
A Protocol Specification Language for Testing

Implementations

Master Thesis

Author: Tom Tervoort
Supervisor: Wishnu Prasetya

Utrecht University
ICA-3470784

Abstract

When developing a system that partakes in a communication protocol,
testing whether the implementation conforms to the official specification
of that protocol is difficult: the specification may be unclear or ambiguous
and creating a simulator that automates tests is time-consuming.

The protocol specification language APSL is proposed, with which
one can describe the types of messages used in a protocol, along with a
model of the protocol’s state machine. It distinguishes itself from similar
languages by allowing the generation of message parsers and serializers,
and by providing an interaction model useful for conformance testing.

Additionally, an extensible framework is presented that can execute
automatic conformance tests in order to determine whether an implemen-
tation exhibits the behaviour expressed by an APSL specification.

Contents

1 Introduction 3

2 Available Protocol Description Languages 5
2.1 Describing Messages . 5

2.1.1 Textual Messages . 5
2.1.2 Binary Messages . 6

2.2 Describing Interactions . 7
2.2.1 SDL . 7
2.2.2 Estelle . 8

3 Protocol Implementation Testing 8
3.1 A Protocol Participant as a Finite State Machine 8
3.2 Partially Specified and Non-deterministic FSMs 9

1

3.3 Labelled Transition Systems . 10
3.3.1 Deriving Conformance Tests 10
3.3.2 Asynchronous Testing . 11

3.4 Fuzzing . 12

4 The APSL Language 12
4.1 The Message Description Language: AMSL 13

4.1.1 Fields . 14
4.1.2 Basic Types and Codecs 15
4.1.3 Records . 15
4.1.4 Unions . 16
4.1.5 Enumerations . 17
4.1.6 Aliases and Default Codecs 17
4.1.7 Extensions . 17
4.1.8 Codec Stacks . 18
4.1.9 Messages . 19

4.2 The State Modelling Language: AISL 19
4.2.1 Actors . 20
4.2.2 Invisible Triggers and Non-determinism 21
4.2.3 Invalid messages . 22
4.2.4 Deriving an LTS from an Actor 23

4.3 The Compiler and Framework . 24
4.3.1 Parsing AMSL and AISL 24
4.3.2 Representing AMSL Modules and Types 25
4.3.3 Arguments and Expressions 27
4.3.4 Deriving Message Encoders and Decoders 28
4.3.5 AISL Modules . 29
4.3.6 LTS Traversal . 29
4.3.7 Synchronous and Asynchronous Testing 30

5 Testing Strategies 30
5.1 Message Generation . 31

5.1.1 Generating Particular Values 31
5.1.2 Issues . 32

5.2 LTS Exploration . 34
5.2.1 The ‘Greedy Random Walk’ Strategy 35

5.3 Measuring Test Coverage . 36
5.3.1 AMSL Coverage . 36
5.3.2 AISL Coverage . 38

5.4 Alternatives to Random Testing 39

6 Case Studies 40
6.1 WebSocket . 40

6.1.1 AMSL Specification . 40
6.1.2 AISL Specification . 44
6.1.3 Test Setup . 45

2

6.1.4 Problem: Aynchronous Communication 46
6.1.5 Results . 46

6.2 IMAP . 47
6.2.1 AMSL Specification . 48
6.2.2 AISL Specification . 51
6.2.3 Test Setup . 53
6.2.4 Deleting the Inbox: A Bug Within Courier? 53
6.2.5 Results . 53

7 Future Work 55

8 Conclusion 56

9 Source Code and Resources 57

1 Introduction

When two or more systems need to communicate with each other, they use a
protocol: a previously agreed-upon method of assigning meaning to sequences
of bytes that are being transmitted electronically. For example, a PC retrieving
the contents of a web page employs a lot of protocols: these take care of mat-
ters such as transmitting packages from two machines possibly located on other
sides of the world (Internet Protocol), translating domain names to IP-addresses
(Domain Name System), establishing a reliable connection between two hosts
(Transmission Control Protocol) and indicating how to obtain which resources
(Hypertext Transfer Protocol). Protocols are not limited to network applica-
tions,though: systems communicating with USB devices or a programs reading
files using a particular format also engage in protocol-based communication.

Commonly, a programmer implementing a party of a protocol has no control
over the other systems theirs has to communicate with. To prevent incompati-
bility problems, they strictly have to adhere to a specification: a description of
what messages to send, what these messages look like and how to respond to
messages coming in from outside.

A number of aspects can make the implementation of a protocol, according
to a specification, rather complex:

1. Specifications may be unclear or ambiguous, leading to (subtle) differences
in interpretation among implementers. Their descriptions may also be
incomplete when it comes to corner-cases the writer of the specification
had not considered.

2. Protocol implementations usually require parsing and serialization of mes-
sages to and from a representation in a programming language data struc-
ture. This may be complicated when the data representations within the
language and protocol are dissimilar.

3

3. The system should fail properly when unexpected input (such as messages
that do not conform to the specification) is received.

4. Testing is difficult, because it requires one to also find or build a simulator
that can send appropriate messages to the system and checks whether it
responds correctly. As a protocol grows in complexity, so do its imple-
mentations and test suites.

5. When debugging, one may have to capture and decipher network traffic
in order to discover what is going wrong.

6. The other systems that will be communicated with may not be trustwor-
thy; meaning that malicious parties may try to find obscure flaws in an
implementation and exploit them.

Designing a good protocol is also a difficult task, but once that has been
accomplished these complexities make actual implementations of this design
expensive and prone to failure or security vulnerabilities. Furthermore, a single
protocol design is generally implemented multiple times.

Something that may resolve or alleviate the problems listed above would be
a protocol specification language: a formal language, readable by both humans
and computers, that unambiguously describes what the messages look like, what
semantics they have and how exactly an implementation should behave.

When done well, such a language can help implementers in the following
ways:

1. It can provide an exact, formal and sound definition, which could ideally
only be interpreted in one way.

2. Code for parsers and serializers can be automatically generated from a
specification in this language. This will help translating protocol messages
from and to data structures in many different programming languages.

3. Code can also be generated to send and receive messages, provide runtime
contracts, and to automatically discard or fail on receiving messages that
are either ill-formatted or arrive at the wrong moment.

4. Automated test suites can be generated that try to determine whether
some implementation indeed conforms to the specification described in the
language, and thus to the protocol (assuming the specification is correct).

5. Captured network traffic from and to an implementation can be visualised
in a clear and protocol-specific manner when the specification provides the
semantics of these raw byte sequences.

6. While one can not perfectly test for security, an automated tester can be
tailored to find common security issues such as state machine problems
or buffer overflows. Furthermore, a good automated tester may be better
at finding obscure edge cases (which often lead to vulnerabilities) than a
system that is tested manually.

4

Besides helping implementers, it could also aid protocol designers:

• A paper specification, intended for humans who are not necessarily imple-
menters, could be automatically generated from the specification, similar
to how API documentation is derived from code. A documentation gen-
erator could also render nice tables and state or sequence diagrams.

• Tools that help with the analysis or validation of protocol properties re-
quire some (high-level) representation of the protocol logic. Perhaps in
some cases a specification in this language could be converted to the lan-
guage used by such a tool.

• Prototyping a new protocol is easier when one can ‘program’ it in a speci-
fication language, especially since much of the implementation code could
be automatically generated.

This thesis will present the design of a protocol specification language that
is suitable for these applications, along with a compiler and a framework for
performing conformance tests.

2 Available Protocol Description Languages

When specifying a protocol in natural language, intended to be read by hu-
mans, there are still some standard techniques one could follow in order to make
specifications easier to understand by implementers: for example, Request for
Comments (RFC) memoranda from the IETF use a specific set of rules for for-
matting standard descriptions [1]; furthermore, guidelines are available about
how to describe an internet standard ([2]).

Even when following a relatively strict description format in natural lan-
guage, a computer will still not be able to interpret it, and the description may
still be ambiguous or incomplete. Numerous formal languages for describing
(parts of) protocols are available, tough. These can generally be divided be-
tween languages that describe the format of messages that are passed around
as part of a protocol, and those that describe the manner in which systems,
participating in the protocol, interact.

2.1 Describing Messages

A distinction can be made between text-based protocols of which messages cor-
respond to readable text and are defined in terms of character sequences, and
binary protocols, that are more compact and defined in terms of bit sequences.
Different languages exist for these two perspectives.

2.1.1 Textual Messages

Whenever the grammar of protocol messages is context-free, one can use a no-
tation technique such as the Backus-Naur Form (BNF) or an extension thereof

5

to formally describe its syntax [3]. A parser generator such as Yacc [4] could
then derive code that can be used to parse it. An extension called the Aug-
mented Backus-Naur Form is specifically aimed for the description of protocol
messages [10].

Textual protocol messages are usually based on a particular communication
format, such as XML [5]. For protocols that use such formats, there is often
also a description language available. For XML, these are the Document Type
Definition and XML Schema languages [6]. Likewise, the JSON Schema lan-
guage formalizes messages using the JSON format [7]. Such schema languages
are very useful for describing individual protocol messages.

2.1.2 Binary Messages

ASN.1 When developing a new binary protocol, one could use the specifica-
tion language ASN.1, which has been used since the 1980’s for a wide range
of protocols [8]. ASN.1 allows one to describe the data structures that form
protocol messages by defining fields with primitive types such as INTEGER or
BOOLEAN, and combining these with sum or product types.

There are multiple standard methods of encoding messages described in
ASN.1, using a binary representation or even XML. It is also possible to define
custom encoding rules for ASN.1 types using the ECN language, which allows
describing protocols in the language that were not originally defined in ASN.1
[11].

Unfortunately ASN.1 is defined by ten expansive standards ([9]), and has
grown to be rather large and complex: for example, it has more than 10 different
string types, many intended for legacy character encodings. Considering the
amount of time the language has been in use, this is not surprising.

Google Protocol Buffers and Thrift Two more modern message descrip-
tion languages are Google Protocol Buffers ([12]) and Apache Thrift’s interface
description language ([13]). Both allow for definitions of protocol messages in
terms of simple data structures, and code can be generated that operates on the
described data.

These systems use a particular binary encoding method. Therefore, the
languages can not be used to describe protocols not originally designed with
them.

binpac The binpac language, described in [14], can be used to define parser
generators for binary messages. It is compiled to C++ code, and pieces of C++
can even be mixed in to describe additional parser logic.

This language is solely intended for the generation of parsers, it does not
allow for the construction of messages according to the definition.

6

2.2 Describing Interactions

Messages are just one part of a protocol: equally importasnt are the interactions
between systems that follow a protocol; i.e. under what condition can what
system send, or expect to receive, what message.

Different models exist that formalize these possible interactions, for example:

• Petri nets are state-transition systems (similar to finite state machines,
but with some different properties: such as no requirement to have a finite
amount of states or transitions). They consist of ‘places’ and ‘transitions’;
a place may contain a number of ‘input tokens’ and, when sufficient are
present in a place connected to some transition, they can be consumed
and be converted to output tokens, which are send to other end of the
transition [30].

• The communicating finite state machine model is an extension of the finite
state machine model, in which transitions are labelled with a type of
message they should either receive or will transmit [29].

• The labelled transition system model is similar to that communicating
finite state machines: however, it does not model all communicating sys-
tems at the same time but rather a single one around which observable (the
reception and transmission of messages) and internal events can trigger
state transitions. It is described in more detail in Section 3.3.

There are many tools available that operate on descriptions of such mod-
els, and allow one to prove that a certain protocol has certain properties. The
SPIN model checker, for example, allows for automatic verification of certain
properties (expressed in temporal logic) of a high-level protocol description (us-
ing a special description language that is based on non-deterministic state ma-
chines) [31].

Such tools are generally aimed at the designers of protocols. I am, however,
looking for a language that can aid implementers of a protocol. Properties of
the protocol itself are not relevant in this context: instead, one wants to test
whether a certain implementation correctly matches a certain protocol descrip-
tion, regardless of what that protocol is actually supposed to do.

2.2.1 SDL

A formal language that could be used for this purpose is the Specification and
Description Language (SDL) [15]. This language was originally designed in
1976 and has both a visual and textual representation. It is a very broad and
large language that can be used to describe many kinds of distributed and
reactive systems. The structure and communications of those systems can be
described using a model based on extended finite state machines. Code and
UML diagrams can be generated from these descriptions and interoperation
with ASN.1 is possible.

7

Unfortunately, SDL is so expansive and complex that the creation of tools
operating on its models is very difficult. In fact, currently none of the (usually
commercial) SDL tools supports the entirety of the language, instead they all
operate on specific subsets [16].

2.2.2 Estelle

Estelle is another formal description technique for protocol specification, it was
defined in the 1980’s and based on the Pascal programming language. It models
a protocol as a set of communicating finite state machines [17].

An Estelle specification (or at least a subset thereof) can be used to semi-
automatically generate parts of a protocol implementation [18] and has been
successfully applied during the design of a protocol for military mobile combat
radios [19].

However, Estelle models protocol messages using Pascal types, but can not
be combined with message descriptor languages such as those described in Sec-
tion 2.1. Therefore an Estelle model is not enough to test conformance of a
protocol implementation: one still has to manually build and parse the mes-
sages.

3 Protocol Implementation Testing

Given a description of protocol messages and possible interactions, it becomes
possible to generate a test suite that tries to find out whether some implemen-
tation on some system conforms to the protocol in question. Note that testing
does not equal verification: while a test suite may be able to identify the ex-
istence of an error, it can not prove a given property holds in all cases. It
can however, significantly increase confidence in the level of correctness of an
implementation.

Protocol testing is usually a form of black-box testing : the tester only has
access to a particular interface to a system (e.g. a communication channel
through which messages can be send and received), but can not ‘peek inside’ of
the tested system and observe its internal state. [20]

3.1 A Protocol Participant as a Finite State Machine

Each system that participates in a protocol could be modelled as a finite state
machine (FSM): a machine that is always in one of a finite amount of states
and can transition from one state to another when prompted to by an (external)
event.

