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Introduction

Error messages in functional programming languages can at times be daunting.
Generally, a compiler is very strict in the programs it does or does not consider
valid. The errors thrown by compilers often reason about the types of expres-
sions. These types can at times become rather involved, rendering the error
messages harder to read. Elm is an example of such a strictly typed functional
programming language, though despite this, Elm is famous for its nicely worded
and understandable error messages.

The main author of Elm, Evan Czaplicki, has put great amounts of effort into
getting Elm’s type error messages where they are now. Some techniques involve
suggesting alternatives for misspelled record fields, highlighting the difference of
two conflicting types and displaying the source code containing the error without
any reformatting. In this spirit, this thesis attempts to improve error messages
even further. Improving an already good system of error messages is taken on
from two directions: investigating the context of an error more thoroughly before
throwing an error and letting experienced library programmers take control over
error messages.

Let us take a look at some of the contributions of this thesis. In figure
we can see some color, transparent pink, being defined in terms of three
integers and a float. Sadly, this code is incorrect. The error shows that rgb
takes 3 arguments, but has been given 4. This error, its clear description of
the problem and the red underlining of the fourth argument are part of Elm’s
famously understandable error messages. The “Did you mean” hint below the
code is one of the major contributions of this thesis. This hint adds valuable
information, as it tells us how this problem can be resolved. It appears to have
some insight about the similarity between the functions rgb and rgba and has
figured that the programmer might have confused the two.

transparentpink = i ‘rgb’ is expecting 3 arguments, but was given 4.
I‘gb 255 20 150 0.5 rgb 255 20 150 0.5

Did you mean Color.rgba instead of Color.rgb?

(a) An inconspicuous looking
Elm statement (b) Resulting error

Figure 1: A confusion between the functions rgb and rgba.

Error messages that suggest corrections based on conceptually similar func-
tions can be very helpful for programmers. The improvements do not stop there,
however. Type directives give authors of functions fine tuning control over the
hints added to the error messages that are shown when their functions are not



The 1st argument of function “const® is in conflict with the return type.

227| const "str" True

Function “const’ is expecting the return value to be:

But the context requires:

Hint:
The author of function “const™ gives the following explanation:
It's the first parameter that gets returned, not the second.

Figure 2: An error message with a hint from the author of the function.

used correctly. This fine tuning control makes it possible for error messages to
explain the problem as though they understand the meaning of the function.
One example of such explanation can be seen in figure [2l The expression that
caused this error is if const "str" True then "foo" else "bar'.

This thesis expands on earlier research done by Hage and Heeren [18] [14],
the main authors of the Helium Haskell compiler along with van IJzendoorn,
van Haaften and Leijen. The Helium compiler uses a graphing technique in
combination with heuristics to find the best explanation for error messages.
This is part of a continuing effort to improve error messages. The bar for these
improvements is set by Yang et al [41], who have written a manifesto describing
the requirements of good error messages. According to that manifesto, error
messages are to be correct, precise, succinct, non-mechanical, source-based, un-
biased and comprehensive. Type graphs are particularly adept at removing
bias and being comprehensive. Along with Elm’s focus on precise, succinct and
source-based errors, compiler errors can be made a rather pleasant experience,
rather than a bothersome weight on one’s shoulders.

The next chapter describes the literature related to this thesis. The chapter
after that will describe the research question. Chapter [3|argues for the relevance
of the research to modern science, technology and society. Chapter [4] gives a
brief overview of Elm’s architecture. Chapter [5| gives a small overview of the
contributions of this paper. Chapters|[6] and [9) go in-depth into type graphs,
siblings, interfaces and specialized type rules respectively. The last chapter
concludes this thesis.



Chapter 1

Literature review

In 2013, Evan Czaplicki and Stephen Chong [9] published the paper that de-
scribes the essence of the Elm programming language. Elm was designed to
easily create responsive graphical user interfaces using functional programming.
Up until version 0.17, this involved functional reactive programming. Some de-
sign goals of Elm are to be simple, easy to learn, purely functional and to have
a clean syntax. Lately, a great amount of effort has been put into improving
Elm’s error messages. Elm’s current error messages (as of version 0.17) already
help the beginning programmer a great deal, but as the types of a program get
more involved, the type errors become more complicated. This is especially a
problem in uses of libraries that encompass embedded Domain Specific Lan-
guages (eDSLs), which often create complicated type structures to create the
ideal syntax. This thesis will focus on improving error messages generated by
Elm. Specifically, by giving library/eDSL writers control over them by means of
“Directives”. This document presents some context on the knowledge required
to do this.

In 1996, Hudak [2] stressed the importance of embedded Domain Specific
Languages. Using a strongly typed host language will provide many benefits to
the DSL. One benefit is that the DSL can leverage the compiler and type checker
from the host language. The DSL can be modelled to represent the abstraction
for a particular domain, while being able to interact with other DSLs. One
problem though, is that the underlying types of DSLs can become quite involved,
especially when the type system is abused to enforce certain properties upon
the language. End users are often confronted with these complex types when
an error is made. Ideally, DSL writers should be able to hide the complex types
from those who do not need to learn about their intricacies.

We will start by focussing on Functional Reactive Programming. We de-
scribe several approaches: Functional Reactive Animation (Fran), Elm’s first
order FRP, Reactive-Banana and FRPNow. After that, we will delve deeper
into type inferencing, particularly by describing Algorithms W, M and Uag.
Section [I.3] stresses the importance of type errors and describes some desired
properties. Section focusses on type error diagnosis and improving the qual-
ity of error messages. Several techniques are outlined: explanation systems,
automatic reparation systems, error slicing, type graphs, counterfactual typ-
ing, type error debugging and type directives. Finally, the literature review is
concluded.



1.1 Functional Reactive Programming

A reactive program is one that can continuously interact with its environment
while running. Common examples of reactive programs are robotics, user in-
terfaces and games, both of which should be able to handle input from an end
user immediately and at any time. The pure nature of many functional pro-
gramming languages has made reactivity somewhat awkward, since interaction
with the outside world is forced into I0 Monads or 10 streams. The solution
for that problem comes in the form of a new paradigm: Functional Reactive
Programming (FRP). FRP allows the programmer to model the behaviour of
their reactive program declaratively. We will now discuss various views on and
implementations of FRP.

Fran

Elliott and Hudak’s paper on Functional Reactive ANimation [I1] is attributed
to introducing the concept of FRP. It is a Haskell library that implements data
structures and helper functions to allow programming in the FRP paradigm,
specifically for animations. At the basis lie a set of mutually recursive data
structures: Behavior and Event. A Behavior can be seen as holding a value
that changes over time, e.g. mouse coordinates. Events are represented as
tuples that contain the time when an event occurred and some value containing
information about the Event. This allows a program to be declared to have
some behavior until some event occurs, after which a different behavior can be
assumed.

The interval based event system forces Fran to recalculate the entire inter-
face multiple times per second to see if any events are generated and whether
these events change anything in the interface. It also suffers from Haskell’s lazy
evaluation: one can take a snapshot of a Behavior value at any given time, but
the value contained in that snapshot will not be calculated until it is needed.
Since Haskell has not calculated at what exact point the value was to be stored,
its lazy mechanism stores every observed value. This causes severe space leaks.
Finally, Fran does not provide an easy means for FRP programs to perform 10
actions.

FRPNow

The FRPNow library, described by Atze van der Ploeg and Koen Claessen [37]
modifies Fran’s interface and semantics with the goal to solve the space leaks
and to provide a means to have FRP programs interact with the outside world.
To find space leaks, they define a notion called “equality up to time-observation”
that can prove whether an FRP function allows its implementation to forget the
past. After all, there need not be space leaks from remembering values from the
past when the past can be forgotten.

IO actions are made possible by an async primitive, which fires off a given
IO event in a Now monad and immediately returns an event that will fire when
the IO action has finished. This means that actions in the Now monad are never
blocked by 10 actions. The results of the IO action can be processed when the
event returned by async is fired.



While the space leaks and 10 problems are solved, FRPNow still samples at
a certain interval. Like Fran, the formal semantics of FRPNow are defined with
continuous time in the formal syntax. In the implementation, this is approached
by sampling at a constant interval. At every sample point the FRP code is
executed to update the values stored in the Behaviors. This can cause trouble
when the amount of time to recalculate the FRP code is larger than the sample
interval. This problem becomes more and more apparent as the sample interval
is chosen to be closer to 0.

Reactive-Banana

Reactive-Banana is an FRP library for Haskell written by Heinrich Apfelmus
[1]. Reactive-Banana is a push-driven implementation of FRP, based on Elliot’s
paper [10]. Elliot described a new definition of FRP that only recomputes values
when necessary. One important difference between Fran/FRPNow and Elliot’s
approach is that Elliot implements both continuous and discrete representations
of time. This is done by splitting up the concept of behavior into a discrete part
called “reactive value” and a continuous part called “time function”. Events are
changed to contain only reactive (discrete) values. The discrete representation
of time makes this method much more efficient.

Elm

Czaplicki and Chong [9] took a different path for FRP by creating Elm. Elm
is a purely functional language designed for FRP. It is focussed on the design
of user interface, being strict in evaluation and event driven. Elm combines
the concepts of Behaviors and Events into a single concept called Signals. Like
Behaviors in Elliot’s [I0] work, Signals contain values that can change over
time. Changes in Signals are triggered by outside events. By means of signal
graphs, calculated at compile time, Elm can calculate which parts of an Elm
program are affected by a change in a signal. This allows for efficient, event-
based updates. The signal graph also allows the compiler to make Elm programs
concurrent without the programmer having to change their code, but this is not
currently implemented because concurrency is currently not practical in Elm’s
target language, Javascript.

IO inputs and outputs are delegated outside of Elm through a language
construct called ports. Ports allow Elm to communicate with its host language
(currently Javascript). A programmer can indicate that some task is to be
performed by sending a value representing this task through a port. Some
Javascript code will listen to this port and execute the task. When finished,
it passes any results back to Elm. The downside of this approach is that Elm
cannot perform the tasks itself and depends on its host language to do the
heavy lifting. The benefits are, however, that Elm has full access to all of the
capabilities of its host language. Besides, Elm can remain purely functional and
requires no representation of the “real world”, like Haskell does.

More about Elm can be read in Czaplicki’s thesis [6].



1.2 Type Inferencing

One of the great benefits of the functional programming paradigm is that the
compiler can automatically infer the types of programs, saving the programmer
work in annotating expressions. Over the years a myriad of type inferencing
algorithms have been described. In this section, we walk through the most
notable type inferencing algorithms. We start with the earliest algorithms W
and M and then continue with some of the improvements made upon them.

Algorithm W and M

The Hindley-Milner type system, also called Damas-Milner was first described
by Hindley [20], and later rediscovered by Milner [28]. Its corresponding al-
gorithm, called W, is one of the first algorithms that automatically infers the
types of the typed lambda calculus. It infers types from the bottom up, unifying
types on the go to find the most general types of expressions. Polymorphism is
allowed, but only in let expressions.

Algorithm M is similar to algorithm W, but works top down. Algorithm M
is a folklore algorithm, meaning that its discovery is not attributed to a single
author. Lee and Yi [25] have proven that algorithm M generally finds type
errors before algorithm W does. The same paper also proves that combining
the two algorithms can give a strictly more precise location of the error than
either of them can alone.

Removing Bias

One of the biggest problems of the traditional inference algorithms is the left-
to-right bias. McAdam [27] describes an alteration of W and M in which the
unification is modified to remove bias by treating subexpressions symmetrically.
Another approach is described by Yang [40], who describes algorithms U g and
IFEI. The first removes left-to-right bias by typing subexpressions independently
and unifying assumption environments at the top level of the AST. Uag is
more comprehensive than the traditional algorithms because it can explain that
variables are used inconsistently at several locations in the program. However,
Uap suffers from the same problem as W, finding errors only in applications.
When this happens, a switch is made to algorithm M to narrow down the error
locations. This combination of W and M is what defines algorithm I E1.

Constraint-Based Inference

A type inferencing algorithm does two things: finding out how subexpressions
are linked and finding a way to assign types such that all these links are re-
spected. Traditional algorithms interweave these two processes into a single -
greedy - algorithm, which unifies types and generates substitutions as soon as
they are able. Over the years, the idea has arisen to separate these two into sep-
arate algorithms. This idea revolves around the concept of constraints. Instead
of immediately generating substitutions, the inferencing algorithm generates
constraints. After all constraints are generated, they are sorted and solved in
a separate algorithm. This has the benefit of being able to remove bias and
investigating multiple aspects of a single type error. Besides that, the split in
responsibilities is a good example of the “separation of concerns” principle



One implementation of this idea can be found in ML, as described by Pottier
[32], and more generally by Odersky et al. [29]. Another implementation of this
idea can be found in Helium, a Haskell compiler built for students. This imple-
mentation is described by Heeren and Hage [I5]. Constraints can be generated
bottom-up or top-down. Heeren describes both approaches, whereas Pottier
describes only bottom-up.

