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Machine learning dissected

by Raj JAGESAR

The research presented in this thesis addresses machine learning tech-
niques and their application in the context of classification problems. Fur-
thermore as this thesis is centered around a medical initiative (Behapp) the
insights found were applied to the data produced by this initiative.

The direction of study on general machine learning techniques was cho-
sen in order to model the knowledge on how to create optimized machine
learning models. Furthermore, since it concerns the analysis of a medical
data set the usage of transparent modeling techniques is prefered allowing
us to relate the input (data) to the output (classification). This relates back
to the goal of creating optimized models since transparent techniques are
known to be outperformed by their non transparent counterparts.

Using the modeling approach by Weerd and Brinkkemper (2008) the
machine learning techniques were modelled into a method in the form of a
process-deliverable-diagram. The method was then applied to two datasets
to evaluate the potential for improvements in performance.

We found that models generated using our method showed increased
performance in terms of classification accuracy and overall reliability of the
results. Next we applied transparent modeling techniques and the socia-
bility scoring model (Eskes et al., 2016) to the data of the Behapp initiative.
As expected, the in-depth look reveals various patterns where patients and
controls are separated in the data.

In light of the results we feel that the method created enables further
reasoning on the application of machine learning techniques in a single pro-
cedural data mining approach and may be extended to include procedures
relevant to other domains. Last we find that the concept of an aggregated
sociability score shows promise in expressive value having applied it to pa-
tient data for the first time.
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Chapter 1

Introduction

1.1 About machine learning

This thesis is centered around a research initiative at the University Medical
Center Utrecht with the end goal of solving a classification problem on a
medical dataset. In other words we will attempt to uncover underlying
patterns in the data that can be used to distinguish between patients and
participants from the control group.

In order to achieve this we will draw from the field of machine learning
(ML). Flach (2012) defines machine learning as “the systematic study of al-
gorithms and systems that improve their knowledge or performance with
experience”. The author explains that the act of learning is similar to that of
humans since ML practices generally lead to improved knowledge but not
neccesarily to improved performance on a task.

In this context the concept of experience can take different forms e.g.
distance measures and training data from which the relative similarity be-
tween cases can be derived. These types of experience are closely related to
the three types of ML tasks that are applied in practice:

• Supervised learning: the system is provided with training data which
contains both the input and output data (labels). Based on this data
the system determines which input conditions belong to a certain
ouput, this process yields a decision model. The resulting model is
then used on an unlabeled dataset to classify the unseen instances of
the set (Kotsiantis, Zaharakis, and Pintelas, 2007).

• Unsupervised learning: the system does not know a training phase
as with supervised machine learning since it is directly presented with
unlabeled data. It is up to the system’s algorithm, by using distance
measures, to uncover patterns in the data. An example of unsuper-
vised learning is clustering where instances of a dataset are grouped
based on commonalities in their features (Jain, Murty, and Flynn,
1999).

• Reinforcement learning: also known as trial and error learning, the
system learns by interacting with an environment. During this inter-
action the system is provided with a signal indicating how well the
system is performing. The system can choose to act based on experi-
ence or to explore a new choice (Sutton and Barto, 1998).
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1.1.1 Description and prediction

The creation of ML systems spans various disciplines like mathematics,
statistics and computer science. These disciplines combined support the
act of learning and result in models that are fitted to data. The challenge is
to derive models that are accurate in the sense that they reflect the underly-
ing patterns in the data whilst ignoring peculiarities that do not represent
reality. This is also known as signal noise.

The popular and well known purpose of models is to make predictions
on new (and unseen) examples of data. Insurance companies, for example,
have models to help predict whether insurance claims are fraudulent or not
based on historic data (Phua et al., 2010).

However ML techniques are also well suited to explore the underlying
patterns of a dataset. According to Lan, Frank, and Hall (2011) "people
frequently use machine learning techniques to gain insight into the struc-
ture of their data rather than to make predictions for new cases". This is
of particular importance to this research project since, as we will explain in
section 2, medicine requires validation of results.

1.1.2 Knowledge discovery and data mining

Both in practice and in the body of literature, ML systems and techniques
are often part of processes known as knowledge discovery in databases (KDD)
and mostly data mining (DM). Both processes are aimed to gain knowl-
edge from large amounts of data. Agrawal and Shafer (1996) and Fayyad,
Piatetsky-Shapiro, and Smyth (1996) place DM as a formal step in the KDD
process, describing DM as the iterative application of staticical and logical
techniques to fit or derive models from data.

However, over the years, DM has also become accepted as a term en-
compassing all the phases of the KDD process meaning that the terms can
be used as synonyms (Mariscal, Marbán, and Fernández, 2010a). In line
with this view DM is defined as the process where data is selected, explored
and modeled for the purpose of knowledge discovery (Giudici, 2005). Ma-
chine learning can then be considered as one approach to performing a DM
project. The domain of ML has its own techniques and guidelines that are
applied during this process which impact the data preparation, modeling
and knowledge discovery aspects of data mining. In practice this makes
the terms closely interrelated but not completely interchangeable.

1.2 Knowledge discovery in medicine

With ongoing advancements in technology, healthcare institutions are also
finding themselves in a position where large amounts of data are gener-
ated which require an automated means of knowledge extraction (Milovic,
2012). Furthermore, Bellazzi and Zupan (2008) find that care processes like
prognosis, diagnosis and treatment planning could benefit from the appli-
cation of predictive analytics. For example, data mining has been succes-
fully applied in health care to help predict insurance fraud, underdiagnosed
patients and classify people in health-risk categories (Yoo et al., 2012).
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The body of literature repeatedly comes back to the following points of
attention when data mining is applied in the medical domain. The findings
are briefly reported below:

• Results should be explainable: in medical practice it is just as impor-
tant to know why a certain conclusion is drawn by a machine learn-
ing algorithm next to the conclusion itself. A medical practitioner
should be able to identify and present the underlying factor(s) that
made the machine learning system classify a person as a potential
sufferer from an illness. This is an important factor in the design of
a machine learning system since not all machine learning algorithms
offer the kind of insight that is required. For example, artificial neural
networks (ANN) and support vector machine’s (SVM) are praised for
their accuracy and performance but are also considered black boxes
since they do not provide information on how the system came to a
conclusion. On the other hand decision trees and bayesian networks
do provide insight into the inner workings of a decision model (Bel-
lazzi and Zupan, 2008) (Lavrač, 1999).

• Specifics regarding performance evaluation: the performance of al-
gorithms is usually measured in accuracy and speed (time). However
in medicine two other measures are found to be more important and
more frequently used: sensitivity and specificity (Lavrač, 1999). Accu-
racy is the proportion of cases that are correctly classified. Sensitivity
is concerned with the proportion of positive cases that are correctly
classified as positive, therefore it is also known as the true positive rate.
Specificity measures the opposite from sensitivity, it is concerned with
the proportion of negative cases that are correctly classified as nega-
tive (true negative rate). In practice one should strive to maximize the
true positive rate (sensitivity) to ensure that patients with ilnesses are
not left untreated. The true negative rate should also be maximized
to prevent misclassification costs in terms of financial cost and patient
discomfort / danger due to unneccessary and possibly invasive tests
(Freitas, Costa-Pereira, and Brazdil, 2007).

• Low data quality: the data available in the medical field is gener-
ally found to be of low quality for data mining purposes compared
to other fields. This is largely attributed to the heterogeneity of med-
ical data and the occurrence of missing values in datasets. Yoo et al.
(2012) explain this by stating that in practice patients with the same
illness may undergo different examinations and lab tests resulting in
different datasets. Furthermore the datasets are found to be smaller
with the number of instances (rows) averaging from tens to several
thousands (Bellazzi and Zupan, 2008).

Last, in a comparative study of data mining methods on breast cancer
survivability Delen, Walker, and Kadam (2005) conclude that the results of
data mining exercises are found to be meaningless without evaluation by
medical professionals with experience in the problem domain. Evaluation
by a professional was found to be necessary in order to determine whether
the findings were logical, actionable and / or novel. Because of this the au-
thors do not foresee replacement of medical professionals and researchers
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by machine learning systems. Instead they consider the technology as com-
plementary to the daily practice of medical professionals where it will be
used in the form of decision support systems.

1.3 Case study: The Behapp project

The Behapp project is an initiative of researchers of the translational neuro-
science department at the University Medical Center Utrecht (UMCU). The
end goal of this research project is to detect the onset of psychiatric disor-
ders in a very early stage. Early detection and prevention are key since at
present psychiatric disorders can only be identified once they are fully de-
veloped. However it is known that many major psychiatric disorders have
a slow, gradual onset marked by subtle changes in social behaviors before
the full blown manifestation emerges.

The Behapp project is currently focused on patients who have been di-
agnosed with schizophrenia. The concept of prevention is especially rel-
evant to this disorder since at this point in time the disorder cannot be re-
versed but only treated. The disorder is usually preceeded by a state of psy-
chosis which manifests at the start of adolescence. An important warning
sign for the development of this state is social withdrawal which is defined
as a negative symptom in the scoring method (PANSS) used to formally
diagnose patients as schizophrenic (Kay, Flszbein, and Opfer, 1987). By
recognizing a change in social and movement patterns the researchers aim
to stop the state of psychosis taking shape preventing worse.

To explore this dimension in depth a mobile application was developed
to objectively record social and movement acts of participants through their
smartphones. According to Proudfoot (2013) smartphones lend themselves
well for these purposes since they are becoming increasingly ubiquitous
and are characterized as highly personal devices. Furthermore, most smart-
phones contain an array of built in sensors and connectivity options which
allow for tracking of movements and social acts.

The smartphone application is named Behapp and records a host of fea-
tures like e.g. the number of calls made, the number of bluetooth devices
in proximity, the size of one’s social circle, location data and more. The
application is currently in a beta development phase and used by a con-
trol group and a patient group. The project is currently at a phase where
we aim to explore whether social- and mobility patterns can be accurately
correlated to mental disorders. The data gathered through the participants
smartphones will be used as the dataset for analysis in this thesis. As men-
tioned in section 1.1 we will determine whether we can find (underlying)
patterns where patients can be separated from the control group.

We will also look at the sociability scoring model created by Eskes et al.
(2016), the model was created as part of an earlier master’s thesis project for
the Behapp initiative. The model, when applied, yields aggregated scores
which factor in all the measurements that are found to be relevant to social
exploration (mobility) and communication efforts of a participant. By plot-
ting these scores on their own axes we gain a two dimensional overview of
a participants social efforts. See Figure 1.1 for an example overview applied
to the Behapp dataset. The plot shows the transformed data, using the so-
ciability scoring model, of both patients and controls that have participated
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in one of the studies that employed the Behapp application. The x-axis ex-
presses the communicative efforts of the participants whereas the y-axis is
an expression of the exploration efforts. Paul Eskes has named this scoring
practice social profiling. The original model factors in a limited number of
features, we plan on extending the model with newer and improved fea-
tures.

FIGURE 1.1: Unmodified Eskes scoring applied to Behapp
data

1.4 Problem statement & Research objective

Despite the growing usage and popularity of machine learning techniques
in data mining excercises, (correctly) applying these techniques remains a
challenge. We list the main challenges below:

• The field knows many different use cases, each of which has a sizeable
body of literature surrounding the specific case. The literature is usu-
ally found to be heavy on mathematical terminology and aimed at the
computer science community. This prevents researchers from other
fields in learning and (correctly) applying machine learning techniques
in their own research (Domingos, 2012).
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• In line with the aforementioned, applying machine learning techniques
confronts users with many degrees of freedom in how to assemble
and configure a learning system. One example of this is the fact that
algorithm performance is largely determined by parameter settings,
these settings are specific for each class of algorithm. However in
practice end users usually do not have enough knowledge on how to
find optimal parameter settings (Yoo et al., 2012). Many users leave
the parameters to their default settings and base algorithm selection
on reputation and / or intuititive appeal (Thornton et al., 2013). This
may lead to researchers using underperforming algorithms and gain-
ing suboptimal results.

• Concerning the creation of models: ML shows that currently there
is a trade-off to be had between accuracy and transparency (Kamwa,
Samantaray, and Joós, 2012a). In practice this means that algorithms
which yield a high amount of insight into the data do not perform as
well as their non-transparent (black box) counterparts and the other
way around.

We see this as a problem where information is not available in a form
that supports the researcher in walking through an optimized ML exercise.
Therefore, as part of this thesis, we aim to design a deliverable which fills
this need. The deliverable should guide the application of ML techniques
whilst at the same time provide information on how to cope with challenges
like parameter optimization and model transparency.

1.5 Research questions

By taking into account both the needs of the Behapp project as well as the
generalizability of its problem space, the problem statement and research
objective the main research question is formulated as follows:

• How can a domain independent method be developed to guide the
process of constructing transparent machine learning models?

This research project and the resulting method will be scoped in line
with the basic requirements of the Behapp project. Therefore the project
will focus on supervised machine learning for classification tasks on
structured data. Coincidentally this is one of the most applied and
mature areas within the machine learning practice (Kotsiantis, Za-
harakis, and Pintelas, 2007). By creating this method we intend to
make a contribution to science in general by presenting a comprehen-
sive method to generate optimal models.

We formulate the following sub questions to structure and guide our
research objective:

1. Which data mining process models are available and how do they fit machine
learning techniques?

The method will require a structure in which the ML techniques can
be placed. These structures can be found in the form of various DM
process models like e.g. CRISP-DM and SEMMA. We will select the
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process model that satisfies our goal of presenting information in a
comprehensible way.

2. What are the main concepts involved in constructing a supervised machine
learning system for classification tasks?

An overview will be created of all the concepts that are relevant in
the process of creating a supervised machine learning classification
model. We will uncover and document the relationships, including
conditional dependencies, between the concepts. Knowing how the
concepts relate to each other will help in determining the order of the
steps and their correct placement in the method.

(a) Which of these concepts have aspects that support (automated) config-
uration and optimization and how does this work?
The method aims to ensure that researchers make full use of the
possibilities to finetune their machine learning set up to achieve
optimal models. Concepts that require configuration and opti-
mization are therefore explored in-depth.

3. What are transparent models and which techniques are suitable for this type
of modelling?

We will study the accuracy-transparency tradeoff and document how
transparent models can be attained. Furthermore we will explore the
state of the art in model transparency ML techniques.

4. How can the concepts that are found be modelled into a method?

In order to design the method we will turn to the practice of method
engineering (ME). Method engineering is defined as "the engineer-
ing discipline to design, construct and adapt methods, techniques
and tools for the development of information systems" (Brinkkemper,
1996).

From this discipline we will apply the meta-modelling approach by
Weerd and Brinkkemper (2008), this yields a process-deliverable di-
agram (PDD). A PDD consists of two diagrams, the left-hand side
shows an UML activity diagram (processes) and the right-hand side
shows an UML class diagram (concepts / deliverables). Both dia-
grams are integrated and display how the activities are tied to each
deliverable, furthermore the activities and the concepts are each ex-
plained in separate tables.

1.6 Research approach

The research framework by Verschuren, Doorewaard, and Mellion (2010)
has been adopted to illustrate the basic outlines of this research project. The
framework is depicted in Figure 1.2.

First a theoretical foundation is established on the subjects of data min-
ing, machine learning, its application in medicine and model transparency
(a). From this foundation we will design general method fragments that
are scoped on separate phases in the DM process. Where applicable we
will also design Behapp specific method fragments. These fragments will
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become part of the method base (b). Next assembled methods are evaluated
on performance (c) to ensure that the research goals are satisfied. Having
a method base allows the practice of method assembly where we create
a project specific method by combining the general and Behapp specific
method fragments (d) (Brinkkemper, Saeki, and Harmsen, 1999).

Preliminary research

Theory on modeling 
transparency

Theory on supervised 
machine learning

Theory on data mining 
in the medical domain

Method base

General concepts and 
method fragments

Behapp concepts and 
method fragments

Method assembly

Method evaluation

General ML method

Behapp ML method

(a) (b) (c) (d)

FIGURE 1.2: Research model

To establish a theoretical foundation a literature study will be performed.
A preliminary look into this field has shown it to be mature but still highly
expansive. Therefore, due to the expected high number of concepts that
will be studied performing a structured literature review (SLR) is deemed
unfeasible in the time allotted for this research project. Therefore the litera-
ture selection process will be based on reference harvesting techniques like
backward chaining and forward chaining als known as snowballing (Jalali
and Wohlin, 2012). The library of choice will be Google Scholar1 because
of its large index of scientific literature in the domain of computer science.
Furthermore the library offers specific features that support and simplify
the snowballing process.

Next the research process will be performed within the design science
paradigm as defined by Hevner et al. (2004). The paradigm fits this research
project since the authors state that "the design science paradigm seeks to
extend the boundaries of human and organizational capabilities by creat-
ing new and innovative artifacts". According to the authors viable forms
of these artifacts can be for example methods and models (Hevner et al.,
2004). More importantly the authors provide a set of research guidelines to
ensure that the artifacts are produced with scientific rigor both in construc-
tion and evaluation. Furthermore the authors state that the artifacts should
serve valid business problems and be readily communicable outside of the
scientific domain.

To illustrate the research project in the context of the design science
paradigm the design science framework has been adopted as depicted in
Figure 1.3.

1http://scholar.google.com/
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People

· (Data) scientist
· Data analyst

Organizations

· Requirement: optimized  and (partially)
   automated data analysis flow
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· Python scientific stack
· R data analytics stack

Develop / Build
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· Theory: ML automation
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· Artifact: general ML method
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· Artifact: medical ML method
    fragments

Justify / Evaluate

· Method performance
   comparison

Refine Assess

Foundations

· CRISP-DM process model
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· (Hyper) parameter optimization

Methodologies

· Data analysis techniques

RigorRelevance

Additions to the 
Knowledge Base

Application in the 
appropriate 
environment

Environment Research Knowledge Base

Needs
Applicable
Knowledge

FIGURE 1.3: Design science framework by Hevner et al.
(2004)

1.7 Relevance

In this section the relevancy of the project is explained and discussed from
both a scientific and a social viewpoint.

1.7.1 Scientific relevance

With the steadily growing availability of data storage space and computing
power advanced data mining efforts are coming in reach of more people.
However as explained earlier applying machine learning techniques is not a
straightforward process and requires specific know-how of many different
aspects involved in the process. This research project aims to uncover these
bits of know-how and integrates them into a method that can be used to
generate optimal classification models.

Fellow researchers looking to apply machine learning in their work can
use this method as a guide in the data mining process. Researchers that
already apply machine learning in their work may look to the method for
possible optimizations to their machine learning system. Furthermore the
method and the underlying method fragments can be used as source ma-
terial for the creation of modified method fragments to be applied in other
research domains. This is demonstrated in this project as it is part of a med-
ical initiative. Lastly, the resulting method can be used as a base to support
the development of advanced data mining software.

1.7.2 Social relevance

The social relevance of this project is related to two separate goals. First,
in line with the scientific relevance of this project the utility of the method
extends beyond researchers. The method can also be relevant for use in
businesses and industry by (aspiring) data science professionals.
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Next, as this research project is part of the Behapp initiative as described
in section 1, supplying the initiative with the methods to further their in-
sight into mental disorders may one day help in the prevention, diagnosis
and treatment of patients with these disorders.
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Chapter 2

Data mining process models

In this chapter we will provide a short overview of frequently cited and
used data mining process models. Pressman (2005) defines a process model
as a set of activities including their inputs and outputs that are needed
to complete a job. The goal of this chapter is to determine which process
model provides a good basis for the creation of our method. We are look-
ing for process models with the following properties:

• Prevalence in business and academics

Familiarity with the process model supports our goal to create a method
that is easy to understand, furthermore it offers the users the benefit
of only having to slightly adjust one’s processes that are already in
place.

• Extended level of depth

In line with the first requirement it is important for the process model
to have a level of depth that allows to comprehend which activities
belong to which phase in a data mining project.

• Oriented around the technical aspects of a data mining exercise

ML techniques are mainly involved with the technical aspects of a
data mining exercise. A process model should therefore explicitly
focus on distinguishing technical tasks in the different phases of a
project.

We will explore the following DM process models: KDD, Human-centered
approach of DM, SEMMA, The Three-phases method, Epicycles of Analysis
and CRISP-DM.

2.1 KDD

Knowledge discovery in databases (KDD) is one of the first formalizations
of data mining process models. Fayyad, Piatetsky-Shapiro, and Smyth (1996)
define KDD as the process to find potentially usefull and understandable
patterns in data. The authors emphasize the need for proper transforma-
tion and preprocessing procedures like data selection and cleaning before
starting with the actual analysis. Furthermore, although not visualized by
the authors (Figure 2.1), the process model commences with a domain un-
derstanding phase in which goals of the project are acquired from the view-
point of the customer. The phases of the process model are: domain under-
standing, selection, preprocessing, transformation, data mining (modeling)
and interpretation / evaluation.
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Data Target
data

Preprocessed
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Transformed
data
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FIGURE 2.1: KDD methodology

2.2 Human-centered approach of data mining

The human-centered approach is described as a practical approach towards
the KDD process (Brachman and Anand, 1996) (Gertosio and Dussauchoy,
2004). The process model is focussed on the point of view of the data an-
alyst in the execution of the process. According to (Mariscal, Marbán, and
Fernández, 2010b) this is the main differentiator of this approach compared
to the general KDD process. The high level phases (Figure 2.2) are: task
discovery, data discovery, data cleaning, model development, data analysis
and output generation.