When using the Mealy definition of FSMs [21], such a machine is a quintuple
(I,O, S, δ, γ), where:

• I and O are finite, non-empty sets of respectively input and output sym-
bols. In this context: types of messages that can be received by or send
from the modelled machine.

8

• S is a finite, non-empty set of possible states.

• δ : S × I → S is a a state transition function: it determines to which new
state to move upon receiving a particular input, depending on the current
state.

• γ : S × I → O is an output function: it tells which output to generate
when receiving a certain input in a certain state. δ and γ together describe
the transitions of an FSM.

Conformance testing of an implementation to a specification can be accom-
plished by deriving an FSM Mspec from the protocol description, and by also
perceiving the physical system to be tested as an FSM Mreal. We can now test
conformance by testing whether Mspec and Mreal are equivalent [21].

In a black-box testing scenario, one can not see the internals of Mreal. But
it is possible to send messages to it and observe its outputs, i.e. its δ and γ
functions can be executed. By comparing the outputs Mspec generates to those
of Mreal, given the same inputs, a case could be found where they do not match;
in that case the two machines are not equivalent and thus the implementation
does not conform to the specification. Note that outputs can only be compared
when one knows what state the system currently is supposed to be in.

When it is not known what the current or initial state of the machine rep-
resented by Mreal is, one can try to use state discovery techniques (which also
involve sending inputs and observing outputs) in order to find out [21].

Note that in order to be able to view a real system as an FSM in this
manner, one usually assumes its state machine graph is strongly connected (i.e.
every one state is eventually reachable from another, otherwise it would not
be possible to reach all states while testing). Furthermore, it is also assumed
the machine is reduced (no two separate states are equivalent, meaning they
can not be distinguished by comparing input/output sequences), and that a
system’s machine does not change during the experiment [21].

Under these assumptions, one can try to generate tests by trying to cover
all the states and transitions the test subject’s FSM is supposed to have. [22]
describes a randomized algorithm that provides the sequences of inputs one has
to send to a machine in order to achieve this.

3.2 Partially Specified and Non-deterministic FSMs

The previous section assumes a complete FSM can be derived from a protocol
model, but such a model may not describe every possible interaction: particu-
larly when an ‘unexpected’ message comes in while at a certain state. There are
techniques for testing a partially specified machine, but in general it is proba-
bly simpler (and appropriate) to transform it into a completely specified FSM
by making sure each state has a transition that is activated when receiving a
particular ‘undefined’ message, and then by transforming each input not ac-
counted for into such a message [20]. The specification language may allow the

9

behaviour upon receiving an undefined message to be described, or could insert
transitions to some kind of ‘error state’ by default.

Protocol models may also contain non-determinism: multiple transitions
could be possible from the same state, given the same input; which transition is
chosen may be random or depend on outside factors not present in the model.
This means that the same test may need to be executed multiple times, until
all transitions have been encountered. This may not always occur, though, and
therefore one has to make some assumptions on when an adequatly large section
of the model has been tested, even if not every transition was visited. [20]

3.3 Labelled Transition Systems

A concrete model, based on the finite state machine representation of protocols
described in Section 3.1, that can be used during conformance tests is that of
labelled transition systems (LTS). Such a system consists of the following [38]:

• A non-empty set of states S.

• A set of observable actions L. In this context, these actions consist of mes-
sages that are perceived to have been sent to the system (input actions),
and messages that the system itself produces (output actions). However,
they are treated in the same manner by the model.

• A set of transitions T , each being a triple (s1 ∈ S, a ∈ (L ∪ {τ}), s2 ∈ S).
They indicate that the system should move from state s1 to s2 once the
action a occurs. The symbol τ represents an internal action; these are
any events that are not observed but can still trigger a transition.

• An initial state s0 ∈ S. The system starts in this.

Using a labelled transition system, one can predict the state a system is
supposed to be in (assuming it is correctly reflected by the model), just by
examining the trace of observable actions. However, when a transition is non-
deterministic (there exist two transitions (s1, a, s2) and (s1, a, s3) for distinct
states s2 and s3), a system could potentially be in more than one state when
a is observed while in s1; this is also the case when a transition exists from s1
with action τ , since it can not be directly observed whether the internal action
has taken place or not.

When, for example, the two possible states of a system are s2 and s3, the
uncertainty could be cleared up by observing a following action: if a transition
with this action exists for s2 but not s3, it becomes clear that the system must
have previously been in s2.

3.3.1 Deriving Conformance Tests

Tretmans describes a method for deriving sound conformance test cases for a
protocol participant from a labelled transition system [38].

10

A system can be shown to be nonconforming when a sequence of observable
actions is perceived that should be impossible according to the model. For
example, given the LTS (S = {x, y}, L = {a, b}, T = {(x, a, y), (y, b, x)}, s0 = x),
the trace abb is invalid: after ab, the system should be in state x, but from there
no transition exists for observable action b.

A tester can influence the observable actions that happen by sending a mes-
sage to the system, which results in an input action to occur in it; however, the
tester can not force output actions to take place but only observe them. There-
fore, in order for tests to be sound, the tester should never send a message that
would result in the action trace becoming invalid; at the same time, it should
detect when an output action generated by the system renders the sequence
invalid, in which case an error has been successfully detected.

By following these rules a tester is sound but not necessarily complete or
even useful: a tester that only observes but does not produce any messages is
an example of a sound test mechanism that is not likely to find any problems.
Therefore, one needs a strategy that determines when the tester will trigger
which input action (i.e. when it will send what message type). Section 5.2.1
describes one such strategy.

3.3.2 Asynchronous Testing

In Section 3.3.1, it is implicitly assumed that a tester (the automated tool
that performs the test) can completely decide in what order the system will
process input actions (the messages the tester sends to the system) as opposed
to output actions (the messages the system sends to the tester). However, this is
not always realistic: consider the case where the system and tester respectively
transmit a message x and y at roughly the same time (x is transmitted before y is
processed or vice-versa); now, after both parties receive each other’s messages,
the tester will think that the action trace so far is yx while the system has
actually processed the sequence xy. Due to this inconsistency the tester may
no longer be sound and generate false positives.

This problem does not occur in a synchronous communication context, in
which systems send messages one-by-one but could never decide to do so at the
same time. It is also not a problem when no two transitions (a, x, b) and (a, y, c)
exist, where x is an input action and y is an output action, since no ambiguity
can arise.

In an asynchronous context however, in which the model may allow for
simultaneous message generation, it is more difficult to derive a sound tester. A
method to achieve this is described in [38], and it boils down to the tester needing
to maintain a separate input and output trace. The actual action trace is some
combination of these, in which input and outputs have the same order with
regards to themselves but of which the ordering regarding each other is unclear
to the tester. An error can only be detected when traces are observed for which
all possible combinations will lead to an invalid action sequence; furthermore,
the tester may not append to the input trace (i.e. send messages) in a way that
could allow for any invalid sequence when combined with the current output

11

trace.

3.4 Fuzzing

The previous sections deal with state machine testing, which try to explore all
protocol states and uncover invalid transitions. However, even when a system
correctly transfers from state to state, messages that are large, invalid, ‘strange’,
or contain particular values (i.e. an integer near to its maximal boundary) may
also result in incorrect behaviour. These problems are often caused by buffer or
integer overflow issues.

Fuzzing is a technique designed to uncover these kinds of issues. Basically
this involves the generation of a large amount of randomly generated messages
(simply random bitstreams or randomly chosen values that fit particular cri-
teria), that are send to the system. Then one tries to observe whether it still
behaves correctly [23].

Fuzzing can be a useful and easy way to test software: for example, the
Quickcheck tool ([25]) can be provided with a means to randomly generate
values of a certain type (methods of generating standard types such as integers
or strings are already build in), and will then use this in order to fuzz the inputs
of a certain predicate (i.e. the test case). When the predicate does not hold,
the tool first tries the ‘simplify’ the inputs to a form that is less complex but
still causes failure; then it reports those to the user.

The Peach framework ([24]) is an example of a tool that applies this tech-
nique to network protocols: given a programmatic definition of protocol mes-
sages, it tries to generate many random messages according to this definition
(and some which intentionally do not match it). Then it fires those at a system
while observing whether it crashes or exhibits incorrect behaviour.

When combined with state machine testing and a message specification,
fuzzing could be a simple and effective technique with which to enhance a pro-
tocol’s test suite. An interesting example of a fuzzing tool that combines these
techniques is SMACK ([26]), which has been specifically designed for testing
implementations of the TLS protocol. It has already succeeded in finding two
major security issues in this part of critical infrastructure, that were present in
multiple popular implementations including OpenSSL.

4 The APSL Language

APSL (an uncreative acronym meaning A Protocol Specification Language) is
the language I designed that attempts to solve the problem described in Section
1: i.e. to allow one to transcribe a protocol in such a way that automated
conformance tests and other implementation aids can be automatically derived
from it. APSL has the following important properties:

1. APSL is actually split in two sub-languages: AMSL and AISL; the first
allows the description of message structure and reusable components that

12

can be used within messages, the latter can be used to specify a state
machine that details which messages can be sent or received under what
circumstances.

2. If desired, the two sub-languages can be used separately and the function-
ality of one of the two languages could be replaced by something else.

3. Generally, it should not be too difficult to translate a formal English-
language description of a binary message protocol to an APSL specifica-
tion. With binary message protocol I mean that the messages consist of
compact bitstrings rather than human-readable text constructed accord-
ing to a complex grammar (such as XML). There are also binary protocols
which APSL can not adequately express (see 5.1.2), but based on the ex-
perience of successfully specifying multiple popular protocols, I do believe
it to be quite widely applicable.

4. A compiler for the language has been created, along with an extensible
framework for conformance test derivation. Furthermore, the framework
makes it easy to develop other applications for the language. See Section
4.3.

5. A level of abstraction has been chosen that allows the automatic deriva-
tion of message parsers and generators which are capable of decoding
messages transmitted by a real implementation and can provide valid re-
sponses. However, APSL is not more low-level than necessary: it is not a
programming language in which all protocol logic can be expressed.

6. When an inconsistency is found between the behaviour of an implemen-
tation and an APSL description, either of them must be incorrect: this
means that, given a correct APSL specification, testers looking for errors
should not yield false positives, but may miss problems; i.e. the specifica-
tion is sound but not necessarily complete.

The AMSL and AISL languages have similar syntax, and AMSL modules
can be imported into AISL specifications. An APSL specification consists of
one or more AMSL modules and one or more AISL modules that depend on
them.

The syntax of both languages is not whitespace-sensitive, and uses keywords
rather than symbols to structure statements.

4.1 The Message Description Language: AMSL

An AMSL (A Message Specification Language) file contains a single module.
This module may import definitions from other modules and define the structure
of zero or more messages.

A grammar and precise description of the language can be found among the
source code of the tool (see Section 9).

13

4.1.1 Fields

Messages are compositions of fields, which comprise the core building blocks
of an AMSL specification. Each field has a name and an abstract data type,
which defines how the contents of this field should be interpreted. Examples of
AMSL’s data types are the self-explanatory Integer and Text.

Unlike the specification languages Protocol Buffer and Thrift (Section 2)
however, a field with a certain data type does not need to be encoded in a single
specific way; aside from the type, a field is assigned a data codec, which is the
mechanism of converting a value of this data type to and from a bit string. For
example:

feature_enabled is Bool as BoolBits(truth_string=b1)

The field feature_enabled has the type Bool, which means it can either
have the value true or false. BoolBits is a codec that indicates how either
value should be serialized; the parenthesized part following it is a set of codec
arguments that provide further encoding instructions. In the case of BoolBits,
the truth_string argument provides a constant bitstring (in this case the bi-
nary literal b1; i.e. a single 1-bit) that should be used to represent the value
true; false is expressed by any other bitstring of equal length (in this case,
one 0-bit).

The type of a field can also be given arguments. These allow the restriction
of the set of values that are permissible within a field: after the decoder has
used the given codec to transform a bit sequence into an instance of the type,
it is verified whether the predicate expressed by these arguments holds for this
value; if not, the input is rejected. This can be seen as a form of refinement
typing. Some examples:

five_chars is Text(count=5, pattern=/[a-zA-Z]*/)

as FixedCountText(encoding=’utf-8’)

some_number is Integer(min=0, max=2^16-1)

as BigEndian(length=16, signed=false)

some_bytes is Binary(max_length=256)

as LengthPrefixBinary(

length_factor=8,

length_codec=

BigEndian(length=8, signed=false))

It should be noted that the codec and codec arguments do not affect the set
of values that can be stored in a field. However, the type and type arguments do
influence which codecs can and can not be used: for example, FixedCountText
can only be assigned to Text fields that set an explicit value for count.

AMSL defines a (dynamic and soft-typed) expression language that can be
used to assign values to arguments. Expressions can be primitive values such as
false or 256, but they can also contain conditionals, regular expressions, and
logic and arithmetic operators. An example of a more complicated expression
is x + 1 if x > y and y >= z else y % (z // 2).

14

4.1.2 Basic Types and Codecs

The types and codecs that have been demonstrated so far are examples of basic
types and basic codecs. These are built-in and what they mean is part of the
AMSL language specification. A list of them, along with a description of their
arguments, can be found in the file doc/basic-types-codecs.rst.

Users can also introduce new types by using the constructions described in
the following sections.

4.1.3 Records

A record is a kind of new type a user can declare and then reuse: it has a name
and contains a composition of multiple fields, for example:

record ArchivedFile with

indicator is Text(value="FILE")

as FixedCountText(encoding=’ascii’)

filename is Text(max_count=100)

as CountPrefixText(count_codec=

BigEndian(length=8, signed=false))

permissions is Binary(length=9)

as FixedLengthBinary

size is Integer(min=0, max=2^64-1)

as BigEndian(length=64, signed=false)

create_year is Integer(min=1970, max=2100)

as TextInteger(base=10, count=4,

encoding=’ascii’)

file_data is Binary(length=size*8)

as FixedLengthBinary

end

The name of a previous field can be used within expressions in the arguments
of the following fields; these are automatically filled in while parsing the record.
In the above example, the value of the size field is reused in order to determine
the length of the file_data field; it is multiplied by eight because the length

arguments expects an amount of bits while the size field of this fictional protocol
stores amounts of bytes.

