
1 
 

A computational approach to the identification of target genes regulated by 

Systemic Sclerosis-associated miRNAs 

 

Kalliopi Nikitopoulou 

 

Supervisors: Julia Drylewicz, Marzia Rossato, Ad Feelders 

 

Utrecht University 

UMC Utrecht 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Table of contents 

Abstract          3 

Acknowledgements         4 

I. Introduction          5 

1. Biological Background        5 

2. Target prediction of miRNAs        5 

3. Objective of our study        6 

II. Materials and Methods & preparatory work     8 

1. Data-sets          8 

1.1. miRNA profile        8 

1.2. Transcriptome profile       9 

2. Collection of predicted miRNA-targets from available databases   10 

2.1. Validated targets        10 

2.2. Experimentally supported targets      11 

2.3. Pure predictions        11 

3. Target prediction based on computational methods     12 

3.1. Pearson correlation        12 

3.2. Multiple linear regression       12 

3.3. Global test as proposed by van Iterson et al. (2013)    13 

4. Multiple testing correction        14 

5. Our approach based on Pearson correlation      15 

III. Results          17 

1. Results of Pearson correlation analysis      17 

2. Comparison with the global test method      17 

3. Correlation approach: using different statistical settings for different target lists  20 

4. Correcting for the purity of samples       24 

IV. Discussion          28 

References          30 



3 
 

Abstract 

In the light of previous research (Chouri et al, unpublished results) performed on Systemic 

sclerosis (SSc), arises the importance of determining the molecular pathways affected by SSc-

associated miRNAs. To accomplish this, it is crucial to identify putative target genes affected 

by miRNAs that are dysregulated in SSc. The goal of our research is to implement a 

computational approach to identify putative target genes of miRNAs associated with SSc. We 

propose here an in-silico pipeline based on Pearson correlation of miRNAs and RNAseq data. 

We applied this method to a dataset from a cohort of SSc patients.  

Our approach also considers the multiple testing problem as well as different significance 

thresholds and various target resources. To evaluate the resulting interactions we determine 

the strength (significance) and type (negative correlation) of association and compare our 

approach with the method proposed by van Iterson et al. In the latter study (van Iterson et al, 

2013), a multiple linear regression approach called the global test was proposed and was 

proved to successfully identify target genes by using an integrated analysis of miRNA and 

mRNA expression. It was also compared to correlation and LASSO methods in terms of 

predictive performance. We show that our method successfully identifies miRNA-mRNA 

interactions found in reliable target databases (published validated and experimentally 

supported) but can also identify potential novel interactions by investigating sequence-based 

predicted interactions. Finally, the most relevant findings of our analysis might be used for 

further validation through wet-lab experiments as a next step of investigation. 
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I. Introduction 

1. Biological background 

Systemic Sclerosis (SSc) is an autoimmune disease characterized by extensive fibrosis of the 

skin and internal organs, associated with high mortality (Gabrielli et al, 2009). Currently, 

there is no successful therapy for SSc and its diagnosis is very difficult in the early phase of 

the disease. Consequently, patient treatment is delayed until skin and/or internal organ 

involvement is evident and already irreversible. There is thus an extreme need of both 

effective therapies and early diagnosis markers in order to treat SSc patients at early stage 

before the development of fibrosis and severe organ complications.  

Immune system dysfunction has been demonstrated to underlie SSc pathogenesis 

(=mechanisms that lead to the diseased state). In particular, plasmacytoid dendritic cells 

(pDCs) constitute an important subset of leukocytes that is increased in the fibrotic skin of 

SSc patients (van Bon et al, 2014) and is dysregulated in patients presenting early-symptoms 

of SSc (van Bon et al, 2013; van den Hoogen et al, 2013). In order to investigate why pDCs 

are dysregulated early in SSc, a previous study (Chouri et al, unpublished results) has 

investigated the expression profiling of messenger-RNAs (mRNA = RNA molecules 

transferring genetic information from gene to protein) and microRNAs (miRNA = short RNA 

molecules that inhibit gene expression) of pDCs in patients at different stages of SSc and in 

healthy individuals. This study demonstrated that numerous miRNAs and mRNAs are altered 

in pDCs of SSc patients. However the molecular mechanisms connecting miRNAs and 

mRNAs and leading to pDC deregulation in SSc remain unclear. 

2. Target Prediction of miRNAs 

miRNAs are short RNA molecules that interact with specific mRNAs and inhibit their 

translation, or promote their degradation. The miRNA-mRNA interaction is driven by means 

of sequence complementarity and causes reduction of mRNA and/or protein levels. Given that 

miRNAs are involved in important biological processes and their deregulation is implicated in 

various diseases, unraveling miRNA targets is of vital importance for both diagnostic and 

therapeutic aims. However, the lack of high-throughput and low-cost experimental methods 

for the identification of miRNA-target genes, combined with the complexity of these 

molecular mechanisms, makes target identification a challenging field.  

Based on the sequence complementarity of the interaction between miRNAs and mRNAs, 

various computational approaches have been developed to predict miRNA-targets (see 

Alexiou et al, 2011, for a review of sequence-based target prediction algorithms). The most 

commonly used databases collecting miRNA-target predictions are miRanda, TargetScan, 

DIANAmicroT, and PicTar. These databases contain a large number of predicted targets for 

each miRNA. However, the false positive rate for these predictions varies from 24% to 70% 

(Setupathy et al, 2006; Bentwich, 2005) and the inconsistency among these methods has 

highlighted the need of developing new strategies for target prediction. 

Recently, it has been suggested (Miniategui et al, 2012) that integration of miRNA and 

mRNA expression data with putative interactions predicted by sequence-based methods can 
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refine target prediction in a given biological context. The main steps of this approach are as 

follows:  

i. Retrieve the existing predicted interactions of the miRNA with potential target genes 

from prediction databases (e.g. miRanda, TargetScan, DIANAmicroT, and PicTar) 

ii. Model the relationship between the expression of miRNA-target gene pairs  

iii. Select the miRNA-mRNA pairs significantly inversely correlated 

Various mathematical approaches have been implemented to model the relationship between 

miRNA and targets varying from simple correlation to Bayesian inference methods 

(Muniategui et al, 2012). These methods have successfully identified valid and biologically 

relevant interactions among the ones present in the databases of putative targets. 

3. Objective of our study 

The main objective of our research is to implement a computational approach for the 

identification of putative target genes of SSc associated miRNAs. We propose here an in-

silico pipeline that integrates the sequence-based predicted targets and other experimentally 

validated targets with the miRNA and mRNA data from a cohort of SSc patients.  