Database
Query tools Statistics & AI 

tools
Visualization 

tools
Presentation 

tools
Data 

transformation 
tools

Data cleaning Model 
development Data analysis Output 

generation

Domain
model

Goal

Task 
discovery

Data 
discovery

Report

Action

Model

Monitor

Input

Process task

Tool

Output

Tool usage
Data flow
Process flow

FIGURE 2.2: Human-centered approach of datamining by
Mariscal, Marbán, and Fernández (2010b)

2.3 SEMMA

The SAS Institute is a software company specializing in the development
of data processing and analysis software. Their flagship product SAS enter-
prise miner implements and adheres to the SEMMA process model which
has been developed in-house. SEMMA stands for: sample, explore, modify,
model and assess.

SEMMA is different from most other process models because it skips
steps related to learning the application domain and exploring and evalu-
ating the business goals of a DM project. According to Mariscal, Marbán,
and Fernández (2010b) these steps are found to be essential in carrying out
a succesful DM project.
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Sample Explore Modify Model Assess

FIGURE 2.3: SEMMA methodology (Mariscal, Marbán, and
Fernández, 2010b)

2.4 Epicycles of Analysis

The epicycles of analysis (EoA) process model is a cyclical model which
consists of the following main phases:

• Stating the question

• Exploratory data analysis

• Model building

• Interpret

• Communicate

Peng and Matsui (2016) present this model in their educational work The
Art of Data Science, it differs from the other process models discussed due
to its emphasis on the cyclical nature of each phase. Each phase (epicycle)
should follow the same pattern: 1) setting expectations, 2) collecting infor-
mation & comparison with the expectations, 3) revising the expectations or
fixing the data so that the data and the expectations match. This pattern
essentially warrants critical thought and reasoning about data along each
step of the way ensuring that no erroneous conclusions are drawn from the
analysis.

2.5 The Three-phases method

The Three-phases method (3PM) is another cyclical process model that is
tuned towards cases where the data mining process is outsourced to a third
party (Vleugel, Spruit, and Daal, 2009). As the name suggests the model
consists out of three phases. The first phase is named data retrieval and
is centered around activities to understand business needs (based on hy-
potheses) and to prepare and cleanse data. The second phase encompasses
the act of data mining itself with the addition of setting the goal for what
type of model should be realised (either predictive or descriptive). Lastly,
in phase three solutions are explored to embed the results in the case or-
ganization. The authors apply the Business IT Alignment model (BITA) by
Scheper (2002) to map conclusions from the data to organizational domains
(e.g. people and culture, monitoring and control) and decision levels (oper-
ational, tactical & strategic). Figure 2.4 below provides an overview of the
main phases and each subtask within each phase. The labels of each task
reflect the outsourcing oriented nature of the model where C stands for a
task belonging to the case organization and T stands for a task belonging to
the third party.
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Activities of the Three-phases model
Data retrieval

Analyze 
business 

needs

Create data 
set

Perform 
business 
interviews 
(CT)

Review 
business 
documents 
(T)

Define 
hypothesis 
(CT)

Retrieve 
entities and 
attributes 
(T)

Create raw 
data set (T)

Apply data 
filters (T)

Apply data 
enrichment 
(CT)

Data mining

Set goal Perform 
modeling

Perform 
validation

Set 
purpose 
(CT)

Define 
goals (CT)

Create data 
view (T)

Choose 
technique 
(T)

Performing 
modeling 
(T)

Interpret 
result (T)

Document 
result (T)

Validate 
result (CT)

Choice (C)

Results implementation
Analyze 
business 
domains

Create 
approach

Optional: 
Align 

approaches

Deploy 
result

Perform 
business 
interviews 
(CT)

Define 
business 
preference 
(T)

Create AS-
IS 
description 
(T)

Select data 
mining 
result (T)

Analyze 
AS-IS 
description 
(T)

Create TO-
BE 
description 
(CT)

Interview 
end-users / 
stakeholder
s (CT)

Create 
alignment 
approach 
(T)

Business 
preference; 
either:

- Create 
change 
report (T)

- 
Implement 
result (CT)

FIGURE 2.4: Task overview of the Three-phases method
(Vleugel, Spruit, and Daal, 2009)

2.6 CRISP-DM

CRISP-DM (CRoSS-Industry Standard Process for Data Mining) is a methdol-
ogy conceived during the late 90’s by Chapman et al. (1999). Its main goal
was to meet the need for a uniform approach towards data mining. The
methodology consists of two process models to structure and guide data
mining projects. It is well known for the process model illustrating the life
cycle of a data mining project as shown in Figure 2.5.

The CRISP-DM data mining life cycle consists of six main phases. The
arrows show common dependencies between the different phases. How-
ever according to the authors it is always required to go back and forth
between phases. Therefore it is not neccessary to stricly adhere to the order
of the flow (Chapman et al., 1999).

2.6.1 Hierarchical breakdown

The CRISP-DM methdology, as depicted in Figure 2.6, also specifies a hier-
archical breakdown of tasks underlying the main phases. This breakdown
consists of tasks that are decribed on four levels of abstraction. The first
level of abstraction is known as phases and is shown in the life cycle pro-
cess model (Figure 2.5).

At the second level generic tasks are described belonging to each phase.
These generic tasks are defined in a way to cover all possible data mining
cases while keeping in mind technological advancements. See Figure 2.7
for an example overview of generic tasks in the data preparation phase.
Furthermore, just as with the flow of events between the main phases of a
data mining project, the authors explain that in practice it is often the case
that previous actions need to be repeated. Therefore the flow of the tasks
should not be considered as a rigid process.
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FIGURE 2.5: The CRISP-DM process model lifecycle (Chap-
man et al., 1999)
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Mapping

CRISP
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FIGURE 2.6: Four abstraction levels of the CRISP-DM
methodology

The third level is called specialized tasks, on this level the generic tasks
are specified as decisions on how the task will take shape. For example the
generic task called select data which is part of the data preparation phase
can be performed by stating that an automatic feature selection algorithm
will be applied to select the most fitting attributes.
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Phases

Generic tasks
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understanding

Data 
understanding

Data 
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Format data

FIGURE 2.7: Generic tasks in the data preparation phase

KDD Human centered SEMMA

- Linear
- Primarily aimed
at deriving patterns
from data

- Linear
- Oriented around
a human understandable
task overview of DM
projects

- Linear
- Compact and
high level (does
not specify concrete
tasks)

3PM EoA CRISP-DM
- Cyclical
- Detailed task
breakdown for
outsourcing DM to
a third party
- Implementation
framework for
embedding DM results

- Cyclical
- Rigorous pattern
definition within
each cycle to ensure
valid results

- Cyclical
- Detailed task
breakdown per phase
- Concrete to generic
task mapping framework

TABLE 2.1: DM process model highlights

Last, the fourth level is called process instances, this layer represents a
complete record of an actual data mining project including deviations from
the process and / or other particularities (Chapman et al., 1999).

2.7 Process model selection

See Table 2.1 for an overview of the highlights of each process model dis-
cussed in this chapter. In this section we will address our selection criteria
in relation to the aforementioned models.

The CRISP-DM consortium’s collaborative and practical approach to-
wards the creation of their methodology have lead to a wide adoption of
the process model. This is supported by repeated poll’s on methdology use
by KDnuggets.com, a website focussed on data mining, analytics, big data,
and data science1. From 2007 to 2014 CRISP-DM shows to be the top meth-
dology of choice for around 40% of the voters (Piatetsky, 2014). SEMMA
and KDD stay below the 10% mark. The poll also specificies an options for
custom methods ("my own"), it is noteworthy to see that the number of vot-
ers using their own methods has increased over the years. Unfortunately it
is not known whether this concerns variants of existing methodologies or
new and unique initiatives. See Table 2.2 for an overview of the data.

1http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-
mining-data-science-projects.html
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Data mining methdology usage
2007 2014

CRISP-DM 42% 43%
My own 19% 27,5%
SEMMA 13% 8,5%
KDD Process 7,3% 7,5%

TABLE 2.2: Poll on data mining process model usage by
KDnuggets.com

Next concerning the level of depth we see that the human-centered ap-
proach, the Three-phases model and CRISP-DM contain multiple layers of
concepts which allow for a more fine grained mapping of ML techniques to
the methodology.

As far as the technical depth of the process models the human-centered
approach and the Three-phases model are the only process models to pro-
vide concrete information on tools to be used during the different phases.
The CRISP-DM refrains from this practice leaving it to the user to define
tools and techniques on the third (specialized tasks) layer.

To conclude, compared to the other process models CRISP-DM shows
to be the most popular method of choice. Furthermore, the level of depth
fits our choice to craft a method based on method fragments while at the
same time allowing to map technical ML concepts to each fragment. We
will therefore use CRISP-DM and the hierarchical breakdown as the base of
our method (fragments).
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Chapter 3

Machine learning concepts

In this chapter we present an overview of procedural and technical concepts
that are applied in data mining projects. As explained in Chapter 1 we will
focus on concepts that are related to solving supervised two-class (binary)
classification problems.

The chapter is structured in line with the phases of the CRISP-DM pro-
cess model. The concepts found are grouped within one of the follow-
ing phases (sections): data understanding, data preparation and modeling.
Since this research project is oriented around the technical side of a DM
project non-technical tasks are out of scope. This means that the following
CRISP-DM phases will be omitted from this chapter: business understand-
ing, evaluation and deployment.

The techniques outlined in this chapter are applied to the Iris data set
first used by Sir R.A. Fisher (Fisher, 1936). Untill this day it remains a pop-
ular data set to teach and demonstrate ML techniques. The data set con-
tains information about the properties (features) of three types of flowers
(classes). The features are petal width, petal length, sepal width and sepal
length. The set consists of 150 observations (instances), 50 per class.

3.1 Data understanding

Before starting with any data mining project it is important to become fa-
miliar with the data that will be analyzed. The goal is to improve one’s
understanding of the data by using statistical tools to summarize, plot and
review datapoints in the data set. This practice is called exploratory data
analysis (EDA) (Brownlee, 2014b).

The term EDA was coined by Tukey (1977), he advocated the use of sta-
tistical tools to explore data as a means to generate hypotheses through a
better understanding of the data. This is considered an alternative approach
to confirmatory data analysis where a full understanding of the data is as-
sumed beforehand. However, Brownlee (2014b) explains that this is rarely
the case in data mining projects.

In this section we will show three EDA techniques that provide insight
into the properties and relations between variables (features) in a data set.
We will be looking at histogram graphs, pairwise scatterplots and correla-
tion plots.

The visualizations will be created by using the Seaborn graphics li-
brary which is an extension to the Matplotlib scientific graphics pack-
age (Hunter, 2007). Seaborn provides frameworks to draw common
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statistical visualizations and integrates with other data science tools in
the Python data science stack (Waskom et al., 2015).

3.1.1 Histogram graphs & Pairwise scatterplots

The Seaborn graphics library provides a method to generate an overview
where histogram graphs and pairwise patterplots are combined in one im-
age, it is called the pairplot. See Figure 3.1 for a pairplot of the Iris data
set.

FIGURE 3.1: Histograms and pairwise scatterplots based on
the Iris data set

When exploring the data from this perspective they key is to look for
areas where classes are (more or less) separated from each other. For ex-
ample, the histogram graphs show that the features petal width and petal
length have minimal overlap between the different classes. Thus they can
be considered as informative features (Metzen, 2015). Next the scatterplots
show that the Setosa class (blue dots) of flowers remains completely (lin-
early) separated from the other classes. This means that the Setosa class can
be clearly separated from the other classes when using ML algorithms.

3.1.2 Correlation plot

When moving on to the correlation plot as depicted in Figure 3.2 we see that
our observations are confirmed. The features petal length, petal width and
sepal length are strongly correlated with the class which means that they
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FIGURE 3.2: Correlation plot based on the Iris data set

are informative. Furthermore we observe that the features are also highly
correlated with each other. Which means that we have redundant features
in the data set. It is important to keep in mind that some classification
techniques like e.g. naive bayes do not work well with redundant features.
In this particular case the importance of the redundant features will be over
inflated by the naive bayes classifier.

3.2 Data preparation

In this section we address data preparation techniques that optimize data
for use with ML algorithms. Lan, Frank, and Hall (2011) refer to this prac-
tice as data engineering. We discuss feature selection, construction, trans-
formation and their possible benefits in relation to specific algorithm classes.

3.2.1 Feature selection

Not all features in a given data set have the same informative importance
or any importance at all. Also some data sets can be high dimensional, which
means that they have a large number of features. This can be problem-
atic as some classification algorithms are designed to make the most of the
data that is presented to them. In these cases even irrelevant features will
eventually be included in the model. In other words the model will be over-
fitted to the data which means that the classification algorithm has included
the noise as an integral part of the model (Tang, Alelyani, and Liu, 2014).
Classification algorithms like decision trees, rule based algorithms, linear
regression, instance-based learners and clustering algorithms are known to
deliver lowered performance when they are presented with irrelevant fea-
tures. This does not apply to the naive bayes classification algorithm, it re-
mains robust when presented with irrelevant data. However as explained
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in subsection 3.1.2 redundant features should be removed (Lan, Frank, and
Hall, 2011).

The solution is to select the subset of features that are informative and
discard the features that are irrelevant (noise). Besides manual selection
two types of automated strategies exist to accomplish this task. The first
is called the filter approach, in this approach each feature is individually
scored and the top ranking features are selected for use. The approach can
use scoring metrics like information gain, chi squared and the correlation
coefficient. The second approach is known as wrapper. Instead of individual
features candidate sets of features are evaluated by training a model. The
forward selection search strategy starts with an empty candidate set. Features
are added one by one as long the performance of the model is improved.
The backward elimination search strategy works the other way around by
eliminating features until the performance of the model stops showing im-
provement (Guyon and Elisseeff, 2003; Flach, 2012).

3.2.2 Feature construction

Constructing new features from the original features can help optimize
the learning task of a classification algorithm. There are two general ap-
proaches to feature construction: (automated) feature extraction and (man-
ual) feature engineering.

Feature extraction

Although not clearly defined in literature, feature extraction is mostly re-
ferred to as a method to derive a new set of features by applying a projection
to the data. Lan, Frank, and Hall (2011) explain the concept of projecting
as "a kind of function or mapping that transforms data in some way". Pro-
jections serve the goal of deriving highly informative and non-redundant
features that support the learning task. The practice is related to the con-
cept of dimensionality reduction since the number of informative features that
are derived is limited to a low number.

A frequently cited projection method is principal component analysis
(PCA). In simplified terms the method exposes the properties of a data set
which allow to summarize it as best as possible (Amoeba, 2015). Without
delving too deep in the mathematical background of PCA, the method de-
termines which combination of features explain the maximum amount of
variance in the data and aggregates these findings as the principal compo-
nents. Each principal component represents an axis (dimension) once ap-
plied to transform the original data set. Typically the first two or three com-
ponents explain the majority of variance of a data set. This enables visual-
izing a representation of the original data set along 2 or 3 axes, depending
on how many principal components are chosen by the user. Furthermore,
this representation emphasizes properties where the instances are very dif-
ferent from eacher which means that opportunities for separation between
classes may become more clearly visible (Wold, Esbensen, and Geladi, 1987;
Raschka, 2014).

See Figure 3.3 for an example where PCA is applied to the Iris data
set. The data set originally has 4 dimensions which have been reduced to 2
dimensions. This allows us to visualize the data along 2 axes. We observe
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FIGURE 3.3: Principal component analysis applied to Iris
data set

an overview that is similar to some of the individual feature pairplots in
subsection 3.1.1, however this visualization represents all the features of
the original data set.

Feature engineering

Not all features immediately convey their informative value. Further pro-
cessing may be required to expose a different angle on the data set. A sim-
ple example of this is calculating the age of participants when provided
with a data set that originally only holds the date of birth of each subject.
Another more complex example, as we will demonstrate in the case study
of this thesis, is the calculation of the number of unique places that have
been visited by a participant based on raw GPS data. This way of con-
structing features requires domain knowledge, in other words one should
know what to look for. It is therefore difficult to establish a pattern that can
be modelled. However, it remains a vital activity in the process of creating
informative data sets (Locklin, 2014).

3.2.3 Feature transformation

Transformations are applied to improve the interpretative potential of data
sets. This is partially dependent on the type of classification algorithm that
will be used. We will discuss recommended datatypes in section 3.3 where
model types are addressed.

Continuing with our example on ages of participants. With domain
knowledge on the subject it may become clear that participants between
ages 20 - 30 are of special interest. Therefore another binary feature may be
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engineered is_between_20_and_30 which would hold the value 1 for a par-
ticpant aged 25. This decomposition to binary values helps to get more out
of simpler linear models and decision trees (Brownlee, 2014a).

Transformations are possible in different directions depending on the
current and required type of data. See Table 3.1 for an overview of transfor-
mation types outlined by Flach (2012).

H to, from I Quantitative Ordinal Categorical Boolean
Quantitative normalization calibration calibration calibration
Ordinal discretization ordering ordering ordering
Categorical discretization unordering grouping
Boolean tresholding tresholding binarization

TABLE 3.1: Datatype transformation directions by Flach
(2012)

According to the author both binarization and unordering can be clearly
deducted from the source data. We explained the notion of binarization in
the introduction of this subsection, unordering simply discards the order-
ing of the feature values meaning that the values are considered as cate-
gorical. We will continue to address transformation operations that require
additional decision making during their application.

Tresholding and discretization

Tresholding is the process where a quantitative or ordinal feature is trans-
formed to a boolean feature. Discretization transforms quantitative features
to ordinal or categorical features called bins. See Table 3.2 for an example of
these transformations.

Age Tresholding (manual split on 30) Discretization (manual boundaries)
6 0 0-10
17 0 11-20
13 0 21-30
29 0 31-40
36 1 51-60
31 1
24 0
54 1
59 1
16 0

TABLE 3.2: Example of tresholding and discretization

Both transformation techniques face the same challenge, how to accu-
rately determine the optimal splitting values and boundaries of the bins.
The manual way as demonstrated in Table 3.2 carries the risk of losing fine
distinctions in the data where instances are unevenly divided per split /
bin (Lan, Frank, and Hall, 2011). Fortunately, supervised and unsupervised
methods exist that support these transformations. Unsupervised methods
adhere to the principles of evenly dividing instances over bins resulting in
intervals of different sizes (equal-frequency binning). Or in the case of tresh-
olding summary statistics like the mean and the median often are sensible
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points of splitting the data. Supervised methods incorporate the class data
in scoring methods to find more refined boundaries and splitting points.
Dougherty, Kohavi, and Sahami (1995) found that supervised discretization
methods enable improved classification results over unsupervised meth-
ods.

Normalization and calibration

Flach (2012) explains that tresholding and discretization are transformation
methods that remove the scale from quantitive features. Normalization and
calibration work in the other direction by adapting and / or adding scale
information to features.

Normalization converts the values to of a quantative feature to Z-scores,
in other words the number of standard deviations a value is separated
from the median. Normalization ensures that different quantitative fea-
tures measured on different scales do not negatively influence the learning
task.

Calibration adds scale information to ordinal and categorical features.
The method uses class information (supervised) to ensure meaningfull weight-
ing of the calibrated values. Calibration allows to use classifiers that can
only handle scaled data in combination with categorical and ordinal fea-
tures. Furthermore by using calibrated data this leaves the option to the
classifier to choose on how to best treat a feature (categorical, ordinal or
quantitative).

Weight Diabetes Calibrated weight Weight Diabetes Calibrated weight
130 Y 0,83 81 N 0,43
127 Y 0,83 80 Y 0,43
111 Y 0,83 79 N 0,43
106 Y 0,83 77 Y 0,43
103 N 0,60 73 N 0,40
96 Y 0,60 68 N 0,40
90 Y 0,60 67 Y 0,40
86 N 0,50 64 N 0,20
85 Y 0,50 61 N 0,20
82 N 0,43 56 N 0,20

TABLE 3.3: Normalization example, adapted from Flach
(2012)

3.3 Modeling

During the modeling phase of a DM project one or more algorithms are
selected. Next, the algorithms are applied to the prepared data set. The
resulting models are then evaluated using e.g. quality measures and error
rates (Chapman et al., 1999). As explained in section 1.4 algorithms require
configuration of parameters. Finding the optimal parameter settings is es-
sential in attaining robust and accurate models. This makes the aforemen-
tioned process cyclical in nature. After tweaking the parameter settings the
modeling and evaluation tasks are repeated untill they yield satisfactory
results.
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In this section we will be looking at model types including popular
algorithm implementations meant for classification. We will outline the
general properties of each model type and provide (illustrative) examples
where neccessary. Next we will look at various strategies to find optimal
parameters for algorithm implementations. We conclude this section with
an overview of model evaluation techniques and explain how to interpret
the results.