Allowing record field to be dependent on each other enables the expression
of many common patterns, particularly variable-length fields.

Since a record declaration introduces a new type, this type can be reused
within other records of the same module (or within another module that imports
the record definition). Furthermore, records can also be parametrized : record
parameters are the possible type arguments that can be given to it; they can be
used within expressions in its fields. An example:

record MessageFrame(sender, payload_size) with

opcode is Integer(value=0 if sender == ’client’ else 1)

15

as BigEndian(length=64, signed=false)

payload is Binary(length=payload_size * 8)

as FixedLengthBinary

end

record ServerFrame with

frame is MessageFrame(sender=’server’,

payload_size=32)

end

record ClientFrame(extra_data_length) with

frame is MessageFrame(sender=’client’,

payload_size=64 + extra_data_length)

end

Note that the codec of a record field can be omitted, in which case the default
RecordCodec is used. This codec simply assumes the binary representations of
the fields simply follow each other directly and decodes them one by one. It is
always possible to do this, because for AMSL codecs it is never allowed to leave
ambiguous where the bit sequence associated with a field ends.

4.1.4 Unions

Sometimes, a protocol may require that a message is structurally different, de-
pending on the value of a field. In such a case, a union can be defined. Just like
a record, a union is declared as a sequence of fields; however, a union value can
only contain exactly one of these fields. An example:

union PathLookupResult tagged Text of

"FILE" tags file is ArchivedFile

"DIR" tags dir is ArchivedDirectory

"LINK" tags link is Path

"NONE" tags not_found is Text(value="NOT FOUND")

as FixedCountText(encoding=’ascii’)

end

Each field is associated with a tag value. The tag in question is an argument
of this union type, and it determines which of these fields is actually used. The
type of tag is also declared, and in this case a textual tag is used.

When using a particular codec named TagPrefixUnion, the specific value
of the tag does not need to be provided as an argument: instead, it is always
placed right in front of the union and encoded along with it. However, one does
not to provide a codec for this embedded tag value. An example:

lookup_result is PathLookupResult

as TagPrefixUnion(tag_codec=

TerminatedText(encoding=’ascii’,

terminator="\0"))

16

4.1.5 Enumerations

Some fields can have a small fixed number of values. An enum type can be
constructed for these situations: it consists of a number of names which each
represent a fresh value. An enum type is backed by a previously-defined type,
of which it inherits the possible codecs:

enum DNSRecordType of Integer with

a as 1

aaaa as 28

ns as 2

cname as 3

soa as 6

ptr as 12

mx as 15

txt as 16

end

Enumerations are often useful as tag types of unions.

4.1.6 Aliases and Default Codecs

It can be tedious to constantly have to type the same type or codec arguments for
multiple similar fields, especially since most protocols predefine a small number
of data types that are always encoded in the same manner.

In order to make AMSL specifications more comfortable to write and read,
and to reflect protocol-specific versions of data types, it is possible to define
aliases of existing types and codecs:

type Int64 is Integer(min=-2^63, max=2^63-1)

codec Int64Codec is BigEndian(length=64, signed=true)

Note that, besides providing an alternative name for a type, one can also
set default arguments on an alias type: now, whenever the Int64 type is used
it will be translated to Integer and have the min and max arguments filled in
when those are not yet present.

One can also associate default codecs with a particular type (including type
aliases). When using this type in a field but when omitting the codec, this
default is used:

default Int64 as Int64Codec

4.1.7 Extensions

In case the user wants to introduce a type or codec, but is unable to properly
express it in terms of records, unions, enums and basic types, they can declare
an extension. For example:

17

extension codec GZippedBytes(compress_factor) of Binary

Now GZippedBytes can be used anywhere within the AMSL module, and it
can be given an argument called compress_factor.

When actually using a module that declares extensions for an application
such as automated testing, the user will have to provide plug-in code that can
perform certain kinds of operations on data using this extension type. When
defining an extension codec, for example, the plug-in will need to interpret its
arguments, and be able to perform appropriate encode and decode operations.

At the time of writing, this testing framework does not yet support plug-
in code, meaning that it can not do anything useful with modules containing
extensions, other than compiling and validating them.

4.1.8 Codec Stacks

While experimenting with the language, a limitation was encountered concern-
ing redundant length fields: when a protocol specifies a component that can be
modelled as a record, but requires it to be preceded by its binary length (even
though this length could be inferred from the record contents), it becomes dif-
ficult to express in AMSL.

There is no option for fixing the encoded length of a record, and adding
that would be hard and violate the separation between abstract data types and
encodings. However, a LengthPrefixBinary codec does exist, which encodes
values of the Binary type and automatically prepends its length; it could not be
applied to record types, though, so therefore the DoubleCodec was introduced:

record_with_length is SomeRecord as DoubleCodec(

field=RecordCodec,

additional=LengthPrefixBinary(

length_codec=Int64Codec,

length_multiplier=8))

DoubleCodec can be used with any type, its field argument must be appli-
cable to that type, and additional must be some codec that can be used with
the Binary type. Encoding works by first applying the field codec and then
encoding the resulting bits again with the additional codec. Decoding does
the same in reverse.

Codec stacking has other applications, particularly when combined with ex-
tensions. One could, for example, use this to represent records which are com-
pressed, encrypted or have an appended digest. For example:

extension Codec Compressed(algo) of Binary

extension Codec WithChecksum(algo, position) of Binary

codec CompressedAndCheckedRecord is DoubleCodec(

field=RecordCodec,

additional=DoubleCodec(

18

field=Compressed(algo=’deflate’),

additional=WithChecksum(algo=’crc32’, position=’after’)))

4.1.9 Messages

A message declaration is identical to a record declaration, except that the key-
word record is replaced by message and that it is not allowed for messages to
have parameters.

The names of declared messages are the only items which are exposed to the
AISL language, and a separate one should be declared for each kind of protocol
message one would want to distinguish.

Many protocols have different types of messages which are structured very
similarly. To prevent repeating oneself, the structure could be expressed by a
single parametrized record type, and the messages simply contain an instance
of this record. For example:

record Frame(opcode, has_payload) with ... end

message Discover with

frame is Frame(opcode=’DISC’, has_payload=false)

end

message AnnounceExistence with

frame is Frame(opcode=’ANN’, has_payload=false)

end

message Notification with

frame is Frame(opcode=’NOT’, has_payload=true)

end

4.2 The State Modelling Language: AISL

Whereas AMSL can be used to describe what the structure of messages looks
like and how message fields are constrained, AISL (An Interactions Specification
Language) allows one to specify under what circumstances a system may receive
and/or send particular messages and how those affect the state of the protocol.

As shown in Section 2.2, various types of models and modelling languages
exist that can be used to model a protocol as a state machine and describe how
the transmission and reception of messages affects transitions between protocol
states. I have chosen to base AISL on the model of Labelled Transition Systems:
this model is described in Section 3.3, which also outlines how this model can
be useful for the derivation of conformance tests.

An AISL file contains a single module which can import specific or all mes-
sages from multiple AMSL modules; these messages are the only aspect of the
AMSL language (aside from a similar syntax) that are reused in AISL. Further-
more, the contents of messages are not exposed: the AISL module can only refer
to the names of whole messages, but not to their fields.

In fact, the AISL module only needs to be provided by a set of message labels
and, when testing, with a method of transmitting or receiving messages with

19

a particular label. One could still use it in combination with another message
description language (such as one more suitable for text-based protocols); or
with any piece of software capable of somehow sending a message by label, and
giving a notification when a message with a certain label is received.

The AISL language is considerably more simple than the AMSL language,
as it is has a much lower amount of language constructs and no built-in “stan-
dard library” such as AMSL’s collection of basic types. This smaller amount
of complexity is evidenced by the number of non-whitespace lines of the gram-
mar specifications of both languages (both using the same parser generator
language): 94 for AMSL and 29 for AISL.

4.2.1 Actors

Besides message import statements, an AISL module contains one or more ac-
tors. Each of these represent an entity that partakes in a protocol. Actors
sharing a module have access to the same message namespace, but the lan-
guage does not offer another method through which components defined in one
language can be reused in another.

Conceptionally, a module is supposed to represent a protocol and each actor
is supposed to represent a type of entity that can partake in it. However,
the language does not forbid one from spreading related actors over multiple
modules, or putting actors that are used in different protocols within the same
module: actors are the core components of the AISL language and modules are
merely collections of them.

An actor represents the state machine of a protocol entity: it describes when
it may send messages and how it reacts to incoming ones. A simple example:

actor CoffeeMachine with

init state Idle where

on EnoughCoinsInserted do

next HasCash

on CoffeeTypeChosen do

send NeedMoreMoney

continue

on ShutdownButtonPressed do

send Goodbye

quit

end

state HasCash where

on CoffeeTypeChosen do

send PleaseWait

next Brewing

end

20

state Brewing where

on CoffeeDone where

send CoffeeAlert

send Coffee

next Idle

on CoffeeTypeChosen do

send PleaseBePatient

continue

end

end

An actor has multiple states, of which exactly one must be marked as the
init state (the one the system is in when starting operation). Each state
contains zero or more events, which have three components:

• The label of a message that will trigger the event upon reception.

• Zero or more send expressions, which are all coupled with the label of a
message that is supposed to be sent in this occasion. The messages should
be transmitted in exactly the order in which they are listed.

• A next expression which indicates the next state the system should tra-
verse to. The next message received, even if it directly follows the current
one, will trigger an event of the next state. The expression continue in-
dicates the system should remain in the same state, and is equivalent to
using next followed by the name of the current state.

When ending an event with a quit expression, the system traverses to an
implicit exit state; a state that contains no events and can therefore not be re-
covered from by receiving messages. This models system or session termination.

4.2.2 Invisible Triggers and Non-determinism

If a system could only react upon receiving a message, communicating would
be impossible: one party has to be the first to send a message in order to start
the protocol. Therefore, the language also allows for events that can occur at
any time, without being triggered by an incoming message: to specify such an
event, use the anytime keyword instead of on SomeMessageLabel for the event
trigger description.

anytime-triggers are considered invisible, because they are activated by an
outside condition such as user interaction, a timer or an internal error. Just
like regular events, it is not required to send any messages; this means anytime-
events can also cause invisible state transitions.

When and whether such an invisible trigger activates is non-deterministic;
however, systems may also non-deterministically decide how to respond to a

21

certain message: this can, for example, come from an internal process within
the system that is not expressed in the protocol. Non-determinism within an
event can be expressed by using the or-operator, such as in this example:

actor MailBox with

init state Ready where

on SendMail do

send OkMailSent

continue

or do

send FailInvalidAddress

continue

or do

send FailTransmitError

continue

on FetchMail do

next FetchingMail

anytime do

send WarningMailboxFull

continue

end

state FetchingMail where

anytime do

send NewMail

continue

or do

send NoMoreNewMessages

next Ready

end

end

4.2.3 Invalid messages

A protocol may define specific behaviour for when it receives a message it does
not understand or which should not have been transmitted to it in the current
state. This can be expressed using the final language construct: otherwise

events. These are events that are triggered upon receiving a message that is
invalid, or for which the label does not match any other event trigger in the
current state.

When not adding an otherwise event to a state, the action which the sys-
tem should undertake when getting an is invalid message is not expressed. In
this case, one could assume some default error-handling behaviour for these
situations, such as otherwise do quit, or treat these as transitions to some

22

implicit error state.
An example using this construction:

actor SomeServer with

init state Active where

on Request do

send Response

continue

otherwise do

send InvalidRequestError

continue

end

end

4.2.4 Deriving an LTS from an Actor

A labelled transition system, as described in Section 3.3, can be derived from
an actor in the following manner:

• First, treat each otherwise event as a receive event that is replicated for
every imported message label for which no receive event is specified in
that state.

• Let the set of LTS states contain an entry for each AISL state in the actor,
but also add an intermediate state corresponding to each send action of
every event of every state. Add one exit state that can be accessed with
a quit expression.

• The initial state is the one corresponding to the AISL state marked with
the init keyword.

• Let there be an observable action for the reception of each message label,
and for the sending of each label.

• For each event, include an LTS transition from the AISL (i.e. non-
intermediate) state to the first intermediate state of the event (or the
next AISL state, in case there is none). If the event has an on <label>

trigger, let the transition action be the receive action of this label; for
an anytime trigger, let the action be the unobservable internal action τ .
When an or operator is used, add transitions for all branches.

• Also add a transition between every intermediate state and its follow-up,
that is associated with the send action of the label being sent in this state.

By treating the sending and receiving of messages as observable actions, and
by using the internal action for anytime events, one can apply testing techniques
for LTS’s to AISL specifications: a testing tool that acts as a protocol simulator

23

is capable of recording a trace of observable actions, because it knows messages
it receives must have been sent by the tested system, and it can observe the
messages the system receives because it sends them itself.

4.3 The Compiler and Framework

While the primary purpose of the APSL language is conformance testing, it may
also have other useful applications such as those listed in Section 1. Therefore,
the compiler of APSL modules has been designed as a library, that transforms
them into representations within the Haskell programming language, and also
associates APSL types with Haskell types. This should make it relatively simple
to write an application that can make decisions based on an APSL specification.
The testing framework is one such an application.

4.3.1 Parsing AMSL and AISL

The two sub-languages, AMSL and AISL, both have a distinct grammar (al-
though with a similar syntactic style). The grammars are defined using a la-
belled Backus-Naur Form notation: specifically, the dialect used by the BNFC
tool [36]. Haskell code containing a parser and abstract syntax tree representa-
tion, has been automatically generated from these grammars using this tool.

In the case of the AMSL language, an abstract syntax tree is transformed
to an abstract representation called a CompiledUnit:

data CompiledUnit = CompiledUnit {

requiredDependencies :: [FilePath],

compiledModule :: [Module] -> Either ASTCompileError Module

}

Such a compiled unit consists of a list of paths corresponding the import
statements that may have been part of the AMSL module, and a function that
may produce an eventual Module object (see Section 4.1) once compiled ver-
sions of the dependencies have been provided. A compile function is provided
that can be given a single AMSL file to transform into a Module; it will also
recursively handle its dependencies when required.

