Master Thesis Business Informatics

Better Design Rationale to Improve Software Design Quality

Author:

Rizkiyanto 4234634

June 2016 Final Version

Supervisors:

Dr. Floris J Bex Dr. ir. Jan Martijn van der Werf

Name:	Rizkiyanto
Student Number:	4234634
Contact:	rizkiyanto@students.uu.nl
Title Thesis:	Better Design Rationale to Improve Software Design Quality
Date:	June 2016
University:	Utrecht University
Faculty:	Information & Computer Science
Study:	Business Informatics
Supervisors:	Dr. Floris J Bex Dr. ir. Jan Martijn van der Werf

Table of Content

1	Int	rodu	ction	1
	1.1	Pro	olem Statement	2
	1.2	Res	earch Statement and Scope	4
	1.	2.1	Conceptual Model	5
	1.3	Scie	entific and Practical Contributions	6
	1.4	The	sis Structure	6
2	Re	searc	h Method	7
	2.1	Lite	rature Study	7
	2.2	Emj	pirical Research- Experiment	7
	2.	2.1	Scooping	8
	2.	2.2	Planning	8
	2.	2.3	Operation	8
	2.	2.4	Presentation	10
	2.3	Val	idity Issue	10
3	Th	eoret	ical Background	12
	3.1	Des	ign Rationale Concept	12
	3.2	App	broach to Capture Design Rationale	13
	3.	2.1	Issue-Based Information System (IBIS)	14
	3.	2.2	Question, Options, and Criteria (QOC)	15
	3.	2.3	Decision Representation Language (DRL)	16
	3.	2.4	Summary of Previous Approach	18
	3.3	Des	ign Reasoning and Reflection	19
	3.4	Con	nection Between Design Reasoning and Design Rationale	22
	3.5	Con	text and Requirement Quality	23
4	Da	ta Ai	nalysis	24
	4.1	Cod	es	24
	4.2	Cod	ing Procedure	26
	4.3	Cod	ing Consistency	26
	4.4	Cod	ing Result	27
	4.5	Qua	ntitative Data Analysis	

	4.6	Data Display	31
	4.7	Conclusion	32
5	Qu	alitative Data Analysis	33
	5.1	Event-listing Matrix	
	5.2	Pattern Classification	35
	5.3	Pattern Type	36
	5.	3.1 Type A	36
	5.	3.2 Type B	36
	5.	3.3 Type C	37
	5.	3.4 Type D	37
	5.	3.5 Type E	38
	5.4	Detail Pattern Variant	39
	5.5	Measuring the Pattern Variant	42
	5.6	Conclusion	44
6	Pro	ocess Mining	45
	6.1	Tool	
	6.2	Creating the Process Models	45
	6.3	Process Model Simplification	49
	6.4	Process Model Analysis	50
	6.4	4.1 First Model of Control Group	51
	6.4	4.2 First Model of Test Group	52
	6.4	4.3 Second Model of Control Group	53
	6.4	4.4 Second Model of Test Group	54
	6.5	Identify the Correlation	55
	6.:	5.1 Problem Structuring to Design Issue	55
	6.:	5.2 Option Generation to Design Option	56
	6.:	5.3 Assumption Analysis to Assumption	57
	6.	5.4 Constraint Analysis to Constraint	57
	6.:	5.5 Risk Analysis to Risk	58
	6.6	Conclusion	59
7	Res	sult	60
	7.1	Finding 1 – The Reflective Method Intensify the Frequency of Design	
		soning Technique and the Design Rationale Element	60

	7.2 Fi	nding 2 – The Type of Design Rationale Element	61
	7.3 Fin	nding 3 - Result of Process Mining	62
8	Conclu	ision and Discussion	64
	8.1 Co	nclusion	64
	8.1.1	The Concept of Design Rationale and Design Reasoning (SQ1)	64
	8.1.2	Quality Measure for Design Rationale (SQ2)	64
	8.1.3	Rationale as the Product of Reasoning Process (SQ3)	65
	8.1.4	Improving Implicit Rationale (SQ4)	65
	8.1.5	Answer to Main Research Question	66
	8.2 Di	scussion	66
	8.2.1	Limitation	66
	8.2.2	Future Research	67

Appendices

A Documentation Template	71
B Time Plot Graph	78
C Event-Listing Matrix	91
D Process Model	130
E The t-test Results	145

List of Figures

Figure 1.1 Conceptual Model explaining the questions and used concept	5
Figure 3.1 Toulmin's model of Arguments (Toulmin, 1958)	14
Figure 3.2 IBIS method structure	15
Figure 3.3 QOC Design Rationale example	16
Figure 3.4 DRL complete vocabulary (Lee, 1991)	17
Figure 3.5 Example of DRL model (Adopted from Lee, 1991)	17
Figure 3.6 The framework of Design Rationale elements	19
Figure 3.7 The software design-thinking model (Razavian et al., 2015)	20
Figure 4.1 Design reasoning Time plot of transcript 12	31
Figure 4.2 Design Rationale elements time plot of transcript 12	32
Figure 5.1 Pattern Classification tree	35
Figure 5.2 Pattern Type A	36
Figure 5.3 Pattern Type B	36
Figure 5.4 Pattern Type C	37
Figure 5.5 Pattern Type D	38
Figure 6.1 Importing data to Disco	46
Figure 6.2 The complete process model of control group	48
Figure 6.3 The simplification result of complete process model of control group	50
Figure 6.4 Process model of control group with 100% activities and 10% paths	51
Figure 6.5 Process model of test group with 100% activities and 10% paths	52
Figure 6.6 Process model of reasoning techniques of control group	53
Figure 6.7 Process model of reasoning of test group with 100% activities and 90% paths	54
Figure 6.8 Problem Structuring to Design Issue	56
Figure 6.9 Option Generation to Design Option	56
Figure 6.10 Assumption Analysis to Assumption	57
Figure 6.11 Constraint Analysis to Constraint	58
Figure 6.12 Risk Analysis to Risk	58

List of Tables

Table 1 Similar component in argumentation-base Design Rationale	18
Table 2 Descriptive of the 1 st experiment transcripts	24
Table 3 List of Codes	25
Table 4 Inter coder Reliability result	27
Table 5. Coding result of design reasoning techniques	27
Table 6. Coding result of Design Rationale elements	27
Table 7. t-test result of design reasoning techniques	30
Table 8. t-test result of Design Rationale elements	30
Table 9 Example of the event-listing matrix of transcript 12	34
Table 10 Summary of Pattern	39
Table 11 Example of plotting Argument Pattern	40
Table 12 List of Type with the quantity of Design Option	40
Table 13 Argument pattern of control group	40
Table 14 Argument pattern of test group	41
Table 15. Simplification of pattern variant of control group	41
Table 16. Simplification of pattern variant of Test group	42
Table 17 Dataset of event logs	46
Table 18 Design reasoning frequency	60
Table 19 Design Rationale elements frequency	61

1 Introduction

Building software is more than just programmers creating lines of codes for a software program. There are many phases that developers have to go through to make sure the software is built according to the user expectation. A methodology called Software Development Life Cycle (SDLC) characterizes the essential stages for developers to create good software. Software Development Life Cycle describes the phases of the software development cycle and the order in which those phases are executed (Ruparelia, 2010). Each step produces deliverables required by the next stage of the life cycle. Requirement gathering and analysis translates the requirements into a design for the design phase. Then the code is created according to the design, which happens in the development phase. After coding and development, the testing phase verifies the deliverable of the implementation phase back to the requirements. In this thesis, the focus will lie on one of these phases, the design phase.

According to Dyer (1988), the design phase holds an important role since the majority of software defects (almost 60%) are introduced during the design phase and the cost of their removal can be more expensive than defects introduced at later steps in the development phase. In the design phase, the system and software design is prepared from the requirement specifications, which are gathered from the previous phase. The design phase helps in specifying hardware and system requirements and also assists in defining overall system architecture by means of design decisions.

The design decisions are made depends on the argument of the designers, the reasoning that they build during design discourse session. This reasoning process is important in software design because it could influences the quality of the design decisions and ultimately the design itself. Recent research of Tang et al. (2008) stated that the design quality could be improved with a simple design reasoning approach, especially for inexperienced designers.

To help understand the reason behind those decisions, another element of design called Design Rationale is needed. According to Lee (1997), the Design Rationale offers more than just the decisions, but also the reason behind each decision, that covers the justification, the other alternatives, and the argumentation that lead to

design decisions. These additional elements offer a richer view of both the design process and the design product.

Therefore, in this research we want to focus on the elements of Design Rationale as the result of reasoning process during the design discourse. These elements could be implicit during the design process or explicitly documented in the design document.

1.1 Problem Statement

For the last decades, researchers have claimed that Rationale plays a significant role in software design. Parnas and Clements (1986) found that to document the design decision in the correct way to produce an ideal process of software design is challenging. In other words, the design documentation should be written as though the rational design process was conducted.

The design itself is a process of creativity, where the designer's idea is captured and then realized. According to Rittel and Webber (1973), design is a process of negotiation and deliberation because design involves different stakeholders from various backgrounds and requires a decision to resolve many issues. According to Dutoit et al. (2007), using a Design Rationale method improve the quality of decisions, because it can support in clarifying these issues and the trade-offs behind the design decisions. Having explicit Design Rationale would also provide an orientation for a designer to justify his design decisions. However, making design decision remains an internal thought process, and it relies on the ability of the designers to reason.

According to Tang et al. (2008) design reasoning is an important process that designers use in developing a solution. This process helps the designers to recognize design issues, find ways to design a solution to solve the issues and finally make the design decisions. If this process fails then the resulting design decision is likely to be wrong. Connecting design reasoning with Design Rationale, we could say that the design reasoning is the process for making design decisions as the product of design phase, while the Design Rationale is the justification for that product.

Previous work on Design Rationale has focused on capture and representation. Many researchers have developed approaches to capture Design Rationale such as Kunz and

Rittle (1970) with IBIS (Issue Based Information System), MacLean (1991) with QOC (Questions, Options, and Criteria), and Lee (1991) with DRL (Decision Representation Language). However, capturing or recording, design rationale is a particularly difficult problem. Recording all decisions made, as well as those rejected, can be time consuming and expensive. The more intrusive the capturing process, the more the designers resistance will be encountered. Since it is time consuming and viewed as documentation, Conklin and Yakemovic (1991) stated that Design Rationale capture is viewed as expendable if deadlines are an issue. Also, designers are reluctant to take the time to document the design decisions they did not take, or took and then rejected. According to Fischer et al. (1991), documenting the design decisions can interfere the design process if it is viewed as a separate process from constructing the artifact.

A survey of approaches to explicitly capture Design rationale by Shum and Hammond (1994) found weak evidence regarding utility and usability compared to what might have been expected given the scale of system development efforts. Since for different people to agree on a formalization scheme they must agree on the parsing, the labeling, and the linking of the information. Furthermore, the cognitive effort is very high to parsing the thoughts to fit them into a semiformal notation, and this can cause "cognitive overload". For example, when the users face a mismatch between their conception of the information and the system's formal representation. Also, people may use different terms to describe the same topic. Dutoit et al. (2007) also mentioned that cost could be the other aspect that could prevent the use of Design Rationale approaches in the software industry, capturing the rationale may add an initial cost.

While capture and representation of design rationale are important, the real value is how design reasoning can be useful for the designer and the system as well. Recent research of Tang et al. (2008) stated that the design quality could be improved with a simple design reasoning approach, especially for inexperienced designers. They conducted an empirical experiment to examine the design quality of two groups of designers, one group equipped with design reasoning and one without. To measure the quality of the design, they use the usability as the design quality attribute in the experiment. And the result of the experiment showed that by using a design reasoning approach the quality of design improves statistically.

Based on the research mentioned above, we can conclude that capturing the Design Rationale and using design reasoning affects the outcome of design decision quality. However, there has been no study, as far as we can tell, on what is the link between these two approaches.

1.2 Research Statement and Scope

The main goal of this project is to empirically explore the relationships between Design Rationale and design reasoning. In other words, we wish to better understand the relationship between the process behind the design and the design result. Therefore, the main research question is formulated as follows:

RQ: What is the link between design reasoning and Design Rationale in the design process?

In order to answer this question there are several sub-questions that need to be researched.

SQ1: what are the central concepts of design rationale and what is design reasoning?

This research focuses on two approaches during the design session, the Design Rationale and the design reasoning. We first look at the central concept of these two approaches and build our conceptual model base on these findings.

SQ2: what are the existing quality measures for design rationale?

The reasoning is a thought process and the Rationale is the product of that process. In this part, we want to know what are the available parameters to measure these outcomes.

SQ3: what is the rationale that designers build during the reasoning process?

When the parameter to measure Rationale is understood, then the research will focus on the pattern of Design Rationale as the outcome of the design reasoning.

SQ4: How does different design reasoning improve the implicit rationale?

Finally, we want to explore the ways that design reasoning could influence the implicit Design Rationale.

1.2.1 Conceptual Model

The relation between the research question and the concepts related to design discourse is shown in Figure 1.1 (below), the main question (RQ) concerns the link between design reasoning as the process and Design Rationale as the product. The Design Rationale itself could be implicit during the design discourse or presented explicitly in the design documentation. First, the concept from previous research regarding these approaches is gathered and summarized (SQ1), and then the way to measure DR is identified (SQ2). And then the pattern of implicit DR is inspected (SQ3). Finally, we examined these patterns with the process that they are generated (SQ4).

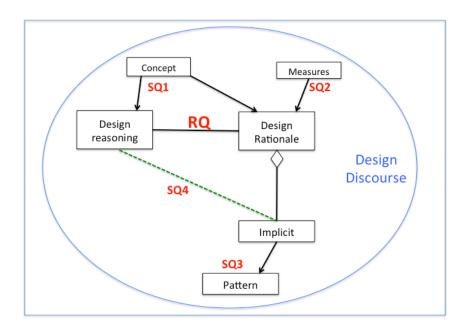


Figure 1.1 Conceptual Model explaining the questions and used concept

1.3 Scientific and Practical Contributions

Practical Contributions The main idea is to encourage designers especially novice designers using these approaches. Implementing the design reasoning techniques especially the problem structuring help designers recognize the issue. Assumption, constraint, risk, and trade-off analysis could be use to increase the arguments that is use to compare two or more design option. Finally, the best option would be the design decision. These reasoning techniques would be a huge addition for novice designers as they also increase their knowledge and perception within design domain.

Scientific Contributions Besides practical contributions, there are some additions to the scientific knowledge base. First of all, the result would expand the knowledge domain of design reasoning and Design Rationale. Furthermore, understanding the link behind the reasoning process and the elements of Design Rationale would give addition to future research focusing on design discourse.

1.4 Thesis Structure

This section has provided the problem statement, research statement and stated the research question of this thesis. The following section will then describe more on the approach and methodology to answer the research questions. In section 3, we provide background literature on Design Rationale and design reasoning while in section 4 provides our data analysis followed by qualitative data analysis and process mining in section 5 and section 6 consecutively.

The Final part of this thesis is started with the result and findings (section 7). This thesis is finished with a conclusion to answer the research questions. The discussion contains limitation and future research directions available in section 8.

2 Research Method

In order to answer the research question, we chose the exploratory experiment as our research method (Franklin, 2005), because we had no preconception as to what hypothesis to test. However, we wanted to discover how the design reasoning affects the Design Rationale elements as the product of the design phase.

2.1 Literature Study

Background knowledge of Design Rationale and their elements is one of the first requirements of this research. The literature study forms the foundation for the whole thesis research. Therefore, a firm and valid method are used for this phase. The process starts by finding related knowledge from significant contributions in the research domain using the most common scientific journal and article databases and search engines (i.e. Google Scholar). The literature study's main focus is on answering SQ1 and SQ2.

The second step in the process continues by finding more literature using the "Snowballing" procedures (Skoglund & Runeson, 2009). It means that to follow the references from or to one paper to find other relevant articles. The snowballing can be forward and backward. Forward means that refers to looking at papers citing the paper that has been found relevant, while backward means that following the reference list of one paper. The information is mainly gathered from several scientific publications available in Section 3.

2.2 Empirical Research- Experiment

The experiments are meant to answer the SQ3 and SQ4, and will ultimately answer the main research question. The experiment design is using guidelines proposed by Wohlin et al. (2012). They mentioned, "In the experiment we could control the situation and manipulate the behavior directly, precisely, and systematically." The experiment involves several steps, such as Scoping, Planning, Operation, Analysis, and Presentation.

2.2.1 Scooping

Our scope of these experiments is in the design reasoning technique and Design Rationale during a design discourse session. With the experiment, we wanted to discover the pattern of Rationale that designers build from reasoning process. Furthermore, we want to know how these design reasoning techniques can influence the implicit and explicit Design Rationale.

2.2.2 Planning

The exploratory experiment was conducted at Utrecht University with Master students during the workshop sessions of Software Architecture course. Within the workshop, students must create and evaluate software architecture. Each session of the experiment was 3 hours. The central content of the experiment is the Irvine experiment that was performed at the University of California, Irvine (UCI, 2010), where several design teams were asked to design a traffic simulator and the process was recorded and transcribed.

In the experiment, there were 12 teams of students that divided into two groups. Most teams hold three students, but some have only two students, and one team has four students. The group selection based on their grades from previous assignment so there is a mix of teams who have shown to do well, and those who have lesser grades.

Before carrying out the experiment, the students had a lecture on Views and Viewpoint (Rozanski & Woods, 2012). To make sure the data is adequate, the experiment split into two sessions: the design session that will result with the implicit Design Rationale, and the evaluate session that explicitly presents the Design rationale.

2.2.3 Operation

First Experiment

The first session was design discourse session, the student given a task to design architecture for traffic simulator software. Although the concepts of traffic lights, lanes, and intersections are common and appear to be simple, building a traffic simulator to represent these relationships and events in real time is complex. The students were allocated randomly to two groups: test group and control group, which in each group will consist of six teams.

Participants in both the test and control group were asked to use a think-aloud method during the design session. Both the control group and the test group designed the Context, the Functional, and the Informational viewpoint of the traffic simulator software within two hours and then they had forty-five minutes to document their design.

During this session, the control group carried the assignment to design the traffic simulator without any design reasoning techniques. The test group gets a design reasoning process using a card game (Schriek, 2016). These cards are meant to prompt the players to question their decisions in order to come to better thoughtful design and also to help in the design discussion. Each team member is going to get a deck of card consists of fifteen cards.

The result of this session is the two hours of recording of design session and documentation of the Context, Functional, and Information viewpoint using the given template (Appendix A). Within the template, we want the students to give an explanation for the design that covers: the model as the representation of the view, the mere description of the view, the glossary of each element in the view, and the Rationale to describe the argument why the view is as it is.

Second Experiment

The second session was to evaluate the design by focusing on the Rationale behind the design. Each team needs to find reasons for the design decisions that they have made during the first assignment (The traffic simulation), and then make their implicit assumptions or rationales into explicit, and then they must clarify their reasoning. The students need to analyze two architectures, one is their own, and one is for another team. They have to find arguments to support and against those different designs. The target of this session is to make argument model that explicitly shows all of the reasoning behind their design decisions, and then the material can be use to compare with the implicit argument from the audio transcript from the first session. To help visualize the argument, the students get an additional online tool to make the argument diagram. The address of the tool is <u>http://ova.arg-tech.org</u>.

2.2.4 Presentation

When the experiment is completed, the findings will be presented as thesis report. Furthermore, we hope it could be presented as a scientific paper. The structure for the thesis report will consist of: Abstraction as the general description of the research, an Introduction, Methodology, Literature Review, Analysis, Result and Finding, Discussion and Conclusion.

2.3 Validity Issue

Yin (2003) describes four different criteria for empirical research. These criteria are: construct validity, internal and external validity and reliability. This section describes for each of these four validity threats what they imply and the actions performed in this research.

Construct Validity: This aspect refers to the extent in which the used concepts are operationalized and measured correctly. To achieve this, only well-established concepts should be used to construct the theories, or these should be defined sufficiently (Yin, 2003). To secure this validity threat, no new concepts were introduced. The concepts that are used are refined from several literature sources.

Internal validity: This aspect of validity is of concern when causal relations are examined (Yin, 2003). In other words, the data collected is adequate to draw a valid conclusion. We notice the limitation of this experiment include the student's background, student's experience, and their design abilities.

External validity: This aspect of validity is concerned with to what extent it is possible to generalize the findings, and to what extent the findings are of interest to other people outside the investigated case (Yin, 2003). What mitigates this threat is that we made no assumptions about the students' experience or educational background and teams consisted of random mix students. However, we have a low number of participants that could be considered as a threat.

Reliability: This refers to the ability to repeat the research, with the same results (Yin, 2003). This section and the documentation template describe the outline of the experiment. With this, it should be possible to repeat this research in the future.

3 Theoretical Background

This section provides some background on Design Rationale and design reasoning. First, the concept of Design Rationale will be provided in Section 3.1, followed by several previous approaches of capturing Design Rationale. Furthermore, the design reasoning and reflection will be discussed in Section 3.3. Based on this research the framework of Design Rationale elements is developed.

3.1 Design Rationale Concept

The meaning of Rationale from the Cambridge Dictionary is "the reasons or intention that cause a particular set belief or actions". In other words, we can say that rationale is the justification behind a decision. Dutoit et al. (2007) mentioned that Rationale could serve two different objectives: discourse and knowledge capture. Rationale enables negotiation among stakeholders by showing the possible solution options with their pros and cons. By capturing Rationale, the stakeholders also present the explicit knowledge that usually tacit, which can help people who maintain the system analyze certain decisions and change impacts regarding the system.

In relation to software design, Rationale is captured and used in many forms. The representations of Design Rationale range from informal to formal notations. An informal notation provides data in formats that are easily generated and understand by a human, however, hard to be used by the computer, for example, the natural language. A formal notation allows the computer to use the data but does not always create information in a form that a human can understand. A semi-formal notation attempts to use the advantages of both approaches.

According to Shum (1995, p. 2), Design Rationale (DR) is "a representation of the reasoning behind the design of an artifact". Conklin and Yakemovic (1991) consider Design Rationale as capturing the history of how a design comes about through recording logical reasoning to support future reference. Carroll and Rosson (1991) suggested that Design Rationale could be viewed as psychological claims that are embodied by an artifact for the situation that it is used. Maclean et.al (1991) claimed that Design Rationale can be a description of the design space and used to deliberate design decisions. Lee (1997) stated that Design Rationale consist of the reasons

behind a design decision, the justification of that decision, the other alternatives that have already been considered, the evaluated tradeoffs, and the argumentation that led to the design decision.

Recent research by Tang et al. (2007) also mentioned that Design rationale is the reasoning behind a design, and it provides an explanation of the design. DR shows how the requirements are satisfied, why certain choices of design are selected and how the system architecture influenced by the environmental conditions.

To summarize, most authors in the literature agree that Design Rationale is about the reasoning behind a design (e.g. Shum, 1996; Lee, 1997; Tang, 2007).

3.2 Approach to Capture Design Rationale

The most common approach using Design Rationale is the argumentation-based type (Shum & Hammond, 1994). It uses nodes and links to represent knowledge and relationships. It dates back to Toulmin's model of arguments (Toulmin, 1958) (Figure 3.1), which consists of five components and four relationships. Arguments contain a fact or observation (Datum), which via a logical statement (Warrant), which acts as the "bridge" between datum and claim, allows one to draw a conclusion (Claim). The Warrant supported by The Backing (which indicates the source of the warrants), and the Claim qualified with a Rebuttal (specifying exceptions to the rule).

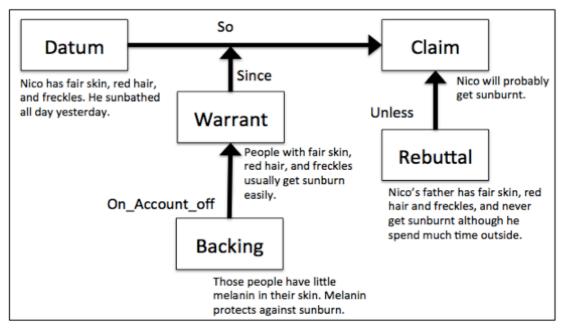


Figure 3.1 Toulmin's model of Arguments (Toulmin, 1958)

Since Toulmin, many similar argumentation-based approaches such as Issue-Based Information System (IBIS), QOC, and DRL have been proposed.

3.2.1 Issue-Based Information System (IBIS)

The Issue-Based Information System (IBIS) proposed by Kunz and Rittle (1970) is a method for structuring and documenting Design Rationale. The concept focuses on solving the issue by cooperation using an argumentative process among the stakeholders. Any problem, concern or question can be an issue that needs discussion in order for a design to continue. This method already implemented and success in several sectors such as architectural design, city planning, and organization planning (Conklin & Begeman, 1988).

The IBIS method structure consists of 3 different node types - Issues, Positions, and Arguments - and eight different link types - Supports, Object-to, replaces, respond-to, generalizes, specializes, questions, and suggested-by. Each issue can have several responding positions that provide a possible answer to the issue, while each position can have one or more arguments to support or to object-to it. Issues can be used to generalize or specialize other issues. Furthermore, issue can also question or suggested-by other issues, positions, and arguments. Figure 3.2 shows a simple example of IBIS method structure.

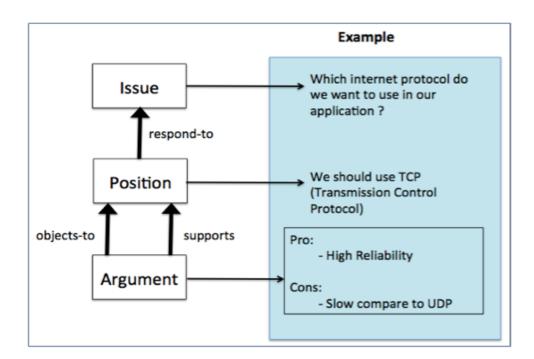


Figure 3.2 IBIS method structure

3.2.2 Question, Options, and Criteria (QOC)

Maclean et al. (1991) present another approach of capturing Design Rationale, using a semiformal notation that contains Questions, Options, and Criteria. They propose the Design Space Analysis (DSA), "analysis that places an artifact in a space of possibilities and seeks to explain why particular artifact was chosen from this possibilities", the QOC notations represent the design space around an artifact. The questions are used to identify the design issue, while the options provide the possible answers to the questions, and the criteria are used to assess and compare the design options.

Figure 3.3 shows an example of QOC (Question, Options, and Criteria). The *Question* is "how wide" the object on the screen, the *Options* is "wide" or "narrow". And the Criteria are "screen compactness" and "ease of hitting with mouse". The positive assessment is whether the Option satisfies the Criteria, while the negative assessment is the opposite. For Example, if the object is wide, it is easy to hit with the mouse pointer, although it will use a lot of space on the screen. If the object is Narrow, it saves space on the screen, but an extra effort will be needed to hit the object with the mouse pointer.

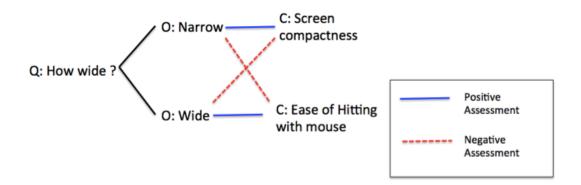


Figure 3.3 QOC Design Rationale example

QOC as an element in Design Space Analysis provides a useful way to organize the information regarding the context of reasoning surrounding a design.

Maclean et al. stated that their approach is different with IBIS method, while IBIS focus in capturing the history of the design deliberations. They approach emphasizes the Design rationale as a knowledge representation of the design space. Conklin and Yakemovic (1991) explain the different as "structure-oriented" and "process-oriented". The QOC focus on Design Rationale as the structure in the design space while the IBIS method focuses on the Design Rationale as a history in the process of the design. They stated that the Design rationale in the structure oriented is prescriptive, in the terms that it summarizes the design decisions and their tradeoffs in order for other to reuse the reasoning. Whereas for the process-oriented described as descriptive in which the reusability is incidental because the Design Rationale itself provided by the unique series of actions during the design.

3.2.3 Decision Representation Language (DRL)

Lee and Lai (1991) proposed DRL as another approach to capture Design Rationale. It is a language to representing and managing the qualitative elements of decisionmaking. The fundamental objects of DRL are Alternatives, Goals, and Claims. Other Objects in DRL are no less essential for decision-making, but they are special cases, or they are useful beyond the concept of decision-making. For example the Procedure, which represents either an executable procedure or textual description of a procedure. Figure 3.4 shows the complete DRL vocabulary.

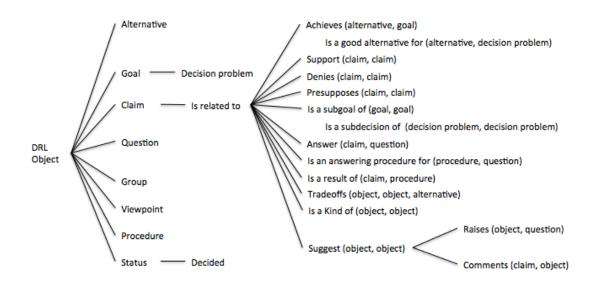


Figure 3.4 DRL complete vocabulary (Lee, 1991)

Alternatives represent the option to choose from, Goals Specify the properties that an ideal option should have, and Claims are used to represent arguments relevant for choosing among the alternatives. Figure 3.5 shows an example of the DRL model.