3.3.1 Model types

The model types discussed in this subsection represent a majority sample
of all the available types. The types are chosen because they are frequently
referenced in literature and cover a wide area of applications. We feel that
these concepts will provide an adequate starting point to explore modeling
using ML techniques.

Tree models

Tree models, also known as decision trees, are a popular method of choice
for modeling data. Decision trees are easy to understand and help to un-
cover the most informative / important features of a data set (Flach, 2012).

Tree modeling algorithms build decision trees by ranking features on
how well they divide the the data set. The first node, or the root node of a
tree is always represented by the feature that best divides a data set. Next
the method determines where the next best splitting points are and encodes
these values as decision points on how to traverse down the tree (Myles et
al., 2004).

Decision trees are prone to overfit the training data meaning that prop-
erties that cannot be generalized to the real world are included as part of
the tree model. Kotsiantis, Zaharakis, and Pintelas (2007) explains two
methods to deal with the problem over overfitting decision trees. The first
method encompasses preventing the learning algorithm from achieving a
perfect fit on the training data. This is undesirable since a perfect fit means
that non-informative features are included in the model as well. To achieve
this stopping criteria will have to be defined for the decision tree induc-
ing algorithm. Fortunately, most decision tree inducing algorithms have
parametrized values like the maximum number of nodes and leaves. The sec-
ond method to prevent overfitting is called pruning and refers to the act of
applying algorithms to intelligently remove leaves and nodes while keep-
ing an eye on the performance of the model. A good rule of thumb is that
a tree with fewer leaves is preferred because it is less likely to overfit the
data.

Tree models are by their nature designed to work with categorical data
(Kuhn and Johnson, 2013). However well known implementations, like
C4.5 (Quinlan, 2014) have overcome this limitation and can deal with both
categorical and numeric features. Furthermore, tree models do not require
the data set to be normalized in order to gain optimal results. As an exam-
ple we applied a decision tree algorithm to the Iris data set, see Figure 3.4
for the graphical overview.

Figure 3.4 clearly shows the linearly separable setosa class of which all
samples are are found to have a petal length shorter than 2.45 centimeters.
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FIGURE 3.4: Decision tree model of the Iris data set

The third and fourth layers of the tree show how the majority of the ver-
sicolor and virginica class are separated based on the features petal width
(<= 1.65) and petal length (<= 4.85). Observe how the fifth and sixth layers
classify the remaining few datapoints while adding a substantial amount of
complexity to the tree. These branches could be candidates for pruning to
prevent overfitting.

Linear models

Linear models approach the learning task from a geometric perspective rea-
soning about data as points in a (Cartesian) coordinate system. A practice
very similar to the principles outlined in section 3.1 where we explain what
to look for when exploring the data. Modeling techniques apply geometric
concepts such as lines and planes (2-D surface) to structure points in coor-
dinate spaces and in turn enable classification of these points (Flach, 2012).
We discuss two algorithm implementations of the linear model type known
for their high accuracy on classification problems.

Multi layer perceptron with backpropagation (MLP): MLP is an al-
gorithm implementation that belongs to the class of artificial neural networks
(ANN). At their core neural networks establish linear relationships between
numerical / quantitative features including the strength of these relation-
ships. These are recorded in hidden layers that are part of the model.
The process of learning is performed by ANN algorithms which tune the
strength values.
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The main difference between the single layer and multi layer percep-
tron is that the latter is able to deal with data sets where the classes are not
linearly separated in geometric space. MLP works around this with multi-
ple hidden layers that allow to closely define where classes are expected to
be separate from each other. The learning task initiated by the backprop-
agation algorithm. The algorithm repeatedly runs input data through the
model with the goal of measuring the error rates. This information is fed
back to the ANN algorithm which in turn tunes the strength of the rela-
tionships between the nodes in each hidden layer. This process is repeated
until the error rates fall within acceptable bounds (Karayiannis and Venet-
sanopoulos, 2013). See Figure 3.5 for an illustration of the layers in an MLP.

Inputs First layer
(hidden)

Second layer
(hidden)

Output layer Outputs

X1

X2

X3

Y1

Y2

Y3

FIGURE 3.5: Overview of MLP layers

Support Vector Machines (SVM)
The SVM classification strategy entails finding an opportunity for linear

separation between classes in geometric space, more specifically an SVM
determines the optimal placement of the line (decision boundary) that sep-
arates two classes. The datapoints close to this line are used to determine
the orientation and position of the line and are called support vectors. The
goal is maximize the margin which is defined as the distance between the
decision boundary and the nearest support vectors (Murty and Devi, 2011).

In cases where classes are not linearly separable SVM’s can be adapted
to use a soft margin. Since misclassification is inevitable in trying to separate
non linearly separable classes, the goal of the classification algorithm is to
keep the error rate as low as possible while still maximizing the margin
(Cortes and Vapnik, 1995).

Both SVM’s and ANN’s are primed towards handling numeric (quan-
titative) data, however this does not exclude analysis of categorical data.
A tried-and-true method to use categorical data is to binarize the values
which means that each categorical value is processed as a separate attribute
which is marked as either true (1) or false (0) (Hsu, Chang, and Lin, 2003;
Blattberg, 2003), see Figure 3.7 for an example.
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FIGURE 3.6: SVM decision boundary placement, adapted
from (Flach, 2012)

Name Sex
John Male
James Male
Jenny Female

Name Female Male
John 0 1
James 0 1
Jenny 1 0

>
Binarization of	
categorical data

FIGURE 3.7: Representation of binarized categorical data

SVM’s are scale sensitive meaning that unnormalized data may distort
the outcomes of the model, ANN’s do not suffer from this problem but it is
found that normalized data helps the algorithm to converge on a solution
in a shorter timespan.

Probalistic models

Probalistic classification models determine class membership as a function
of the probabilities that specific feature values belong to a certain class
(Flach, 2012), this is assesed by applying Bayes’ theorem. In short Bayes’
theorem describes how to determine the probability of an event given the
condititions related to that event (Bolstad, 2013). This particular perspective
on machine learning revolves around the reduction of uncertainty. Model-
ing initiates with maximum uncertainty about the prior probability of an
instance belonging to a certain class. The act of learning is performed by ad-
justing the probability estimates after screening each instance and its class
information, thus leading to reduced uncertainty about class membership.

The naive bayes modeling technique follows the principles as explained
above. The technique is called naive or simple because it assumes that all
features are independent (non-correlated) of each other. Although com-
plete feature independence is never true in reality the modeling technique
is known for its accuracy in real world situations (Domingos and Pazzani,
1997).
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It is found that the modeling technique works best when provided with
discretized (categorical) data (Yang and Webb, 2003). Basic implementa-
tions of the technique do not require additional parameter settings, how-
ever depending on the distribution of the data different variants of the mod-
eling technique may be better suited for the task e.g. gaussian naive Bayes,
multinomial naive Bayes and Bernoulli naive Bayes (Pedregosa et al., 2011).
Last the model does not require the normalization preprocessing step since
this is performed by design.

Rule models

Rule models are very similar to decision trees in the sense that each branch
represents a rule that splits the data. However rules can overlap whereas
branches cannot, which potentially leads to a loss of information.

A typical rule modelling technique works by generating a rule and re-
moving the samples that fall under that rule. This is known as the covering
algorithm (Michalski, 1975). The approach is repeated until the stopping
criteria are met, these criteria are in place to prevent noise from being mod-
elled as rules. This is similar to how tree models can be restricted in their
growth to avoid overfitting.

Although not a supervised technique it is noteworthy to mention the
concept of association rule mining (ARM) by means of the apriori algorithm.
Association rule mining aims to uncover interesting relationships between
all the variables of a data set instead of focussing on the class. A frequently
cited example of ARM is market basket analysis where the technique is
used to study purchasing patterns of customers e.g. to see which products
are often bough together (Chen et al., 2005).

Petalwidth Class
1.75-inf Iris-virginica
0.8-1.75 Iris-versicolor
-inf-0.8 Iris-setosa

TABLE 3.4: Rule model applied to the Iris data set

See Table 3.4 for an example of a rule model that has been applied to
the Iris data set. We observe that the algorithm determined that only three
rules related to one feature were neccessary to correctly classify 92% of the
data set.

Ensembles

Model ensembles are known for consistently delivering high performance
in terms of classification accuracy. Ensemble methods generally work by
constructing multiple models from the data set which may be resampled or
reweighted. The predictions of these models are then combined either by
voting or averaging the results. These methods reduce the effect of random
fluctuations in single models which negatively affects classification accu-
racy (Flach, 2012).

Bagging is an ensemble technique where different models are created
based on random samples of the data set. In this technique samples are
taken with replacement which means that they can occur multiple times in
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one sample. Because of this even if the sample size is as large as the orig-
inal data set they are bound the become different from each other. This is
of particular importance because it enables variations between the models
that are created. Predictions can be gained through voting or averaging.
With voting the prediction of the majority of the models wins. Averag-
ing can be used when models generate numerical values. The technique is
found to be useful in combination with tree models since trees are sensitive
to variations in data sets. The combination of bagging with tree models is
also known as the random forest ensemble (Breiman, 1996).

Boosting is slightly similar to bagging but has a different approach to-
wards training models. The boosting process starts with training a classifier
on a data set. Misclassified instances are reweighted and duplicated to data
sets that are used to train the next model. With each iteration models will
be forced to focus on instances that are difficult to classify. Predictions are
gained through a weighted majority vote by all the models. A well known
boosting algorithm is AdaBoost, it can be used for classification and regres-
sion (Freund and Schapire, 1995).

Both random forests and adaboost are based on tree models and there-
fore do not require the data to be normalized. Both can handle quantitative
and categorical data.

3.3.2 Parameter optimization

Recall from section 1.4 that the performance of algorithms is dependent on
how they are configured, a problem known as (hyper) parameter optimization.
Getting optimal performance from a modeling technique means finding the
right (combination of) parameter settings. The optimal settings will be dif-
ferent for each data set which neccesitates an automated means of deter-
mining the optimal values. Currently there are three strategies to deal with
the parameter optimization problem, these are outlined below.

Grid search

This search strategy essentialy revolves around repeating the process of
training and evaluating models based on a predefined grid of parameters.
Grid search is exhaustive which means that every possible combination
of parameter values will be evaluated. See Table 3.5 for an example of a
searchgrid definition. The first row shows three possible values to be tested
for the max features parameter. The second row has two features for the cri-
terion parameter. This means that the model will be trained and evaluated
for a total number of six times.

Parameters Values
max_features [1,3,10]
criterion ["gini","entropy"]

TABLE 3.5: Searchgrid example

Popular ML toolkits like Scikit-learn provide convenience methods that
help in preparing, running and evaluating the search (Pedregosa et al.,
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LISTING 3.1: Gridsearch output

1 GridSearchCV took 0.99 seconds for 6 candidate parameter settings.
2 Model with rank: 1
3 Mean validation score: 0.927 (std: 0.009)
4 Parameters: {’max_features’: 10, ’criterion’: ’gini’}
5

6 Model with rank: 2
7 Mean validation score: 0.924 (std: 0.009)
8 Parameters: {’max_features’: 10, ’criterion’: ’entropy’}
9

10 Model with rank: 3
11 Mean validation score: 0.922 (std: 0.005)
12 Parameters: {’max_features’: 3, ’criterion’: ’gini’}

LISTING 3.2: Randomsearch output

1 RandomizedSearchCV took 0.27 seconds for 2 candidates parameter settings.
2 Model with rank: 1
3 Mean validation score: 0.925 (std: 0.011)
4 Parameters: {’max_features’: 3, ’criterion’: ’gini’}
5

6 Model with rank: 2
7 Mean validation score: 0.916 (std: 0.005)
8 Parameters: {’max_features’: 3, ’criterion’: ’entropy’}

2011). We applied the searchgrid in combination with a random forest clas-
sifier to the Iris data set. See listing 3.1 for an example of the evaluation
results.

Last, it should be noted that, due to its exhaustive nature, gridsearch
is a costly strategy in terms of processing power and time. When these
resources are limited random search may be an acceptable alternative.

Random search

Random search is very similar to gridsearch but aims to solve the prob-
lem of heavy computation costs. This search strategy chooses a random
set of parameter values, furthermore the number of evaluations can also be
limited which give precise control over the runtime of a search. Despite
the random nature of this approach it is known to perform equally well
and sometimes even better than grid search at reduced computational cost
(Bergstra and Bengio, 2012). See Listing 3.2 for an example of the random
search strategy. The search was limited to 2 tries out of 6 possibilities.

Bayesian optimization

The third and last search strategy falls in between grid search and random
search. With each evaluation run bayesian optimization employs intelligent
methods to estimate the next best set of parameters, incorporating the infor-
mation found during previous runs. Snoek, Larochelle, and Adams (2012)
explain that this process is computationally heavy but brings the benefit of
finding optimal parameter sets in a limited number of runs. This makes
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bayesian optimization a good choice for optimizing search problems with
a high dimensional parameter space.

Auto-WEKA is an experimental machine learning toolkit that almost
completely relies on bayesian optimization techniques to generate mod-
els (Thornton et al., 2013). The toolkit is unique in the sense that it
considers the choice for the modeling technique as part of the problem
space as well. This relieves potential users from having to manually
select and test algorithms, instead Auto-WEKA uses all the algorithms
that are part of the WEKA toolkit and determines which algorithm gen-
erates the best results for a given data set.

3.4 Model evaluation

The model evaluation task is the final step in the modelling phase of the
CRISP-DM process model. However for hierachical clarity we decided to
address this task in a separate section. The evaluation task is performed
to determine the generalizability of the models that are created during the
modeling phase. We can do this for multiple modeling techniques to deter-
mine which algorithm works best for a given data set. We start by describ-
ing various performance measures that are relevant to binary classification
problems. Furthermore we will also touch upon resampling methods since
they are neccessary to determine accurate performance metrics.

3.4.1 Performance measures

Confusion matrix based measures

A confusion matrix is a tabular representation of the classification results
of a model. It lists the classes of a data set in relation to the classification
results. See Table 3.6 for an example adapted from Markham (2014).

n=21
Predicted:

NO
Predicted:

YES
Actual:

NO
TN = 13 FP = 4 17

Actual:
YES

FN = 2 TP = 2 4

15 6

TABLE 3.6: Confusion matrix example, adapted from
Markham (2014)

The example shows the analysis outcomes of a two class (binary) data
set, e.g. whether a participant is classified as a patient or not. The data set
contains information about 21 participants from which 4 participants are
patients and 17 participants are not. The analysis outcomes show that from
these groups 6 participants are classified as patients and 15 participants are
classified as non-patients.

The abbreviations TP and TN stand for true positives and true nega-
tives, this refers to correct classification decisions. In this case this means
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that participants are correctly classified as either a patient or non-patient.
FP (false positives) and FN (false negatives) stand for incorrect classifica-
tion decisions. A false positive means that a participant is classified as a
patient while this participant is a non-patient, this is also known as a Type
I error. The other way around, a false negative, means that a participant is
classified as a non-patient while this participant really is a patient (Type II
error).

This allows us to calculate the following performance measures from
the confusion matrix:

• Accuracy: measures how often a classifier is correct:
(TP+TN)/total = (2+13)/21 = 0,71

• Error rate: measures how often a classifier is wrong (also known as
the misclassification rate):
(FP+FN)/total = (4+2)/21 = 0,29

• True positive rate: measures how often a classifier correctly classifies
as yes (also known as sensitivity):
TP/actual yes = 2/4 = 0,5

• False positive rate: measures how often a classifier incorrectly classi-
fies as yes when it’s actually no:
FP/actual no = 4/17 = 0,23

• Specificity: measures how often a classifier correctly classifies as no:
TN/actual no = 13/17 = 0,76

• Precision: measures how often a classifier is correct when it predicts
yes (not the same as true positive rate):
TP/predicted yes = 2/6 = 0,33

Our adapted example shows that although our accuracy of 0,71 may
initially seem good, the true positive rate of 0,5 in effect means that cor-
rectly predicting whether a participant is a patient or not essentially comes
down to random guessing. Misrepresentation by the accuracy measure is a
common problem where classes are imbalanced in data sets. We will there-
fore look at a measure that does not suffer from this problem, the receiver
operating characteristic (ROC) (Japkowicz and Shah, 2015).

ROC (AUC)

In machine learning context the ROC represents a plot of the true positive
rate (TPR) against the false positive rate (FPR) over all possible decision
tresholds, it applies only to binary classification problems. Most ML algo-
rithms assign a score to an instance e.g. 0.8 which is tresholded to either 0
(no) or 1 (yes). The decision treshold usually is 0.5 which means that our
example value 0.8 would be tresholded to 1. ROC values are calculated by
determining the TPR and FPR values for each possible treshold between 0.0
and 1.0 (Hallinan, 2014).

See Figure 3.8 for an example plot of an ROC. If the classifier performs
well at separating both classes the TPR will remain high before curving off
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FIGURE 3.8: ROC example based on the Iris data set

towards higher FPR values. In other words, the farther the curve is re-
moved from the diagonal dotted line the better a classification model per-
forms. This outer left corner is also known as ROC heaven in the ROC space
(Mladenic, 2003).

The ROC allows to derive a metric known as the area under the curve
(AUC) which represents the proportion of the box that resides under the
line. The higher this proportion the better a classifier performs, values be-
tween 0.80 and 0.90 are found to be acceptable while 0.90 and higher values
are good. Furthermore, keeping in mind the medical context of this re-
search project, since the AUC is built on components like sensitivity and
specificity it is also found to be an effective method to validate diagnostic
tests (Kumar and Indrayan, 2011).

3.4.2 Resampling methods

Resampling is applied to data sets to support the process of testing the pre-
dictive capabilities of an algorithm. We discuss frequently cited resampling
techniques applicable to different situations below.

Resubstitution and holdout

Resubstition means that models are trained and tested on the same data set.
This is considered as a bad practice in ML since overfitting the data will
not be detected in this way. To determine the generalizability of a model
it should be tested on unseen instances. This is where the holdout- and
subsequent methods come in.
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The holdout method entails splitting the data set in a training and test-
ing set, e.g. according to a 70% - 30% ratio. The model is first trained using
the training set, afterwards it is tested on the unseen instances of the test
set. The holdout method works well in cases where the data set is large and
representative of the problem being analyzed (Japkowicz and Shah, 2015).

Stratified k-fold cross validation

In k-fold cross validation the data set is split into k equal parts. The data
is then trained on k-1 parts and then tested on the remaining part. This
process is repeated untill the all the different parts are used for evaluation.
So for example, in 10-fold cross validation the training and testing phase
will be repeated for a total of ten times. This process is known to work
well for smaller to medium sized data sets and generally leads to low error
rates (Japkowicz and Shah, 2015). The term stratified refers to the process
to counter class imbalance problems by evenly dividing classes over the k
number of folds.

Leave one out

The leave one out method is similar to cross validation except that each
instance represents its own part. So for example, in a data set containing 30
instances the set is trained and evaluated 30 times using a training set of 29
instances and a test set of 1 instance. This method is applied when a data
set is not large enough to split in a meaningful number of k folds.

Bootstrapping

Bootstrapping is an alternative to k-fold cross validation and also suitable
to make the most of smaller data sets because it dampens the variance of
the results. This resampling method works by drawing a random sample
with replacement from a data set. The term with replacement means that
the same instance can be included multiple times in one sample. At each
run the sample represents 63,2% of the data set, the training set consists of
all the instances that have not been selected for the sample. The process is
typically run for at least 200 times or more to achieve accurate results. The
result itself is the average of the performance metric (e.g. accuracy) over all
the runs.

3.5 Accuracy versus transparency

The lack of research and general talk on the topic of model transparency is
illustrative of a field that is strongly focussed on improving accuracy related
challenges. While there is nothing wrong with the pursuit of this goal, on
occassion the need for transparent models also surfaces in the body of liter-
ature. In particular when it concerns decision support systems where it must
be clear how a system came to a certain decision / classification (Johans-
son, Niklasson, and König, 2004; Olson, Delen, and Meng, 2012; Kamwa,
Samantaray, and Joós, 2012b; Allahyari and Lavesson, 2011).

There is consensus in the literature about the types of algorithms that are
known to yield transparent and non-transparent (black box) models. Both
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tree and rule models are considered as transparent and highly interpretable.
On the other hand artificial neural networks, support vector machines and
ensembles like the random forest are considered as black boxes (Johans-
son, Niklasson, and König, 2004; Olson, Delen, and Meng, 2012; Kamwa,
Samantaray, and Joós, 2012b).

Currently there is no common ground on the subject of tree and rule
model complexity. Johansson, Niklasson, and König (2004) note that the
interpretative value of a "bushy", in other words complex, decision tree
should be questioned. The same should apply to complex rule models.
However in a, first of its kind, study on model understandability Allahyari
and Lavesson (2011) found evidence that the assumption where simpler
models are considered as more understandable does not always hold as
true.

The choice between a transparent and non-transparent modeling tech-
nique is not immediately obvious since, as explained in section 1.4 there is
a tradeoff to be had between accuracy and transparency. Kamwa, Saman-
taray, and Joós (2012b) found that black box modeling techniques have bet-
ter classification / prediction performance and that the tradeoff with better
interpretable solutions is unavoidable. We found two solutions in the body
of literature that aim to bridge this gap.

