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Abstract

In this thesis we present an algorithm that detects and models pipelines
in 3-dimensional point clouds. The algorithm starts from a user provided
seed and alternates between model building and primitive detection as it
tracks the pipeline. The algorithm does not require preprocessing such as
registration or subsampling. When provided with a suitable seed and search
area size the algorithm produces good models.

1 Introduction

Background

Large (petro)chemical plants rarely consist of only a single building or factory.
Such plants are made of a large number of facilities each with their own function.
For example: storage depots for raw materials or products and factories for each
intermediate step in the production process. These facilities are connected to each
other through an extensive network of pipes.

Motivation

It is not uncommon for the plans of such a plant to be either inaccurate due
to modifications or to be unavailable entirely. An accurate map of the pipeline
network is required for maintenance, emergency response and to prevent compli-
cations with future modifications to the plant. There are currently two ways to
map the path of a pipeline: have a person physically follow the pipeline (often on
foot) or construct a model from a point cloud of the facility.

Producing 3-dimensional point clouds for entire plants is a relatively recent
development and processing this data is still done mostly manually. Creating a
pipeline representation from a scan requires a user to separate the pipeline from
the rest of the scan. Once the pipeline has been isolated from the cloud some parts
of it may be modeled automatically. The user will still have to model most of the
pipeline themselves and ensure all the parts of the model join to form a single
connected pipeline.

Goal

The data used in this thesis was obtained from the Pernis scan repository, see
the appendix Section B for a detailed description. The repository contains 19,638
scans of up to 80 million points each. A single pipeline can stretch over hundreds
of scans. The goal of this thesis is to develop and analyze an algorithm than can
track and model a pipeline across multiple scans with minimal user interaction.



We also require that the algorithm does not need any preprocessing such as
the registration of multiple scans of the same scene or removing any non-pipeline
points.

1.1 Related work

In Sections 1.1.1 and 1.1.2 we will briefly discuss primitive detection and segmenta-
tion methods that are often used as components of pipeline extraction algorithms.
In Section 1.1.3 we will discuss several methods that attempt to extract and/or
model pipelines in 3-dimensional point clouds. Common terms that are used in
this section and in the rest of this work are defined in the appendix Section A.

1.1.1 Primitive detection

The two dominant primitive detection methods in use today are RANSAC, first
described by Fischler et al. [6], and the Hough transform introduced by Hough et
al. [7].

RANSAC

The RANdom SAmple Consensus algorithm is easily applicable to a wide variety
of primitives. Most primitives can be defined by a small number of points on their
surface. For example, a plane is uniquely identified by three points on its surface.

To detect a plane in the data RANSAC first has to hypothesize the specific
plane that might be present. This is done by sampling three random points. Since
three points define a plane the algorithm now has a hypothesis that can be tested.
RANSAC will consider the hypothesized plane as detected when a lot of other
points in the data support it.

RANSAC is an inherently stochastic method so a single hypothesis test is too
little to conclude anything. The algorithm will draw samples, and record the
highest support until it reaches some confidence threshold that it will not find a
sample leading to more support. Once a plane, or other primitive, is detected it
will be added to the output and its supporting points are removed from the data.
The algorithm may then continue to find other primitives.

The simplicity of the algorithm has encouraged a large number of improve-
ments and adaptations [5] [18]. We have used the Efficient RANSAC algorithm
by Schnabel et al. [15] which features faster support evaluation, more spatially
cohesive sampling and computes boundaries for the detected primitives.

Hough transform
The Hough transform maps data points to the parameter space of the primitive



to be detected. Each data point is mapped to the whole region in the parameter
space where the parameters define a primitive that is supported by the data point.

A primitive is considered detected with a specific parameter configuration if its
point in parameter space is intersected by a large number of data point regions.
So the problem is reduced to finding peaks in parameter space. Since finding all
intersections of a large number of surfaces in parameter space is too time consuming
the parameter space is discretized into cells. A point is said to vote for all cells
that intersect its region in the parameter space. The discretization and the data
structure to hold the discretized space are the most important factors in any
implementation.

Borrmann et al. [3] use the Hough transform to detect planes in a 3-dimensional
point cloud. Hough transforms scale rather poorly with the number of parameters
of the primitives since the parameter space becomes much larger with the addition
of a parameter. Because of this its application in 3-dimensions is mostly limited
to planes and primitives with a similar number of parameters.

Rabbani et al. [13] use a two-stage Hough transform variation to detect cylin-
ders in point clouds. They found however that large non-cylindrical structures
interfered with the detection so the algorithm is not applicable to our problem.

1.1.2 Segmentation methods

Segmentation methods divide a point cloud into separate groups based on some
neighborhood condition. They are useful when the data contains shapes that have
no practical mathematical representation or the data is of too low quality for
primitive detection methods to work.

Region growing

The most prevalent segmentation paradigm for 3-dimensional point clouds is
region growing. The first instance of a region growing algorithm is described by
Adams et al. [1]. In a region growing algorithm a number of points are selected as
starting points for the regions. The regions are then grown by repeatedly adding
eligible neighbors from the most recently added points.

Rabbani et al. [14] have developed a region growing algorithm that uses point
distance, normal deviation and the residual from the normal estimation in its
neighborhood condition. This allows the algorithm to separate the point cloud
into smooth regions separated by distance, a sudden change in normal direction
or low accuracy normals. We use this algorithm since the results in the paper
indicate it should perform well in the industrial setting our data was collected.



1.1.3 Pipeline extraction

The work we will discuss in this section can be classified into two categories. The
first category will attempt to extract the pipeline points from a scan before mod-
eling the pipeline. The second category will focus only on modeling the pipeline
leaving it to the user or other algorithms to remove the non-pipeline points from
the scan.

The Gaussian image

Since some of the methods in this section make extensive use of the Gaussian
image applied to cylinders, as introduced by Chaperon et al. [4], we will go over
it briefly.

Definition 1.1 The Gaussian image of a point set is the set of normalized normals
mapped to the unit sphere. See Figure 1 for an example.

As can be seen in Figure 1 the normals of a cylinder define a circle around the
origin of the Gaussian image. This circle defines a plane and the normal vector «
of this plane is the direction of the axis of the cylinder. When the direction of the
cylinder is known we can project all points on the plane through the origin with
this normal vector. The points belonging to the cylinder will form a circle in this
plane [4].

TR N e T
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Figure 1: The Gaussian image of an ideal cylinder on the left and a real point set
on the right. Taken from [4].



Extraction and modeling

Liu et al. [11] present a pipeline reconstruction method that is based on the
Gaussian image. The algorithm works in three stages: detecting the ground nor-
mal, detecting cylinders perpendicular to the ground plane, and detecting cylinders
parallel to the ground plane.

Once the ground normal is found a plane is fitted through all points agreeing
on that normal. All the points are then projected on the ground plane. Cylinders
that are vertical will form circles on the ground plane. These circles are found
using RANSAC. This stage circumvents the Gaussian image by replacing it with
the ground plane normal.

For the cylinders that are not perpendicular to the ground plane the authors
use a Gaussian image based method similar to Chaperon et al.[4] to find more
planes to map the points on to.

Once the cylinder detection stage is done the algorithm makes a limited effort
to model the connectivity of the found cylinders. Elbow pieces are predicted based
on a proximity threshold for the cylinders and no effort is made to recover from
occlusion. The method does not provide a way to filter out false positives such as
handrails and scaffolding.

The assumption that there is a flat ground plane does not hold for the data
sets we have used, nor does the assumption that pipelines are either parallel or
perpendicular to the ground.

The pipe-run algorithm by Qiu et al. [12] also uses Gaussian image based
cylinder detection. They modify it by subdividing the data set into equally sized
volumes and constructing a Gaussian image per volume. Since pipelines are often
grouped into bundles that travel in the same direction the Gaussian image of a
smaller volume is often more indicative of the cylinder directions than a global
Gaussian image.

The algorithm handles occlusion by applying morphological opening and clos-
ing operations on the found cylinders. Like the other algorithms elbow joints are
not detected directly but later reconstructed using a set of heuristics. The draw-
backs of this algorithms are that it requires a point cloud of uniform density and
large non-cylindrical structures can distort the Gaussian images.

Su et al. [17] use a divide-and-conquer approach to extract and model pipelines.
The data set is first subdivided by an octree; then the cells of the octree are merged
bottom up to form ever larger groups of points that are either classified as planes or
cylinders based on their two principal curvatures. Additionally, cylindrical groups
are only merged if the angle between their axes, determined by the largest vector
from a principal component analysis, is within a user defined threshold.

While this method requires a large number of parameters, such as octree bin
size, merging distance, and curvature thresholds the authors argue that only a few



are truly sensitive to the data set. Since most of the work of the algorithm is
confined to the cells of the octree the algorithm lends itself well to parallelization.
This method has two drawbacks: since it does not calculate the parameters of the
cylinders it cannot take domain knowledge such as diameter and length thresholds
into account directly and the algorithm does not deal with occlusion.