Extensible Records

Data structures are important in any real language. Elm has two kinds of data
structures built into the language. The first is Algebraic Data Types (ADT),
which is similar to Haskell’s data types. The second and more interesting one is
extensible records, as described by Leijen [26]. Extensible records contain values
that can be indexed with some key. New keys and values can be added to the
records, values of existing keys can be removed or changed and records can be
indexed to retrieve specific values. All these operations are type safe, meaning
that invalid record operations are detected at compile time. Elm implements
this idea, but it does not support the addition or deletion of fields. These were
supported until version 0.16 [7]. The features were removed to allow for more
program optimisations and because it encouraged overly complex code.

Type Classes

Type classes were introduced by Philip Wadler and Stephen Blott [38]. Wadler
and Blott argue for type classes to be the standard solution for ad-hoc poly-
morphism. Ad-hoc polymorphism, as opposed to parametric polymorphism, is
defined for a finite set of types, and acts differently for each type. One ex-
ample is the multiply operator (*) which has different behaviours for integers
and floating numbers. The solution for type classes allows the same function to
work on any type that defines the specific implementation of the function for
that type. In the example, (x) works on any type that has an instance of the
Num class. Ints and floats declare themselves as instances of the Num class by
providing the unique implementations for the numerical functions and operators
(including ()).

In the compiler, programs with type classes and instances are translated into
equivalent programs that lack those features. This is done by turning instances
of type classes into dictionaries. The functions in the type classes are modified
to take such dictionary as an extra parameter. This allows for a rather easy
implementation of type classes in existing languages.

Qualified Types

Mark P. Jones describes the generic concept of qualified types [23]. Qualified
types are a step between monotypes and parametrically polymorphic types. By
assigning predicates to type variables, a programmer can define functions that
are not restricted to monotypes, but are also not too generic. Type classes and
extensible records are instances of qualified types. Specifically, the demand that
a given type is an instance of a type class (as in, Eq a => a -> a -> Bool)
are the predicates. Types that have an instance of a type class (e.g. Eq Num)
fulfill the predicate.



Extensible records are an instance of qualified types with predicates that
demand certain fields to be either present or lacking in a given record. This
allows functions to work with records that contain at least some specific fields,
but are allowed to contain more.

The paper describes the type rules for qualified types and extends algorithm
W to infer qualified types.

1.3 Manifesto on Error Messages

Despite the fact that combining W and M gives more precise error locations,
the algorithm is not ideal in providing error messages. Yang et al. [41] have
written a manifesto which describes the properties of good error reports:

e Correct

— Correct detection - Errors are reported when the program is not legal.

— Correct reporting - The reported sites of the error contribute to the
type conflict.

e Precise - Conflicting sites should be located in the smallest useful amount
of source text.

e Succinct - Maximise useful information while minimising non-useful infor-
mation.

e Non-mechanical - The error should not bother the programmer with in-
formation about the underlying error checking mechanism.

e Source-based - The error should speak in the terms of the programmer,
not in terms of e.g. an intermediate core language.

e Unbiased - There should be no left-to-right (or similar) bias in the decision
which sites contribute to the error.

e Comprehensive - All sites that contribute to a type conflict should be
mentioned in the error.

Applying this manifesto on algorithm W shows that the algorithm is both
correct and succinct, as it always gives the conflicting types when a program
contains an error. It is, however, not precise, as algorithm W is known and
proven [25] to only detect errors in function applications, which are sometimes
not the precise locations of the error. Algorithm W’s error messages are also
mechanical in implicitly revealing the underlying unification algorithm. After
all, an error describes how the inferencer attempted to unify a certain pair of
types and failed to do so. Besides that, Algorithm W is biased from left to
right and it is not comprehensive, since it stops at the first error it finds while
traversing the program from top to bottom and left to right. Algorithm M and
the combination of W and M make error messages more precise, but share all
other properties with algorithm W.



1.4 Type Error Diagnosis

The type inferencing algorithms described earlier each work to improve error
messages, but much more can be done. We will now describe type error di-
agnosing methods that extend existing inferencing algorithms. They describe
various directions of research aimed at improving error messages.

Explanation Systems

To make type errors more comprehensive, Wand [39] devised a method to explain
why the compiler comes to the conclusion that there is a type error. Based on
algorithm W, it does this by having the unification algorithm keep track of the
reasons for unifying type variables. Once a type conflict arises, both sides of
the conflict will have a list of reasons as to why it was inferred. This helps
the programmer in finding the cause of a type error. However, the method does
trade comprehensiveness for succinctness, as the lists of reasons tend to be quite
long. Too long even to be of any reasonable use to a programmer. Nevertheless,
Wand has inspired other researchers to expand on the method.

Error Slicing

The focus of error slicing lies in reporting the right locations of an error. The
essence consists of reporting all parts of a program that are related to a type
conflict (called a “slice”) as opposed to a single subtree or program point. An
important property is that a slice correctly includes all of the parts of the pro-
gram where the type error may be fixed while excluding the parts of the program
for which no change can fix the type error.

Haack and Wells [I2] implemented this concept for the Hindley-Milner type
system, implemented using constraints. The generated constraints are mapped
to program points. In case of a type error, a single minimal unsolvable constraint
set is generated. The locations associated with the constraints in this set make
up the slice. The method always returns a single slice, because calculating the
full set of slices is expensive. Slices are pretty printed by printing the relevant
parts of the slice while replacing everything between those relevant parts with
dots. Sadly, due to inefficiencies in the constraint generation phase, constraint
sizes tend to explode with program size.

A continuation of this work, (Rahli et al. [33]) consists of a type slicer tool
for standard ML. It visualises the error slices by highlighting the parts in a text
editor. It resolves the previous issue of exploding constraint sizes. Nevertheless,
type slices tend to be rather big, since there tend to be many locations at which
the type error can be fixed. This leaves a considerable amount of effort to find
the solution to the programmer.

Pavlinovic et. al. [30] show that type inferencing can also be seen as an op-
timisation problem. The constraint based method assigns weights to generated
constraints. These weights are decided by the compiler, which uses heuristics to
determine which errors are more likely than others. In case of an error, the op-
timisation algorithm is run to find the maximal satisfiable subset of constraints.
The complement of that set is then necessarily the minimum unsatisfiable set of
constraints, which represents the error slice. The algorithm is quite expensive,



but its accuracy can be traded for speed. The method can also be used to create
an interactive debugger, by letting the end user influence the weighing criteria.

Type Graphs

Some constraint-based type inferencing systems can be designed to allow equal-
ity constraints to be represented as a graph of types and their relations. This
allows unbiased views on type conflicts through the ability to investigate the
neighborhood (in a graph sense) of a type conflict. This is what Heeren [18]
describes in the TOP framework, built for the Helium Haskell compiler. The
constraint graph can be used to act as a constraint solver. When an error oc-
curs, a number of heuristics can be applied to have the type graph point to a
likely culprit. One major downside is that generating type graphs can be a quite
expensive task.

Another use for type graphs is described by Zhang and Myers [42], who out-
line a method of analysing both satisfiable and unstisfiable constraints in a type
graph using context-free grammars for a large subset of ML. Most interestingly,
rather than a set of heuristics, it uses a Bayesian algorithm to rank the most
likely explanation of an error. This Bayesian algorithm is trained with a corpus
of common mistakes. Sadly, their graph structure is quite expensive to calcu-
late. Besides, with a Bayesian ranking algorithm, the ranking of possible error
causes might at times be suboptimal.

A continuation of this work is written using GHC’s type inferencer and
works as an extension to the SHErrLoc diagnostic tool [43]. It supports some
of the more complicated structures of Haskell (like GADTs and type families)
and is capable of counterfactual reasoning. For this, the constraint language
is extended. That extension turns out to be too much for the context-free
grammars to handle. To fix that, the graph is saturated and expanded. The
constraints in this graph are checked for satisfiability. In case of unsatisfiable
constraints, a Bayesian algorithm is invoked again to decide which part of the
code is the culprit. The performance does seem to go down quickly as the lines
of code increase (quadratic).

Counterfactual Typing

Counterfactual typing is a specific means of trying to find the right fix for type
errors. Chen and Erwig [3] coined the term in a paper describing variational
types for a simple lambda calculus. Variational types represent the type of
an expression not as a single decision, but as a choice of multiple types. By
passing and merging the variational types through the inferencer, a set of type
choices is generated per subexpression. Possible fixes are then generated by
enumerating combinations of choices for these options. It is defined for a simple
lambda calculus with let-polymorphism. It also includes an extension to suggest
adding/removing or swapping of function arguments. The method is reasonably
fast, but the method seems to be unable to deal with errors caused by bad
parenthesis placement.

An entirely different approach for counterfactual typing is outlined by [36],
which uses the type checking algorithm as a black box. When an error occurs,
it starts replacing subexpressions with holes until the error is resolved. Once
a type correct program has been found, the types of the inserted holes are

10



requested from the type checker and given to the user as “expected type”.
The current implementation is for OCaml. Errors are always given in terms of
expected and actual types. The method can collect multiple error messages,
but will always show one at a time. The order in which errors are shown is not
defined. Naturally, trying all possible locations to place holes is a very expensive
operation, making this approach infeasible for real world usage.

Type Error Debugging

Besides generating better error messages, research has also focussed on helping
programmers solve type errors interactively. By asking questions about the
types of the program, an interactive debugger can use the programmer’s view
on the program to help them find the causes of type conflicts. Tsushima and
Asai [35] devised a type debugger that extends OCaml’s existing type inferencer.
This has the benefit that the type debugger can easily be updated along with
the type inferencer. Type debugging is done by asking the programmer whether
the inferred types of certain expressions is correct. When the correct types
for enough expressions are found, the source of the conflict is reported to the
programmer, and a suggestion is made to fix it.

One downside of this approach is again the large size of subexpressions that
tend to be involved in type conflicts. This forces the type debugger to ask
many questions to the programmer, which can be tedious. This issue is less
apparent in Chen and Erwig’s Guided Type Debugging [4], which describes a
type debugger based on counterfactual typing. Rather than asking whether
the inferred type is correct, it asks what the programmer thinks the type of a
subexpression should be. To make this question easier, only the types of simple
subexpressions are asked. Counterfactual typing is used to find the minimal
number of subexpressions that need their types verified to find the cause of the
problem. This significantly reduces the number of questions that have to be
asked.

Directives

Directives provide a means for library programmers to alter the type inferencing
process. This allows the library programmer to hide complex internal types
from the end user, which would otherwise be shown in type error messages.
Another use is anticipating for pitfalls and building in hints that are shown
when end users succumb to them. Heeren et al. [I9] described several kinds of
directives, and implemented them in the Helium compiler. These directives are
all described in Heeren’s PhD thesis [16].

One such kind is Siblings. Sibling functions are functions that are similar
in functionality, but differ in types, e.g. the applicative functions <$ and <$>.
Through siblings, a library author can indicate that these functions are likely
to be mistaken for one another. When a function is involved in a type error,
the compiler can try its siblings to see if they fit the expected type. When they
do, a hint is generated that advises to use the alternative function.

A second kind, more general than siblings, is called “repair directives”. Re-
pair directives tell the compiler to attempt specific rewrites of faulty code. Re-
pair directives can flip arguments, place parentheses or define siblings. Sadly,
the more combinations of repair directives a compiler tries to apply, the slower
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the type inferencer becomes. The compiler must thus be limited to only attempt
a few combinations of repairs.

Through a different, but more powerful kind of directives, the library pro-
grammer can define specialised type rules for their library functions. By means
of a domain specific language, the library writer overrides the inference rule for
the function application of their specific function. The library author can define
custom constraints and the order in which constraints are to be checked. Spe-
cialised type rules can have a large influence on the type inferencing process.
This also means that library programmers could potentially make type error
messages even less descriptive than what the compiler would generate on its
own. Fortunately, specialised type rules are made sure not to render the type
inferencer unsound. This is done by validating the specialised type rules against
the type inferencer’s judgement. Finally, the language that describes specialised
type rules can be quite complex, and requires knowledge of typing rules to be
written. It remains a challenge to find a syntax that is easy to use.

Heeren and Hage [I7] also described a kind of directives for type classes.
These directives can impose limits on instances of type classes: the never direc-
tive can state that a given type can never be an instance of a given type class
(e.g. Show (a -> b)). The close directive can state that no new instances for
a type class can be defined. The disjoint directive can force the instances of
two type classes not to overlap. Lastly, a default directive allows the definition
of a default instance when a type is ambiguous. A default instance of Show
being String or Bool, for example, would make show [] work correctly without
having to annotate the type of the empty list.