Our computational approach is based on Pearson correlation between miRNA and mRNA 

expression data (Figure 1). Since no target prediction analysis has yet been performed on SSc 

associated miRNAs, we have chosen Pearson correlation as this approach has been 

successfully used in several studies (Liu et al, 2010; van Der Auwera et al, 2012; Fulci et al, 

2009). There are also numerous web-based tools and databases using this approach for target 

prediction (Gennarino et al, 2011; Sales et al, 2010; Ritchie et al, 2010; Cho et al, 2011).  

When integrating expression data and sequence based target predictions we aimed to tackle 

the inherent problem of false positives in this type of predictions (Witkos et al, 2001). The 

common procedure to integrate the results of different pure prediction software is to use the 

“union” or the “intersection” (i.e. common predictions) of putative-targets lists. However, this 

process does not improve the sensitivity/specificity ratio of true-target identification (Witkos 

et al, 2011). By using the union list, the problem of false positive targets will tend to 

deteriorate because false positives of many different software will be taken along. The 

disadvantage of the intersection approach is that it prevents from exploiting the potential 

complementarity of these algorithms; i.e. possible true positives found using one algorithm 

might be excluded in others. We propose a strategy specifically for these target resources in 

order to avoid these issues.  
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Figure 1. Schematic representation of integrated analysis of gene and miRNA expression with 

sequence-based prediction data. 
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II. Materials and Methods & preparatory work 

1. Data-sets 

Our datasets consisted of a miRNA profiling and a gene transcriptome analysis generated in 

parallel from pDC of 36 subjects, including 9 healthy individuals and 27 patients at early 

stages of SSc (patients with SSc-related symptoms i.e. Rhaynaud’s phenomenon, early and 

definite SSc patients). miRNA profiling was generated by RT-qPCR (a technique used to 

quantify miRNA expression), while the transcriptome (= the set of all RNA molecules in one 

cell or a population of cells) analysis by RNA-sequencing (a technology that uses the 

capabilities of  next-generation sequencing to reveal a snapshot of RNA presence and quantity 

from a genome at a given moment in time.). These datasets contain respectively the 

expression profiles of 45 miRNAs and ~20,000 mRNAs across the 36 subjects. 

1.1 miRNA profile 

miRNA expression was given as relative fold change (FC) compared to a reference sample of 

healthy controls. Patients were classified into 4 groups according to the symptoms and the 

score of the classification criteria based on the van den Hoogen et al (2013) study. In 

particular, patients were divided into healthy controls (HC), patients showing Raynaud’s 

phenomenon (RP), early scleroderma patients with score 8 (eaSSc) and patients that scored 

higher than 8, which are definite scleroderma patients (defSSc). Our dataset included 

miRNAs that were selected as being significantly differentially expressed in at least one 

group of SSc patients compared to healthy controls. A miRNA was selected if FC > 2 or FC < 

0.5 with a p-value lower than 0.05, in at least one patient group. A two-sided independent 

samples Student t-test was used since the original values were close-to-normally distributed. 

We obtained t-statistic for the null hypothesis H0: μX = μY versus the alternate hypothesis 

H1: μX ≠ μY, where μX denotes the average expression of each miRNA at patient group X 

and μY denotes the average expression of each miRNA at healthy group Y. All differences 

were considered significant different at the level of 0.05.  

A total of 45 miRNAs were selected following these criteria. Before integrating our miRNA 

dataset with the transcriptome dataset, the miRNA expression data were log2-transformated. 

This normalization was performed in order to reduce skewness and variability between 

samples (Sylvain et al, 2009). 

Among the 45 SSc-associated miRNAs, 3 were highly differentially expressed (Chouri E, 

unpublished results) in patients at early stages of the disease (Figure 2) making them possible 

candidate prognostic markers or potential therapeutic targets. Therefore, they are examined in 

more detail later on in the analysis.  



9 
 

 

Figure 2. Expression of the 3 miRNAs of interest (miR-126, miR-127, miR139-5p) in healthy controls 

and patient groups: Healthy controls (HC); patients with Rhayneaud’s Phenomenon (RP); early SSc 

patients (eaSSc); definite SSc patients (defSSc). Expression values of each miRNA is shown as relative 

fold change across 36 samples and the median FC of each subgroup is indicated by an horizontal bar. 

Denoted above with * are the statistically significant differentially expressed (FC>2) miRNAs in each 

group of patients (p<0.05): miR-126 is differentially expressed in eaSSc group and defSSc group, miR-

127 is differentially expressed in RP and miR-139-5p in RP and eaSSc. 

1.2. Transcriptome profile 

The transcriptome dataset included the unbiased measurements of all mRNAs present in pDC 

of patients and healthy controls, expressed as RPKM (Reads Per Kilobase per Million 

mapped reads). The initial dataset included 20,365 gene expression measurements. It was 

reduced to a list of 11,890 after a quality control step as follows: 

(i) We replaced missing values by 0 given that usually missing values in RNAseq data 

correspond to really low measurements (Wang et al, 2009). The missing value in RNAseq can 

be either due to absence of expression or lack of detection because of limits in the sensitivity 

of the technique. However, considering the type of sequencing that has been used (20 million 

reads/sample) this allows the detection of more than 90% of the transcriptome. The genes not 

detected are therefore either not expressed or expressed at lower than 1 transcript/cell. 

Consequently we can safely approximate missing values to 0. In order to avoid the log0 issue 

later on, we added to all measurements the pseudocount 0.1.  

(ii) We performed quantile normalization in order to make the sample distributions for each 

gene identical in statistical properties. Quantile normalization was originally used for gene 

expression microarrays but it is now also applied in several data types including RNA-Seq 

(Hicks et al, 2014). In this scheme, the following algorithm (Bolstad et al, 2003)  is applied 

for normalizing a set of data vectors by giving them the same distribution: 1. given n arrays 

(genes) of length p (sample size), form X of dimension p × n where each array is a column; 2. 

sort each column of X to give Xsort; 3. take the means across rows of Xsort and assign this 

mean to each element in the row to get X'sort; 4. get Xnormalized by rearranging each column of 

X'sort to have the same ordering as original X. In other words, in the quantile normalization 

process, a reference sample distribution is first computed by taking the average across all 

ordered (ascending order) gene expression observations in each sample distribution. The 

original expressions are then replaced by the entries of the reference sample distribution with 

the same rank; the highest value from each array is replaced by the average of all of the 

highest values, the second highest by the average of all of the second highest, and so on. In a 

formula, the transform is: xnorm = Fi
-1

(Fref(x)) , where Fi is the distribution function of array i, 

and Fref is the distribution function of the reference array. 
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(iii) Pathway enrichment analysis was performed, using DAVID© software, to define a cutoff 

of gene expression: we removed from the mRNA dataset genes with low expression level in 

the range of measurement noise. We considered two options for the aforementioned filtering: 

exclude genes for which the median gene expression value is lower than 0.5 or lower than 1 

RPKM. The list of genes we would lose with the higher gene expression cutoff threshold was 

checked in order to identify their functionality. The pathway enrichment analysis revealed 

that many genes were indeed relevant, so we decided to use a cutoff at 0.5  

(iv) Normalization to a normal distribution with log2 transformation was performed, as in the 

miRNA profile data. Initially the RNAseq data are assumed to have a Poisson distribution or 

a negative binomial distribution (Srivastava et al, 2010). This is explained when thinking that 

in RNA-Sequencing you choose a location at random from the transcriptome to produce a 

read; this is a Poisson process.  

