pl.data = parent.data;
p2.n_elems = parent.n_elems — splitlndex;

p2.data = parent.data + splitlndex;

}

#endif //NATIVESHPP

64