First, Johansson, Niklasson, and König (2004), Martens et al. (2007), and
Setiono (2003) propose to extract comprehensible information in the form of
rules and trees from black box modeling techniques like ANN’s and SVM’s.
The practice delivers comprehensible information but is criticized for being
unrepresentative of the original model due to oversimplification (Cortez
and Embrechts, 2013).

Second, Lou, Caruana, and Gehrke (2012) approach the problem from
the opposite direction by improving the performance of a transparent mod-
eling technique to a level where it competes with its black box counterparts.
They use a variant of linear modeling known as generalized additive modeling
(GAM) enriched with information on pairwise interactions between fea-
tures (Lou et al., 2013). This allows to retain the explanatory value of linear
models and at the same time achieve high classification accuracy. The tech-
nique exposes the contribution of each feature in relation to the outcome
values. It has been applied to analyze medical data sets on the subjects of
pneumonia risk and hospital readmission within 30 days. In this study the
authors state to have achieved a high level of accuracy. Furthermore the
risk scores generated for each feature enabled the discovery of previously
unseen patterns (Caruana et al., 2015).
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Chapter 4

Method fragments

In this chapter we will tie the concepts as discussed in Chapter 3 together
and present the method fragments used to perform supervised binary clas-
sification tasks. The method fragments are based on the base structure of
the CRISP-DM process model as discussed in Chapter 2. Furthermore, our
modelling approach of choice will be the method engineering technique as
proposed by Weerd and Brinkkemper (2008) adopted from Saeki (2003).

The technique is used to vizualize relations between activities (the pro-
cess) and the corresponding deliverables (concepts). The resulting visual-
ization is called a process-deliverable-diagram (PDD) and consists of a con-
joined UML activity diagram and an UML class diagram. The activity dia-
gram is placed on the left-hand side and shows the process. The class dia-
gram is placed on the right-hand side and displays the deliverables of the
process. The method fragments are accompanied by tables explaining the
activities and concepts depicted in the diagrams (Weerd and Brinkkemper,
2008).

In section 4.1 we present the high level domain independent method
fragments that form the boilerplate for a data mining project focussed on
using machine learning techniques. Section 4.2 zooms in on a specific data
preparation step as applied in the Behapp project. It concerns the conver-
sion of raw location data to an informative feature.

4.1 General method fragments

The general method fragments as shown in this section are concerned with
the main data processing phases of the CRISP-DM process model. The ac-
tions described in the data preparation and modeling & evaluation method
fragments can be piped together leading to a continuous flow between the
fragments.

4.1.1 Data understanding

The data understanding phase as depicted in Figure 4.1 revolves around
generating visualizations and tables to gain a first insight into the prop-
erties of the data set and the relationships between the features. A high
number of features makes these deliverables difficult to interpret. There-
fore the activity flow shows that in cases of high dimensional data sets it is
recommended to pre select a set of features using a ML algorithm.
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Data understanding

Generate histograms

Generate pairwise 
scatterplots 

Generate correlation matrix

HISTOGRAM GRAPH

PAIRWISE 
SCATTERPLOT

CORRELATION 
MATRIX

Select features DATA SUBSET

[high dimensional data]
[else]

Load data DATA SET

1

1

1

1..*

1

1

depicted in

depicted in

ca
lc

ul
at

ed
 fr

om

FIGURE 4.1: Process-deliverable-diagram of the data under-
standing phase

Activity Sub-activity Description
Data under-
standing

Load data The data scientist loads the raw data into a
workbench, this creates the DATA SET that will
be explored.

Select features If the DATA SET contains a high number of
features the data scientist can choose to re-
duce the dimensionality of the DATA SET. Fea-
ture selection is either performed manually
using EDA techniques such as CORRELATION
MATRICES, PAIRWISE SCATTERPLOTS and / or
HISTOGRAM GRAPHS, or selection is performed
using a feature selection algorithm.

Generate
histograms

The data scientist generates a HISTOGRAM
GRAPH to explore the distribution of the fea-
tures in the DATA SET.

Generate
pairwise scat-
terplots

The data scientist generates a PAIRWISE SCAT-
TERPLOT to explore possibilities of separation
between features.

Generate cor-
relation matrix

The data scientist generates a CORRELATION
MATRIX to determine which features are infor-
mative and check for redundancy between
variables.

TABLE 4.1: Activity table of the data understanding phase
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Concept Description
DATA SET In the context of binary classification problems a DATA SET

contain information (features) describing two classes of dif-
ferent entities.

DATA SUBSET The DATA SUBSET consists of a diminished number of fea-
tures, usually the most informative variables are selected for
the subset.

HISTOGRAM
GRAPH

A HISTOGRAM GRAPH is a visual representation of the distri-
bution of the classes over each specific feature.

PAIRWISE SCAT-
TERPLOT

A PAIRWISE SCATTERPLOT visualizes the datapoints for all
possible pairs of features on a 2-dimensional canvas. This al-
lows to visually confirm possible areas for class separation.

CORRELATION
MATRIX

The CORRELATION MATRIX contains the Pearson correlation
values for all possible pairs of features. Features correlated
with the class can be considered as informative. Features
that are correlated with each other are redundant and must
be removed before using the naive bayes classifier.

TABLE 4.2: Concept table of the data understanding phase
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4.1.2 Data preparation

The data preparation phase consists of three main activities. The data set
construction activity entails loading raw data and engineering new features
based on this raw data. Feature engineering can be a substantial task but
is difficult to capture in a method since it is highly situational. Next the
method proceeds with feature selection since not all features tend to have
the same amount of informative value. If the data set contains a high num-
ber of columns / variables the data scientist can choose to reduce the di-
mensionality of the data set. Feature selection is either performed manually
using EDA techniques, or selection is performed using a feature selection
algorithm.

The feature extraction activity entails the application of projection meth-
ods. Projection methods like principal component analysis are automated
feature engineering techniques that aim to best describe the main differen-
tiators of a data set creating a select (low) number of features in the process
(dimensionality reduction). Transparency between the outcome variable
and the original features may be lost while using a projection technique.

Lastly, the modeling technique preparation activity consists of three paths
that define preparation steps depending on the model type chosen by the
data scientist. When tree and rule models are required due to model trans-
parency concerns no additional preparation steps are neccessary since mod-
ern algorithm implementations take care of preparation steps internally.
Linear models and the probalistic naive bayes model can be chosen due
to performance concerns. Both types require their own conversion steps
in order to be able to process the data in the next phase of the DM process.
The naive bayes model type e.g. requires redundant features to be removed
since they will bias classifier results. Linear model types require input data
to be represented in numerical form so transformation steps should be per-
formed as needed e.g.: binarize categorical data. Note however that some
concrete algorithm implementations of linear models may perform these
steps as part of their internal workings.
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Activity Sub-activity Description
Data set con-
struction

Load data The data scientist loads the raw data into a
workbench which delivers a RAW DATA SET.

Engineer
features

The data scientist converts variables with
raw data into informative features. For ex-
ample a column containing dates of birth
may be used as input for a new feature that
contains age information.

Select features The data scientist applies feature selection
techniques to the RAW DATA SET.

Feature extrac-
tion

Apply projec-
tion

The data scientist applies a projection
method to the DATA SUBSET.

Modeling
technique
preparation

Generate
feature corre-
lation matrix

The data scientist generates a feature correla-
tion matrix to detect redundant features.

Remove re-
dundant
features

The data scientist removes redundant (corre-
lated) features from the data set.

Discretize fea-
tures

The data scientist discretizes the features of
the DATA SUBSET resulting in the DISCRETIZED
DATA SET.

Binarize
categorical
features

The data scientist binarizes the features of the
DATA SUBSET resulting in the BINARIZED DATA
SET

Normalize
quantitative
features

The data scientist normalizes the quantitative
features of the DATA SUBSET resulting in the
NORMALIZED DATA SET

Export data set The data scientist exports the FINAL DATA SET
for usage in the modeling and evaluation
phase.

TABLE 4.3: Activity table of the data preparation phase
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Concept Description
RAW DATA SET In the context of binary classification problems a RAW DATA

SET contains information (variables) describing two classes
of different entities.

EXTENDED
DATA SET

The EXTENDED DATA SET represents a RAW DATA SET that
is enriched with additional features derived from existing
columns or other data sets.

DATA SUBSET The DATA SUBSET consists of a diminished number of fea-
tures, usually the most informative features are selected for
the subset.

PROJECTED
DATA SET

A PROJECTED DATA SET consists of features that are newly
generated by a projection method (e.g. principal component
analysis).

CORRELATION
MATRIX

The CORRELATION MATRIX contains the Pearson correlation
values for all possible pairs of features. Features correlated
with the class can be considered as informative. Features
that are correlated with each other are redundant and must
be removed before using the naive bayes classifier.

DISCRETIZED
DATA SET

The DISCRETIZED DATA SET contains feature values where
original quantitative values are converted to categorical val-
ues e.g. the value 5 belonging to the category 0 - 10.

BINARIZED
DATA SET

In a BINARIZED DATA SET the various options of a categori-
cal variable are represented as either true or false (binary).
This allows for a numeric representation of categorical data
which is necessary for linear modeling techniques.

NORMALIZED
DATA SET

In a NORMALIZED DATA SET all numeric features are converted
to have a similar scale. Differences in scale negatively affect
accuracy and performance of popular linear modeling tech-
niques.

FINAL DATA SET The FINAL DATA SET is used for the modeling and evaluation
phase. For binary classification purposes it should contain
cleansed data of the most informative features.

TABLE 4.4: Concept table of the data preparation phase
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4.1.3 Modeling & Evaluation

The modeling and evaluation method fragment consists of three activities
aimed at deriving classification models from data sets. The search space def-
inition activity has a route to explore fully automated model (and parame-
ter) selection in analyzing the data set. Currently one experimental imple-
mentation exists in the form of Auto-WEKA. Currently, due to the novelty
of this technique, the approach should be used to gain initial insight into
model types that may perform best on the provided data set.

The application of search strategies like grid and random search is cen-
tral to the find optimal parameters activity. These strategies have a common
underlying template that make up the search space. The speed at which an
optimal solution is found depends on the strategy chosen to run through
the search space. For large spaces combined with large data sets it is recom-
mended to go with random search or bayesian optimization. Furthermore,
the structure and accessibility of this approach is in line with the design goal
of this research project where we aim to construct a method that enables a
user to create optimal models.

Lastly, the predict and classify activity defines the steps to apply the model
that has been derived to an unseen dataset to gain classification results.
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Activity Sub-activity Description
Search space
definition

Load data The data scientist loads the FINAL DATA SET
into the workbench.

Apply Auto-
WEKA

The data scientist applies a fully automated
model (and parameter) selection tool on the
data set.

Find optimal
parameters

Select (multi-
ple) modeling
technique(s)

The data scientist chooses between a single or
multiple model type approach towards train-
ing and test runs.

Define param-
eter space

The data scientist defines parameter spaces
relevant to each modeling type implementa-
tion algorithm, this is known as the PARAME-
TER SPACE.

Select resam-
pling method

The data scientist decides on a resampling
method to support the evaluation process.
The hold-out (70-30 split) method or strat-
ified k-fold cross validation can be chosen
(usually with 10 folds). For smaller data sets
the leave-one-out method is more fitting.

Select search
strategy

The data scientist decides on a search strat-
egy fitting the size and training difficulty of
the data set.

Define scoring
metric

The data scientist decides and selects a (com-
bination of) search metric(s) to determine the
performance of the selected algorithm(s).

Apply param-
eter grid

The data scientist initiates the parameter
(and model) search on the FINAL DATA SET.

Export best pa-
rameters

The data scientist exports the best parameters
found during the parameter search.

Predict & Clas-
sify

Train model The data scientist trains the model with the
best PARAMETER DEFINITION found during the
parameter search.

Load unseen
data

The data scientist loads the UNSEEN DATA SET
into the workbench.

Apply model The data scientist applies the CLASSIFIER to
the UNSEEN DATA SET to classify the data.

TABLE 4.5: Activity table of the modeling & evaluation
phase
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Concept Description
FINAL DATA SET The FINAL DATA SET is used for the modeling and evaluation

phase. For binary classification purposes it should contain
cleansed data of the most informative features.

CLASSIFIER The CLASSIFIER is a trained model that is used to classify un-
seen data.

MODEL SPACE The MODEL SPACE represents the classification algorithms
that are used during training and testing runs.

PARAMETER
SPACE

The PARAMETER SPACE represents all possible combinations
of parameter values that are defined in advance. These set-
tings are specific for algorithm implementations.

RESAMPLING
DEFINITION

The RESAMPLING DEFINITION contains the method of choice
(hold-out, stratified k-fold cross validation, bootstrapping)
for resampling methods and the specific settings (e.g. 70-30
split, 10 folds, leave-one-out).

SEARCH STRAT-
EGY DEFINITION

The SEARCH STRATEGY DEFINITION represents the search strat-
egy of choice: grid search, random search and bayesian
optimization. Grid search is exhaustive making it a non-
economical choice when exploring various combinations of
parameters.

SCORE METRIC SCORE METRIC’s represent the performance of a CLASSIFIER. A
combination of the AUC (area under the curve), accuracy,
true positive rate (TPR) and false positive rate (FPR) can
draw a comprehensive picture of the behavior and perfor-
mance of a CLASSIFIER.

PARAMETER
GRID

The PARAMETER GRID contains pre-defined parameter op-
tions for all aspects that are neccessary to run a parameter
search: MODEL SPACE, PARAMETER SPACE, RESAMPLING DEFINI-
TION, SEARCH STRATEGY DEFINITION and the SCORE METRIC.

PARAMETER
DEFINITION

The PARAMETER DEFINITION is the output of the search pro-
cess and contains the combination parameters that yield the
best performance according to the SCORE METRIC’s that are
chosen.

UNSEEN DATA
SET

In this context the UNSEEN DATA SET does not contain any
labels and requires classification by a CLASSIFIER.

RESULT SET After classification the UNSEEN DATA SET is enriched with
class data which renders the RESULT SET.

TABLE 4.6: Concept table of the modeling & evaluation
phase
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4.2 Behapp

In this section we introduce an instance level method that explains how to
process location data. In practice the method would be applied as part of
the feature engineering activity while preparing the data for analysis. This
particular technique was not originally in scope for this research project but
was developed in order to process the data for the Behapp project.

4.2.1 Daily average number of places visited

In order to express the social exploration (movement) patterns of subjects
in a meaningful way a method was devised to process the location (GPS)
data into a concrete measure. We chose to determine the number of unique
places visited by each subject on a daily basis. These numbers are summed
and then averaged over the total number of days per subject. This results
in a measure that counts the average number of places visited by a subject
on a daily basis.

In the load data activity we extract location data including their times-
tamps, the latter is needed to separate the datapoints per day. Next in
the calculate distances activity we slice the data set further down to separate
daily repositories of location data for each subject. Each repository is then
used to create a distance matrix using the Haversine distance metric (Shu-
maker and Sinnott, 1984), this specific metric is important since it concerns
geographic coordinates.

Lastly, in the cluster distances activity the distance matrix is used as in-
put for a density clustering algorithm. These unsupervised algorithms find
patterns in datapoints that are in close proximity to each other and assign
these points to clusters. The number of clusters found by this algorithm
represent the number of notable places that have been visited by a subject.
By averaging this over the number of days of data we derive a measure for
how many places a subject has visited on average.



4.2. Behapp 51

1

Load data

Load data

Extract location data

Extract time stamps

Average number of places visited

Calculate distances

Separate by subjects

Separate by days

Calculate haversine 
distance

Cluster distances

Apply density clustering 
algorithm

Count number of clusters

Sum cluster count over 
days

Average cluster count over 
days

DATA SET

LOCATION DATA

TIMESTAMPS

SUBJECT SPECIFIC 
DATA

DAILY GROUPED 
SUBJECT DATA

DAILY DISTANCE 
MATRIX

CLUSTER DATA

CLUSTER COUNT

SUMMED CLUSTER 
COUNT

AVERAGE NUMBER OF 
PLACES VISITED PER 

DAY

TIME SERIES 
LOCATION DATA

1
input for input for

input for

input for

derived from

input for

derived from

calculated from

calculated from

FIGURE 4.4: Process-deliverable-diagram for processing lo-
cation data



52 Chapter 4. Method fragments

Activity Sub-activity Description
Load data Load data The data scientist loads the DATA SET into the

workbench.
Extract loca-
tion data

The data scientist extracts the columns con-
taining the location data e.g. lat/lon coordi-
nates.

Extract time
stamps

The data scientist extracts the column(s) con-
taining timestamps corresponding to the lo-
cation data.

Calculate dis-
tances

Separate by
subjects

The data scientist programmatically sepa-
rates the location data belonging to different
subjects.

Separate by
days

The data scientist programmatically sepa-
rates the location data per day. This yields
a DAILY GROUPED SUBJECT DATA set.

Calculate
Haversine
distance

The data scientist calculates pairwise dis-
tances between daily location data points us-
ing the Haversine distance metric.

Cluster dis-
tances

Apply density
clustering
algorithm

The data scientist applies a density cluster-
ing algorithm (e.g. DBSCAN or OPTICS) to
the DAILY DISTANCE MATRIX. This results in an
overview of CLUSTER DATA.

Count number
of clusters

The data scientist determines the CLUSTER
COUNT based on the CLUSTER DATA by count-
ing the number of clusters that are returned.

Sum cluster
count over
days

The data scientist programmatically sums
the number of clusters for each day of data
belonging to each specific subject.

Average clus-
ter count over
days

The data scientist averages the number of
clusters over all days of data belonging to a
specific subject. This results in the AVERAGE
NUMBER OF PLACES VISITED PER DAY.

TABLE 4.7: Activity table for processing location data
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Concept Description
DATA SET In the context of binary classification problems a DATA SET

contains features describing two classes of different entities.
LOCATION DATA LOCATION DATA refers to geographic coordinate systems used

to express geospatial data, a common format is the latitude
/ longitude coordinate system.

TIME STAMPS TIME STAMPS represent the time or datetime of the creation
of a location record.

TIME SERIES LO-
CATION DATA

The LOCATION DATA and corresponding TIME STAMPS com-
bined make up the TIME SERIES LOCATION DATA.

SUBJECT SPE-
CIFIC DATA

A subject specific sliced down repository of TIME SERIES LO-
CATION DATA.

DAILY GROUPED
SUBJECT DATA

A daily sliced down repository of SUBJECT SPECIFIC DATA.

DAILY DISTANCE
MATRIX

The DAILY DISTANCE MATRIX contains pairwise Haversine dis-
tances between all coordinates of a given day per subject.

CLUSTER DATA The CLUSTER DATA contains information about the cluster as-
signment of each coordinate. This result is achieved by ap-
plying a density clustering algorithm like DBSCAN or OP-
TICS to the DAILY DISTANCE MATRIX.

CLUSTER
COUNT

The total number of clusters that are found for a given day.

SUMMED CLUS-
TER COUNT

The summed number of clusters over all days for a given
subject.

AVERAGE NUM-
BER OF PLACES
VISITED PER
DAY

The AVERAGE NUMBER OF PLACES VISITED PER DAY is a metric
to express the social exploration efforts of subjects.

TABLE 4.8: Concept table for processing location data
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Chapter 5

Method evaluation

As stated in Chapter 1 we aimed to design a method which helps to cre-
ate optimal models. In this chapter we will evaluate the effectiveness of
the method fragments as presented in Chapter 4 by embedding them in a
formal experiment.

We will apply the experiment process as outlined by Wohlin et al. (2012).
The process entails a scoping, planning, operation, analysis & interpreta-
tion and lastly, a presentation phase. Each phase has its own deliverable:
goal definition, experiment design, experiment data, conclusions and ex-
periment report. We address these deliverables and the resulting experi-
ment in sections 5.1 to 5.4 where the last three deliverables are combined in
one section.

5.1 Goal definition

According to Wohlin et al. (2012) the scope of an experiment is derived from
determining the goals of the experiment. We use the goal template by Basili
and Rombach (1988) to formulate the goal definition of this experiment:

Analyze machine learning methods
For the purpose of evaluating the aforementioned methods
With respect to their performance in terms of accuracy and the
area under the curve
From the point of view of the researcher / user
In the context of supervised binary classification tasks

We will compare the quality of models in two conditions. In condi-
tion number one no data preparation steps will be applied to our data and
the algorithms belonging to various model types will be run at their de-
fault parameter settings. In the second condition our data preparation and
modeling & evaluation method fragments will be applied to the data, see
Appendix A for our configuration of the method fragments as outlined in
Chapter 4. Due to the fully integrated nature of these method fragments we
will henceforth refer to our method as the integrated ML method. The first
condition will be refered to as the plain ML method.

To ensure similar testing conditions the single model route will be used
from the modeling & evaluation method fragment. Additionally the exper-
iment will be performed as a multi-object study where both the Iris and the
Behapp data sets will be used for testing.
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5.2 Experiment design

The design of an experiment is the outcome of the planning phase in the for-
mal experiment process. We will address the following concepts to ensure
reliable results: design type, hypothesis formulation, variables selection,
object selection, instrumentation and validity evaluation.