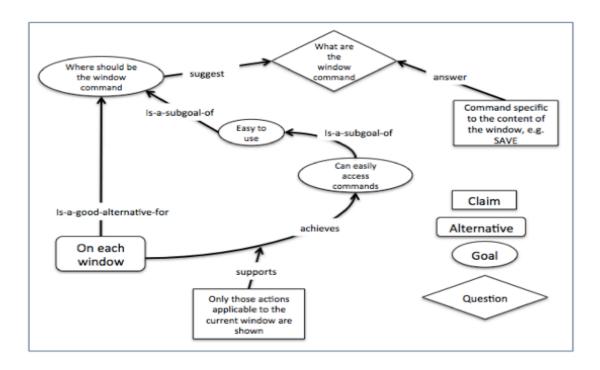


Figure 3.5 Example of DRL model (Adopted from Lee, 1991)

3.2.4 Summary of Previous Approach

From these different argumentation-based Rationale approaches, we try to find the equivalent components to summarize every approach to create the framework of Design Rationale elements. We refine the similar notation as:

- Design Issue, which basically the main target of design deliberation. They represent as Issue in IBIS, as Question in QOC and as Goal in DRL.
- Design Option, the available choice that could be select to accommodate the design target. They represent as Position in IBIS, as Option in QOC and as Alternative in DRL.
- Argument is the value that could assist or impede the design choices. They represent as Argument in IBIS, as Criteria in QOC and as Claim in DRL.

	IBIS	QOC	DRL
Design Issue	Issue	Question	Goal
Design Option	Position	Option	Alternative
Argument	Argument	Criteria	Claim

Table 1 Similar component in argumentation-base Design Rationale

The design phase begins with a set of requirements defining the system being designed. These requirements are then mapped to Design Issue, and then one or more Design Options could satisfy the Design Issue. The Argument for each Design Option is represented as support/positive (pros) or against/negative (cons) for each choice. The best Design Option will become the final Design Decision. Figure 3.6 shows how Design Rationale elements link the requirements and the final Design Decision.

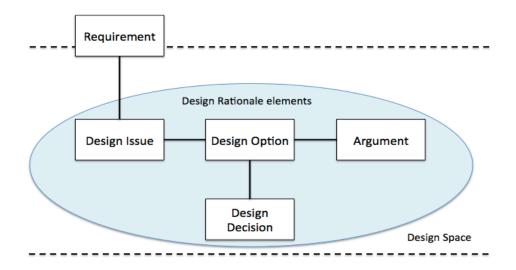


Figure 3.6 The framework of Design Rationale elements

When we trace the similarity with the Toulmin's model of Arguments, the framework of Design Rationale element is focused on the discussion and arguments that happen during the design discourse, and the Toulmin's model originally aimed to develop view of logic behind reasoning that led to graphical format for laying out the structure of an argument.

3.3 Design Reasoning and Reflection

Design reasoning is an important process that designers use in developing a solution (Tang et al., 2008). Designers in the software industry often rely on their experience to make design decisions, if the designers are familiar with the problem then selecting the best design decisions is quite easy. However, if the designers are unfamiliar and new to the problem, then the problem occurs. According to Tang and Van Vliet (2012), if the designers are not familiar with the problem space, then they should start with gather all relevant requirements, then contemplate what problem to solve, then try to create several solution options to address the problem, and then decide which solution option is the best.

Researchers in psychology have proposed that there are two distinct cognitive systems underlying reasoning. The heuristic system (System 1) comprises a set of autonomous subsystems that will tend to solve a problem by relying on prior knowledge and beliefs (De Neys, 2007) while the analytic system (System 2) allows reasoning according to logical standards (De Neys, 2007). Another illustration that we can use

on how designers make their design decisions is the reflective thinking (Razavian et al., 2015). They argued that quality of software design depends on the design thinking and the cognitive process of the designers, and they theorize a model of design thinking that consists of two minds of designers. Mind 1 is about logical design reasoning of the designers and Mind 2 is about the ability of reflection the design reasoning itself. Combining the two minds and the design process by Tang and Van Vliet, Razavian et al. (2015) presents the software design-thinking model (Figure 3.7).

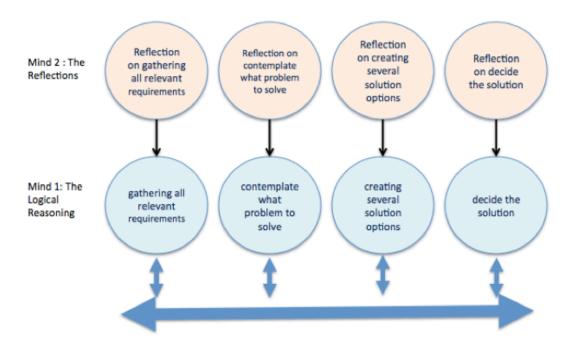


Figure 3.7 The software design-thinking model (Razavian et al., 2015)

A paper by Tang (2011) mentioned several techniques of design reasoning and some of them have already been used in the software industry. These design-reasoning techniques are based on what people think the reasoning issues are, and suggestion on ways to tackle these problems. Those techniques are:

- Assumption analysis. The validity and accuracy of a requirement or a premise are based on whether there is assumptions behind those are clear, and if any hidden assumptions exist it may affect the design. Therefore, it is important for designers to carry out an assumption analysis, which is questioning the possible tacit assumptions that may have been made, consciously or unconsciously.

- Risk analysis. A risk is something that may go wrong, and it can be treated as something that is unknown with a probability that some unwanted conditions can affect a design. However, there are no prescriptions to avoided risk. Therefore, many decisions still have to be made based on some risk mitigation strategies. These strategies are a way for designers to estimate and explicate the effect of risk to the design. A checklist of some significant risks in a software design can be prepared to remind software designers about this risk.
- Constraint analysis. This analysis focuses on the idea that every requirement, system environments, project environments, and organizations may have some constraints on the way that they designed and implemented. These constraints are often tacit and not explicitly discussed or documented during the design. Therefore, it is important for the designers to note these constraints. This note also could be use later to check if there is a conflict in the design.
- Trade-off Analysis, this analysis is required when the designers cannot satisfy all the requirement and constraint at a certain point. Kazman et al. (1998) proposed The Architecture Tradeoff Analysis Method (ATAM) as a method to evaluate the priorities and utility of multiple quality requirements in making a trade-off decision.
- Problem structuring, this technique require the designers to relate the issues and investigate how they influence each other. Understanding the problem, designers minimize the error of overlooking key issue in design. It also could lead designers to find a way to tackle the problem and come out with the solution in the end.
- Option Generation, this technique is required for designers in order to minimize the effect of anchoring, which means that the first impression of a solution that comes to designers mind anchor, and may hard to change and adjust even though it could be inferior. Tang et al. (2008) have found that designers who are prompted to state option made a better design outcome.

According to Tang (2011), the premises or statements that contain in the arguments also influence the reasoning process of decision-making. He also mentioned that there are two types of arguments, deductive and inductive. A deductive argument is "an argument in which the conclusion is claimed to be impossible to be false if the premises are true and the argument is valid" (Tang, 2011). Which mean that the

process of reasoning from one or more statements to reach a conclusion, and the conclusion is always true if the argument is valid. For instance, if the premises are: 1. All men are mortal, 2. Socrates is a man. Then the conclusion will be that Socrates is mortal.

Meanwhile, the inductive argument is "an argument in which it is claimed that the conclusion is improbable to be false if the premises are true and the argument is strong" (Tang, 2011). In other words, inductive reasoning is about probability making the conclusion based on generalization from experience. Furthermore, the premises or statements considered as evidence for the truth of the conclusion. Instead of valid or invalid, the inductive arguments are either weak or strong, which describe the probability of the conclusion to be true. As an example, if the premises are: 1. We have use 20 of X printer for two years, 2. All of them work perfectly, 3. We will add another of X printer in our office. So probably the conclusion will be: This new X printer will be working perfectly for the next two years.

3.4 Connection Between Design Reasoning and Design Rationale

Connecting the concept of design reasoning with Design Rationale, we could say that the design reasoning is the process that helps the designer to make better design decisions while the Design Rationale is the justification, the other alternatives, and the argumentation that leads to the design decision.

For example, when designers compare the design options to select the standalone architecture or the client-server architecture, they can assume that the standalone applications would be cheaper to create however hard to maintain in the future, while building the client-server applications may cost a lot more and require more resources, the maintainability of this architecture is more convenient than the standalone. The trade-off analysis can help the designers to choose between the cost and maintainability. However, whatever the final decision that designers select, the arguments developed when the selection of this design options present their pros and cons. The design issues, the design options, the pros, the cons contribute as the rationale behind the final designer's decision.

3.5 Context and Requirement Quality

The reasoning is a thought process. The results of such thought process in the design phase are design decisions, and these decisions could be good or even bad. Paul et al. (2006) argued that a bad design decision happens partially due to poor quality contexts and requirements. Therefore, they should meet some quality criteria. These criteria are:

- Accuracy. This means that contexts and requirements should free from errors or distortions, in other words, it should be true. The designers should make sure that every context or requirement are genuine and accurate, and not base on some personal belief.
- Relevance. This means that the contexts or requirements are related to the matter at hand.
- Adequacy. This means that the contexts or requirements should complete, any missing one could lead to incorrect conclusions or decisions.

When the contexts or requirements lack these qualities, the design decisions that are based on them can be faulty and defective. However, the problem here is that these measurements only target the context and the requirement. Therefore, we still need to find an appropriate way to measure and quantify the elements of Design Rationale as a whole.

4 Data Analysis

As described in section 2, experiments were performed to help us answer the research questions. The first experiment has resulted in 12 recording of design discourse session and transcribed in nearly 600 pages of transcript, while the second experiment produced 12 arguments diagram, the analysis described in this section are based on this dataset. This dataset is separately attached to the final thesis document. Table 2 provides the detailed description of the transcripts information.

Group	Duration of recording	Pages	Word count
C1	1:43:52	26	6874
C2	1:57:15	27	8426
C3	1:22:49	27	10200
C4	1:30:36	48	11099
C5	1:17:20	57	10470
C6	2:06:02	56	14160
T1	2:01:17	93	20306
T2	2:43:00	80	17103
T3	2:01:43	71	17564
T4	3:47:46	50	16067
T5	1:54:48	30	10856
T6	1:51:34	43	13312

Table 2 Descriptive of the 1st experiment transcripts

To investigate the link between design reasoning and Design Rationale from the first experiment, we analyzed each team transcript. The method that we chose for this part is transcript coding method of Miles and Huberman (1994), which they stated as "to review a set of field notes, transcribed and to dissect them meaningfully".

Next section provides the codes that we use, and then followed with the coding procedure in order to carry out the coding systematically. Section 4.3 presents the result of the coding consistency. Section 4.4 displays the coding result, followed by the quantitative data analysis in Section 4.5. An example of graph plotted from the result of the codes presented in Section 4.6. Finally, the conclusion of this section presented in Section 4.7.

4.1 Codes

According to Miles and Huberman (1994), codes are "tag or labels for assigning unit of meaning into descriptive or inferential information compiled during a study". For creating the codes, we followed their suggestion, which is creating a provisional 'start-list' from concept and variable that we have from the study and then it is refined during the analysis. By coding the transcripts, we mapped each of design discourse sessions on the design reasoning technique and the framework of Design Rationale elements.

The codes consist of two major categories: design reasoning techniques and Design Rationale elements. The design reasoning techniques consist of the techniques presented in the section 3.3, which are: (i) Problem Structuring, (ii) Option Generation, (iii) Trade-off Analysis, (iv) Assumption Analysis, (v) Constraint Analysis, and (vi) Risk analysis.

While the Design Rationale element base on the framework of design rationale presented in section 3.2.4, which consists of: Design Issue, Design Option, Design Decision and Argument. Coding the Argument, we directly translate it into the actual product of each analysis, they are: Assumption form the Assumption Analysis, Constraint from the Constraint Analysis, Risk form the Risk Analysis, and Pro and Con from Trade-off Analysis. Table 3 shows the category of codes that consist of Design reasoning techniques and Design Rationale elements.

Category	Code	Name	Description		
Design	PS	Problem	Identifying the key issue of design		
reasoning		Structuring			
techniques OG Option Generation		Option Generation	Discussing the options available for design solutions		
	TATrade-off AnalysisWeighing the pros and cons concerr the design to come to a decision				
	AA	Assumption Analysis	Questioning the premises of the requirements and context, the validity of arguments		
CA Const		Constraint Analysis	Identifying constraints in the design and how these constraints influence the design		
	RA	Risk Analysis	Identifying risks in the design and how to mitigate those risks		
Design	DI	Design Issue	A design issue		
Rationale	DO	Design Option	An option for solution		
elements	DD	Design Decision	A design decision		
	Α	Assumption	A supposition that is taken for granted or questioned to		
	С	Constraint	A restriction on the condition of the design		

 Table 3 List of Codes

R		An aspect of the design which is identified to be problematic			
PRO	Pro	A design support for a proposition			
CON	Con	A design support against a proposition			

4.2 Coding Procedure

Two researchers independently coded each transcript. To make coding systematic, we used the following coding procedure:

- 1. Step 1: Transcribe the audio recording material. We transcribe the discussion session and the time of each team audio file.
- 2. Step 2: Coding the design reasoning techniques. This stage codifies the design reasoning techniques based on students design discussion and their time stamp.
- 3. Step 3: Coding the Design Rationale elements. This step encodes the Design Rationale elements and the time that it's occurred, observed from students design discussion.

The transcripts will independently coded by two researchers and then we will check the coding consistency using inter-coder agreement (Cohen, 1968).

4.3 Coding Consistency

To ensure that the interpretation of the design reasoning and Design Rationale elements were consistent among the coders we conducted the inter coder reliability. After the two researchers separately finished encoding each transcript, we checked the coding consistency of the design reasoning and Design Rationale elements using the Cohen's Kappa (Cohen, 1968). The average result of coefficient was 0.64 (Table 4), which indicate substantial agreement between the two researchers. This measure provided assurance that the interpretations of design reasoning and Design Rationale elements were consistent among the coders.

Table 4 Inter coder Reliability result

Group	Kappa	Agreement (%)	A and B (%)	Not A and Not B (%)	Disagreement (%)	A and Not B (%)	B and Not A (%)
Group 1	0.60	97.33	2.52	94.81	2.67	1.77	0.90
Group 2	0.76	98.15	2.81	95.35	1.85	0.83	1.02
Group 3	0.66	98.39	2.23	96.16	1.61	0.61	1.00
Group 4	0.65	97.31	2.84	94.47	2.69	1.54	1.15
Group 5	0.67	96.89	2.54	94.35	3.11	1.06	2.05
Group 6	0.67	97.68	3.10	94.58	2.32	0.65	1.67
Group 7	0.61	97.35	1.86	95.50	2.65	0.98	1.67
Group 8	0.60	97.13	2.80	94.33	2.87	1.53	1.34
Group 9	0.61	97.08	2.46	94.62	2.92	1.02	1.90
Group 10	0.62	95.54	2.77	92.78	4.46	2.63	1.82
Group 11	0.63	96.01	3.24	92.76	3.99	1.82	2.18
Group 12	0.61	97.35	2.52	94.83	2.65	1.57	1.08
Average	0.64	97.18	2.64	94.54	2.82	1.33	1.48

4.4 Coding Result

After finished with the coding consistency between the two researchers, the result of the codes can be presented as two separate tables, the reasoning technique summary (Table 5) and the Design Reasoning elements summary (Table 6). Furthermore, this result can be used for a quantitative measurement in the next section.

Reasoning	Control Group					Total Average	Test Group						Total	Average		
Technique	C1	C2	C3	C4	C5	C6	Total	Average	T1	T2	T3	T4	T5	T6	Total	Average
Assumption Analysis	2	0	2	2	1	2	9	1.50	8	4	6	4	6	5	33	5.50
Constraint Analysis	3	4	9	10	6	3	35	5.83	5	6	1	6	7	7	32	5.33
Option Generation	1	6	2	8	7	6	30	5	10	2	7	8	7	8	42	7
Problem Structuring	12	27	31	12	21	17	120	20	24	23	26	28	22	26	149	24.83
Risk Analysis	2	4	3	3	2	3	17	2.83	5	7	2	8	6	6	34	5.67
Trade-off Anaysis	1	3	0	5	0	0	9	1.5	3	0	1	4	3	0	11	1.83
Total	21	44	47	40	37	31	220	36.67	55	42	43	58	51	52	301	50.17
Average	3.50	7.33	7.83	6.67	6.17	5.17	36.67	6.11	9.17	7.00	7.17	9.67	8.50	8.67	50.17	8.36

Table 5. Coding result of design reasoning techniques

Table 6. Coding result of Design Rationale elements

DR Element	Control Group							Avorago	Test Group						Total	Average
	C1	C2	C3	C4	C5	C6	Total	Average	T1	T2	T3	T4	T5	T6		Average
Assumption	2	0	2	6	2	2	14	2.33	8	5	7	5	9	4	38	6.33
Con	2	3	0	11	2	4	22	3.67	11	1	5	10	3	1	31	5.17
Constraint	3	9	14	13	20	15	74	12.33	6	13	4	10	13	11	57	9.50
Design Decision	4	8	16	21	16	8	73	12.17	31	9	14	17	8	13	92	15.33
Design Issue	4	8	16	21	16	8	73	12.17	31	9	14	17	8	13	92	15.33
Design Option	7	10	19	22	22	17	97	16.17	40	13	20	24	14	25	136	22.67
Pro	7	7	9	16	2	3	44	7.33	22	7	11	13	5	3	61	10.17
Risk	2	3	4	4	2	7	22	3.67	6	8	7	8	5	7	41	6.83
Total	31	48	80	114	82	64	419	69.83	155	65	82	104	65	77	548	91.33
Average	5.17	8.00	13.33	19.00	13.67	10.67	69.83	11.64	25.83	10.83	13.67	17.33	10.83	12.83	91.33	15.22

4.5 Quantitative Data Analysis

To get more insight with the data, we conduct a quantitative data analysis using a 2sample t-test. It is applied to compare whether the mean difference between two groups is really significant or if it is due instead to random chance. In other words, we want to know the effect of treatment for each design reasoning techniques and Design Rationale elements.

Using the data from Table 5 and Table 6 to determine whether the means of two groups are different, we compare every design reasoning techniques and Design Rationale elements (the detail of every t-test available in Appendix E). As an example we show the step for compare the means of the Assumption from the Design Rationale elements, the step that we conduct as follows:

1. The first step we state the null and the alternative hypothesis.

Ho: $\mu 1 = \mu 2$, (there are no difference between the means)

Ha: $\mu 1 \neq \mu 2$, (the population means is different)

For this analysis, the significance level is 0.05, and the test method is 2-sample t-test.

2. The data that we use

Assumption of Control Group:

Data: 2, 0, 2, 6, 2, and 2 Mean: 2.33 Standard deviation: 1.97 Assumption of Test Group: Data: 8, 5, 7, 5, 9, and 4 Mean: 6.33 Standard deviation: 1.97

3. Calculation

	Variable 1	Variable 2
Mean	2.3333333	6.3333333
Variance	3.8666667	3.8666667
Observations	6	6
Pooled Variance	3.8666667	
Hypothesized Mean Difference	0	
df	10	
t Stat	-3.523321	
P(T<=t) one-tail	0.0027539	
t Critical one-tail	1.8124611	
P(T<=t) two-tail	0.0055078	
t Critical two-tail	2.2281388	

t-Test: Two-Sample Assuming Equal Variances

- 4. Result of the calculation shown that P-value was 0.005, and it is under the significant level of 0.05. Therefore, we reject Ho and accept Ha, that the mean of populations is different.
- 5. Conclusion, After conducting 2-sample t-test, we found that there was a significant difference in the number of Assumption made by the control group (M = 2.33, SD = 1.97) and the test group (M = 6.33, SD = 1.97); t(10) = -3.523, p= .005. These results suggest that the treatment does have an effect on number of Assumption made by designers. The treatment helps designers create more Assumptions during the design discourse session.

After conducting 2-sample t-test for every design reasoning techniques and Design Rationale elements, we summarize the result in Table 7 and Table 8. The summary presents the data, the mean, the standard deviation (STD), and the P-value of every design reasoning technique and Design Rationale elements that were used for the calculation. As a reminder of P-value, if the P-value were 0.0102, that indicates the difference observed would only be seen about 1.02 % of the time. Given that is a pretty low percentage, researchers conclude that the difference observed is not due to chance and call it statistically significant.

Reasoning Technique			Contr	ol Gro	up					Test	Group	D			P value		
Assumption	Data :	2	0	2	2	1	2	Data:	8	4	6	4	6	5	0.0002		
Analysis	Mean:	1.	.5	ST	D:	0	.84	Mean:	5.5		STD:		1.52		0.0002		
Constraint	Data :	3	4	9	10	6	3	Data:	5	6	1	6	7	7	0.7538		
Analysis	Mean:	5.	83	ST	D:	3.06		Mean:	5.33		STD:		2.25		0.7556		
Option	Data :	1	6	2	8	7	6	Data:	10	2	7	8	7	8	0.2375		
Generation	Mean:	Ę	5	ST	D:	2	.83	Mean:	7	7	STD:		2.68		0.2375		
Problem	Data :	12	27	31	12	21	17	Data:	24	23	26	28	22	26	0.1774		
Structuring	Mean:	2	0	ST	D:	7	.85	Mean:	24	.83	SI	D:	2.	23	0.1774		
Piek Analysia	Data :	2	4	3	3	2	3	Data:	5	7	2	8	6	6	0.0102		
Risk Analysis	Mean:	2.	83	ST	D:	0	.75	Mean:	5.	5.67		5.67 STD:		D:	2.07		0.0102
Trade-off	Data :	1	3	0	5	0	0	Data:	3	0	1	4	3	0	0.7682		
Anaysis	Mean:	1.	.5	ST	D:	2	.07	Mean:	1.	83	SI	D:	1.	72	0.7082		

Table 7. t-test result of design reasoning techniques

The explanation of Table 7 (above) is that, the treatment shown an effect in Assumption Analysis and Risk Analysis that designers made, because their P-Value is under the significant level (0.05). However, other techniques do not affected by the treatment. Therefore, we can conclude that the treatment has an effect only on the Assumption Analysis and Risk Analysis made by designers. In other words, the treatment helps designers conduct more of Assumption Analysis and Risk Analysis during the design discourse session.

Design Rationale Element		Control Group								Tes	t Group				P value	
Assumption	Data :	2	0	2	6	2	2	Data:	8	5	7	5	9	4	0.0055078	
Assumption	Mean:	2.3	33	ST	D:		1.97	Mean:	6.	33	ST	TD:	1.	97	0.0000078	
Con	Data :	2	3	0	11	2	4	Data:	11	1	5	10	3	1	0.5429357	
Con	Mean:	3.0	67	ST	D:		3.83	Mean:	5.	17	ST	TD:	4.	40	0.5429357	
Constraint	Data :	3	9	14	13	20	15	Data:	6	13	4	10	13	11	0.337035	
Constraint	Mean:	12.	.33	ST	D:		5.79	Mean:	9	.5	ST	TD:	3.	73	0.337035	
Design Decision	Data :	4	8	16	21	16	8	Data:	31	9	14	17	8	13	0.4797209	
Design Decision	Mean:	n: 12.17		STD:		6.46		Mean:	15	.33	ST	D:	8.	36	0.4797209	
Design Issue	Data :	4	8	16	21	16	8	Data:	31	9	14	17	8	13	0.4797209	
Design issue	Mean:	12.	.17	ST	D:		6.46	Mean:	15	.33	ST	ſD:	8.	36	0.4797209	
Design Option	Data :	7	10	19	22	22	17	Data:	40	13	20	24	14	25	0.2027519	
Design Option	Mean:	16.	.17	ST	D:		6.31	Mean:	22	.67	ST	D:	9.	83	0.2027313	
Pro	Data :	7	7	9	16	2	3	Data:	22	7	11	13	5	3	0.4338005	
FIU	Mean:	7.3	33	ST	D:		5.01	Mean:	10	.17	ST	D:	6.	88	0.4338005	
Pick	Data :	2	3	4	4	2	7	Data:	6	8	7	8	5	7	0.0054631	
Risk 🛏	Mean:	3.0	67	ST	D:		1.86	Mean:	6.	83	ST	D:	1.	17	0.0034031	

Table 8. t-test result of Design Rationale elements

An explanation of Table 8 (above) is that the treatment showed an effect in Assumption and Risk that designers made, because their P-Value is under the significant level (0.05). Therefore, the treatment has an effect on a number of Assumption and Risk made by designers. The treatment helps designers create more Assumptions and Risks during the design discourse session. However, other elements seem do not affected by the treatment because their P-value was above the significant level.

4.6 Data Display

We plotted the design reasoning and Design Rationale elements over the observed period of about two hours each session. The resulting graphs (Complete graph shown in Appendix B) portray the design reasoning and Design Rationale elements over the design discourse. The y-axis shows the design reasoning or the Design Rationale elements, while the x-axis presents the time. For example, the design reasoning of transcript 12 is visualized in Figure 4.1 and Design Rationale elements of transcript 12 presented in Figure 4.2.

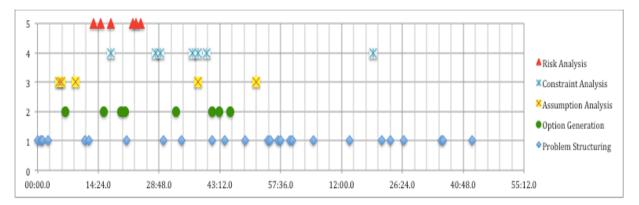


Figure 4.1 Design reasoning Time plot of transcript 12

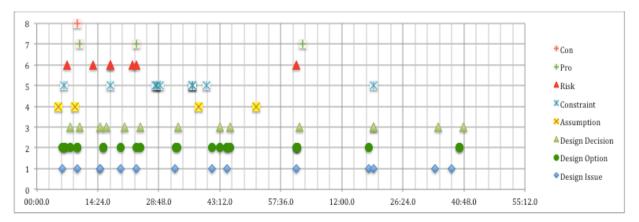


Figure 4.2 Design Rationale elements time plot of transcript 12

4.7 Conclusion

This section has treated the data from the result of the first experiment. The observation is that the treatment with the reflective method of design reasoning has an effect on some techniques. The affected techniques are Assumption Analysis and Risk Analysis. Meanwhile, the elements of Design Rationale that affected by the treatment are Assumption and Risk.

5 Qualitative Data Analysis

In this thesis, we also use the qualitative data analysis method of Miles and Huberman (1994), they mentioned that the qualitative data analysis has the advantage to show *"what led to what"*, or in other words it can preserve the chronological flow and help the researcher to see which events led to which consequences. Furthermore, we were interested to know what is the rationale that designers build during the reasoning process (SQ3), and how these elements are connected and how they influence each other. Therefore, we want to link these events that happened in the design discourse session and then identify the pattern that appears from it.

5.1 Event-listing Matrix

One of the methods to display the data from the qualitative analysis of Miles and Huberman (1994) is the event-listing matrix. This matrix focuses on understanding a chronology. Event-listing matrix arranges a series of events sorting them into several categories and help to understand the flow and the connection of events.

We use this matrix to display a set of the events (the elements of Design Rationale) from each transcript, and it helps us to interpret what happened during the design discourse. Designing the matrix, we put a set of event happened during the design discourse session for the rows of the matrix. And for the columns, we incorporate "Design Issue", Design Option", Argument" with their effect (Positive or Negative), and "Design Decision" as the categories.

Entering the data for the matrix we extracted the codes from the transcript and sorted them by the time of appearance. We filled the matrix for each group base on the codes from the transcript and the categories that we already design. With the presence of time for each code from the transcript, we can relate every Design Issue to the Design Decision and Design Option. We also can trace the Argument for each Design Option if they exist. However, after inserting some codes into the matrix there are several Arguments that do not connect to any Design Option. For Example the event no 1 of transcript 12 (Table 9), they made an "Assumption" of the application for use in Netherlands. However, after examining the requirement they found out that the software is for a course in UCI, USA. So this Assumption that they made before become invalid and did not connect to any Design Option.

Table 9 shows an example of this matrix for transcript 12 (the complete matrix of each team available in Appendix C).

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			we need to make an assumption that is in the Netherlands, because traffic always every where different		None	
2	I'm not sure how	country dependent.	also a constraint because your limit your self to the Dutch driving laws. constraint is region country	Constraint Constraint	Negative	being a primarily for a course at UCI, in the first version I think is efficient to make it specific for the
		you can either chose to make it generic and make the rule set for region pop able so you can do region for Germany and for Holland and for many other regions.	so the trade off being that make it modulear will be more expensive	Risk	Negative	united states .
		you can chose to just limit your self to the Netherlands and that's it. it's the university of California Irvine. so I think we should deliver				
		our self in to the united states then.				
3			user language is also the same like for the traffic rules it's will be American English.	Assumption	None	
4	how the application will be deployed	desktop application	old fashion and very problematic if some people have mac and some people have windows. then you have to go through all problem do java application.	Con	Negative	so I think we should make web application.
		web application	because in app you have same problem with different platforms	Pro	Positive	
			if we implement the wrong business rules it will be avoid a traffic response for how the traffic rules are we are and then the whole application is useless and this is I think the biggest risk.	Risk	Negative	
			the business rules being wrong.	Risk	Negative	
			wrong implement and then the system was useless	Risk	Negative	
	what do you do we want like a lecturer can change this or the developers can change who should be the authority and the context that can change this.	Ideally you make the system somewhere that professor can make rules himself that I think it might be very so we should look into that if that possible if you can make the rules set dynamic and so professor can make it at his own rules and constraints to the traffic light simulator.				I think we should make those rules very modulear so you can easily swap without other rules and that there not entangle in the rest of system so if you make a mistake you can easily fix it. okay. so solution for this problem would be to make the traffic rules dynamic and editable by end user being the professor.