A continuation of Heeren’s work is described in Hage’s plan [13] to implement
type directives in UHC. The plan outlines how Haskell’s many extensions provide
a challenge for implementing type directives in a real world compiler.

Serrano Mena [34] is working on a generic specialised type rule language,
currently implemented for GHC’s OutsideIn(X) framework. The generic type
rule language captures its most powerful abilities. Through a two-stage type
checker, the language allows the library programmer to define advanced condi-
tions on when a specialised type rule should apply. Since this complicates the
language even further, more work is being put in defining a syntax that is clear
and intuitive to use.

In a completely different approach, Christian [5] defined post-processing di-
rectives for the dependently typed Idris. Reflections, as they are called, can be
used by library writers to rewrite errors before they are shown to the end user.
Error rewrites are represented as a list of a recursive data type that contains
text, the name of an expression, a term or a suberror. These can be programmed
by writing a specially annotated function that takes an error and produces a
maybe containing an error rewrite. This allows DSL writers to hide the imple-
mentations of their proofs. In the dependently typed setting, the combination of
building proofs and customising the error messages can greatly aid the end user
in understanding the cause of the problem. However, it is limited to rewriting
the parts in the original error messages. The type checker cannot be prodded to
give more information about the error. This forms a bigger restriction in non-
dependently typed languages, in which proofs cannot be written as extensively
as in dependently typed languages.

Finally, GHC version 8 will introduce a completely different kind of type
directives [2]. Specifically designed for type level programming, a special Type-
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Error type family will throw a custom error when it is reduced by the type
inferencer. This approach is very specific for type family programming and
type classes.

1.5 Conclusion

This literature review started by describing several methods of Functional Re-
active Programming (FRP). FRP allow the programmer to create a program
that reacts continuously with its environment. This can be done in a paradigm
that is declarative and purely functional. A difference is shown between meth-
ods that treat time as continuous (Fran, FRPNow) and those that treat time
as discrete (Elm).

A comparison is made between the type inferencing algorithms W, M and
Uagp. W is bottom-up, while M is top-down. M shows generally shows better
error messages than W, but both are biased. Ujg seeks to remove that bias.
The same can be achieved by using a constraint based type inferencer, which
separates the concerns of generating and solving typing constraints.

Reasearch on creating understandable type error messages go in many direc-
tions, from improving the way they are explained, to letting library program-
mers customise them. The methods each tackle different sets of problems that
type errors can have, as described in the manifesto: incorrectness, unsuccinct,
imprecise, mechanical, not source-based, biased or incomprehensive.
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Chapter 2

Research question

Previous research [19] [I7] has shown that directives can greatly improve the
errors generated by the compiler. This research, however, applies only to the
Helium Haskell compiler. Further research [34] is on-going about implement-
ing directives in GHC’s OutsideIn(X) framework. Again, this applies only to
Haskell. The idea is to implement similar concepts in Elm. Since there are
discussions [§] about extending Elm with type classes, it will be included in the
research. The main research question is then whether the concept of directives
is applicable to Elm extended with type classes.

Type classes raise the question about how they can be implemented in such
way that the compiler can give nice error messages. The of type classes itself
might be considered difficult to understand. Clear error messages might relieve
the users of some of the complicated aspects. Perhaps the concept can be
made more accessible to the end user with some heuristics built into the type
inferencer.

Elm is chosen to be the target language for this research for several reasons.
It is a purely functional language with a syntax similar to Haskell’s. Unlike
Haskell, it does not have Rank-N types, higher kinded polymorphism, GADTs
or type families. It does have built-in primitives for Functional Reactive Pro-
gramming (FRP), although those have been removed in version 0.17. While
these constructs do not necessarily pose a challenge for implementing direc-
tives, they might provide an opportunity for finding different kinds of directives
that have not been described before. Elm also supports records, similar to
those described by Leijen [26]. These records have (limited) support for row
polymorphism, which allows records to extend other records, inheriting their
fields. Providing support for this in type graphs might be a challenge.

Related to that, is verifying the soundness of directives. The specialised type
rules described by Heeren et al. [I9] could render the type inferencer unsound
if left unchecked. Heeren et al. state that specialised type rules can be verified
against the existing type system to ensure that they indeed do not cause the
inferencer to become unsound. This verification method needs to be ported to
Elm. Perhaps even, in the spirit of Elm’s clear error messages, this verification
method should try to provide clear error messages to allow debugging. After
all, the people writing those type rules are programmers too, and they benefit
from nice error messages.

Finally, with a focus on beginning programmers, Elm’s syntax is designed to
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be as simple as possible. This philosophy will have an influence on designing the
way library writers write directives. The motivation needs to exist to write them.
This motivation might fade if they turn out to be too complicated and/or hard
to write. A challenge exists in finding a balance between powerful directives and
an elegant, easy to understand syntax. On one hand, a larger influence on type
errors implies a larger capability of explaining the type errors of a library. This
may, on the other hand, make the syntax of the directives too complicated.
Besides, too much power over type error messages might create pitfalls that
allow library programmers to write error messages that are even worse than
what the compiler itself would come up with.
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Chapter 3

Relevance

Elm has a strong focus on understandable error messages. This is because it
is designed for beginning programmers who typically do not have a thorough
understanding of types and the specifics of the underlying type inferencer. While
Elm manages to word errors nicely, most type errors reveal how the inferencer
came across two types that it could not unify. Not only do these errors reveal
how the underlying type inferencer does its work, the beginning programmers
must reason about the types of subexpressions to know where the problem lies
and what the cause is. While quite a bit of effort has gone into providing specific
hints on error messages, the error messages may remain daunting for beginning
programmers.

Knowing that directives have been proven to be very effective in the past
[19], their improved error messages might prevent a beginning programmer from
being overwhelmed by complicated error messages. Since the goal of directives
is to explain type errors in terms of the domain of the eDSL, it might allow the
programmer to gain a deeper understanding on how to work with the eDSL.

Type classes are particularly known for making error messages more compli-
cated, although their presence makes a language more expressive. This research
is also aimed at demonstrating that the inclusion of type classes in the language
does not necessarily prove detrimental to type error messages. Perhaps one can
have both type classes and nice error messages.

The benefit is not limited to beginning programmers. eDSLs can have com-
plicated type structures, which means that debugging type errors can be a
difficult task, even for a seasoned programmer. This can be especially annoying
when type errors reveal a complex type infrastructure that the eDSL’s interface
would have otherwise hidden. Type directives allow the eDSL to continue hiding
the complex types in the error. Since the writers of the eDSL know how its func-
tions are to be used, errors in uses of the functions can be explained in terms of
the supposed usage. This can save time even for the experienced programmer
by allowing them to quickly identify the cause of the problem. With proper
error messages, the underlying complexities of an eDSL need not be understood
by the programmer.

Scientifically, the idea of directives has been discussed before. This thesis
focuses on its applicability in a different functional programming language with
different language features. Besides that, the intricacies of Elm might give rise to
new perspectives on the concept. Directives could perhaps be demonstrated to
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be generic and extendable to languages that contain more difficult programming
concepts (type classes). This in turn could give directives a stronger appeal,
providing an incentive for other functional language authors to look deeper into
the concept of directives.
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Chapter 4

Elm’s architecture

This section gives a high level overview of the Elm compiler. This can be
useful to get an idea of the context of this thesis. The architecture described
in this section is not complete, and some parts are more detailed than others.
This is because it serves only to highlight the aspects relevant to the subject
of this thesis. This section starts by explaining the different components of the
Elm compiler. After that, the architecture of the elm-compiler component is
described in somewhat more detail, since all the work in this thesis is done in
this package.

4.1 Elm components

Elm’s toolset consists of several packages, all of which are written in Haskell.
The source is hosted on GitHub in several repositories hosted by an organisation
called “elm-lang”. The most noteworthy packages are listed below:

e elm-compiler
e elm-make

e elm-repl

e elm-reactor
e elm-package
e elm-platform
e core

e error-message-catalog

The elm-compiler package holds the compiler library. This library con-
tains all compiler related code from parsing up to generating the Javascript.
The elm-make package contains an equally named executable, which is what
end users use to compile a project. It manages the building process and uses
elm-compiler for the actual compiling work of individual modules. The elm-repl
package contains a program that can evaluate Elm expressions interactively,
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Figure 4.1: Compiling from source to optimized module

much like GHCi does for Haskell. elm-reactor hosts a simple webserver pro-
gram that is capable of compiling Elm files and debugging them live in the web
browser. elm-package contains Elm’s package manager, with which one can in-
stall, publish and manage libraries written in and for Elm. The elm-platform
package bundles the previously mentioned packages to create a unified set of
tools for working with Elm. Not contained in the elm-platform is the core
package, which contains the core libraries, similar to Haskell’s Prelude. Finally,
the error-message-catalog is a collection of faulty Elm programs designed to
trigger exotic error messages in Elm. It is used for testing corner cases in the
compiler.

4.2 Elm compiler

The elm-compiler deals with the compilation of a single module. The package
acts as a library for elm-make, which leverages its functionality to compile
projects. At the highest level, the elm-compiler provides two features. The
first one consists of compiling a module from source code to a type checked and
optimized module. The second one takes an optimized module and generates
Javascript code. The focus of this architecture description will lie on the former
feature.

Figure shows the steps involved in compiling a module from source code
to an optimized and type checked Abstract Syntax Tree (AST). Each step builds
upon result of the previous step. The first step, parsing, builds a primitive AST
that directly represents the source code. The validation phase checks for obvious
errors, such as duplicate function definitions and unused type variables in Ab-
stract Data Types (ADTs). The canonicalization phase resolves variable names
and sorts the function definitions, creating binding groups of interdependent
functions.

The constraint generation phase works in a top-down fashion. The con-
straints are very similar to those of Pottier et al. [32] in dealing with equality,
instance and generalization. The constraint solver takes these constraints and
finds the most general types. When the program is found to be type correct,
last minute checks are performed in the nitpicking phase. These checks include
making sure that there is a main function (when compiling the root module)
and that this function has a valid type. The nitpicking phase also makes sure
to throw an error when case expressions do not cover all possible cases. Elm is
in this sense more strict than Haskell. Finally, the optimization phase performs
some optimizations by transforming the AST. Optimizations include detecting
tail calls and flattening let expressions.

During the parsing, validation, canonicalization, constraint solving and nit-
picking phase, errors and warnings can be thrown. The compiling process halts
immediately or at the end of the current phase when one or more errors are
thrown. Warnings do not halt the compilation. Errors and warnings are pretty
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printed and shown to the user in inverse order of being thrown, i.e. the first
thrown error appears at the bottom of the output.
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Chapter 5

Contributions: an overview

This chapter gives a high level overview of the contributions made by this thesis.
Rather than providing an in-depth explanation of the inner workings of these
techniques, it will focus on giving a small introduction to and a motivation
for these techniques. It will also serve as an introduction for later chapters
which will go further in depth. The concepts are described in no particular
order. Where possible, the concepts will be described in terms of how an Elm
programmer would experience them.

5.1 Type graphs

Type graphs allow for a more careful consideration of which error to throw when
multiple error messages are available to describe the problem. As stated before,
Elm’s type inferencer works by first generating a set of constraints before solving
them. These constraints together form a tree, which loosely follows the shape
of the AST. Elm’s constraint solver solves this tree of constraints by walking
through it depth-first while maintaining some state that keeps track of types
that have already been unified. If all goes well, this algorithm finishes with a
data structure that gives every expression a type.

This way of solving constraints does, however, have one major downside: the
algorithm immediately cries foul when asked to unify two types that cannot be
unified (i.e. when a type error exists in the program). The very first constraint
that demands two incompatible types to be equal will get the blame, and the
error message tied to that constraint (attached during the constraint generation
phase) will be the one that is thrown. Blaming the first bad constraint that the
algorithm has come across introduces a “first come first serve” bias, which begs
the question: what if it is more appropriate to blame a different constraint?

foo : List Float
foo = [1.0, "2.0", 3.0]

Figure 5.1: An example of a type incorrect statement

Observe figure It contains a simple type conflict: all the values in the
list have type Float, except for the third, which is a String. A simplified list
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of constraints relevant to this type conflict is as follows:
1. The first item is a Float literal
2. The second item is a String literal
3. The third item is a Float literal
4. The first item has the same type as the second item
5. The second item has the same type as the third item

These constraints are listed in the order in which Elm solves them. The
constraint solver will solve the first three constraints without complaining. At
the fourth constraint, however, the solver is suddenly expected to unify a Float
with a String. This is the first constraint where such conflict is found. As such,
an error is thrown saying that the first and second items of the list do not match.
While this error is not incorrect, one could argue that the list contains two Float
values, and only one String. Not only that, the type annotation clearly states
that the expression is a List Float. With all the evidence stacked against the
literal being misplaced, surely it would be more appropriate to blame the second
constraint?