Modeling

Once the points belonging to the pipelines have been separated from the noise
and the non-pipeline surfaces, we need to reconstruct a representation of the ge-
ometry and inter connectivity of all the pipes.

Kawashima et al. [8] provide a two step algorithm to reconstruct the connec-
tivity information after all non-pipe points have been (manually) removed. The
first step uses RANSAC to detect the straight cylindrical parts. The second step
uses region growing to detect elbow sections and a variety of heuristics to detect
"T” and 7Y” connections.

Lee et al. [9] reconstruct the connectivity information of a pipeline by first
constructing its skeleton. The skeleton of a pipeline is its axis. The axis lies inside
the cylinder equidistant to every point. This means that it can be approximated
by a series of edges in the Delaunay tetrahedralization of the point set.

The heuristically selected Delaunay edges are not necessarily connected. To
connect the skeleton edges the authors use a Laplacian smoothing to obtain the
remaining skeleton points and use these points to connect the skeleton edges.

Li et al. [10] reconstruct the skeleton of the pipeline and the geometry of its
surface at the same time. The method represents the axis of curved cylinders as
an ordered series of vertices. With each axis vertex the surface is stored as a closed
polygon around the axis. They call this data structure an arterial snake.

The algorithm first fits small straight pieces at places in the point cloud that
can be approximated by a small cylinder. These pieces are then grown and merged
when they meet.

The growing step is guided by proximity of points, their direction vectors and
the trajectory followed so far. The direction vectors are calculated by fitting a
plane through each point in such a way that the normal vectors of this point and
a set of close neighbors are parallel to the plane. The direction of the point is
the normal vector of the plane. All the direction vectors are then smoothed by a
global Laplacian operator.

The trajectory of a snake is modeled as a cubic Bézier curve fitted through
the last four axis vertices. The speed of the growth is inversely proportional to
the curvature of the axis near the growing front. If the direction vectors do not
agree due to a drop in point density, intersection or proximity to a non-cylindrical
structure the growth direction will be based only on the Bézier curve. In all other



cases the growth direction is an average of the trajectory and the surrounding
points’ directions.

The advantages of this algorithm are that it appears to handle occlusions and
intersections well. However, the computation of the direction vectors is quite
expensive so this method may not be feasible on larger data sets. Like the other
algorithms in this section the algorithm assumes that most non-pipeline points
have been removed. The algorithm can handle small non-cylindrical structures
but the direction vectors will fail to agree on any direction if there are significant
non-cylindrical structures in the data.

1.2 Contributions

The algorithms we have seen in the review in the previous section all explicitly
separate building a pipeline model and extracting primitives and/or pipeline points
from the data. We propose an algorithm that builds a pipeline model while it
detects additional primitives. This allows the algorithm to use the information
from the pipeline model in the detection step to discard false positives and to
work only with data local to the pipeline instead of working on entire data sets.

The algorithms in the previous section do not allow domain specific knowl-
edge about what constitutes a pipeline to be included naturally. This means all
the algorithms implicitly share the assumption that all cylindrical structures are
pipelines. Our algorithm uses a single 3-dimensional point provided by the user
to obtain initial diameter and orientation values for a pipeline.

Another advantage of our algorithm is that bends are included in the detection
just as cylinders are. This allows us to do away with the complicated heuristics that
are used in all of the algorithms above to reconstruct them after their detection
step.

Finally all the above algorithms work on a single scene consisting of either
one scan or multiple registered scans. With a sprawling facility like Pernis it is
unfeasible to capture the entire facility in one data set. Since our algorithm already
alternates between detection and model construction, moving to a different scan
in between iterations is a natural extension.

Our approach also has several drawbacks. The reliance on a user-provided
seed means our algorithm is ill suited to smaller scale scenes with many short
pipelines. The algorithm has been made with large scale industrial settings in
mind with fewer but very long pipelines. Additionally, as we discuss in Section 4,
the algorithm can be sensitive to the seed position in certain situations.



2 Algorithm description

In this section we will give a detailed description of the main algorithm and the
component algorithms it uses. Section 2.1 describes the algorithm itself. Sec-
tion 2.1.1 describes the data structure we use to represent the pipeline and the
methods used to decide on the connectivity of the found pipeline pieces. Sec-
tion 2.1.2 describes the methods used to determine which parts of the data set
to investigate. Section 2.2 describes the component algorithms and how their
parameter values were determined.

2.1 Algorithm overview

Initialization

The algorithm takes two parameters: a seed and a side length. The seed is a
point that lies on the pipeline to be tracked, since most point cloud viewers provide
a point picking function this is easy to provide. The side length is the length of
one side of a cube in the data where the algorithm works. These cubes will be
referred to as search areas, see Section 2.1.2. The first search area is constructed
so it has the seed at its center. This search area is the origin cube of the search
area grid. The first area is then added to the wisit stack. We also initialize an
empty pipeline graph, see Section 2.1.1, which we will refer to as the accumulator.
The accumulator will build the pipeline graph after each detection step.

Main loop

Pop a search area from the visit stack. Perform normal estimation and RANSAC
on this search area. Construct an intermediate pipeline graph from the discovered
primitives. If this is the first area check if the seed lies on any primitive. If it
does annotate that primitive as tracked and all primitives that are in the same
connected component of the graph. If this is not the first search area merge the
intermediate graph with the accumulator (see Section 2.1.1). The new pieces are
annotated with tracked if they are connected to a tracked graph component.

To ensure that the region growing method only tries to grow sensible regions
we generate seeds at the extreme ends of all detected primitives that have been
annotated as tracked. All the resulting regions are added to the accumulator where
they may or may not be connected to existing pipeline pieces.

Check the new primitive and region pieces that are tracked against the bound-
aries of the current search area and add any adjacent areas to the visit stack
where applicable (see Section 2.1.2). If there are no more areas to visit return the
accumulator.

10



Recovery from detection failure
There are two types of failure: RANSAC failure due to low quality data and

search area failure due to either occlusion or poor quality data near the boundary.

We attempt to recover from RANSAC failure by using region growing. There
must be tracked pipeline pieces in an adjacent area, otherwise this area would not
have been chosen. If any of these pieces extend to the boundary of the search
area, seeds at their extremities could help grow a sensible pipeline piece in the
current search area. So we run the region growing algorithm on seeds generated
from tracked pieces in the adjacent areas.

A search area failure is when there are tracked pieces in the current search area
but none of them suggest a suitable new search area to investigate. In this case
we simply add all unvisited adjacent areas to the visit stack.

2.1.1 The pipeline graph

Inspired by the work of Schnabel et al. [16] we use a graph where each node contains
a detected pipeline piece to represent the pipeline. There are three kinds of nodes:
straight nodes, bend nodes and region nodes. The three kinds of nodes correspond
to cylindrical pipeline pieces, bend pipeline pieces and region grown pipeline pieces.
The first two can be collectively referred to as primitive nodes/pieces since they
contain a RANSAC generated primitive. Every node contains the support set of
its pipeline piece and is either annotated as tracked or not tracked. Additionally,
primitive nodes contain the detected primitive of their pipeline pieces.

Unlike Schnabel et al. [16] we do not use the relative position and orientation of
the contained primitives to add semantic information about the connections since
this is not necessary for tracking the pipeline.

Connecting cylinders
There are two cases in which we need to connect cylinders: either a cylinder
that is continuous in the data was split over multiple search areas or part of the
cylinder was occluded. The first case is trivial since the cylinders overlap at the
shared boundary of their respective search areas. The second case is more involved.
We connect cylinders based on the length of the smallest connecting line seg-
ment between their (finite) axes. This segment can be decomposed into a vector
along the axes and along an appropriate normal of the axes. For the checks we use
the total length of the segment and the magnitude of the normal decomposition.
When two cylinder ends from parallel cylinders align perfectly we can be sure
they are connected if the space in between the ends, measured as the length of the
connecting segment, is insufficient for the cylinders to bend away from each other.
Figure 2 shows that this requires at least the sum of the two diameters. A different
way to interpret this check is to view it as a sphere with twice the diameter of the
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pipe centered at each axis endpoint. If two of these spheres overlap we connect
the cylinders.

When two cylinder are parallel but not aligned the length of the connecting
segment can be described entirely by a normal of the two axes. In the ideal case
this length should be larger than the sum of their radii, otherwise the cylinders
would intersect which is physically impossible. Figure 3 shows the situation.

Since RANSAC can be inaccurate in the cylinder diameter in poor quality data
we consider that the cylinders are connected when the magnitude of the normal
decomposition of the connecting segment for both axes is at most the minimum of
the two radii. In this case both cylinders contain the other’s axis so they cannot
be considered as separate. Otherwise we assume RANSAC has made an error and
the cylinders should remain separate.