 Table 9 Example of the event-listing matrix of transcript 12

5.2 Pattern Classification

Creating patterns of rationale that designer made during the design discourse session, we analyze the event-listing matrix of each group. To help us identify the pattern that appears, we create some steps and parameters to classify every event. The step that we conducted as follows:

- First, we split the events on parameter whether they "contain Design Issue" or not (P1). If yes then it went to the next parameter, if not then it is classified as Type- E.
- 2. Second, the event that has Design Issue as the result from the first step then split again by parameter do they "contain Design Option" or not (P2). If yes then it went to the next parameter, if not then it is classified as Type- A.
- 3. The third step, the event that has Design option then split again by parameter "contain Design Option more than 1" or not (P3). If yes then it went to the next parameter, if not then it is classified as Type- B.
- 4. Finally, every event that has Design Option more than 1, we split again with parameter whether "every Design Option contain Argument" or not (P4). If yes then it is classified as Type-D, if not then it is classified as Type- C. Explanation of each type presented in Section 0.

Moving row to row, we analyze every event and classify them. Figure 5.1 provides a visual in form of a classification tree for the parameters and the steps on how we plot each event.

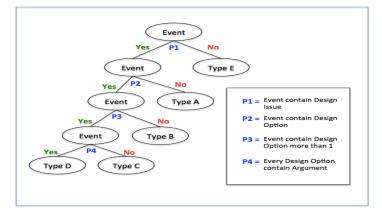


Figure 5.1 Pattern Classification tree

5.3 Pattern Type

This section presents the explanations of pattern types that we discover from the event-listing matrix, we also give the representation of the model for each type with the relationship cardinality of the Design Rationale elements.

5.3.1 Type A

This type presents the situation when designer made the Design Decision directly without any Design Option. We name this pattern "Direct Decision".

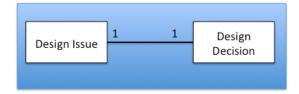


Figure 5.2 Pattern Type A

The example of this type from the event-listing matrix is as follow:

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
15	But we don't know how we're going to					I think we should have a module like the builder
	visualize the architecture which Is our					module, that allows you to place roads,
	main concern at this point.					intersections

5.3.2 Type B

This type shows the situation that Design Decision considered after one Design Option has been proposed. This Design Option may have Argument behind it. We called this pattern as "Focus Decision".

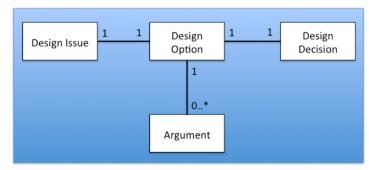


Figure 5.3 Pattern Type B

The example of this type from the event-listing matrix is as follow:

vent nber	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
9	Can you share your map	No, don't make it too difficult	Out of scope	Pro	Positive	So you only can save and open a file

5.3.3 Type C

This type shows the situation that Design Decision considered after two or more Design Option have been proposed, however, one or more Design Option does not have any Argument that connects to it. We called this pattern "Half consideration".

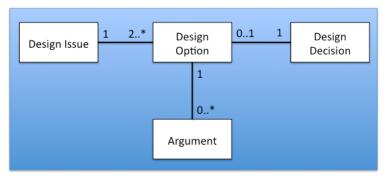


Figure 5.4 Pattern Type C

The example of this type from the event-listing matrix is as follow:

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
14	how are you gonna see this	traffic view				traffic timing scheme
		traffic simulation view				
		traffic timing scheme				

5.3.4 Type D

This type presents the full coverage, which means that the Design Decision taken after more than one Design option was considered and each Design Option has their Design Support. We called this pattern as "Full Consideration".

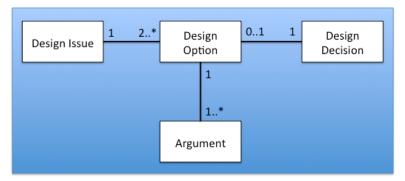


Figure 5.5 Pattern Type D

The example of this type from the event-listing matrix is as follow:

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
	how the application will be deployed	desktop application	old fashion and very problematic if some people have mac and some people have windows. then you have to go through all problem do java application.	Con	Negative	so I think we should make web application.
		web application	because in app you have same problem with different platforms	Pro	Positive	•
			if we implement the wrong business rules it will be avoid a traffic response for how the traffic rules are we are and then the whole application is useless and this is I think the biggest risk.	Risk	Negative	
			the business rules being wrong.	Risk	Negative]
			wrong implement and then the system was useless	Risk	Negative	

5.3.5 Type E

This type shows the Argument that is not directly connected with any Design Issue, Design Option, or Design Decision. We name this pattern as "No link". Table 10 presents the summary of the major pattern discovered.

Туре	Explanation			Contro	l Group			Total	Average			Test (Group			Total	Average
туре	LApidilation	C1	C2	C3	C4	C5	C6	Total	Average	T1	T2	T3	T4	T5	T6	TULAI	Average
	Direct Decision (Design Issue - Design Decision)	0	2	3	7	1	1	14	2.33	7	2	2	3	1	2	17	2.83
	Focus Decision (only one Design Option with or without support)	2	2	7	7	9	1	28	4.67	7	4	4	9	1	2	27	4.50
	Half Consideration (with more than one Design option, however not all have support)	1	1	4	3	6	2	17	2.83	11	2	6	3	5	7	34	5.67
	Full Consideration (with Design option with support for each)	1	3	2	4	0	4	14	2.33	6	1	2	2	1	2	14	2.33
	No link (support not connected to anything)	3	0	7	2	4	14	30	5.00	5	2	5	7	10	4	33	5.50
	Total	7	8	23	23	20	22			36	11	19	24	18	17		

Table 10 Summary of Pattern

5.4 Detail Pattern Variant

Analyzing the patterns in more detail, we conduct further examination on the eventlisting matrix. Our aim is to identify the variant that appears from each type. The step that we take as follows:

- 1. First, we make a list of every event with categories that we want to explore, which is the Pattern Type, the number of Design Option, and the effect of Argument for Design Option.
- 2. Converting the effect of Argument of each Design Option into notation, we convert them using the combination of "number" and "symbol". For example, the event number 2 from Table 9 has four Design Options; the first Design option has the argument with one positive and one negative, we plot this as "1+1-". The second Design Option has one negative Argument, we plot this as "1-", while the Design Option three and four do not have any Argument, this we plot as "0" for each. So the combination of Argument pattern of event 2 is "1+1-, 1-, 0, 0". As an example of conversion from Table 9 are presented below (Table 11).

Team	Event number	Туре	DO Quantity	Argument Pattern
Team 12	1	E	None	Assumption
Team 12	2	С	4 DO	1+1-, 1-, 0, 0
Team 12	3	E	None	Assumption
Team 12	4	С	2 DO	1+3-, 1-
Team 12	5	С	2 DO	None

3. We combine the result of conversion of every team and identify the result.

Table 12 shows the number of Design Option for each Major Type from the two groups.

 Table 12 List of Type with the quantity of Design Option

Туре	Num	Number of Design Option Control Group									
Туре	1 DO	2 DO	3 DO	4 DO	None	Grand Tota					
А					14	14					
В	28					28					
C		14	2	1		17					
D		13	1			14					
E					30	30					
Grand Total	28	27	3	1	44	103					

Туре	N	'n	Total						
Type	1 DO	2 DO	3 DO	4 DO	5 DO	None	Grand Total		
А						17	17		
В	27						27		
С		28	3	2	1		34		
D		11	2	1			14		
E	33								
Grand Total	27	125							

While Table 13 and

Table 14 present the argument pattern in detail for each group.

Table 13 Argument pattern of control group

												Arg	gum	ent]	Patti	ren (of Co	ontrol	Gro	oup												
Туре	1-	2-	3-	1+	2^{+}	3+	1+1-	1+2-	2+2-	3+2-	1-, 0	1+, 0	2+, 0	8+, 0	1+, 1-	1+, 2-	3+, 2-	1+, 1+	1+1-, 0	1+1-, 1-	1+2-, 1-	2+1-, 1-	2+1-, 1+	1+1-, 1+	1+2-, 0, 0	3+2-, 2+1-, 1+	2-, 0, 0, 0	Assumption	Constraint	Risk	None	Total
А																															14	14
В	1	1	1	7	2	1	3	1	1	1																					9	28
С											2	1	1	1					1						1		1				9	17
D															2	2	1	2		1	1	1	1	2		1						14
Е																												5	23	2		30
Grand Total	1	1	1	7	2	1	3	1	1	1	2	1	1	1	2	2	1	2	1	1	1	1	1	2	1	1	1	5	23	2	32	103

															Arg	ume	ent P	atte	rn o	f Te	st G	roup																	
Туре	3-	1+	3+	+9	1+1-	1+2-	2+1-	9+3-	10+8-	1-, 0	2-, 0	1+, 0	2+, 0	3+, 0	1+, 1-	2+, 1-	2+, 2-	1+, 1+	2+, 1+	2+1-, 0	2+3-, 0	4+2-, 0	1+1-, 1-	1+2-, 1-	1+3-, 1-	2+2-, 2-	1+, 1-, 0	1+, 1-, 1-	1+, 1+, 1-	1+1-, 1-, 0	2-, 0, 0, 0	1+1-, 1-, 0, 0	4+1-, 3+2-, 3-, 2-	2+, 1-, 1-, 0, 0	Assumption	Constraint	Risk	None	Total
А																																						17	17
В	1	7	1	1	1	1	1	1	1																													12	27
С										1	2	3	2	1						1	1	1					1			1	1	1		1				17	34
D															2	2	1	1	1				1	1	1	1		1	1				1						14
Е																																			14	16	3		33
Grand Total	1	7	1	1	1	1	1	1	1	1	2	3	2	1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	14	16	3	46	125

Table 14 Argument pattern of test group

Simplification of Table 13 and

Table 14 presented below. The simplification made by combining the same argument pattern and ignores the numbers, for example, we combine the frequency of 3+ (three positive) and 6+ (six positive) into the frequency of + (positive). Another example, we combine the frequency of 1+1-, 1- (one positive one negative and one negative) with the frequency of 1+2-, 1- (one positive two negative and one negative) which result in the frequency of +-, - (positive negative and negative).

					Arg	gumer	nt Pa	attre	n of	Cor	ntrol	Gro	oup					
Туре	I	+	-+	-, 0	+, 0	+, -	+,+	+-, 0	+-, -	+-,+	+-, 0, 0	+-, +-, +	-, 0, 0, 0	Assumption	Constraint	Risk	None	Total
A																	14	14
В	3	10	6														9	28
С				2	3			1			1		1				9	17
D						5	2		3	3		1						14
Е														5	23	2		30
Grand Total	3	10	6	2	3	5	2	1	3	3	1	1	1	5	23	2	32	103

Table 15. Simplification of pattern variant of control group

					S	impl	ify Aı	rgun	nent	Pat	tern	of	Test	Gro	oup							
Туре	I	+	-+-	-, 0	+, 0	+	+,+	+-, 0		+, -, 0	+, -, -	+, +, -	+-, -, 0	-, 0, 0, 0	+-, -, 0, 0	+-, +-, -, -	+, -, -, 0, 0	Assumption	Constraint	Risk	None	Total
A																					17	17
В	1	9	5																		12	27
С				3	6			3		1			1	1	1		1				17	34
D						5	2		4		1	1				1						14
Е																		14	16	3		33
Grand Total	1	9	5	3	6	5	2	3	4	1	1	1	1	1	1	1	1	14	16	3	46	125

Table 16. Simplification of pattern variant of Test group

5.5 Measuring the Pattern Variant

To explore the pattern variant and get more insight from the data, we conduct a quantitative data analysis using a paired samples t-test. This type of test is used to compare groups that are related in some way. In our case, the matched are the attributes of each pattern, for example the pattern of positive (+) in the control and the control group. The step that we conduct as follows:

1. The first step we state the null and the alternative hypothesis.

Ho: $\mu 1 = \mu 2$, (there are no difference between the means)

Ha: $\mu 1 \neq \mu 2$, (the population means is different)

For this analysis, the significance level is 0.05, and the test method is paired sample t-test.

2. The data that we use are generated from Table 15 and Table 16 with small addition to the missing pattern. The addition is, if one of the patterns of the control group is not presented in the test group then the value of the missing pattern becomes zero in the test group, this addition apply two ways (vice versa). For example, the pattern +-, 0, 0 of the control group is not present in the test group, then that pattern value in the test group become zero (0). The result data presented as follows:

(Control Group			Test Group	
Туре	Attribute	Count	Туре	Attribute	Count
A	None	14	A	None	17
В	-	3	В	-	1
	+	10		+	9
	+-	6		+-	5
	None	9		None	12
С	-, 0	2	С	-, 0	3
	+, 0	3		+, 0	6
	+-, 0	1		+-, 0	3
	+, 0 +-, 0 +, -, 0	0		+, -, 0	1
	+-, -, 0	0		+-, -, 0	1
	+-, 0, 0	1		+0.0	0
	-, 0, 0, 0	1		-, 0, 0, 0	1
	+-, -, 0, 0	0		+-, -, 0, 0	1
	+, -, -, 0, 0	0		+, -, -, 0, 0	1
	None	9		None	17
D	+, -	5	D	+, -	5
	+, + +-, - +-, +	2		+, + +-, - +-, + +, -, -	2
	+-, -	3		+-, -	4
	+-,+	3		+-,+	0
	+, -, -	0		+, -, -	1
	+, +, -	0		+, +, - +-, +-, +	1
	+-, +-, +	1		+-, +-, +	0
	+-, +-, -, -	0		+-, +-, -, -	1
E	Assumption	5	E	Assumption	14
	Constraint	23		Constraint	16
	Risk	2		Risk	3
Total		103		Total	125

3. Then we calculate the data:

t-Test: Paired Two Sample for Means

	Variable 1	Variable 2
Mean	3.961538462	4.807692308
Variance	28.67846154	31.84153846
Observations	26	26
Pearson Correlation	0.84690462	
Hypothesized Mean	0	
df	25	
t Stat	-1.412114456	
P(T<=t) one-tail	0.08512175	
t Critical one-tail	1.708140745	
P(T<=t) two-tail	0.1702435	
t Critical two-tail	2.059538536	

4. Result of the calculation shown that P-value was 0.170, and it is above the significant level of 0.05. Therefore, we accept the Ho, which mean that there is no difference between the mean of populations.

After conducting paired sample t-test, we found that there was no significant difference in the number of pattern made by the control group (M = 3.96, SD = 5.36) and the test group (M = 4.80, SD = 5.64); t(25) = -1.412, p= .170. These results suggest that the treatment does not have an effect on number of pattern variants made by designers.

5.6 Conclusion

Using the event-listing matrix, we present the flow from the time that designers identify design issue until they made a design decision. Furthermore, using this matrix we can identify five types of rationale that designers made during the design discourse session.

We also explore the types in more detail and identify the pattern variance. Then we use paired samples t-test to measure the effect of treatment to this pattern variant of the control group and the test group. However, the result is not significant, which mean that the variant of pattern that designers made is not influenced by the treatment that was given.

6 Process Mining

In this thesis, we also use process mining to help us analyze and help identify the product of the different techniques. The objective of process mining is to acquire the extraction of related-process information with the use of events from business processes (Van der Aalst, 2011), or in other words extracting knowledge from event logs. The knowledge that comes out is in the form of process models, which can be used further for analyzing or optimizing processes.

Because we have explicitly code the different techniques and the Design Rationale elements with the time that they occur during the design discourse session, we can conduct process mining to analyze the reasoning process and their product. Furthermore, we can link these products with the process. This is done to ensure that the reader has insight in the statements on which our conclusions have been based.

6.1 Tool

Implementing process mining in our research, we use Disco by Fluxicon (<u>https://fluxicon.com/disco</u>) as our tool. This tool base on the Fuzzy Mining (Günther & Van Der Aalst, 2007). It is an approach of process mining to overcome the "spaghetti-like" problem, the problem that the model shows all details without distinguishing what is important and what is not.

We consider this tool is user friendly because it can create process models directly from our data. With this tool, we also can define our desired level of abstraction and create filters directly from the techniques of design reasoning or the Design Rationale elements that we obtain from the codes.

6.2 Creating the Process Models

Generating the process model from our data, we conduct the following step:

1. **Preparing the data**, the first step is collecting all the codes, the time that they occur, and the team that they belong to. Next step is combining each code, time, and team number as a single event log. And then we organize the event

logs into two major files, the control groups and the test group. The outputs of this step are two CSV files, Table 17 displays the example of this dataset files.

Team No	Time	Codes	Date	Combine
Team 2	18:54.6	Assumption Analysis	12/14/15	12/14/15 0:18:55
Team 2	31:04.3	Assumption Analysis	12/14/15	12/14/15 0:31:04
Team 2	06:35.3	Constraint Analysis	12/14/15	12/14/15 0:06:35
Team 2	26:05.4	Constraint Analysis	12/14/15	12/14/15 0:26:05
Team 2	16:06.8	Constraint Analysis	12/14/15	12/14/15 1:16:07
Team 2	37:27.5	Option Generation	12/14/15	12/14/15 0:37:27
Team 2	02:33.2	Problem Structuring	12/14/15	12/14/15 0:02:33
Team 2	06:00.0	Problem Structuring	12/14/15	12/14/15 0:06:00
Team 2	08:25.1	Problem Structuring	12/14/15	12/14/15 0:08:25
Team 2	13:18.1	Problem Structuring	12/14/15	12/14/15 0:13:18

Table 17 Dataset of event logs

2. **Input the data**, to create the process model, the tool need three major categories for their inputs, the Case ID, the Activity, and the Time Stamp. Therefore, we arrange our data base on this input categories, we use the team number as the Case ID, the design reasoning and Design Rationale elements as the Activity, and the time as the Time Stamp. Figure 6.1 shows the process of importing the data.

	÷								-	rizkiyanto@students.uu.nl
					3	📈 🕓 i				
2	olumn				\mathbf{v}					
Ľ	Column	is used								
	No	X Time	💵 Туре	X Code	X Date	Combine				
1	Team 2	18:54.6	Assumption Analysis	3	12/14/15	12/14/15 0:18:55				
2	Team 2	31:04.3	Assumption Analysis	3	12/14/15	12/14/15 0:31:04				
3	Team 2	06:35.3	Constraint Analysis	4	12/14/15	12/14/15 0:06:35				
4		26:05.4	Constraint Analysis	4	12/14/15	12/14/15 0:26:05				
5	Team 2	16:06.8	Constraint Analysis	4	12/14/15	12/14/15 1:16:07				
6	Team 2	37:27.5	Option Generation	2	12/14/15	12/14/15 0:37:27				
7	Team 2	02:33.2	Problem Structuring	1	12/14/15	12/14/15 0:02:33				
8	Team 2	06:00.0	Problem Structuring	1	12/14/15	12/14/15 0:06:00				
9	Team 2	08:25.1	Problem Structuring	1	12/14/15	12/14/15 0:08:25				
0	Team 2	13:18.1	Problem Structuring	1	12/14/15	12/14/15 0:13:18				
1	Team 2	16:38.9	Problem Structuring	1	12/14/15	12/14/15 0:16:39				
12	Team 2	42:24.4	Problem Structuring	1	12/14/15	12/14/15 0:42:24				
13 14	Team 2 Team 2	17:18.9	Problem Structuring	1	12/14/15	12/14/15 1:02:46				
14 15	Team 2 Team 2	24:16.6	Problem Structuring Problem Structuring	1	12/14/15	12/14/15 1:17:19				
16	Team 2	31:38.2	Problem Structuring	1	12/14/15	12/14/15 1:24:17				
17	Team 2	32:14.0	Problem Structuring	1	12/14/15	12/14/15 1:31:38				
8	Team 2	41:00.4	Problem Structuring	1	12/14/15	12/14/15 1:41:00				
9	Team 2	22:17.7	Risk Analysis	5	12/14/15	12/14/15 0:22:18				
20	Team 2	44:59.4	Risk Analysis	5	12/14/15	12/14/15 0:44:59				
21	Team 2	38:29.6	Trade-off Analysis	6	12/14/15	12/14/15 0:38:30				
22		29:17.6	Design Issue	1	12/14/15	12/14/15 0:29:18				
23	Team 2	34:57.5	Design Issue	1	12/14/15	12/14/15 0:34:58				
24		37:00.5	Design Issue	1	12/14/15	12/14/15 0:37:00				
25	Team 2	35:55.7	Design Issue	1	12/14/15	12/14/15 1:35:56				
26		29:42.7	Design Option	2	12/14/15	12/14/15 0:29:43				
27	Team 2	35:02.3	Design Option	2	12/14/15	12/14/15 0:35:02				
28	Team 2	37:27.5	Design Option	2	12/14/15	12/14/15 0:37:27				
29	Team 2	37:56.6	Design Option	2	12/14/15	12/14/15 0:37:57				
0	Team 2	39:18.6	Design Option	2	12/14/15	12/14/15 0:39:19				
31	Team 2	35:55.7	Design Option	2	12/14/15	12/14/15 1:35:56				

Figure 6.1 Importing data to Disco

3. **Create the process model**, the process model is automatically created after importing the data. To help analyze the data, the tool provides filters to set the data configuration for the desired process models. For example, we can set the

filter to find out the process of design reasoning technique of just one team or the whole group. Furthermore, we can also set the filter to show or hide the elements of Design Rationale, so we can analyze their link to the process on which they come out from. Figure 6.2 (below) shows the complete process mining of the control group as the output of the tool. However, because the model is really huge, to see the caption of design resoning techniques and the Design Rationale need to zoom the model directly, that is why we add annotation and arrow to point each elements that is present in the model. The process model of each team and group in detail available in Appendix D.

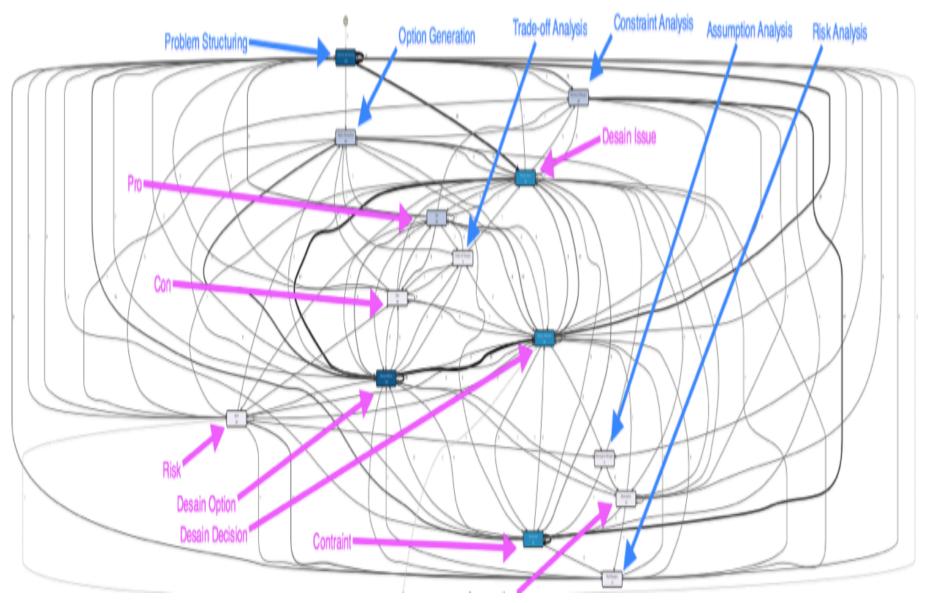


Figure 6.2 The complete process model of control group

6.3 **Process Model Simplification**

Before we conduct analysis on the process model, the tool provides a mechanism to simplify the complex process model base on fuzzy mining algorithm (Günther & Van Der Aalst, 2007). This was the first mining algorithm to introduce the "map metaphor" to process mining, which includes advanced features like seamless process simplification and highlighting of frequent activities and paths. These features allow us to adjust the detail that we want so see from the process model.

The tool provide two sliders that user can use to modify the level of detail that is shown in process model, they are:

- 1. Activities slider, this slider influences the number of activities shown in the process model, ranging from only the most frequent until all activities including the least frequent activities.
- 2. Paths slider, this slider determine on how many paths is shown in the process model, ranging from the most dominant path flow until all connection between the activities.

Figure 6.2 (above) shows the configuration of the slider with 100 % activities and 100 % paths, which resulting in "spaghetti-like" model. For further analysis, we used the paths slider to simplify our process model. As an example Figure 6.3 (below) show the simplification of the complete process model of the control group using 100 % activities and 10 % paths.

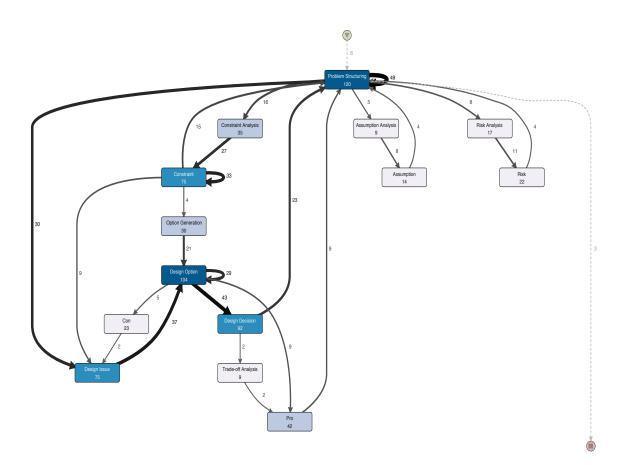


Figure 6.3 The simplification result of complete process model of control group

6.4 Process Model Analysis

We analyze the process model by the distinction of that we made, and that is the control group and the test group. For each group we made two models, first the complete model that presents the design reasoning techniques and the Design Rationale elements, within this model we can analyze the relation between the process (design reasoning techniques) and the product (Design Rationale elements).

The second model is the process model that consist only the design reasoning techniques, this model can help us understand the flow of the process that designers made during the design discourse session.

6.4.1 First Model of Control Group

For this model we use 100 % activities and 10 % paths, the result is presented with Figure 6.4 (below).

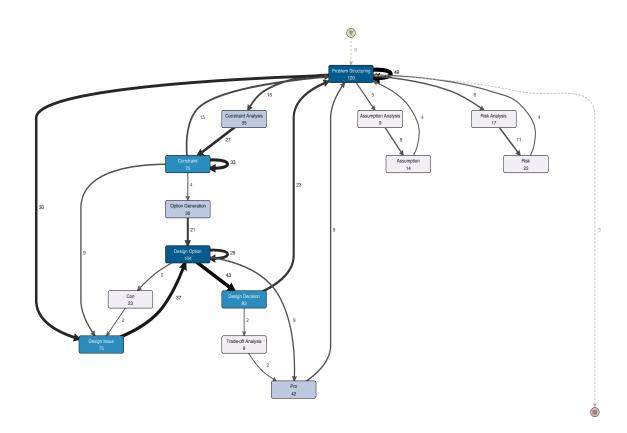


Figure 6.4 Process model of control group with 100% activities and 10% paths

From this process model we discovered that:

- 1. Most of Design Issues are created after Problem Structuring. This means that designers identify most of this issue after they structure the problem.
- There are a clear flow of Design Issue to Design Option and then goes to Design Decision.
- 3. Assumption, Constraint, and Risk are preceded by their analysis. For example, Assumption Analysis always followed by Assumption.
- 4. One thing interesting is that the Pro and Con majority come after Design Option and not by Trade-off Analysis. We consider this because Trade-off Analysis is due to comparing two or more Design Option with showing their

Pro and Con, while in the design discourse session there are some arguments of Pro and Con for Design Option that is stand-alone.

6.4.2 First Model of Test Group

The first model with complete process model of test group presented with Figure 6.5 (below). This process model displays all the design reasoning techniques and the Design Rationale elements from all the team in the test group. For this model we also use 100 % activities and 10 % paths as the configurations.

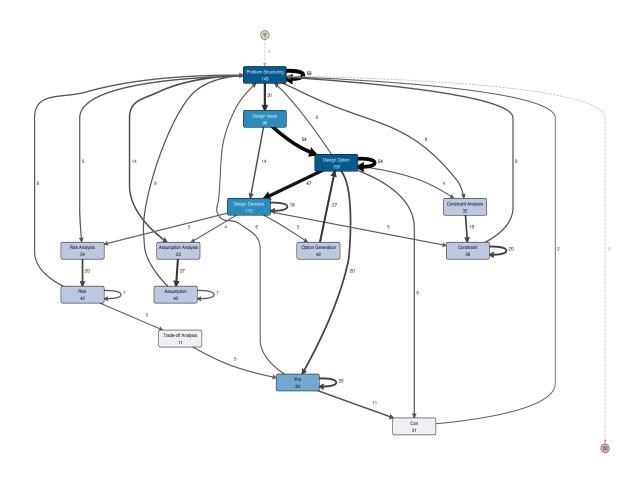
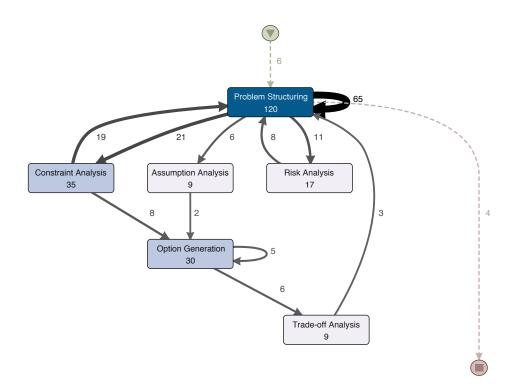


Figure 6.5 Process model of test group with 100% activities and 10% paths


From this process model we discovered that:

- 1. Most of Design Issue are created after Problem Structuring
- There are also a clear flow of Design Issue to Design Option and then goes to Design Decision.

- 3. Assumption, Constraint, and Risk are preceded by their analysis. For example, Assumption Analysis always followed by Assumption.
- 4. The majority of the Trade-off Analysis followed by the positive argument (pro), then the designers continue with the negative argument (cons).