Compilation of AMSL is complicated by the fact that declarations within
the same module (such as record definitions and type aliases) may appear in any
order but can also refer to each other. In order to cope with this, components
of the module are compiled within the following monad:

data Dependant a

= Final a

| Partial TypeName (Declaration -> Dependant a)

| RequiresDefaultCodec TypeName (DefaultCodec -> Dependant a)

| Error ASTCompileError

24

A Dependant value may depend on the compiled value of another declaration
(or a default codec definition, which is treated separately). The compilation pro-
cess starts by building a table of Dependant declarations, which is effectively
a dependency graph; then it is checked that this graph does not contain cy-
cles (recursive structures are not allowed) and does not depend on unknown
TypeName’s; finally, the dependencies are resolved by computing the Dependant

values in the correct order.
The AISL compiler is somewhat similar, but considerably more simple due

to the fact that AISL structures can only refer to AMSL messages but not to
each other.

4.3.2 Representing AMSL Modules and Types

An AMSL Module data type is defined as follows:

-- | Represents the relevant definitions from a module.

data Module = Module {

moduleName :: String,

messages :: [Message],

types :: [DefinedType],

codecs :: [DefinedCodec]

}

-- | An instance of a particular message, of which all of its

-- fields have been given a particular value.

data MessageInstance where

MessageInstance :: forall a. TypeName -> Record a -> a

-> MessageInstance

-- | User-defined (non-message) records, unions, aliases, and

-- enums.

data DefinedType where

DefinedType :: forall a. UserType a -> DefinedType

-- | Codec aliases.

data DefinedCodec where

DefinedCodec :: UserCodec -> DefinedCodec

Basically, a module contains a number of named types and codecs. The type
representations Record and UserType are existentially quantified over their type
parameter, which is an appropriate Haskell type that can encode all members
of the represented AMSL type. Both are instances of a more general Type

construct:

data Type a where

BasicType :: BasicType a -> Type a

UserType :: UserType a -> Type a

ExtType :: ExtTypeMeta -> Type ExtData

25

data BasicType :: * -> * where

Binary :: BasicType BitString

Bool :: BasicType Bool

Integer :: BasicType Integer

Text :: BasicType String

Optional :: BasicType (ContainerValue Maybe)

List :: BasicType (ContainerValue [])

data ContainerValue :: (* -> *) -> * where

ContainerValue :: forall f a. Type a -> f a -> ContainerValue f

data UserType a where

Record :: TypeName -> [ParamName] -> Record a -> UserType a

Union :: forall a tag. TypeName -> [ParamName]

-> TagType tag -> Union tag a -> UserType a

Enumeration :: TypeName -> TagType a -> Enumeration a -> UserType a

TypeAlias :: TypeName -> Type a -> Arguments -> UserType a

A Type and its contents are GADT’s: this allows a user to pattern match
upon them and obtain evidence of what concrete Haskell type a is (even when
it is quantified over). The basic types use appropriate Haskell types that corre-
spond to them, and the container types contain an additional Type object that
provides the type of their contents.

Type aliases simply contain another type with the same representation; the
other user-defined types wrap the following GADT’s:

data Record :: * -> * where

Empty :: Record ()

Field :: forall t c r. FieldName -> FieldTypeCodec t

-> Record r -> Record (t, r)

data Union tag :: * -> * where

None :: Union tag Void

Option :: forall tag t c r. tag -> Maybe FieldName

-> FieldTypeCodec t -> Union tag r

-> Union tag (Either t r)

data Enumeration a where

EnumValues :: [(FieldName, a)] -> Enumeration a

data FieldTypeCodec t = FieldTypeCodec {

fieldType :: Type t,

fieldTypeArgs :: Arguments,

codecType :: Codec,

26

codecTypeArgs :: Arguments

}

Records and unions respectively use Haskell tuples and the Either type to
combine their elements; additionally, unions define a tag value for each option.
The Enumeration type has a fixed set of predefined a values it may contain.

Records fields each have a Type and a Codec, the latter being a simple type
representing either one of the build-in codecs, or a user-specified alias. They
are also associated with Arguments data types, which are described in the next
Section.

4.3.3 Arguments and Expressions

Arguments are a sequence of named expressions, or type or codec names with
their own respective arguments. The data type is defined as follows:

-- Note: these definitions have been simplified a bit

-- compared to the actual implementation.

newtype Arguments = Arguments [(ParamName, Argument)]

data Argument

= ExpArg Expression

| forall a. TypeExpArg (Type a) Arguments

| CodecExpArg Codec Arguments

The Expression type describes the soft-typed expressions allowed within the
AMSL language. It may also describe an invalid expression, such as "foo" + 42

or 1 // 0; the validity of an expression is determined when it is evaluated with
the following function:

evaluate :: Env -> Expression -> Either InvalidExpression ExpValue

An ExpValue is a completely evaluated expression. Note the Env parame-
ter: it is a simple mapping from identifiers to ExpValue’s, and represents the
namespace in which an expression is evaluated.

The expression namespace contains two kinds of entries: the names and
values of enumeration fields, which can be used in the entire module, and the
names and values of preceding record fields. In order to help providing the
correct Env when manipulating record values, a fold and unfold function are
provided to respectively consume or produce an a according to a Record a:

-- | Process the fields of a record one-by-one in some monad,

-- while the expression environment is updated accordingly.

foldRecord :: Monad m => Env

-> (forall t. Env -> (Type t, Arguments)

-> (Codec, Arguments) -> t -> m ())

-> Record a -> a -> m ()

27

-- | Construct the value of a record, within some monad, by

-- producing its fields one by one. Updates the expression

-- environment with previously produced field values.

buildRecord :: Monad m => Env

-> (forall t. Env -> (Type t, Arguments)

-> (Codec, Arguments) -> m t)

-> Record a -> m a

4.3.4 Deriving Message Encoders and Decoders

The library includes an important application of the AMSL data types: auto-
matic message encoders and decoders. Given a Type a and a corresponding
codec, these can parse an a from a bitstring, or produce the binary representa-
tion of any given a. These functions have the following signature:

-- | Encoder for a particular type. Should not fail when the

-- value passes the checker, or when it was produced by the

-- decoder.

encode :: TerminatorGenerator -> Env -> (Type a, Arguments)

-> (Codec, Arguments) -> a -> BitPut ()

-- | Decoder for a particular type. Fails when input is

-- incorrectly formatted or the parsed structures are not

-- permissable according to type arguments in the

-- specification.

decode :: forall a. Env -> (Type a, Arguments)

-> (Codec, Arguments) -> BitGet a

The BitGet and BitPut monads respectively contain binary parsers and
serializers from the binary-bits package [37].

The TerminatorGenerator provided to the encode function capable of gen-
erating values of any given Type to be used when generating a final value of
a list using the TerminatedUnionList codec. This is necessary because this
terminator value is not stored in the decoded data type. Generally, one can
simply pass in the predefined arbitraryGenerator here.

One task of the decoder is to validate whether the parsed value is actually
permissible according to the type arguments; e.g. it should not accept the
integer value 5 when it’s AMSL type is described as Integer(max=4). For that
purpose, it uses the following operation:

checkValue :: Env -> Type a -> Arguments -> a -> Bool

Note that checkValue does not receive a Codec argument: how a value is
coded is not relevant for the decision on whether it is acceptable.

28

4.3.5 AISL Modules

A module within the AISL language is represented as follows:

data Module = Module {

-- | The name of the module.

moduleName :: String,

-- | The messages that are used within this system,

-- associated with their module environments. Their

-- names are used as action labels within the LTS’s.

messages :: [(Message, Env)],

-- | An LTS associated with each actor described in this

-- definition.

actors :: [(String, LTS)]

}

Besides its name, a Module object only contains a list of references to AMSL
messages, and an LTS object for each actor. An LTS is a (slightly adjusted)
Haskell representation of a labelled decision system as described in Section 3.3;
it is derived from the AISL abstract syntax tree using the method described in
Section 4.2.4. Its data type is straightforward:

data LTS = LTS {

initState :: StateID,

transitions :: Map StateID Transitions

}

data StateID = Normal String | Intermediate Integer | Exit

type Transitions = Map Action [StateID]

data Action = Send MessageLabel | Receive MessageLabel

| Internal | ReceiveUnexpected

type MessageLabel = String

4.3.6 LTS Traversal

In order to explore the effects an actor receiving and sending particular messages
should have on its state, the TraversalT monad transformer can be used. It
describes a traversal of the graph associated with an LTS and has the following
primary operations:

possibleStates :: Monad m => TraversalT s m (Set StateID)

sent :: Monad m => MessageLabel -> TraversalT s m ()

received :: Monad m => MessageLabel -> TraversalT s m ()

29

It can be checked what the currently possible states are by invoking possibleStates,
while sent and received are to be called when these events happen. An ex-
ample of how this can be used:

sendAwhenInB = do

states <- possibleStates

if mB ‘elem‘ states

then do

lift $ doSendOperation mA

sent mA

else do

msg <- lift waitForIncomingMessage

received msg

sendAwhenInB

Here m is some monad for handling side-effects that may affect the traversal,
and s can contain some state that is updated during the traversal (TraversalT is
an instance of MonadState). possibleStates provides the potential states the
actor might be in at a moment during the traversal; sent and receive indicate
a message has been observed in either direction. Internal actions are assumed
to non-deterministically occur at any time, and are handled automatically.

This monad is used during the execution of a test strategy, but it also has
other applications: for instance, a tool that allows a user to test a specification
by manually indicating which messages are sent or received (a simple version
of such a tool is actually implemented as part of the framework), or a passive
network listener that explores the LTS while watching the communication of
two real systems.

4.3.7 Synchronous and Asynchronous Testing

The current implementation of the Traversal monad has a considerable short-
coming: it assumes the modelled system communicates in a synchronous man-
ner, i.e. send and receive actions are performed in the order they appear.

In reality however, the system and its communication partner may send a
message to each other roughly at the same time. From the outside, it may be
impossible to determine whether the system had performed the send action first
and then processed the received message, or vice-versa. How to deal with this
additional source of non-determinism has been described in Section 3.3.2, but
this has not been implemented in this version of the testing framework.

5 Testing Strategies

In order for a simulator to be able to test a live system, it should consider the
following:

• When it is supposed to send a message of a particular type, how to format
its contents; i.e. what values to select for its fields.

30

• Under what circumstance to send what message. Particularly, what it
should send in order to test as many states of the system as possible.

This section describes what strategies are used in order to make these deci-
sions, and how those are represented in the framework. The message generation
strategies are derived from the corresponding AMSL module, and the LTS ex-
ploration strategies are derived from the AISL specification. These strategies
are independent of each other, meaning one of the two could be switched out.
Furthermore, they can also be used seperately: for example, when testing a
file format, one may not care about the protocol state machine (which simply
consists of an application reading the file and responding whether it is correct
or not) but would still want to use a standalone AMSL specification in order to
generate test inputs.

5.1 Message Generation

A message generator can be asked to provide an instance of a particular kind
of message. It has the following type:

genMessage :: GenParams -> Env -> Message -> Gen MessageInstance

Here, Env is the expression environment (see 4.3.3) associated with the
AMSL module. The Gen type is a monad from the QuickCheck project that
describes a generator that outputs values of a certain type according to some
randomized strategy [25]; because it has a similar purpose, the QuickCheck
library offers useful primitives when generating values of AMSL types.

GenParams is an object containing configuration options: currently it only
contains a size parameter, and a related integer bounds parameter. Both serve
the purpose of limiting the size of outputs: this is important when a protocol
allows for messages that may be petabytes long, or even have unlimited length.
These parameters do not put a precise limit on the output size, but do influence
how certain values are generated, as listed below.

5.1.1 Generating Particular Values

The function genMessage is a wrapper around the following:

genValue :: GenParams -> Env -> (Type a, Arguments) -> Gen a

The genValue function provides a generator for any AMSL type, along with
its type arguments. Note that the decision to seperate data types and codecs
pays off here: the generator builder does not need to consider encoding at all,
but can simply provide Haskell values, given that they are allowed according
to the arguments. Resulting generators are composable, making it simple to
recursively invoke genValue in order to build up composite types.

The following heuristics are applied, when generating values of various types
(see Section 4.3.2 for a description of these types):

31

• In case of a type alias, the arguments are updated and genValue is simply
invoked for the aliased type.

• When an argument fixes the permissible values to only one option, that
value is always returned.

• Boolean values are simply picked by metaphorically flipping a coin: about
half of the results will be true and half will be false.

• AMSL requires that Integer values must always be bounded, so the gener-
ator simply picks an integer uniformly within permissible range. However,
when this range is greater than what is permissible by the integer bounds
parameters, it is restricted.

• For the List type, a length is first selected uniformly from the range of per-
missible lengths (restricted by the size parameter); then, each individual
element is generated.

• The Text type also first selects a length, and then each code point is
uniformly drawn from the given character set (all of Unicode by default).
AMSL also allows, however, to specify a regular expression pattern the
text field should match; when this argument is present, a string of the
desired length will be generated that matches this regular expression. This
is achieved by a custom dynamic programming algorithm that returns a
list of generators which can each select a string of a particular length; a
regular expression such as A|B, for example, is handled by recursing on A

and B and then combining these lists in the correct manner. The worst-
case complexity of this algorithm is O(nr) where n is the length of the
desired string and r is the length of the regular expression.

• The Binary type (which represents bitstrings), uses the same mechanism
as Text. AMSL even allows the specification of a regular expression which
should match the hexadecimal representation of all permitted byte se-
quences; in this case, a hexadecimal Text value is generated first and then
decoded into a bytestring.

• For a record, the generator is folded (see Section 4.3.3) over its fields; i.e.
these are generated from top to bottom while updating the environment
with the field values established so far.

• For unions, one of the options is selected uniformly; then the function
recurses on the type of that option.

• Enumerations are also generated by uniform selection.

5.1.2 Issues

The heuristics for message generation used here have been chosen because they
provide a simple and straigthforward method for obtaining varied and correct

32

messages; however, that does not mean it is perfectly suitable for testing. Sec-
tion 5.3 describes a method of measuring the effectiveness of a particular strategy
and Section 6 uses this measure when trying the generation strategy described
here on case studies.