This more careful consideration of the evidence is precisely what a type
graph is designed for. A type graph, when drawn, shows how the types of
an expression are connected by constraints. This gives a holistic view on type
conflicts. Algorithms on the type graph can identify the constraints involved
in a type conflict and, through heuristics, decide which constraint will get the
blame.

5.2 Siblings

Some pairs of functions are conceptually similar, but differ in type. Some of
these are famous for being mixed up. Think, for instance, about foldl and
foldr, both folding in a different direction. These functions are famous for
often being mixed up, especially by beginning programmers. It would be nice if
the compiler would give a hint when the two are mixed up: “Did you mean foldl
instead of foldr?”. The compiler would know which pairs of functions are similar
because it is explicitly told so by some programmer. Typically this programmer
would be the author of either or both of the functions. Sibling directives are
the means by which this is done.

The use of sibling directives is not restricted to functions in the core set of
libraries, although many examples can be found there:

1. (+) versus (++), one signifying addition, the other concatenation of lists.

2. (I>) versus (<), the former being function application, the latter inverse
function application.

3. (<) versus (>>), both function composition, but with the results flowing
either to the right or the left.

4. curry versus uncurry, for currying and uncurrying functions respectively.
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"Basics.++' 1s being used in an unexpected way.

28| foo = 1.0 ++ 1.0

Based on its definition, ‘Basics.++ has this type:
> >

Slbllng ++ resembles + But you are trying to use it as:

-> ->

Hint: Did you mean Basics.+ instead of Basics.++?

foo = 1.0 ++ 1.0

Detected errors in 1 module.

(a) Code (b) Resulting error

Figure 5.2: A sibling statement along with a faulty expression and its error
message.

For library developers siblings can be a simple, yet powerful tool to make
their libraries easier to use. The provisional syntax for defining siblings is simple.
Figure shows an example sibling and a statement where the wrong function
is used. The error on the right is unaffected by the sibling in everything but
the hint at the bottom. The small, yet powerful hint suggests that (+) could
be used instead. This hint would have been left out if the sibling statement did
not exist.

5.3 Interfaces

Interfaces (i.e. type classes) provide a simple means for ad-hoc polymorphism.
The main reason to implement them in Elm is to investigate how well they work
together with the other techniques described in this thesis. Nevertheless, some
care was taken to make them simple and easy to use. As a result, interfaces are
very similar to type classes in Haskell 98, though with a different syntax.

interface Eq a where
equals : a -> a -> Bool
notequals : a -> a —-> Bool

implement Eq for Bool where
equals 1 r =
case (1, r) of
(True, True) -> True
(False, False) -> True
-> False

notequals 1 r = not (equals 1 r)

identity : a -> Bool | Eq a
identity a = equals a a

Figure 5.3: An example interface, implementation and function.

Figure [5.3] shows an example interface and implementation (i.e. instance).
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The syntax is somewhat borrowed from Idris. The choice for this syntax is
made for several reasons. The first is that the word “class” is used in object
oriented (OO) programming languages for a significantly different concept. The
word “interface” is also used in OO languages, but interfaces in OO languages
have much more in common with type classes than classes do. This will make it
easier for programmers in shifting from an OO to a functional paradigm. The
same applies to the word “instance”, although the word “implementation” has
no real OO counterpart.

Secondly, this wording allows the code to be read more naturally: implement
Eq for Bool where forms an almost proper English sentence while remaining
reasonably concise. This also applies to the syntax for qualifiers in type anno-
tations, implementation headers and interface headers. Take, for example the
type of identity in Figure [5.3] The type annotation can be read out loud as
“a to Bool, with Eq a”. This may make it easier to talk about programs in a
person to person conversation.

5.4 Specialized type rules

checkMaybe : Maybe a -> a -> Bool | Eq a
errors for checkMaybe maybe val where
constrain maybe
constrain val

unify maybe with Maybe a_1
because The first argument has to be a Maybe.

unify val with a_2

unify a_2 with a_1
because The second argument must match the thing in the Maybe|.

check Eq a_1
because Eq is needed to test equality.

unify return with Bool
constrain return
checkMaybe maybe val =
case maybe of

Nothing -> False
Just x -> isis x val

Figure 5.4: A function definition with type rules.
Type error messages are indifferent to the conceptual meaning of functions

they reason about. A type error can tell a user that a function expected an
argument of one type, and got an argument with an incompatible type. It
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cannot, however, tell the user why the function needs the argument to have a
certain type, nor can it identify, let alone explain common mistakes in the usage
of functions. This information is not available to the compiler, since it cannot
reason about the meaning of code. It does, however, exist in the mind of the
author of a function.

The author of a (library) function has made the conscious decision to give
the function a certain type. This same author, whether by speculative insight or
through feedback, can foresee common mistakes in uses of the function. It would
be beneficial for end users of the function if this information was somehow made
available to them. What if a type error message included a note from the author
of the function explaining the error in terms of the meaning of the function?
When done right, such explanations could give the end user valuable insight
into their mistakes. When done wrong, the note under the error might make no
sense, but one would still have the type error message. Specialized type rules
are the mechanism through which a function author can supply this information
to the compiler.

Through specialized type rules, the author of a function can add explanations
to the type constraints that are created when the function is used. This way,
whenever a type constraint is blamed for a type error, the explanation of the
author will be added as a hint. On top of that, the author can change the order
in which constraints are checked. This gives the function author some control
over which constraint is more likely to be blamed for an error.

Figure [5.4] shows a function with type rules. The function checkMaybe re-
turns whether the value held by the Maybe equals the second argument. Note
that the type rules exist between the function’s type annotation and its defini-
tion. This is the only place where such type rules are allowed, as it makes sure
that only the author of a function can define type rules.

Line 2 shows the header of a set of type rules. It holds the function name
and it names all the parameters. These parameter names, along with a special
parameter name “return”; can be used in the type rules. Under the header, the
constraint rules can be read from top to bottom. There are three different type
rules: constrain, unify and check. The constrain rule, seen on lines 3, 4 and
19, tells the compiler to generate the constraints for an argument (or the return
value). When omitted, they will be inserted automatically.

Unify type rules, seen on lines 6, 9, 11 and 17, generate equality constraints.
The unify constraint on line 6, for example, states that the first argument (re-
ferred to as maybe) must be unified with Maybe a_1. The reason for this type
rule is given on the next line. This reason is optional. When provided, the error
message linked to the constraint will show the reason as a hint.

At this point it is useful to note that the type variables a_1 and a_2 are
numbered. They refer to the type variables in the type annotation. The variable
a_1 refers to the first occurrence of a in the type annotation, a_2 refers to
the second occurrence of a, etc. Using these numbered variables is obligatory.
Not only does it make the type rules more readable, the compiler uses the
information to generate the error messages. More detail on that will be given
in later sections.

Finally, check rules marry the concepts of type rules and interfaces. Check
type rules represent the demand that there exists some implementation of some
interface. In this case, it demands a_1 to carry the Eq qualifier. This restricts
the types that a_1 can be unified with. Like with unify rules, a reason can
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optionally be given to explain why an implementation is required.

The type rules in figure only apply to calls to checkMaybe where all
arguments are provided. Since functions in Elm are curried, it is possible to call
the function with fewer than two arguments. Sadly, the hints in the type rules
would make no sense in such cases. Curried uses of the function might even
have different pitfalls than fully saturated calls to the function. If the author
of the function feels this is the case, separate sets of errors can be defined for
curried versions of the function. In the above example, one can imagine an extra
set of type rules that starts with errors for checkMaybe maybe, with maybe
referring to the first argument and return referring to the rest of the function
(i.e. a —=> Bool).

Figure [5.5| shows an example of an error in the use of the checkMaybe func-
tion defined above. The error in figure [5.5b| shows the error that would have
been thrown if the type rules were not given. Figure shows the error from
the type rules. The error itself is slightly different as a result of the implementa-
tion (this will be explained in chapter E[), but most importantly: the hint at the
bottom tells us the cause of the error in human terms. It is the hint provided
by the author of the function, seen on line 12 of figure

In the end, specialized type rules are not meant to be used by beginning
programmers. They require some knowledge and insight about constraints and
how a type inferencer generally works. For the writers of libraries, specialized
type rules can be a very powerful weapon to make their libraries easier to use.
A simply worded hint under a complicated type error message could perhaps
make the difference between spending a lot of time decrypting an error message
and (almost) immediately understanding the mistake.
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foo =
checkMaybe
(Just True)
H'barll

(a) An error in the use of checkMaybe

The 2nd argument to function ‘checkMaybe® is causing a mismatch.

275| checkMaybe (Just True) "bar"

Function "checkMaybe' is expecting the 2nd argument to be:

Hint:

I always figure out the type of arguments from left to right. If an argument is acc
eptable when I check it, I assume it is "correct" in subsequent checks. So the prob
lem may actually be in how previous arguments interact with the 2nd.

(b) The error without type rules.

The 1st and 2nd arguments of function ‘checkMaybe' conflict with one another.
273| checkMaybe (Just True) "bar"

Function ‘checkMaybe' is expecting the 2nd argument to be:

Hint:
The author of function 'checkMaybe™ gives the following explanation:
The second argument must match the thing in the Maybe

(¢) The error with type rules

Figure 5.5: The type errors in the use of a function with and without specialized
type rules.

27



Chapter 6
Type graphs

Type graphs have been described in great detail in chapter 7 of Heeren’s PhD
thesis [16]. It is recommended to read sections 7.1, 7.2 and optionally 7.3 before
continuing this chapter. The principles of the type graphs implemented in Elm
are exactly the same as the ones described by Heeren. After a short summary,
we will focus on the enhancements made to the concept of type graphs that are
not described by Heeren.

As a short summary of type graphs, let us take a look at figure It is
a drawing of the type graph that represents the expression not "foo". The
black lines indicate a type hierarchy, the numbered purple lines with arrows are
constraints and the red dashed line shows the type conflict.

Let us first take a look at the cyan encircled tree. This represents the type
of the not function, which is Bool -> Bool. One can see how this type forms
a tree when writing the type in infix notation (i.e. (->) Bool Bool), then
noticing the associativity: (((->) Bool) Bool) before making that explicit in
a binary tree. The app nodes are explicit applications of types to parameters.

From the type of not, one constraint goes out to the rest of the graph.
Constraints connect what would otherwise be islands of types. Through the
constraints and the hierarchy of types, one can reason about which types should
be equal to which. The list below describes what each constraint conceptually
means. This meaning is stored in the error message tied to the constraints.

1. Node 5 must be an instance of the type represented by node O.
2. Node 8 must represent a function with the same arity as node 5.
3. The return type of the function.

4. The first argument of the function.

5. A String literal was filled in here.

Leaving out the purple constraint arrows, one can find a tree with the same
shape as the one representing not starting at vertex 8. The biggest difference
is that this tree appears to describe a -> a, since vertices 10 and 12 are type
variables. This tree represents the shape of the expression, which is a function
call with one argument. This shape is linked through constraints #1 and #2.
Since the type of variables and the “instance” constraints that go along with
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Figure 6.1: The type graph of not "foo"

them are inserted during the solving process, node 5 acts as a placeholder until
the type is inserted. This is a minor detail, but it explains why there is a path
of two constraints between nodes 0 and 8.

Node 7 is the placeholder for the type of the first argument. Constraint #4
links this placeholder to the first argument of the function. Constraint #5 links
it to the type of the String literal that was filled in there. Finally, constraint
#3 links the placeholder for the return type of the function to node 12, which
we already know represents the return type of the function. If this expression
were to live inside another expression (e.g. an if-statement or as an argument
of another function), node 13 would be linked to some type in from that context.

Now that we know how the type graph represents the type of the expression,
we can reason about what has gone wrong. Constraints #1 and #2 demand
that node 0 must represent the same type as node 8. This means that the left
children (i.e. nodes 3 and 11) of both nodes must hold equal types. The same
applies to the right children of those nodes (i.e. 2 and 10). Constraint number
#4 states that node 7 must hold the same type as node 10, which means it must
also hold the same type as node 2. Constraint #5 does this for node 6. This
means that nodes 2, 10, 7 and 6 must hold the same type. The conflict here is
that node 2 holds a Bool while node 6 holds a String.

Now that we know which types are in conflict, we can start thinking about
which constraint is best to blame. A careful reader might note that all con-
straints but constraint #3 are mentioned in the previous paragraph. One can
argue that cutting any of those four constraints would break the link between
nodes 2 and 6. This means that all four constraints say something about the
type error. Despite this, it does not make equal sense for some of those con-
straints to get the blame. After all, if constraint #1 were to get the blame, then
the error would be that somehow not does not have the type Bool -> Bool.
Constraint #4, on the other hand, appears to be the right one to blame. After
all, it says that the first argument of the function has the wrong type.