6.4.3 Second Model of Control Group

The second model we use 100% activities and 30% paths as the configuration. The process model is shown in Figure 6.6 (below).

Figure 6.6 Process model of reasoning techniques of control group

This process resembles of "lasagna-like" process, which means that it have a clear structure. Furthermore, we discovered that:

 There are four major stages in the process flow. The Problem Structuring is at the first stage. The second stage consists of Constraint Analysis, Assumption Analysis, and Risk Analysis. Option Generation available at the third stage and followed by Trade-off Analysis at the last stage. 2. Problem Structuring followed by Constraint Analysis, Assumption Analysis, or Risk Analysis. Before creating Option Generation, the designers usually made Constraint Analysis or Assumption Analysis. Trade-off Analysis is possible after designers execute Option Generation. We consider this is natural, because Trade-off Analysis is comparing between two or more available Design Option that is created by the Option Generation.

6.4.4 Second Model of Test Group

For the second model of test group that show only the design reasoning techniques we use 100% activities and 90% paths. The process model is shown bellow (Figure 6.7).

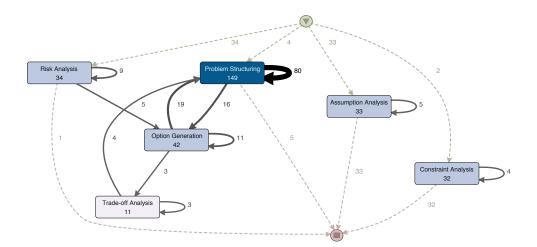


Figure 6.7 Process model of reasoning of test group with 100% activities and 90% paths

From the process model of reasoning technique of test group, we found that:

- The stage of reasoning process is not very clear. We presume this is due to several teams start their discussion not with problem structuring, because the treatment prompts them with several techniques that are available to conduct their design discussion.
- There is a visible flow from Risk Analysis to Option Generation, from Option Generation to Problem Structuring.

3. The Option Generation followed by the Option Generation, we can assume this happens when designers have two or more Design Option, and then they use the Trade-off Analysis to compare between these choices.

6.5 Identify the Correlation

Base on the analysis of the process model above, we can conclude that there were identified flows between:

- 1. Problem Structuring to Design Issue
- 2. Option Generation to Design Option
- 3. Assumption Analysis to Assumption
- 4. Constraint Analysis to Constraint
- 5. Risk Analysis to Risk

Using the data from Table 5 (Page 27) and Table 6 (Page 27), we analyze the correlation of this process (design reasoning techniques) to the product (Design Rationale elements) one by one.

6.5.1 Problem Structuring to Design Issue

A Pearson product-moment correlation coefficient was computed to assess the relationship between the Problem Structuring and the Design Issue. There was a positive correlation between the two variables, r = 0.185, n = 12. A scatterplot summarizes the results (Figure 6.8). Overall, there was a weak, positive correlation between Problem Structuring and Design Issue. Increases in Problem Structuring were correlated with increases in Design Issue.

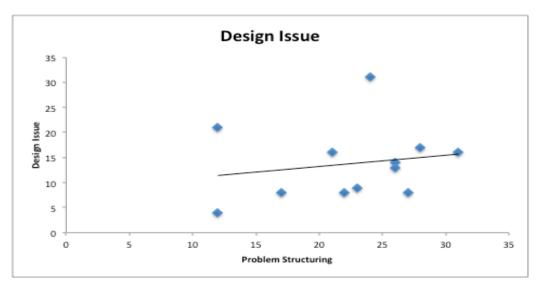


Figure 6.8 Problem Structuring to Design Issue

6.5.2 Option Generation to Design Option

A Pearson product-moment correlation coefficient was computed to assess the relationship between the Option Generation and the Design Option. There was a positive correlation between the two variables, r = 0.730, n = 12. A scatterplot summarizes the results (Figure 6.9). Overall, there was a strong, positive correlation between Option Generation and Design Option. Increases in Option Generation were correlated with increases in Design Option.

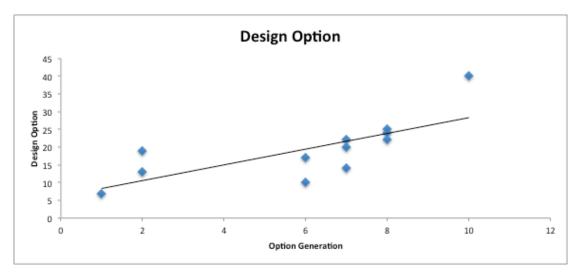


Figure 6.9 Option Generation to Design Option

6.5.3 Assumption Analysis to Assumption

A Pearson product-moment correlation coefficient was computed to assess the relationship between the Assumption Analysis and the Assumption. There was a positive correlation between the two variables, r = 0.866, n = 12. A scatterplot summarizes the results (Figure 6.10). Overall, there was a strong, positive correlation between Assumption Analysis and Assumption. Increases in Assumption Analysis were correlated with increases in Assumption.

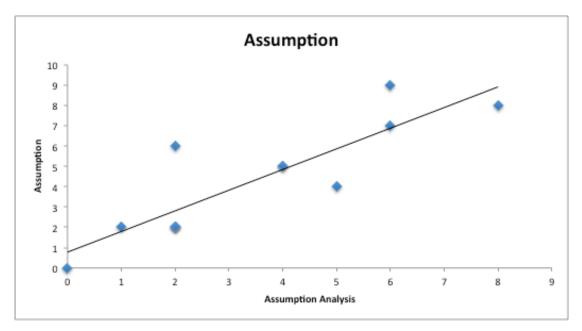


Figure 6.10 Assumption Analysis to Assumption

6.5.4 Constraint Analysis to Constraint

A Pearson product-moment correlation coefficient was computed to assess the relationship between the Constraint Analysis and the Constraint. There was a positive correlation between the two variables, r = 0.540, n = 12. A scatterplot summarizes the results (Figure 6.11). Overall, there was a strong, positive correlation between Constraint Analysis and Constraint. Increases in Constraint Analysis were correlated with increases in Constraint.

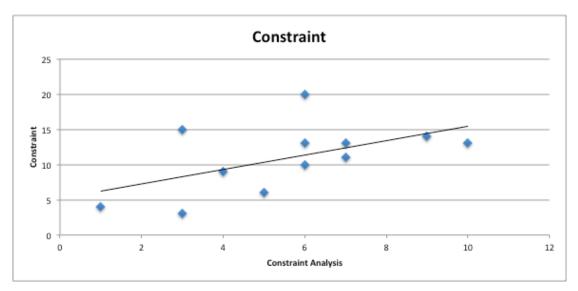


Figure 6.11 Constraint Analysis to Constraint

6.5.5 Risk Analysis to Risk

A Pearson product-moment correlation coefficient was computed to assess the relationship between the Risk Analysis and the Risk. There was a positive correlation between the two variables, r = 0.649, n = 12. A scatterplot summarizes the results (Figure 6.12). Overall, there was a strong, positive correlation between Risk Analysis and Risk. Increases in Risk Analysis were correlated with increases in Risk.

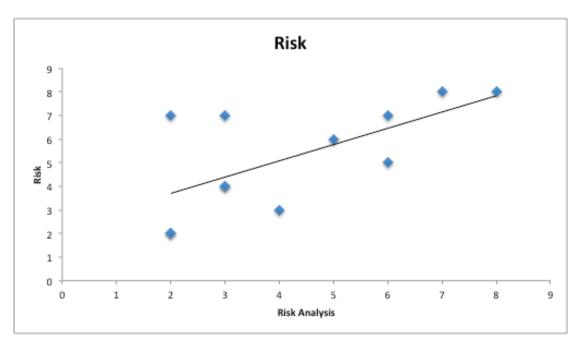


Figure 6.12 Risk Analysis to Risk

6.6 Conclusion

The process mining helps us create the process model that comes out from each group. Base on this process model we can identify and analyze the flow of the process (design reasoning technique) to the product (Design Rationale elements). The model also indicates the majority flow that appears. Furthermore, because we split the process between control group and test group, we could discover the structure of reasoning process of each group.

Using the structure of the process to the product, then we can calculate their correlation using Pearson product-moment correlation coefficient which results in strong, positive correlation for Option Generation to Design Option, Assumption Analysis to Assumption, Constraint Analysis to Constraint, and Risk Analysis to Risk. However, we found weak, positive correlation between Problem Structuring and Design Issue. This happens because the designer use more one or more of the Problem Structuring techniques before identifies the Design Issue.

7 Result

In the previous section, we have analyzed the results of the experiment. We create the event-listing matrix from the first experiment data and use this matrix to identify the type of Design Rationale element pattern and their variance. Furthermore, we also use process mining to understand the process and the product as an output of the design reasoning process. In summary, we have several findings and they are discussed in the following sections.

7.1 Finding 1 – The Reflective Method Intensify the Frequency of Design Reasoning Technique and the Design Rationale Element

We observed that the amount of design reasoning technique and the Design Rationale elements from the first experiment. The treatment that we use was the design reasoning reflective method (Schriek, 2016), they are meant to prompt the designers to question their decisions in order to come to better thoughtful design, and to help them with several possible reasoning techniques for making that decision.

We discovered that the amount of design reasoning technique of the test group (with treatment) more than the control group (without treatment). The evident form Table 18 shows the frequency of the design reasoning technique during the design discourse session. The result reveals that the test group produces 37 % more than the other group.

Reasoning			Control	Group			Total	Average			Test 0	Group			Total	Average
Technique	C1	C2	C3	C4	C5	C6	Total	Average	T1	T2	T3	T4	T5	T6	Total	Average
Assumption Analysis	2	0	2	2	1	2	9	1.50	8	4	6	4	6	5	33	5.50
Constraint Analysis	3	4	9	10	6	3	35	5.83	5	6	1	6	7	7	32	5.33
Option Generation	1	6	2	8	7	6	30	5	10	2	7	8	7	8	42	7
Problem Structuring	12	27	31	12	21	17	120	20	24	23	26	28	22	26	149	24.83
Risk Analysis	2	4	3	3	2	3	17	2.83	5	7	2	8	6	6	34	5.67
Trade-off Anaysis	1	3	0	5	0	0	9	1.5	3	0	1	4	3	0	11	1.83
Total	21	44	47	40	37	31	220	36.67	55	42	43	58	51	52	301	50.17
Average	3.50	7.33	7.83	6.67	6.17	5.17	36.67	6.11	9.17	7.00	7.17	9.67	8.50	8.67	50.17	8.36

Table 18 Design reasoning frequency

While from Table 19 displays that the frequency of the Design Rationale elements of the test group produces 30 % more than the control group. It shows that team that using large amount of design reasoning technique during the design discourse session also produce the amount of Design Rationale elements.

DR Element			Control	Group			Total	Average			Test 0	Group			Total	Average
DICLIEINEIIC	C1	C2	C3	C4	C5	C6	Total	Average	T1	T2	T3	T4	T5	T6		Average
Assumption	2	0	2	6	2	2	14	2.33	8	5	7	5	9	4	38	6.33
Con	2	3	0	11	2	4	22	3.67	11	1	5	10	3	1	31	5.17
Constraint	3	9	14	13	20	15	74	12.33	6	13	4	10	13	11	57	9.50
Design Decision	4	8	16	21	16	8	73	12.17	31	9	14	17	8	13	92	15.33
Design Issue	4	8	16	21	16	8	73	12.17	31	9	14	17	8	13	92	15.33
Design Option	7	10	19	22	22	17	97	16.17	40	13	20	24	14	25	136	22.67
Pro	7	7	9	16	2	3	44	7.33	22	7	11	13	5	3	61	10.17
Risk	2	3	4	4	2	7	22	3.67	6	8	7	8	5	7	41	6.83
Total	31	48	80	114	82	64	419	69.83	155	65	82	104	65	77	548	91.33
Average	5.17	8.00	13.33	19.00	13.67	10.67	69.83	11.64	25.83	10.83	13.67	17.33	10.83	12.83	91.33	15.22

Table 19 Design Rationale elements frequency

To get more insight into the data, we conducted a 2-sample t-test for each design reasoning techniques and Design Rationale elements in Section 4.5. We found that the treatment with the reflective method of design reasoning had an effect on some techniques. The affected techniques are Assumption Analysis and Risk Analysis. Meanwhile, the elements of Design Rationale that affected by the treatment are Assumption and Risk.

7.2 Finding 2 – The Type of Design Rationale Element

Understanding the implicit Design Rationale that designers build with the design reasoning technique, we examined the pattern of the events. From the event-listing matrix, we classified that are five patterns type that designers build during the design discourse session, they are:

- 1. Direct Decision, this as the result of decision made straight from the issue.
- 2. **Focus Decision**, the designers discover the design option for the issue that they identified. However, they only focus on that option and overlook other possible option.
- 3. **Half consideration**, the designer develop more option to help them solve the issue. However, some options do not have an argument behind it.
- 4. **Full consideration**, designers develop several options that it is considered best at that moment support with some arguments behind it, and decide the best decision based on those arguments.
- 5. **No-link**, is not directly connected to any Design Issue or Design Option. This is possible because the argument is invalid or out of the context of the issue.

We also identify the variant of each pattern type, and conduct paired samples t-test in Section 5.5. However, measuring this pattern we found that they are no significance between the pattern variant of the control group and the pattern variant of the test group. In other words, the treatment has no significant impact in pattern variant that designers made during the design discourse session.

7.3 Finding 3 - Result of Process Mining

Understanding the link between the process and the product, we use process mining as our method. The process-mining tool that we use optimizes the Fuzzy mining algorithm (Günther & Van Der Aalst, 2007) to create and simplify the process model. From the simplify process models, we identified several flows that designers build during the design discourse session, they are:

- 1. Most of Design Issues are created after Problem Structuring. This means that designers identify most of this issue after they structure the problem.
- 2. There are clear flows of Design Issue to Design Option and then goes to Design Decision. This also emphasizes the flow that we made in the event-listing matrix to create Design Rationale elements pattern type (Finding 2).
- 3. The Assumption, Constraint, and Risk are preceded by their analysis. For example, Assumption Analysis always followed by Assumption.

We also measure the correlation using the link structure of the process to the product, we can calculate their correlation using Pearson product-moment correlation coefficient, and the flows are:

- 1. Problem Structuring to Design Issue
- 2. Option Generation to Design Option
- 3. Assumption Analysis to Assumption
- 4. Constraint Analysis to Constraint
- 5. Risk Analysis to Risk

The measurements result in strong, positive correlation for Option Generation to Design Option, Assumption Analysis to Assumption, Constraint Analysis to Constraint, and Risk Analysis to Risk. However, we found weak, positive correlation between Problem Structuring and Design Issue. This happens because the designers use more one or more of the Problem Structuring techniques before identifies the Design Issue.

8 Conclusion and Discussion

8.1 Conclusion

This research focuses on the design reasoning and Design Rationale elements in the design discourse session. The main research question is formulated as "*What is the link between design reasoning and Design Rationale in the design process?*"

In order to answer this question, four sub-questions have been drafted. The following section we provide the answer to all sub-questions and finally the answer to our main research question.

8.1.1 The Concept of Design Rationale and Design Reasoning (SQ1)

The first sub-question was formulated as follows: "what are the central concepts of design rationale and what is design reasoning?" From the literature study, we discover that the central concept of Design Rationale is focusing on the design decision and the elements that provide the justifications, the other alternatives, and the arguments behind the design decisions. All these elements captured in the framework of Design Rationale element, this framework is the refinement of several approaches to capture Design rationale.

Design reasoning itself is the process that designer use to come to the solution, that is the design decision. Researchers have identified several techniques to help designers made this decision; they are Problem Structuring, Option Generation, and Analysis of Assumption, Constraint, Risk, and Trade-off.

8.1.2 Quality Measure for Design Rationale (SQ2)

The second sub-question was formulated as follows: "what are the existing quality measures for design rationale?". From our literature study, we found the measurements for requirements that designer could use to achieve a valid decision. However, we did not find any measurement for the concept of Design Rationale elements as a whole. Therefore, we propose the pattern type of Design Rationale elements. These patterns is the output of the event-listing matrix, the pattern type classifies on how the designers come to the decision base on the justifications, the other alternatives, and the arguments behind the design decisions. These patterns are:

(i) Direct Decision, (ii) Focus Decision, (iii) Half Consideration, (iv) Full Consideration, and (v) No-link. These patterns are the result of reasoning that designers made at the design discourse session. Although in the end, the quality of design decisions not just depend on the reasoning ability of the designers, but also affected by the knowledge and the creativity of the designers itself.

8.1.3 Rationale as the Product of Reasoning Process (SQ3)

The third sub-question was formulated as follows: "what is the rationale that designers build during the reasoning process?". Using the process model, we identified the rationale that designer build. The process model helps us apprehended the common flows that appear from the reasoning process to the product. Using these flows, we calculate the correlation using the quantitative method, which results in strong, positive correlation for most of the techniques. Thus, increases in the number of reasoning techniques were correlated with increases in Design Rationale elements.

While focusing on the rationale, we can conclude that Problem structuring leads to Design Issue, Option Generation helps designers develop one or more Design Option, while the results of Assumption Analysis, Constraint Analysis, Risk Analysis, and Trade-off Analysis are positive or negative argument for the Design Option. Design Decision is the Design Option that designers think the best solution for the Design Issue. The pattern of this relation could be presented in five pattern types as we propose for the answer of sub-question two.

8.1.4 Improving Implicit Rationale (SQ4)

The fourth sub-question was formulated as follows: "*How does different design reasoning improve the implicit rationale?*" Using our first finding (section 7.1), we conclude that the treatment increases the amount of Assumption that designers made and the Risk that designers identified during the design discourse session. Therefore, by prompting the designers with the available design reasoning techniques could increase the quantity of argument that designers made. We see this as a way to improve the implicit rationale from the quantity aspect. However, for the quality of the argument itself still rely on the knowledge domain of the designers.

8.1.5 Answer to Main Research Question

The main research question is formulated as follows:

"What is the link between design reasoning and Design Rationale in the design process?"

To identify the link between design reasoning and Design Rationale, this research has used the quantitative method, the qualitative method, and the process mining. The patterns of rationale that designers made during the design discourse session have been identified. The flow of process the product have been identified and measured. Base on these findings from previous sections and the answer of each sub-question in this section, we can conclude that the reasoning technique as the link to connect the design reasoning and Design Rationale in the design process.

8.2 Discussion

This research focuses on two approaches during design session; they are Design Rationale and the design reasoning. We have analyzed the link between these two methods. Our results reveal that the pattern of rationale that designers made with different reasoning technique. This has the implication on how to train and educate novice designers.

8.2.1 Limitation

Yin (2003) describes four different criteria for empirical research. These criteria are: construct validity, internal and external validity and reliability. We notice the limitation of this experiment related to the internal validity includes the student's background, student's experience, and their design abilities. To mitigate this, the students chose the team member themselves. While splitting the control group and the test group based on their grades for a previous assignment, so there is a mix of groups who have shown to do well, and those who have lesser grades.

Another limitation is that the identification of the reasoning process and the elements of Design rationale are subjective. To mitigate this, each transcript independently codified by two researchers. As noted in 4.3 the Cohen's Kappa Coefficient (Cohen, 1968) was 0.64, which indicated substantial agreement between the two coders. This method helped us ensure that the study is done with desirable quality.

Another limitation is that the design reasoning and elements of Design Rationale we observed were based on dialog from audio recordings. Non-verbalized exchanges such as pointing and looks could not be observed. We assume that in a group discussion, most of the considerations were communicated verbally.

Finally, another limitation was the number of participants is low, because the experiment depends on the number of students following the Software Architecture course.

8.2.2 Future Research

This thesis research has used the combination of qualitative and quantitative research method to explore the link between process and product of design discourse session. As mentioned earlier, the number of the participant for the experiment is low, with an addition of more participants the amount of data that could be analyzed would give more perspective. With these additional participants, a more quantitative test could be performed which result would be more comprehensive.

This research has shown the potential pattern of rationale to evaluate the type of design decision made by designers. Optimizing this pattern and combining with the measurement for the quality of design decision could be an interesting topic as the continuation of this project.

Finally, the treatment that used in the experiment was the reflective method of design reasoning with cards (Schriek, 2016). We think there is enough space to develop this approach in the future, which could help novice designers expanding their knowledge and improve their design skill.

References

Carroll, J. M., & Rosson, M. B. (1991). Deliberated evolution: Stalking the View Matcher in design space. *Human–Computer Interaction*, 6(3-4), 281-318.

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. *Psychological bulletin* 70 (4), 213.

Conklin, J., & Begeman, M. L. (1988). gIBIS: A hypertext tool for exploratory policy discussion. ACM Transactions on Information Systems (TOIS), 6(4), 303-331.

Conklin, E. J., & Yakemovic, K. C. (1991). A process-oriented approach to design rationale. *Human-Computer Interaction*, 6(3), 357-391.

De Neys, W. (2007). Implicit conflict detection during decision making. *Proceedings of the Annual Conference of the Cognitive Science Society*, Nashville, Tennessee, USA, 209-214.

Dutoit, A. H., McCall, R., Mistrík, I., & Paech, B. (2007). Rationale management in software engineering. Berlin: Springer Science & Business Media.

Dyer, M. (1988). Designing software for provable correctness: The direction for quality software. *Information and Software Technology*, *30*(6), 331-340.

Fischer, G., Lemke, A. C., McCall, R., & Morch, A. I. (1991). Making argumentation serve design. *Human–Computer Interaction*, 6(3-4), 393-419.

Franklin, L. R. (2005). Exploratory Experiments. Philosophy of Science, 72(5), 888–899.

Günther, C. W., & Van Der Aalst, W. M. (2007). Fuzzy mining-adaptive process simplification based on multi-perspective metrics. In *Business Process Management* (pp. 328-343). Berlin: Springer Heidelberg.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The architecture tradeoff analysis method. *Proceedings Engineering of Complex Computer Systems*, 1998. ICECCS'98. Fourth IEEE International Conference, Monterey, CA, USA, 68-78.

Kunz, W., & Rittel, H. W. (1970). *Issues as elements of information systems* (Vol. 131). Berkeley, California: Institute of Urban and Regional Development, University of California.

Lee, J., & Lai, K. Y. (1991). What's in design rationale?. *Human–Computer Interaction*, 6(3-4), 251-280.

Lee, J. (1997). Design rationale systems: understanding the issues. *IEEE intelligent systems*, 12(3), 78-85.

MacLean, A., Young, R. M., Bellotti, V. M., & Moran, T. P. (1991). Questions, options, and criteria: Elements of design space analysis. *Human–computer interaction*, 6(3-4), 201-250.

Miles, M. B., & Huberman, A. M. (1994). *Qualitative data analysis: An expanded sourcebook*. California: Sage publications.

Paul, R., Niewoehner, R., & Elder, L. (2006). *The thinker's guide to engineering reasoning*. Foundation Critical Thinking, Dillon Beach, CA.

Parnas, D. L., & Clements, P. C. (1986). A rational design process: How and why to fake it. *Software Engineering*, *IEEE Transactions on*, 1(2), 251-257.

Rationale. (2011). Cambridge Advanced Learner's Dictionary & Thesaurus. Retrieved December 5,

2015, from http://dictionary.cambridge.org/dictionary/english/rationale

Razavian, M., Tang, A., Capilla, R., & Lago, P. (2015). In Two Minds: How Reflections Influence Software Design Thinking.

Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning. *Policy sciences*, 4(2), 155-169.

Rozanski, N., & Woods, E. (2012). Software systems architecture: working with stakeholders using viewpoints and perspectives. Boston: Addison-Wesley.

Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT Software Engineering Notes, 35(3), 8-13.

Schriek, C. (2016). Influencing design reasoning: a card game. Unpublished manuscript.

Shum, S. B. (1995). Design argumentation as design rationale. *The encyclopedia of computer science and technology*, *35*(20), 95-128.

Shum, S. B., & Hammond, N. (1994). Argumentation-based design rationale: what use at what cost?. *International Journal of Human-Computer Studies*, 40(4), 603-652.

Skoglund, M., & Runeson, P. (2009). Reference-based search strategies in systematic reviews. *Proceedings of the 13th international conference on Evaluation and Assessment in Software Engineering*, Swinton, UK, 31-40.

Tang, A. (2011). Software designers, are you biased?. *Proceedings of the 6th International Workshop on SHAring and Reusing Architectural Knowledge*, Waikiki, Honolulu, USA, 1-8.

Tang, A., Jin, Y., & Han, J. (2007). A rationale-based architecture model for design traceability and reasoning. *Journal of Systems and Software*, 80(6), 918-934.

Tang, A., & Van Vliet, H. (2012). Design strategy and software design effectiveness. *Software, IEEE*, 29(1), 51-55.

Tang, A., Tran, M. H., Han, J., & Van Vliet, H. (2008). Design reasoning improves software design quality. In S. Becker, F. Plasil, and R. Reussner(Eds.), *Quality of Software Architectures. Models and Architectures* (pp. 28-42). Berlin: Springer.

Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

UCI. (2010) Studying Professional Software Design. Retrieved from: http://www.ics.uci.edu/design-workshop/

Van Der Aalst, W. (2011). Process mining: discovery, conformance and enhancement of business processes. Berlin: Springer Science & Business Media.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). *Experimentation in software engineering*. Berlin: Springer Science & Business Media.

Yin, R. K. (2003). Case study research: Design and methods. California: Sage publications.

APPENDIX A

Documentation Template

SOFTWARE ARCHITECTURE OF A TRAFFIC SIMULATION SYSTEM

Group XX

Names Student 1 (XXX)

Student 2 (XXX)

Student 3 (XXX)

Contents

Product introduction	74
Context Viewpoint	75
View: <name></name>	
Model	
Description	
Glossary of elements	
Rationale	
Functional Viewpoint	
View: <name></name>	
Model	
Description	
Glossary of elements	
Rationale	
Information Viewpoint	77
View: <name></name>	
Model	
Description	
Glossary of elements	
Rationale	

Product introduction

Describe in a few words (about a paragraph) on what the product to be designed is about.

Context Viewpoint

Use the following template for each of the views in the context viewpoint:

View: <name>

Model

Place here the model representation of the view

Description

Short description of the view

Glossary of elements

Give a description for each of the elements in the view

Id	Name	Description

Rationale

Describe shortly why the view is as it is. Notice that we want an argumentation about the view, and not an argumentation of why the view is included in the architecture description.

Functional Viewpoint

Use the following template for each of the views in the functional viewpoint:

View: <name>

Model

Place here the model representation of the view

Description

Short description of the view

Glossary of elements

Give a description for each of the elements in the view

Id	Name	Description

Rationale

Describe shortly why the view is as it is. Notice that we want an argumentation about the view, and not an argumentation of why the view is included in the architecture description.