Certain shortcomings of the current testing method can already be identified:

Unbalanced union selection When a union has two members: one with a
single constant value and one complex record with many fields, its generator
will still produce the constant value about 50% of the time. This is undesirable,
because this will lead to the simple value being repeated many times while the
other complex value may have many variations that one wishes to test. This
problem is exacerbated when many unions are contained in a message, leading
to an overrepresentation of the simpler alternatives.

A solution might be to attach a weight to a type that increases when it
contains more elements that can be varied (when perceiving fields as tree nodes,
this could be the amount of descendants); then, elements with a higher weight
should be selected more frequently.

No weighing of ‘interesting’ values When, for example, having to pick
an integer value between 1 and 264, this generator performs uniform selection.
However, certain integers may be of additional interest because implementation
errors are expected to be more likely when they occur (particularly the minimal
and maximal values may be interesting, due to off-by-one errors). The likely-
hood that the current generator will actually pick the ‘interesting’ value 264,
though, is only 2−64 and thus negligible.

The test tool may benefit from employing heuristics that pick values from
a distribution in which particular values appear with greater probability than
others. The effectiveness of these heuristics should be determined by experi-
mentation.

Furthermore, what values are considered interesting may depend on the
protocol, so the user could be provided with a method (possibly an extension
of AMSL) to indicate specific values they want to test more frequently.

Strategy can not be tweaked by the user As noted above, users are
currently not able to specify which values of a field are considered to be more
interesting than others; i.e. they can not influence the distribution from which
values are drawn.

While it is possible to write an entirely new generator from scratch, there
is currently no interface that allows users to design a custom generator which
they can attach to a particular field while still using the standard generator by
default for all other fields.

A possible solution would be to use a similar approach to T3, a random
testing tool for Java [39]. T3 is capable of automatically testing Java classes by
generating test suites that perform sequences of method calls with arguments
that are varied randomly (in a manner similar to Quickcheck [25]). An extension

33

of the tool, called T3i, uses this mechanism by default but also allows the user to
have a high degree of control over the manner in which test suites are generated:
besides allowing users to compose, query and modify test suites, they can inject
specific generators for particular values [40]. For example, a generator could be
specified that, for all integer arguments named birthyear, will pick a number
between 1900 and 2016.

In the context of AMSL, specific generators could be attached to specific
fields or types (or any of them which match a particular predicate) that are to
be used instead of the defaults. These generators should be composable and
easy to construct, in a manner similar to those in T3i.

Naive record generation Consider the following record:

record Foo with

some_number is Integer(min=0, max=10000)

special_field is Optional(subject=Bar,

is_empty=some_number != 42)

end

When some_number has the specific value of 42, the special_field will be
present, but otherwise it is not. The current generator will first use its Integer-
generator to pick a value for some_number; if this value does not happen to be
42 (a probability of 9999

10000), then special_field can only be empty. This means
the Bar within the field will rarely, if ever, be tested.

The problem is that the current record generator provides a field value and
then fixes it, but does not ‘look ahead’ at how this field is being used. If the
generator would have worked backwards instead of vice-versa, it might instead
have decided that it wants the special_field to be non-empty, and instead fix
some_number to be 42.

One method to improve in this area would be for the generator to first
examine in which predicates a field value is referred to; then, it should try to
generate values for this field such that each of these expressions will be true or
false roughly the same number of times.

5.2 LTS Exploration

The Traversal monad, described in Section 4.3.6, abstracts over the act of de-
termining an actors’ state(s) depending on the actions that have been observed.
The simulator that performs the actual test is expressed in terms of this monad.
The simulator registers which messages it receives and whether errors occur, but
it should also determine what messages to send. How it comes to this decision
is called the strategy, and it has been abstracted over in the implementation:

-- | A strategy is defined by how to act at a decision point,

-- and how to update the state. The parameter s represents

-- the state, and r the test report when finished.

34

type Strategy s r = ExploreState s -> (Decision r, s)

-- | The state of the exploration process. Based on this a

-- decision needs to be made.

data ExploreState s = ExploreState {

-- | The complete LTS of the tested system.

lts :: LTS,

-- | The possible states the system may be in.

potentialStates :: Set StateID,

-- | The latest received message; or Nothing in case there is none.

receivedMessage :: Maybe MessageLabel,

-- | Additional user-defined state. It is maintained

-- after a reset and may be updated at each decision

-- point.

userState :: s

}

-- | How to act at a ’decision point’ in the testing process.

-- r is a type representing final test results.

data Decision r

-- | Send a particular message.

= SendMessage MessageLabel

-- | Wait until a new message comes in, or a timeout.

| AwaitMessage

-- | Finished testing.

| Finish r

A strategy is expressed as a Strategy function type, which examines the
current state of the LTS exploration (which includes a strategy-specific state
variable) and makes a decision on what to do next. See the comments in the
code snippet above for a description of the individual data types.

The current implementation assumes systems can be tested synchronously,
in the manner described in Section 4.3.7. This is not correct for real implemen-
tations of certain protocols, which may result in the testing tool reporting false
results (or applying its strategy ineffectively) when a tested system is capable
of sending and receiving messages at the same time.

5.2.1 The ‘Greedy Random Walk’ Strategy

Just like the message generator, the implemented LTS traversal strategy uses a
basic and simple heuristic. The technique used here I dubbed the greedy random
walk. It uses the following algorithm in order to determine what message to send:

• Mark any state the system is possibly in as visited.

35

• If there are one or more unvisited states that can be traversed to from
a possible current state through a send action, randomly and uniformly
pick one of these states and send the message needed to move to it.

• Otherwise, if there are one or more visited states that can be moved to
with a send action, pick one of these and send the corresponding message.

• When nothing can be send, await message reception.

This step is repeated for an amount of times configured by the user. After
that, the strategy terminates.

This strategy basically tries to perform a random walk through the state
graph, preferring unvisited above visited states in the hope of covering as much
of the graph as possible. A clear shortcoming of this approach is that it does not
look past its immediate neighbours: situations in which two or more particular
messages need to be send in order to reach an unvisited node are ignored.

Do note that when the system may be in more than one state at the same
time, all possibilities are marked as visited even though it is uncertain this did
indeed happen. Another approaches would be to only mark nodes that have
certainly be reached or to introduce an additional class of possibly visited nodes
that are treated differently.

Thanks to the Strategy abstraction layer it is, however, relatively simple
to adjust this strategy or to replace it with an alternative one that uses a more
intelligent approach.

5.3 Measuring Test Coverage

In order to be able to compare the effectiveness of different testing strategies, a
method is needed to measure the degree to which they cover the specification:
i.e. what elements of the protocol, that the specification writer has described,
are being subjected to the test. Of course coverage by itself does not conclusively
say how good a strategy is at its primary goal, namely finding implementation
bugs; it can, however, be useful for comparing strategies and as a measure of
how thorough a test was that did not find flaws.

Methods have been defined to measure testing coverage of respectively AMSL
and AISL modules. This measurement provides information about how effective
a strategy is at testing a protocol with one particular specification; however,
those results can not be extended to all protocols. It may also very well be
possible that strategy A is better than strategy B when testing a particular
specification, while strategy B is superior when testing another.

5.3.1 AMSL Coverage

AMSL specification coverage is treated similarly to the concept of code coverage:
the goal is to measure how many statements made by the specification writer
are reached during execution. In this context, I define a statement to be a field
within a record, union, or enumeration and I consider it to have been reached

36

once this field is present somewhere within a message. Additionally, Optional
fields are only considered to be fully covered when they have been encountered
while empty and when containing a value.

The framework defines a Coverage data type that contains a binary tree
associated with a single message specification, along with two functions to build
it:

data Coverage

= UncoveredLeaf

| CoveredLeaf

| Node Coverage Coverage

| Label TypeName Coverage

-- | Determines how much a specification of a single message

-- covers.

messageCoverage :: MessageInstance -> Coverage

-- | Join the coverage of multiple instances of the same

-- message or identically labelled structures.

combineCoverage :: Coverage -> Coverage -> Coverage

For each instance of the same message, the structure (i.e. placement of
Nodes and Labels) of coverage trees will be identical; the leaves differ depend-
ing on which fields were present in the instance and which were not. The
combineCoverage function merges structurally identical trees: a covered and
an uncovered leaf are combined into a CoveredLeaf.

Composite types (records, unions and enumerations) are represented as
nodes. When painting (marking as covered) a record, all its fields are recur-
sively painted; when painting a union or enumeration, only the option actually
present is painted.

Labels attach the type name of a user-defined composite type to a subtree.
Two subtrees with the same label as their root must be structurally identical,
because they express the coverage of the same type. These are necessary because
when instances of the same type appear at different places they should not be
counted separately: a field is already considered covered when it appears in any
location. Therefore subtrees with the same label are also automatically merged
with each other.

The following functions can be used when willing to express the coverage of
an entire AMSL module, rather than that of a single message:

-- | 0% module coverage that can be extended with

-- moduleCoverageAdd. The argument contains the messages in

-- a (AMSL or AISL) module.

moduleCoverageBase :: [Message] -> ModuleCoverage

-- | Add the coverage of a particular message to the total

37

-- module coverage.

moduleCoverageAdd :: MessageInstance -> ModuleCoverage

-> ModuleCoverage

-- | Cover fraction for all messages.

moduleCoverAmount :: ModuleCoverage -> Rational

The ModuleCoverage data type maintains the Coverage for each message
and for each other type (identified by a Label within a coverage tree). With
moduleCoverageAdd these coverage trees are appropriately painted based on a
single message instance.

The moduleCoverAmount function attaches a score between 0 and 1 to a
coverage result: namely the fraction of leaves that are covered, among the total
number of leaves within a coverage tree.

Message coverage could be measured under different circumstances: for ex-
ample, the message generator could simply be tasked to generate a certain
number of instances for each message, and a ModuleCoverage could be derived
from that. For the case studies in Section 6, the AMSL coverage is computed
over the messages that are send to the tested system, but also over those that
are received from it. That means that the coverage does not just say something
about the generator, it also gives information about what parts of the protocol
the other system can be forced to utilise.

5.3.2 AISL Coverage

For an AISL actor, the coverage measure is relatively simple: namely the num-
ber of edges within the derived LTS that have been traversed. Each edge is
represented by a (state, action, state) triple, and the coverage is defined as the
fraction of them that are crossed during testing.

Since every statement that is added to an AISL specification causes new
edges to be added to the derived LTS (see Section 4.2.4), a strong edge coverage
implies strong “code coverage” of the AISL module.

A problem arises in the case of non-determinism: when it is unclear whether
the system is in state A or state B, and both states have an edge to state C
that is triggered when receiving message m, then it is unclear which edge is
traversed when m is observed: it could be either (A,m,C) or (B,m,C). Here,
I decided to pessimistically consider neither edge as covered (it is impossible to
determine which is the correct one anyway); an alternative approach would be
to count both, or to divide fractional coverage scores among them.

Coverage is automatically maintained within the Traversal monad de-
scribed in Section 4.3.6:

type Transition = (StateID, Action, StateID)

newtype Coverage = Coverage { unCoverage :: Set Transition }

-- | Get the total coverage. In case of nondeterminism only

38

-- the transitions of which it is certain that they have

-- been touched will be included.

getCoverage :: Monad m => TraversalT s m Coverage

The Coverage data type simply contains a set of transitions (edges). The
fraction of these, out of the total, provide a coverage score.

5.4 Alternatives to Random Testing

When testing a protocol specification, the number of possible test sequences and
message variations increases exponentially with any addition to the specification,
therefore it is generally infeasible to use an exhaustive testing approach, in which
every possibility is tried. Instead, both testing strategies given in this section
employ a random testing approach: when faced with multiple options, the next
step is determined randomly and through repetition it is hoped that a large
variation of cases is examined.

However, alternative methods could also be employed when designing a mes-
sage generator or LTS traversal strategy, such as search-based or combinatorial
testing:

Search-based testing By using a coverage measurement such as the one
described in Section 5.3 and applying it to the result of executing a strategy
for several test protocols, one can attach a number to the quality of a testing
strategy and compare the effectiveness of different strategies. Coverage can also
be used as a fitness value within the context of search algorithms, when the
subject to be optimized is the strategy itself: by representing the test strategy
as a set of parameters that can be (selectively) varied, one could run a search
algorithm to try and maximize the coverage/fitness score [43].

An example of this approach can be found in the EvoSuite tool [44], which
generates test cases for programs written in the Java programming language.
Instead of generating arbitrary tests at random, it starts with a population
of random strategies and applies and uses a genetic algorithm to evolve them
until one has a high enough fitness score (which is defined in terms of code
coverage). [45] demonstrates this tool can compete well with others that use a
random testing approach.

Combinatorial testing When using exhaustive testing, one tries every possi-
ble configuration of all parameters, of which usually too many exist for this to be
practical. Combinatorial testing is based on the observation that usually faults
occur as the result of the interaction of a small number of these parameters;
based on this, a combinatorial testing strategy looks at all n-way combinations
(where n is a small number, in practice never higher than 6; when n = 2, the
approach is called pairwise testing) of parameters and tests all values of every
combination, while leaving the other parameters constant [46].

For example, when given 10 parameters which each have 20 values, exhaus-
tive testing would require all 2010 ≈ 1013 configurations to be tried; however,

39

when using 3-way combinatorial testing, only
(
10
3

)
∗203 = 960, 000 possible con-

figurations exist. Furthermore, a single test case with 10 may be particular
parameter values will able to cover multiple combinations of three parameters
at once.

In order to determine the minimal amount of test cases that are needed
in order to cover all 3-way combinations, one can look at a minimal covering
array of configurations: a list of combinations to test that together cover all
configurations [51]. For the example, where one wishes to cover all 3-way tuples
of 10 parameters that each have 20 different values, a covering array exists that
only has size 8930; which means only that many test cases will have to be
executed [52].

This approach might be suitable for AMSL message generation, where the
parameters to test are the values of fields (and sub-fields) within a message.