2. Collection of predicted miRNA-targets from available databases 

As previously mentioned, there are some existing target resources predicting target genes for 

miRNAs. They can be classified in three categories according to the type of predicted-target:  

a. validated targets: genes predicted to interact with a certain miRNA and also 

experimentally proven in publications to be actively regulated by it. This database is a 

result of meticulous literature curation. 

b. experimentally supported targets: predicted miRNA-target pairs for which some 

experimental evidences are present. They integrate data from high-throughput 

techniques as well as individual miRNA studies providing either direct or indirect 

evidence for interaction. 

c. purely predicted targets: novel miRNA-targets identified by computational analyses 

based on sequence complementarity between the miRNA and the target mRNA.  

It was of most importance to consider all these type of resources, as the databases of validated 

and experimentally-supported targets include the most reliable miRNA-mRNA pairs, while 

the predicted targets can reveal novel interactions specifically present in pDCs, which were 

not previously identified in other experimental models.  

We retrieved the targets present in the 3 different databases for the 45 miRNAs included in 

our dataset. We used the list of targets existing in each database for our miRNA set as input 

for the correlation computation analysis.  

2.1. Validated targets 

In the case of the published validated targets, the information reported is manually curated 

(according to PubMed).  

We used three different databases of validated targets:  

 miRecords: http://mirecords.biolead.org 

 mirTarBase: http://mirtarbase.mbc.nctu.edu.tw 
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 TarBase v6: http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=tarbase/index.  

As this class of targets is the most reliable one, we wanted to include as many targets as 

possible from these resources. Therefore we used the union of the lists retrieved from these 

databases. In the same aim, we included the targets identified for both human and mouse, as 

miRNA-target interactions are usually conserved among species. Finally to maximize the gain 

of information, we enlarged the selection of miRNA-target pairs to all miRNA-families as 

miRNAs belonging to the same family differ only in a single nucleotide and usually share 

their targets. 

For mirTarBase, we removed records of the database that were identified as weak evidences. 

From TarBase (version 6) we selected records identified as “positive” indicating that the 

effect of the miRNA on the target gene expression is a classical inhibition as expected.  

The final table of validated miRNA-target pairs contained ~3,900 miRNA-target gene pairs 

for the 45 miRNAs that we studied. This list of validated targets is very restrictive, although 

very well-founded and reliable. 

2.2. Experimentally supported targets 

We retrieved experimentally-supported targets from three databases:  

 StarBase: http://starbase.sysu.edu.cn/. We retrieved miRNAs-target pairs predicted 

by at least 3 prediction software and supported by 2 experimental evidences (medium 

threshold). The database allows also other filtering options that we ignored. 

 mirTarBase: http://mirtarbase.mbc.nctu.edu.tw/. We kept all data without applying 

any filters, except from removing records with the indication “non-functional MTI” 

which indicates a false-positive prediction. 

 TarBase: http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=site/index. We made the selection of 

“positive” miRNA-target interactions, as described above, without any further 

filtering of the database. 

Similarly to the validated target databases, we also used the union of the experimentally 

supported databases to maximize the information. But the selection of miRNA-target pairs 

was here restricted to human and to the specific miRNA-isoforms included in the list of 45 

miRNAs of interest. 

The final table of experimentally supported targets included ~10,000 miRNA-target gene 

pairs for the studied 45 miRNAs.  

2.3. Pure predictions 

We used six software predicting miRNA targets according to miRNA-mRNA binding rules: 

DIANAmT (Kiriakidou et al, 2004), miRanda (John et al, 2004), PICTAR5 (Krek et al, 2005; 

Lall et al, 2006), PITA (Kertesz et al, 2007), RNA22 (Miranda et al, 2006) and TargetScan 

http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index
http://starbase.sysu.edu.cn/
http://mirtarbase.mbc.nctu.edu.tw/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=site/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=site/index
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(Lewis et al, 2005). We used the web tool miRWalk (http://www.umm.uni-

heidelberg.de/apps/zmf/mirwalk/) to retrieve the targets predicted by at least 3 out of the 6 

mentioned software by considering the longest 3’UTR of the target (3’UTR is the possible 

miRNA binding region on a mRNA). The final table of pure predictions included ~90,000 

miRNA-mRNA pairs for the studied 45 miRNAs.  

Although the common process to integrate the targets of different prediction software is to use 

the “union” or the “intersection” of the putative-targets lists, other integration strategies can 

be implemented. Such strategies are: (i) to use only one/two selected prediction software e.g. 

TargetScan (Lewis et al, 2005), or PITA (Kertesz et al, 2007), (ii) to apply the intersection 

approach by selecting the best performing algorithms i.e. TargetScan, Pictar (Krek et al, 2005; 

Lall et al, 2006) and Miranda (John et al, 2004), (iii) to include targets predicted by at least 

some of these software by selecting the desired number to include. In our case, to avoid the 

limitations of the intersection approach and the restricted results of one specific algorithm, we 

used the 3
rd

 option. 

3. Target prediction based on computational models 

Several computational approaches have been proposed to predict miRNA-mRNA interactions 

from experimental data. These methods use information of mRNA expression, miRNA 

expression and putative interactions (target predictions).  

Let define the matrices            and            of the expression values of mRNAs 

(j=1,…,J and J=11,890) and miRNAs (k=1,…,K and K=45) in sample t (t=1,…,T and T=36), 

respectively and the binary matrix             of putative interactions, where       if the 

mRNA j is predicted as target of the miRNA k from a sequence-based method and 0 

otherwise. 

The most frequently applied statistical approaches are the following: 

3.1. Pearson correlation 

The Pearson correlation approach is a simple method to evaluate the relationship between 

miRNAs and mRNAs. It is a measure of linear dependency and its mathematical 

representation is given in equation (1) where     represents the Pearson correlation coefficient 

of the mRNA j and the miRNA k. 