In real data neither of these situations ever occur exactly so the connecting
segment can always be decomposed in a normal and an axis length. We require
that both the total and the normal length condition hold for both axes, see Figure 4
for an example of all the distances involved. In ”'T” splits the normal check is too
restrictive, potentially discarding valid connections. In ”Y” splits the total length
check can accept connections where the pipes could plausibly bend away. These
are edge cases however, in real data the ”'T” splits we should accept are caught
by region growing or simply do not suffer enough occlusion to fail the checks. For
”Y” splits the normal check often rejects the ”Y” splits the length check should
have rejected.

I
| |
| |
| |
| |
| |
| |
| |

Figure 2: Two aligned parallel pipes need at least the sum of their diameters
in between their detected endpoints to bend away. The connecting segment is
displayed in green. The shaded areas are not detected
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Figure 3: The endpoints of the axes of two misaligned parallel pipes need to be at
least the sum of their radii apart in the shared normal direction. The connecting
segment is displayed in green. The shaded areas are not detected

Figure 4: An example of the connection checks for cylinders. Green is the con-
necting segment and the blue and red dashed lines are the normals used in the
checks for their respective axes
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Connecting bends to cylinders

Since bends serve as connecting segments in the pipeline we only have to consider
connections on the endpoints. We calculate the shortest connecting line segment
from each bend endpoint to each cylinder axis and use the method described above
to decide on connections. Figure 5 shows how we define a bend. To use the same
checks as we use for cylinders we only have to decompose the connecting segment
into a vector along an axis and a normal of this axis. We use the tangent lines of
the circle at each endpoint as axes for this purpose.

Center

Figure 5: A bend is defined by three points, a normal, and a radius: The large
circle center, the axis begin, the axis end, the normal of the large circle plane, and
the radius of the smaller circle. To avoid ambiguities the rotation from axis begin
to axis end is always positive (anti-clockwise) with respect to a right-handed basis
where the normal is the up direction (the third basis vector).

Connecting bends
We calculate the connecting line segments between each pair of endpoints and
then apply the same checks as described above.

Connecting regions to primitives

We require that at least one point of a region is considered eligible for connection.
A point is eligible for connection when it lies within the RANSAC threshold of
a primitive and within the same threshold from a point in the support set of the
primitive. This ensures that the region is partly consistent with the primitive and
that this is not just a coincidence. Without the distance to the support set check
it is possible to connect a region to a primitive that is only close to the primitive
due to overestimating the diameter of the bend or cylinder. We do not check the
normal since a point that is both on the primitive and agrees on the normal would
have been taken by RANSAC before the region growing step.

14



Connecting two regions

We connect two regions when at least one point neighborhood in the two regions
overlaps. The n neighborhood of a point is the set of n points that lie closest to
it. We construct a KD tree for each region. For every point in one of the two
regions we construct its 10 neighborhood. We then query the other KD tree with
this point. If the query returns a point that is closer than at least one point in the
10 neighborhood we connect the two regions. We use the same neighborhood size
in the region growing algorithm, see Section 2.2.3.

Diameter threshold

In addition to all the checks mentioned above any connection decision is pre-
ceded by a comparison of the diameters of the two pieces. Empirically the largest
diameter difference between two connected pipelines is 50%. This happens when
a smaller pipeline joins a larger one in a ”'T” configuration. Primitive pieces have
a diameter by default. For region pieces we start a breadth first search through
the pipeline graph to find the closest (in number of hops) primitive piece and use
that diameter. If the search does not find a primitive piece we ignore the check.

Building graphs

In each iteration of the main loop we build a small intermediate pipeline graph
for the current search area. This intermediate graph is built by first determining
the connections between the pieces as described above and then identifying through
a series of depth first searches which pieces form connected components together.

Merging graphs

At the end of each iteration of the main loop the intermediate graph is merged
into the accumulator. For every accumulator piece we try to connect it to every
intermediate piece. Once all possible connections have been considered we recal-
culate all the connected components by a series of depth first searches. If any
non-tracked pieces have joined the tracked component they will also be annotated
as tracked.

2.1.2 Moving the search area

The search area grid
As mentioned in Section 2.1 the search area grid is initialized by a seed and a
side length. The seed and side length are used to construct the first search area.
This is a cube with the provided side length and the seed at its center.
This cube is the origin of the search area grid. Positions in this grid are
measured in side lengths. For example, the cube at position (1,0,0) has its center
one side length in the positive x-axis removed from the seed.

15



This grid is constructed as needed. When the algorithm requires a new search
area the points are taken from the full data set. Separating the data set into
smaller cubes has three advantages: it significantly speeds up normal estimation,
it allows us to hide the usage of multiple data sets behind the construction of these
cubes and it limits the number of irrelevant points the algorithm considers.

Adding new search areas
A search area has six planar boundaries, we can use the same logic for each of
these boundaries.

For primitive pieces we extend both axis ends with a length equal to the radius
of the primitive. We then move a sphere with the radius of the primitive along
the axis, if it intersects a boundary at any point we add the search area that
shares the boundary to the visit stack. We do not add areas that have been
visited previously. If for example we perform this check at the origin and the
ball intersects the boundaries in the positive x axis, the positive y axis, and the
negative x axis we add the areas at coordinates (1,0,0), (0,1,0), and (-1,0,0).

Since primitives are usually not axis parallel it is possible we lose track when we
only consider axis parallel movements for the search area. In the previous example
it is entirely possible the primitive has very little presence in any of the mentioned
areas. To solve this we also add the sum of the movements the visit stack. We
avoid summing movements that cancel out so in the previous example we also add
(1,1,0) and (-1,1,0).

For region pieces we estimate an axis to work with based on the order in which
the points are added by the region growing algorithm. Since the region growing
algorithm adds points in a breadth-first manner the first points are at the beginning
of the region and the last points are at the end. To estimate the axis we take the
half-way point of the region and the last point. Like the primitive pieces we move
a ball with the piece’s radius along the axis.

2.2 Component algorithms

The three component algorithms we use for detection are normal estimation,
RANSAC, and region growing. These algorithms all have a number of param-
eters, however these do not need fine tuning since we have found a set of values
that performs well on a large large variety of point densities and sensor noise levels.

Since we assume data sets that are produced by a single scanner point density
and sensor noise depend on the distance to the scanner. To get an idea of the
performance of the algorithms at different distances we have created three artificial
point clouds. The three clouds model conditions at 15, 50, and 100 meters from
the scanner and are named near, middle, and far. Each cloud was generated
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by placing points on the surface of three cylinders and displacing them with the
appropriate noise value. We decided not to simulate an actual scanner since this
would introduce variables such as scanner position and orientation the effects of
which we are not interested in at this point. For more detailed descriptions of the
experiments and their results see the appendix Section C.

2.2.1 Normal estimation

Since both the region growing method and RANSAC require normals to function
and our data does not include normals we need to estimate them ourselves. We
use the method described by Rabbani et al. [14].

The neighborhood size has to be chosen to be large enough to be accurate yet
small enough to prevent a strong smoothing effect. We have chosen a neighborhood
size of 35 points. The authors of [14] use 30 points themselves however, as can be
seen in Figure 6, 35 points gives better accuracy for the near and middle data sets.

Accuracy of normals
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Figure 6: The average accuracy of the normal estimation. 95% confidence intervals
are too small to show

2.2.2 RANSAC

We use the RANSAC variant by Schnabel et al. [15]. In broad terms the pa-
rameterization of the RANSAC algorithm needs to balance the detection of false
positives with failure to detect the true positives. A restrictive parameterization
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will detect fewer false positives but will fail to detect the true positives more of-
ten. A permissive parameterization will detect more false positives but will not
fail to detect the true positives as often. For a more detailed description of the
parameters of the RANSAC algorithm see the appendix Section C.2.

Since we have a pipeline model to help filter out false positives we aim for a
parameterization on the permissive side. We use a very low support threshold
of 3%. We use a rather restrictive normal threshold of 0.15 radians to ensure
the accuracy of the detected primitives. The normal estimation experiments also
indicate this should tolerate all estimation inaccuracies. The distance threshold is
set at 36 mm since this allows for quite significant sensor noise without having a
significant impact on the accuracy of the results.

The bitmap threshold, the largest gap there may be in the support set of a
primitive before it is split, is set at the higher end of the 95% confidence interval
for the interpoint distances in the current search area. This value ensures no
primitives are split unnecessarily and allows our algorithm to deal with occlusion.

The optimum probability threshold is set at 0.001. Every time a sample is
drawn the probability that the best sample has not been drawn is lowered. This
threshold determines at which probability the algorithm stops drawing new sam-
ples.