Information Viewpoint

Use the following template for each of the views in the functional viewpoint:

View: <name>

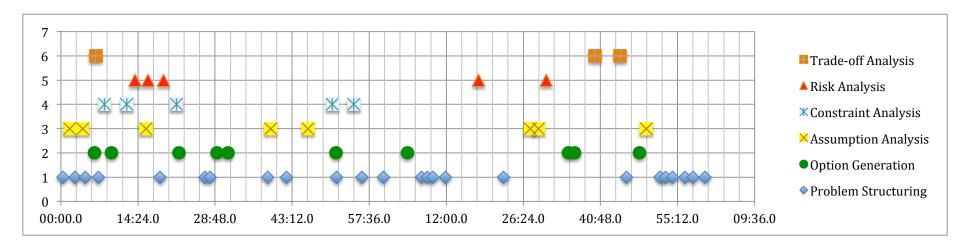
Model

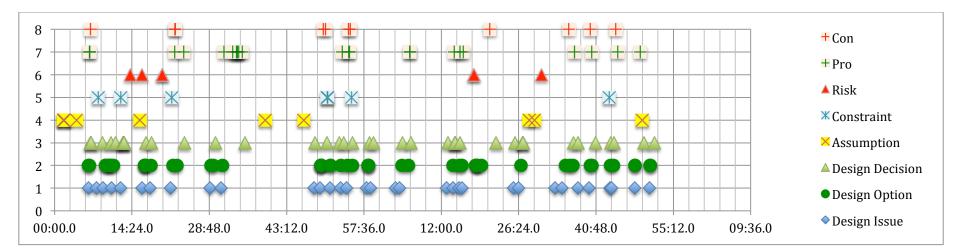
Place here the model representation of the view

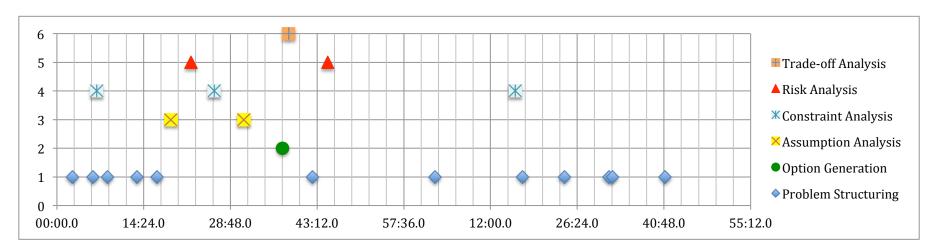
Description

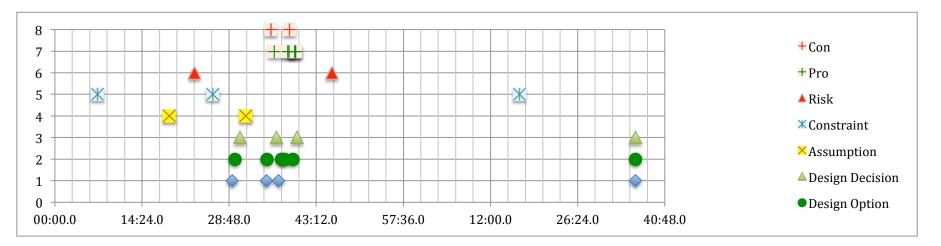
Short description of the view

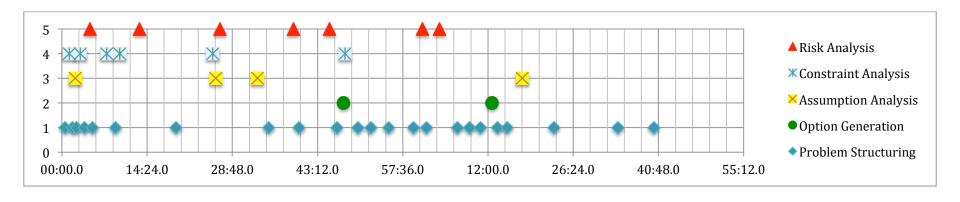
Glossary of elements

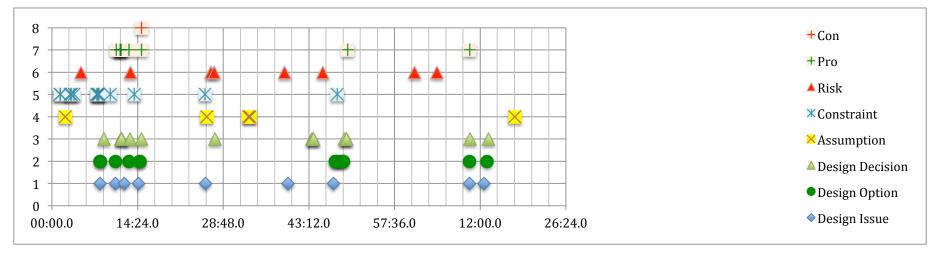

Give a description for each of the elements in the view

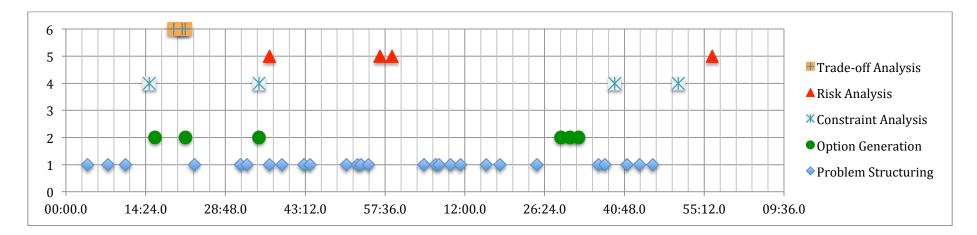

Id	Name	Description

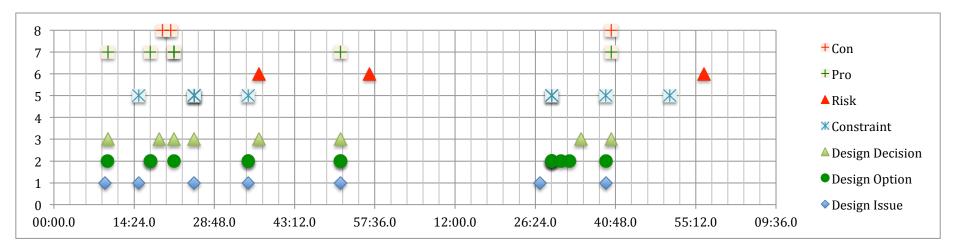

Rationale

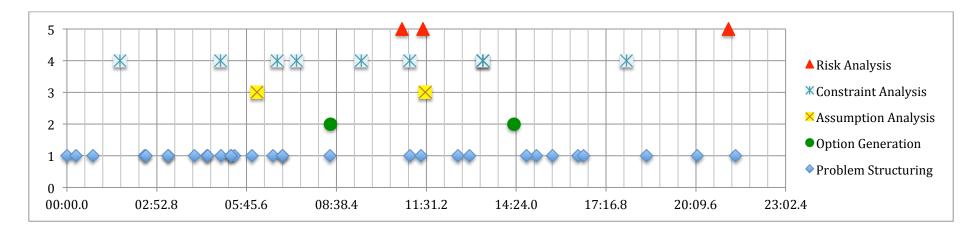

Describe shortly why the view is as it is. Notice that we want an argumentation about the view, and not an argumentation of why the view is included in the architecture description. APPENDIX B

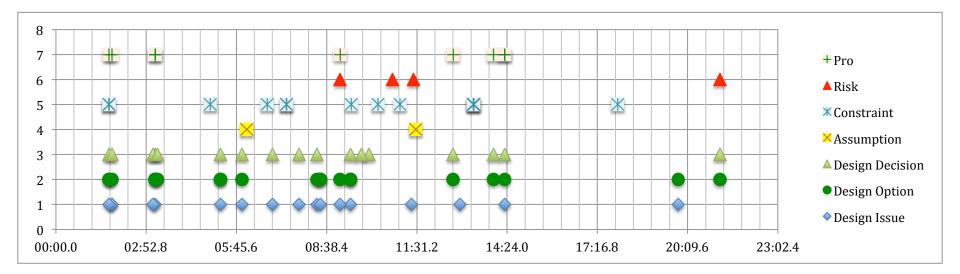

Time Plot Graph

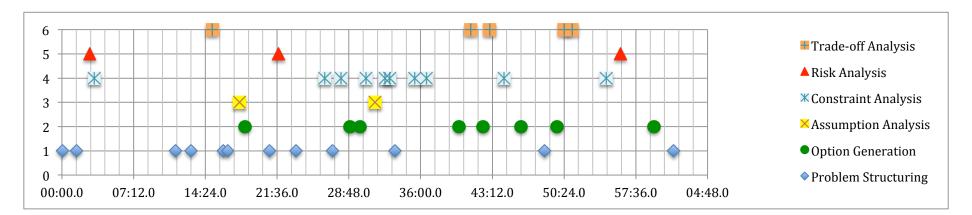


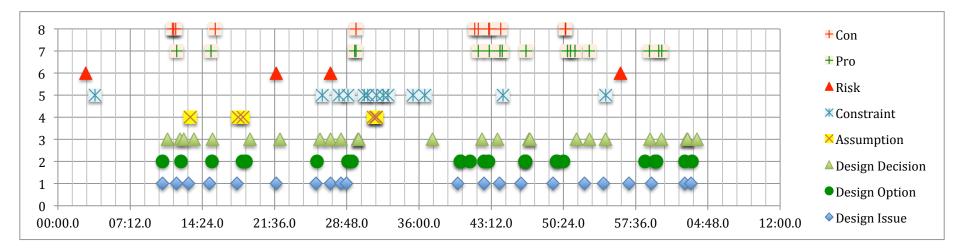


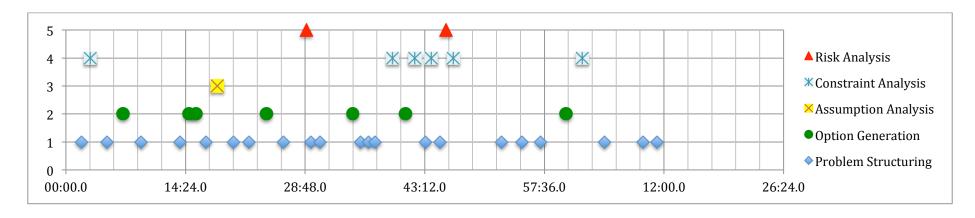


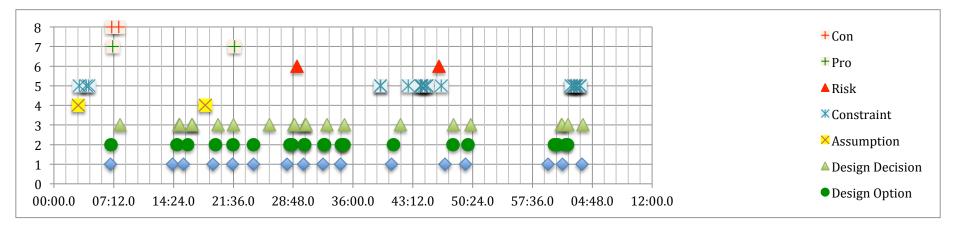


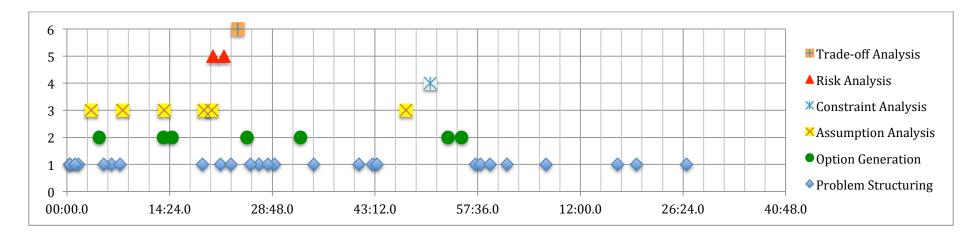


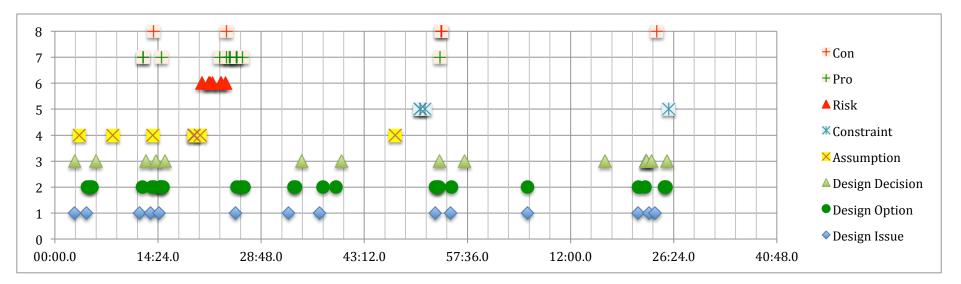


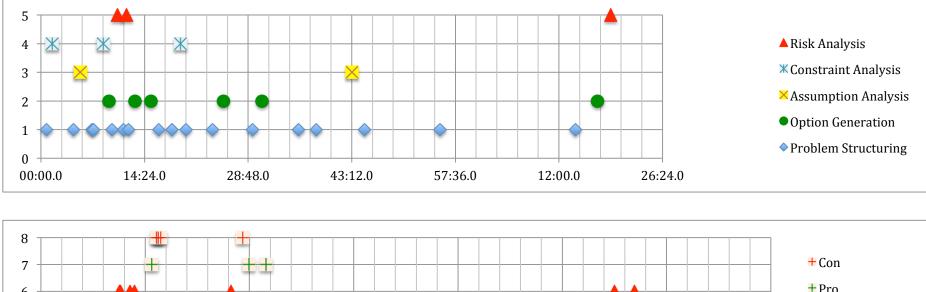


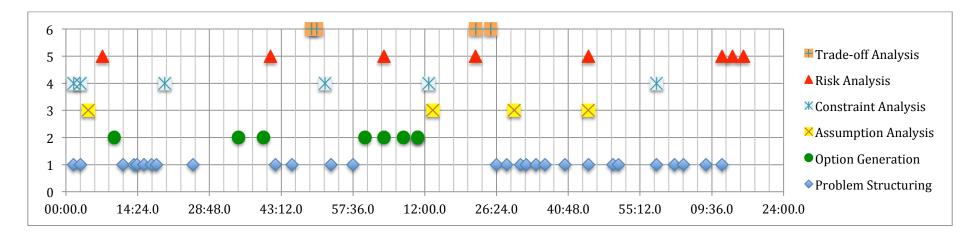


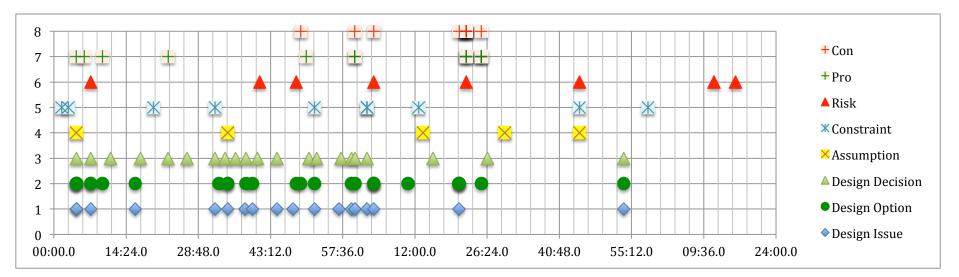


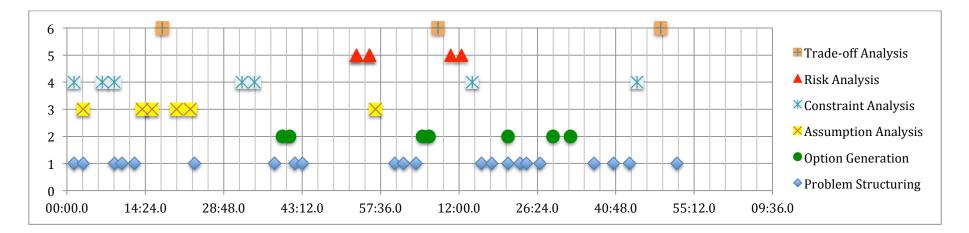


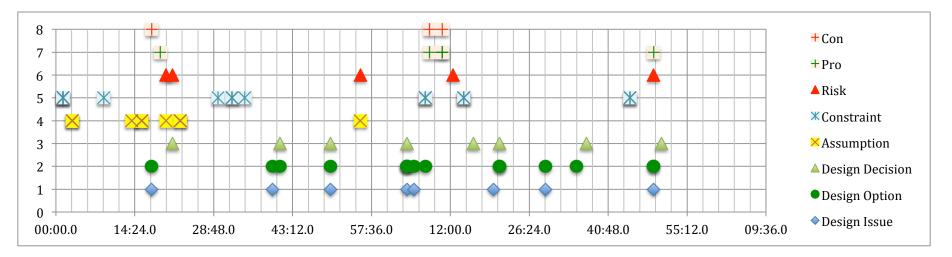


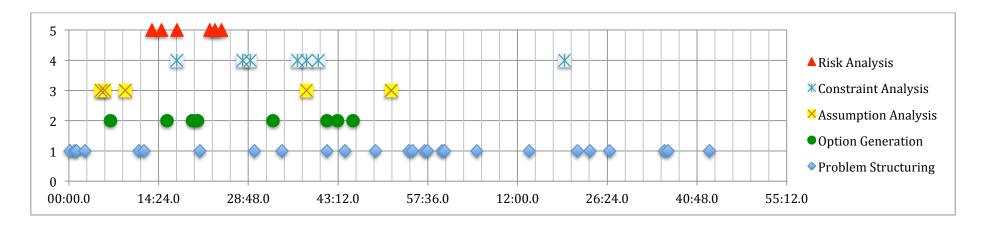


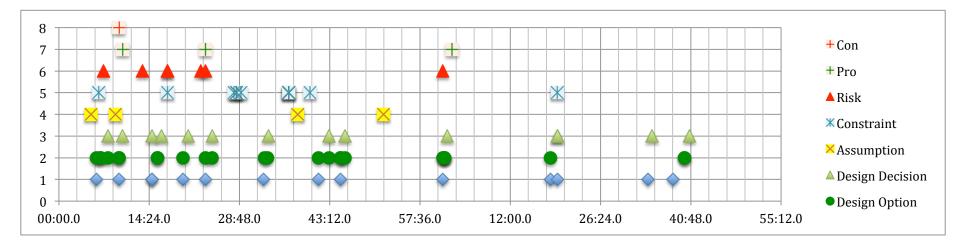












APPENDIX C

Event-Listing Matrix

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			So one car can go left, right and goes straight forward And cannot change- pass to-	А	None	
2			The application is just a learning tool	Α	None	
3	Are we going to use external software packages	Plugins	you can use a mathematical software program	Pro	Positive	External Software Plugins
			Calculate all the sequencing	Pro	Positive	
		Algoritms	We don't know what we're gonna use	Con	Negative	
4	How much traffic can one road handle		Students need to be able to configure the busyness of the roads.	С	None	every lane has a capacity.
5	Yeah if one car wants to go straight and one car in front of the car wants to go right or left, and must wait for a signal to go on green lights. Then the car that wants to go to the next traffic light must wait for the car in front of him.	you should also be able to configure on that crossroad, You should be able to configure the type of each lane, at minimum you need three lanes				You can have, if you have one lane, you can have one traffic light for all
		You can have, if you have one lane, you can have one traffic light for all				
6	Must work with sensors or without sensors, that detect-	I think these all fall under the bigger function, which is crossroad behaviour, or crossroad configuration Can choose whether or not they have car sensors or not and that should in turn- or act behaviour of the traffic lights.				You should just give them the sandbox and they should be able to play, so that's one functionality.
7	a student cannot say, this traffic light straight on is green, while the opposite side left is green. Because that would result in crashes.		combinations of individual signals that would result in crashes should not be allowed	C	None	So I think we should limit the light behaviour and they should definitely be able to play with the timing
			That would complicate the system	R	None	
8	The students want. What kind of interface	be very abstract in our solution. Because we don't really know enough	Determine how the student wants to control the system.	Α	Positive	we going to specify the requirements more by ourselves
		We should define the system for the architects to create it.	Because we don't know	R	Positive	
9	the students should be able to control the traffic density themselves. But we will have to determine how they're gonna do that.	Slider				you can simply say, every lane has a maximum capacity
		you can simply say, every lane has a maximum capacity	But that would also complicate the design	R	Negative	

10	So this is, wants to turn this way. But the light here is also on green so there will be a crash here with two cars	we can make it so that on the intersections they have little signs that say, no U-turns.	U-turns should maybe be illegal per definition	С	Positive	You can just say to the developers, just program it so that all traffic light combinations that collide are illegal.
			Which would simplify the mechanics	Pro	Positive	-
			Yeah but is that going to be a question	Con	Negative	-
			I don't really understand	Con	Negative	-
		But this can also be solved with, you need traffic	But I think this is not really important now,	Pro	Negative	-
		lights	because it's a very implementation detail.	110	Negative	
11	Are we going to set the busyness per road	Well if you have a traffic flow, you can start in the left area and come- might move to the right				Well maybe you could say the only variable for a road is the size so how much lanes it is, and that also determines the amount of cars that spawn on it, depending on the time of day
		for the entire area it's, for example, high noon and				-
		everyone's leaving for work, so the busyness is high.				
12	Also a road has a length, you can have different	Sections.	That would make it easy for the programmers	Pro	Positive	so we're going with the tile based approach.
	road lengths. Or do we want to make the road in		to create the program.			
	sections.		So you basically drag and drop the map. I	Pro	Positive	
			think this would create a very intuitive way It makes sense. For the developers and for user	Dee	Desitive	-
			It makes sense. For the developers and for user	Pro	Positive	
			I think if we choose and approach like this it	Pro	Positive	-
			really defines the way you work with the		, ostave	
			objects			
			And also in the information view all these	Pro	Positive	-
			objects are tiles. And just in an intersection it			
			would have traffic lights, and maybe you can			
			zoom in on the intersection-			
			so, the point is that you can see, there are two	Pro	Positive	
			intersections here and these are busy roads, or			
			whatever, so you can see this road is an issue,			
			and also these intersections are causing			
			trouble. You can just zoom in and you can see			
			the individual cars go to check where the problem is. Where the bottleneck is.			
13			And then we should make, have an assumption	A	None	
10			that we wanted it to be the most efficient. That	~		
			we want the car behaviour to be the most			
			efficient as possible, or maybe with random			
			like in the real world			
14			It's a mathematical calculation, you can	А	None	
			calculate and change the parameters of car			
			length and waiting time and also the traffic			
15	But we don't know how we're going to visualize		rules. In the software			I think we should have a module like the builder module,
10	the architecture which I our main concern at					that allows you to place roads, intersections
	this point.					and anows you to place roads, intersections

10	Table 1 dec dec to to to discret	II - ite timinh		6	Ni	We consider the first second second
16	I think you're going to want to adjust your timing scheme on a specific crossroad	Has its own timing scheme	Well I don't think they should be able to	Con	Negative	It's separate timing scheme
	timing scheme on a specific crossroad		configure in such depth because that would			
			really mess up the entire logic of all the traffic			
			lights which I think is the point of the			
			application			
			I don't think they should be able to override	Con	Negative	
			the existing algorithms			
		There is an overall timing scheme				
17			For at least six times, in our case, because we	С	None	
			have six			
18	we're gonna want to have a module to spawn cars?	randomly				I think every road should have, maybe separate road logic module, and if it's a road at the edge of the world it's a spawning road, or something.
		Just by a neighbourhood.				
19	For every spawner road you can configure how	I think it would be best to have it only at sites.	So you can observe the flow a bit better I	Pro	Positive	so you only configure the busyness of the roads at the sides
	much car is spawned there. Is that an idea?		guess, because if you're gonna car spawn in the			
			middle of your map then it's gonna be difficult			
			to track the flow of traffic and see how your			
			actions influence the flow.			
20	I think we can cross out time of day, because we	Yeah. And students can choose to have, like, when	But then there will be a car crash. If two cars-	Con	Negative	Yeah let's leave it out for a minute
	covered that with the road busyness.	you [inaudible] at night. And if it is not very busy	That's their choice	Pro	Positive	
		they can say, I want orange light.	That would be a feature of that night mode	Pro	Positive	7
			perhaps.			
			But then the rules change. Because cars can	Con	Negative	
			crash at night. That's the problem			
			Cars are not allowed to crash	С	Negative	-
		I think we should forget night mode for now		e	Heguite	_
21	Maybe we can set up the rules for how long the	So, for example, the orange light is always like fewer				Yeah, That's for the timing scheme
21	lights can go on green, yellow and red.	than three seconds				reall, that's for the thing scheme
22	How does architecture look like, cause we have	than three seconds				The second
22						The game manager can create, like, a blank area. Or can just
	all this of the game and how are they connected.					load, like a, an area that you have done before. So basically
			1			the game manager just creates an instance to play in.
23	How do I fit the logic things in this?	I think that the logic is connected to the pieces you				Yeah, each intersection and each traffic light and I think
		place.				some of the logics are unchangeable, but there are obviously
						settings which can be changed.
		Should we have like a logic manager module	The logics are all connected	Pro	Positive	
			If the students change one of the three logics	Pro	Positive	
			then it can be a mess-			
24	how are we going to include the external					Shouldn't that just be part of the interaction logic? In
	software package					combination with the timing scheme, that- which are already
						mid module. So we just say, that package is integrated into
						the interaction module

25	Like that graphics generation is that the proper way to model it?	With a line to the instance.	Yeah depends on how it's written, in which code I suppose	Pro	Positive	Module, straight to the instance
26	Do we need, like, and input manager or something. Like a mouse or controller	That's in the game manager right	It's really low level	Pro	Positive	Yeah that's game manager.
27	let's start to the information view	We were thinking to do a petri net	We have trade off, towards petri net, because I had some other work.	Pro	Positive	Yeah maybe we can zoom in on the logic manager, for example. And select the things the user would like to change.
			I think the information view is tricky	R	Negative	
			Because it's difficult	R	Negative	
		Well we could do our information view as an overlay on our functional model. Like, we could say just like FAM, We could select a scenario	But if you translate it back to the functional view you use all the elements in there. So it's not really convenient for us to use a graphical overlay	Con	Negative	
28	our next question is who does the instance and the elements.					The logic manager is the overall- well is the manager obviously. And it also passes things like borders between different tiles
29	How does this whole logic thing work is basically our problem.	Does the instance then send element list to the logic manager? Or is he gonna go- nah I think to the logic manager would then consult all these things.				Like, how do you call it, like a server-bus or something and then we or a broker and then it all gets put together
		Like, how do you call it, like a server-bus or something and then we or a broker and then it all gets put together	l imagined it like the user can have some options to change some logic.	A	Positive	
			The logic manager, shouldn't it communicate with the game manager rather than the instance.	A	Positive	
			I think this is the- this is not really an information view, I think.	R	Negative	
30	how do we do that in an information flow about the architecture How do we fit the builder and	Sort like a database model	Yeah but that's not really an information view, I think it's more like a technical view	Con	Negative	A double block, so you just make an- information entities and the flows between them.
	the logic manager in this process?	maybe we can make a functional overlay				
		maybe we can make a UML with not just the class names, but also the information properties-	so you don't have a specific scenario	Pro	Positive	
31	How do you get the logic on an element					We build it, we create an instance with our element list, and then, it's like magic
32	Yeah. But now you want to draw the logic manager as well? Cause there's all the logic	l guess you could do this and just have the logic manager as the single box.	But then you have to define the information flow between them	Con	Negative	Yeah I think we should limit to this, that's maybe the best option for now. The entity we're making
		Like a sort of database.	much easier	Pro	Positive	-
			In your model. Every road is connected to another road	С	Positive	
33	How do you propose to constraint? Because if you draw your first road, and you don't have an intersection	Not to begin with, but later on you can add some intersection				So it should not be a concrete constraint. Every road should have an intersection

34	but how to draw this like this. Then you have to draw also a line between road and intersection	But we also make like, our tile thing.	Yeah it's a bit difficult to	Con		I want to include with- I would say like and area as multiple tiles. [inaudible] consists of roads and intersections
			But is it not obsolete	Pro	Positive	
35	Find a solution for the sensors	Have traffic light sensors				I think that's a solution
		Have intersections	But they just affect the traffic light of that	Pro	Positive	
			intersection. But it also affects the other traffic			
			lights at an intersection, if you get what I mean.			
			It doesn't just affect the traffic light in that lane			
			it effects all-			
			The traffic lights in the intersection.	А	Positive	
36	users can select the size, how long it will be?	Select and then on the map and then, so long it gets				Everything is in the tile, but a road can have a type
		They add tiles. So you will add like, a road tile				

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
Number						
1			the students must be able to create artificial map	C	None	
2			but the game engine isn't that the traffic simulator	Α	None	
3			that's gonna complicate things a little bit more	R	None	
4	what about this stuff, the	you wanna draw the map, you wanna set the	so the traffic labels must be visual to the user in real time in	С	Positive	that look good, and those two will go
	density you have to set it.	timing, you wanna pass that data to game engine,	the simulation			into that, and that one will go back,
			coz the game engine probably request some kind of random	A	Positive	and this one will trigger, the game
			number simulator, and they get that from the packages			engine will trigger the simulator.
5	isn't those two probably		but do you really need to know, do you really need to	Con	Negative	let connect this, alright
	need to interact		coz it's hard to set traffic timing if you don't know if it's like	Pro	Positive	
			8 or 9 traffic lights			

6	if you don't want to	you probably have to have some kind of arrow	ok and the map and the traffic is already save in the	Pro	Positive	ok, lets go for it.
	changes the map just the	back to timing and map designer	database. so can just choose that and then			
	timings	but then again if you wanna changes, you just	some thing like that,	Pro	Positive	
		restart, so you wouldn't have to like send anything	I think that sound fair	Pro	Positive	
		from here from traffic, from the end, back to the	but then what this arrow then, will is this necessary, because	Con	Negative	
		start, you wouldn't have to send any data. you just	you never just send a map			
		so you're thinking like in the database you can	I don't know it could be a good	Pro	Positive	
		have both the map saved and the map plus the	yeah, then it make sense	Pro	Positive	
		traffic timing saved, ok then it make sense	coz maybe it's even easier to just sometime have the map	Pro	Positive	
			and then we do all the traffic timing instead of changing			
			I don't think we need to have that connection, because it	R	Negative	
			could be like confusing, I'm thinking about when we're			
			doing the information view, then you would be really			
			confuse about.			
			intersections light behavior should be able to change input	C	Negative	
			from whether or not they choose to have sensors or not.			
7	I wondering if those two	maybe we should have the one				so then I guess that is done
	happens at the same time.	called it simulates and visualizes game. coz it				
		doesn't make sense to first simulate it and then				
		you show it .				

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1	how can we model that		they say that you are only allowed to create	С	None	No when you compile the program,
			your own maps			when you say one then it checks, ok,
			that you have only four way crossings and	С	None	it's ok, or you can say, hey check my
			no one ways			program. And then it tests it. Yeah I
			Does it have flash? I think so and you could	Α	None	don't think it really matters when you
			do things			do it. At least if you do it before it start
			it says you can't have T intersections and	С	None	running, the simulation
			stuff			-
			there may not be one way roads, no T	С	None	
			sections, and it must all be- always with the			
			traffic lights			
			at least six of these intersections	С	None	
			but we don't know that because we can't	R	None	
			look at the program			
			at least six intersections	С	None	
			All intersections will be four way	С	None	
			they are with or without sensors- or that	С	None	
			you can determine yourself.			
			they must have traffic lights	С	None	
			intersections will be four way. No T	С	None	
			intersections			
		is that a tree or something				
		that it's kind of a loop				
2	how do you draw	drag or drop, do it on a grid, click	Because if you choose drag and drop, you	Pro	Positive	Yeah and if you already add the traffic
			don't have to- like you don't have to put the			lights to the crossings, then you also
			possibility of a T- what is it called- T			don't have that anymore.
			intersection on it. So you can just only drag			
			a four way-			
			Yeah and it's way less complex	Pro	Positive	1
			You also don't have those one way roads	Pro	Positive	1

3		If you have this cross then you can say,	Yeah you can do that	Pro	Positive	Yeah and then you don't have the
		ok you can only move this. And like this,				problem
		and you can pull it	maybe we have a rule then that you have,	R	Negative	
	and drop the lengths as well		like, a minimum length. Because then you're			
			not able to drag one way, like- so it's			
			nowhere or- if you have this one, and you			
			take this point and drag it to the middle			
			then you have a T intersection			
			a crossing must have traffic lights, must be	С	Negative	
			four way, each- how do they, each road has			
			a length			
4	-	but I don't think that the crossings are	Yeah it doesn't really matter if another	Con	Negative	so the crossings are linked together
	not all lights may be set to	linked together.	crossing is also in green, because then, it			
	green at once		comes to the next one and if it's green then			
			other traffic lights are not on green.			
		But then they should be, or the traffic	Yeah it doesn't really matter if another	Pro	Positive	
		lights are linked together	crossing is also in green, because then, it			
			comes to the next one and if it's green then			
			other traffic lights are not on green.			
5	But that is actually a problem,		for the roads to be of varying lengths.	С	None	But then you can say that you'll have
	because we just said that each		each road has a minimum length	A	None	like some kind of margin, you have a
	road			~		kind of margin or padding between
			But do we also need to make the maximum	R	None	the, like the field you can draw in. and
			length, because otherwise you can do,			the actual point or places you can put
			instead of this, you can go the other way,			your intersections.
			you can still make the T section			
			the minimum will always still be there, you	R	None	
			need the minimum, otherwise you cannot			
			guarantee that there are no T			
			But then there are no right hand arrows.	А	None	
			No it says, also be able to- yeah but also on	A	None	
			the- yeah I know what you mean because it			
			doesn't say so, but because it says also left,			
			it would mean- implicate like, also left, but			
			also right.			
			then is it a risk that we don't know? The	R	None]
			stakeholders, and therefor we're gonna do			
			the wrong thing?			