6 Case Studies

In order to test the languages and the testing framework so far, two protocols
have been picked as case studies: first, (a subset of the) protocol messages have
been specified in the AMSL language; then, an AISL model was constructed for
a protocol role (in both cases the server role). The testing framework was used
to automatically execute tests by using the strategies described in Section 5
(causing the tester to assume the role of client), while measuring test coverage.

6.1 WebSocket

The WebSocket protocol provides a message-based bidirectional communication
channel, layered over TCP. It is aimed at browser-based applications that wish
to efficiently do two-way communication with a server without opening multiple
HTTP connections. In order to work around firewalls blocking non-HTTP traf-
fic, the protocol uses the HTTP ports (80 and 443) and starts with a handshake
that is identical to an HTTP protocol upgrade request and response pair. The
protocol is specified in RFC 6455 [47], and this RFC was followed in order to
design the AMSL and AISL specifications discussed here.

WebSocket is an interesting case study because its structure is relatively
simple and easy to test (one can easily set up a websocket server; furthermore,
the content of the messages can be arbitrary and do not need to have partic-
ular semantics, as long as they are framed correctly); yet, it does have some
interesting properies: such as the transition from the HTTP-like handshake to
the binary framing messaging phase, and the manner in which payload length
is determined.

6.1.1 AMSL Specification

Frames I initially identified three types of messages within the Websocket
protocol: a client handshake, a server handshake, and a frame containing (part

40

of) a payload one party wishes to send to another. Then, when trying to write
the APSL specification, I discovered it to be neccessary to distinguish different
kinds of frames: this is because of two properties within a frame, the opcode
and the fin-bit. When fin is 1 it indicates that the frame contains the last part
of a WebSocket message (I will use the term WebSocket message to refer to a
sequence of related frames within the WebSocket protocol, which should not be
confused with an AMSL message), while a fin of 0 indicates a partial WebSocket
message that is to be completed by following frames.

A WebSocket message consists of zero or more frames with fin = 0, fol-
lowed by one final frame with fin = 1. In such a sequence of frames (called
a continuation by the standard), the opcode property of the first one indicates
the type of the WebSocket message, while all the following frames are required
to have an opcode of 0. Because the position of a frame within a continuation
can depend on the frames received previously, I decided to define four messages
for different kinds of frames:

• A MessageStartFrame, which has a nonzero opcode and a fin-bit set to
0.

• A ContinuationFrame, with the opcode and fin-bit both being zero.

• A MessageEndFrame, with a zero opcode and a fin-bit of 1.

• A MessageFrame, which has a nonzero opcode and a fin-bit set to 1; it
represents WebSocket messages which are encapsulated in a single frame
in their entirety.

To prevent replication, all these messages simply contain one Frame record;
this record has boolean parameters called first and final, and each message
type listed above uses a different configuration. The record is defined as follows:

record Frame(first, final, must_mask) with

fin is Bool(value=final) as Bit

_reserved is Binary(value=b’000’)

opcode is Optional(subject=Opcode, is_empty=!first)

as OptionalCodec(subject_codec=BE(length=4),

null_string=b’0000’)

mask is Bool(value=true if must_mask else null)

as Bit

payload_len is Integer(min=0, max=127)

as BE(length=7)

payload_len16 is Optional(is_empty=payload_len != 126,

subject=Integer(min=126))

as OptionalCodec(subject_codec=BE(length=16))

payload_len64 is Optional(is_empty=payload_len != 127,

subject=Integer(min=2^16))

41

as OptionalCodec(subject_codec=BE(length=64))

mask_key is Optional(is_empty=!mask,

subject=Binary(length=32))

as OptionalCodec(subject_codec=FixedLengthBinary)

payload_data is Payload(

tag=opcode if opcode != null else bin_frame,

length=8 *

(payload_len if payload_len <= 125 else

payload_len16 if payload_len == 126 else

payload_len64))

end

Some noteworthy aspects:

• The opcode field is an indicator for the type of frame: a text_frame or
bin_frame has a regular payload that is marked respectively as containing
text or arbitrary bytes. A ping frame requires the server to respond with a
pong frame containing the same data. Another approach to specifying the
protocol would be to define different message types for various opcodes,
instead of distinguishing between frame positions within a continuation. I
chose to focus on representing continuations, although it would be possible
to also define different messages for the different types of start frames by
extending the specification even more.

• The length of the payload (in bytes) is determined by a 7-bit field. How-
ever, when it has the special value of 126 it is followed by another 16-
bit field containing the actual length; when it has the value of 127, the
additional length field is 64-bit. This structure is represented by using
Optional fields and expressions depending on the value of payload_len.

• When the mask bit is set, the value of mask_key should be XOR’ed with
every four bytes within the payload. The purpose of this is to prevent
certain protocol confusion and cache poisoning attacks on incorrectly im-
plemented HTTP servers [47]. While AMSL does not currently support a
method of expressing how the payload is transformed it is safe to ignore
it during these tests, since the actual value of the payload is unimportant.

• When the must_mask parameter is true, masking must be used. Other-
wise, it may or may not be activated.

The reason the must_mask parameter is included is that the specification re-
quires that WebSocket clients must always mask their messages, however servers
may freely choose whether or not to mask and could even choose to mix masked
and unmasked messages within the same session. In order to enforce clients to
mask while allowing servers to choose whether to do this or not, I introduced
four additional frame messages: they correspond to the four defined so far, with
the difference that they set must_mask to true.

42

The handshake The client handshake message, which is the first thing being
send when establishing a WebSocket connection, looks like an HTTP request
with a particular set of headers. I defined it as follows:

record HttpHeader(key, val) with

name is Text(pattern=key, exclude_pattern=/:/)

as TerminatedText(encoding=’ascii’,

terminator=’:’)

value is Text(pattern=val, exclude_pattern=/\r\n/)

as TerminatedText(encoding=’ascii’,

terminator="\r\n")

end

message ClientOpenHandshake with

_method is Text(value=’GET ’)

resource is UriPath(exclude_pattern=/ /)

as TerminatedText(encoding=’utf-8’,

terminator=’ ’)

protocol is Text(value=’HTTP/1.1’)

as TerminatedText(encoding=’utf-8’,

terminator="\r\n")

host is HttpHeader(key=/host/,

val=/[a-zA-Z0-9\.]+/)

upgrade is HttpHeader(key=/upgrade/,

val=/websocket/)

connection is HttpHeader(key=/connection/,

val=/upgrade/)

key is HttpHeader(key=/sec-websocket-key/,

val=/[A-Za-z0-9\+\/]{22}==/)

version is HttpHeader(key=/sec-websocket-version/,

val=/13/)

_end is Text(value="\r\n")

end

Even though AMSL is not intended to be used for text-based protocols, the
use of text fields and regular expressions still enabled the construction of this
particular kind of HTTP request. Unfortunately, when testing this, I found out
I missed an important aspect of the standard: namely, that it is allowed to add
additional arbitrary HTTP headers, and that they could be permuted in any
way.

Allowing arbitrary headers would not be difficult to represent, but I could
not find a method to practically represent this permutation, and have not yet
succeeded in adding language features to AMSL that would circumvent this
shortcoming. Another method of representing HTTP headers, would be to

43

simply include a single text field covering all of them; however, that would
allow a wide range of invalid header sets that would immediately be rejected by
a server when generated.

Because of this, I went with a compromise solution: ClientOpenHandshake
would be represented as demonstrated above, and ServerOpenHandshake was
given the following definition:

message ServerOpenHandshake with

status_line is Text(pattern=/HTTP\/1\.1 101 [-~]*/,

exclude_pattern=/\r\n/)

as TerminatedText(encoding=’ascii’,

terminator="\r\n")

headers is Text(exclude_pattern=/\r\n\r\n/)

as TerminatedText(encoding=’ascii’,

terminator="\r\n\r\n")

end

Now the definition of ClientOpenHandshake is too strict, while that of
ServerOpenHandshake is too liberal. This will still allow us to perform sound
tests of WebSocket servers, though, as generated client handshakes will be valid
and correct server responses are accepted. Unfortunately, testing clients will no
longer work: clients that do not use this particular order of headers will result
in a false positive and they would probably never accept a randomly generated
server handshake.

6.1.2 AISL Specification

The internal state machine of a WebSocket server is quite simple: initially it is
in a connecting state, waiting to receive the client handshake. When it accepts
it, it will send its own part of the handshake and move to the open state, in
which it can start sending and receiving messages. These two states are specified
as follows:

actor WebsocketServer with

init state Connecting where

on ClientOpenHandshake do

send ServerOpenHandshake

next Open

end

state Open where

on MaskedMessageFrame do

continue

on MaskedMessageStartFrame do

next ReceivingContinuation

44

anytime do

send MessageFrame

continue

or do

send MessageStartFrame

next SendingContinuation

or do

send MessageFrame

quit

end

.....

Handling frames that do not use continuations is straightforward, but after
sending or receiving a StartFrame, it should be followed up by zero or more
ContinuationFrames, ending with a MessageEndFrame. I encoded this by in-
troducing three additional states that behave in the same manner as Open:

• In the SendingContinuation state, the server is capable of sending either
a ContinuationFrame (and staying in the same state), or a MessageEndFrame
(followed by a transition back to Open).

• In the state ReceivingContinuation, the server expects continuation
frames or an end frame from the client.

• Finally, when the server receives a continuation in the SendingContinuation
state, or sent one during the ReceivingContinuation state, it will tran-
sition to SendingReceivingContinuation, in which it will both send and
expect continuations.

6.1.3 Test Setup

The server being tested was a simple echo server (i.e. a server that replies to each
message by repeating its content), using the Autobahn WebSocket library [48].
The strategies used were those described in Section 5. The greedy random walk
strategy was configured to take at most 500 steps.

This server was configured to accept connections on the local machine on port
9000. Unfortunately, this caused a problem: the server would never accept a
randomly generated Host header within the client handshake, because it strictly
enforces that the provided hostname matches the one assigned to itself.

While the hostname of the server is configurable, it could not be instructed
to ignore the one provided by the client. Therefore, the AMSL specification was
altered and the host header was simply fixed to localhost:9000. While this
solution is fine in the context of this test, it prevents the AMSL specification of
the protocol from being generic and applicable in other situations.

This points to a shortcoming in the framework: ideally, it should be easy for
users to configure tests in such a way that it would be possible to fix certain fields

45

to specific values. Currently, this is only possible by either altering the AMSL
specification or by writing a Haskell function that fixes this field and applying
it to all outgoing messages (using the framework to intercept and reconstruct
them).

6.1.4 Problem: Aynchronous Communication

At the moment of testing with this specification, I was not yet aware of the
difficulties of modelling asynchronous protocols (i.e. those in which the parties
may send messages at the same time) described in Section 3.3.2. I implicitly and
incorrectly assumed that the current test framework would be able to correctly
model the traversal of a WebSocketServer’s LTS.

However, as explained in Section 4.3.7, the system is currently not sound
when applied to asynchronous protocols, and because a WebSocket server is
capable of sending and receiving messages at roughly the same time (as can be
seen in its specification) this caused a problem: while no false positives were
yielded, the tester would never wait for send actions (i.e. the subject sending to
the tester) to occur when it could also trigger a receive action (i.e. the subject
receiving a message from the tester); because a strategy was constantly decided
before the tested server had a chance to respond, the system would end up solely
transmitting messages and triggering input actions, meaning many parts of the
state machine were never covered.

This problem was solved by introducing a short timeout when a send action
could possibly occur: if a message would come in within that time, it would
be handled; otherwise, the tester would move on to trigger a receive action.
Because the test subject is a simple echo server capable of responding withing
the timeout interval, asynchronous communication was avoided and the tester
behaved correctly. However, this technique is not generally applicable, not even
to the WebSocket protocol. Furthermore, it caused the execution time of the
strategy to be much longer, because of the many timeouts.

6.1.5 Results

The tests were run succesfully on the echo server, given the caveats that have
been noted above. The coverage score was determined using the metrics de-
scribed in Section 5.3. The precise coverage reports can be found in the file
test-cases/websocket-results.txt. The results are as follows:

AMSL Message Coverage The message coverage score was 65%. Upon
closer examination, the incompleteness of the message coverage was caused en-
tirely by two factors:

• None of the messages MessageStartFrame, ContinuationFrame or MessageEndFrame
were ever encountered. Their masked variants were, however. The reason
for this is that the echo server being tested simply never utilised multi-
frame WebSocket messages, only the client did.

46

• All fields in all other messages were covered, with the one exception of the
optional field payload_len64, which was always empty.

The fact that the server continuation frames were missed is caused by this
particular server implementation, and (assuming that it could not have been
forced to use the continuation feature) does not say anything about the testing
strategy, since any strategy would have had this same result. Note that even
when certain parts of the specification are never covered, such an experiment
can still be useful: it still allows strategies to be compared on how well they
cover other aspects of the protocol.

The fact that the payload_len64 field was missed does point to a short-
coming of the message generation strategy, though: because the value of the
payload_len field is selected uniformly between 0 and 127, it is very well possi-
ble that the significant value of 127 never happened to be selected, resulting in
the 64-bit field to never be included. This problem is discussed in Section 5.1.2.

AISL Transition Coverage The transition coverage score was 28.57%. While
this score seems low, it is entirely caused by the server never sending any con-
tinuation frame and thus never entering the SendingContinuation or
SendingReceivingContinuation states. Transitions from, to, and within these
states take up the majority of the specification; when they are disregared, the
coverage result becomes 100%: all other states are covered.

This is not very surprising: because the remaining state machine is very
simple, running a randomized traversal long enough would quickly have en-
countered all transitions even by accident. A test subject that would employ
the continuation feature of WebSockets would probably have yielded more in-
teresting results, when it came to testing this particular APSL specification of
the protocol.

It can be concluded that this case study does not give very useful information
about the greedy random walk traversal strategy. However, its message coverage
results are interesting, and the process of designing the APSL specification of
this protocol also revealed some interesting points.