How this decision is made depends on heuristics. Currently, there are cur-
rently three heuristics implemented. These heuristics are called “Share in error
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paths”, “Constraint number” and “Trust factor”. This thesis will not describe
these heuristics, instead they are described by Hage and Heeren [14] and sections
8.1, 8.2 and 8.3 of Heeren’s PhD thesis [16].

6.1 Mixing two constraint solvers

Like the type graphs described by Heeren, the type graphs in Elm are more
expensive than the built-in constraint solver. Luckily, type graphs need only
be constructed when there is a type error that needs to be investigated. A
module without type errors will be compiled without the type graph ever being
invoked. When the built-in constraint solver comes across a type error, a type
graph is created to investigate the type conflict. The investigation will focus on
the context of the constraint that caused the type error. To explain this, let us
first delve deeper into Elm’s constraint generation and the built-in solver.

As mentioned in chapter [ the canonicalization phase sorts the definitions
and let-expressions to create an ordering of binding groups. Definitions in these
binding groups depend either on other definitions in the same binding group or
definitions in higher binding groups. This vertically sorted tree of interdepen-
dent function definitions is the basis for constraint generation. As a result, the
generated tree of constraints tightly follows the structure of the tree of binding
groups. This makes solving the constraints easier, since the solver can be sure
that the types inside a binding group will not change when recursing into a
deeper binding group. Conversely, the constraints inside a binding group do
affect the types inside of it. Naturally, when a type conflict arises from any of
the constraints, the binding group containing this constraint is the subject of
investigation.

Unfortunately for type graphs, Elm’s built-in constraint solver works with
a state in IO which is maintained through destructive updates. As such, the
types in a binding group are partially resolved when the solver stops to report an
error. Because of the destructive updates, one cannot go back to the unsolved
and untouched binding group for reexamination. The solution is to manually
create a copy of the solving state, which is updated when recursing into a binding
group. This copy is examined when a type conflict occurs.

After the type graph has examined a type conflict and thrown the error(s)
it has deemed most appropriate to throw, the built-in solver can continue with
the remaining binding groups like it would as if the type graph never existed.
At the end of the constraint solving process, the errors are pretty printed and
shown to the user.

6.2 Error path expansion

When there is a conflict between two types, a path of at least one constraint
must exist that states that these two types must be equal. Since the internal
representation of the type graph does not explicitly store all edges (see section
7.2.1 of Heeren’s thesis), some searching needs to be done to unravel the path
that connects the two conflicting vertices in the type graph. When found, this
path contains valuable information: the equality constraints that together cause
the type conflict.
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Internally, all nodes that should represent the same type are grouped in so
called “equivalence groups”. In Figure for example, nodes 2, 10, 7 and 6
are stored in the same equivalence group. This equivalence group also stores
the constraints #4 and #5 and has a reference to the parents of nodes 2 and
10.

Finding type conflicts in this representation is relatively easy: find two nodes
in the same equivalence group that cannot be unified. As such, the conflict
between nodes 2 and 6 is quickly found. Earlier, in the introduction of this
chapter, we identified constraints #1, #2, #4 and #5 as contributing to this
conflict. Now we shall take a look at how the search algorithm would identify
those same constraints.

The starting point of the algorithm is the pair of conflicting vertices. In our
example, these are nodes 2 and 6. The goal is to find a path from one node to
the other. The means to find this path is a breadth-first search (BFS). Since the
edges in the graph are symmetric, it does not matter from which of the nodes
the search is started.

IterationInfo = II
{ current :: Vertex
, goal :: Vertex
, path :: Path
, treeWalkStack :: [ChildSide]

expand :: IterationInfo -> [IterationInfo]
expand ii =
walkOverConstraintEdge ii ++
walkUpParent ii ++
walkDownChild ii

bfs :: [IterationInfo] -> [Pathl]
bfs successes =
let
nextIteration :: [IterationInfo]

nextIteration = concatMap expand successes

finished :: IterationInfo -> IterationInfo
finished inf =
current inf == goal inf &&

null (treeWalkStack inf)

anyFinished :: [IterationInfo]
anyFinished = filter finished nextIteration
in
case anyFinished of
[] -> bfs nextIteration
xs —> map path xs

Figure 6.2: High level BFS algorithm
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app var | app
3 4 11 12
app | Bool app | var
1 2 9 10 13
— Bool — var var
6 7
String [>~—" var

Figure 6.3: BFS in action

The BFS algorithm, shown in figure works with a list of successes:
throughout the algorithm, a list is maintained containing information on the
paths currently being searched. This information includes the current vertex,
the goal vertex, the path constructed thus far and a stack of child sides that
will be explained later. In every iteration, this list of successes is expanded:
for every path currently being searched, all next possible steps are generated.
This is done in the expand function. If any of the successes has reached the
destination, then the algorithm stops and returns the paths that have been
found.

The algorithm is shown in action in figure[6.3] The orange arrows represent
the actions of the BF'S algorithm. There are three ways to expand a path. The
first and simplest way is walking over a constraint edge. After all, the constraint
states that the two nodes must represent equal types. This can be seen in the
first two iterations, going from node 6 to 7 and from node 7 to 10. The second
and third ways are walking up and down the type hierarchy. The reasoning
for that is as follows: when two type applications are equal, both left children
and both right children must be equal too. In figure nodes 0 and 8 must
be equal. This equality trickles down to the children: nodes 3 and 11 must be
equal, nodes 4 and 12, nodes 1 and 9, etc.

When going up the tree, one must remember to at one point go back down
the tree. Specifically, one must get back down in the reverse order of getting
up. In the example, one go up the right edge of the tree from node 10 to
node 11. From node 11, one go up the left edge to get to node 8. This means
the reasoning is now about equalities between types that contain the originally
conflicting type in its left and then right child. At one point one must go down a
left and right child to get back to the originally conflicting type. In the example
this happens from nodes 0 to 3 and nodes 3 to 2.

The orange lists containing R or L drawn next to the nodes display the
treeWalkStack. This treeWalkStack is for keeping track of the edges that
have been walked up. When walking up an edge, the side of the edge (R or L) is

32



49

app app

1 2 4 5)
Maybe Bool Maybe String

#1

Figure 6.4: BFS limitation. Only constraint #1 would be identified.

pushed upon this stack. Walking down an edge is only possible when the stack
is not empty. One can only walk down the edge direction stated by the top of
the stack. Walking down an edge pops a value off the stack. The stack must be
empty when the goal node has been reached.

6.2.1 Limitations

A very careful reader might notice that the BFS algorithm described in the
previous section can only find shortest paths. In theory, the situation drawn
in figure [6.4] could occur, where two paths describe the same conflict. In this
example, only constraint #1 would be identified. One could perhaps change the
algorithm to continue searching after a path has been found, making sure not to
not get stuck in a cycle. This might cause trouble, though, when infinite types
are involved. Currently, the path expansion algorithm always terminates when
a finite path exists. Infinite types can present themselves as cycles in the type
hierarchy. With such cycles, the BFS algorithm can walk up this type hierarchy
indefinitely without ever going back down.

6.3 Reconstructing types

Building a type from a coherent type graph is relatively simple. Section 7.3.5
of Heeren’s PhD thesis [16] describes how to find a substitution for a given type
variable. The substituteVariable function described in that section takes
a node’s number and returns a Maybe type. This function fails by returning
a Nothing when the type is involved in a type conflict or when the type is
infinite. This is a shame, since those are precisely the types that are interesting
to reconstruct to the best of the type graph’s ability.

Reconstructing both conflicted and infinite types is useful for error messages.
When a constraint has been decided to get the blame of a type conflict, the types
on both ends of the constraint need to be displayed in the error shown to the
end user. The node at one end of the constraint will hold the “expected” type,
whereas the other will hold the “actual” type. Infinite types have their own error
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messages, which show as much detail of the infinite type as possible, without
printing incessantly.

Elm’s built-in constraint solver already has a mechanism which attempts
to reconstruct infinite types. The destructively updating nature of the built-
in solver strongly hinders its ability to perform a proper reconstruction. Type
graphs do not suffer from this hindrance, since they can represent infinite types
in a finite amount of vertices and edges. The base technique for this recon-
struction has however been the basis for reconstructing infinite types using type
graphs.

In Elm’s built-in solver, an infinite type is reconstructed by recursing over the
type’s structure, which is stored in the solving state. Whenever this recursive
algorithm comes across a structure it has visited before, it concludes that has
found an infinite type and replaces the structure with a type variable with the
name “oc0”. Types involved in a conflict are replaced with a type variable named
“?”. The type displayed to the user will display the resulting type. Sadly, the
errors are often just question marks, since infinite types are often also involved
in type conflicts as well.

The type graph is much less restricted. After all, no information has been lost
by destructive unifications of types. The algorithm for reconstructing infinite
and conflicting types is the same. It is based on Heeren’s substituteVariable
function and includes Elm’s technique of replacing seen type variables with “co”

Figure [6.5] shows the algorithm that reconstructs a type in pseudo code. It
keeps track of the visited vertices in a set. When a vertex is revisited, co is
filled in (line 3). Otherwise, the contents of the vertex is inspected. If the
vertex holds a type application, the algorithm recurses on the left and right
children and returns their combination. Type constructors are returned without
modification.

Type variables require some more effort. The equivalence group containing
the type variable vertex is inspected to see if there are any more specific types
(line 27). This most specific type is returned if the type variable is part of
a coherent equivalence group. That is, the variable is not involved in a type
conflict. A uniquely named type variable is returned if it turns out that the
most specific type of the group is again a type variable. The algorithm recurses
when a type constructor or type application is found to be the most specific
type of the group (line 32).

Type variables part of a type conflict also generates a uniquely named type
var (line 35). One might wonder whether this does not defeat the purpose of
reconstructing types involved in type conflicts. The reason why it does not lies
with the type applications and constructors. In lines 14 to 23, type applications
and constructors are treated as though they live in a coherent equivalence group.
In reality, they could very well be. Reconstructing node 2 in figure for
example (also shown in , would give a Bool, even though this node is in
conflict with the String in node 6.

In practice, reconstructing conflicted types works as well as Elm’s built-in
solver. Reconstructing infinite types works quite a bit better.

Table [6.1] shows the difference between the results of the reconstructions of
infinite types. The first column contains expressions that have infinite types.
The second column shows how Elm’s built-in constraint solver reconstructs the
infinite types. The last column shows the types reconstructed by the type
graph. Sadly, built-in type reconstruction failed for all but the last expression.
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reconstructType node graph seen
| node ‘member‘ seen = TypeVar oo

| otherwise =
let
group = equivalenceGroupOf node
seen’ = insert node seen

-- Some unique name
uniqueName :: String
in
case vertexContents node group of
-— Recurse on children
App left right —>
let
1tp = reconstructType left graph seen’
rtp = reconstructType right graph seen’
in
TypeApp 1ltp rtp

-— Return constructor name
Constructor name ->
TypeConstructor name

-- Try to find substitution
Var ->
case typeOfGroup group of
Right (_, Var) ->
TypeVar uniqueName

Right (node’, _) ->
reconstructType node’ graph seen’

Left typeConflict ->
TypeVar uniqueName

reconstructType :: VertexId -> TypeGraph -> Set VertexId -> Type

Figure 6.5: Reconstructing types

Code Built-in | Type graph
let inf = inf inf in inf e o0 —> 00

let inf = [inf] in inf ? List oo

let inf = ("str", inf) in inf ? (String, oo )
foo a = if True then a a else 0 >> a | o0 -> a | o0 -> a

Table 6.1: Reconstructed types, the built-in constraint solver versus type graphs

The last expression is also the only one where the error was worded as a type

inconsistency, rather than an infinite type.
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6.4 Records

Records in Elm are quite flexible. One can create a record with any number of
fields, access them and update the values of individual fields in a record. One
can even write functions that take any record as argument as long as they have
certain members with certain types. These flexible records are based on a paper
written by Leijen [26], differing only in the ability to add or remove members
to and from records dynamically, which Elm has disabled for performance and
program readability reasons [7].

Unlike functions and algebraic data types, records cannot be described in
terms of type constants, type applications and type variables. The biggest
reason for this is the polymorphism that allows functions to merely demand the
existence of specific members in the records provided as arguments. This means
that the type graphs described thus far are ill equipped for reasoning about
records. Some kind of extension is needed to be able to cope with records.

0 4
someRecord = Record EmptyRecord
{ a = True
, ¢ = "str" a b ¢
, b = False
} 1 2 3
. Bool Bool String
(a) A simple record con-
stant. (b) Its type graph

Figure 6.6: A simple record constant and its graph representation.