2.2.3 Region growing

We use the region growing method described by Rabbani et al. [14]. The algorithm
is tested on data very similar to ours and our experiments also showed that their
recommended parameters worked well. We use a normal threshold of 0.26 radians,
a residual threshold in the 98th percentile. The only parameter where we deviated
from the recommended settings is the neighborhood size. A larger neighborhood
makes it easier for the algorithm to jump around in poor data. Since we start our
regions from trusted seeds we want to limit the algorithm’s ability to make large
jumps away from these seeds. We use a neighborhood of the 10 closest neighbors
for every point. For a more detailed description of the parameters of the algorithm
see the appendix Section C.2.

3 Experimental setup

3.1 Ground truth generation

Since there are no accurate models available to use as a ground truth we will use
the algorithm itself to generate these.
To generate a ground truth we use a fine tuned seed position and search area
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size for a specific situation and run the algorithm. We have to verify visually that
the resulting model is good enough to be used as a ground truth.

The main drawback of obtaining ground truths this way is that we can only
evaluate situations where our method is able to produce high quality models given
sufficient fine tuning. This method also prevents us from evaluating errors that
persist even after fine tuning.

In essence the experiments using these ground truths tell us how robust the
algorithm is against different settings and not how accurate it is in modeling the
real truth.

3.2 Parameters

The algorithm takes two parameters: the seed and the search area size. The size
of the search area directly affects the performance of the RANSAC algorithm.
An area that is too small may not be able to fit the radius of the primitive that
RANSAC returns. This is a problem since the detected primitive is guaranteed to
intersect several boundaries where each neighboring area is likely to detect the same
bit of pipeline again. An area that is too large may contain so many non-pipeline
points that the actual pipeline struggles to reach the support threshold leading
either to a detection failure or detecting the wrong primitive. Like the RANSAC
algorithm the region growing algorithm may struggle to reach its support threshold
in larger search areas.

The seed position determines where the first detection round is run. Both the
area size and seed position contribute to the positions of the boundaries of the
search areas. If the boundaries are placed so complex situations are split over
multiple areas, the tracking step of the algorithm will be more prone to mistakes.

Parameter values
Seeds are taken randomly from the support cloud of each ground truth. This

cloud is first subsampled to ensure its point density is uniform. We will generate
10 seeds from every ground truth.

We will take the side length of the search cube as a measure of the search area
size. We will take lengths from 1 to 5 meters with a step size of 0.5 meters.

For every combination of seed and side length we will run the algorithm 20
times and compute the average performance.

3.3 Analysis methodology

The goal of the analysis is to establish how the parameters and input of the
algorithm affect the accuracy of the models it produces. Additionally we aim
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to give some guidance on how to choose the parameters and describe some of the
behavior demonstrated by the algorithm in the detection process.

We will not consider the parameters that the RANSAC and region growing
methods require. Empirically it appears that the chosen values for these param-
eters perform well for a wide range of point densities. There are a total of 7
additional parameters for these methods which makes a thorough study of their
effect on the algorithm a daunting task.

We separate the analysis in a quantitative and a qualitative part. The quan-
titative part aims to fulfill the first two goals, the qualitative part addresses the
last goal.

3.3.1 Quantitative

Accuracy

We have two accuracy categories: false positives and false negatives. If we
have a run where neither occurs the constructed model matches the ground truth
perfectly.

Both the ground truth and the model are made of pieces that contain a prim-
itive and pieces that only contain a region grown point set. To calculate the false
negatives we need to determine which pieces of the ground truth have no corre-
sponding pieces in the detected model. Similarly, to calculate the false positives
we need to determine which pieces in the model have no corresponding pieces in
the ground truth.

Matching primitives
To match two cylinders we calculate the distance between the two axes. If the

difference is less than 36 mm (the RANSAC threshold) we consider them matched.

To match a cylinder and a bend we check if either endpoint of the bend lies
within the RANSAC threshold of the cylinder axis, or if either of the endpoints of
the cylinder lies withing the RANSAC threshold from the bend axis.

To match two bends we use the same endpoint-based check as the previous
paragraph.

Matching regions

Two regions are considered matched if their point sets overlap in at least one
point. A region grown piece is considered matched to a primitive piece on the
same condition.

Primitive measures
We measure the false positives and negatives of the primitive pieces in meters.
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Since both primitive pieces have axes we can measure how well a piece is matched
by how much of its axis is 'covered’.

To calculate the coverage of a piece we project the axes of its matches onto its
axis. We then scan the axis from begin to end and record a distance as covered
when at least one axis is projected on to it.

For region grown matches we sort the points according the relevant parameter
of the axis and select the minimum and maximum value as begin and end point
to project on the axis.

The combined uncovered axis length in the ground truth is a measure of the
false negatives, in the detected model it is a measure of the false positives.

Region measures
Since regions have no primitives to measure any geometrical properties with we
can only report how many points in the region overlap with the support sets of its
matches.
The number of unmatched points in the ground truth is a measure of the false
negatives, in the detected model it is a measure of the false positives.

3.3.2 Qualitative

Since the quantitative evaluation can only comment on the performance of the
algorithm relative to a known good result of itself we need a qualitative analysis
to make some observations on the absolute accuracy of the algorithm, what kind
of errors it encounters and what factors may affect it.

4 Quantitative analysis

In this section we will examine the performance of the algorithm with parameters
and ground truths as described in Section 3. For all the figures in this section that
show point clouds the blue parts are classified as cylinders, green as bends and the
red parts are region grown.

4.1 Cross pipeline

This particular pipeline, see Figures 7 and 8, is interesting since it features a
substantial variation in point density and geometric complexity. The point density
is highest near the middle, see seed 1 in Figure 7, and drops off near the ends. The
area of the pipeline near seed 10 features a number of bends in quick succession
combined with a lot of surrounding structures.
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Figure 7: Seeds for the cross pipeline data set.

Figure 8: The cross pipeline in its full data set.
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4.1.1 Primitive pieces

False negatives
Figure 9 shows the percentage of the total pipeline length that could not be
matched by any primitive pieces in the model.

There are a number of observations we can make from this figure. Firstly it
appears that all seeds perform well, if not at their best, with a side length of 1.5
meters. Secondly there are a number of seeds that fail quite quickly after that and
a number of seeds that continue to perform well regardless of the side length. In
essence the algorithm will perform well if either a good seed or a good side length
is chosen.

The poor performance of seeds 4, 5, 9, and 10 is due to the high complexity of
their surroundings. Their pipeline section is curved, low density and surrounded
by other structures. The bends cause RANSAC to split the pipeline into smaller
primitives which fail to meet their 3% support threshold very quickly once the
larger search areas begin to include more of the surrounding structures. When
RANSAC fails in the first search area the algorithm cannot continue.
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Figure 9: The false negatives for
the primitive pieces.
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False positives

Figure 10 shows the percentage of the total model pipeline length that had no
corresponding pieces in the ground truth. Note that the percentage reported in
this plot is relative to the constructed model so large peaks may not correspond
to large lengths.

The lack of surrounding pipeline pieces gives the algorithm very little oppor-
tunity to generate false positives. The large peak at 4.5 m in Figure 10 is due to
RANSAC detecting a very small, 14 cm in length, false cylinder that just happens
to include the seed.

The peaks at 1 meter are due to the search area size. A small area also means
a low support threshold which makes it more likely that a false positive is detected
and included in the model. The small size also means that any included false
positive is more likely to cause the algorithm to investigate adjacent search areas.

4.1.2 Region pieces

Figure 11 shows that the behaviour of the region growing for this data set is very
chaotic. This is due to the regions of the ground truth being nonessential to
the pipeline, they are small enough for their neighboring pieces to be connected
without them. Additionally the regions lie in an area with both low point density
and high curvature which makes it difficult for the region growing algorithm to
perform consistently across different seeds. Since the regions are nonessential,
detection can continue regardless of which fractions of the two regions are grown.
If the regions were essential all the variation would likely be well below the 50%
since failure for one region would mean not reaching the other.

The high variation seen in the region grown pieces does not carry over to the
primitive pieces in Figure 9 for the same reason: a region error has no effect on
the following detection steps. The difficulty of the data also explains the absence
of false positives for the region growing as seen in Figure 12. Only the small areas
give any false positives since their small size contributes to a very low support

threshold.

4.2 Climb pipeline

The main interesting feature of this pipeline, see Figures 13 and 14, is the vertical
segment. This segment begins with a reasonably high density straight part and
then continues into the surrounding support structures with a few bends. The
vertical segment also features a large gap due to occlusion.

The regions on the side of the horizontal section are due to a combination of
unusually high sensor noise, support structures that are not occluded, and high
density. These region are at this point unavoidable.