Design type
The design of this experiment is of the one factor type with two treatments.
The factor is the performance of the models that are generated using the
plain and integrated modeling methods (treatments).

Hypothesis
We hypothesize that the application of the integrated ML method will result
in models that deliver improved performance over models created using
the plain ML method:

Null: Models generated using the plain ML method and the
integrated modeling method will perform similarly
Alternative: Models generated using the integrated ML method
will have improved performance over plain models.

Variables & Object selection
In this experiment the aforementioned modeling methods (plain / inte-
grated) will be our independent variable. We will determine the effect of
the methods on the performance of the models that are generated. For each
modeling method we will select one algorithm belonging to the following
model types: tree, linear and ensemble. The performance will be measured
by a combination of the following metrics: accuracy and the area under the
curve. The objects in this experiment are represented by two data sets: Iris
and Behapp. These data sets will be used to generate and test the models
that will be used to evaluate the modeling methods. See Figure 5.1 for a
graphical overview of the experiment model.

Plain 

Integrated Accuracy

AUC

Decision tree 

Random forest

Support vector machine

Approach Model type Performance

Applied to

Iris data set

Behapp data set

FIGURE 5.1: Graphical overview of the experiment model

Instrumentation
Since the experiment will be performed without subject interaction the only
instrumentation items needed are the measurement instruments themselves.
We will use the python scientific stack (scipy, pandas and scikit-learn) to
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prepare, run and measure the outcomes of the experiment.

Validity evaluation
Conclusion validity is concerned with ensuring that the outcome and the
treatment have a valid statistical relationship. Since optimization strategies
in general show small increments in performance (Thornton et al., 2013)
is yet unknown how strong of a statistical relationship can be established
between our method and the outcomes.

Internal validity is concerned with ensuring that any observed effect is
in direct relation with the treatment that is applied. We expect that internal
validity is ensured since we do not have any interaction with human sub-
jects and only work with stateless objects. However according to the no free
lunch theorem (NFLT) the representation of data in data sets is related to the
mathematical constructs of various algorithms and modeling types. The
theorem explains that for this reason the existance of one superalgorithm is
not possible (Ho and Pepyne, 2002). We expect the impact on this exper-
iment to be minimal since we are using algorithms belonging to different
model types in our experiment setup.

Construct validity is concerned with the connection between theory and
the observed effect. This validity type is ensured by having constructed
the method from well tested theories and practical ML knowledge bits, see
Chapter 3.

Last, external validity is concerned with the generalizability of the out-
comes found in the experiment. Due to time constraints the methods are
tested on a small set of objects which poses a threat to the generalizability
of the outcomes to larger and more complex data sets.

5.3 Data description

5.3.1 Iris data set

The Iris data set, as introduced in Chapter 3 is originally a three class data
set that contains four features describing petal measurements of the three
classes of flowers (Setosa, Versicolor and Virginica). For each class there
are 50 observations (instances). For this experiment we converted this data
set to a two class data set to by removing the datapoints belonging to the
Setosa class. We chose for this class because it is already linearly separable
from the other two classes, thus it would be easy to separate from the other
two classes regardless of the methods applied.

5.3.2 Behapp data set

The Behapp data set is a two class data set about a group of 17 participants,
4 patients and 13 controls. The set contains 17 records, one for each partic-
ipant, with 21 features describing various explorative and social acts. The
data shows that social media (e.g. Twitter and Facebook) and text messag-
ing services (e.g. MMS and SMS) are mostly left unused by our partici-
pants, thus we expect these to be filtered our during feature selection. On
the other hand, datapoints related to location services, bluetooth detection
and call logs are consistenly measured and expected to carry most of the
informative value.
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5.4 Data & Interpretation

See Table 5.1 for an overview of the experiment data. The table holds the
accuracy and AUC scores for the Iris and Behapp data sets. For both data
sets three different model types have been applied using the plain and in-
tegrated modeling methods.

Plain Integrated
Accuracy AUC Accuracy AUC

Decision tree 0.939 0.939 0.940 0.948
Random forest 0.950 0.964 0.950 0.985Iris
Support vector machine 0.959 0.994 0.960 0.994
Decision tree 0.662 0.437 0.765 0.806
Random forest 0.762 0.552 0.882 0.806Behapp
Support vector machine 0.762 0.5 0.824 0.706

TABLE 5.1: Classification score overview of the Iris and Be-
happ data set

We observe an improvement in the accuracy and AUC scores for the
majority of the cases while using the integrated approach. However, the
improvements gained on the Iris data set are only minimal. This can be
explained by the fact that the versicolor and virgina classes of datapoints are
almost linearly separated which does not leave a lot of room for improve-
ment. Nonetheless for both the decision tree and the random forest we
observe an improvement of 0.8 to 2 percent points which falls in line with
the goal of the integrated approach of delivering optimized models.

Next concerning the Behapp data set we observe more dramatic im-
provements in accuracy and AUC scores while using the integrated ML
method. Compared to the Iris data set the Behapp data set contains more
uninformative features (22 versus 4) which negatively influence the learn-
ing process of the models that are applied. We observe a direct increase in
classification performance after feature selection limiting the data subset to
the two most informative features. Further improvements are gained using
the grid search parameter optimization strategy which iterates over 8 to 144
candidate parameter settings.

To conclude we observe that the integrated ML method realizes im-
proved classifier performance finding both room to improve well working
classifiers as well as uncovering informative patterns in data sets to achieve
optimal performance. See Appendix C and Appendix D for a complete
overview of the notebooks containing the experiment source code and out-
put.
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Chapter 6

Behapp data insights

As related to our overarching research goals, in this chapter we present the
insights gained into the Behapp data set during our data preparation and
experimentation efforts. We will start by documenting our data wrangling
and data preparation activities in section 6.1. Next, in section 6.2 we deter-
mine what the most informative features are. Furthermore, in section 6.3
we generate a tree model visualizing the decision boundaries of the final
model. Lastly, in section 6.4 we will convert the features into social pro-
files according to the social profiling technique by Eskes et al. (2016). The
technique serves as a projection to express the social communication and
exploration acts of subjects.

6.1 Data wrangling

Data wrangling or also known as data munging is the terminology used for
cleaning, transforming and unifying raw data for easy consumption fur-
ther down the DM process. As demonstrated in Appendix E the actions
performed are specific to the context of the data sets in scope. Because of
this we decided not to attempt to model these actions even though they can
be considered as data preparation steps.

Behapp data is originally provided as time series data indicating when
a specific event has taken place. These events can be e.g. an incoming call,
location update or the detection of a bluetooth device. The events are stored
in a relational database where each event is related to a specific participant.
The number of events can run into the hundreds or thousands of rows for
participants that have been monitored for at least more than one month.

We start by merging this data with the participant database that indi-
cates whether a participant belongs to the control or patient group. Next
we perform some basic transformations to get the events overview in a state
where we can start summarizing the data. We rename columns for better
clarity and select only the columns that are relevant to our analysis.

With the events overview in a finalized state we initialize and auto-
mated count for each event type that is known to the system. For most
event types this is enough to define the event type as a measure. For ex-
ample, the number of incoming and outgoing calls can be directly used by
simply counting the number of instances. This count is performed on a
participant by participant basis and is refered to as our general overview.

The overview is then supplemented with features that need additional
processing instead of a simple count. One example is demonstrated in
Chapter 4 where we present our feature engineering method to derive the
average number of places visited per day (per participant) based on gps
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location data. Another example is the determination of the size of a partic-
ipants’ social circle, this is calculated by extracting the number of unique
phone numbers from the event data belonging to a specific participant.

The last important step in our data wrangling efforts is the standardiza-
tion of data over time. There are substantial differences between the partici-
pants concerning the amount of time they have been monitored by Behapp.
In order to make a fair comparison the measurements are standardized to a
common length of time. Since the range can vary from ten days to one year
we choose to standardize all data over one day. First we establish the run-
time of the app per participant in two ways: 1) by calculating the number
of days between the first and last event received and 2) by calculating the
unique number of days in the database for a given participant. The second
calculation is more accurate when there are gaps in the data, meaning that
there are periods where no data is recorded / received at all.

Finally, all measurements are divided by the number of active days
which yields a standardized overview of measurements where participants
can be compared to each other. See Appendix B for an overview of this data
set. Note that we have only discussed the highlights of our data wrangling
efforts, for more details please see Appendix E.

6.2 Data preparation - Feature selection

Based on our requirement for model transparency we choose to model the
data using tree models. The data preparation method fragment as defined
in subsection 4.1.2 shows that this path only requires the application of fea-
ture selection as a preparation step.

We applied this technique to the Behapp data set as part of the exper-
iment conducted in Chapter 5. Appendix D shows that the following two
features are found to be most informative in separating patients from con-
trols: bluetooth device diversity and unique contacts. Bluetooth device diver-
sity refers to the unique number of bluetooth devices that a subject has
encountered during the monitoring study. Unique contacts is similar but
measures the unique contacts encountered in call and sms usage.

6.3 Modeling - Tree model

Finally, we visualized the tree model generated during the experiment, it
is depicted in Figure 6.1. The model was generated using a grid search
iterating over 8 candidate parameter settings with the best combination of
settings reaching a classification accuracy of 0,824% (Appendix D).

The model shows the bounds of the bluetooth and contacts features and
how these are related to the classification of the two subject groups. We see
that the majority (3) of our patients are currently classified as such when
their number of unique contacts ranges from 21 to 27.5 contacts. One of our
patients is a (known) extreme outlier in the sense of the exploration and
communication efforts which explains the additional nodes separating sub-
jects with a bluetooth device diversity lower than 976 and a higher upper
limit of the number of unique contacts (435.5). We should stress that the
data presented here is very preliminary. We expect that the relationships
established will shift over time as we collect more data.
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FIGURE 6.1: Decision tree model of the Behapp data set

6.4 Social Profiling

Our social profiling approach is based on the work by Eskes et al. (2016)
who has been involved with the Behapp project during an earlier phase
of the initiative. The author validated the use of metrics gained through
smartphones in relation to dimensions like social exploration and communi-
cation.

Next the author devised a scoring model to summarize a selection of
the 23 metrics of the Behapp application on the two dimensions as men-
tioned above. This enables us to express the sociability of a subject on a
2-dimensional plane. The scoring model works as follows:

• First, all metrics are standardized using z-score standardization over
the whole population

• Second, the resulting z-scores are converted to a more comprehensible
number space which yields numbers between 0 and 100

• Third, metrics related to communication efforts are grouped and av-
eraged resulting in the communication score

• Fourth, metrics related to social exploration efforts are grouped and
averaged resulting in the social exploration score

Figures 6.2 and 6.3 depict the social profiles of our participants. The first
plot is implemented according to the original model as devised by Paul
Eskes. The second plot has been extended with additional features that
were found to be relevant to both dimensions. The original Eskes plot is
composed of the following features:

• Communication score

– Incoming calls

– Outgoing calls
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– Call duration

• Social exploration score

– Places visited daily

– Bluetooth devices detected

FIGURE 6.2: Sociability score plot of Behapp participants -
Original Eskes

The modified Eskes plot has been extended with the newly added fea-
tures marked in bold:

• Communication score

– Incoming calls

– Outgoing calls

– Missed calls

– Call duration

– Unique contacts

– Whatsapp activity

• Social exploration score
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– Places visited daily

– Bluetooth devices detected

– Bluetooth device diversity

FIGURE 6.3: Sociability score plot of Behapp participants -
Modified Eskes

Both plots highlight an interesting pattern, we observe that the patients
are either highly communicative and limited in their social exploration ef-
forts or the other way around. During an informal evaluation session it was
noted by one of the project supervisors that the mark of a patient is perhaps
to be found in the skewed ratio between the communication and explo-
ration efforts of a subject. Again we need to stress that the data presented
is preliminary and any patterns found may change over time.
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Chapter 7

Conclusion

In this chapter we will present our conclusion to the main research question:

How can a domain independent method be developed to guide the
process of constructing transparent machine learning models?

We formulated a number of sub-questions to structure the research pro-
cess, the conclusions to these questions are discussed first after which we
conclude with an answer to the main research question.

7.1 Conclusion of sub-questions

Questions one to three are based on theoretical foundations derived from
the body of literature on data mining and machine learning. Question four
is based on theory on method engineering and also covers the realization
of the main deliverable of this thesis: the integrated ML method (see Ap-
pendix A).

Question one

Which data mining process models are available and how do they fit ma-
chine learning techniques?
We briefly reviewed six data mining process models and explored their
properties concerning prevalence in business and academics, level of depth,
and technical detail. We found that the CRISP-DM process model exhibited
the strongest properties concerning the aforementioned factors. However
the human centered approach was found to be a strong second contender
lacking in prevalence in business and academics.

In the CRISP-DM context, the integrated classification method fragments
as presented in chapter 4 represent specialized tasks. Although not visual-
ized these tasks can be mapped to the generic tasks in the CRISP-DM hier-
archy adding to the comprehensible value of the method.

Question two

What are the main concepts involved in constructing a supervised ma-
chine learning system for classification tasks?
We explored machine learning concepts over a broad spectrum touching
upon data understanding, preparation and modeling techniques. First, we
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found that presenting every algorithm implementation would be counter-
productive in communicating a general strategy. Instead we opted to dis-
cuss modeling techniques on the level of model types (e.g. tree, linear etc.)
outlining the frequently cited algorithms within each type. Next, for each
model type we derived common properties in terms of requirements to data
(pre) processing. These are addressed in section 3.3.1. Last we discuss var-
ious techniques to evaluate the informative value of data sets and explain
how they impact classification performance.

a) Which of these concepts have aspects that support (automated) con-
figuration and optimization and how does this work?
We distinguish between two automated optimization approaches. First
we explain the concept of feature selection as both a manual and an algo-
rithm assisted technique. Next we researched (hyper) parameter optimiza-
tion strategies and found techniques like bayesian optimization and ran-
dom search that enable effective and economic searches for parameters that
deliver optimal models. The concrete implementation of these techniques
may vary, some machine learning toolkits provide abstract interfaces to eas-
ily define and run a search task. Outside of these toolkits the search process
will have to be specified and thus programmed by hand.

Question three

What are transparent models and which techniques are suitable for this
type of modeling?
In section 1.2 we identify the need for transparent models when used in a
medical context. Transparent models allow the user to directly relate in-
put data to the decision (ouput) of a model. Both tree and rule models are
expressive by nature and fall in the category of transparent model types.

Most other techniques however do not offer any kind of insight. The re-
search shows that these black box techniques are often found to be superior
in performance compared to transparent techniques. We found methods to
extract rules from these black box models but they are criticized for over-
simplifying the model losing information in the process.

Last, we found a new method aimed to even the playing field between
transparent and black box models concerning classification performance
while at the same time offering a detailed overview of input / output rela-
tionships (Caruana et al., 2015). Unfortunately due to incompatibility issues
the software behind this technique could not be further explored in this the-
sis.

Question four

How can the concepts that are found be modelled into a method?
We chose to model our method using the method engineering approach
as refined by Weerd and Brinkkemper (2008). The approach outlines the
creation and union of activity and class diagrams that express flows of ac-
tivities and the deliverables that are involved in these activities.

See Appendix A for the resulting method of this research project. The
method is structured as three separate method fragments that each corre-
spond to one of the following CRISP-DM main phases: data understanding,
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data preparation and modeling. More concretely the method fragments ad-
dress 1) the relationships between model types and (pre) processing steps
and 2) the application of search strategies as an integral part of the model-
ing exercise, hence the term integrated ML method.

7.2 Conclusion of main question

How can a domain independent method be developed to guide the pro-
cess of constructing transparent machine learning models?

We set out with the overarching objective of this thesis to analyze a med-
ical data set containing measurements gathered by use of mobile devices.
The goal was to research and develop predictive and explanatory models
for the Behapp initiative. In order to realize this goal a method had to be
devised to undertake this classification problem. First we needed to find
the right base structure to provide a sense of familiarity and boost compre-
hension of the proposed method, this structure was found in the CRISP-DM
process model. Next we identified various common threads in the practice
of supervised binary classification tasks, we expressed these threads us-
ing the method engineering approach by Weerd and Brinkkemper (2008).
We found automated feature selection approaches and parameter search
strategies to be of notable importance to classifier performance and desig-
nated these as central activity components. Next, we evaluated the method
and found that adhering to the base steps consistently increases the per-
formance roof of classifiers generated using our method. In sum, we can
conclude that the insights gained from answering the sub-questions en-
abled us to achieve the goal of developing a domain independent method
to guide the process of constructing transparent machine learning models.
Last, we applied transparent modeling techniques to the Behapp data set
and uncovered patterns separating patients from controls. Furthermore we
modernized and re-applied the social profiling model of Eskes et al. (2016)
and found additional patterns concerning diffences in behavior between
patients and control participants.
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Chapter 8

Discussion

This chapter is divided in two sections, in section 8.1 we will address the
limitations of our research. In section 8.2 possibilities for future research are
discussed.

8.1 Limitations

We distinguish between three categories concerning the limitations of this
research project: instrumental limitations, research design limitations and
Behapp data limitations. We will elaborate on these limitations below.

First, our instrumental limitations are software issues related to the ma-
chine learning toolkits used to generate and test our models. In section 3.5
we discussed the work of Lou et al. (2013) where the authors explain to
have developed a new modeling technique for deriving accurate and trans-
parent models. We intended to apply the technique to our own data sets
however we failed to get the software to work. This limited our options for
using transparent modeling techniques during the experiment and the Be-
happ data exploration phase. Next we found discrepancies between mod-
els based on similar algorithms but using different machine learning toolk-
its. Furthermore the toolkits were each found to be strong in their own
respective areas usually omitting model types and / or functionalities like
resampling and parameter search strategies. This limited our options for
the design of the experiment, e.g. rule models could not be tested since
they are not included in scikit-learn. On the other hand scikit-learn offered
excellent interfaces for parameter searching which in turn were limited in
functionality in the Waikato environment for knowledge analysis (WEKA) (Hall
et al., 2009).

Second, as explained in our experiment validity analysis (section 5.2)
the time alloted did not allow for extensive testing over a large number of
different datasets. Instead we decided to proceed with the Behapp dataset
and the frequently cited Iris data set for our experiment. This means that
generalization of the results to larger and more complex datasets is cur-
rently unconfirmed. For future analysis it would be interesting to see how
the method holds up while using larger (more rows) and high dimensional
(more columns) data sets.

Lastly, the contents of the Behapp data set brought along their own set
of challenges. First at the start of this research project we discovered the
loss of an important metric. Due to improvements in security measures the
Behapp mobile application lost the ability to monitor Whatsapp, a popular
messaging service in the Netherlands. Next the data set contained a small



70 Chapter 8. Discussion

number of participants, 13 controls and 4 patients. In multiple cases partic-
ipants were only registered for the minimum number of days (10 to 14) in
order to derive meaningful patterns from their data. This limits the ability,
for now, to derive conclusive insights from the data.

8.2 Future research

The research conducted has triggered possibilities for future research both
from the perspective of the integrated method and the Behapp initiative.

First, the problem space of our research could be broadened to cover
cases outside of the domain of supervised binary classification, e.g. mul-
ticlass, regression and image analysis problems. Method fragments could
be created to deal with (sub)cases in the aforementioned domains. Next
the structures defined in these methods could be used for the development
/ enhancement of data mining tools. Auto-WEKA is an example of such a
tool but, but follows a very rigid method (Thornton et al., 2013) in their goal
to make machine learning accessible to a broader public. For example, the
tool follows a pre set path of actions and tasks and does not support em-
bedding domain knowledge during the DM process. From our own expe-
rience we identify a need for sophisticated tools that offer simplified access
to advanced ML techniques while retaining the ability to embed domain
knowledge in the data mining exercise.