Let us first take a look at an ordinary record. Figure [6.6] shows a simple
record and the type graph representing its type. In the type graph, node 0
contains a simple type constant called Record. Nodes 1, 2 and 3 contain the
types of the members of the record. Note that the order of members differs
between the code and the type graph. The type graph adds the types of the
members arbitrarily in alphabetical order since order is irrelevant.

The blue edges going from node 0 to nodes 1, 2 and three are neither type
hierarchy nor constraint edges. The records keep track of where the types of
its members are located in the graph in a special kind of edge called “member”
edges. These member edges simply store the name of the member and a reference
to the node representing its type.

Finally, node 4 contains an EmptyRecord constructor. This is to account
for the ability to extend records. Even though adding or removing members to
and from records is disallowed, one can still update values in records. One
could, for example, write otherRecord = { someRecord | a = False } or
even otherRecord = { someRecord | a = "str" }, although the ability to
change types of record members may be unintentional. Since the record in fig-
ure is not based on any other record, the type graph just holds an empty
record as placeholder.

Records must always be an extension of either an empty record, another
record or a type variable. Records that are not based on other records, like
the one in figure [6.6] extend the empty record. A Record that extends another
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record forms a record containing the union of the members of both records.
The polymorphism of records becomes apparent when a record extends a type
variable, which means that the record can have any number of other members
besides the ones defined in the record itself. This can be seen in figure [6.7}
where the argument to foo can take any record as long as it contains a member
baz of type Bool. Record extension is a transitive relationship between records.
A record can extend another record which in turn extends a type variable. This
would make the first record as polymorphic as the record it extends.

foo : { bar | baz : Bool } -> Bool
foo x = x.baz

Figure 6.7: An instance of row polymorphism.

6.4.1 Finding type conflicts

Type conflicts are found by finding two nodes in the same equality group that
cannot be unified. The algorithm that does this needs not be modified to reason
about the individual members of records. After all, unless those members are
records themselves, they act like any other normal type. The records themselves,
however, require some special attention. Fortunately, the rules of type constants
still apply to records. Bool types, for example, cannot be unified with records
and will thus be marked as incompatible.

members :: Record -> Set Member

members EmptyRecord = empty

members TypeVariable = empty

members (Record mems extends) =
mems U members extends

membersMatch :: Record -> Record -> Bool
membersMatch left right =
case (monomorphic left, monomorphic right) of
(True, True) -> members left == members right
(False, True) -> members left C members right
(True, False) -> members left DO members right
(True, True) -> True

Figure 6.8: Deciding whether two record types conflict

Additional logic, however, is needed to compare a pair of records. This
logic is shown in The comparison depends on what both records extend.
If both records are monomorphic, meaning that their set of members is fixed,
then neither record is allowed to contain members that the other record does
not have. In other words, the sets of members must be equal. This is not the
case when either or both of the records are polymorphic. When only one of the
records is polymorphic, then its set of members must be a subset of that of the
monomorphic record. The members may be completely disjoint when both of
the records are polymorphic.
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When checking compatibility between two records, not only must the two
records have comparable sets of members, the members the two records have
in common must have the same type. This is a bit trickier and cannot easily
be done in the function that checks whether an equivalence group is consistent.
After all, the types of the members exist in different equivalence groups which
themselves may be inconsistent for other reasons. Figure demonstrates a
situation where two records are linked by a constraint.

0 4
Record EmptyRecord
b c
2 3
Bool String
v
7
Bool
b
) 9
Record Var

Figure 6.9: A monomorphic record constrained to a polymorphic one.

The record at node 0 is the same as the record in figure[6.6] Since the record
at node 5 extends a type variable, it is polymorphic. Its members must be
a subset of the members of the record at node 0. Nevertheless, the members
both records have in common must have the same type. Consequently, those
common members must end up in the same equivalence group. This is made
sure of during the type graph building phase.

Whenever a constraint is introduced that causes two records to be put in
the same equivalence group, this constraint is duplicated among the common
members of the two records. In the example, constraint #1 forces the two
records directly into the same equivalence group. This means that the common
members of the two records, namely a and b must share equivalence groups.
After all, member a of one record must have the same type as the a member
of the other record. The two dotted purple arrows show how constraint #1 is
duplicated amongst those members. Since the record at node 5 lacks a member
¢, the ¢ member of the record at node 0 is left alone.

This method properly observes the rules of when two records can be unified.
The duplication of a constraint among the members of two records does, how-
ever, have a bad effect on error messages. After all, when two records have a
common member but with conflicting types, e.g. {a = True} and {a = "str"},
the type error will not state the type conflict not as one between two records,
but one between a Bool and a String. This is highly undesirable. This can be
resolved by holding a reference back to the original records in the duplicated
constraints and making sure to display the original records rather their members
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in the type error.
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Chapter 7
Siblings

Sibling functions are functions that are conceptually similar, but in reality have
different types. Often, one function is confused for the other. Hints that say
“Did you mean function <foo> instead?” can be very powerful when shown at
the right time. This is exactly what siblings do.

For this to work, the compiler requires some way of knowing which functions
are conceptually similar. When are two functions easily confused? That ques-
tion is nontrivial, especially when looking for an algorithm to have the compiler
find similar functions on its own. After all, several factors contribute to whether
functions are easily confused. Sometimes functions look similar (e.g. (<|) and
(1>)). Sometimes two functions have very similar functionalities, but take a
different approach (e.g. foldl and foldr). Other times two functions are con-
fused because people are used to a different behavior from another programming
language. The + operator, for instance, performs concatenation in JavaScript.
In Elm, it merely adds numbers. The (++) operator denotes concatenation.

Rather than trying to find some algorithm to judge these cases, it is better
to use human insight to judge when two functions are similar. To allow humans
to tell the compiler about similar functions, some (provisional) syntax has been
introduced:

[sibling foo resembles bar |

This statement states that some function called foo can be confused for
another function called bar. In the current implementation, this is a one-way
relationship, meaning that when foo is written down while bar is meant, a hint
will be shown suggesting to use bar instead. Confusing bar for foo will not
throw such a hint. This is a design decision that leaves open the possibility of
adding a custom message to this hint. It is trivial to make sibling definitions go
both ways.

Once the compiler knows which functions can be considered easily confused,
its task becomes deciding when it is useful to show such a hint. There are three
important factors in deciding when to throw a hint:

1. The function is involved in a type error.
2. Its sibling function solves this type error.

3. This sibling does not cause new type errors.
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When a certain function is not involved in any type error, directly or in-
directly, one can be sure that the function has nothing to do with the error.
Suggesting alternatives for functions that have nothing to do with an error
would help no one. It would at best be useless and at worst be very confusing.
Secondly, the compiler must be sure that a function’s sibling actually solves the
type error. Otherwise the hints can be deceptive, leading one to think the wrong
function is used even though the problem lies elsewhere. Thirdly, the use of a
sibling should not cause new type errors. As it turns out, type graphs are ideal
for deciding when a sibling solves the type error some function is involved in.

foo : Int -> String
bar : String -> Int

sibling foo resembles bar

baz = foo "15"

(a) A simple record constant.

#2
5 7
e
var [ app
10 11
app var
8 9
— var w#g
#4
6 12
L
String/\ var

(b) Its type graph

Figure 7.1: Siblings in action. foo here is confused for bar in the definition
baz The type graph shows how the type of foo is replaced by bar to see if that
resolves the type error.

Figure |7.1] shows siblings in action. Figure shows the types of the
functions foo and bar. The implementations are not given. The sibling states
that foo resembles bar. In the definition of baz, foo is called with a String,
even though the function expects an Int. Figure [7.1b]shows the type graph of
the expression foo "15".

The type represented by the type hierarchy starting at node 0 is the type
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of foo. Constraint #1 states that node 5 must be an instance of the type of
foo. Constraint #2 states that the type represented by note 7 must have the
same arity as the function represented by node #5. Constraint #3 states that
node 12 is the first argument of the function. Constraint #4 states that a literal
String was filled in as the first argument of the function call. This means that
nodes 2 and 6 are in conflict: node 2 holds an Int and node 6 holds a String.
The red path connecting the two nodes shows which constraints are involved in
this type error. In this case, all three constraints are involved.

The most interesting constraint here is #1. This constraint specifically states
that the type of the function foo is inserted there. Since this constraint appears
in the error path, it is now certain that the foo is involved in the type conflict.
It is then useful to see if any of its siblings, which in this case is just the function
bar, would resolve this type error. To try this, the type of foo is taken out of
the type graph and replaced by the type of bar, reconnecting constraint #1 to
the new node 0.

One useful property of an instance constraint, such as constraint #1, is that
an instance constraint is necessarily the only constraint that connects the the
type of the function to anything else. This is because the type of a function
is freshly created when an instance constraint is encountered. This property is
necessary for verifying that a sibling resolves a type conflict and does not cause
any new type conflicts.

When the type graph holds the type of the sibling bar, it can be verified
that using bar instead of foo would fix the type error and not cause any new
type errors. When, after the replacement, the instance constraint is still part of
an error path, then either the original type conflict was not resolved or a new
type conflict was created. Since the instance constraint is the only constraint
connecting the type of the sibling to the rest of the graph, it being a part of an
error path must necessarily mean that the type of the sibling is in conflict with
some other type in the graph.

In figure the type of bar luckily resolves the error and does not cause
any new ones. Its first parameter is a String, which is exactly the same as the
argument given. Whereas nodes 2 and 6 were in conflict before, they are not
anymore when foo is replaced by bar. A hint is generated that suggests to use
bar instead of foo.

Unlike in Heeren’s implementation of siblings [16], siblings do not decide
which constraint gets the blame. In Heeren’s implementation, the instance
constraint (constraint #1) would have gotten the blame, since it is the deciding
factor in deciding whether the sibling works. This constraint holds an error
message that says the function foo is somehow used incorrectly. The above
described implementation, however, allows the type graph heuristics to blame
any of the constraints in the error path. This includes the instance constraint,
#1, but also constraints #2, #3 and #4. In this particular case, constraint #3
is chosen, since it states specifically that the first argument of the function has
the wrong type. Figure shows the resulting error.
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The argument to function “foo’ is causing a mismatch.

39| foo "15"

Function "foo  1is expecting the argument to be:

Hint: Did you mean bar instead of foo?

Figure 7.2: The error shown for the code shown in figure
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Chapter 8

Interfaces

The interfaces implemented in Elm are very similar to Haskell 98 type classes.
As with any implementation of type classes, some design decisions were made.
Most design decisions were made to make type classes as simple as possible.
This is because it saves time and keeps things relatively easy. Following Simon
P. Jones’ description of the design space of type classes [24], the design decisions
are as follows:

Multi-parameter type classes are not supported.

All of the constraints in the context of an interface declaration must be of
the form C' a, where C' is another interface and « is a type variable.

No context reduction is performed.
Overlapping instances are not forbidden.

Instance declarations, called “implementations”, demand that the types
are simple, meaning that the types for which an interface is implemented
must be of the form T oy ... oy, with T a type constructor and oy to a,
distinct type variables.

The constraints in the context of an implementation must be simple.

The set of type variables occurring in the context of an interface declara-
tion must be a subset of the type variables in the type of the interface.

The members of an interface are allowed to have a context with more
constraints than the interface header describes.

The check for missing implementations happens during type inferencing.
This is as opposed to resolving the implementations at the end of the
compilation process. Implementations of concrete types must be available
when they are demanded.

Since the research focused on implementing support for type classes/inter-
faces in type classes, the support of them ends right after constraint solving.
This means that interfaces and implementations generate no code. This jus-
tifies particularly the lack of context reduction, since that would happen after
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the constraint solving. This chapter will not focus on how interfaces are im-
plemented. There is plenty of literature that describes this process [24], [31].
Instead, the focus lies on their specific interaction with type graphs.

8.1 Qualifiers in type graphs

The main purpose of type graphs is to investigate type conflicts and to reason
about the types of an expression. The introduction of interfaces demands the
reasoning of types to include interfaces and the existence of a certain implemen-
tation for a given type. It is not strictly necessary to let type graphs do this
heavy lifting. In Helium, for example, the type graphs do not reason about type
class predicates, although its implementation of type classes is limited in the
first place: all instances are predefined, no new instances can be created. Even
with a full fledged class/interface system, though, a type graph could be left to
reason about type conflicts unrelated to them. The resolving of type classes can
after all be done with the built-in solver, albeit with some modifications.

Despite being able to reason about interfaces without invoking type graphs,
it is useful to investigate whether type graphs can improve error messages. As
has been said before, the built-in constraint solver is biased in blaming the
first constraint that directly causes some unification to fail. Type graphs can
eliminate this bias completely. Perhaps this can have some effect on the quality
of type error messages related to interfaces too.