    
                   
 
   

           
  

              
  

   

   (1) 

In this formula,     
 

 
    
 
    is the mean expression of the mRNA j and     

 

 
    
 
    is 

the mean expression of the miRNA k. 

We applied the Pearson correlation method because our dataset was transformed to a normal 

distribution. 

3.2. Multiple linear regression 

It is important to point out that each miRNA can target (bind to) various different mRNAs 

according to a matching sequence complementarity of nucleotides. Therefore there is a many 

http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
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to many relationship between miRNAs and target mRNAs; one mRNA can have several 

different miRNAs targeting it and one miRNA can target several different mRNAs. However, 

correlation does not imply causation in this case; there is no causal relationship between 

miRNAs and target mRNAs but a simple linear relationship of their expression levels.  

Multiple linear regressions describe the relation of a given miRNA k and the complete set of 

targets at the same time, rather than evaluating separately each interaction as done by 

computing Pearson correlations. 

The multiple linear regression model can be formulated as follows:  

          
  

                  (2)  

where    represents the total number of putative targets of the miRNA k and     

                is the vector of regression coefficients,    the intercept and    the error 

term.  

Note that in this equation, the regression coefficients (bjk) represent the independent 

contributions of each independent variable    to the dependent variable   . In other words, the 

expression of target-mRNA j is correlated with the expression of miRNA k after controlling 

for all other predicted targets’ expression values. 

3.3 Global Test as proposed by van Iterson et al. (2013) 

In the approach of van Iterson et al. (2013), an integrated analysis of miRNA and mRNA 

expression based on a model called “Global Test” was developed. The global test is a 

multiple linear regression (MLR) model where the expression of a miRNA is modeled as a 

function of the expression of the complete set of their predicted targets.   

This approach was implemented in an R package called miRNAmRNA, (available from 

www.humgen.nl/MicroarrayAnalysisGroup.html). 

As input the algorithm uses the matrix of miRNA expressions, the matrix of mRNAs 

expressions and the incidence matrix relating miRNAs to mRNAs. 

The algorithm gives as output the miRNA-mRNA associations ordered, according to their p-

value (p-value of the coefficient in the regression model), from the strongest to the weakest 

association. They use a statistical significance level of 0.05 and do not perform False 

Discovery Rate Correction.  

In each regression model computation the two-sided t-test is used for the null hypothesis H0: 

bj=0 versus the alternative hypothesis H1: bj ≠0. We obtain the t-statistic    
  

  
 , where    are 

the coefficient estimates and    their standard error. The test statistic follows a t-distribution 

under H0 with: df=n-2=36-2=34 (n = sample size) degrees of freedom, since the samples 

follow independent normal distributions.  

In their paper, van Iterson et al. (2013) compared the performance of the proposed global test 

with Pearson correlation and LASSO approaches. They found that the global test performed 

similarly to Pearson correlation in terms of sensitivity in the identification of experimentally 

validated miRNA-mRNA pairs. They also found that global test outperformed LASSO. We 

http://www.humgen.nl/MicroarrayAnalysisGroup.html
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considered the global test in addition to our Pearson correlation approach in order to compare 

results of the two methods.  

4. Multiple testing correction 

When many statistical tests are performed simultaneously, arises the problem of multiple 

testing. To correct for the multiple testing problem, we endeavor to control the probability of 

committing a Type I error. The common approach to address the multiplicity problem 

involves controlling the family-wise error rate (FWER), which is the probability of getting at 

least one false positive (committing a Type I error). This is achieved by setting a level of 

significance for an entire family of related hypotheses. A different and less stringent approach 

presented by Benjamini and Hochberg, suggests controlling the fraction of false significant 

results among the significant results found (Benjamini et al, 1995). This approach is called 

false discovery rate correction (FDR = expected proportion of erroneous rejections among all 

rejections of the null hypothesis).  

The table below summarizes the notation used by Benjamini and Hochberg (1995). 

 

  Decision  Made  

  Not reject Reject Total 

True State Null is true U V m0 

Of Nature Null is false T S m-m0 

 Total m-R R m 

 

Where, 

 m is the total number hypotheses tested 

 m0 is the number of true null hypotheses 

 m-m0 is the number of true alternative hypotheses 

 V is the number of false positives (Type I error), also called "false discoveries" 

 S is the number of true positives, also called "true discoveries" 

 T is the number of false negatives (Type II error) 

 U is the number of true negatives 

 R is the number of rejected null hypotheses, also called "discoveries" 

R is an observable random variable, and S, T, U, and V are unobservable random variables. 

According to the above notation, the False Discovery Rate is:   
 

   
  

 

 
 . While in the 

FWER approach we try to control       , in the FDR approach we try to 

control   
 

 
  for R > 0. 

The Benjamini and Hochberg procedure is a stepwise process involving the following steps: 

1. Sort the p-values from the entire set of m tests from smallest to largest:    

refers to the i
th
 smallest p-value.  
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2. Define k as the largest value of i for which       
 

 
   , where   is the 

predefined significance threshold.  
 

 
    is an “adjusted threshold value” for 

each individual p-value (Lemma proved in Benjamini et al, 1995), so the 

procedure compares pm with α, pm- 1 with  
   

 
   , . . ., p1 with  

 

 
  

 

3. If at least one value of i satisfies this relationship, then hypotheses 1 to k are 

rejected, otherwise no hypotheses are rejected. 

Keselman et al. (1999) have shown that when the number of comparisons in the set of tests 

increases, the Benjamini and Hochberg (BH) approach loses less power compared to other 

approaches based on family-wise control. Therefore, we decided to use the BH approach in 

our study.  

5. Our approach based on Pearson correlation  

In our approach, we correlated mRNA expression levels with those of putative targeting 

miRNAs using Pearson correlations. Our approach was implemented in R (http://www.r-

project.org/) and the general pipeline is presented in figure 3.The algorithm uses as input the 

database target list, the gene expression data and their matched miRNA expression data as 

well as a statistical significance threshold and a boolean variable stating whether FDR 

correction will be applied or not.  

miRNA and mRNA data were first normalized and filtered as described previously (quality 

control step). The mRNA data were then merged with the list of in silico predicted targets 

lists generated by using the existing databases (pure predictions, validated or experimentally 

supported). Pearson correlation coefficients between a particular miRNA and its predicted 

target mRNAs were computed. We only considered negative correlations reaching the chosen 

significance threshold. The p-values were obtained, and Benjamini-Hochberg adjustment was 

used as a multiple testing correction. Finally, the output included each miRNA-mRNA pair 

that was significantly negatively correlated according the chosen criteria, ranked in ascending 

order according to the correlation coefficient and p-value.  