24



Cross Cross

100+
/\ 754 |
o S
> E oS
@ 75 seed g seed
5 1 g 1
o 2 - 2
® 3 2 3
::9 -4 % 50 -4
£ 50 ~5 £ ~5
S 6 S 6
ot 7 € 7
< 9]
o —
5 /\\ 8 > 8
o 9 = 9
£ 10 3, 10
S 5. 5 25
/
0 0- ) < — —
1 2 5 1 2 3 4 5
search area side length (m) search area side length (m)
Figure 11: The false negatives for Figure 12: The false positives for
the region pieces. the region pieces.

Figure 13: Seeds for the cross pipeline data set.
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Figure 14: The climb pipeline in its full data set.

4.2.1 Primitive pieces

False negatives
Figure 16 shows the percentage of the total pipeline length that could not be
matched by any primitive pieces in the model.

Similar to the last data set there appear to be some seeds (3, 4, and 5 in
Figure 16) that perform poorly on all side lengths while the other seeds perform
well on all but the largest side lengths.

The poor seeds again lie on the most difficult section on the pipeline as can
be seen in Figure 13. The degradation in performance that all seeds show at the
5 meters side lengths is due to none of the pieces in the vertical pipe meeting
the support threshold. The false negative rate remains beneath the 50% since the
simpler horizontal part of the pipeline remains easily detectable.

Seed 6
The remarkable performance loss we see for seed 6 with a side length of 4 meters
is due both the size of the search area and two unfortunate boundary positions. In
Figure 15 the red region on the left side marks the location where both RANSAC
and region growing struggle to reach the support threshold. A large search area
here picks up a lot of points from neighboring pipes, making the tracked pipe a
rather small percentage of the total points. Additionally the search area boundaries
are placed so only a small length of tracked pipe is in the corner of the search area.
The only way the region growing can reach the threshold here is to include the
small protrusion that is technically not part of the pipeline.
Even when the detection makes it past this hurdle the search area boundary
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cuts the green bend off so it appears to point right instead of up. This causes the
algorithm to investigate the wrong search area.

Figure 15: The two possible outcomes for seed 6 with a side length of 4 meters

False positives

Figure 17 shows the percentage of the total model pipeline length that had no
corresponding pieces in the ground truth. The large peaks seen in this plot do not
correspond to large lengths. The percentage is relative to the constructed model
so small models will easily produce large peaks.

This shows behavior similar to the cross data set in Section 4.1.1 as well. The
only difference is that the bad seeds do show false positives unlike they did in the
cross pipeline. The bad seeds in this pipeline were surrounded by much closer
supporting structures which makes it more likely for a false positive to end up
with a seed.

The only significant peak is seed 3 at 2.5 meters. Not only is the model com-
pletely composed of false positives, it is also 4 times as long as the ground truth.
This is due to the seed being surrounded by other structures in a low density area.
The detection starts off with a false positive and takes off from there.

4.2.2 Region pieces

The region pieces, Figures 18 and 19 show a far less chaotic picture than the cross
data set. This is due to the majority of the region points being located on or near
the easier horizontal section in Figure 13. The regions on the more challenging
vertical section are very small in comparison.

The higher variability in both the false positives and the false negatives for
the region pieces compared to the primitive pieces is due to the majority of the
regions actually being located on a primitive instead of growing away from the end.
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Even a minute diameter or orientation difference in the primitives that RANSAC
produces will have a noticeable effect on both the starting seed choices and the
available points for the region to grow into. This is also the reason that no seeds
ever get to 0% false negatives, there are always some points missed on the side of
the horizontal section in Figure 13.
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Figure 18: The false negatives for
the region pieces.

Figure 19: The false positives for
the region pieces.

4.3 Join pipeline

The join pipeline, see Figures 20 and 21, is interesting since it has a section that is
flanked closely by adjacent parallel pipelines (the horizontal section in Figure 8).
The section is then joined by a pipe with a much smaller diameter which results
in a complex connection of two cylindrical pieces, a bend and a region in a very
small space (just to the right of seed 10 in Figure 20).

4.3.1 Primitive pieces

Figure 22 shows a different behavior from the previous two data sets. In this case
there are no clear good or bad seeds.
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Figure 20: Seeds for the join pipeline data set.
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Figure 21: The join pipeline in its full data set.
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For this data set it appears that all seeds are rather sensitive to the side length
of the search area.This is due to the data set lacking any ’easy’ starting areas. The
best performance can be found in the 2 to 3.5 meters range.

The horizontal pipes in Figure 20 are flanked closely by parallel pipes as can
be seen in Figure 21. This means that even though their point density is high they
have very limited non-occluded surface area, which makes detection more difficult.

The vertical pipe in the figure presents different challenges. Even though it
does not suffer from occlusion it has a rather low point density. The green bend
piece cannot grow with the search area like cylinders can, which means that it will
fall below the minimum support threshold on the larger side lengths.

All these issues combined mean that this data set has no safe choice for a seed
position. The lack of consistently good seeds also means that the search area size
has to be chosen carefully to work with the seed as well, making this a very difficult
data set.

Seed 3

Seed 3 is the first to reach total detection failure. This is due to it being in the
lowest density area of the scan. RANSAC will perform, albeit unreliably on the
smaller search areas. As they grow larger we see false negatives and false positives
rise. The false positives rise since the real pipeline will get less likely to reach its
support threshold while false positives arise from the neighboring structures due
to poor normal quality.

The high false positives shown in Figure 23 are due to the total model size

being very low. Even the highest peak amounts to less than 1 meter. The same
goes for the peak of seed 10 at 4 meters.

Seeds 2,4,8,6

Its interesting to note that seeds 2,4,6,8 all rapidly rise in the number of false
negatives around the 4 meters. These seeds have in common that they lie on a
transition from point density that is just sufficient for RANSAC to a density that
RANSAC cannot handle. The cylinder that the seeds lie on can not grow with
the search area since on one side the search area grows into low quality data. This
means the cylinder is less likely to reach the support threshold in the larger areas.

4.3.2 Region pieces

As seen in Figure 24 the region pieces behave very much the same as the primitive
pieces. This is to be expected since in this data set the region pieces actually make
up a significant portion of the total pipeline. This supports the hypothesis from
the cross pipeline that the chaotic behavior of its region grown pieces stems not
only from the difficult data but also from their nonessential role in the model.
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truth region unmatched points %

The peaks we see in Figure 25 are again due to the model containing very few
region points, which allows just a few points to cause a 100% peak.
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4.4 Bend pipeline

The bend pipeline, see Figures 26 and 27, features the highest change in point
density out of all data sets. It is flanked by similar pipelines for its entire length.
The left of the pipeline in Figure 27 is only 2.5 meters removed from the scanner
which gives it a point density of approximately 75064 points per m? of cylinder.
The far right is 23 meters removed from the scanner and incoming laser rays have a
very large incident angle resulting in a density of approximately 250 points per m?
of cylinder. That RANSAC manages to detect primitives for both these extremes
is a testament to its robustness under the chosen parameter values.

4.4.1 Primitive pieces

Figure 28 shows a similar picture to the join pipeline in Figure 22. There are no
universally good seeds or side lengths however, side lengths in the 1.5 meters to
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Figure 26: Seeds for the bend pipeline data set.

Figure 27: The bend pipeline in its full data set.
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2.5 meters range do well for a number of seeds.

The largest similarity between these two pipelines is that they are both flanked
by similar pipelines on both sides. In this situation the algorithm requires a
search area that is large enough to fit the diameter of the large pipeline with
some tolerance but exclude as much of the flanking pipelines as possible.

Seed 7

The poor performance of seed 7, the blue line at the top of Figure 28, can be
explained by its position on a valve, see Figure 26. Since the diameter of the valve
is larger than the surrounding pipes the seed will never be found on a correct
RANSAC result which means the algorithm stops immediately.

It does detect a small percentage of the pipeline with a side length of 1 m since
the support threshold for such a small area is very low. This allows the valve to
be detected as a small cylinder which connects to the pipeline. The small area will
struggle immediately to the left and right since it cuts off the bend on the left and
the low point density on the right leads to such low support thresholds that the
RANSAC results are simply nonsensical.

These nonsensical results can be seen up to a side length of 2 m in Figure 29.
After that detection simply fails. Note that the large peaks in the figure are again
from very small models.

Seed 1

Seed 1 is the second seed to get total detection failure. Even though its location
in Figure 26 seems good, it has high density and low curvature/complexity. The
issue with this seed is that the bend it lies on cannot grow with the search area. The
pipeline that extends upwards does not continue the bend and will be recognized
as a different primitive. Downwards from seed 1 the data simply stops. When a
primitive cannot grow with the search area it will fail to reach its support threshold
more often as the side length increases.