The most important aspect of interfaces is that they allow ad-hoc polymor-
phism [38]. One can make a function polymorphic in some type variable, but
demand that an implementation of some interface exists for whichever type is
filled in for this type variable in a function call. The reasoning about these
predicates and how they flow from type variables to specific types is something
that can be built into type graphs. The way of doing this is labeling vertices
with their interface predicates.

#1 #2
0 L— 3 /] 8
app var app
3 4 11 12
app Bool app var
#3
1 2 9 10 13
— var — var var
t Eq #4
6 7
5
String \#% var

Figure 8.1: The type graph of foo "str", with foo : a -> Bool | Eq a

Let us first take a look at how this labeling affects the type graph. Figure
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shows the type graph of the expression foo "str". The type of foo is the
type hierarchy starting at node 0. Note that the first parameter of foo is a type
variable, but has a label Eq hanging under it. Type variables know their own
qualifiers. If type variable a were to be repeated in the type of foo, all nodes
representing a would hold the Eq label.

With nodes holding labels with predicates, algorithms on the graph can rea-
son about these predicates in relation to the other types of the graph. Currently,
there is a separate algorithm specifically designed to find missing implementa-
tions. It investigates the equivalence groups as described in the following pseudo
code algorithm:

groupPredicates :: EquivalenceGroup -> [Predicate]
groupPredicates grp =
concatMap predicatelabels (typeVars grp)

checkGroup :: EquivalenceGroup -> Bool
checkGroup grp =
and
[ implementationExists pred (reconstructType vertex)
| pred <- groupPredicates grp
, vertex <- vertices grp
, not (isTypeVar vertex)

]

checkGraph :: TypeGraph -> Bool
checkGraph grph =
and checkGroup (equivalenceGroups graph)

This rather primitive algorithm searches the type graph for missing imple-
mentations. The checkGroup function returns false if a type is missing infor-
mation. The code to generate an error for the specific missing implementation
has been left out for simplicity. The checkGroup function checks for missing
implementations in a single group. First, through groupPredicates, it collects
all the predicates held by the type variables. Then for all vertices that do not
hold type variables, it checks whether there exists an implementation of the
type represented by that vertex.

The findImplementation function is independent from the type graph. It
returns whether an implementation can be found that matches the given type.
This algorithm merely replicates the behavior of the built-in constraint solver.
One benefit of this algorithm is that it can reason about missing implementations
even when type conflicts are present. This means that one can decide to check
for missing implementations after it has been made sure that there are not any
other type errors. The compiler can be made to prefer throwing normal errors
before errors about missing implementations, or the other way around. The
built-in solver resolves implementations as soon as a type variable is unified
with a type constant (or type application). This means that it could throw
a missing implementation error when a normal type error would explain the
situation more appropriately.

This situation is shown in figure In Figure function foo is defined
with type foo : a -> a | Eq a. Under that, Foo is defined as an Algebraic
Data Structure with just one constructor. The bar function is where it goes
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wrong. With Foo being its argument, there are two problems: There is no imple-
mentation of Eq for Foo and even if there was, the return type (also Foo) would
not match the Bool expected by it being the condition of the if-statement.
The (modified) built-in inferencer throws two errors: the ones seen in figure
and The type graph only throws one error, which is the one shown
in Since both problems have the same cause, namely Foo being given as
an argument to foo, it can be argued that the error thrown by the type graph
is more appropriate.

foo : a->a | Eq a
foo a =

if isis a a

then a

N

else a foo' is being used in an unexpected way.

320| bar = if foo Foo then "baz" else ""

type Foo = Foo
Based on its definition, 'foo' has this type:

bar = -> a | Main.Eq a
if foo Foo
then "baz" But you are trying to use it as:
else "qux" >

(a) The code. (b) Error thrown by type graph.
This condition does not evaluate to a boolean value, True or False.
320| bar = if foo Foo then "baz" else ""

You have given me a condition with this type:

But I need it to be:

(c) First error thrown by built-in inferencer.
Missing a specific implementation of an interface.
320| bar = if foo Foo then "baz" else ""
In order for this code to work, there needs to be an implementation of ‘Eq' for

Foo

This implementation should either be in this file or in one of your imports.
Perhaps you forgot to import a module that provides this implementation?

(d) Second error thrown by built-in inferencer.

Figure 8.2: Code with both a type conflict and a missing implementation.
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Chapter 9

Specialized type rules

Specialized type rules allow the authors of functions to create custom hints for
error messages shown when their functions are misused. Those custom hints can
be used to explain common pitfalls or otherwise explain an otherwise technical
error message in terms of the functionality that a function provides. Specialized
type rules give developers the feeling that they are in control of type inferencing
and the messages shown when two types cannot be unified. They cannot, how-
ever, write type rules that would fail when the original type inferencer would
succeed, or succeed when the original type inferencer would fail. They also
do not control the error messages themselves, only the hints that are added to
them.

Specialized type rules essentially entail the overriding of the type constraints
generated when the function is applied to some arguments. The syntax of type
rules thus reads as a description of which constraints are to be generated and in
what order. This requires some insight about the constraint generation process,
though luckily there are very clear error messages when the type rules of a
function are inconsistent with its type annotation.

Let us take a look at the syntax of type rules. Figure [0.I] shows an ex-
ample function with specialized type rules, it is the same as figure As
explained in chapter [5.4] constrain rules recursively constrain either one of
the arguments or the return type. When left out, they are inserted automat-
ically during the validation phase (the validation phase is described in section
. The unify rules create equality constraints. Finally, check rules enforce
interface predicates. Specialized type rules, when defined, must reside between
the type annotation and the definition of a function. This conveniently forces
the type annotation to exist, which is strictly necessary. Specialized type rules
can be created for all curried versions of a function, in the example, errors for
checkMaybe and checkMaybe maybe could have optionally been defined besides
checkmaybe maybe val, but this was left out for brevity. Rules pertaining uni-
fication and predicate checking can optionally be given a reason. This reason
will be shown in a hint to the user when the constraint cannot be satisfied.
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checkMaybe : Maybe a -> a -> Bool | Eq a
errors for checkMaybe maybe val where
constrain maybe
constrain val

unify maybe with Maybe a_1
because The first argument has to be a Maybe.

unify val with a_2

unify a_2 with a_1
because The second argument must match the thing in the Maybe|

check Eq a_1
because Eq is needed to test equality.

unify return with Bool
constrain return
checkMaybe maybe val =
case maybe of

Nothing -> False
Just x -> isis x val

Figure 9.1: A function definition with type rules.

9.1 Replacing constraints

The magic of specialized type rules happens in the constraint generation phase
of the compiler. As mentioned in chapter [{.2] constraint generation works in
a top-down fashion. When the constraint generator comes across a function
application, the state is searched to see if there are any type rules that match
the function application with the amount of arguments it has been given. If such
type rules exist, then the constraints defined by those type rules are generated,
otherwise the normal constraints are generated. The function deciding this is
described with pseudo code in figure [9.2

The customConstraints function generates the constraints as defined by
the specialized type rules. It iterates over the constraints defined in the type
rules from top to bottom and builds the constraint tree from there. The function
for generating the constraint(s) of a single type rule is shown in figure

The customTypeRule takes the expression of the function application, a
single type rule and it returns a tree of constraints. The constraints generated
depends on the type rule. With constrain type rules, shown on lines 4 and
5, the existing constrain function is called to generate the constraints of an
argument or the return type of the function.

The unify rule generates an equality constraint, shown on lines 7 to 13. First
it instantiates the types of both the left hand side (lhs) and right hand side (rhs).
This instantiation uses the state monad (which in reality is I0) to make sure
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constrainTypeApplication :: Expression -> ConstraintTree
constrainTypeApplication (FunctionApplication funcName args) =
let
typeRules = findTypeRules funcName (length args)
in
case typeRules of
Nothing -> builtInConstraints funcName args
Just rules -> customConstraints rules funcName args

Figure 9.2: The function deciding whether normal or custom constraints are to
be generated.

customTypeRule :: Expression -> TypeRule -> State ConstraintTree
customTypeRule expr rule =
case rule of
ConstrainRule arg ->
constrain (getArg arg expr)

UnifyRule lhs rhs hint ->
do
1hsTp <- instantiateType lhs
rhsTp <- instantiateType rhs
errorMessage <- decideErrorMessage lhs rhs hint

return (EqualityConstraint 1hsTp rhsTp errorMessage)

CheckRule iface var hint ->
do
varTp <- intantiateType var
fresh <- freshTypeVariable
fresh’ <- addQualifier iface fresh
freshTp <- instantiateType fresh’

errorMessage <- decideErrorMessage var freshTp hint

return (EqualityConstraint varTp freshTp errorMessage)

Figure 9.3: The function for generating the constraint(s) of one single type rule.

that already instantiated types are re-used. The function decideErrorMessage
generates an appropriate error message to show to the user when the constraint
is broken. The instantiated types and the error message are stored in an equality
constraint, which is returned.

The check rule generates a constraint very similar to that of the unify
rule. Conceptually, the rule check Eq a_1 can be seen as an equality con-
straint between the type variable a_1 and a fresh type variable that holds the
SomeClass qualifier. This means that check Eq a_1 is merely syntactic sugar
for unify a_1 with b | Eq b.
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The decideErrorMessage requires some attention, as it decides the error
message based on a unify or check type rule. The error generated by this
function can tell the user whether the error lies with a single argument that has
an unexpected type, the return type being different than expected, a conflict
between the types suggested by the arguments and the return type or a conflict
between two or more arguments. These errors differ from the error messages
added to constraints when no type rules are involved, yet they are still generated
automatically. The big question here is: how does this function know which
parameters the type rules reason about?

Part of the answer to this question is numbered type variables. In figure
the type of the function is Maybe a -> a -> Bool | Eq a. In the type
rules of that function, there are mentions of a_1 and a_2. These numbered
type variables actually refer to the type variables in the type annotation. The
numbers referring to the occurrence of the type variable. In this example, a_1
refers to the a in Maybe a. The variable a_2 refers to the a of the second
parameter. Type variables in qualifiers never need to be referred to. As such,
the a of the Eq qualifier has no associated numbered type variable.

It is easy to calculate to which parameters (or return value) numbered type
vars refer to. After all, this information is stored in the type annotation. Besides
numbered type variables, type rules can also contain references to the arguments
and return value themselves. In figure [0.1] these are maybe, val and return.
These already refer to parameters and the return value. Finally, one can use
fresh type variables. It is difficult to reason about the parameters those refer to,
since they have no inherent link to the type annotation or variables. Luckily,
the numbered type vars and arguments can provide enough information to judge
what fresh type variables refer to: all fresh type variables must somehow be
connected to either numbered type variables or arguments through type rules.
Fresh type variables that appear in the same rules as numbered type vars or
arguments are judged to refer to the same parameters as those other variables.
These references can be passed on from one fresh variable to another. With a
fixed point algorithm no fresh variable will be left without at least one reference
to a parameter or return value, unless the fresh type variable describes a dangling
type. Dangling types are, however, not possible, since it would require a type
variable on the left hand side that has not yet been introduced.

Once all type variables are linked to the parameters and /or return value they
refer to, the type rules containing these type variables can use that information
to figure out what they refer to. The parameters and/or return type that a
type rule refers to is defined as the union of the parameters/return types all
type variables mentioned in the type rules refer to.

Figure[9.4]shows the results of this effort. The checkMaybe function in figure
is defined in figure The algorithm finds out that the conflict is between
the types of the first and second arguments of the function. It also shows the
hint provided by the author of checkMaybe at the bottom of the error message.

9.2 Validating type rules
Specialized type rules can be very powerful in defining custom hints to error

messages and defining an order in which the type of a function application is
to be checked. When left unchecked, though, a programmer could write type
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IThe 1st and 2nd arguments of function ‘checkMaybe' conflict with one another.

273] checkMaybe (Just True) "bar"

foo = Function ‘checkMaybe' is expecting the 2nd argument to be:
checkMaybe

(Just True)
|lbar n

The author of function 'checkMaybe' gives the following explanation:
The second argument must match the thing in the Maybe

(a) An error in the use of
checkMaybe (b) Resulting error

Figure 9.4: A type error in the use of a function with specialized type rules.

rules that make no sense or describe a type that is not in line with the type
of the function annotation. One could, for example write type rules that de-
mand implementations of interfaces that the type annotation does not demand.
Programmers ashamed of how complicated their types have become could hide
complicated details away from the type annotation. In another sense, a pro-
grammer could make a mistake and forget a rule or have the type rules describe
the wrong type. This would have a disastrous effect, as it would mean the type
annotation of a function is not necessarily the real type of the function anymore.
This is highly undesirable. Fortunately, there is a solution for this: validating
the type rules.