In each correlation computation in our approach the two-sided t-test was used. We obtained t-

statistic      
   

    
  (n = sample size) for the null hypothesis H0: r=0 versus the alternative 

hypothesis H1: r≠0. The test statistic follows a t-distribution under H0 with: df=n-2=36-2=34 

degrees of freedom, since the samples follow independent normal distributions.  

 

http://www.r-project.org/
http://www.r-project.org/
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Figure 3. Pipeline of our approach to identify miRNAs target genes. 
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III. Results 

We applied our approach on our datasets of miRNA and mRNA expression using different 

statistical parameter settings: significance threshold at 0.05 and 0.1, and FDR correction or 

not. These settings gave different results for the 3 different lists of predicted targets, thus 

emerged the need to discriminate among them and determine an optimal setting for each type 

of target list. In this section, we present the results obtained using our pipeline based on 

Pearson correlation and compare them with the results obtained when applying the global test 

proposed by van Iterson et al. (2013). We compared these approaches in terms of the number 

of significant interactions found in the lists of pure predictions, experimentally supported and 

published validated interactions. 

1. Results of Pearson correlation analysis  

We first applied our correlation approach without FDR correction and with significance 

threshold of 0.05. For the total of 45 miRNAs under study, in this setting we found 169 

validated targets, 484 experimentally supported and 5557 pure predictions (Figure 4.A). For 

the 3 miRNAs of interest, only 1 validated target was significantly inversely correlated with a 

miRNA, while in the database of experimentally supported targets 6 pairs were found and for 

the pure predictions target list, 174 miRNA-mRNA pairs passed the significance threshold 

(Figure 5.A). 

When applying the FDR correction while keeping the significance threshold at 0.05, for the 

total of 45 miRNAs, 6 gene-miRNA pairs were found in the database of validated targets, 21 

in the experimentally supported and 435 in the pure predictions list (Figure 4.B). In this 

setting, for the 3 miRNAs of higher interest, no significant inversely correlated interactions 

were obtained from the databases of validated and experimentally supported targets. 

However, 10 negatively correlated pairs present in the pure predictions target list passed the 

significance threshold (Figure 5.B).  

When changing the significance threshold of 0.1 and still applying FDR correction, 17 pairs 

were found in the validated target list, 69 in the experimentally supported and 1072 in the 

pure predictions, for the total of 45 miRNAs (Figure 4.C).  In this setting, for the 3 miRNAs 

of higher interest, our approach still gave 0 interactions included in the validated database, 

only 1 in the experimentally supported list of targets and 24 in the pure predictions (Figure 

5.C).  

2. Comparison with the global test method 

We compared our results with those obtained when applying the global test proposed by van 

Iterson et al on our dataset. In this approach, no FDR correction was applied and the 

significance threshold was 0.05. Compared to the correlation approach, the global test 

resulted in less targets for the pure predictions and for the experimentally supported target list 

(553 miRNA-mRNA pairs less) and the experimentally supported target list (1 pair less), but 

more on the validated target list (1 pair more) (Figure 4.D). Interestingly, for the case of the 3 

miRNAs of interest, this method produced the same resulting interactions as our approach of 

Pearson correlation without FDR correction and significance threshold at 0.05 (Figure 5.D).  
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From this comparison, we observed that although the two methods perform similarly for the 

case of the 3 miRNAs of interest (Table 2), our approach produces more results for the total 

of 45 miRNAs (Table 1). 

 

 

 

Figure 4. Venn diagrams showing, for the 45 miRNAs under study, the number of 

significantly inversely correlated miRNA-mRNA pairs found when merging the results of 

our Pearson correlation approach (A,B,C) and the global test (D) with each list of 

predicted targets: validated (purple), experimentally supported (green) and pure 

predictions (orange). In A the Pearson correlation approach (blue) was applied with 

significance threshold 0.05 and no FDR correction was performed. In B the correlation 

approach (blue) was applied with significance threshold 0.05 and with FDR correction. In 

C our correlation approach (blue) was applied with significance threshold 0.1 and FDR 

correction. In D the global test (blue) was applied. Possible common targets between the 

three target lists are not shown here.  
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Figure 5. Venn diagrams showing, for the 3 miRNAs of higher interest, the number of 

significantly inversely correlated miRNA-mRNA pairs found when merging the results of 

our Pearson correlation approach (A,B,C) and the global test (D) with each list of 

predicted targets: validated (purple), experimentally supported (green) and pure 

predictions (orange). In A the Pearson correlation approach (blue) was applied with 

significance threshold 0.05 and no FDR correction was performed. In B the correlation 

approach (blue) was applied with significance threshold 0.05 and with FDR correction. In 

C our correlation approach (blue) was applied with significance threshold 0.1 and FDR 

correction. In D the global test (blue) was applied. Possible common targets between the 

three target lists are not shown here.  

 

Table 1. Comparison of results obtained for the total of 45 miRNAs with different 

parameter settings for the correlation approach and the Global test of van Iterson et al. We 

demonstrate the percentage of significant interactions found within the validated, 

experimentally supported and pure predictions databases. The correlation approach with 

no FDR correction and the Global test give a much higher findings rate (4.5 - 6% 

approximately) compared to the correlation approaches with FDR correction (0.2 – 1.2% 

approximately). 



20 
 

 

Correlation: 

no FDR, 

α=0.05 

Correlation: 

FDR, α=0.05 

Correlation: 

FDR, α=0.1 

Global test (no 

FDR, α=0.05) 

Validated 4.48% 0.15% 0.44% 4.43% 

Experimentally 

supported 
4.92% 0.21% 0.70% 4.91% 

Pure 

predictions 
5.99% 0.46% 1.15% 5.40% 

 

Table 2. Comparison of results obtained for the 3 most important miRNAs with different 

parameter settings for the correlation approach and the Global test of van Iterson et al. We 

demonstrate the percentage of significant interactions found within the validated, 

experimentally supported and pure predictions databases. Similarly to the case of the 45 

miRNAs, the correlation approach with no FDR correction and the Global test give a 

higher findings rate compared to the correlation approaches with FDR correction. 

 

Correlation: 

no FDR, 

α=0.05 

Correlation: 

FDR, α=0.05 

Correlation: 

FDR, α=0.1 

Global test (no 

FDR, α=0.05) 

Validated 2.04% 0% 0% 2.04 % 

Experimentally 

supported 
3.77% 0% 0.62% 3.77% 

Pure 

predictions 
6.11% 0.35% 0.84% 6.11% 

 

 

3. Correlation approach: using different statistical settings for different target lists 

Looking at our results described previously for different parameter settings for the 3 different 

databases of targets, we observed that the threshold of 0.05 limited a lot the results we got 

from the most reliable target resources -validated and experimentally supported- for the total 

of 45 miRNAs and for the 3 most interesting miRNAs. This was mostly the case when FDR 

correction was applied, where no correlation passed the significance threshold of 0.05 in the 

validated target list, and only 1 experimentally supported interaction passed the threshold of 

0.1, for the 3 miRNAs of higher interest. Consequently, we needed to apply our pipeline by 

using a less strict threshold, specifically for the two reliable databases (validated and 

experimentally supported). 