Seed 6
Seed 6, rightmost spike in Figure 29, demonstrates a tendency to generate exclu-
sively false positives when the search area grows. This is due to the very low point
density in the data. The low point density means that the support threshold of 3%
is a small number of points. The low density also means the normal estimation is
of lower quality which opens op the possibility for large numbers of false positives.
Normally these are filtered out by the existing model. When the seed lies in
the low density area, like seed 6, the model may be initialized by a false positive
which is then extended by even more false positives.
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4.4.2 Region pieces

Like the other data sets where regions are not a significant part, Figure 30 appears
rather chaotic. In this case there is a clear division between the seeds. In the
first group are seeds 1,2,3,4, and 10 that lie in the high density area on the left of
Figure 26. The other seeds lie on the right in the lower density area. The small
region above seed 1 is responsible for just over 60% of the total region points in
the pipeline and the region at seed 7 is responsible for approximately 35%. Since
the low density seeds are simply not reaching the first region and only occasionally
the second their average false negative rates are quite high.

The large variation seen in some of the low density seeds is due to them al-
ternating between reaching and not reaching the two regions depending on the
search area boundaries. Since the region’s actual pipeline length is very small a
detection run that is just centimeters shorter than another might not get the ap-
propriate seeds to grow that region. This explains why we see bigger fluctuations
in Figure 30 than in Figure 28.

As in the other data sets the peaks seen in Figure 31 are from very small
models.
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5 Qualitative analysis

In this section we will examine two situations where the algorithm struggles to
create good models and suggest possible solutions to the encountered problems.
The figures in this section show unclassified points in blue, cylinders as green,
bends as yellow, and regions as red.

5.1 Gradually deteriorating data

A common situation in the scans of the Pernis facility is a very long, straight
pipeline that runs away from the scanner with minimal occlusion. This situation
is not challenging due to complex geometry or clutter by unrelated points but due
to the point density dropping gradually with the distance from the scanner.

All the pipelines in the previous section had a natural cutoff point where the
data simply stopped before point density got very low. The situation in Figure 32
is an example of a situation without such a natural cutoff. The point density drops
from right to left.

Figure 32: Successful detection of a long pipeline

The constructed model for this pipeline is shown in Figure 33. The right of the
model is consistently accurate, as the algorithm moves left in the figure RANSAC
becomes increasingly inaccurate. The lower the point density the more RANSAC
overestimates the radius of the pipeline. Figure 34 clearly shows the diameter
differences.

These diameter inaccuracies are not necessarily an issue since they do not
interfere with tracking the pipeline. However, they do make the algorithm more
prone to connecting false positives. All the connection checks in Section 2.1.1
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Figure 33: The model generated for the detection result in Figure 32

Figure 34: The front view of Figure 33
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rely on the estimated diameter of the primitives. When the overestimation gets
too large, false positives will be connected. Additionally these false positives can
bridge the gap between the model and previously detected pieces which can extend
the pipeline with several meters of false positives with only a single detection error.
The error also builds over multiple connections. Since every connection has a 50%
diameter threshold the allowed diameter can grow significantly after a few accepted
overestimations.

The result of such an error is shown in Figures 35 and 36. A large diameter
inaccuracy at the very left of the model led to a connection to a false positive. This
false positive happened to be positioned just so it could connect to the neighboring
upper pipeline. The bottom pipeline was connected through a vast overestimation
of its diameter which led it to completely contain the main pipeline.

Figure 35: Detection run that includes false positives

Possible solutions

The most straightforward solution to this problem would be to stop the algo-
rithm at a predefined point density threshold. This solution would require fine-
tuning for every scan and possibly even for every pipeline in a scan to avoid
stopping too early.

Another option would be to discard false positives based on their diameter to
length ratio. All of the obvious nonsensical parts of the model in Figure 36 have a
larger diameter than length. This property could be exploited to filter them out.
While this would require tuning the ratio at which a primitive is discarded it is
likely the chosen ratio would function well across all scans since the shape of the
false positives is inherent to the RANSAC method and not to the data. Since the
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Figure 36: The model generated for the detection result in Figure 35

region growing algorithm could step in to recover from primitives that were filtered
out by mistake it should not be an issue if the filtering is a little too aggressive.

A more sophisticated approach would be to not just take the current primitive
into account for the diameter threshold but also previously connected pieces. Since
most of the pieces have an accurate diameter estimate this should reduce the
likelihood that a false positive is connected. The problem with this approach is
that there are areas of the pipeline that are supposed to differ in diameter. For
example, a ”T” split usually connects a narrow and a wide pipe as we saw in the
join pipeline in Section 4.3. To make sure the algorithm only takes the relevant
model pieces into account for the diameter threshold, the algorithm would have to
reliably identify ”T” splits.

5.2 Non-pipeline regions

For a non-pipeline region to grow there need to be seeds at the end of a cylindrical
or bend piece that lie very close to a non-pipeline structure and the transition
from pipe to non-pipe needs to be sufficiently smooth. This can happen in two
ways: either the pipe meets a support structure that occludes so much of it that
the detection cuts the pipe off where they meet or an unfortunate search area
boundary cuts off a pipe right as it meets a support structure.

In both cases the point density needs to be either very high or low for the
transition to be considered smooth. For a very high point density the 35 neigh-
borhood of the normal estimation slowly transitions from pipe to non-pipe when
moving from point to point. Since the normal is determined by the entire neigh-
borhood it will also slowly transition from pipe aligned to region aligned. For a
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very low point density the normals are simply inaccurate so it is possible for a few
inaccurate normals to line up well enough to allow the region to grow.

High density

Figure 37 shows an example of the first case where a support structure occludes
all the pipes that are behind it. The point density near the wall on the left of the
figure is very high which allows the normals to transition smoothly even though
the actual geometry features a sharp edge. In this case detection started at the
indicated seed, reached the wall and proceeded to grow into all cylinders that also
touch the wall.

Figure 37: A detection run taking the wall in which the pipes are embedded into
the model.

Low density

The join pipeline which we have analyzed in Section 4.3 can include a non-
pipeline region when a search area boundary occurs at a very specific spot. Fig-
ure 38 shows the situation. The search area boundary occurs at the transition
from blue to red points.
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The jump to the non-pipeline region occurs at the white dot, which coinciden-
tally corresponds to seed 6 in Figure 20. The points above and the single point to
the left of the white dot lie isolated from both the pipeline and the region. This
makes the normals inaccurate and just happens to bring them close enough to be
in the 10 neighborhood of each other.

Figure 38: A side view of a possible non-pipeline region on the join pipeline. The
white dot corresponds to seed 6 in Figure 20. The red oval marks the two points
that cause the jump to the non-pipeline region

Possible solutions

The high density and low density errors are symptoms of different issues. In
the high density situation the normal estimation neighborhood is too large which
leads to smoothly varying normals even at high curvature. Decreasing this size
however will lead to more problems in low density areas where the normals need
a large neighborhood to be approximated well.

The low density errors are due to bad luck, they only happen if the normal
calculation is inaccurate in just the right way for several points. We could make
the region growing method more restrictive in its normal, residual and distance
thresholds. The drawback to that is that this will lead to more detection failures
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in medium density and high curvature situations where we need region growing to
recover from RANSAC difficulties.

Developing a normal estimation algorithm that can provide a certainty mea-
sure of its estimation invariant to neighborhood size or point distribution would be
a major advance in the field. All current methods either fit a plane to the neigh-
borhood or construct a mesh for it and can only provide either the residual of the
fit or some mesh characteristics. Neither of which can make any direct statements
on the accuracy of the estimation.

In both situations the regions might be discarded if we applied a curvature
analysis akin to [17]. The authors use the two principal curvatures of point sets to
determine if they qualify as pipelines. This may help since most non-pipeline
regions are distinctly non-cylindrical. It would introduce more parameters to
our algorithm that need tuning and introduce significant additional complexity.
The current region growing algorithm only involves distance, normal and resid-
ual checks. Curvature analysis would introduce quadratic surface fitting which
undermines the simplicity of the current algorithm.

6 Conclusion and future work

6.1 Conclusion

We have presented an algorithm that can both track and model a pipeline across
multiple data sets that does not need any preprocessing or assumptions about
pipeline characteristics. Section 4 showed that the algorithm is too sensitive to
the chosen seed and side length to work completely unsupervised.

Parameter guidelines

The seeds that performed well in Section 4 all shared three characteristics: high
point density, low curvature and if possible little clutter in the surrounding area.
In essence the goal is to give RANSAC the best chance at obtaining an accurate
result in the first area. The side length should be chosen to fit the diameter of the
tracked pipeline with enough margin to also contain significant parts of bends.

In Section 4 we have seen that in most situation seeds in the range of 1.5 to 2.5

meters work well. This is roughly 4 to 6 times the diameter of the pipelines in the
scans. Since the seeds all lie on the surface of the pipelines the smallest margin
between primitive and area boundary ranges from 1 to 2 pipeline diameters.