6.2 IMAP

The IMAP (Internet Message Access Protocol) is used by e-mail clients to access
and manage messages stored remotely on an IMAP server. Among other things,
messages can be searched, examined, deleted and organized within different
mailboxes (which themselves can be created, deleted or renamed). The version
of the protocol used for this case study is IMAP version 4rev1, as defined in
RFC 3501 [49].

In my opinion, IMAP is much less clearly specified than the WebSocket
protocol: certain details (such as the allowed characters within and maximal
length of command tags and identifiers) are not specified, requiring assumptions
(based on the apparent behaviour of existing implementations, which are not
always consistent with each other) to be made during the design of the AMSL

47

and APSL specifications. I would like to argue this shows another benefit of
protocol specification languages such as APSL: designers are forced to think
about ambiguities within a natural language specification, revealing flaws within
that specification that require clarification.

Because IMAP is relatively complex, and has many features, only a subset
has been specified and tested for this experiment. The features that are included
are:

• The three different server greetings, that respectively indicate that the
user is required to log in, that they are already authenticated and can
proceed directly, or that they have no access and the connection will be
closed immediately.

• Logging in with a username and password.

• Examining, creating, deleting and renaming mailboxes.

• Selecting a mailbox, after which messages within can be fetched, altered or
copied. The possibility to fetch specific parts of an e-mail is not included,
only three options: retrieving the entire message, obtaining only the en-
velope (metadata) or just getting the message size and flags (properties
such as an e-mail having been read or being a draft).

• Closing a selected mailbox, allowing the client to continue opening an-
other.

A notable omission is the option to add a fresh new message to the mailbox;
the only means through which it is possible to add new e-mails with these
functions is to copy an existing one.

6.2.1 AMSL Specification

Similarly to SMTP and POP3, IMAP messages consist of human-readable
ASCII and can actually easily be typed in manually. These do not require
complex parsing however, and proved not to be that difficult to express in
AMSL.

Within IMAP, messages send from the client to the server are called com-
mands and messages in the other direction are referred to as responses.

Client commands Each command starts with a tag, an arbitrary string of
alphanumeric characters chosen by the client, followed by a command name and
then arguments of which the type depends on the command. These parts are
separated by spaces, and the command always ends with a line terminator. I
expressed the initial two fields within the following record:

record CommandStart(command) with

tag is Tag as SpaceTerminated

name is Identifier(value=command) as SpaceTerminated

48

end

type Identifier is Text(charset=’ascii’, pattern=/[!-~]+/,

exclude_pattern=/ |\r\n|*/,

max_count=20)

type Tag is Identifier(pattern=/[0-9a-zA-Z]+/)

codec SpaceTerminated is TerminatedText(encoding=’ascii’,

terminator=’ ’)

codec LineTerminated is TerminatedText(encoding=’ascii’,

terminator="\r\n")

Each command that takes arguments is then represented as an AMSL mes-
sage that starts with a CommandStart (the record parameter containing the
name) and is followed by a field for each argument. The final argument field
either uses the LineTerminated codec, or an additional field matching "\r\n"

is added at the end. For example:

message RenameCommand with

_start is CommandStart(command=’RENAME’)

mailbox is MailboxId as SpaceTerminated

new_name is MailboxId as LineTerminated

end

The CommandStart record is not suitable for commands that do not take
arguments, since these should not be ended with a trailing space. For these, a
SimpleCommand record was introduced that is identical to CommandStart, except
that the name field uses a LineTerminated codec.

Server responses After sending a command, the server may first react with
zero or more untagged responses, which are prefixed with a * character and
provide relevant information depending on the command. Finally, it will send
a status response indicating whether the commanded operation succeeded; this
response starts with the same command tag as which the client used.

It is required that the server uses the same command tag as the client did;
unfortunately, that can currently not be expressed within APSL. When testing
servers (as in the case of this experiment), this is not problematic, since the
tester could simply accept any tag and will not yield a false positive. However,
testing a client that strictly enforces that the server sends the correct tag (or in
which the use of an incorrect tag triggers a bug) may prove to be difficult.

The tagged responses are called status responses; each includes an identifier
followed by an arbitrary server message that may be useful during an interactive
session or when reading logs. They are expressed in AMSL with an enumeration,
and by wrapping a generic record:

record StatusResponse(response) with

tag is Tag

49

as SpaceTerminated

_id is StatusResponseId(value=response)

as SpaceTerminated

text is Text(charset=’ascii’, pattern=/[-~]*/,

exclude_pattern=/\r\n/)

as LineTerminated

end

enum StatusResponseId of Text with

ok as ’OK’

no as ’NO’

bad as ’BAD’

preauth as ’PREAUTH’

bye as ’BYE’

end

message OkResponse with

resp is StatusResponse(response=ok)

end

message NoResponse with

resp is StatusResponse(response=no)

end

message BadResponse with

resp is StatusResponse(response=bad)

end

When a command has been completely processed, the server will send a
status response of OK (indicating success), NO (indicating the command could not
executed for some reason, such as a mailbox not existing), or BAD (meaning the
command received from the client was not understood or incorrectly formatted).

The response ID’s of PREAUTH (a server greeting indicating the client is al-
ready authenticated) and BYE (sent when logging out) are used within certain
untagged responses, which are expressed in the record UntaggedStatusResponse

that is identical to StatusResponse, except that it expects an asterisk instead
of a tag. Untagged OK and NO responses can also be send to provide more
intermediate information about an operation.

Other untagged responses always start with a message number (since they
always relate to a specific e-mail), and are followed by an identifier indicating
their type. They are expressed by wrapping messages around the following
record:

record UntaggedResponse(kind) with

_asterisk is Text(value=’*’)

as SpaceTerminated

msg_id is MessageId

as TextInteger(text_codec=SpaceTerminated)

50

response_type is Identifier(value=kind)

as SpaceTerminated

info is Text(charset=’ascii’, pattern=/[-~]*/,

exclude_pattern=/\r\n/)

as LineTerminated

end

Mailbox names Mailboxes can have arbitrary names, but when they are
randomly generated it is unlikely that a mailbox happens to exist with the
same name, meaning all operations on mailboxes would probably fail. While
it is useful to test these failures one would of course also want to continue
testing valid mailboxes. Luckily, one can be certain that a mailbox named
INBOX exists, since IMAP requires that. If it were possible that INBOX were
an interesting value that should be tested just as frequently as random names,
this problem could be resolved. As noted in Section 5.1.2, this feature is not
directly supported; however, the same effect can be achieved by letting mailbox
identifiers be generated from a particular regular expression:

type MailboxId is Identifier(pattern=/INBOX|[0-9a-zA-Z\-]+/)

Due to the manner in which values are generated from regular expressions,
the string ’INBOX’ will be selected half of the time. Of course, this is an
exploitation of an implementation quirk, and is not guaranteed to work when
using a different generator or implementation. A better solution would be to
provide a method of configuring the generator in such a way the user could tell it
that ’INBOX’ is an interesting value for this type and should be tried frequently.

Message identifiers E-mails within a mailbox are identified by sequential
integers from 1 onwards. This can be expressed in AMSL (with an assumed
upper bound, since the IMAP specification does not provide it) but, due to the
manner in which integers are selected, would result in numbers being chosen
that are larger than the amount of messages in the mailbox; which means all
operations on messages would fail.

Once again, this problem could be solved by implementing solutions for the
issues described in Section 5.1.2. For this experiment, I avoided the problem
by setting the maximal message number to 100, somewhat limiting the scope of
what will be tested.

6.2.2 AISL Specification

IMAP has an interesting state machine that is more complex than that of the
WebSocket protocol. However, the protocol is completely synchronous, avoiding
the issues described in Section 4.3.7.

The IMAP specification actually describes the state machine pretty clearly.
It works as follows:

51

• Upon establishing a connection, the server will start by sending a server
greeting, which has the form of an untagged response. This can either
be an OK response (after which it moves to the not authenticated state), a
PREAUTH response (triggering an immediate transition to the authenticated
state), or a BYE response (after which it will close the connection).

• In the not authenticated state, the server can receive a request to use
opportunistic encryption (not considered in this case study) or the client
can attempt to authenticate themselves using different methods. The only
method supported here is a simple LOGIN command with a username and
password; when it succeeds, the server moves to the authenticated state.

• Within the authenticated state, the server can receive commands that re-
late to the management of mailboxes. After receiving a successful SELECT
command on a particular mailbox, a transition is made to the selected
state.

• From the selected state, various operations on the mailbox are supported.
When a CLOSE command is received, the server will return to the authen-
ticated state.

The AISL specification is a straightforward translation of this state ma-
chine, with three additions: the states Examining (after receiving an EXAMINE

command), Selecting (in between the authenticated and selected states), and
Processing (upon receiving a FETCH, COPY or STORE command). These states
represent the process in which a server keeps sending an arbitrary amount of
untagged responses before ending with a status response and then moving back
to one of the states listed above. The Selecting state, for example, is defined
as follows:

state Selecting where

anytime do

send FlagsResponse

continue

or do

send ExamineResponse

continue

or do

send UntaggedOk

continue

or do

send OkResponse

next Selected

end

In IMAP, it is possible for the client to send a LOGOUT command from any
state, triggering a BYE response from the server, followed by it closing the TCP

52

connection. While this command is simple to represent, I did not include it in
this subset: the reason is that the testing framework is currently not capable of
restarting the testing process when an exit state is reached, meaning any test
would too quickly result in an exit, preventing it to continue.

6.2.3 Test Setup

The IMAP server tested for this case study was version 4.10.0 of the Courier
IMAP Server [50]. It had been setup with a single user named imap-test,
who has a password identical to its username. For other settings, its default
configuration was used.

Before every test, the mailbox used for this user was cleared and then filled
up with 80 messages (note that message identifiers used within this case study’s
AMSL specification have a range between 1 and 100, meaning most but not
all operations on them would succeed). These messages initially have no spe-
cial flags set and each contain just the 18-byte string "This is a message."

within their body. This process is automated by a script (or rather, a text file
containing a sequence of IMAP commands) called populate-mailbox.imap.

Once again, the test was configured to take at most 500 steps.

6.2.4 Deleting the Inbox: A Bug Within Courier?

The IMAP specification forbids the special mailbox called INBOX to be deleted
and any attempt to do so should result in the server responding with NO. This is
exactly what the Courier Mail Server did when the tester tried to do this illegal
delete operation. However, it appeared that afterwards, any attempt to select
the inbox would fail for an unclear reason. Manually recreating the mailbox
would solve the problem, and any operation on INBOX would work as expected
until a delete command on it was tried.

It appears that a bug in the Courier IMAP server might have caused this
issue. That would mean that the testing framework has successfully led to the
discovery of a bug. Do note, however, that this potential bug was not flagged
by it but rather discovered by me examining a coverage report and running
experiments.

Unfortunately, not enough time was available to investigate whether this
issue was indeed caused by a bug in Courier, and what caused it. In the following
test (of which the results are listed here), I excluded the option to receive DELETE
commands from the server specification, such that the tester would no longer
trigger this situation.

6.2.5 Results

The test did not report any other errors. The coverage report of this exper-
iment can be found in test-cases/imap-results.txt. I made the following
observations based on it:

53

AMSL Message Coverage The total message coverage score was 67.6%; the
following aspects were not covered:

• The message BadResponse was never covered. The reason for this is that
such a response indicates a client protocol error; when the client acts
correctly, this should never occur. Since no errors were reported, it is
obvious that this message could never have been sent.

• The message Bye was also not covered‘. The only situation in which this
message could be send (since the client’s logout command is not used
within this experiment), is when the connection opens and the server
rejects it for some reason. Since the mail server had no reason to do so,
this never happened.

• Likewise, PreAuthGreeting was never sent because no situation of pre-
authentication was present. This message not occurring is as expected.

• Within the StatusResponseId enumeration, the members bad, preauth
and bye remained uncovered, because their corresponding messages were
never encountered.

• The message StoreCommand never occurred as well. The reason for this is
discussed in the next paragraph.

• A FETCH command is accompanied by an indication of what parts of a
message should be retrieved. This argument is represented here as the
enum MessageDataItems, with three member called all, fast and full.
Of these, all and fast were never covered. By inspecting the message
trace, it seems that the fetch command was simply not executed frequently
enough (i.e. twice) and that in both cases the generator happened to
produce a full value. The reason why it was infrequently repeated is
probably because the traversal strategy gives a lower priority to transitions
it has already visited, and because many other paths are possible: the
random walk happened to no longer cross the FETCH transition after the
second attempt.

AISL Transition Coverage The transition coverage score was 72.58%, for
the following reasons:

• The lack of server greetings other than OK meant the pre-authentication
and immediate logout paths were not followed.

• The rename command never succeeded. This was due to it being illegal
to rename the inbox, or to rename another mailbox to INBOX. Renames
involving two random names also never succeeded because (as could be
expected) no mailbox with the first given name ever existed.

54

• It was never decided to send a StoreCommand. When rerunning the test,
or when increasing the step count, this transition did occur. One could
say that this simply means the test did not get to run long enough (note
that the currently configured step count is 500), especially since many
attempts at commands failed due to a nonexistant mailbox or message
number. However, a shortcoming of the greedy random walk is also re-
vealed by the message trace: after entering the Selected state for the
first time, the tester tried a FetchCommand, a CopyCommand and then a
CloseCommand. Afterwards, the Selected state was never entered again
because the tester kept trying commands other than SELECT. If the strat-
egy was more intelligent and capable of ‘looking ahead’ more than one
step, it would have been detected that a STORE command had not been
tried yet, but that a SELECT would be needed first before being capable of
that.

7 Future Work

Many limitations and shortcoming have been identified within the APSL lan-
guages and the testing framework so far. Additionally, there are a lot of possible
directions this framework and specification language could be taken in. A num-
ber of possible subjects for future work include:

• The AMSL language and the message generator could be extended in ways
that solve the issues described in Section 5.1.2.

• While the AISL language offers a useful representation of an LTS model,
this model may not be sufficient in order to properly test various proto-
cols. This is mostly because it is currently not possible to reuse detailed
information from received messages (i.e. field values) in messages that are
send in response. In order to model the TCP protocol, for example, it
is required to put an increasing sequence number in each segment, which
can currently not be expressed. This was also a (minor) problem during
the IMAP case study, since it is not possible to let the server repeat a
tag found in a preceding client command. One should consider, however,
that such extensions to the language may complicate automated testing
considerably.