Furthermore, the initial data from the Behapp initiative showed promis-
ing underlying patterns in separating patients from control groups. The ap-
plication is entering a stage where it should be deployed on a larger scale
to derive statistically robust social profiles for the participant classes that
are part of the studies. However it yet unknown whether it will be feasible
to detect patterns that indicate social withdrawal in participants. Further-
more next to the existing features research should be performed into the
feasibility of additional measurements like e.g. mood determination based
on voice analysis. Lastly, we expect the mobile application to undergo var-
ious evolutions in the nearby future. For the sociability model (Eskes et al.,
2016) to stay relevant it is important to continously evaluate what is ex-
pressed and how the features measured correspond to the communication
and exploration dimensions that are part of the model.
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Behapp data set



incoming_calls outgoing_calls missed_calls call_duration incoming_sms outgoing_sms incoming_mms outgoing_mms twitter_personal_tweets
1,59 1,52 0,98 9,02 0,82 0,26 0,10 0,02 0,01
0,31 0,74 0,09 2,66 0,39 0,15 0,10 0,00 0,00
0,20 0,45 0,21 0,63 0,63 0,18 0,00 0,00 0,59
0,06 0,10 0,02 0,11 0,14 0,05 0,00 0,00 0,02
2,38 1,08 0,38 15,07 4,00 1,31 0,00 0,00 0,00
0,08 0,20 0,08 0,46 0,06 0,00 0,04 0,00 0,00
1,09 0,45 0,09 14,15 0,82 0,55 0,00 0,00 0,00
0,21 1,29 0,71 6,48 0,71 0,36 0,00 0,00 0,00
1,30 4,17 1,47 5,42 4,63 3,83 1,27 0,00 0,00
0,47 0,44 0,08 4,46 0,81 0,53 0,00 0,39 0,00
0,13 0,84 0,15 2,65 0,55 0,17 0,47 0,34 0,11
1,41 1,47 0,88 4,64 0,76 0,18 0,47 0,00 0,00
0,88 1,15 0,15 6,90 0,55 0,33 0,00 0,00 0,00
1,33 2,53 0,07 10,22 1,27 0,80 0,00 0,00 0,00
0,79 1,36 0,64 4,26 0,21 0,00 0,57 0,00 0,00
0,68 0,96 0,36 19,29 0,68 0,56 0,68 0,00 0,00
0,75 1,44 0,63 1,75 1,56 0,00 0,00 0,00 0,00



twitter_direct_incoming twitter_direct_outgoing facebook_timeline_post application_activity whatsapp_activity bluetooth_devices_detected
0,00 0,00 0,00 21,31 3,45 151,86
0,00 0,00 0,26 25,69 3,36 311,64
0,20 0,06 0,05 55,69 16,74 3,69
0,00 0,00 0,79 3,30 2,30 9,32
0,00 0,00 0,00 106,23 13,00 33,38
0,00 0,00 1,11 0,00 0,00 0,93
0,00 0,00 0,00 65,27 9,00 11,27
0,00 0,00 0,00 102,14 23,71 2,36
0,00 0,00 0,00 47,70 5,17 4,60
0,00 0,00 0,00 100,44 39,64 2,97
0,00 0,00 0,00 0,03 0,00 58,64
0,00 0,00 0,00 0,00 0,00 82,24
0,00 0,00 0,00 28,12 3,27 1,00
0,00 0,00 0,00 0,20 0,00 1,87
0,00 0,00 0,00 0,00 0,00 26,57
0,00 0,00 0,00 0,04 0,00 23,00
0,00 0,00 0,00 212,19 59,06 22,81



bluetooth_detection_events bluetooth_device_diversity bluetooth_detection_ratio unique_contacts places_visited_daily places_visited_diversity
55,77 4.400,00 2,72 794,00 2,69 0,00
16,73 551,00 18,63 598,00 1,76 62,00
81,68 124,00 0,05 55,00 1,18 8,00
27,47 320,00 0,34 13,00 1,00 1,00
38,08 151,00 0,88 57,00 2,33 10,00
7,99 59,00 0,12 14,00 0,33 2,00
25,27 101,00 0,45 18,00 1,36 8,00
17,36 9,00 0,14 13,00 5,00 19,00
11,60 125,00 0,40 22,00 1,00 2,00
26,00 72,00 0,11 20,00 1,22 5,00
134,30 1.401,00 0,44 77,00 3,30 0,00
89,35 230,00 0,92 16,00 3,44 24,00
13,79 27,00 0,07 23,00 0,00 0,00
5,13 9,00 0,36 27,00 0,60 3,00
65,71 205,00 0,40 12,00 1,38 4,00
14,28 298,00 1,61 28,00 1,00 3,00
89,69 203,00 0,25 18,00 3,70 17,00



patient
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
0
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Experiment notebook - Iris data



Experiment Iris

May 15, 2016

1 Experiment notebook - Iris data

This notebook contains the experiment procedure and corresponding output data of the experiment as
conducted in chapter 5. The experiment has been applied to the Iris and Behapp data set, this instance is
applied to the Iris data set. ## Load base packages

In [1]: %matplotlib inline

# Import base packages

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn import datasets

# Import classifier packages

from sklearn.tree import DecisionTreeClassifier

from sklearn import svm

from sklearn.ensemble import RandomForestClassifier

# Import cross validation package

from sklearn.cross_validation import cross_val_score

# Import grid search (support) package(s)

from sklearn.grid_search import GridSearchCV

from operator import itemgetter

from time import time

# Metric definition ("roc_auc","accuracy")

metric = "accuracy"

# Specify the number of folds

folds = 4

In [2]: # Utility function to report best scores for the grid searches

def report(grid_scores, n_top=5):

top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]

for i, score in enumerate(top_scores):

print("Model with rank: {0}".format(i + 1))

print("Mean validation score: {0:.3f} (std: {1:.3f})".format(

score.mean_validation_score,

np.std(score.cv_validation_scores)))

print("Parameters: {0}".format(score.parameters))

print("")

1



1.1 Load the Iris data set

In [3]: # Load the iris data set.

iris = datasets.load_iris()

x = pd.DataFrame(iris.data)

y = pd.DataFrame(iris.target)

y = y.rename(columns={0:’type’})

# Remove the Setosa instances to convert the set to a two class data set

flowers = pd.concat([x,y], axis=1)

flowers = flowers[flowers.type != 0]

#Separate versicolor and virgina attribute information from the class information

flowers_x = flowers.ix[:,0:4].values

flowers_y = flowers.ix[:,4]

flowers_y = flowers_y.replace(to_replace=1, value=0)

flowers_y = flowers_y.replace(to_replace=2, value=1)

flowers_y = flowers_y.values

1.2 Plain method

1.2.1 Decision tree (Tree model)

In [4]: # Instantiate the decision tree classifier

clf = DecisionTreeClassifier()

# Run the test using 10 fold cross validation

scores = cross_val_score(clf, flowers_x, flowers_y, scoring=metric, cv=folds)

scores.mean()

Out[4]: 0.93990384615384615

1.2.2 Support vector machine (Linear model)

In [5]: # Instantiate the support vector machine classifier

clf = svm.SVC()

# Run the test using 10 fold cross validation

scores = cross_val_score(clf, flowers_x, flowers_y, scoring=metric, cv=folds)

scores.mean()

Out[5]: 0.95913461538461542

1.2.3 Random forest (Ensemble)

In [6]: # Instantiate the random forest classifier

clf = RandomForestClassifier()

# Run the test using 10 fold cross validation

scores = cross_val_score(clf, flowers_x, flowers_y, scoring=metric, cv=folds)

scores.mean()

Out[6]: 0.92948717948717952
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1.3 Integrated method

1.3.1 Feature selection

We apply univariate feature selection as part of the data preparation phase in the integrated approach. The
two most informative features are selected.

In [7]: from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

flowers_x_selected = SelectKBest(chi2, k=2).fit_transform(flowers_x, flowers_y)

1.3.2 Decision tree (Tree model) - Using grid search with 8 candidate parameter settings

In [8]: # build a classifier

clf = DecisionTreeClassifier()

# use a full grid over all parameters

param_grid = {"max_features": [1, 2],

"splitter": ["best","random"],

"criterion": ["gini", "entropy"]}

# run grid search

grid_search = GridSearchCV(clf, param_grid=param_grid, scoring=metric, cv=folds)

start = time()

grid_search.fit(flowers_x_selected, flowers_y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."

% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

GridSearchCV took 0.06 seconds for 8 candidate parameter settings.

Model with rank: 1

Mean validation score: 0.940 (std: 0.020)

Parameters: {’max features’: 1, ’splitter’: ’random’, ’criterion’: ’gini’}

Model with rank: 2

Mean validation score: 0.930 (std: 0.035)

Parameters: {’max features’: 2, ’splitter’: ’best’, ’criterion’: ’gini’}

Model with rank: 3

Mean validation score: 0.930 (std: 0.035)

Parameters: {’max features’: 2, ’splitter’: ’random’, ’criterion’: ’gini’}

Model with rank: 4

Mean validation score: 0.930 (std: 0.055)

Parameters: {’max features’: 1, ’splitter’: ’random’, ’criterion’: ’entropy’}

Model with rank: 5

Mean validation score: 0.930 (std: 0.035)

Parameters: {’max features’: 2, ’splitter’: ’best’, ’criterion’: ’entropy’}

1.3.3 Random forest (Ensemble) - Using grid search with 80 candidate parameter settings

In [9]: # build a classifier

clf = RandomForestClassifier()

3



# use a full grid over all parameters

param_grid = {"max_features": [1, 2],

"n_estimators": [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],

"criterion": ["gini", "entropy"]}

# run grid search

grid_search = GridSearchCV(clf, param_grid=param_grid, scoring=metric, cv=folds)

start = time()

grid_search.fit(flowers_x_selected, flowers_y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."

% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

GridSearchCV took 3.42 seconds for 80 candidate parameter settings.

Model with rank: 1

Mean validation score: 0.950 (std: 0.033)

Parameters: {’max features’: 1, ’n estimators’: 12, ’criterion’: ’gini’}

Model with rank: 2

Mean validation score: 0.950 (std: 0.033)

Parameters: {’max features’: 1, ’n estimators’: 14, ’criterion’: ’gini’}

Model with rank: 3

Mean validation score: 0.950 (std: 0.033)

Parameters: {’max features’: 1, ’n estimators’: 15, ’criterion’: ’gini’}

Model with rank: 4

Mean validation score: 0.950 (std: 0.033)

Parameters: {’max features’: 1, ’n estimators’: 17, ’criterion’: ’gini’}

Model with rank: 5

Mean validation score: 0.950 (std: 0.033)

Parameters: {’max features’: 2, ’n estimators’: 6, ’criterion’: ’gini’}

1.3.4 Data standardization

As part of the data preparation phase we standardize the data before feeding it to the support vector machine
(linear model).

In [10]: from sklearn import preprocessing

# Compute the mean and std for all columns

flowers_scale_columns = preprocessing.StandardScaler().fit(flowers_x_selected)

# Standardize columns (centering & scaling)

flowers_x_selected_scaled = flowers_scale_columns.transform(flowers_x_selected)

1.3.5 Support vector machine (Linear model) - Grid search with 144 candidate parameter
settings

In [11]: # build a classifier

clf = svm.SVC()
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# use a full grid over all parameters

param_grid = {"C": np.logspace(-3, 2, 6),

"gamma": np.logspace(-3, 2, 6),

"kernel": ["linear","poly","rbf","sigmoid"]

}

# run grid search

grid_search = GridSearchCV(clf, param_grid=param_grid, scoring=metric, cv=folds)

start = time()

grid_search.fit(flowers_x_selected_scaled, flowers_y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."

% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

GridSearchCV took 4.73 seconds for 144 candidate parameter settings.

Model with rank: 1

Mean validation score: 0.960 (std: 0.051)

Parameters: {’kernel’: ’poly’, ’C’: 0.001, ’gamma’: 100.0}

Model with rank: 2

Mean validation score: 0.960 (std: 0.051)

Parameters: {’kernel’: ’poly’, ’C’: 1.0, ’gamma’: 10.0}

Model with rank: 3

Mean validation score: 0.950 (std: 0.033)

Parameters: {’kernel’: ’rbf’, ’C’: 0.001, ’gamma’: 0.10000000000000001}

Model with rank: 4

Mean validation score: 0.950 (std: 0.033)

Parameters: {’kernel’: ’sigmoid’, ’C’: 0.001, ’gamma’: 0.10000000000000001}

Model with rank: 5

Mean validation score: 0.950 (std: 0.033)

Parameters: {’kernel’: ’linear’, ’C’: 0.01, ’gamma’: 0.001}

5
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Experiment notebook - Behapp
data



Experiment behapp

May 15, 2016

1 Experiment notebook - Behapp data

This notebook contains the experiment procedure and corresponding output data of the experiment as
conducted in chapter 5. The experiment has been applied to the Iris and Behapp data set, this instance is
applied to the Behapp data set.

1.1 Load base packages

In [1]: %matplotlib inline

# Import base packages

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn import datasets

# Import classifier packages

from sklearn.tree import DecisionTreeClassifier

from sklearn import svm

from sklearn.ensemble import RandomForestClassifier

# Import cross validation package

from sklearn.cross_validation import cross_val_score

# Import grid search (support) package(s)

from sklearn.grid_search import GridSearchCV

from operator import itemgetter

from time import time

# Metric definition ("roc_auc","accuracy")

metric = "accuracy"

# Specify the number of folds

folds = 4

In [2]: # Utility function to report best scores for the grid searches

def report(grid_scores, n_top=5):

top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]

for i, score in enumerate(top_scores):

print("Model with rank: {0}".format(i + 1))

print("Mean validation score: {0:.3f} (std: {1:.3f})".format(

score.mean_validation_score,

1



np.std(score.cv_validation_scores)))

print("Parameters: {0}".format(score.parameters))

print("")

1.2 Load the Behapp data set

In [3]: # Load the data set into memory

behapp = pd.read_csv(’overview_std_dly.csv’)

# Drop the person id and class column and store the rest in the the X variable

behapp_x = behapp.ix[:,1:22].values

# Select the class column and store this in the y variable

behapp_y = behapp.ix[:,22].values

1.3 Plain method

1.3.1 Decision tree (Tree model)

In [4]: # Instantiate the decision tree classifier

clf = DecisionTreeClassifier()

# Run the test using 10 fold cross validation

scores = cross_val_score(clf, behapp_x, behapp_y, scoring=metric, cv=folds)

scores.mean()

Out[4]: 0.59999999999999998

1.3.2 Support vector machine (Linear model)

In [5]: # Instantiate the support vector machine classifier

clf = svm.SVC()

# Run the test using 10 fold cross validation

scores = cross_val_score(clf, behapp_x, behapp_y, scoring=metric, cv=folds)

scores.mean()

Out[5]: 0.76249999999999996

1.3.3 Random forest (Ensemble)

In [6]: # Instantiate the random forest classifier

clf = RandomForestClassifier()

# Run the test using 10 fold cross validation

scores = cross_val_score(clf, behapp_x, behapp_y, scoring=metric, cv=folds)

scores.mean()

Out[6]: 0.76249999999999996

1.4 Integrated method

1.4.1 Feature selection

We apply univariate feature selection as part of the data preparation phase in the integrated approach. The
two most informative features are selected.
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In [7]: from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

behapp_x_selected = SelectKBest(chi2, k=2).fit_transform(behapp_x, behapp_y)

1.4.2 Decision tree (Tree model) - Using grid search with 8 candidate parameter settings

In [8]: # build a classifier

clf = DecisionTreeClassifier()

# use a full grid over all parameters

param_grid = {"max_features": [1, 2],

"splitter": ["best","random"],

"criterion": ["gini", "entropy"]}

# run grid search

grid_search = GridSearchCV(clf, param_grid=param_grid, scoring=metric, cv=folds)

start = time()

grid_search.fit(behapp_x_selected, behapp_y)

optimal_tree = grid_search.best_estimator_

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."

% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

GridSearchCV took 0.15 seconds for 8 candidate parameter settings.

Model with rank: 1

Mean validation score: 0.765 (std: 0.144)

Parameters: {’max features’: 2, ’splitter’: ’best’, ’criterion’: ’entropy’}

Model with rank: 2

Mean validation score: 0.706 (std: 0.065)

Parameters: {’max features’: 1, ’splitter’: ’best’, ’criterion’: ’gini’}

Model with rank: 3

Mean validation score: 0.706 (std: 0.065)

Parameters: {’max features’: 1, ’splitter’: ’random’, ’criterion’: ’gini’}

Model with rank: 4

Mean validation score: 0.706 (std: 0.065)

Parameters: {’max features’: 2, ’splitter’: ’best’, ’criterion’: ’gini’}

Model with rank: 5

Mean validation score: 0.706 (std: 0.188)

Parameters: {’max features’: 2, ’splitter’: ’random’, ’criterion’: ’entropy’}

1.4.3 Random forest (Ensemble) - Using grid search with 80 candidate parameter settings

In [9]: # build a classifier

clf = RandomForestClassifier()

# use a full grid over all parameters

param_grid = {"max_features": [1, 2],

"n_estimators": [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],
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"criterion": ["gini", "entropy"]}

# run grid search

grid_search = GridSearchCV(clf, param_grid=param_grid, scoring=metric, cv=folds)

start = time()

grid_search.fit(behapp_x_selected, behapp_y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."

% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

GridSearchCV took 9.44 seconds for 80 candidate parameter settings.

Model with rank: 1

Mean validation score: 0.882 (std: 0.114)

Parameters: {’max features’: 1, ’n estimators’: 9, ’criterion’: ’gini’}

Model with rank: 2

Mean validation score: 0.882 (std: 0.114)

Parameters: {’max features’: 2, ’n estimators’: 14, ’criterion’: ’gini’}

Model with rank: 3

Mean validation score: 0.882 (std: 0.114)

Parameters: {’max features’: 1, ’n estimators’: 12, ’criterion’: ’entropy’}

Model with rank: 4

Mean validation score: 0.882 (std: 0.114)

Parameters: {’max features’: 1, ’n estimators’: 14, ’criterion’: ’entropy’}

Model with rank: 5

Mean validation score: 0.882 (std: 0.114)

Parameters: {’max features’: 1, ’n estimators’: 17, ’criterion’: ’entropy’}

1.4.4 Data standardization

As part of the data preparation phase we standardize the data before feeding it to the support vector machine
(linear model).

In [10]: from sklearn import preprocessing

# Compute the mean and std for all columns

behapp_scale_columns = preprocessing.StandardScaler().fit(behapp_x_selected)

# Standardize columns (centering & scaling)

behapp_x_selected_scaled = behapp_scale_columns.transform(behapp_x_selected)

1.4.5 Support vector machine (Linear model) - Grid search with 144 candidate parameter
settings

In [11]: # build a classifier

clf = svm.SVC()

# use a full grid over all parameters

param_grid = {"C": np.logspace(-3, 2, 6),

"gamma": np.logspace(-3, 2, 6),

"kernel": ["linear","poly","rbf","sigmoid"]
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}

# run grid search

grid_search = GridSearchCV(clf, param_grid=param_grid, scoring=metric, cv=folds)

start = time()

grid_search.fit(behapp_x_selected_scaled, behapp_y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."

% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

GridSearchCV took 12.75 seconds for 144 candidate parameter settings.

Model with rank: 1

Mean validation score: 0.824 (std: 0.205)

Parameters: {’kernel’: ’rbf’, ’C’: 10.0, ’gamma’: 100.0}

Model with rank: 2

Mean validation score: 0.824 (std: 0.103)

Parameters: {’kernel’: ’rbf’, ’C’: 100.0, ’gamma’: 100.0}

Model with rank: 3

Mean validation score: 0.765 (std: 0.022)

Parameters: {’kernel’: ’linear’, ’C’: 0.001, ’gamma’: 0.001}

Model with rank: 4

Mean validation score: 0.765 (std: 0.022)

Parameters: {’kernel’: ’poly’, ’C’: 0.001, ’gamma’: 0.001}

Model with rank: 5

Mean validation score: 0.765 (std: 0.022)

Parameters: {’kernel’: ’rbf’, ’C’: 0.001, ’gamma’: 0.001}

In [12]: from sklearn import tree

tree.export_graphviz(optimal_tree, out_file=’behapp.dot’,

feature_names=["bluetooth_device_diversity","unique_contacts"],

class_names=["control","patients"],

filled=True, rounded=True,

special_characters=True

)

In [13]: import sklearn

print sklearn.__version__

0.17
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Behapp data wrangling

May 15, 2016

1 Behapp project - Data wrangling

This notebook describes and reports on the data acquired as part of the behapp project. The project entails
a long term study of patients suffering from mental disorders and a control group. Participants were required
to run a passive mobile monitoring app which recorded various social and movements ‘acts’ (e.g. incoming
phone call and gps coordinates). The goal of this analysis is to determine whether features exist that separate
patients from control group participants.

We will run through this analysis on a step by step basis covering three aspects from the CRISP-DM
process model: data understanding, data preparation and modeling. Since the time series data of the study
requires transformation to single participant records the understanding phase will be part of the preparation
and modeling phases.

In [1]: # First we import all modules and packages that will be needed for the analysis.

%matplotlib inline

import numpy as np

import pandas as pd

import seaborn as sns

from scipy import stats

import matplotlib as mpl

import matplotlib.pyplot as plt

from sklearn.cluster import DBSCAN

from sklearn import preprocessing

# Radius and distance parameters for the clustering algorithm.

min_samples = 20

distance = 150

# The minimal number of days a participant should participate in the study for data analysis.

minimum_days = 1

1.1 1. Data preparation

1.1.1 1.1 Data import/integration

We start by consolidating all datasources and merging them in a denormalized dataset. First we open all
the datafiles that have been exported as CSV (comma separated values) files.

In [2]: # Import the (openclinica) participant data from the behapp study export.

oc_participant_data = pd.read_excel(’sep_2015/oc_behapp.xlsx’)

# Import the participant data from the behapp datase.

behapp_participant_data = pd.read_csv(’sep_2015/person.csv’)

# Import the basepoints of the participants in the behapp study.
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behapp_participant_basepoints = pd.read_csv(’sep_2015/basepoint.csv’)

# Import the event names and their corresponding ID’s from the behapp database.

behapp_event_names = pd.read_csv(’sep_2015/event_type.csv’)

# Import the recorded event data of the behapp participants.

behapp_events = pd.read_csv(’sep_2015/message.csv’)

1.1.2 1.2 Data merge

1.2.1 Merge behapp-participant table with the openclinica-participant table As a security mea-
sure, patient status and further personal details are not stored in the behapp database. These details are
kept in a more secure internal clinical study registration system (openclinica). However for our analysis
purposes we require the patient status to be available in the time series events overview. Therefore we start
by merging the openclinica data with the behapp participant data. They share a common column ‘userid’
which is a small hash.