Interactive use
The iterative and local nature of our algorithms makes it suitable as an interac-
tive tool. On small areas of interest each iteration takes under 10 seconds, which
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can be reduced drastically if the normals are precomputed. If an iteration intro-
duces false positives the algorithm could be paused in between iterations to allow
a user to fix the mistake. Since the model allows the user to work on the level of
primitives and regions instead of points this work flow would still be a significant
improvement over the manual extraction which works at a point level.

6.2 Future work
6.2.1 Model analysis

We have suggested some improvements to the algorithm in Section 5. The most
promising of these is that we could use a more detailed analysis of the model to
filter out bad detection results.

No other algorithm in the field currently uses an iterative approach where
constructing a model aids in interpreting subsequent detection results. In other
disciplines where data is generally available as a time series the detect-model-
predict mindset is more common.

For example, Antich et al. [2] present a Kalman filter-based method for visual
tracking of underwater pipelines. The Kalman filter is not directly applicable to
our algorithm since above ground pipelines can change abruptly in both diameter
and direction at ”T” splits. However, making use of the available model to better
interpret detection results presents in interesting research direction.

6.2.2 Search areas

The current search area implementation limits the search areas to axis aligned
bounding cubes. While this makes intersection tests and ensuring no areas overlap
easier it is by no means ideal. The ability to adjust search area size, shape and
orientation will reduce the number of unfortunately placed boundaries.

6.2.3 Jumping between scans

Since our algorithm works on one search area at a time it is easily extended to
switching scans in between iterations. Besides the obvious benefit that this allows
the algorithm to track very long pipelines it could also aid the algorithm when
dealing with the gradually deteriorating data seen in Section 5.1. When the point
density gets too low the algorithm could switch to a scan where the scanner was
positioned closer to the currently tracked pipeline section. The models from the
two scans will overlap where the algorithm switched scans. Since the model pieces
created in the low density scan are less accurate they could be replaced by the
pieces created in the higher density scan. Filtering out false positives could be
done by checking which low density pieces have no high density matches. Since
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we do not use points from different scans together in the same RANSAC or region
growing runs and our connection methods tolerate a few centimeters misalignment
we do not have to consider registration of the scans.
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Appendices

A

Common terms

To ensure there can be no confusion when we use terms common throughout the
literature we will define them in this section.
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Definition A.1 A primitive is a simple geometric shape whose surface can be
described by a limited number of parameters.

A sphere, for example, is a primitive whose surface can be described by a
center position and a diameter. More complex shapes such as trees generally can’t
be described by parameters. Representing them requires a format that explicitly
describes its surface such as a triangle mesh.

Definition A.2 A point set is subject to sensor noise when the measured points
show small random deviations from what their position on the measured object
should be. See Figure 39.

No measuring device is perfect so all non-synthetic point sets will be subject
to sensor noise to some degree.

noise = 5% noise = 10%

Figure 39: Synthetic sensor noise on a chair and the resulting reconstruction.
Taken from [10].

Definition A.3 A point set is subject to spatial noise when points inconsistent
with any surface are distributed throughout the entire point set. See Figure 40.

Spatial noise can be completely random like Figure 40 or show a distinct pattern
due to a quirk in the scanner. For example, the scanner used to produce the point
cloud in Figure 41 tends to produce noise in a half sphere above ground level at
the maximum sensor range.
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Figure 40: Synthetic spatial noise around a sphere. Taken from [15].

Figure 41: Spatial noise generated in a half sphere in the sky by a scanner that
does not handle a lack of reflection well.
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Definition A.4 An artifact consists of one or more points that do not appear to
belong to any measured surface.

Artifacts are usually caused by sensor errors and are generally quite rare. In
some cases artifacts can be larger structures. For example, when something moves
in front of the sensor during scanning. See Figure 42. The key difference between
artifacts and spatial noise is that artifacts are local structures while spatial noise
is a global effect.

Figure 42: Artifacts caused by pedestrians and a forklift moving in front of a laser
scanner.

Definition A.5 An outlier is a single point that is inconsistent with any mea-
sured surface, or with the current hypothesized primitive(s) if the ground truth is
unknown.

The term outlier is used when the origin of the point (noise, artifacts, or erro-
neous hypotheses) is not important.

Definition A.6 A point supports a primitive when it lies on its surface, such
points are also called inliers.

Most algorithms define a maximum distance to the surface for points to be
considered as support since sensor noise is inescapable.
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B Data set description

To make informed decisions on the values for the parameters of the component
algorithms (Section C) we need to know the characteristics of the point clouds
these algorithms have to work on. This section will give a detailed description of
the data sets used in this thesis.

The characteristics that describe a point cloud are
e sensor noise (as std. deviation in mm)
e spatial noise (as percentage of total points)

e point density (as points per m? of surface)

Sensor noise

Sensor noise produced by a laser scanner comes from two sources * range noise
and angular accuracy. Range noise originates from the laser sensor itself and
depends on the reflective properties of the surface and the distance to the surface.
For a plot of the range noise over increasing distance see Figure 43. These noise
measurements give the standard deviation of a Gaussian distribution with mean
0.

1

Angular accuracy is the difference between the actual mechanical orientation
of the scanner and the orientation as perceived by the scanner software. For this
scanner that is 0.007° (std. deviation), which gives an error of 2.2 cm at 187 m
(the maximum scanner range). This error scales linearly with distance from the
scanner.

The sensor noise values we use in Section C are the sum of the range noise
and angular error values. We use the grey surface, green line in Figure 43, for the
range noise in these calculations.

Spatial noise

The scanner used in this project does not appear to produce significant amounts
of spatial noise. The only instances of this kind of noise are a small number of
points at maximum scanner range in the sky. Artifacts are rare as well. Figure 41
gives an example of a common kind of spatial noise. Figure 42 gives an example
of a common kind of artifact.

LAll data in this section comes from the fact sheet of the scanner at http://www.zf-laser.
com/fileadmin/editor/Datenblaetter/Z_F_IMAGER_5010C_Datasheet_E.pdf
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Range noise with fitted second degree polynomials
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Figure 43: Range noise of the scanner, second degree polynomials have been fitted
to the available data.

Figure 44: Pipelines stretching across multiple scans. This view is taken from one
scanner, the yellow spheres are the positions of nearby scanners.
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Point density

The scanner produces between 25 and 81.5 million points per scan, depending
on the settings of the scanner. Point density on a surface depends on the distance
to the scanner, the angle the surface makes with the incident laser beams and the
total number of points the scanner produces.

Volume based density estimates (in points per m?) can produce inaccurate
estimates. If a volume of space is very close to the scanner but contains only a
very small piece of pipeline the point density in the entire volume is low, while the
point density on that pipeline is very high.

Instead we use a surface based estimate (in points per m?). For the synthetic
data in Section C we approximate the point density by assuming all points are
projected onto a sphere surrounding the scanner. When we want to approximate
the density at, for example, 15 m we calculate the surface area of a sphere with a
15 m radius divided by the number of points. To compensate for the fact that the
scanner can not scan below itself we take 90% of the calculated surface area into
account.

B.1 The Pernis repository

As mentioned in the introduction the Pernis repository contains 19,638 scans in
total. These scans are stored in a way that preserves their relative positions.
The exact coordinates of each scanner are stored which allows an algorithm to use
points of multiple scans to track a pipeline. For an example of how a user interface
presents the relative position of scans see Figure 44.

The coordinate systems of the different scanners should be reasonably well
aligned. All the scans were done with the same GPS hardware and since the
scanner stands still for upwards of 1 hour the GPS position can be averaged over
a large number of measurements. The misalignment between two scans should be
in the order of a few centimeters.

C Component algorithm experiments

C.1 Synthetic data generation

The synthetic point clouds are generated by placing a number of points on the
surface of three parallel cylinders 15 meters in length. These touch each other
at the sides. Noise is added by displacing the points in a random direction by a
distance sampled from a normal distribution with mean 0 and the chosen noise
value as the standard deviation.
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The characteristics in the point cloud generation are:
e sensor noise (as std. deviation in mm)

e point density (as points per m? of surface)

These two characteristics will be fixed in three configurations representing con-
ditions 15, 50 and 100 meters from the scanner. These configurations will be
referred to as near, middle, and far. We do not include spatial noise since it does
not tend to be a significant factor in the kind of data we use.

The values, see Section B for data and calculations, for the characteristics are
(near, middle, far):

e sensor noise: 2.1, 6.92, 15.5

e point density: 14157, 1273, 318

C.2 Algorithm parameters

C.2.1 RANSAC
For RANSAC the parameters that need to be investigated are:

e minimum support (s): [0.02...0.2] step size: 0.02
e normal threshold («): constant, see Section 2.2.1
e size of bitmap cells (J): constant, see below

e distance threshold for support (¢): [2 mm...20 mm]| step size: 2 mm

Minimum support (s)

This parameter determines how much support a primitive must have to be con-
sidered as detected. A low value encourages under-segmentation, a high value
encourages over-segmentation. Measured as ratio of total point set.