• As noted in Section 4.3.7, the tester is currently not capable of correctly
testing asynchronous protocols. It could be extended to use the techniques
described in Section 3.3.2.

• Operations based on AMSL specifications can be expressed by writing
a Haskell function that pattern matches on GADT’s representing AMSL
types. It would be interesting to research whether these could be written
in a simpler or more concise manner by using the UU Attribute Grammar
Compiler [41]. Considering AMSL types are effectively trees, attribute
grammars may offer an intuitive representation for folds over such trees.

55

• Section 4.1.7 describes a mechanism for AMSL type and codec extensions,
which could considerably increase its expressive power. This feature has
not yet been implemented, and it would need to be decided what would
be a convenient way for a user to supply plug-in code that the tester can
use in order to work with such an extension.

• The currently implemented testing strategies for messages and LTS traver-
sal are still rather simple, and more strategies can be developed, and then
compared using the coverage metric. It may be particularly interesting to
examine other techniques than random testing, such as those described in
Section 5.4.

• The tester currently works by transmitting valid messages that are sup-
posed to be acceptable by the tested system at that moment. However,
many bugs and security issues are triggered by such a system incorrectly
accepting and processing invalid messages. It would be useful to have
the tester occasionally send an invalid message and examine if the system
correctly handles this error; i.e. negative tests should be performed.

• The current version of the APSL compiler does not yet correctly validate
specifications it parses. It may accept, for example, invalid type argu-
ments, which may result in a crash while testing. Furthermore, when an
error is found, the system does not give very useful error messages that
can aid in locating the problem. Since the whole purpose of the system is
to locate bugs, this is very important in order to make the system usable
in practice.

• Here, the focus of the APSL language has been conformance testing. How-
ever, there are many other potential applications of this protocol speci-
fication language, such as those listed in Section 1. A particularly use-
ful application, for which the language is already very suitable, would
be automatic code generation: based on an APSL module, a “skeleton”
implementation could be provided that implements message parsing, vali-
dation and serialization, along with the protocol state machine. The user
would then only have to fill in the gaps with the detailed logic behind the
protocol.

8 Conclusion

This thesis discussed how implementers of a system that uses a communication
protocol could benefit from a formal protocol specification language, especially
when conformance tests can be derived automatically from a specification.

Protocol specification languages that are currently available have been ex-
amined, along with the degree to which they would be useful for this purpose.
Techniques for automated testing, based on some specification, have also been
discussed.

56

The APSL language has been introduced, which tries to solve this problem.
It is actually subdivided into two different languages: AMSL and AISL, which
are respectively used to express how protocol messages are encoded, and how
interaction by transmitting these messages affects the states of participants in
the protocol.

A framework was written that is capable of compiling APSL modules, and
can provide a convenient representation of their contents that could be used for
various applications. Two such applications have been implemented: automatic
message parsers and serializers, and tools capable of carrying out a conformance
test against a real system by solely sending particular messages and examining
the responses.

A method was devised for evaluating the effectiveness of these testing strate-
gies, and was applied when trying to use to whole system to test real implemen-
tations of the WebSocket and IMAP protocols.

While quite some improvements will still have to be made before this lan-
guage, and the accompanying testing system, become a practical tool for con-
veniently testing protocol implementations, the initial results are promising.
Furthermore, this approach is rather unique, and may provide an interesting
subject within the realms of specification languages and automated testing.

9 Source Code and Resources

Grammars and more detailed documentation for the APSL language, source
code for the compiler and tools, and test results can be found through the
following URL:

https://tinyurl.com/jtgbgwo

References

[1] Postel, John, and J. Reynolds. “Instructions to RFC authors.” (1997).

[2] Scott, Gregor D. “Guide for internet standards writers.” (1998).

[3] Dick, Grune, and H. Ceriel. “Parsing Techniques, a Practical Guide.”
Technical Report, 1990.

[4] Johnson, Stephen C. “Yacc: Yet another compiler-compiler.” Vol. 32.
Murray Hill, NJ: Bell Laboratories, 1975.

[5] Bray, Tim, et al. “Extensible markup language (XML).” World Wide
Web Consortium Recommendation REC-xml-19980210. (1998)

[6] Fallside, David C., and Priscilla Walmsley. “XML schema part 0:
primer second edition.” W3C recommendation (2004)

57

https://tinyurl.com/jtgbgwo

[7] Zyp, Kris. “A JSON media type for describing the structure and mean-
ing of JSON documents.” draft-zyp-json-schema-02 (work in progress)
(2010).

[8] “Application fields of ASN.1.” International Telecommunication
Union.
http://www.itu.int/en/ITU-T/asn1/Pages/

Application-fields-of-ASN-1.aspx

[9] “Abstract Syntax Notation One (ASN.1) Recommendations.” In-
ternational Telecommunication Union. http://www.itu.int/ITU-T/

studygroups/com17/languages/

[10] Overell, Paul, and Dave Crocker. “Augmented BNF for syntax specifi-
cations: ABNF.” (2008).

[11] “The Encoding control notation.” International Telecommunication
Union. http://www.itu.int/en/ITU-T/asn1/Pages/ecn.aspx

[12] “Protocol Buffers.” Google Developers. https://developers.google.
com/protocol-buffers/

[13] “Apache Thrift.” Apache Foundation. https://thrift.apache.org/

[14] Pang, Ruoming, et al. “binpac: A yacc for writing application proto-
col parsers.” Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement. ACM, 2006.

[15] ITU-T, Recommendation Z., and Z. Recommendation. “100: specifica-
tion and description language (SDL).” International Telecommunica-
tion Union (2000).

[16] Grammes, Rdiger, and Reinhard Gotzhein. “SDL Profiles - Formal Se-
mantics and Tool Support.” Fundamental Approaches to Software En-
gineering. Springer Berlin Heidelberg, 2007. 200-214.

[17] “A formal description technique based on an extended state transition
model.” ISO Standard IS9074, ISO: International Standards Organisa-
tion (1989).

[18] Bochmann, Gregor V., George Walter Gerber, and J-M. Serre. “Semi-
automatic implementation of communication protocols.” Software En-
gineering, IEEE Transactions on 9 (1987): 989-1000.

[19] Fecko, Mariusz A., et al. “A success story of formal description tech-
niques: Estelle specification and test generation for MIL-STD 188-220.”
Computer Communications 23.12 (2000): 1196-1213.

58

http://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
http://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.itu.int/en/ITU-T/asn1/Pages/ecn.aspx
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://thrift.apache.org/

[20] Bochmann, Gregor V., and Alexandre Petrenko. “Protocol testing: re-
view of methods and relevance for software testing.” Proceedings of the
1994 ACM SIGSOFT international symposium on Software testing and
analysis. ACM, 1994.

[21] Lee, David, and Mihalis Yannakakis. “Principles and methods of testing
finite state machines-a survey.” Proceedings of the IEEE 84.8 (1996):
1090-1123.

[22] Yannakakis, Mihalis, and David Lee. “Testing finite state machines:
fault detection.” Journal of Computer and System Sciences 50.2 (1995):
209-227.

[23] Takanen, Ari. “Fuzzing: the Past, the Present and the Future.” Actes
du 7ème symposium sur la sécurité des technologies de l’information et
des communications (SSTIC). 2009.

[24] “Peach Fuzzer.” http://www.peachfuzzer.com/

[25] Claessen, Koen, and John Hughes. “QuickCheck: a lightweight tool for
random testing of Haskell programs.” Acm sigplan notices 46.4 (2011):
53-64.

[26] Beurdouche, Benjamin, et al. “A messy state of the union: Taming the
composite state machines of TLS.” IEEE Symposium on Security and
Privacy. IEEE. 2015.

[27] Martens, Wim, Frank Neven, and Thomas Schwentick. “Complexity of
decision problems for simple regular expressions.” Mathematical Foun-
dations of Computer Science 2004. Springer Berlin Heidelberg, 2004.
889-900.

[28] Hewitt, Carl, Peter Bishop, and Richard Steiger. “A universal modular
actor formalism for artificial intelligence.” Proceedings of the 3rd inter-
national joint conference on Artificial intelligence. Morgan Kaufmann
Publishers Inc., 1973.

[29] Brand, Daniel, and Pitro Zafiropulo. “On communicating finite-state
machines.” Journal of the ACM (JACM) 30.2 (1983): 323-342.

[30] Cardoso, Janette, and Heloisa Camargo, eds. “Fuzziness in Petri nets.”
Vol. 22. Springer Science & Business Media, 1998.

[31] Holzmann, Gerard J. “The SPIN model checker: Primer and reference
manual.” Vol. 1003. Reading: Addison-Wesley, 2004.

[32] Van Deursen, Arie, Paul Klint, and Joost Visser. “Domain-Specific
Languages: An Annotated Bibliography.” Sigplan Notices 35.6 (2000):
26-36.

59

http://www.peachfuzzer.com/

[33] Hudak, Paul. “Building domain-specific embedded languages.” ACM
Computing Surveys (CSUR) 28.4es (1996): 196.

[34] Fielding, R., et al. “Hypertext Transfer Protocol - HTTP/1.1” (1999).

[35] Dale, Nell, and Henry M. Walker. “Abstract data types: specifications,
implementations, and applications.” Jones & Bartlett Learning, 1996.

[36] Pellauer, Michael, Markus Forsberg, and Aarne Ranta. “BNF Con-
verter: Multilingual front-end generation from labelled BNF gram-
mars.” Technical report, Computing Science at Chalmers University
of Technology and Gothenburg University, 2004.

[37] Lennart Kolmodin. “binary-bits: Bit parsing/writing on top of binary.”
http://hackage.haskell.org/package/binary-bits

[38] Tretmans, Gerrit Jan. “A formal approach to conformance testing.”
(1992).

[39] Prasetya, IS Wishnu B. “T3, a combinator-based random testing tool
for Java: Benchmarking.” Future Internet Testing. Springer Interna-
tional Publishing, 2013. 101-110.

[40] Prasetya, I. S. “T3i: a tool for generating and querying test suites for
Java.” Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 2015.

[41] “Utrecht University Attribute Grammar Compiler.” http://foswiki.

cs.uu.nl/foswiki/HUT/AttributeGrammarSystem

[42] Middelkoop, Arie, Alexander B. Elyasov, and Wishnu Prasetya. “Func-
tional Instrumentation of ActionScript Programs with Asil.” IFL. 2011.

[43] Afzal, Wasif, Richard Torkar, and Robert Feldt. “A systematic review
of search-based testing for non-functional system properties.” Informa-
tion and Software Technology 51.6 (2009): 957-976.

[44] Fraser, Gordon, and Andrea Arcuri. “Evosuite: On the challenges of
test case generation in the real world.” Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference on.
IEEE, 2013.

[45] Rueda, Urko, et al. “Unit testing tool competition: round four.” Pro-
ceedings of the 9th International Workshop on Search-Based Software
Testing. ACM, 2016.

[46] Nie, Changhai, and Hareton Leung. “A survey of combinatorial test-
ing.” ACM Computing Surveys (CSUR) 43.2 (2011): 11.

[47] Fette, I., and A. Melnikov. “RFC 6455: The websocket protocol.”
IETF, December (2011).

60

http://hackage.haskell.org/package/binary-bits
http://foswiki.cs.uu.nl/foswiki/HUT/AttributeGrammarSystem
http://foswiki.cs.uu.nl/foswiki/HUT/AttributeGrammarSystem

[48] “Autobahn: Open-source real-time framework for Web, Mobile & In-
ternet of Things.” http://autobahn.ws

[49] Crispin, M. “RFC 3501: Internet Message Access ProtocolVersion 4rev1
(2003).”

[50] “Courier IMAP.” Double Precision, Inc. http://www.courier-mta.

org/imap

[51] Sloane, Neil JA. “Covering arrays and intersecting codes.” Journal of
combinatorial designs 1.1 (1993): 51-63.

[52] Charlie Colbourn. “Covering Array Tables for t=2,3,4,5,6: Table
for CAN(3,k,20) for k up to 10000.” http://www.public.asu.edu/

~ccolbou/src/tabby/3-20-ca.html

61

http://autobahn.ws
http://www.courier-mta.org/imap
http://www.courier-mta.org/imap
http://www.public.asu.edu/~ccolbou/src/tabby/3-20-ca.html
http://www.public.asu.edu/~ccolbou/src/tabby/3-20-ca.html

	Introduction
	Available Protocol Description Languages
	Describing Messages
	Textual Messages
	Binary Messages

	Describing Interactions
	SDL
	Estelle

	Protocol Implementation Testing
	A Protocol Participant as a Finite State Machine
	Partially Specified and Non-deterministic FSMs
	Labelled Transition Systems
	Deriving Conformance Tests
	Asynchronous Testing

	Fuzzing

	The APSL Language
	The Message Description Language: AMSL
	Fields
	Basic Types and Codecs
	Records
	Unions
	Enumerations
	Aliases and Default Codecs
	Extensions
	Codec Stacks
	Messages

	The State Modelling Language: AISL
	Actors
	Invisible Triggers and Non-determinism
	Invalid messages
	Deriving an LTS from an Actor

	The Compiler and Framework
	Parsing AMSL and AISL
	Representing AMSL Modules and Types
	Arguments and Expressions
	Deriving Message Encoders and Decoders
	AISL Modules
	LTS Traversal
	Synchronous and Asynchronous Testing

	Testing Strategies
	Message Generation
	Generating Particular Values
	Issues

	LTS Exploration
	The `Greedy Random Walk' Strategy

	Measuring Test Coverage
	AMSL Coverage
	AISL Coverage

	Alternatives to Random Testing

	Case Studies
	WebSocket
	AMSL Specification
	AISL Specification
	Test Setup
	Problem: Aynchronous Communication
	Results

	IMAP
	AMSL Specification
	AISL Specification
	Test Setup
	Deleting the Inbox: A Bug Within Courier?
	Results

	Future Work
	Conclusion
	Source Code and Resources