In [3]: # First we select the needed columns from both participant datasets.

oc_uid = oc_participant_data.loc[:,[’ PANSS_E1_C1 ’,’ app_code_E1_C1 ’]]

behapp_uid = behapp_participant_data.loc[:,[’uid’,’id’]]

# Join the openclinica and the behapp data on their common columns in order to match the patient status with the userid.

behapp_participant_overview = pd.merge(oc_uid,

behapp_uid,

left_on=’ app_code_E1_C1 ’,

right_on=’uid’,

how=’inner’)

# Rename the PANSS_E1_C1 column to patient.

behapp_participant_overview = behapp_participant_overview.rename(columns ={’ PANSS_E1_C1 ’:’patient’})

# Replace all NaN values with the value 0 (zero).

behapp_participant_overview = behapp_participant_overview.fillna(value=’0’)

# Remove the redundant app_code_E1_C1 and uid columns and finalize participant overview.

behapp_participant_overview = behapp_participant_overview.loc[:,[’id’,’patient’]]

1.2.2 Merge participant overview with events overview The events overview is a table which con-
tains the recorded events of all participants involved in the behapp study. Events are actions like incoming
phone calls and movements that are recorded by the behapp mobile monitoring app. Each event has a
unique event id and various properties like the date and time and ofcourse the corresponding person id.
Furthermore when relevant additional properties are recorded like GPS coordinates and / or in the case of
incoming phone calls an encrypted hash of the contact of the participant.

We continue denormalizing the events overview by merging the participant overview with the events
overview.

In [4]: # Merge the behapp dataset with the participant overview.

behapp_events = pd.merge(behapp_events,

behapp_participant_overview,

left_on=’person_id’,

right_on=’id’,

how=’inner’)
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1.2.3 Merge basepoint table with events overview Next we merge the basepoint table with the
events overview. The basepoint table contains coordinates that are marked as ‘homebases’ or points that
are frequently visited by participants.

In [5]: # Prepare the basepoint table for merging with the events overview.

behapp_participant_basepoints = behapp_participant_basepoints.loc[:,[’id’,’name’]]

# Merge the basepoints with the event data.

behapp_events = pd.merge(behapp_events,

behapp_participant_basepoints,

left_on=’basepoint_id’,

right_on=’id’,

how=’outer’)

1.2.4 Merge event names with the events overview Last to make it easier to understand what each
event id means we merge in the event names of each event id from the event names table.

In [6]: # Merge the event names with the event data.

behapp_events = pd.merge(behapp_events,

behapp_event_names,

left_on=’event_id’,

right_on=’id’,

how=’inner’)

1.1.3 1.3 Data clean

To wrap it all up we rename a couple of columns for better understanding. Next we select the columns that
we want to use, at this point we choose to drop the columns speed and duration since they are not found to
be of use to the analysis. Next we perform various actions related to indexing setting of the dataset, these
settings are related to the package used to transform this data (pandas). They allow us to slice (select)
the data intelligently which we will extensively use in building the consolidated overview. Last we extract
person id’s and event id’s from the events overview self ensuring that we run our analysis from a single source
of truth.

In [7]: # Rename column names for better clarity.

behapp_events = behapp_events.rename(columns ={’name’:’basepoint_name’,

’type’:’event_name’,

’time’:’date_time’})

# Select the columns to be used in the final dataset.

behapp_events = behapp_events.loc[:,[’person_id’,

’event_id’,

’date_time’,

’lat’,’lng’,

’basepoint_id’,

’basepoint_name’,

’event_name’,

’receiver’,

’quantity’,

’duration’,

’speed’,

’patient’]]

Filter leisure time In this intermediary section we pass a function to filter the leasure time (currently
disabled).
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In [8]: #behapp_events[’date_time’] = pd.to_datetime(behapp_events[’date_time’])

#behapp_events = behapp_events.set_index([’date_time’], drop=False)

#hours = behapp_events.index.hour

#days = behapp_events.index.weekday

#selector = ((days <= 4) & (hours < 19))

## Inverse mask application with ~

#behapp_events = behapp_events[~selector]

#behapp_events = behapp_events.reset_index(drop=True)

Next we continue with the normal analysis.

In [9]: # Set the index on person_id and event_id to support dataframe slicing (1/3).

behapp_events = behapp_events.set_index([’person_id’,’event_id’], drop=False)

# Lexically sort all the data to support dataframe slicing (2/3).

behapp_events = behapp_events.sortlevel(0, sort_remaining=True)

# Instantiate the IndexSlice method (3/3).

idx = pd.IndexSlice

# Replace all NaN values with the value 0 (zero).

behapp_events = behapp_events.fillna(value=’0’)

# Convert the date_time column from string to datetime (neccessary for date calculations later on).

behapp_events[’date_time’] = pd.to_datetime(behapp_events[’date_time’])

# Extract the unique participant id’s and the (used) event_id’s from the event dataframe.

participants_srs = pd.Series(pd.unique(behapp_events.person_id))

events_srs = pd.Series(pd.unique(behapp_events.event_id))

# Set the proper datatypes on the columns of the dataset

behapp_events[’person_id’] = behapp_events[’person_id’].astype(int)

behapp_events[’event_id’] = behapp_events[’event_id’].astype(int)

behapp_events[’lat’] = behapp_events[’lat’].astype(float)

behapp_events[’lng’] = behapp_events[’lng’].astype(float)

behapp_events[’basepoint_id’] = behapp_events[’basepoint_id’].astype(int)

behapp_events[’quantity’] = behapp_events[’quantity’].astype(float)

behapp_events[’duration’] = behapp_events[’duration’].astype(float)

behapp_events[’speed’] = behapp_events[’speed’].astype(float)

behapp_events[’patient’] = behapp_events[’patient’].astype(int)

# Save a copy of the data to file

behapp_events.to_csv(’sep_2015/cleansed_events.csv’, index=False)

1.1.4 1.4 Create overview table

1.4.1 Basic counts of total number of events per participant In this section we will start by
instantiating a new dataframe that will hold all the participants and their features that will be used during
the modeling phase. The dataframe called ‘overview’ will initially hold counts of the number of events that
are registered for each participant.

In [10]: overview = pd.DataFrame()

overview.insert(0,’person_id’,participants_srs)

overview = overview.set_index(’person_id’,drop=True)
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# Double for loop to determine the number of events for each participant per event_type.

for participant in participants_srs.iteritems():

for event in events_srs.iteritems():

if event[1] in behapp_events.loc[idx[participant[1],:],idx[’event_id’]].values:

events_holder = behapp_events.loc[idx[participant[1],event[1]],:]

overview.set_value(participant[1],event[1],len(events_holder))

else:

overview.set_value(participant[1],event[1],0)

# Function to replace the columns names to show the real names instead of the event_type integers.

for event in events_srs.iteritems():

event_name = behapp_events.loc[idx[:,event[1]],idx[’event_name’]].unique()

overview.rename(columns={event[1]:event_name[0].strip()},inplace=True)

/Users/raj/anaconda/lib/python2.7/site-packages/pandas/core/indexing.py:1034: FutureWarning: scalar indexers for index type Index should be integers and not floating point

obj = self. convert scalar indexer(obj, axis)

/Users/raj/anaconda/lib/python2.7/site-packages/pandas/core/indexing.py:1034: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point

obj = self. convert scalar indexer(obj, axis)

1.4.2 Number of events per type Below we report on the total number of events per type. We notice
that the majority of events are of the passive kind were the app registers positions, detection of other devices
and application activity. The active kind of events were users are are interacting with the world show
considerably lower counts.

In [11]: events_count = pd.DataFrame(overview.sum(axis=0))

events_count.rename(columns={0:’count’}, inplace=True)

events_count = events_count.sort_values([’count’], ascending=False)

events_count.to_excel(’events_count.xls’)

events_count

Out[11]: count

Position 377941

Number of detected Bluetooth devices 86984

Application activity 49258

Names and MAC addresses of detected Bluetooth d... 33360

Whats App outgoing message 1972

Outgoing call 1786

Incoming call 1370

Whats App incoming message 1266

Incoming SMS 1242

Proximity count 1143

Missed call 816

Outgoing SMS 502

Facebook timeline post 266

Incoming MMS 237

Twitter personal tweets 163

Outgoing MMS 71

Twitter direct incoming 50

Twitter direct outgoing 13

1.1.5 1.5 Extract features

In this section we extract / create features from the data that go beyond counting the occurences of a certain
event type.

5



1.5.1 Call duration

In [12]: for participant in participants_srs.iteritems():

events_holder = behapp_events.loc[idx[participant[1],[4,5]],:]

overview.set_value(participant[1],’call_duration’,events_holder.duration.sum()/60)

1.5.2 Whatsapp activity Whatspp is one of the most popular messaging services in the Netherlands.
Due to increasing safety measures the behapp initiative lost the ability to monitor the in-app activity of
whatsapp. However we can still determine how often users use whatsapp.

In [13]: whatsapp_holder = behapp_events[behapp_events.receiver.str.contains("whatsapp")]

for participant in participants_srs.iteritems():

events_holder = whatsapp_holder.loc[idx[participant[1],:],:]

overview.set_value(participant[1],’whatsapp_activity’,len(events_holder))

1.5.3 Determine size of social circle The mobile monitoring app registers contactinformation of the
persons that have been in contact with the participants. This information is stored as an encrypted hash
and serves the goal of determining unique values as to determine the size of a participants social circle.

Standardization over days will not be neccessary for this feature.

In [14]: contacts = behapp_events[behapp_events.receiver.str.match(’^([a-z0-9]){32}$’).str.len() > 0]

for participant in participants_srs.iteritems():

events_holder = contacts.loc[idx[participant[1],:],idx[’receiver’]]

events_holder = events_holder.unique()

overview.set_value(participant[1],’unique_contacts’,len(events_holder))

/Users/raj/anaconda/lib/python2.7/site-packages/ipykernel/ main .py:1: FutureWarning: In future versions of pandas, match will change to always return a bool indexer.

if name == ’ main ’:

1.5.4 Detected bluetooth devices The app is able to monitor and detect other bluetooth-able devices
in proxmity. We sum the number of devices that have been detected each time when event type 28 (Number
of detected Bluetooth devices) has been registered by a device.

In [15]: for participant in participants_srs.iteritems():

if 28 in behapp_events.loc[idx[participant[1],:],idx[’event_id’]].values:

events_holder = behapp_events.loc[idx[participant[1],28],:]

overview.set_value(participant[1],’bluetooth_devices_detected’,events_holder[’quantity’].sum())

1.5.5 Bluetooth device diversity We measure the different number of bluetooth devices that have been
detected over time.

In [16]: for participant in participants_srs.iteritems():

if 33 in behapp_events.loc[idx[participant[1],:],idx[’event_id’]].values:

events_holder = behapp_events.loc[idx[participant[1],33],:]

overview.set_value(participant[1],’bluetooth_device_diversity’,len(events_holder.receiver.unique()))

1.5.6 Bluetooth detection ratio

In [17]: overview[’bluetooth_detection_ratio’] = overview[’bluetooth_devices_detected’] / overview[’Number of detected Bluetooth devices’]
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1.5.7 Determine daily map clusters Next to the number 2 (Position) event type, almost all event types
are registered with a set of gps (lat/lon) coordinates. These coordinates by itself are not immediately usable
as a measure and preprocessing is therefore needed.

We propose to use an unsupervised density clustering algorithm (DBSCAN) which will be fed a daily
overview of gps coordinates of each participant. The algorithm determines the clusters found in the daily
overviews. Our reason of thinking is that each cluster represents a notable location and thus a ‘movement
act’ of the participant. We sum the total number of clusters over all the days so that they can be standardized
like the other features based on the number of days a participant has been involved with the study.

In this case we provide another days count column called ‘places visited days count’ because it was found
that the mobile monitoring app regularly failed to submit correct lists of coordinates. Instead the lists would
only contain coordinates with values ‘0’. These values would be wrongfully classified as a cluster by the
cluster algorithm.

Therefore the total number of days of correct GPS data could be lower than the earlier calculated number
of days involved with the monitoring study (column: days).

In [18]: # The following method determines the number of clusters based on a daily overview of gps (lat/lon) coordinates,

# these are passed as a numpy array. The clusters represent to what extent a participant moves around on a daily basis.

# The method returns the total number of clusters minus the ’noise’ cluster.

def cluster_calc(day,participant_name,day_name=’places_diversity’):

global distance

global min_samples

# Select the lat and lng columns from the day variable.

day_latlng = day[[’lat’,’lng’]].values

# Convert the lat/lon values to radians as needed by the haversine distance metric

day_radian = day_latlng * np.pi / 180.

# Fit the DBSCAN density clustering altgorithm to the lat/lon data array

db = DBSCAN(eps=float(distance)/1000.0/6372.8,

min_samples=min_samples,

metric=’haversine’,

algorithm=’ball_tree’).fit(day_radian)

# Get a list of all the clustering results

labels = db.labels_

# Number of clusters in labels, ignoring noise if present.

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

# Create a new array to join the cluster labels with the original lat/lon coordinates.

day_data = day.values

clusterlabels = labels.reshape(1, -1).T

coordinate_labels = pd.DataFrame(np.concatenate((day_data,clusterlabels), axis=1))

coordinate_labels = coordinate_labels.rename(columns={0:’date_time’,

1:’latitude’,

2:’longitude’,

3:’cluster’})

# Store the daily GPS data in separate CSV files

coordinate_labels.to_csv(’clusterdata/’+str(participant_name)+’_’+str(day_name)+’.csv’,

index=False)
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return n_clusters_

In [19]: # This function uses the cluster_calc function to determine the total number of daily clusters

# for each participant and update the overview dataframe accordingly.

for participant in participants_srs.iteritems():

# Select the lat/lng and date_time columns for further analysis.

events_holder = behapp_events.loc[idx[participant[1],:],idx[’date_time’,’lat’,’lng’]]

# We reset the index in order to set the date_time column as the new index.

events_holder = events_holder.reset_index(drop=True)

# Convert the date_time column from the generic object datatype to the datetime datatype.

events_holder[’date_time’] = pd.to_datetime(events_holder[’date_time’])

# Set the index on the date_time column in order to allow for daily grouping of data.

events_holder = events_holder.set_index([’date_time’], drop=False).groupby(pd.TimeGrouper(’1D’))

#Array that will temporarily hold the daily cluser data of each participant

cluster_arr = []

# Loop to walk through every day of gps data of the selected participant.

for day in events_holder.__iter__():

global min_samples

# Pass the daily coordinates to a variable

daily_coords = day[1]

# Remove all the rows containing bogus coordinates (0.0)

daily_coords = daily_coords.query(’lat != 0 & lng != 0’)

#Remove all NaN values from the coordinates

daily_coords = daily_coords[np.isfinite(daily_coords[’lat’])]

daily_coords = daily_coords[np.isfinite(daily_coords[’lng’])]

# If a day contains holes and thus no gps data is present, skip it.

if len(daily_coords) >= min_samples:

# Save the estimated clusters and append to the cluster_arr array.

a = cluster_calc(daily_coords,participant[1],day[0])

cluster_arr.append(a)

# Sum the daily cluster data and save the results for the participant in the overview dataframe.

overview.set_value(participant[1],’places_visited_daily’,sum(cluster_arr))

# Set a column with a count for the total number of days of GPS data.

overview.set_value(participant[1],’places_visited_days_count’,len(cluster_arr))

1.5.8 Determine map clusters (all gps data) We are also interested in the diversity of different
locations that are visited by each participant. We therefore apply the clustering algorithm to the complete
set of gps data.
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In [20]: for participant in participants_srs.iteritems():

if participant[1] != 13 and participant[1] != 105:

# Select the lat/lng and date_time columns for further analysis.

events_holder = behapp_events.loc[idx[participant[1],:],idx[’date_time’,’lat’,’lng’,’speed’]]

events_holder = events_holder.query(’lat != 0 & lng != 0’).query(’speed == 0’)

events_holder = events_holder.loc[:,idx[’date_time’,’lat’,’lng’]]

global min_samples

if len(events_holder) >= min_samples:

number_of_places = cluster_calc(events_holder,participant[1])

overview.set_value(participant[1],’places_visited_diversity’,number_of_places)

1.5.9 Active number of days The participants involved in the study are instructed to participate for
at least two weeks with a preference for a longer period. In practice this has lead to wildly varying period
of activity for each participant. In order to standardize the feature measurement to a common denominator
(days) we need to determine the number of days a participant has been actively involved with the study. We
calculate this number in two ways:

1- The number of days recorded represents all of the ‘unique’ days that are found for each corresponding
participant in the events overview. This way of counting overcomes ‘holes’ in the data since the app sometimes
fails to register data for several days in a row.

In [21]: for participant in participants_srs.iteritems():

events_holder = behapp_events.loc[idx[participant[1],:],idx[’date_time’]].map(lambda t: t.date()).unique()

overview.set_value(participant[1],’number_of_unique_days’,len(events_holder))

2- The number of days registered represents the exact time between the first and last registered event
of each participant. In the case that the data does not contain any holes this number will usually be lower
than the first count. For example, it is entirely possible that only 13 days and 12 hours can pass during a
15 day period. We will therefore prefer to use this count to standardize all the features as it is more precise.

In [22]: for participant in participants_srs.iteritems():

events_holder = behapp_events.loc[idx[participant[1],:],idx[’date_time’]]

date_diff = events_holder.max() - events_holder.min()

days = pd.Timedelta(date_diff).days+1

overview.set_value(participant[1],’number_of_days_registered’,days)

Next we write a function to determine the lowest number of both of the columns and write this to a new
column called ‘days’. This columns will be used to standardize other features.

In [23]: for participant in participants_srs.iteritems():

events_holder = overview.loc[participant[1],[’number_of_unique_days’,’number_of_days_registered’]]

overview.set_value(participant[1],’days’,events_holder.min())

1.5.10 Patient status Last we add the patient class information column to the overview neccessary in
order to identify which participants are patients and controls.

1 = Patient 0 = Control

In [24]: for participant in participants_srs.iteritems():

events_holder = behapp_events.loc[idx[participant[1],:],idx[’patient’]].unique()

overview.set_value(participant[1],’patient’,events_holder[0])
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1.5.11 Select participants on days Select the participants that conform to the minimal number of days,
currently set at 14 days,

In [34]: global minimum_days

overview = overview[overview.days >= minimum_days]

1.1.6 1.6 Standardize

1.6.1 Standardize features over days The number of days a participant has been running the moni-
toring application, and thus the resulting measurements, vary wildly between the participants. In order to
make a fair comparison we choose the pragmatic solution of standardizing the measurements according to a
common denominator, in this case we calculate the average of each feature per day (column: day).

The column unique contacts is not part of this calculation since it does not represent data that has
been measured over time. Last, the column ‘places visited’ will be standardized by a different column called
‘places visited days count’ since the GPS data was found not be reliable over all the days where measurements
were submitted.

In [26]: # First we rename the columns that we intend to use later to a standard format.

overview.rename(columns={

"Incoming call":"incoming_calls",

"Outgoing call":"outgoing_calls",

"Missed call":"missed_calls",

"Incoming SMS":"incoming_sms",

"Outgoing SMS":"outgoing_sms",

"Twitter personal tweets":"twitter_personal_tweets",

"Twitter direct incoming":"twitter_direct_incoming",

"Twitter direct outgoing":"twitter_direct_outgoing",

"Facebook timeline post":"facebook_timeline_post",

"Incoming MMS":"incoming_mms",

"Outgoing MMS":"outgoing_mms",

"Application activity":"application_activity",

"Number of detected Bluetooth devices":"bluetooth_detection_events"

},inplace=True)

# Determine the columns that will be divided by the ’days’ column.

columns_to_divide = [’incoming_calls’,

’outgoing_calls’,

’missed_calls’,

’call_duration’,

’incoming_sms’,

’outgoing_sms’,

’twitter_personal_tweets’,

’twitter_direct_incoming’,

’twitter_direct_outgoing’,

’facebook_timeline_post’,

’incoming_mms’,

’outgoing_mms’,

’application_activity’,

’whatsapp_activity’,

’bluetooth_devices_detected’,

’Position’,

’bluetooth_detection_events’

]
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# Perform the standardizing calculation.

for column in columns_to_divide:

overview[column] = overview[column] / overview[’days’]

# Standardize the ’places_visited’ column with the ’places_visited_days_count’.

overview[’places_visited_daily’] = overview[’places_visited_daily’] / overview[’places_visited_days_count’]

In [27]: # Selection of columns in the final overview.

overview_std_dly = overview.loc[:,[’incoming_calls’,

’outgoing_calls’,

’missed_calls’,

’call_duration’,

’incoming_sms’,

’outgoing_sms’,

’incoming_mms’,

’outgoing_mms’,

’twitter_personal_tweets’,

’twitter_direct_incoming’,

’twitter_direct_outgoing’,

’facebook_timeline_post’,

’application_activity’,

’whatsapp_activity’,

’bluetooth_devices_detected’,

’bluetooth_detection_events’,

’bluetooth_device_diversity’,

’bluetooth_detection_ratio’,

’unique_contacts’,

’places_visited_daily’,

’places_visited_diversity’,

’patient’]]

1.6.2 Z-Score standardization for analysis To conclude the preparation phase NaN values in the
‘places visited’ column (in case of a complete lack of GPS data) are replaced with the value 0. Next we
perform the standardscaling method to orient al values around Z-scores.