Normal threshold («)

This parameter determines how much the normal of a point may deviate from
the normal of the hypothesized primitive at this point. A high value encourages
under-segmentation, a low value encourages over-segmentation. Additionally a low
value may cause inaccurate hypotheses to gain too much support leading to false
positives. Measured in degrees.
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Size of bitmap cells (53)

The algorithm defines a bitmap across the surface of every primitive. Primitives
are bounded by calculating the largest connected component of neighboring pixels
that have a point in them. This parameter determines the size of the pixels in
the bitmaps. A low value causes over-segmentation by splitting a single detected
primitive in multiple parts. A high value causes under-segmentation by failing to
split apart primitives that are grouped together by the detection step. We will set
this value so points that are at an average distance from each other will not have
an empty pixel in between them. To do this we set the side length of a cell to the
upper end of the 95% confidence interval of the interpoint distances of the data
set.

Distance threshold for support (¢)

This parameter determines how far a point may lie from a primitive to still be
considered as support. A low value may lead to detection failure as no hypotheses
receive sufficient support, a high value could lead to false positives being added to
the output.

Optimum probability threshold

The algorithm will continue to draw samples until it is very unlikely the best
sample has not yet been drawn. Schnabel et al. [15] put this at 0.01. We found
that computation times were not significantly affected by lowering the threshold
to 0.001.

C.2.2 Region growing

For region growing the parameters that need to be investigated are:
e minimum support (s): [0.02...0.2] step size: 0.02
e normal threshold («): constant, see Section 2.2.1
e residual threshold (¢): [0.8...0.98] step size: 0.02

e nearest neighbor threshold (/): [10...55] step size: 5

Minimum support (s)

This parameter determines how many points a region must contain to be added
to the output. A low number may lead to the output being swamped in insignif-
icant results, a high number may lead to the exclusion of important regions from
the output.
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Normal threshold («)

This parameter determines how much the normal of a point may deviate from the
normal of the seed point that is considering adding it to the region. A high value
may cause under-segmentation as regions grow past sharp bends, a low value may
lead to over-segmentation as regions are cut off at smooth bends. This parameter
is not used to control behavior in noisy areas since inaccurate normals could still
fall within the threshold. Measured in degrees.

Nearest neighbor threshold ()

This parameter determines how easily a region will grow across gaps in the
data by defining how many neighborhood points are considered for addition to
the region. A low value may cause over-segmentation as a region may be stopped
by a few missing or misplaced (by noise) points. A high value may cause under-
segmentation as regions are prepared to grow across large volumes without points.

Residual threshold (¢)

This parameter determines how inaccurate the normal of a point may be to still
be able to become a seed point after being added to a region. A low value may lead
to over-segmentation as regions are cut off at areas with slight curvature, noise or
drop in point density, a high value could cause under-segmentation as regions grow
right through noise, high curvature and missing data. This parameter does not
control behavior at bends since the residuals stay constant on smooth bends and
recover quickly (within the § neighborhood) on sharp bends. The parameter is
measured in percentiles: ¢ = 0.98 means that a residual must be lower than the
top 2% of all residuals to pass.

C.3 Experimental procedure

We run every algorithm 100 times on every data set for every parameter configu-
ration. For every configuration we report the average of the following performance
measures:
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e degree of segmentation
e parameter accuracy (RANSAC only)

1. axis angular difference
2. axis distance

3. width difference

e region completeness (region growing only)

The degree of segmentation is 1 when the detection algorithms segment the
data in exactly as many regions as are in the data. It is less than 1 when the
detection algorithm under segments the data, it is more than 1 when the data is
over-segmented.

Region completeness is 1 when a region contains as many points as we expect,
we know how many points are generated on each cylinder. There may be fewer
points in the region if it was preceded by a number of small regions that did not
reach sufficient support to be considered for output. In contrast to RANSAC the
region growing algorithm removes points from the data even if their region does
not reach sufficient support.

C.4 Results
C.4.1 RANSAC

The most important observation from the results on the following page is that
the only way to get a segmentation degree of one is to have a very low support
threshold. Since 2% causes some over-segmentation and 4% under-segmentation
we chose 3% as our final value.

To see what values we should choose for the other two parameters we extended
their range and performed experiments with the normal threshold fixed at 0.15
radians and the support fixed at 3%. The plots can be seen on the second and
third following pages. From the extended distance experiments we can conclude
that 36 mm gives a good segmentation degree without sacrificing accuracy.

We fixed the distance threshold at 36 mm for the extended normal experi-
ments. These experiments show that there is very little to be gained by increasing
the threshold in combination with the previously mentioned values for the other
parameters. Therefore we use the original value, 0.15 rad, in the algorithm.
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RANSAC extended normal
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C.4.2 Region growing

From the plots on the following page it appears that no parameter configuration
gives a segmentation degree of one. The data set only provides three plausible
spots to stop a region from growing, at the lines where the cylinders touch. Since
the normals are not oriented this is very difficult for the algorithm to recognize.
Since all segmentation results are multiples of 1/3 we can be sure the only region
splits happened at the touching areas of the cylinders. Since these results do not
give us any reason to deviate from the recommended values of [14] we do not
deviate from these recommendations.
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Region growing

t
)
7]
fe]
(&
@ ® & & ® O & 0 5 » * 0 s e |0
..............O
...............ln/_.
...............O
................w
® & & 0 & & @ & P O 6 & & 0 09|
.................O
e & & & 6 & & 0 & 5 o & & " PO [T
...ll.....l.....ﬂu
.................%
e & ¢ & & & & & O @ @& | O
®
| | |
< ™~ ]
aalbap uoneswbas
|O
e —
i o
. - .
® o
| ©
m S
L ]
® <t
. - .
| | -O
< ™~ ]
aalbap uoneswbas
& & & & @& & & & & & & ° & 2
................lw
e & @ & & @& & & P & & & & 0 > O
'............'..um
e ® & & & & & o & & 0 5 B & O 8 0
.................lm
e & & & & & & o & & O & & = 0 0 0
................lm
e & & & & & & © ¢ & & & & ¢ & & 0
................uw
| | |
< N jen]
29lbap uonewswbes
-]
o e e 0 R
* @ & 9
....u_.O
o
® & @& & 9
& o @& @
(]
e o & 0o o o |-
& & & & & 9
® & & & & & & & 9 0
-0
e & & & & & & & & o & 0
e & & & & & & & & & O & & & " 8
| | |
< ™~ ]

29lbap uonewswbes

* Far

neighborhood size residual threshold normal threshold (rad)

support(% of cloud)

* Middle
* Near

o
™
- - @ o o
eeCc: T
L - - [ ] o
- L] - D ST In/_.
- [ ] @ © I e ©
- - - I (o}
-
[ _J L J ® © o
L) a » @ T
o
[ L J ® e - Y
o
® ® 9 T
SO o
¢ Lo
L} o
L ]
L L L L
[sp] ™~ — =]

{yniy puneuBb Jo 9,) uoibal Jad suiod abelane

1.0

0.8

0.6
residual threshold

0.4

3+

{yniy puneuBb Jo 9,) uoibal Jad suiod abelane

™~ — ]

50

20

3-
HERNEEEREERERR

{ynJ1 puneub Jo 9;) uoiBal Jad sulod abelene

™ — O

support(% of cloud)

10

3-
SNEENRENRR
0

™~ — ]

{ynJ1 puneub Jo 9;) uoiBal Jad sulod abelene

normal threshold (rad)

neighborhood size



	Introduction
	Related work
	Primitive detection
	Segmentation methods
	Pipeline extraction

	Contributions

	Algorithm description
	Algorithm overview
	The pipeline graph
	Moving the search area

	Component algorithms
	Normal estimation
	RANSAC
	Region growing


	Experimental setup
	Ground truth generation
	Parameters
	Analysis methodology
	Quantitative
	Qualitative


	Quantitative analysis
	Cross pipeline
	Primitive pieces
	Region pieces

	Climb pipeline
	Primitive pieces
	Region pieces

	Join pipeline
	Primitive pieces
	Region pieces

	Bend pipeline
	Primitive pieces
	Region pieces


	Qualitative analysis
	Gradually deteriorating data
	Non-pipeline regions

	Conclusion and future work
	Conclusion
	Future work
	Model analysis
	Search areas
	Jumping between scans


	References
	Appendices
	Common terms
	Data set description
	The Pernis repository

	Component algorithm experiments
	Synthetic data generation
	Algorithm parameters
	RANSAC
	Region growing

	Experimental procedure
	Results
	RANSAC
	Region growing