Since these databases contain proven and verified targets, it is tempting to conclude that no 

FDR correction is needed when a negatively correlated miRNA-mRNA pair included in these 

two target lists is found to be significant. As the aim of our approach is to identify putative 

target genes that will be further investigated by new experiments, the impact of including 

false positives is in fact less severe than the risk of excluding a possible true positive since the 

number of pairs found is so limited. Therefore, we decided to not apply a FDR correction for 

the validated and experimentally supported targets and we identified 7 significantly inverse 

correlated pairs (Table 3) when considering the 3 miRNAs of higher interest.  
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Table 3. miRNA-mRNA interactions for the 3 miRNAs of interest predicted by our 

analysis and included in the validated and experimentally supported databases without 

FDR correction at a significance level of 0.05. For each pair the value of the correlation 

coefficient and the p-value are given. For a given miRNA the interactions are shown in 

ascending order according to their p-value. 

miRNA name Gene symbol Correlation coefficient r P-value 

miR.126 PTPN7 -0.341446528 0.041541 

miR.139.5p UHMK1 -0.489253018 0.00246 

miR.139.5p PTPRS -0.436076564 0.007845 

miR.139.5p MEF2A -0.43266476 0.0084 

miR.139.5p AP3M1 -0.401533736 0.015211 

miR.139.5p IGF1R -0.398113108 0.016185 

miR.139.5p TCF12 -0.344125275 0.039867 

 

However, for the pure predictions target list, the problem of false positives already exists, so 

the necessity of applying FDR correction in the correlated pairs found in this database should 

be considered as substantial. Additionally, from a practical point of view, the large number of 

miRNA-mRNA pairs found in this database made it crucial to reduce the number of pairs 

considered for experimental validation later on.  

For the 45 miRNAs under study, when no FDR correction was applied and the significance 

threshold was set at 0.05, the number of miRNA-mRNA pairs included in the results was very 

large (5557 interactions found) which would make any further experimental investigation 

very difficult. On the contrary, when applying FDR correction the number of results on the 

pure prediction list was 435 and included 10 targets for miR-135-5p (1 out of the 3 most 

interesting miRNAs). When the significance level was set at 0.1 we obtained 1072 pairs for 

the total of 45 miRNAs including 24 pairs (Table 4) for 2 out of the 3 most interesting 

miRNAs (miR126 and miR-139-5p) thus improving our findings on the 3 miRNAs.  

 

Table 4. miRNA-mRNA interactions found in the pure predictions list, for the 3 miRNAs 

of interest, using FDR correction and a significance level of 0.1. For each pair the value 

of the correlation coefficient and the p-value are given.  For a given miRNA the 

interactions are shown in ascending order according to their p-value. 

miRNA name Gene symbol Correlation coefficient r P-value 

miR.126 ZC3H12B -0.517002576 0.001243925 

miR.139.5p UST -0.590135345 0.00015171 

miR.139.5p TMEM67 -0.576971794 0.000229896 

miR.139.5p RAB3IP -0.570598083 0.000279389 
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miR.139.5p INCENP -0.562424786 0.000356695 

miR.139.5p ZNF260 -0.555682197 0.000434275 

miR.139.5p ZNF793 -0.552807559 0.000471687 

miR.139.5p SLC26A2 -0.551803626 0.000485413 

miR.139.5p CYP20A1 -0.550501319 0.000503747 

miR.139.5p ICA1L -0.544749284 0.000592312 

miR.139.5p SPATA5 -0.537840665 0.000716772 

miR.139.5p ASB1 -0.537575401 0.000721982 

miR.139.5p HERC2 -0.524643754 0.001020408 

miR.139.5p ANKH -0.520830962 0.001127059 

miR.139.5p RANBP10 -0.520415918 0.001139242 

miR.139.5p NFAT5 -0.515710761 0.001285701 

miR.139.5p EML5 -0.507546149 0.001579501 

miR.139.5p MAP9 -0.493329015 0.002233578 

miR.139.5p HTT -0.490493828 0.002389189 

miR.139.5p UHMK1 -0.489253018 0.002460219 

miR.139.5p MKL2 -0.488635232 0.002496266 

miR.139.5p AP4E1 -0.484953081 0.002720837 

miR.139.5p RPS6KA3 -0.484147352 0.002772262 

miR.139.5p C7orf42 -0.622306789 5.0723E-05 

 

Another advantage of FDR correction on the abundant list of targets obtained when merging 

our correlation results with the pure predictions was that FDR correction reduced the number 

of weak interactions found within the pure predictions. This was revealed when examining 

the distribution of the   correlation coefficient.  

For the setting of no FDR correction and significance threshold 0.05 the total number of 

significant inverse correlated miRNA-mRNA pairs found in the database of pure predictions 

was 5557. Checking the distribution of the values of the correlation coefficient   for these 

interactions (Figure 6), we observed that the large majority (83%) lies in the interval [-0.5, -

0.3]. Comparing these results with the 435 FDR corrected correlations significant at 0.05, we 

saw (Figure 6) that after applying the correction for multiple testing the interactions excluded 

from the not FDR corrected results contained the weak linear relationships rather than the 

strong ones. Specifically, for 97% of the FDR corrected correlation results, the   correlation 

coefficient lies in the interval [-0.7, -0.5]. 
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Figure 6. Distribution of correlation coefficient   for the significantly inversely 

correlated miRNA-mRNA pairs found in the pure predictions list with (blue bars) and 

without FDR correction (red bars) at a significance level of 0.05. 

 

Similarly, when setting the significance threshold at 0.1, applying FDR correction did not 

exclude the most strongly related miRNA-mRNA pairs: the correlation coefficient for the 

majority (approximately 90%) of the inversely correlated pairs in the FDR corrected results 

was between   -0.7 and -0.5, while for the not FDR it was lower than -0.5 (Figure 7).  

For the pure predictions list, we can conclude that applying a FDR correction excludes the 

weakest correlations and keeps only the strongest ones. 

 

Figure 7. Distribution of correlation coefficient   for the significantly inversely 

correlated miRNA-mRNA pairs found in the pure predictions list with (blue bars) and 

without FDR correction (red bars) at a significance level of 0.1. 