6	we do not know who the					Ok, so we have the developers, the
	stakeholders are					client and the software architect. And
						the students, the user
7			They'll be like, oh you didn't tell me about to	R	None	
			do, oh I like this button here. Oh well, my			
			program does not want me to put that			
			button there, so now it's there.			
8	it should be possible to create	Integers. Shall we till one hundred, how				Because maybe they have a much
	a busy road, or a seldom used	many cars per second.				better solution for this. But as a user
	one. And any variation in	-	For this simulation thingy. Because, we are	R	Negative	you also need to know which road
	between. How exactly this is	else to do this. I don't even know if we	now designing the system and we also have			you're going to increase.
	declared by the user and	have to say this or that we can leave	the developers who need to be able to			
	depicted by the system is up to	-	design the system. But if we give them this,			
	you.		how do they know what we really want			
			from them. If they have it visual it might be			
			better for them, more clear what they want			
		maybe we also have to define a	We were not allowed to create dangerous	С	Negative	
		minimum or maximum speed	things, and saying that one drives one			
			hundred, and the other one drives 30			
		The input roads get numbered, and				
		then for every input road you can say,				
		ok, I want this density to be 10. Or 90.				
		Or you have a slide bar from low to high	Yeah because if you have a very busy road,	Pro	Positive	
			the other intersections need to participate			
			on that. Like, you have to get the cars away			
			from wherever they are			
			Oh yeah we also have the adjustable	R	Positive	
			options. Something has to happen with			
			them			
9	, , ,	No, don't make it too difficult	Out of scope	Pro	Positive	So you only can save and open a file
10	Maybe we should be more	We do have something like this in				It sounds like information right
		[previous project]. That they start a				
		local server with a database to put the				
	the program	current program in that, the current				
		map. So maybe that he meant that.				
11			Ok, only the operational viewpoint, because	A	None	
			there you say what kind of systems you			
			need, like I said, windows or mac.			10

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1	we have to determine how we wanna save the data then I guess, because that is also relevant for the information viewpoint later on.	some sort of xml or something.	yeah. that would be fine. yeah that would be the best.	Pro	Positive	so xml that's a file system. so we gonna have a file system.
			I guess it also the easiest form to implement. if you are talking to what was it. students who just complete basic computer science degree.	Pro	Positive	
2	let start with the first one.		describe behavior of the traffic lights. and simulate traffic flows, and change traffic density.	С	None	but maybe with this time constraints would be better to make a state diagram with the four main
		the message sequence chart.	sequence chart more useful for that but now we have to make it like four.	Con	Negative	functionalities, instead four sequences.
			I'm rethinking this is the interaction between the system and the users it really best way to show that in the state diagram, because we are now describing state of the system. they can change but they might not be change due the interaction. not really. doesn't really follow that well from the notation.	Con	Negative	
		the state diagram	in one state diagram we can cover like all those four functionalities.	Pro	Positive	
3	I guess this is the right way. so this is UML do we intentionally has it to do.		that covers like all the functionality basically, sort of.	Pro	None	UML sequence. I guess that's it.
			are some sequence.	Pro	None	
4	I like traffic light place automatically when there is basically an intersection created.		every intersection on the map want have traffic light	С	None	so yeah than it would be the best thing that when the road is place and then automatically it's basically made an intersection. if
			four way basically means like just.	С	None	it's like overlap or something. and then immediately some traffic light
			there is no T.	С	None	are place
5	it's look like in the object scenario it would also communicate with the MSP because when you	on and off always real time changes.	immediately see the changes in the traffic pattern.	С	Positive	real time response.
	create an object		we can't make it too difficult. because we will use a lot of functionality.	R	Negative	

6	is the way do it like. creating a road or creating object.	creating a road				so we will create object.
		creating object.	from the perspective of the students they can only create the road, its seems from the perspective more of the system. and the functional view is more like	Pro	Positive	
			seeing from the systems right. we might be thinking to much in the information view.	R	Negative	
7	do we add the multiplicity already now. or do we connect them with the those crowd feed. or do we connect them with some like in the UML class with some multiplicity. I believe you have to get association or yeah association is the right one.	so a map can have multiple road. and road can be in one map. and a road can be in as many intersection as it wants	intersection consist of four roads.	С	Positive	so we do basically state that you have intersection and they are connected by road. right. not road are form intersection by crossing. but also give them number and in
		remove road. intersection has a traffic light. I would not say it a road. so traffic light sensors connected to traffic light. it placed in the road.	each map at least accommodate six intersection	С	Positive	the glossary we define them.
_	there's a road between intersection but also there also road from which vehicle enter the map. so different kind a road, so we have to make another	map road. enter map road?	you should able to changes the traffic density that entice the map on different road	С	Positive	and this is entry road
	road.		it not stated in the assignment but it should be because there's really connecting road.	Pro	Positive	
			but does it state it anywhere there should be such road.	Con	Negative	
			the T intersection shouldn't be allowed	С	Positive	
			how the user can change traffic scheme. but. I'm not sure you.	R	Negative	

Event	Design Issue	Design Option	Argument	Туре	Effect to	Decision
Number	•	3 1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00	
1	how do you call it	5	it should not be left to the users to specified that the	Pro	Positive	so it's not an option it will be and AND
			opposite side should turn red. that should happen			condition.
			automatically . if this is going green then no matter			
			what the opposite side should turn red because other			
			wise it will be a crash.			
			the constraint is to create red one on the other side.	С	Negative	
		shouldn't be left to the user I mean if the	because there is no one way road.	C	Positive	
		user selects that left turn				
	how can we include that. opportunity for the student		so then if you have sufficient sensor trigger that so	Pro	Positive	okay. that could be.
			many people are waiting on the left lane. then the left			
	can we model this in some way.	sensor should detect it	signal comes on after sometime. but that can be			
			choice for the student it could display that. you know			
			you have three cars waiting in the left lane so do you			
			wanna turn the left signal on now. have it like that.			
			it says no one way road.	С	Negative	
			but when you create this a database would that table	R	Negative	
			street it is possible there is no street in it.			
			T is not allowed. only for.	С	Positive	
3	but. then we should model the opportunity that the		I think someone should create this system so should	R	None	yeah. we all have to connect this that's
	traffic light is on one side or on the other side. how		be really a plug in or should be already created			the problem now
	to model this.		because we can not create such a system because			
			every traffic like information should be in that			
			simulation how to get that information.			
			like you know anytime you say you want to see you	A	None	
			running the program and you want to see the flow of			
			traffic immediately you have to get the data from the			
			satellite other wise you can't see anything.			
		oh maybe a lane has a traffic light.	that would make it easier. because see. we are	Pro	Positive	
			considering this whole street I say Oudegrah street			
			this whole thing. both side of it . okay and up side will			
			have traffic light down side will have traffic light.			
4			busy road or seldom use road or anything in between.	с	None	
5			yeah. because when you have a street and car wants to	С	None	
			turn left you have to cross the other side of the street			
			and that's. yeah. you have to make sure. that from the			
			other direction no cars is coming.			
6			you need that left hand green arrow lights.	С	None	

		1				
7			left hand green arrow yes and at the same time the	С	None	
			sequence will be that from the opposite direction			
			should be red. those two should be match together.			
8	how to align to understand the function now.	the decision model get state back from	yeah. creating street view or something. which will be	Pro	Positive	but the this decision part will be dynamic
	functionality.	data source and creating module	more like a database I guess once he has created it			depending on the of the date the flow of
			will be like static database. he is not gonna update the			traffic
			street every time.			
9	but now we have still the problem how to connect	well we can connected by having a	and then the traffic light becomes like an independent	Pro	Positive	that's good idea. so intersection is a
	this. we have intersection intersection has a .	traffic light being associated with an	entity. we can place it anywhere. in the map and then			property of traffic light also.
	vertical street and horizontal street.	intersection	we just connect this property to it. as the property of			
			traffic light.			
			I think that would be simplier than trying to put	Pro	Positive	
			import traffic light into each of this.			
			all the intersection are four way intersection	С	Positive	
10	but I'm thinking about how to model this because	but then we have to make two classes				so this traffic light will belong to Z
	you have to this is like a method or something	out of it.				intersection oudegrah street left side. so
	because you have to hold you have to. I don't know					it has all information about this street the
	how to say because yeah you need other way to					sides of this street and the intersection.
	model this. because a street has a right or left side	can't it just be an attribute out of it.	we don't know how to refer this attribute	R	Negative	-
	always.	which can't be null .	we don't know now to refer this attribute	ĸ	Negative	
11	you mean how we measure it.					cars per time
12	I don't know how to put this.	as a default property that each street has	but we only have that option four cross or four ways	Pro	Positive	yes. we can just specify like that.
12	I don't know now to put this.	three lanes.	intersections.	Pro	Positive	yes. we can just specify like that.
		or should we let this to the students that		Dura	Desitive	
			yeah we should definitely have that option because	Pro	Positive	
		he decides if there should be third lane	not all street are gonna be so broad street even if it is a			
		or is two lanes are efficient. because.	four way intersection it could be a small intersection			
		that's I think also. we can make it	you know.			
		Boolean. and then we can just put our				
		own notation for that saying zero means				
		is going.				
			they should have the option to disable the sensor	С	None	
13	but now we also have that intersection problem.	so has a street intersection				intersection is property of the map, easier
		the map a street and the intersection.				to handle.
14	so basically when they are creating they should be	we don't need to show individual car but				so we can use that maybe.
	able to see on the map how like we have should	you know like Google map shows like				
	have option for showing on the map visually the	the whole road becomes like red or	when ever we change the traffic light or the signal we	Α	Negative	
	traffic or whatever what is going	something if it's caught like a lot of	will not be creating new street.			
		traffic	road of varying length.	С	Positive	
15	how do we specify that none of this can be null.					okay just put a bracket as not null the
						developer will.
			you approach should readily accommodate at least six	С	None	
16			you approach should readily accommodate at least six		None	1

17			constraint that student must create six intersection at		Nana	
17			-	Ľ	None	
			least.			
18	this just to see it just so the user can see it on his					so we have to model or we have to give
	console that okay .					the opportunity to the students to play
						and to stop the simulation.
19	update	so the update should get the data from				yeah. or when user make some changes
		some satellite right.				the simulation should stop and then make
						the update and then start again.so this is
						also function of that.
20	yeah okay but we need to specify where the traffic	by length we can do that by length of				yeah fine if it's only the student that are
	light is. exactly on that street.	course.				using it then maybe we don't need it
		of course from the starting point and				
		how much distance.				
21	how to include this in our application.	we'll just keep it as external data sources	well it will see that at this time this road has this much	Pro	Positive	yeah including. yeah that is good
		and line if they want to refer to more.	traffic. which information the traffic light cannot give			
			you. you know. you can see for the whole area or			
			something or each traffic light will have the			
			information of how many cars are only passing this			
			traffic light, but with the GPS you can see with the			
			satellite thing you can see how crowded everything is.			
			1 4 1 4 4		Number	-
22			does it changes to the system	R	Negative	
22	the option.	yeah. whether you want to take input				maybe we should leave that option.
		only from the satellite				
		do you want take input from the				
		previous traffic signal also.				
23			the sensor we should be able to sometimes like use or	С	None	
			disable or however they want			

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			If we make a wrong software architecture, the	R	None	
			software is going to get build wrong			
2			all intersections will be four way. There are no T	С	None	
			intersections nor one-ways ok. Must be able to			
			design each intersection			
3	which was relevant here	if you wish you may assume that you	why would we need to	Con	Negative	I would go with queuing
		would be able to use an existing	Why would we need statistical distributions or	Con	Negative	
		software package that provides relevant	queuing-			
		mathematical functionalities such as	traffic lights not- we don't have to do anything with	Con	Negative	
		statistical distributions, random number	the speed			
4	you still have to create the road, the	did you want to combine queuing theory	So I think mathematical functions here are needed	Pro	Positive	Let's then create one
	density of the cars, the number of	with mathematical as well.				entity and we call it
	cars, their speed, the left turns					mathematical
						functionality
5	when you model the environment we		this software program, it's going to be created not for	А	None	so I think environment is
	then have to explain each of the		the civil engineer student			just, UCI course
	components that we drew					
6	Do you show interaction between a	just with arrow	Yeah, you do show the relationship between the	Pro	Positive	Ok. Just draw, like, an
	user and the system in the context, do		system and the user.			arrow that says
	you, already? Or do you just show the		Then you're going more to use cases. And a model	Con	Negative	
	high level overview		because traffic system isn't one functionality. I mean			
			there's one package-			

7	I think it should be because you need		I was under the assumption that they were only busy	А	None	My pic would be, go with
	to place cars		with roads and traffic lights, and not necessarily cars			the car instead of
			as entities.			guessing that the
			Does it? I was under the assumption that there was	А	None	program would do that
			only changing like, traffic			
		It doesn't specify if one of the systems				
		does that for you automatically, or if you				
		I think the easiest way to go would be creating the car				-
8	it's gonna be really difficult to specify	-	because there's not enough information. A lot of this	R	None	So you specify the map
	an entire process of the other ones		is going to be under the assumption			and then the second part
	that you have					would be, you specify the
						pipe of the road
9	What kind of patterns though. Would	a road pattern	The resulting map need not to be complex but should	С	Positive	Ok, so select a road
	you be able to select		allow for roads to vary in length, to be placed in			pattern, then we agree on
			different arrangements of intersections to be created			that one
10	What are the types of intersection		We don't know	R	None	but it doesn't matter
						because we're just
						modelling the process. So
						that could be in petri
						nets, just one or the
			Your approach should readily accommodate at least	С	None	other. Going backwards
			six intersections, if not more			and forwards
11	How do we model restrictions in FAM?		1			Was it with QA notation

12	Students must be able to describe the	So that would be a sub process of	for each of the intersections you can have a minimum	С	Positive	The traffic light would
	behavior of the traffic light at each of	intersection arrangement. That is not a	of six, and up to infinite, for each of them you need			automatically be there as
	the intersection	separate step but it's- once you select	to specify the traffic light			an intersection, but the
		Can't it be a different step altogether	because you're setting up these traffic light after you	Pro	Positive	behavior You specify later
			select the intersection			
			But it might be better to do it afterwards	Pro	Positive	1
			but in essence you could have them select six	Con	Negative	1
			intersections, as it would give you the option to		0	
			model them			
			Your approach should also be able to accommodate	С	None	1
			left hand turns, protected by left hand			
			Should be able to accommodate left hand turns,	С	None	1
			protected by left hand green arrow lights.			
			But that's in sequences already defined right?	А	None	1
			We assume this one is defined in the traffic lights-	А	None	1
			I think we should assume that this is done in	А	None	1
			sequences and timing schemes			
			Combinations of individual signals that would result	С	None	1
			in crashes should not be allowed			
			it should not allow for crashes	С	None	1
			every intersection of the map must have traffic lights,	С	None	1
			there are not any stop signs, overpasses, or other			
			variations. All intersection will four way, there are no			
			T intersections and nor one way road			
			Students must be able to design each intersection	С	None	1
			with or without the option to have sensors that			
			detect whether any cars are present in a given lane			
			Your approach should readily accommodate at least	С	None	1
			six intersections if not more			
13	it would display it. Start the simulation	Window				Gives two more options,
	and then it would display it in real-					which is media player
	time					functionality and
		frame				exporting function.
		Have exporting	from my point of view that's not really viable in	Con	Negative	
			terms of the software that they're trying to build			
			because if you want somebody to learn-see all the			
			interactions, they will want to play it instantly. They			
			will try to model things and then play, I want to see it.			
			That's one thing and as the second thing is, that's a			
			requirement of the system			1
			The export option I think would come in handy in real	Pro	Positive	
			world			1
			It has to be presented in real-time to the user. To	Con	Negative	
			simulate traffic flow on the map, so we need some			
			sort of player			

14	it's up to you how to represent this	you may choose to depict individual cars	HARDER	CON	Negative	we pick the individual
	information to the student using your	or to use a more abstract				cars representation.
	program.	representation.				
		Just visualize all the cars	lt's easiest	Pro	Positive	
			The current state of the intersection traffic lights	Con	Negative	
			should also be depicted visually and updated when			
			they change			
15	But why individual cars		Cause it gives you more accurate information	Pro	None	we pick the individual cars repr
	representation?		Well I don't know, what would be the higher	Con	None	
			abstraction of the-			
			I can't think of anything that's better than individual	Pro	None	
			cars in software packages like this.			
			Students should be able to change the traffic density	C	None	
			that enter the map on a given road			
16	they should be able to change the	Specify the road characteristics	HARDER	CON	Negative	So we just give them- just
	traffic density that enters the map on					gonna enter an integer,
	a given road					the amount of number of
						cars-
		Just like a number, Like an integer	I guess that's the easiest	Pro	Positive	
17	Type of cars, because you could have	Does it calculate the size of cars	But then you have- you need to know the length	Con	Negative	it's not on the side of the
	trucks, you could have personal cars					system. That won't be the
			and you need the seize for traffic digestion yeah	Con	Negative	logic behind it because,
		I think it's best to specify on, not specify	Well we can enter that into the system. The system	Pro	Positive	logically speaking, if you
		on a motorcycle or car or truck, but on	knows, like an average length of a car or truck			have to select something
		rate.				you're not gonna care
			So the user doesn't need to know about that	Pro	Positive	about how much that
			Let's make- that process is easier to include then	Pro	Positive	selection actually weighs
			another process of defining what is a car and how big			or something, you just
			is the car and how big is the truck.			need the selection
18	from usage perspective, doing the		vehicle spec should adhere to like, gravitational laws,	Pro	None	Vehicles specification, I
	activity, they don't care about the		the laws of mass			think that tells enough
	weight, they just care about selection.					
	But when it comes to the system, that					
	would need to be modelled, that- of					
	course. But those are basically physics,					
	those are, I mean-					

19	If you just want to see a road		That might also be a restriction that we, kind of	С	None	The simulation should
15	visualization simulation		come up with is the fact that the user should not be			have a default option
			limited to specifying all the characteristics of the			
			simulation			
			Yeah but my concern is that, when you have, for	R	None	
				ň	None	
			example, you specify a change timing, and you do			
			the visualization. Visualization runs, it doesn't matter			
			what you specify. And everything can crack, for			
			example, although we've specified it's not allowed,			
			but in some cases it might because of some strange, I			
			don't know, combination of vehicles or whatever.			
			And they should be able to see potential problems on			
			this visualization, so there could be like a window, for			
			potential problems, and it could just be intersection,			
			six, I don't know, the timing is incorrect. Or			
			something. It's like a warning			
20	the visualization should, I guess,	Create something, simulate it and then	So you can edit it directly when it's wrong.	Pro	Positive	Yeah basically yeah, so
	support the option of going backwards	go back and change it. Change it and				this would all, all of this, I
	and altering it	visualize it				guess, would be in a
						graphical user interface as
						well
21	there should always be a link or	do you want a validator that's validating				So, a validator, I guess,
	trajection to a process that's always	at the end of view				on every single step
	checking if it's correctly or not	Or do you want to validate that- validate	if we have a lot of inputs for like, the mass and speed	Pro	Positive	
		after each step you're doing. So creating				
		an intersection, changing the speed and	then you have a problem solve validator would be	Pro	Positive	
		the timing on the traffic lights	good. Also this would help with all the constraints			
			that we have, with like, the different intersections-			
			you could immediately check if the intersection was a			
			proper cross, or was it a T, was it this, was it different			
			pattern, was it something else.			
22	But you still need to get the laws into	It would just get the data from different	, ,			Validator functionality is
	the system before you can validate	external entities-				internal
	them					
23	How do you model it	Internal				Validator is part of the
						TS, the TS gets all the data
	1					1

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			The resulting map needs not be complex	Α	None	
2			so it should accommodate at least six	С	None	
			intersections ans also of varying length.			
3			not a T. So only- and also not one way roads.	С	None	
4	What notation are we gonna use	petri net	Yeah ok but a petri net is just one process	Con	Negative	I think this one is at- too functional.
			you can take decisions into a petri net	Pro	Positive	Maybe we can start with context and
			But is that information flow	Con	Negative	then information
5	I don't know how to add this professor	So maybe, for example, the professor		con	Negative	Maybe you have just, with professors and
5	into the context view.	can create, redefine it's scenarios and				not professor E
	into the context view.	the students can rely on it for testing				
		their own				
6	The second	like the static view and dynamic view				Yeah we can elaborate on this
7	The scope		Labin luura ann atill de deurslemens hann. Ta tha		None	Yean we can elaborate on this
/			I think we can still do developers here. To the		None	
8	Charlet have a light with an automore		system			lister of the second second second
0	Should have a link with an outsource	So let's go with just software, existing				Just a software package ok.
	program for the statistical distribution	software package.			D	
9	What notation did we use actually	UML	Yeah. So then we just have to change	Pro	Positive	I think we should do UML
			processes			
10	Look maybe we can do it like this	global				A bit global then, a bit abstract. And the
						output is a simulation.
11	how do you model that	real-time visualization				So it can be like a report. Yeah, or maybe
		Document	I think it's not clear enough	R	Negative	if you put simulation here, that flows
						from static and dynamic, you can redirect
						it to the outcome or something.
12	What is to be communicated between	OR				It's for the data, it's an OR And for the
	different	AND				system it's an AND
13	but I don't know how you're gonna put	travel rules				only for dynamic
	in the draw?					
		Traffic information and sensor				4
		information				
14	how are you gonna see this	traffic view				traffic timing scheme
		traffic simulation view				traine tinning scheme
		traffic timing scheme				-

15	We should include in which view, like, these automatic constraints		they should allow for the roads of varying length	С	None	I think it's a module that's going to be activated after you've designed the map
			know how to- different intersections, and at	С	None	
			least six.	-		
			if one traffic light is green, and the other turns	С	None	-
			green as well, but a crash could happen. That			
			cannot be the case			
			so six intersections	С	None	4
			they have to be four way	С	None	4
			And every intersection has to have traffic	C	None	4
			lights.			
			Combination of individual signals, cannot	С	None	
			lead to crashes			
			Combination of signals	С	None	
			four way-	С	None	
			otherwise you can't change, because when	R	None	
			you don't know what's			
		it would be a module				
16	How can we implement that?	density checker	students must be able to change the traffic	С	Positive	Something like that yeah
			density that enters the map of a given road			
17	So now we are going to separate the	No. well, I don't know yet how we're				Yeah, that's good. And then just mention
	functionalities of the simulation,	going to incorporate this and this.				in the functional view, rules
	functionalities of system global	Because this is- But we can make this a				management.
	functionalities, or- and the rules of the	model, like for example, rules				
	system?	management or something.				
18	what about light behaviour, we can just,	Light visualization or something like				it's pattern to constraint
	yeah, maybe we have to specify what we					
	want to know and that's the current	You need a pattern				
	state.					
19	Maybe we have to check how many cars	It will be an outcome of the process,				we make it a rule
	are- we have to set a maximum.	like, you want to give like, how many				
		cars it's supporting on this intersection,				
		for example.				
		Do we make it a rule	At least six intersections	С	Positive	
			Maximum of car	С	Positive	
			Maximum of waiting time	С	Positive	4
			Minimum speed?	С	Positive	4
			Every intersection has to have traffic lights	С	Positive	4
			And also has to have the four way	С	Positive	4
			There's to be a four way street	С	Positive	4
			And the combination of signals cannot lead to	С	Positive	
			crashes			
20	I don't know how we can put this, like a					Just maximize the view on this
	model yet					

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1	what to name this then					Modifier
2			Existing software package	А	None	
3	that should be cross platform right. Then we also should model like it should run on Java	Yeah, yeah maybe, can't that one instead of queuing system, just yeah, statistical package or statistical- cause there are more things that can be supported in the simulation right				So one is for windows, one for macOSX and one for linux
		And maybe the model, the operating system, package everyone. For example, one windows, package one for macOSX, and one for unix based				
4			So that's more than just, yeah, just simulation package. If you call it like that then we are, yeah, of course already assuming that a lot of package is used, but I think that's, yeah, an assumption	A	None	
5	Yeah I was thinking is it a computer	web application	I think it's more accessible	Pro	Positive	I would say then we also have a
	application, or a web-based application. It		Multiple platforms	Pro	Positive	web application
	doesn't really say-		It might be easier to develop	Pro	Positive	
			Yeah, it's a risk that you need internet	R	Negative	
			yeah of course you want it to be dependent on a separate package of course, this [inaudible] package is a separate package. By another vendor of course	R	Negative	
			You have to be online	R	Negative	
			I think we have to make an assumption that every browser renders the output the same.	A	Positive	
			assumption that it is a web-based application	A	Positive	
			We made another assumption that a simulation package is used of course	A	Positive	
			Assumptions could of course be a HTML 5 right now	A	Positive	
			a risk might be of course that- of course there is a so while you are travelling. For example, when you have an older device that could be a problem of course. So then you couldn't use the navigation	R	Negative	
			that might be a risk of course by doing it in the tablet it might be slow. It might be slow on a smartphone need enough computing capabilities in your	R	Negative	-
			device to run the simulation at all consider risk to depend on an external company	R	Negative	
			to provide functionality	Pro	Positive	4
			doing it through internet, having it supported. But it might be slow on the tablet	Con	Negative	4
			You can also maybe program it yourself then right?	Pro	Positive	
			maybe focus on some open source depository somewhere	Pro	Positive	

6	I'm still thinking about that left hand turn. We	it's actually a property of your road	Should we really go to such a deep level then	Con	Negative	Just can name them that it has
	didn't include it anywhere. How can you model	split it between parameters and rules				property road then set that in
	it					the paint properties
7	how does it simulate what a single car will do	That is not explained here, it's just part of				Yeah we can have that
		the black box of simulation				
		maybe we can add in the simulation box,	You cannot decide for every car where to go for	Pro	Positive	-
		like, randomized car movement, something	example, not in this basic simulation			
		like that				
8	Why do we go through the browser and not to	I would point it to the device then	Cause the user, the student uses a device, not	Pro	Positive	Then just connect to the
	the device		directly to a browser it's just a piece of software			browser directly
			because the first user uses the device, and on	Pro	Positive	
			the device is the browser			
		we can connect the student to the browser,	Because we only depend on that there is a	Pro	Positive	
		but then divide the device and operating	browser available, and it doesn't really matter			
		system	what the operating system is. So then just leave			
			device and operating system out			
9	Such like traffic light changing, but how to put	so after running the simulation they still can				you first need to set
	it	change the parameters and then effect the				everything, and then you can
		simulation				run the simulation
		So I would say that you, you have the visual				
		map then, then you have the behaviour.				
		From behaviour you go to run simulation- so				
		you would have a sort of loop				
10	, , ,	So maybe it's- right now we're looking from				So maybe we can all first wrote
		the user's perspective, of course already, like				those two top level elements
		ok, you're gonna create some map, maybe				and zoom in on both of them
	yeah, information flow, something like that,	we should think more in module terms. That				
		for example. So, then we have only two				
	at how modules interact right?	components right, there is some kind of				
		visualization, and there is a simulation. There		6	News	
11			the user can construct the roads into four way	С	None	
12			intersections	С	None	
12			then for the roads I have sensors and the roads	Ľ	None	
			can have different lengths which the user can			
13			specify	С	None	
12			then there are six default intersections available	C	None	
14	I'm thinking about it might be difficult to	I really- I think an external server or just a	in the program we now ofcourse assume that it goes to an	A	Positive	I think that maybe we should
14	involve an external server for the simulation,	server on which the application runs. And all	external server and in fact we also should adopt	~	FUSITIVE	just set everything on the same
	,	simulation also happen in that server	this server, once the calculations happen			server then
	server, and some have to happen on the	isinulation also happen in that server	Yeah I think that's easier	Pro	Positive	
	external server.	Do we have an external server for simulation	may have some overhead of delegating the	Con	Negative	4
		calculation	computing to another	2011	Negative	
				Con	Negative	-
			And there's also more latency involved right.	Con	Negative	

15	What does the simulation, have to do this, and	For example when you know, you have these				lights are then, in fact related
	there's some queuing	traffic lights then for example right. Then				to some queuing
		cars are waiting in front of it, well you have				
		multiple intersections, and every				
		intersection has its own light right? So then				
		you have of course, yeah well, for example,				
		have two of them stay red on the same time,				
		just saying some things, then you have a very				
		large queue for example, right. Very large,				
		well, a lot of cars of course, waiting for a red				
		light, for example				
16	we can start, draw how they interact maybe	user comes in, then interacts with animate				And also try to choose
	with one another	traffic. Or don't? then of course- yeah from				intersections and choose in
		set parameters like this is choosing				fact what to do then, but- then
		intersection. Everybody's choosing the				they set the parameters after
		section then				fixing the intersections, and
						then animate traffic
17	then the problem of that is that we have like,	So then you might say like, ok just take one				Just leave that out then yeah
	several modules for each thing then maybe	general module that takes into account all				
		these properties based on the properties it				
		can just calculate it.				
		So queuing, so maybe just simulation as the				
		only module then , just leave it empty				
18	how to change the speed of the car					that's outside of our scope
19	I'm not sure exactly how these sensors work		But how about if we- if somebody touched the-	Con	Negative	Maybe we shouldn't think that
			somebody wants to cross the road and he push			
		right about that of course, you have multiple	the sensor			
		factors which determine when a light goes	the user must have an option to add a sensor or	С	Negative	1
		green, of course.	not			
		it just keeps to its own timing scheme				

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			they need to be able to change it during	С	None	
			the game			
2			needs to be real-time	С	None	
3			We're not allowed to make crashes	С	None	
4			no intersection without traffic lights	С	None	
5			every intersection has a traffic light	С	None	
6			no roads without traffic lights	С	None	
7			all intersections will be four way	С	None	
8			your approach should accommodate at least six intersections	С	None	
9			all intersections are four way, so no T	С	None	
			intersections. And also no one way roads			
10			And you need to be able to add sensors	С	None	
11			then of course you have an editor, with	Α	None	
			the roads. That you automatically- when			
			you cross a road- because they're two			
			way lanes			
12	we need to make a difference in the type	you have two kinds of traffic lights then	your approach should also be able to	С	Positive	I would change the traffic lights later in
	of lights we use. That's also possible.	right	accommodate left hand turns protected			the process, because this- right now
	Because if you say, to left and to the right,		by left hand green arrow lights			you can make the roads. Then you
	if you have a different light for each of	but I mean that you have a light with	what an unrealistic simulation	R	Negative	should already have a basic traffic light
	those then you get a completely different	just a circle and that you can just drive,	no I wouldn't- the more complexity you	R	Negative	if it crosses a road. Afterwards, if you
	flow and situation]	and that you can go left as well, without	add			can get some kind of thing that you can
		having a separate traffic light for it				click on, on the traffic light that opens a
						small box, and there you can change
						the traffic light. I think that's the second
13	I don't think we even have individual cars.	But is it possible then to model the-	Yeah but we don't take that into account,	R	Negative	So we don't have any driving time,
	Could be impossible	cause some roads are heavy traffic,	because that's too difficult. Or I mean			everything we still need to do is how
		some are not, and the main goal of the	that's something we don't			fast people can pass through a traffic
		thing is that you want to simulate and	_			light. We should incorporate that
		see what the actions are				maybe somehow

go left or right or straight ahead. side, and then you spread that number interval	hey interact with the crossing nformation, that's where the numbers
over the three roads coming in the	
	if the cars are then you don't
	ecessarily need to it random, you can
	hoose yourself and you can also say
	hat you just let a certain amount of
	ars enter from each edge, just per
	ninute or whatever
staying in the street. Then you add the	
number and that's the end-value of	
what's in your street. And you end value	
is just the sum of what came into the	
street from left, right and the bank.	
you need to know how many of those	
people driving, drove straight ahead.	
and how many took a turn. Unless you	
make a really elaborate box with	
You could also say, one third goes left,	
one third goes right, one third goes	
straight	
So what I was saying, maybe we can put Cause then it's also-it's a bit like normal Pro Positive	
like, 100 vehicles on one side where traffic right. Because it rarely happens	
they'll enter the map. And do some kind that anybody just keeps going and stays	
of random destination for every- car one in the system forever	
needs to be here, and car two needs to yeah that's really difficult, I think, because Con Negative	
be here, and just calculate the shortest then we should first see were we draw	
path and it goes like that roads and then we should assign	
destinations. Or something, no?	
Yeah. Wait is that extra or Con Negative	
	think we have to design the box.
	ecause here's I think the most difficult
have no random factor whatsoever and pa	art of the system.
then they have full control	
I think it's easier with the boxes and	
then just say, percentage left,	
percentage right, percentage straight,	
and then just keep counting up	
16 should be able to change the traffic C None	
density	
17 Should create a busy road or a seldom C None	
used one, or any variation in between.	