Before validation, a little check runs to see if there are any missing constrain
rules. Any missing parameter constrain rules are added before all other rules.
If the return constrain rule is missing, it is added at the end. This way,
constrain rules can be left out.

The first real form of validation requires that all parameters of the function
(in figure maybe and val) and return appear on the left hand side of at
least one unify type rule. Secondly, all numbered type variables must appear at
least once on the right hand side of a unify type rule. The first check enforces
that rules exist that reason about every part of the function. The second check
is needed for the parameter matching described in the previous section. It would
be difficult to find out which parameters type rules reason about if the numbered
type variables are not used.

Once these basic checks have been performed, the type inferencer makes sure
that the type annotation agrees fully with the type described by the type rules.
On a high level, this is done by generating constraints between the type of the
type annotation and the type described by the type rules. This happens in the
constraint generation phase. Once these constraints exist, the constraint solver
will make sure that the right error message is thrown when the type described
by the type rule does not match the type annotation.

Two sets of constraints are generated. The first set, generated for the type
rules in figure can be seen in figure In the box on the left we can see
the type of the type annotation, split up by parameters and return value. The
pairs of boxes on the right match the type rules in order. An observant reader
might notice that constrain rules are missing in this set of constraints. This is
because constrain rules do not affect the type represented by the type rules.
Finally, type variables with the same name are linked with gray lines. This
shows that variables with the same name represent the same entity. In a type
graph, all variables with the same name would share the same vertex.
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Figure 9.5: The first set of constraints used to validate type rules.

The first three constraints link the type annotation to the type rules. The
type of the first parameter is linked to the type variable maybe in constraint
#1. The type of the second parameter to val in constraint #2 and the return
type Bool to return in constraint #3. Constraints such as #1 and #2 carry
an error message that states that the argument in the type rule does not match
the argument in the type annotation. Constraint #3 carries the message that
the return type of the type rules does not match that of the type annotation.

Constraints #4, #5, #6 and #8 link the left hand sides of the unify rules
to their right hand sides. Constraint #7 conceptually does the same for the
check rule, with the variable being checked being the left hand side and a fresh
variable (arbitrarily called c in this example) as the right hand side. Constraints
#4, #5, #6, #7 and #8 carry an error message that states that the left hand
side of the type rule does not match the right hand side.

The type variables in the type annotation, in the example just a, are made
rigid (a.k.a. skolem variables). Rigid type variables, unlike flexible variables,
cannot be unified with concrete types. They must remain polymorphic. This
prevents type rules such as unify a_1 with Bool from passing the validation,
which would have made the type rules describe a more monomorphic type than
the type annotation. Rigid type variables also cannot be unified with other type
variables that have more interface qualifiers than themselves. This excludes the
possibility of writing check rules with qualifiers that the type annotation knows
nothing about.

To demonstrate this, let us add the following rule to the type rules in figure
9. 1l
|check Ord a_1 |

The type of checkMaybe does not include Ord a. As such the addition of
this check rule results in an error. This error is shown in figure It shows
the qualifiers that the type annotation expects for that specific variable, and
the qualifier(s) described by the type rules.

One error that has not been accounted for yet is forgetting to check for a
qualifier. While rigid type variables cannot be unified with type variables with
more qualifiers, they can be unified with type variables with fewer. The above
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The qualifier in this constraint does not exist in the type annotation.

261| check Ord a_1

The type annotation describes this type:
a | Main.Eq a

But the type rule describes this type:
a | Main.Ord a

Hint:
Note that the previous rules and the type annotation decide the types of the variables

Figure 9.6: The error shown when the type rules check for qualifiers that are
not mentioned in the type annotation.

set of constraints would not account for this. To account for this situation, a
second set of constraints is built. This is shown in figure[9.7]

1
| maybe @ Maybe a1 |

vl

[maybe -> val -> return]|

a2 #6

’Maybe a -> a -> Bool | Eq a‘

Figure 9.7: The second set of constraints used to validate type rules.

On the left side of the black bar the same constraints are seen as in the
first set of type rules. Again, those constraints build the type represented by
the type rules. The constraints have been renumbered to start at #1. Again,
the gray lines indicate how variables with the same name represent the same
entity. The black bar shows the structure of a let-constraint. A let-constraint
is named as such because it models the types of let-expressions: the types of
the expressions in the let of a let ... in ... statement must be generalized
when the type of the body is inferred. This means that specific variables in the
let can be made rigid when the inferencing of the body begins.

This property is precisely what is needed to find out whether any predicates
are missing in the type rules. The constraints on the left side of the black bar
are conceptually put into the let, the constraint on the right side of the bar is
conceptually put as the body of the let. After the constraints in the let (on
the left side of the bar) have been resolved, the constraint solver moves on to
the body of the let (the right side of the bar), but not before making some type
variables rigid. The numbered type variables, in the example a_1 and a_2, are

54



made rigid when the constraint solver moves from the left side of the bar to the
right side. When constraint #6 is then resolved, those numbered type variables
cannot be unified with type variables that have more qualifiers. If the type
variables in the type annotation have more qualifiers than the type represented
by the type rules, the numbered variables in the type rules will refuse to be
unified, causing an error.

This can be demonstrated by removing the check rule on lines 14 and 15
in figure This would remove constraint #4 in figure Without that
rule, the type described by the type rules would be Maybe a -> a -> Bool,
which is missing the Eq a qualifier. The error resulting from this mistake can
be seen in figure Like Elm’s traditional error messages, the error describes
the situation in human terms and shows the conflicting types.

The type generated by the type rules does not match the type annotation.

245| checkMaybe : Maybe a -> a -> Bool | Eq a

The type rules generate this type:
Maybe a -> a -> Bool
But the type annotation has this type:

Maybe a -> a -> Bool | Main.Eq a

Figure 9.8: An error shown when the type rules and the type annotation describe
different types.
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Conclusion

This thesis has described several methods of improving error messages in Elm.
It applies techniques developed by Heeren and Hage [I8] and extends the tech-
niques. The first technique is an implementation of type graphs, which can
remove bias in a type inferencer and improve error messages by laying the types
and constraints out in a graph like structure. Type graphs are shown to be
applicable in Elm, meaning they capable of reasoning about record types. The
ability to have records build upon other records is captured accurately in type
graphs. Besides the records, type graphs have proven themselves to be more
capable of reconstructing infinite types, which is beneficial for the explanation
shown in the error to the end user.

Siblings are two functions that are conceptually similar, but differ in types.
A syntax has been defined with which a developer can mark pairs of functions
as siblings. The compiler can use this information to add hints to error mes-
sages which note that perhaps a sibling of some function was supposed to be
used instead. To prevent these siblings from causing confusion, there are three
demands: a hint must not be shown when the function for which a sibling is sug-
gested is not part of the type conflict, when the sibling does not solve the type
conflict or when the sibling causes a new type conflict. Through type graphs,
sibling hints can be made sure to meet all three demands.

Interfaces were implemented as a simple form of type classes. Rather than us-
ing keywords class and instance, the words interface and implementation
are used instead. Their features are very similar to those of type classes in
Haskell 98, though the processing of interfaces stops after type inferencing.
Type graphs are shown to be able to reason about interface qualifiers in types,
although this brings no particular benefits, since missing implementations are
sought for in a separate pass over the type graph.

Specialized type rules allow the authors of functions to create custom hints
for error messages shown when their functions are misused. A syntax is created
to influence the constraints generated by the type inferencer when a specific
function is called. With this syntax, the constraints can be re-ordered and
custom hints can be added for when a specific constraint is broken. When such
constraint does indeed get broken, the end user will see an error message with
a hint in which that the author of the function explains the type conflict and
possibly how it can be resolved.

Type rules seemingly give the ability to redefine the type constraints associ-
ated with the usage of a function. It should not, however, be possible to have the
type rules describe a type that is not in conflict with the type of the function.
An algorithm is described to verify that the type rules of a function accurately
and fully describe the type of said function. This verification can throw de-
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scriptive error messages in the same style as any other type error message in
Elm.
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Future work

This thesis investigates the effects of type classes on the type graph. While the
type graph is shown to be able to reason about the qualifiers in type variables,
doing so seems to have no benefit above doing it the classical way. Perhaps the
algorithm can be modified to integrate the check for missing implementations
with the normal type substitution algorithm. Would this have any benefits?
Could the check for the existence of an implementation be useful for heuristics
on the type graph?

It has not been decided whether type classes are the best solution for ad-hoc
polymorphism in Elm [8]. Some alternatives have been mentioned: Rank-N
polymorphism, higher kinded polymorphism and implicit arguments. It might
be interesting to see whether type graphs are powerful enough to reason about
these concepts. This information might prove vital if the wish exists to indeed
implement type graphs while leaving the option open to implement some other
kind of ad-hoc polymorphism than type classes.

Siblings currently have no added hints. This may or may not be useful,
implementing them should be trivial.

Specialized type rules currently require numbered type variables that refer
to the type annotation. These are required for two reasons, the first is automat-
ically generating the type error messages associated to the constraints, using
the numbered type variables to know which parameters (and return type) type
rules refer to. The second is validating the type rules, where the numbered type
variables are made rigid (skolem) to make the constraint solver check for missing
qualifiers. These numbered type variables can be cumbersome and counterintu-
itive. Were they not strictly needed, it would have been better to remove them
and allow developers to solely use concrete types and fresh type variables in
their type rules. Perhaps the algorithms that need numbered variables can be
adapted such that these numbered variables are no longer needed.
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Reflection

Elm is an interesting language. Its syntax looks similar to that of Haskell,
but it is much simpler and the error messages are very much different. Elm
is already known for understandable error messages, yet this thesis is about
finding ways of improving these same error messages. “Why fix things that
are not broken?” is a question that often gets asked in such cases. I would
like to turn this question around: why should one dismiss an opportunity to
make something good even better? With this attitude, Elm is chosen precisely
because it already has nice error messages, and there are opportunities to make
them even better. Type graphs and their heuristics alone are much better at
reconstructing infinite types than the original implementation is, for example.
This shows that by introducing this concept, an effort to improve error messages
(specifically the ones pertaining infinite types) is taken one step further.

This thesis brings forth some nice ideas, none of which I expect to be merged
into the official Elm compiler’s repository. While they do indeed improve error
messages and show what is possible with the techniques described, the imple-
mentation is rushed, incomplete. Rushed because of the limited time to investi-
gate the concepts and incomplete because minor details (such as simple validity
checks for interfaces) have been left out. This is not to say that the findings
are not genuine. They work and do indeed improve error messages, but their
rushed implementations simply make them not ready for production.

The second reason it should not be merged into the official repository involves
the design decisions. It can be very meaningful to have a discussion about
whether these ideas should be implemented in the official Elm compiler, and
if they do, in what form. Siblings, for example, currently have a syntax that
describes which function resembles which. In an early discussion about this,
people have already voiced their opinions, stating that it might be better to put
those siblings in special comments above the function definitions. The reason
why they have been implemented as statements is simply because parsing those
comments would have been more work.

Type rules also come with a range of design decisions. Should they really live
between the type annotation and definition of a function? Should developers be
allowed to write their own error messages or just add hints? Would it be better
to put those in the special comments too? What should the syntax look like?
All of these questions are answered in the specific implementation described in
this thesis, though it would be unreasonable to think that these decisions are to
be taken at face value. There might be very good reasons to take the idea and
give it a completely different syntax, give developers more (or less) freedom to
alter error messages and/or allow them to be written anywhere.
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Interfaces

There have been numerous discussions on whether and how Elm should tackle
ad-hoc polymorphism. In one GitHub issue [§], Czaplicki lays out several op-
tions:

1. Type classes
2. Higher kinded polymorphism in combination with Rank-N polymorphism

3. Higher kinded polymorphism in combination with Rank-N polymorphism
and implicit arguments

4. Module functors

Czaplicki describes his approach as one of “wait and see”. Despite this
attitude, this thesis describes some implementation of type classes. This is not
because I personally think type classes are the preferred solution to this problem.
They are implemented purely to investigate their effects on type graphs. It
simply seemed interesting to see whether type graphs can also reason about type
classes. In the end it turned out that this is the case, although not much benefit
has been gained from doing so. After all, errors about missing implementations
are not any different than those generated by the primitive solver.

Closing Remarks

In the end I hope that the ideas inspire people to use them to solve real problems
with type error messages. Elm has many good error messages where similar
languages do not. Despite this I feel that the techniques described in this thesis
attack precisely the points where Elm falls a little short. Whether by type graphs
improving the choice of error messages and a better ability to reconstruct infinite
types or by giving advanced developers some control the error messages of their
functions, helping end users understand type errors in the context of the library
they are working with. These techniques solve specific problems, and that is
why I believe they deserve at least some serious discussion.

The implementation of the techniques described in this thesis can be found
at |https://github.com/FPtje/elm-compiler, on the master branch.
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