24 
 

4. Correcting for the purity of samples 

During our experiment we encountered a problem with the purity of the pDC samples. 

(purity=the proportion of cells object of the study -pDC- over the total amount of cells used in 

the analysis, composed by pDC and other contaminating cell types) The purity was found to 

be quite variable (70-90%). Impure samples could possibly affect the results of our analysis, 

consequently we decided to correct for this problem.  

Our purity data consist of: the 1
st
 cohort where we have the expression of 11 genes of 

different cell type (pDCs, Monocytes-lineage, Monocytes, Tcells, Bcells) that are used as 

markers for the purity, and the sample purity given as percentage for 30 samples; the 2
nd

 

cohort where we have the expression of 12 gene-markers of the aforementioned cell types and 

the sample purity as percentage for 31 samples. 

We aimed at identifying the markers that might explain the variation of purity within the 

different samples. The contamination of the samples by other cell types might influence the 

expression of the genes included in the RPKM table and therefore be confounders. In order to 

analyze the correlation between miRNA and genes cohort we would like to correct for these 

confounders by taking them into account together with the target gene expression in a 

multiple linear regression model thus identifying the correlation of miRNA and mRNA 

expression while simultaneously controlling/adjusting for the purity markers’ expression. 

We performed a multiple linear regression analysis using the purity of pDCs in the sample 

(given as percentage) and the lists of markers in each cohort defining different contaminating 

cell types. The form of the regression model was: purity ~ marker1 + marker2 + … + markerm , 

where m is the number of given markers. The best model was selected stepwise using the 

Akaike Information Criterion. 

Following this process, for the 1st cohort, we concluded in 4 markers explaining the purity: 

CD14, FCGR2A, FCGR2C, CD19 (Table 5).  For the 2
nd

 we concluded in: FCGR2B, CD14, 

CD19 and CD3D.  

We decided to use all markers found for the 1st cohort (CD14, FCGR2A, FCGR2C, CD19) 

and add one extra marker found for the 2nd cohort (FCGR2B) to correct for the purity in our 

miRNA-mRNA correlation analysis. We decided to exclude CD3D given its low R
2 
score.  

 

Table 5. Resulting purity markers obtained by performing multivariate linear regression analysis for 

the 1st cohort. Presented in the table is the following information, for the statistically significant 

variables (p-value<0.05) of the best model: R
2
 for each variable and the p-value. The specific p-value 

refers to the test for the hypothesis that the coefficient of the gene is zero. The R
2
 reported shows how 

much variation of the purity is explained by the variation of the marker. Model ’s R
2 

= 0.5445 (selected 

with stepwise AIC). 

Purity marker R
2
 p-value 

CD14 -0.4625821 0.02784 

FCGR2A 0.7150392 0.00987 

FCGR2C 0.2396062 0.02704 
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CD19 0.09153679 0.00347 

 

Table 6. Resulting purity markers obtained by performing multivariate linear regression for the 2nd 

cohort. Presented in the table is the following information, for the statistically significant variables (p-

value<0.05) of the best model: R
2
 for each variable and the p-value. The specific p-value refers to the 

test for the hypothesis that the coefficient of the gene is zero. The R
2
 reported shows how much 

variation of the purity is explained by the variation of the marker the effect of the gene expression on 

the purity controlling/adjusting for the purity markers expression. Model ’s R
2 

= 0. 0.8365 (selected 

with stepwise AIC). 

Purity marker R
2
 p-value 

FCGR2B 0.2412635 0.0160 

CD14 0.2191132 0.0109 

CD19 0.3650827 1.79e-05 

CD3D -0.07045658 0.0014 

 

Next, in order to address the “purity problem”, we modified our approach to predict 

interaction between gene expression and miRNA expression accounting for purity. We 

attempted to correct for this problem by including the 5 markers found to be related to the 

purity as covariates in a linear model where miRNA expression is the dependent variable and 

the independent variables are each mRNA examined for correlation together with the “purity 

markers”. We performed multivariate linear regressions for each miRNA-mRNA pair. The 

form of the model was defined as follows:  

miRNA ~ mRNA + CD14 + FCGR2A + FCGR2C + CD19 + FCGR2B 

Unfortunately this approach did not produce results for our standards: when applying FDR 

correction at significance level α=0.1 there were found 0 inversely correlated pairs in the pure 

prediction target list for the 3 miRNAs of interest. When examining the experimentally 

supported database only 6 miRNA-mRNA pairs (for the 3 most interesting miRNAS) were 

found significant and no validated interactions were obtained (Table 7). 

 

Table 7. Comparison of results obtained for the 3 most important miRNAs (red) and the total of 45 

miRNAs (blue) with different parameter settings for the purity correction model using 5 purity 

markers. We demonstrate the number of significant interactions found within the validated, 

experimentally supported and pure predictions databases. 

 

Purity model: 

no FDR, 

α=0.05 

Purity model: no 

FDR, α=0.1 

Purity model: 

FDR, α=0.1 

Validated 132  0 226 0 0  0 

Experimentally 

supported 
258   6 469 10 0  0 

Pure predictions 2254  94 4110  190 1 0 
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In an effort to obtain more interactions for the 3 most important miRNAs, we performed this 

analysis with less stringent “purity correction”. As we suspected some correlation between 

“purity” markers, we decided to use a model that included a subset of the markers accounting 

for the purity. Using FCGR2A, FCGR2C and FCGR2B may not be necessary since they all 

account for the same type of cells as CD14 (Monocytes). Thus, we performed the analysis 

using as explanatory variables accounting for the purity only CD14 and CD19 (we selected 

the 2 out of the 5 markers best explaining the purity, based on R
2
 statistics as seen in tables 5 

& 6). However, this alternative approach did not bring about the expected improvement. On 

the contrary, less significant inversely correlated pairs were found for the 3 miRNAS under 

study.  

Comparing the miRNA-mRNA interactions found using 2 markers with the ones obtained 

using 5 markers for the pure predictions database, we observed the following:  

 When running the model without FDR correction at α=0.1, looking at the 45 

miRNAs we found more inversely correlated pairs using 2 markers  than 

using 5 markers (~6000 vs. ~4100) ; on the contrary we found less when we 

looked at the 3 miRNAs (122 vs. 190) 

 When applying FDR correction, only a few number of pairs were still 

significantly inversely correlated: only 1 at α=0.05, and 56 at α=0.1 in which 

none of the 3 miRNAs were included (Table 8) 

 

Table 8. Comparison of results obtained for the 3 most important miRNAs (red) and the total of 45 

miRNAs (blue) with different parameter settings for the purity correction model using 2 purity 

markers. We demonstrate the number of significant interactions found within the validated, 

experimentally supported and pure predictions databases. 