In [28]: # Replace NaN values with 0.

overview_std_dly = overview_std_dly.fillna(value=’0’)

# Fix incorrect datatypes for the places_visited and patient columns.

#overview[’places_visited’] = overview[’places_visited’].astype(float)

# Create an array for the columns that will be standardized.

std_columns = overview_std_dly.columns.values

# Drop the patient column, this does not need to be standardized.

std_columns = std_columns[:-1]

# Select the columns that need to be indexed for scaling.

std_scale = preprocessing.StandardScaler().fit(overview_std_dly[std_columns])

# Apply the scaler to the dataset.

overview_scaled = std_scale.transform(overview_std_dly[std_columns])

# Convert the overview to a dataframe.

overview_std_z = pd.DataFrame(overview_scaled)
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# Re-add the person_id’s

overview_std_z.insert(0,’person_id’,overview.index)

overview_std_z = overview_std_z.set_index(’person_id’,drop=True)

# Re-add the column names

i = 0

for column in std_columns:

overview_std_z.rename(columns={i:column}, inplace=True)

i = i + 1

# Eskes’s score transformation

f = lambda x: ((x+3)/6)*100

overview_eskes = overview_std_z.applymap(f)

# Re-add the patient status

for participant in overview.index:

events_holder = behapp_events.loc[idx[participant,:],idx[’patient’]].unique()

overview_std_z.set_value(participant,’patient’,events_holder[0])

overview_std_z[’patient’] = overview[’patient’].astype(int)

1.2 2. Sociability scoring

1.2.1 2.1 Eskes’ (2013) style scoring

In this section we prepare an overview which depicts the ‘sociability’ score of each participant. The scoring
practice is based on the sociability score model as defined by Eskes (2013). The scores are composed of the
average of two subscores, the ‘social exploration’ and the ‘communication’ score. We start by including the
features as originally devised by Paul Eskes:

• Communication score

– incoming calls
– outgoing calls
– call duration

• Social exploration score

– places visited daily
– bluetooth devices detected

In [29]: # Original Eskes (2013) style sociability scoring

eskes_original_communication_score = pd.DataFrame(overview_eskes[["incoming_calls",

"outgoing_calls",

"call_duration"]].mean(axis=1))

eskes_original_communication_score.rename(columns={0:’communication_score’},inplace=True)

eskes_original_social_exploration_score = pd.DataFrame(overview_eskes[["places_visited_daily",

"bluetooth_devices_detected"]].mean(axis=1))

eskes_original_social_exploration_score.rename(columns={0:’social_exploration_score’},inplace=True)

eskes_original_score = eskes_original_communication_score.join(eskes_original_social_exploration_score)

# Re-add the patient status

for participant in overview.index:

events_holder = behapp_events.loc[idx[participant,:],idx[’patient’]].unique()
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eskes_original_score.set_value(participant,’patient’,events_holder[0])

eskes_original_score[’patient’] = eskes_original_score[’patient’].astype(int)

sns.set(font_scale=2)

eskes_plot = sns.lmplot(palette=[’blue’,’orange’],

x="communication_score",

y="social_exploration_score",

hue="patient",

data=eskes_original_score,

size=10,

fit_reg=False,

scatter_kws={"s": 175},

markers=["o", "o"])

eskes_plot.set(ylim=(30,90))

eskes_plot.set(xlim=(30,90))

/Users/raj/anaconda/lib/python2.7/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison

if self. edgecolors == str(’face’):

Out[29]: <seaborn.axisgrid.FacetGrid at 0x10977f850>
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1.2.2 2.1 Modernized sociability scoring

Next we adjust the subscores by including additional features in the communication and the social exploration
scores.

• Communication score

– incoming calls
– outgoing calls
– missed calls
– call duration
– unique contacts
– whatsapp activity

• Social exploration score

– places visited daily
– bluetooth devices detected
– bluetooth device diversity

In [33]: # Modernized sociability scoring

modernized_communication_score = pd.DataFrame(overview_eskes[["incoming_calls",

"outgoing_calls",

"missed_calls",

"call_duration",

"unique_contacts",

"whatsapp_activity",

]].mean(axis=1))

modernized_communication_score.rename(columns={0:’communication_score’},inplace=True)

modernized_social_exploration_score = pd.DataFrame(overview_eskes[["places_visited_daily",

"bluetooth_devices_detected",

"bluetooth_device_diversity"

]].mean(axis=1))

modernized_social_exploration_score.rename(columns={0:’social_exploration_score’},inplace=True)

eskes_modernized_score = modernized_communication_score.join(modernized_social_exploration_score)

# Re-add the patient status

for participant in overview.index:

events_holder = behapp_events.loc[idx[participant,:],idx[’patient’]].unique()

eskes_modernized_score.set_value(participant,’patient’,events_holder[0])

eskes_modernized_score[’patient’] = eskes_original_score[’patient’].astype(int)

eskes_modernized_plot = sns.lmplot(palette=[’blue’,’orange’],

x="communication_score",

y="social_exploration_score",

hue="patient",

data=eskes_modernized_score,

size=10,

fit_reg=False,

scatter_kws={"s": 175},
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markers=["o", "o"])

eskes_modernized_plot.set(ylim=(0,100))

eskes_modernized_plot.set(xlim=(0,100))

Out[33]: <seaborn.axisgrid.FacetGrid at 0x108fc8110>

In [31]: print eskes_original_score

print eskes_modernized_score

communication score social exploration score patient

person id

13 63.360748 68.900714 0

14 40.890315 81.039556 0

34 36.182303 42.662368 0

78 32.403567 42.175195 0

80 74.216944 53.269569 0

82 33.465820 37.038225 0

98 31.166105 35.177499 0
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99 58.117945 44.680684 0

100 47.166051 66.527582 0

103 72.372813 41.642544 1

104 42.545025 42.855448 0

105 39.895389 62.180132 1

106 57.042015 65.764014 0

107 39.194943 41.391505 0

111 52.763081 34.951846 1

114 68.212922 38.820343 1

116 50.399389 46.538623 0

117 62.648041 43.718548 0

118 47.956584 60.665605 0

communication score social exploration score patient

person id

13 68.862679 84.974619 0

14 48.688146 71.335499 0

34 42.445929 43.339840 0

78 36.038773 44.121686 0

80 62.030455 50.563751 0

82 36.525847 39.223418 0

98 34.655974 37.666754 0

99 50.647362 44.555525 0

100 52.208295 58.600686 0

103 66.932637 42.665603 1

104 48.379285 43.174965 0

105 41.121884 63.561700 1

106 54.090725 59.339420 0

107 45.152680 41.899762 0

111 47.431293 37.651825 1

114 54.012612 40.129193 1

116 49.010547 46.381341 0

117 53.332663 45.026374 0

118 58.432214 55.788037 0
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A Recipe for Machine Learning: 

Meta-algorithmic modeling for transparancy 
Research-in-Progress 

Introduction 

With the steadily growing availability of data storage space and computing power, advanced data mining 
efforts are coming in reach of increasingly more people. One way to perform a data mining project, and 
central to this research-in-progress, is the application of machine learning (ML) techniques. The 
application of ML techniques spans various disciplines like mathematics, statistics and computer science. 
These disciplines combined support the act of learning and result in models that are fitted to data. The 
challenge is to derive models that are accurate in the sense that they reflect the underlying patterns in the 
data whilst ignoring peculiarities that do not represent reality. A popular and well known purpose of these 
models is to make predictions on new (and unseen) examples of data. However, ML techniques are also 
well suited to explore the underlying patterns of a dataset. More often than not, machine learning 
techniques are employed to learn about the structure of a data set (Hall et al. 2011). 

Problem Statement 

Despite the growing usage and popularity of machine learning techniques in data mining projects, 
correctly applying these techniques remains a challenge. We list the three main challenges below: 

1. Depth versus breadth: The ML field knows many different use cases, each of which has a sizeable 
body of literature surrounding the specific cases. The literature is usually found to be heavy on 
mathematical terminology and aimed at the computer science community. This prevents 
researchers from other fields in learning and (correctly) applying machine learning techniques in 
their own research (Domingos 2012). 

2. Selection versus configuration: In line with the aforementioned, applying machine learning 
techniques confronts users with many degrees of freedom in how to assemble and configure a 
learning system. One example of this is the fact that algorithm performance is largely determined 
by parameter settings, these settings are specific for each class of algorithm. However, in practice 
end users usually do not have enough knowledge on how to find optimal parameter settings (Yoo 
et al. 2012). Many users leave the parameters to their default settings and base algorithm 
selection on reputation and / or intuitive appeal (Thornton et al. 2013). This may lead to 
researchers using underperforming algorithms and gaining suboptimal results. 

3. Accuracy versus transparency: Concerning the creation of models: ML shows that currently 
there is a trade-off to be had between accuracy and transparency (Kamwa et al. 2012). In practice 
this means that algorithms which yield a high amount of insight into the data do not perform as 
well as their non-transparent (black box) counterparts and the other way around. 

We follow a meta-algorithmic modelling approach to reuse state-of-the-art ML knowledge and best 
practices in the appropriate application of ML techniques, whilst at the same time provide information on 
how to cope with challenges like parameter optimization and model transparency (Pachidi et al. 2014). 
Our goal is to provide highly understandable and deterministic methodological recipes to guide 
researchers without in-depth ML expertise step-by-step through an optimized ML process (Vleugel et al. 
2010), based on the design science research approach (Hevner et al. 2004). 

Research Approach 

By taking into account our problem statement the overarching research question of this research-in-
progress is formulated as follows: 

How can a domain independent method be developed to guide the process of constructing 
transparent machine learning models? 
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We will initially proceed with a limited scope: the creation of method fragments focused on supervised 
machine learning for binary classification tasks on structured data. This type of machine learning is 
concerned with deriving models from (training) data that are already available. Coincidentally this is one 
of the most applied and mature areas within the machine learning practice (Kotsiantis et al. 2007). 

First a theoretical foundation is established on the subjects of data mining, machine learning and model 
transparency. The concepts derived from this foundation are then grouped using the structure of a data 
mining process model. For our purposes we apply the base structure of the CRISP-DM process model and 
group the concepts into the following phases: data understanding, data preparation, and modeling & 
evaluation. Our method fragments will be composed using the same structure. In order to design the 
method fragments we will turn to the practice of method engineering (ME). Method engineering is 
defined as "the engineering discipline to design, construct and adapt methods, techniques and tools for 
the development of information systems" (Brinkkemper 1996). From this discipline we will apply the 
meta-modelling approach (Weerd et al. 2008), this yields a process-deliverable diagram (PDD). A PDD 
consists of two diagrams, the left-hand side shows an UML activity diagram (processes) and the right-
hand side shows an UML class diagram (concepts / deliverables). Both diagrams are integrated and 
display how the activities are tied to each deliverable. Lastly, the activities and the concepts are each 
explained in separate tables. Due to page restrictions these explanatory tables are excluded from this 
paper. 

On Model Transparency 

The concept of model transparency occasionally surfaces in the body of literature. In particular, when it 
concerns decision support systems where it must be clear how a system came to a certain (classification) 
decision (Johansson et al. 2004; Olson et al. 2012; Kamwa et al. 2012b; Allahyari et al. 2011). 

There is consensus in the literature about the types of algorithms that are known to yield transparent and 
non-transparent (black box) models. Both tree and rule models are considered as transparent and highly 
interpretable. On the other hand, artificial neural networks, support vector machines and ensembles like 
random forests are considered as black boxes (Johansson et al. 2004; Olson et al. 2012; Kamwa et al. 
2012b). 

Currently there is no common ground on the subject of tree and rule model complexity. Although 
considered as transparent, critics note that the interpretative value of complex tree and rule models 
should be questioned (Johansson et al. 2004). On the other hand, a study on model understandability 
found indications that the assumption where simpler models are considered as more understandable does 
not always hold as true (Allahyari et al. 2011). 

The choice between a transparent and non-transparent modeling technique is not immediately obvious 
since there is a tradeoff to be had between accuracy and transparency. Black box modeling techniques 
have better classification / prediction performance and that the tradeoff with better interpretable 
solutions is unavoidable. We found two solutions in the body of literature that aim to bridge this gap. 

The first solution is aimed towards extracting comprehensible information in the form of rules and trees 
from black box modeling techniques like artificial neural networks and support vector machines 
(Johansson et al. 2004; Martens et al. 2007; Setiono 2003). The practice delivers comprehensible 
information but is criticized for being unrepresentative of the original model due to oversimplification 
(Cortez et al. 2013). 

The second solution approaches the problem from the opposite direction by improving the performance 
of a transparent modeling technique to a level where it competes with its black box counterparts. A 
variant of linear modeling is applied known as generalized additive modeling (GAM) enriched with 
information on pairwise interactions between features (Lou et al. 2013). This allows to retain the 
explanatory value of linear models and at the same time achieve high performance in terms of 
classification accuracy. The technique exposes the contribution of each feature in relation to the outcome 
values.  

Page 2 of 8



 A Recipe for Machine Learning 
  

 Thirty Seventh International Conference on Information Systems, Dublin 2016 3 

Method Fragments 

In this section we present the method fragments as derived from our literature study on the domains of 
data mining and machine learning. All fragments are accompanied with a text description. 

Data understanding 

Before starting with any data mining project it is important to become familiar with the data that will be 
analyzed. The goal is to improve one’s understanding of the data by using (statistical) tools to summarize, 
plot and review datapoints in the data set. This practice is called exploratory data analysis (EDA) (Tukey 
1977). 

The data understanding phase as depicted in Figure 1 revolves around the application of exploratory data 
analysis (EDA) techniques to generate visualizations and tables to gain a first insight into the 
relationships between the features of a data set. A high number of features can make these deliverables 
difficult to interpret. Therefore, the activity flow shows that in cases of high dimensional data sets it is 
recommended to pre select a subset of features using a feature selection technique. 

We recommend the creation of histogram graphs, pairwise scatterplots and correlation matrices to start 
exploring relationships between the features of a dataset. Histogram graphs and pairwise scatterplots 
serve the purpose of visualizing overlap / separability between the various classes of a data set. Feature 
correlation matrices are used to determine which features are redundant, these should be removed when 
applying the naive bayes (probabilistic) model. 

Data preparation 

The data preparation phase (Figure 2) consists of three main activities. The data set construction activity 
entails loading the raw data and engineering new features based on the raw data. Feature engineering can 
be a substantial task but is difficult to capture in a method since it is highly situational. The last task 
within this activity is feature selection. Not all features in a given data set have the same informative 
importance or any importance at all. This can be problematic as some classification algorithms are 
designed to make the most of the data that is presented to them. In these cases even irrelevant features 
will eventually be included in the model. In other words the model will be overfitted to the data which 
means that the classification algorithm has included the noise as an integral part of the model (Tang, 
Alelyani, and Liu, 2014). The solution is to select a subset of only the most informative features reducing 
the dimensionality (number of features) of the data set in the process. Feature selection is either 
performed manually using EDA techniques, or selection is performed using a feature selection algorithm. 

The feature extraction activity entails the application of projection methods. Projection methods like 
principal component analysis are automated feature engineering techniques that aim to best describe the 
main differentiators of a data set creating a select (low) number of features in the process (dimensionality 
reduction). Transparency between the outcome variable and the original features may be lost while using 
a projection technique. 

Lastly, the modeling technique preparation activity consists of three paths that define preparation steps 
depending on the model type chosen by the data scientist. When tree and rule models are required due to 
model transparency concerns, no additional preparation steps are necessary since modern algorithm 
implementations take care of preparation steps internally. Linear models and the probabilistic naive 
Bayes model can be chosen due to performance concerns. Both types require their own conversion steps 
in order to be able to process the data in the next phase of the DM process. The naive Bayes model type 
e.g. requires redundant features to be removed since they will negatively influence classifier results. 
Linear model types require input data to be represented in numerical form so transformation steps should 
be performed as needed e.g. the binarization of categorical data. Note however that some concrete 
algorithm implementations of linear models may perform these steps as part of their internal workings. 

Modeling & Evaluation 

The modeling and evaluation method fragment (Figure 3) consists of three activities aimed at deriving 
classification models from data sets. The search space definition activity has a route to explore fully 
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automated model (and parameter) selection in analyzing the data set. Currently one experimental 
implementation exists in the form of Auto-WEKA (Thornton et al. 2013). Auto-WEKA is an experimental 
machine learning toolkit that almost completely relies on Bayesian optimization techniques to generate 
models. The toolkit is unique in the sense that it considers the choice for the modeling technique as part 
of the problem space as well. This relieves potential users from having to manually select and test 
algorithms, instead Auto-WEKA uses all the algorithms that are part of the WEKA toolkit and determines 
which algorithm generates the best results for a given data set. Currently, due to the novelty of this 
technique, the approach should be used to gain initial insight into model types that may perform best on 
the provided data set. 

Next the application of automated search strategies is central to the following activity named “find 
optimal parameters”. Recall from our introduction that the performance of algorithms is dependent on 
how they are configured, a problem known as (hyper) parameter optimization. Getting optimal 
performance from a modeling technique means finding the right (combination of) parameter settings. The 
best settings will be different for each data set which necessitates an automated means of determining 
these values. Search strategies like grid search, random search and Bayesian optimization support the task 
to (intelligently) iterate over combinations of parameters evaluating the performance at each attempt. 
This task requires the data scientist to decide on various factors that determine how the search will be 
executed. The following factors should be considered: 

 The first factor comprises the parameters that belong to a specific model type. Parameter types 
can range from procedural configuration settings to the specific number of times a procedure is 
performed. 

 The model type itself. The data scientist can choose to iterate over different model types as well 
(tree, rule, ensemble, linear and probabilistic) to find out which type works best given a specific 
data set. This approach is similar to Auto-WEKA since it also includes the model type as part of 
the problem (search) space. 

 The performance measure(s) used to evaluate each attempt. Common measures are classification 
accuracy, true positive rate (TPR), false positive rate (FPR) and the area under the curve (AUC). 
Using a combination of measures is necessary since classification accuracy by itself is known to 
misrepresent the performance of a model in the case of class imbalances in the data set. 

 The resampling method used to support the evaluation process. Resampling methods apply 
various procedures to train and test models on the data provided to them. For example, the 
holdout method splits the data set in a training and test set, usually in a 70% - 30% ratio. The 
model is first trained using the training set, afterwards it is tested un the unseen instances of the 
test set. Other resampling methods include: (stratified) k-fold cross validation, leave-one-out and 
bootstrapping.The search strategy itself. Grid search is exhaustive by nature meaning that all 
possible parameter combinations will be tried. This can be costly both in time and computing 
resources. Random search and Bayesian optimization aim to find the optimal set of parameters 
intelligently requiring significantly less tries to do so.  

The factors discussed above are common to the search strategies outlined in this section, combined they 
form the template that makes up the complete problem space through where the search will be executed. 
The structure and accessibility of this approach is in line with the design goal of this research project 
where we aim to construct a method that enables a user to create optimal models.  

Lastly, the activity “predict & classify” is followed to conclude a DM project. The model derived from the 
parameter search activity can now be used to classify new and unseen data. 

Future research 

We are currently extending and refining the method fragments as outlined in Figures 1 to 3 with the goal 
to ultimately evaluate the method on a broad array of data sets: ranging from small/large to low/high 
dimensional data sets. We are curious to see how classification performance holds up over different 
variants in data sets. We are also interested, by using qualitative research methods, in studying to what 
extent the methods support non data scientists in their efforts to perform DM projects. 
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Next, the problem space of our research could be broadened to cover cases outside of the domain of 
supervised binary classification, e.g. multiclass, regression and image analysis problems. Method 
fragments could be created to deal with (sub)cases in the aforementioned domains.  

Furthermore, the structures defined in these methods could be used for the development / enhancement 
of data mining tools. Auto-WEKA is an example of such a tool but follows a rigid method. For example, 
the tool uses a pre set path of actions and tasks and does not support embedding domain knowledge 
during the DM process. From our own experience we identify a great need for sophisticated tools that 
offer simplified access to advanced ML techniques while retaining the ability to embed domain knowledge 
in the data mining process. 

Finally, we aim to further refine and integrate existing meta-algorithmic models, as well as to 
incrementally yet continuously broaden our modeling scope in creating ML method fragments to also 
include unsupervised learning, non-binary classification tasks, and unstructured data, among others. As 
our strategic objective we envision one well-defined, transparant methodological infrastructure for 
applied data science which interconnects the vast body of knowledge as recipes for machine learning. 

 

 

Figure 1. Data understanding method fragment 
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Figure 2. Data preparation method fragment 
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Figure 3. Modeling & evaluation method fragment 
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