18	How do the- does the car spawner decide					This one is determined by one of these
	where the cars come, and then it spawns					four, so one of these four is filled with
						this one. And you know which one by
						taking the location of the intersection
19	No accidents are allowed in the system,	Either you have one which is just time	No accidents are allowed in the system	С	Positive	I think that is how it works in real life,
	but somehow you have to answer to-	controlled	that's going to be difficult	R	Negative	and that's easy to just make a screen
	manage the light for the traffic light		with numbers it's easier.	Pro	Positive	and people can indicate how then does
		Maybe you can make an OR like the light	The traffic light will go bananas probably.	Con	Negative	this traffic light work
		stays green for at least fifteen seconds,	it will crash I think, even, because with			
		or 75% of the cars have to be passed	percentages it goes really fast. Because			
			each time one car is less here, the other			
			ones are going up, two times as fast.			
20	The only thing is, with our model, in the	maybe it should skip, like, two hours,	To make it a bit more realistic	Pro	Positive	Yeah I mean, that's not the biggest
	beginning you're going to have an empty	when you press play. So the cars are				problem, I think. And the city will flow-
	city.	already doing their thing				will fill up in a realistic manner because
		you can fix that with either a random	NOT REALISTIC	CON	Negative	you get the flows and you have the
		number in each street, or by just letting				percentages so it's- you will get traffic
		the simulation run for four minutes				on a lot of places where combined
			it should be possible to create a busy road	С	Positive	there are a lot of cars.
21			It's probably Windows based	A	None	
22	But do we still have to make sure that it	check if the other one is green or not				you can choose which ones you want.
	doesn't conflict with each other	maybe just- the program prioritizes.				And then you can say, this one doesn't
		That if all of them become green that				have to be green that long, and this one
		you just take a random order				does have to be green. Then you have a
		maybe you should be able to set some	Cause if you put them all in 15 seconds	R	Negative	lot of stuff you can do.
		kind of repetition in it, so you get a	still then they can become green at the			
		minute and every 15 seconds or	same moment			
		something, another light is green	Some of the directions could be way	R	Negative	
			heavier traffic then the others. And that			
			would be a bit difficult or wrong to have			
			only a short time frame for that one, with			
		you can just give them an order	the same timeframe for-			

Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			it said here we have to have four way.	С	None	
2			student can enter the density for a lane.	С	None	
3	but you can have problem that two lanes are going into	is not even. is no the best intersection.				never happens in reality
	one lane now what about going from one lane to two	not really. if he got two lanes then you always	jam would start in the intersection	Pro	Positive	
	lanes.	got two lanes but further in the road there go to	mostly intersection is symmetrical.	Α	Positive	
		one lane.	because there's no problem with traffic jam	Pro	Positive	
			I think.			
4	mostly if you have this situation mostly the straight	we first start with intersection you place				it's allowed. so I suggest that type of
	through car will only go to that lane and the other one will	intersection on the map and then you can select				construction.
	go there and then straight through lane and line on it I	road like a lane from a tool box and click on				
	think I think you can from one lane to two it's not really.	one side of these four sides of intersection and				
		that you will add one more lane there and then				
		program and the graphics will draw everything				
		nicely.				
		templates where you can select all the	but you can also have like nine lanes into	R	Negative	
		intersection. okay you always have four way	one lane if you want.			
		intersection. and the you get all the option okay				
		so when he places the roads or just he can have	it should be easier to yeah for the individual	Pro	Positive	
		this. the lane the road one will have two lanes	single for traffic light.			
		and stuff like that. but then when you have all				
		really construct that thing like something like				
		this. and here on the two lane and here on the				
		two lanes and here a lots of lanes. then you				
		have a tool connect and then you say ok this				
		one this connected to this. that means that here				
		is then draw arrow and all the cars are in this				
		lane are going only to this lane.				
5	if you look at that with the global overview of this grey	if you want to put a traffic light on it you the	the screen will go lets say black and you	Pro	Positive	I think that a nice visualization of it. we will
	roads and green grass around and stuff like that. it is hard	computer will in will zoom in into the	will see only purple traffic lights on each			have a different layout or different view of
	for you to see a little traffic light there.	intersection and then you have big have	lane and green lane. so it's easier for you to			traffic lights. we will have separate view for
		graphical image of it and then you can see the	focus only on this			traffic light system and then we have again
		lights.				this connection tool. traffic light connection
						tool. connecting tool. that works if you click
						on one light and the other light.
6			all intersections are four four way	С	None	
			intersection			
7	so we can have roads that just end in the intersection.	so when you click run simulation . it will attract	every roads need to connect to something.	С	Positive	we've got two views and so attract all rules,
		all this constraints and all the rules. and				when you start the simulation and do not start
		program will say to you. now you cannot run				simulation if something is wrong
		simulation because this road ends now where				
		you need to connect it to something . I think				
		that is like the elegant solution to and it can				
		also be like red all the time or have the red				
		border				

0						1
8			students will actually know what to build	A	None	
			how to use this thing. what . how to connect			
			the intersection. how to connect the traffic			
			light and everything.			
9	so we something has to be done about that	what I suggest is maybe make tutorial for them.				yes go for it.
		it can be like video tutorial and it also be like in				
		games				
10	how to connecting intersection.	so now again we have this approach of				connection tool.
		connection tool.				
11	now we have two intersections then. we have to know	I think that's most be built by roads so you track		R	Negative	so you start one point and then you can say ok
		a road on it.	because it is really hard problem. we had			just drag a things on it.
			one lecture on that and there is whole bunch			
			of mathematics behind the road drawing			
12	should this still have this automatic joint calculation rule					yeah of course.
13	ok the problem is. Information like traffic density.	if users can change the lane maybe. like if he	yeah maybe just a little bit out of our	R	Negative	and I don't know if we really need to looking
			assignment.			to that now. I think most a most basic for us
		lane to other lane. and if he has the (inaudible)				more like ok when you need to design traffic
		lane then you can change from one lane to				light and not real simulation on it I think. so
		other lane.				lets focus little bit more on the lights and little
		it's simulation. but we can also we can stick on	no I don't think that's that's important	Con	Negative	bit less on the traffic and how it responses to
		one lane and that's it.	because everything is just based on some			everything.
			distributions it doesn't matter if well every			
			rule will be incorporated in this system			
			you know if you see a complete jam in one	Pro	Positive	
			lane then you will switch lane and drive			
			forward.			
14	and that it's written that every lane should have option to.	we need to have some lets say circle that you	students should be able to change the traffic	С	Negative	and nice yeah ok if you click on the source as
	students should be able to change the traffic density. that	place on the road and that is the source of	density			well then you see nice scale ok this is real
	enter the map on the given road so enter the map so	traffic.				dense.
	source.					
15	they don't know the direction.		·			they can specify the driver behavior.
16	how to visualize cars.	just dot .				I think that's dot are good enough
17	first the problem is that as I said when we're talking about	have a separate class for every driver	because in the simulation you do not need	Pro	Positive	we'll just say every car has it's own logic.
	traffic every car. every driver should have it's own logic		to see. you only want to see how traffic .			J
	like that should be program. that's like driving and		yeah it's a nice visualization.	Pro	Positive]
	considering the speed limit and stopping when it's red. and		isn't that a little bit too specific on map	Con	Negative]]
1	going forward when it's green. and following all this rules		programing.			

18	students must be able to describe the behavior of the traffic light.		student must be able to create visual map	С	None	if you click on the traffic light then you get another pop up when you can set the variety of sequence and time schemes.		
			students must be able to describe the behavior of the traffic light	С	None	or sequence and time schemes.		
19	okay the problem is. how we program the traffic light basically.	so we need for that. we need a variety of sequence. timing schemes. and sensor.			I	oh basically we just have the class of all the rules in it. and there is some algorithm that		
		you can also connect sensor from one lane to traffic light another lane.				will determine when to open some lights and how to determine if the rules are contradictor		
		have master traffic light and say the slave okay. and then we have two sensors. and this traffic	I don't think need slave and is more like okay this two are just one head traffic light.	Con	Negative	or something like that.		
		light which is the master is connected to the the thing is the sensor should now connected to traffic light at all it should be connected to some central unit.	that add additional complexity	R	Negative	-		
			better constraint the light wouldn't have. the light have constraint okay they can go both green at the same time if there is. if there is traffic on it. coz you have four way lane and if you go okay. if you go green and straight green, and this one is straight green that one. you can't coz you cause collision	С	None			
			I believe there are some algorithm that would solve this problem. and I don't think that this is actually the thing that we should discuss now.	A	None			
20	the system be install or web base. like a stand alone or inside cloud.	a stand alone	I think stand alone is easier.	Pro	Positive	okay so we go to stand alone.		
			it's definitely cheaper. cheaper for the company develop this software because simulations are really expensive for processor and memory power	Pro Pro	Positive Positive			
			it's heavier to maintain.	Con	Negative]		
			yes. coz you have to update everything.	Con	Negative	_		
		inside cloud.	to maintain. oh that's not true. true and if you're not online then you can't use system.	Con Con	Negative Negative	-		
			if you have like thousand people running simulation in your server you will need to have really really good server and that cost a lot	Con	Negative			
		I think you can do both.	but that consume al lot of money and time. I don't think we have enough information	Con R	Negative Negative			
		when I think about everything I think that is	on it. you can easily push a new update every	Pro	Positive	-		
		cheaper and easier to have local stand alone version.	hour if you want there can be also an option to pay for usage of this server for every simulation or for	Pro	Positive			
			every hour of simulation. I think that quite heavy for a web base.	Pro	Desitive	4		
			there can be an option. but it can be also very expensive	Con	Positive Negative			
			coz that object oriented and it's it runs good simulation.	Α	Positive			

21			that just let say only right traffic is not English traffic	А	None	
22			yeah. this is a constraint. only right hand traffic.	С	None	
23			if you actually building simulation for real life scenario. than it definitely matters. coz you wanna know which lanes are the busier.	R	None	
24	view of functional view point.	I'm proposing to settings will be like traffic light logic management. and there will have everything from rule management for that one	because that will cause a crash and you don't want that to happen.	С		yeah. functionality only list of option and that's . variety of sequence what ever it is. timing schemes and sensor.
		traffic light is select. up for so this rules are like for how long it will be open	I'm thinking what about if this is we going in too deep. we are discussing a particular scenario.	R	Negative	which services and series.
			we could run into problem because we have a loop here.	R	Negative	

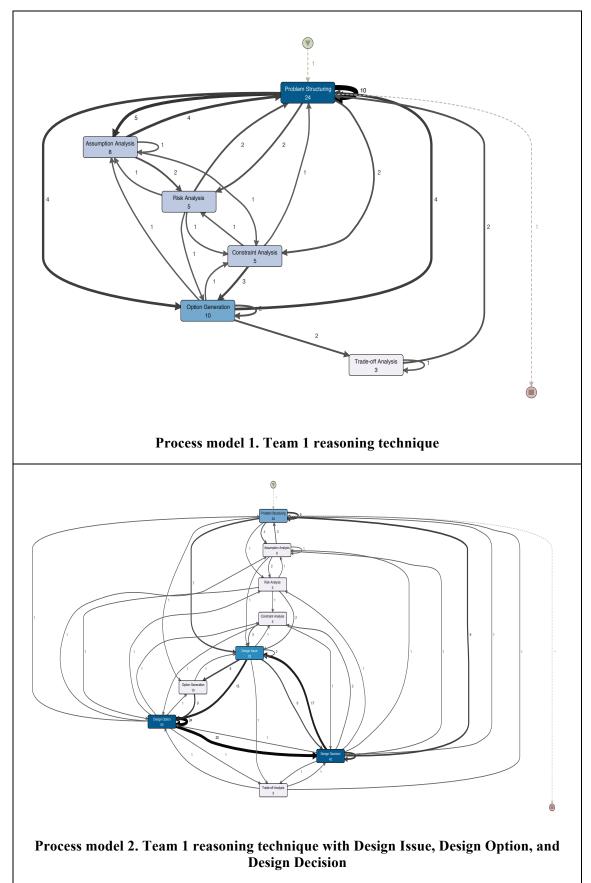
Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			it should allowed road of variant length to be placed	С	None	
2			varying length and different arrangement, at least six	С	None	
3			that car should not be able to collide	С	None	
4	if we were to design a feed back to the	to do this you also have to building some	and more in general the professor can se like how the students	А	Positive	so yeah therefore I think we
	professor how the student perform	measurement measuring.	perform if she need to provide more theory about.			should skip it. maybe in the
			an assumption is that the professor only gain from the system	А	Positive	future .
			is that she wants the student to learn her theory			
			but then to give back the feed back of the performance of the	А	Positive	
			students. so an assumption to would to be handy to prove the			
			system later on or the professor to gain more benefit of the			
			system.			
			and that can make the system more complex	Con	Negative	
			but on the other hand. if the student gets some kind of result.	Pro	Positive	
			professor can get that result as well			
			implementing the feedback performance of students.	А	Positive	
			because of the assumptions that we made it wasn't in the	R	Negative	
			requirement I think it will become problem.			
			we can program everything but we don't enough time to	R	Negative	
			program everything. so I think that for it will be problem for			
			our time.			
			with the professor. she want the theory to be convey properly.	А	Positive	
1			student just want fun usable graphic.	А	Positive	
1			so she doesn't care about safety. or usability. or	А	Positive	
1			maintainability. she want just that her students get the general			
1			idea of with theory . so wants her theory conveyed properly			
			fun usable. and they want to see some nice graphic maybe	А	Positive	

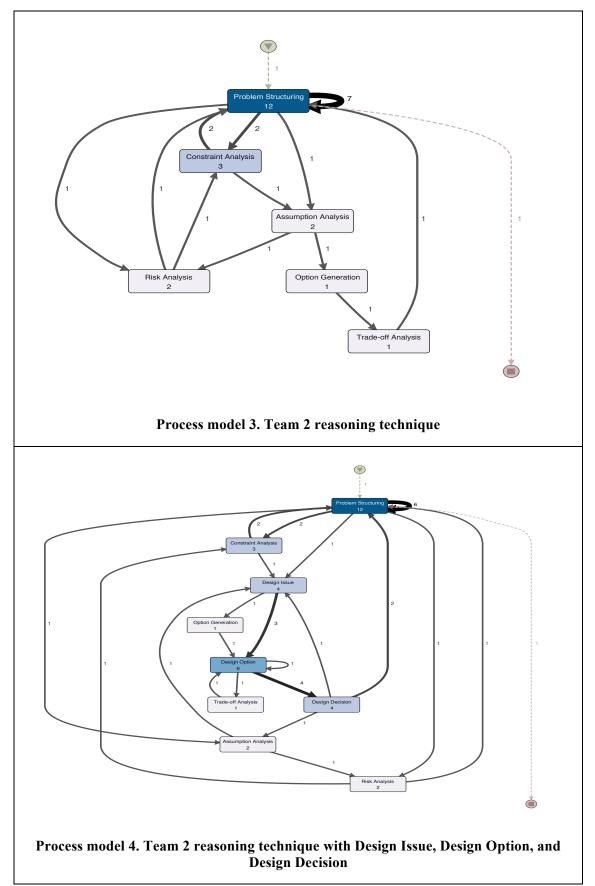
5	okay. how would you slice this.		road variant length and different arrangement of intersection	С	None	yeah. that's how it works
-			students must be able to describe the behavior of the traffic	C	None	
			light			
			variety of sequences and timing schemes	С	None	7
			they should be able to see the result of the changes	С	None	1
		like I said before like first start with				7
		creating a map. and tell the traffic density.				
		and then view them as separate. traffic				
		simulation. I think that the basic flow				
		so you group one function of it's creating				
		a map. you group other function in a put				
		in density. then a calculation will be done				
		I think. and then it will be visualize.				
6	this is the viewpoint of the end user.	I divided them up between interaction and				yeah.
	how would you?.	system layer				
7			so we are assuming that calculates we already have the model	A	None	
			and thing that can just do calculate.			
8			I think we don't have enough time for that. to go really in	R	None	
9	how is it connected with each other.	one map has zero to many traffic light.	depth and see how to calculate it			six to many. and on the other
9		six to many, and on the other hand one				
	how is it related. how would you call relation	traffic light is in one map. one to one map.				hand one traffic light is in one map. one to one map.
	relation	traffic fight is in one map. one to one map.				one map. one to one map.
10	we laid those to one traffic light you	yeah we relate them to. so in the	1			okay. so twelve twelve.
	mean	intersection at least four traffic light.				
		so that mean you have three. three lights	if they all have twelve . is much easier to direct traffic coz this	Pro	Positive	1
		for every intersection for every thing so	arrow and this arrow could go at the same time and if there			
		that's six. twelve.	just two is no way this and this could go at the same time			
			but there all four way. there all just crosses you know there all	Con	Negative	
			four way intersection			
			but I think if you look the perspective of the professor. I	Pro	Positive	
			think for the theory to cover the theory I think it should be			
			handy to have those option as well. and I think for the			
			architecting is not more difficult. is only the cardinality we			
			give it.	-		4
			I think this will help the traffic flow faster	Pro	Positive	4
			I think this will help the traffic flow faster but it's more	Con	Negative	
			complicated to calculate. is just more calculation to be made.		Desitive	4
			yeah. if you let them choose six or seven a lot more	R	Positive	
			complicated to calculate. it kind also distorts just a flow of data if you have all the same lights, you can just the only			
			data if you have all the same lights. you can just the only variables are length, road, timing of the lights and the			
			sequence which the order (inaudible) if you also add how			
			many light there are per traffic light kind a defeat the purpose.			
			so you don't actually see result of your scheme. but it also			
			how many are the light are there in the traffic intersection.			

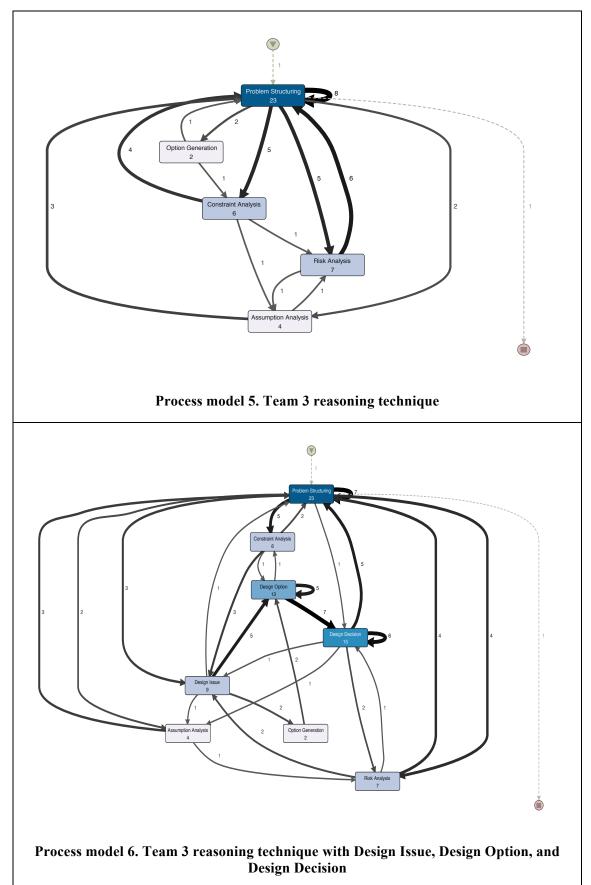
11			they said something a T section or not	С	None	
12			your approach should also be able accommodate left hand	С	None	
			turn should protected by left hand green arrow lights			
13			the student must be able to describe the behavior	С	None	
14			it should also be able to accommodate left hand turn	С	None	
15	six yeah too many. in the traffic it is	direction and a flow				I think that covers both.
	density I think it is distributed?	contain the direction and direction maybe				route
		or route				
16	maybe we can also like if something is	when it's like a problem it turns red. so				alright. when there's a lot of
	wrong	people can see whether the problem lies				cars waiting like a pop up
		and then				comes up. with little
		exclamation mark.	so this is a constraint for placing on the code that every car	С	Positive	exclamation mark.
			you see should be a separate object. which will be appended			
			to the main .once the density increases			
17			at least six intersections	С	None	
18	one of the problems that we're facing	are we gonna do all in the main	we think that is easier far to do in the main	Pro	Positive	yeah well to give solution
	is how to do all the calculation and	that we create separate module to do all	risk is that we are creating code to large and complicated.	R	Negative	on those risk I think is just a
	stuff	the calculation				small program I think it still

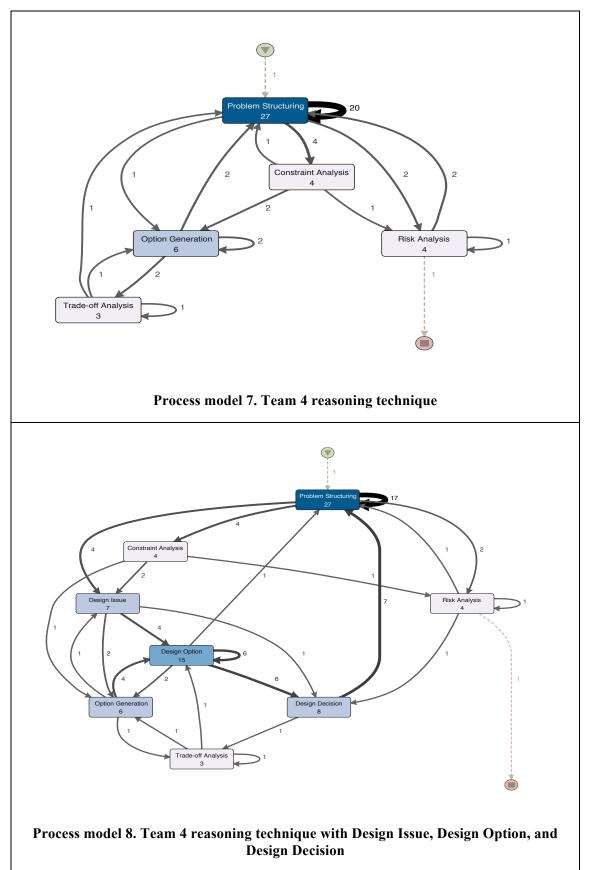
Event Number	Design Issue	Design Option	Argument	Туре	Effect to DO	Decision
1			we need to make an assumption that is in the Netherlands, because traffic always every where different	Assumption	None	
2	I'm not sure how	country dependent.	also a constraint because your limit your self to the Dutch driving laws.	Constraint		being a primarily for a course at UCI, in the first version I think is efficient
			constraint is region country	Constraint	Positive	to make it specific for the
		region pop able so you can do region for Germany and for Holland and for many other regions.	so the trade off being that make it modulear will be more expensive	Risk	Negative	united states .
		you can chose to just limit your self to the Netherlands and that's it. it's the university of California Irvine. so I think we should deliver our self in to the united states then.				

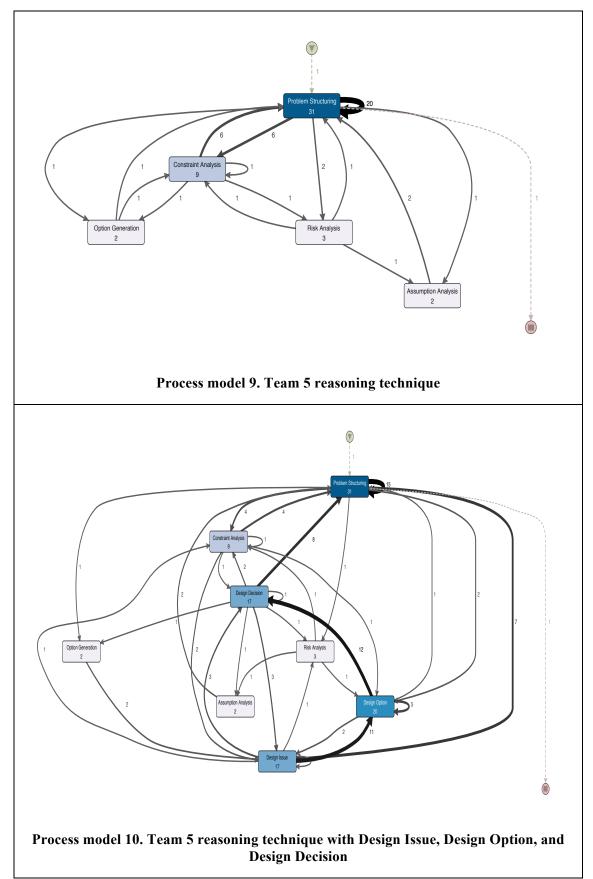
3			user language is also the same like for the traffic rules it's will	Assumption	None	
4	how the application will be deployed	desktop application	be American English. old fashion and very problematic if some people have mac and some people have windows. then you have to go through all problem do java application.	Con	Negative	so I think we should make web application.
		web application	because in app you have same problem with different platforms	Pro	Positive	
			if we implement the wrong business rules it will be avoid a traffic response for how the traffic rules are we are and then the whole application is useless and this is I think the biggest risk.	Risk	Negative	
			the business rules being wrong.	Risk	Negative	
			wrong implement and then the system was useless	Risk	Negative	-
5	like a lecturer can change this or the developers can change who should be the authority and the context that can change this.	Ideally you make the system somewhere that professor can make rules himself that I think it might be very so we should look into that if that possible if you can make the rules set dynamic and so professor can make it at his own rules and constraints to the traffic light simulator.				I think we should make those rules very modulear so you can easily swap without other rules and that there not entangle in the rest of system so if you make a mistake you can easily fix it. okay. so solution for this problem would be to make the traffic rules dynamic and editable by end user being the professor.
6	then we also have the database right	you can also store a lot of thing in the browser. so like when the user draws map and he changes the traffic light parameters. can. we can store that in web. browser.				so we have an external database.