 

Purity model: 

no FDR, 

α=0.05 

Purity model: no 

FDR, α=0.1 

Purity model: 

FDR, α=0.1 

Validated 123  0 198 0 0  0 

Experimentally 

supported 
200   2 328 6 0  0 

Pure predictions 3841  58 5981  121 56 0 

 

On the initial “purity” analysis, we found that FCGR2A had the largest R squared among the 

variables, therefore we decided to add FCGR2A to the “purity correction” now using 3 

markers: CD19, CD14 and FCGR2A, in another attempt to achieve a balance between 

adequate purity correction and number of significant results obtained for the 3 miRNAs under 

study. Yet this effort produced even less results that the previous 2 (Table 9). 

  

Table 9. Comparison of results obtained for the 3 most important miRNAs (red) and the total of 45 

miRNAs (blue) with different parameter settings for the purity correction model using 3 purity 

markers. We demonstrate the number of significant interactions found within the validated, 

experimentally supported and pure predictions databases. 
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Purity model: 

no FDR, 

α=0.05 

Purity model: no 

FDR, α=0.1 

Purity model: 

FDR, α=0.1 

Validated 126  0 200 0 0  0 

Experimentally 

supported 
311   2 500 3 0  0 

Pure predictions 3700  46 5700  100 4 0 

 

In conclusion, miRNA-mRNA interaction results of this approach are not shown here since 

this analysis was not completed and relevant results for our objective were not achieved so 

far. Further investigation is needed to determine a model for purity correction analysis that is 

more suitable for our standards. 
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IV. Discussion 

To identify miRNA-mRNA interactions in a specific biological context, we integrated 

miRNA-target predictions with miRNA and mRNA expression data produced from the same 

samples. We have developed an approach where each miRNA was tested for association, 

using Pearson correlation, with expression levels of known and putative mRNA-targets. We 

applied this approach to miRNAs and mRNAs expression in a cohort of SSc patients and 

focused on miRNAs previously shown to be associated with this disease.  

We compared our results with the ones obtained using the global test proposed by van Iterson 

et al (2013). We found that the efficiency of our approach in identifying targets for the list of 

3 miRNAs of higher interest was similar to the one of van Iterson. However, our results 

differed from the results obtained using the global test when investigating the whole list of 45 

miRNAs. In particular, for the pure predictions list, many more significant interactions were 

included in our results. Despite the larger number of predicted targets obtained using our 

method within the pure predictions list, when considering the issue of false positives for this 

target database (Witkos et al, 2011), we believed that not all interactions identified could be 

trusted in this case. Consequently, we have recognized the need of using a more stringent 

significance threshold for this list of potential targets, i.e.by controlling the False Discovery 

Rate (Benjamini & Hochberg, 1995).  Additionally, Pearson correlation compared to multiple 

linear regression may yield more interactions but also involves an important multiple testing 

problem: a pair-wise approach is more likely to be influenced by individual pairs with large 

associations, which may occur by chance. While in our correlation approach we had to 

control for the False Discovery Rate, van Iterson’s approach does not perform any correction 

for multiple testing. This is due to the fact that, in the case of van Iterson’s study, the number 

of tests performed is greatly reduced compared to ours: their model considers the complete set 

of predicted targets for each miRNA instead of testing every single miRNA-mRNA pair 

individually. Hence in their approach the multiplicity problem is not as severe. 

Furthermore, we tried to tackle an implication of our study as regard the possibility to correct 

for possible biases in the dataset, e.g. the purity of the samples. As the purity of initial pDC 

samples was found to be relatively variable and even low for some samples, our results might 

include some associations that are not specific for pDCs but due to the impurity of the 

samples. Starting from the purity of pDCs in the sample and the expression of genes defining 

different cell types that could have contaminated our sample, we performed a multiple linear 

regression analysis to identify the best gene-set explaining the purity. On the basis of this 

analysis, we corrected our pipeline for the purity-bias, by using a linear model where miRNA 

expression was the dependent variable and the independent variables were each gene 

examined for correlation together with the set of “purity markers”. Unfortunately this 

approach gave us very limited number of significantly negatively correlated miRNA-mRNA 

pairs and did not bring the expected improvement: this could be due to the fact that the 

“purity markers” were correlated to each other, therefore the model was over-corrected. 

Future work could attempt to tackle the purity problem using a different approach such as a 

penalized regression model (Tibshirani, 1996), e.g. LASSO. The advantage of LASSO lies in 

the fact that this approach gives a relatively small set of resulting associations, since the 

penalty used tends to produce some coefficients that are exactly equal to 0 hence it is 

inherently performing feature selection (Lu et al, 2011). This is can be effective in performing 

purity correction since within a large number of predictors we would like to determine a 
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smaller subset that exhibits the strongest effects. The elastic net (Zou et al, 2005) is another 

penalized regression model that could be used to address the purity correction problem. The 

elastic net performs a “grouping” of the predictors, where strongly correlated predictors tend 

to be in or out of the model together. Therefore this method could address the problem of 

purity markers correlated to each other.  

The advantage of our approach entails the ability for the user to define different significance 

thresholds and the choice to apply or not a FDR correction when investigating targets 

predicted from databases of different degree of reliability. The necessity to adjust the 

significance settings is supported from our results: the large number of identified miRNA-

mRNA pairs in the pure predictions database is greatly reduced when applying FDR 

correction thus producing results that are more probable to be true interactions. Another of 

our findings in support of the need of FDR correction in this case, is the fact that the large 

majority of the interactions included in the not-FDR corrected results were weak correlations. 

Contrary to the pure predictions target list, for the reliable databases of proven targets 

(validated and experimentally supported), we recommend a less stringent significance setting: 

no FDR correction is needed given that these databases are very restrictive but also very 

reliable. The number of significant results produced in this way is very limited -especially for 

the differentially expressed miRNAs- and the cost of including a possible false positive would 

be trivial in the prospect of further experimental validation. Future investigations could be 

also aimed at a further refinement of our results that would also facilitate later validation 

experiments. One way to reduce the large number of predicted targets from the pure 

predictions target list could be a strategy based on pathway enrichment analysis, as it would 

identify target genes that are most relevant for the specific biological condition of interest. 

In conclusion, we propose a method able to add biological relevance to existing miRNA-

target prediction using Pearson correlation between expression levels of miRNAs and 

mRNAs. We applied our approach in the context of SSc and we show that depending of the 

target list source different statistical settings should be applied. Our correlation pipeline is 

available as a function in R, making it possible to apply to other studies of miRNA target 

prediction. 
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