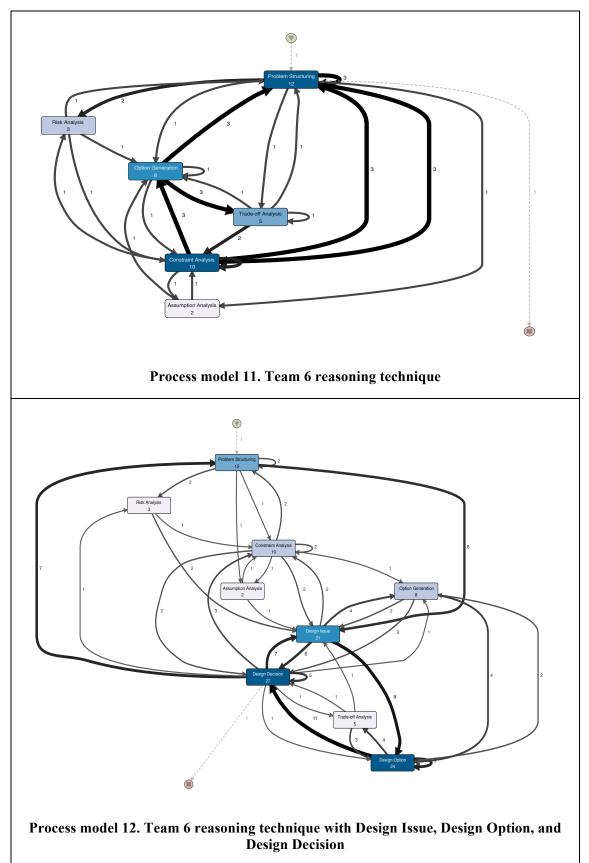

		1		_	1	
7	so the question is. do we	yes	how often is she gonna change	R	Negative	so I think we should take
	want to make them		the rules because if it's once a			into account that later on
	figurable or not		year. all the extra work of			we would make an editor
			making such does it say			for such business rules and
			anything on that in the			take into account in the
			assignment?			way we structure our code
			I would suggest yes. because	Pro	Positive	and then.
			the chance that you do that we			
			implement something wrong is			
			quite big in the first time and			
			then we need the version with			
			feedback from the lecture to			
			make it to maintain it and if you			
			do this way if this way you need			
			so much less maintain that			
			almost.			
		not	I know what you mean. I am not	R	Negative	1
			sure if I agree. the question is		-	
			how much work is it to make it			
			configurable up front and those			
			it out weight that cost of			
			updating the rules based on the			
			feedback from the teacher			
			afterwards			
		I think we can add such a layer on				
		top of it. later on.				
8	are there more steps in		intersection. creating roads of	С	None	I think they should only
	hold of creating the map		varying length.			capture the high level of
			allowing roads of varying length	С	None	flow a user through the
			accommodate at least six	С	None	application I think it's in
			interactions of intersection			context viewpoint
			you also need to design if	С	None	
			whether each intersection has			
			the sensor or not.			
			accommodate at least six	С	None	-
			intersections if not more			
			every intersection had traffic	С	None	
			lights I believe			
			all intersections will be four	С	None]
			away so there's no run a bus			
			and there are no T intersection			
1			or one way road.			
1			what does mean by readily that	А	None]
1			is already there by default			
1			all intersections will be four way	С	None]
1		you can maybe save or load the]
		map or export it to as a pdf or				
		something like that the student				
		goods.				
		run the simulation]
	1	1	1			1

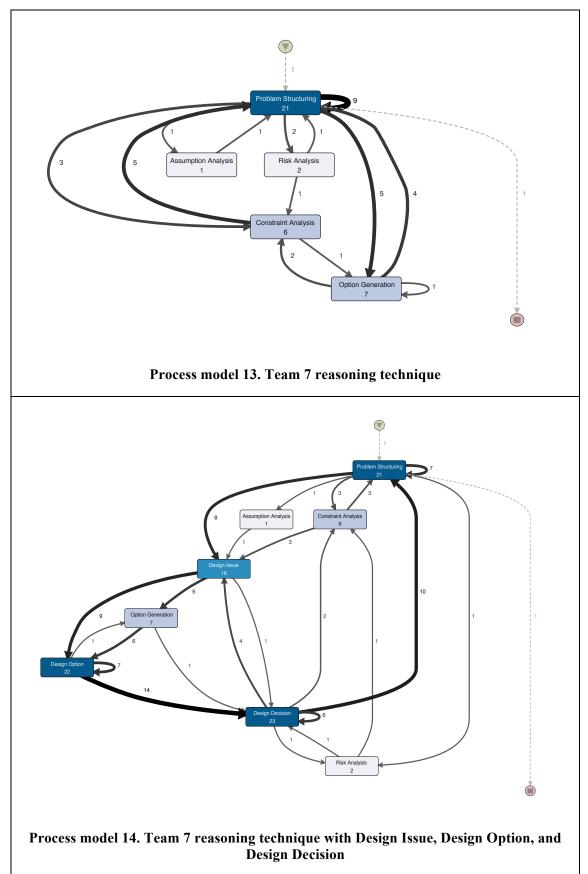

9	how or you gonna know that something indeed is better than something.	that's why I said to import a specific map from like the lecturer and on that map you can high score because it's quite if you only have one road. that's a lot of complicated stuff to implement.				so I will just put another functionality with the question mark
		you can also implement something that analyze the amount of delay and then gives feedback to the user based on how well you perform in that moment. so that would be an extra.				
10	yeah I'm not sure we should put import and export module	into different modulees one modulee. can you make a module of a map management or something like that and thought in that module there are is the import module and the export module. so you just throw a box around that so we know to same category. but how do we say it is just import and export and those are.				so you draw a box around it.
11			with regard the functionality we have made the assumption that it would be too work for to make very broad rule editor so we have left out the rule.	A	None	

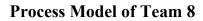

12	you have a like time make time interval something like.	yes so we updated every one hundred mille seconds or something.	yes like that and I don't know what reasonable in this thing but.	R	Negative	doesn't need to be one hundred mille seconds or something like that. not
		I don't think it needs much as much as frame per seconds a game like all they do or something.	yeah it can be even less if the performance is not very good because well it's just a simulator it doesn't have to be high.	Pro	Positive	should be thirty frame per seconds and that would be fine.
		to be simple and it's a web application and so don't make it too hight fidelity.				
13	I thought about in this thing last thing in about functionality maybe, there is help function or a introduction to how it work or introduction movie or do we want to include this? where were you included?	yeah it is in design time or in run time				yeah ok. just support we can put it.
14	yeah if he does something wrong how would does the system react to that.					you show an error and you can link to the support module which we say like.
15			combinations of individual signals that would be something crashes should not be allowed	С	None	
16	so we have a problem. and the problem is that some features are used in both feature.					perhaps we should not make high level distinction between design time or run time. but focus on modules and then later on we can always move specific classes.

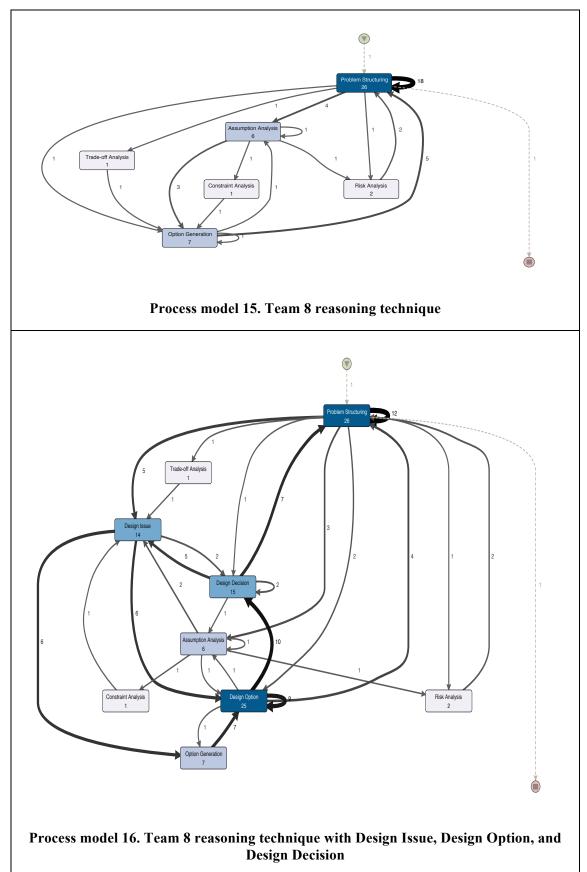

17		map version is copy of the map.	okay so put it in the map
	what if someone changes	so a map version	editor .data time element
	the traffic light settings		thing. should we put data
	while a simulation is		element already but we
	running. we want to keep		should put also the
	track of the state I think		functionality of map editor.
	or do we want to keep		
	track of this state of the		
	map or doesn't it matter	action and lock or something like	
	and just. so to be clear	that.	
	someone starts		
	simulation and changes		
	some traffic light		
	settings then the		
	simulation will try at will		
	change and because we		
	have model it currently		
	as reference from the		
	simulation to the map.		
	the traffic light setting		
	will always change. you		
	can't restore the original		
	traffic light setting.		

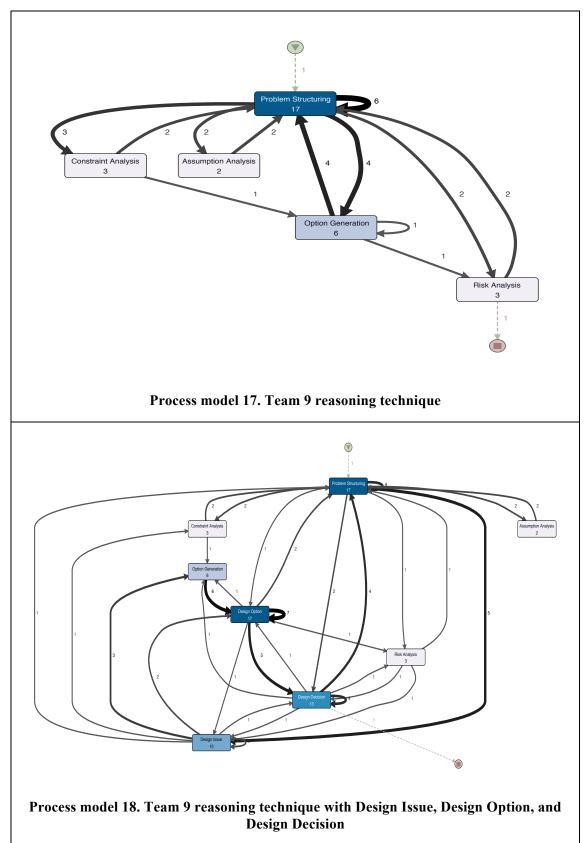

APPENDIX D Process Model

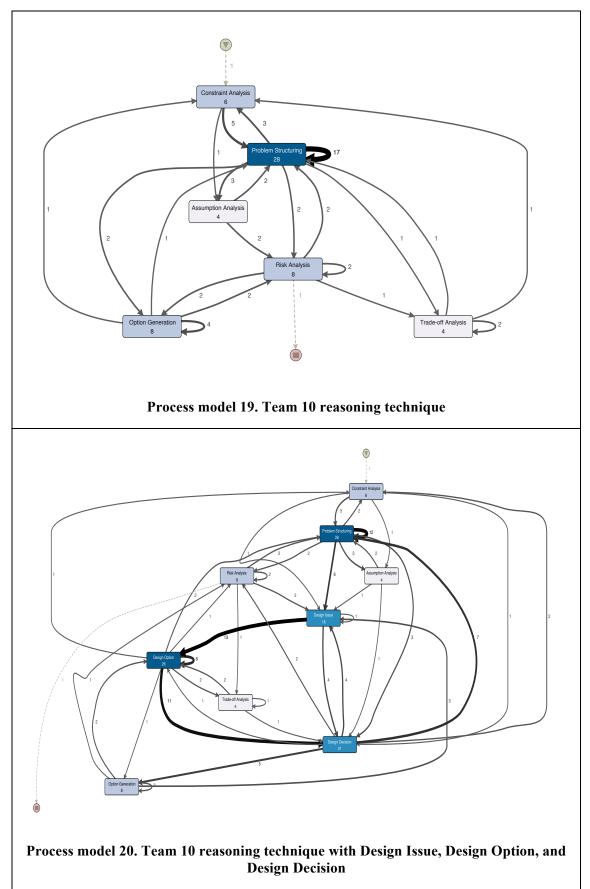


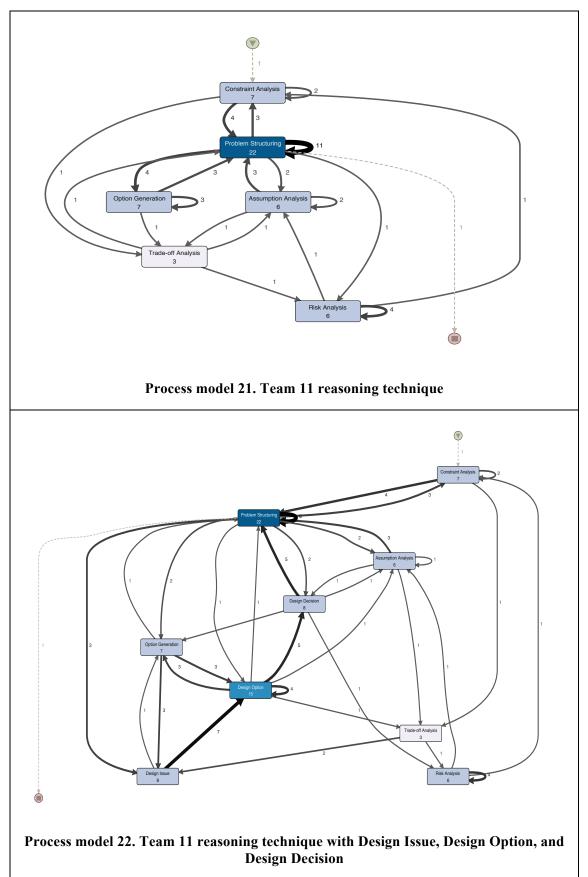


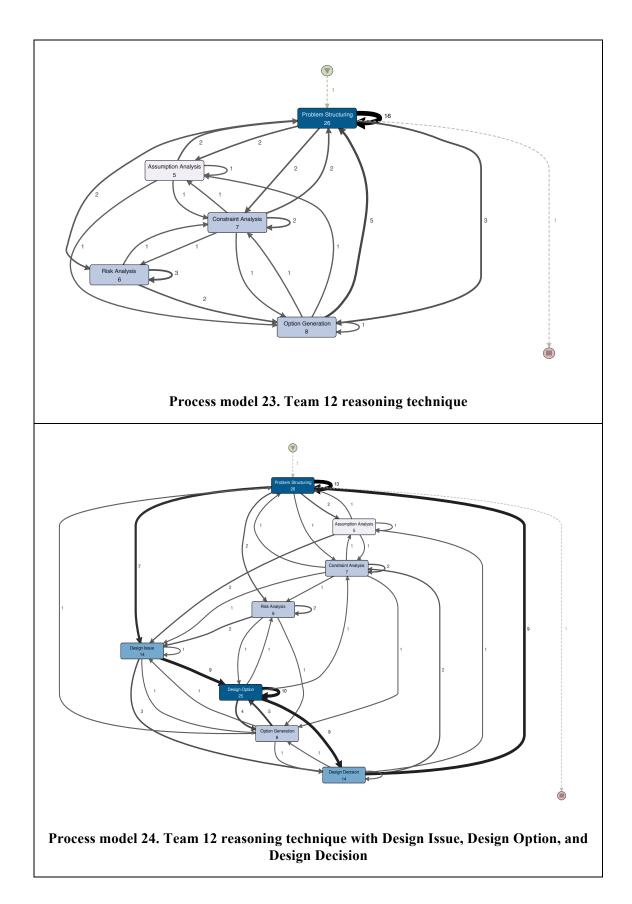


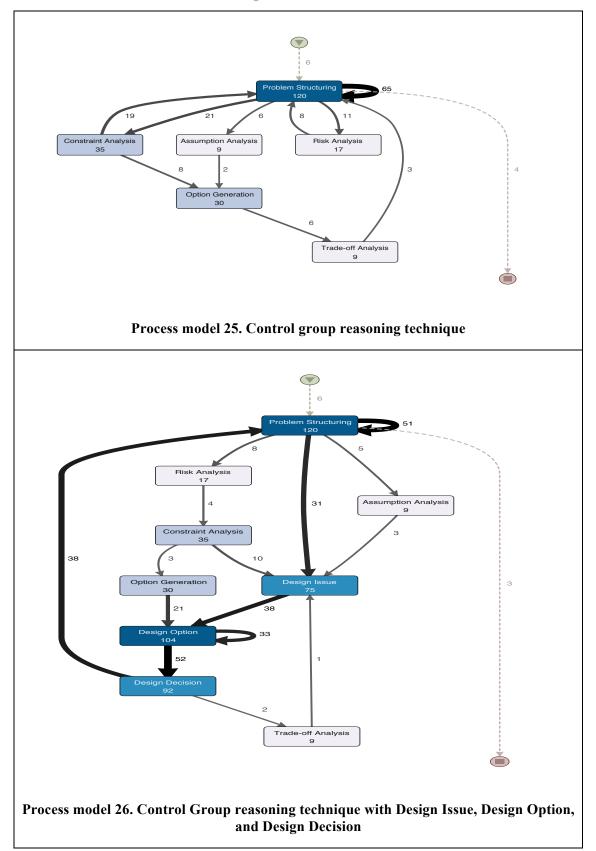


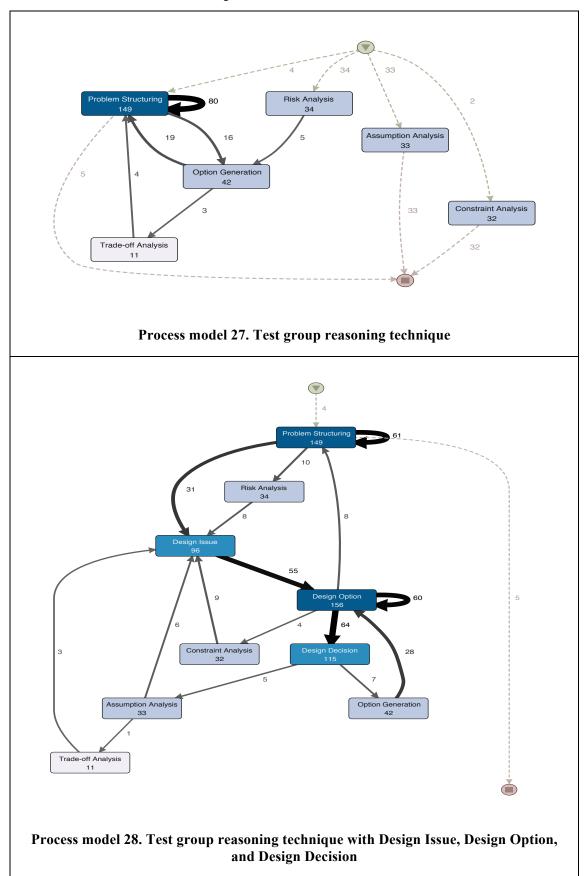







Process Model of Team 10


Process Model of Team 11


Process Model of Team 12

Process Model of Control Group

Process Model of Test Group

APPENDIX E The t-test Result

Assumption analysis	t-Test: Two-Sample Assuming Equal Variances		
Data Control group:		Variable 1	Variable 2
2, 0, 2, 2, 1, 2	Mean	1.5	5.5
2, 0, 2, 2, 1, 2	Variance	0.7	2.3
M = 1.5, $STD = 0.84$	Observations	6	6
·	Pooled Variance	1.5	
	Hypothesized Mean Difference	0	
Data Test Group:	df	10	
Data Test Oloup.	t Stat	-5.656854249	
8, 4, 6, 4, 6, 5	P(T<=t) one-tail	0.000105226	
8, 4, 0, 4, 0, 3	t Critical one-tail	1.812461102	
M = 5.5 STD = 1.52	P(T<=t) two-tail	0.000210452	
M = 5.5 , $STD = 1.52$	t Critical two-tail	2.228138842	

Constraint analysis	t-Test: Two-Sample Assuming Equal	Variances	
Data Control group:		Variable 1	Variable 2
	Mean	5.833333333	5.33333333
3, 4, 9, 10, 6, 3	Variance	9.366666667	5.06666667
M = 5.83, $STD = 3.06$	Observations	6	6
M = 5.85, $S1D = 5.00$	Pooled Variance	7.216666667	
	Hypothesized Mean Difference	0	
	df	10	
Data Test Group:	t Stat	0.322375708	
5, 6, 1, 6, 7, 7	P(T<=t) one-tail	0.376903364	
5, 0, 1, 0, 7, 7	t Critical one-tail	1.812461102	
M = 5.33, $STD = 2.25$	P(T<=t) two-tail	0.753806728	
-	t Critical two-tail	2.228138842	

Option Generation	t-Test: Two-Sample Assuming Equal Variances		
Data Control group:		Variable 1	Variable 2
1, 6, 2, 8, 7, 6	Mean Variance	5 8	7 7.2
M = 5 , $STD = 2.83$	Observations Pooled Variance	6 7.6	6
	Hypothesized Mean Difference df	0 10	
Data Test Group:	t Stat P(T<=t) one-tail	-1.256561725 0.118735824	
10, 2, 7, 8, 7, 8	t Critical one-tail P(T<=t) two-tail	1.812461102 0.237471649	
M = 7 , $STD = 2.68$	t Critical two-tail	2.228138842	

Problem structuring	t-Test: Two-Sample Assuming Equal Variances		
Data Control group:		Variable 1	Variable 2
12, 27, 21, 12, 21, 17	Mean	20	24.8333333
	Variance	61.6	4.96666667
M = 20 , $STD = 7.85$	Observations	6	6
	Pooled Variance	33.28333333	
	Hypothesized Mean Difference	0	
Data Test Group:	df	10	
Data Test Gloup.	t Stat	-1.451088725	
24, 23, 26, 28, 22, 26	P(T<=t) one-tail	0.088695568	
	t Critical one-tail	1.812461102	
M = 24.83 , $STD = 2.23$	P(T<=t) two-tail	0.177391137	
	t Critical two-tail	2.228138842	

t-Test: Two-Sample Assuming Equal	Variances	
	Variable 1	Variable 2
Mean Variance	2.833333333 0.5666666667	5.66666667 4.266666667
Observations	6	6
Hypothesized Mean Difference	0	
df t Stat	10 -3.156820749	
P(T<=t) one-tail t Critical one-tail	0.005106923 1.812461102	
P(T<=t) two-tail t Critical two-tail	0.010213845	
	Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail	Mean 2.833333333 Variance 0.566666667 Observations 6 Pooled Variance 2.4166666667 Hypothesized Mean Difference 0 df 10 t Stat -3.156820749 P(T<=t) one-tail

Trade-off analysis	t-Test: Two-Sample Assuming Equal Variances		
Data Control group:		Variable 1	Variable 2
1, 3, 0, 5, 0, 0	Mean	1.5	1.83333333
1, 5, 0, 5, 0, 0	Variance	4.3	2.96666667
M = 1.5 , $STD = 2.07$	Observations	6	6
	Pooled Variance	3.633333333	
	Hypothesized Mean Difference	0	
Data Test Group:	df	10	
Data Test Gloup.	t Stat	-0.302891266	
3, 0, 1, 4, 3, 0	P(T<=t) one-tail	0.384089891	
	t Critical one-tail	1.812461102	
M = 1.83 , $STD = 1.72$	P(T<=t) two-tail	0.768179782	
	t Critical two-tail	2.228138842	

Assumption Data Control group:	t-Test: Two-Sample Assuming Equal Variances		
		Variable 1	Variable 2
2, 0, 2, 6, 2, 2	Mean	2.3333333	6.3333333
	Variance	3.8666667	3.8666667
M = 2.33 , $STD = 1.97$	Observations	6	6
	Pooled Variance	3.8666667	
	Hypothesized Mean Difference	0	
Data Tast Crown:	df	10	
Data Test Group:	t Stat	-3.523321	
957501	P(T<=t) one-tail	0.0027539	
8, 5, 7, 5, 9, 4	t Critical one-tail	1.8124611	
M = 6.22 STD = 1.07	P(T<=t) two-tail	0.0055078	
M = 6.33 , $STD = 1.97$	t Critical two-tail	2.2281388	

Con Data Control group:	t-Test: Two-Sample Assuming Ec	ual Variances	
		Variable 1	Variable 2
2, 3, 0, 11, 2, 4	Mean	3.6666667	5.1666667
	Variance	14.666667	19.366667
M = 3.67, $STD = 3.83$	Observations	6	6
	Pooled Variance	17.016667	
	Hypothesized Mean Difference	0	
Data Test Group:	df	10	
Data Test Gloup.	t Stat	-0.629817	
11, 1, 5, 10, 3, 1	P(T<=t) one-tail	0.2714678	
	t Critical one-tail	1.8124611	
M = 5.17, $STD = 4.40$	P(T<=t) two-tail	0.5429357	
	t Critical two-tail	2.2281388	

t-Test: Two-Sample Assuming Equal Variances		
	Variable 1	Variable 2
Mean	12.333333	9.5
Variance	33.466667	13.9
Observations	6	6
Pooled Variance	23.683333	
Hypothesized Mean Difference	0	
df	10	
t Stat	1.0084094	
P(T<=t) one-tail	0.1685175	
t Critical one-tail	1.8124611	
P(T<=t) two-tail	0.337035	
t Critical two-tail	2.2281388	
	Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail	Variable 1 Mean 12.333333 Variance 33.466667 Observations 6 Pooled Variance 23.683333 Hypothesized Mean Difference 0 df 10 t Stat 1.0084094 P(T<=t) one-tail

Design Decision	t-Test: Two-Sample Assuming Equal Variances		
Data Control group:		Variable 1	Variable 2
4, 8, 16, 21, 16, 8	Mean	12.166667	15.333333
4, 8, 10, 21, 10, 8	Variance	41.766667	69.866667
M = 12.17, $STD = 6.46$	Observations	6	6
M = 12.17, $S1D = 0.40$	Pooled Variance	55.816667	
	Hypothesized Mean Difference	0	
	df	10	
Data Test Group:	t Stat	-0.734144	
1	P(T<=t) one-tail	0.2398604	
31, 9, 14, 17, 8, 13	t Critical one-tail	1.8124611	
	P(T<=t) two-tail	0.4797209	
M = 15.33, $STD = 8.36$	t Critical two-tail	2.2281388	

Design Issue	t-Test: Two-Sample Assuming E	qual Variances	
Data Control group:		Variable 1	Variable 2
	Mean	12.166667	15.333333
4, 8, 16, 21, 16, 8	Variance	41.766667	69.866667
M = 12.17, $STD = 6.46$	Observations	6	6
M = 12.17, $SID = 0.40$	Pooled Variance	55.816667	
	Hypothesized Mean Difference	0	
	df	10	
Data Test Group:	t Stat	-0.734144	
1	P(T<=t) one-tail	0.2398604	
31, 9, 14, 17, 8, 13	t Critical one-tail	1.8124611	
	P(T<=t) two-tail	0.4797209	
M = 15.33 , $STD = 8.36$	t Critical two-tail	2.2281388	

Design Option	t-Test: Two-Sample Assuming Ed	qual Variances	
Data Control group:		Variable 1	Variable 2
7 10 10 00 00 17	Mean	16.166667	22.666667
7, 10, 19, 22, 22, 17	Variance	39.766667	96.666667
M = 16.17, $STD = 6.31$	Observations	6	6
WI = 10.17, $SID = 0.51$	Pooled Variance	68.216667	
	Hypothesized Mean Difference	0	
	df	10	
Data Test Group:	t Stat	-1.363103	
1	P(T<=t) one-tail	0.101376	
40, 13, 20, 24, 14, 25	t Critical one-tail	1.8124611	
	P(T<=t) two-tail	0.2027519	
M = 22.67, $STD = 9.83$	t Critical two-tail	2.2281388	

Pro	t-Test: Two-Sample Assuming Equal Variances		
Data Control group:		Variable 1	Variable 2
7, 7, 9, 16, 2, 3	Mean Variance	7.3333333 25.066667	10.166667 47.366667
M = 7.33 , STD = 5.01	Observations Pooled Variance	6 36.216667	6
	Hypothesized Mean Difference	0 10	
Data Test Group:	t Stat	-0.815463	
22, 7, 11, 13, 5, 3	P(T<=t) one-tail t Critical one-tail	0.2169002 1.8124611	
M = 10.17 , STD = 6.88	P(T<=t) two-tail t Critical two-tail	0.4338005 2.2281388	

Risk	t-Test: Two-Sample Assuming E	qual Variances	
Data Control group:		Variable 1	Variable 2
2, 3, 4, 4, 2, 7	Mean Variance	3.6666667 3.4666667	6.8333333 1.3666667
M = 3.67 , STD = 1.86	Observations Pooled Variance	6 2.4166667	6
	Hypothesized Mean Difference	0	
Data Test Group:	df t Stat	10 -3.528211	
6, 8, 7, 8, 5, 7	P(T<=t) one-tail t Critical one-tail	0.0027315 1.8124611	
M = 6.83 , STD = 1.17	P(T<=t) two-tail t Critical two-tail	0.0054631 2.2281388	