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1. Introduction

Many phenomena in physics, biology and chemistry are modeled by Ordinary Differential
Equations (ODEs). A vital tool in gaining insight in such systems is analyzing stability of
the equilibria. This is done by analyzing the eigenvalues of the linearization of the ODE
at an equilibrium. When ODEs depend on certain (control) parameters the location of
the equilibrium and eigenvalues may change. In the event of one or more eigenvalues
crossing the imaginary axis, stability of the equilibrium changes and a bifurcation may
occur. For example, when two complex conjugate eigenvalues with non-zero imaginary
part cross the imaginary axis, an Andronov-Hopf bifurcation occurs, in which a limit cycle
spawns off the equilibrium. It is possible to reduce the ODE to a simple form called the
normal form by applying certain coordinate transformations. By inspecting the normal
form coefficients at criticality, i.e. at the parameter value where the bifurcation occurs,
one can predict the nature of a particular bifurcation occurring. In the example of the
Hopf bifurcation, this means that one can predict whether the periodic orbit is stable
or unstable and thus give information about the nature of the Hopf bifurcation (sub- or
supercritical).
The Hopf bifurcation is an example of a codimension one bifurcation, i.e. a bifurcation
that can be encountered in generic ODEs by varying one parameter. In bifurcations with
codimension two more interesting phenomena can arise. In particular the Bogdanov-
Takens bifurcation is of great interest. It happens when at criticality we encounter a
double eigenvalue zero. One typically needs two parameters in order for this bifurcation
to occur. For example, by varying one parameter we may encounter a Hopf point with
two complex conjugate eigenvalues having zero real part. Then, by also varying a second
parameter, an entire branch of Hopf points can be obtained. The two purely imaginary
eigenvalues in the imaginary axis can meet at the origin. Under certain genericity con-
ditions we expect to find, for nearby parameter values, a fold, a Hopf, and a homoclinic
bifurcation curve. One of these conditions depends on the normal form coefficients at
the criticality. The normal form coefficients at the criticality give information about
the type of Hopf and homoclinic bifurcation curves occurring. However, no information
about where to expect these bifurcation curves is given. This has recently been done
for the Bogdanov-Takens bifurcation in the finite dimensional case, i.e. for ODEs, using
parameter-dependent normal forms [32, 1, 36].
A general form of a first order autonomous ODE, for x(t) ∈ Rn is

d

dt
x(t) = F (x(t), α), (ODE)

where F : Rn × Rp → Rn is a function of the state variable x ∈ Rn and the parameter
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α ∈ Rp. Here all occurrences x(·) are assumed to appear simultaneously. This may not
always be the case. For example, when the birth rate of predators is affected by prior
levels of predators or prey rather than by only the current levels in a predator-prey model.
In these type of systems, called delay differential equations (DDEs), the derivative of the
unknown function at a certain time is given in terms of the values of the function at
previous times. A general form of an autonomous DDE for x(t) ∈ Rn is

d

dt
x(t) = f(xt, α), (DDE)

where
xt(θ) = x(t+ θ), θ ∈ [−h, 0],

represents the solution in the past and α ∈ Rp is the parameter. In this equation, f is a
functional operator from C(R,Rn)× Rp → Rn and h > 0 is assumed to be finite.
The stability of a steady-state, i.e. a constant solution ϕ0 at the parameter α0 such
that f(ϕ0, α0) = 0, is now given by the eigenvalues of the generator of the semigroup
generated by the linear part of the DDE. These eigenvalues can be obtained from a
finite dimensional characteristic matrix leading to the characteristic equation which is
of exponential polynomial nature, giving rise to infinitely many eigenvalues. It follows
that numerical methods are in general necessary to analyze the characteristic equation,
see for example [42, Chapter 2] or [14, Chapter XI].
In contrast to ODEs, the state space of DDEs is infinite dimensional. To deal with this
situation rigorously a new mathematical framework has been developed which is called
the perturbation theory of dual semigroups, also known as sun-star calculus. Using this
framework the existence of a finite dimensional smooth center manifold can be estab-
lished, making it is possible to ‘lift’ the normalization method for local bifurcations of
ODEs presented in [33] to the infinite dimensional setting of DDEs. One of the advan-
tages using this normalization technique is that the reduction to the center manifold, and
calculation of the critical normal form coefficients can be done simultaneously, using the
so-called homological equation. This ‘lifting’ has been done first by Sebastiaan Janssens
in his Master Thesis [29] for all five codimensional two bifurcations:

• Cusp
• Bogdanov-Takens
• Bautin (Generalized Hopf)
• Fold-Hopf
• Hopf-Hopf

The obtained critical normal form expressions are remarkably similar to those occurring
in ODEs.
The derived critical normal form coefficients have been numerically evaluated in [29] for
two models: a Van der Pol oscillator with delayed feedback [31], in which a transcritical
Bogdanov-Takens bifurcation is encountered, and a neural mass model from [48] and [47],
in which Hopf-Hopf, fold-Hopf and Bautin bifurcation points occur. It has been shown

7
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how to compute the critical normal forms coefficients systematically using the symbolic
and numerical computer algebra system Maple.
This lays a foundation for the implementation of automatic calculation of critical normal
form coefficients into a numerical continuation software package for DDEs. This has
been done for Hopf points on steady-state and generalized-Hopf, fold-Hopf and Hopf-
Hopf points on Hopf curves, in the Master Thesis of Bram Wage [49]. Instead of writing
a standing alone, this functionality was added to DDE-BifTool, a Matlab package for
numerical bifurcation and stability analysis of delay differential equations with several
fixed discrete and/or state-dependent delays developed at the University of Leuven [17].
As a separate part of this thesis, the functionality to detect, locate and compute critical
normal form coefficients has been added in the following situations:

• Fold encountered along steady-state curves
• Cusp, Bogdanov-Takens and fold-Hopf encountered along fold curves
• Bogdanov-Takens encountered along Hopf curves,

thereby capturing all cases in which local codimension one and two bifurcations generally
occur.
It turns out that detection and location of Bogdanov-Takens bifurcation involve more
work compared with the other codimension one and two bifurcations, see Chapter 5.
For location of Bogdanov-Takens points detected on fold branches we cannot use the
bisection method, but instead have to apply Newton to a special defining system. This
defining system is derived following the methods developed in [3] and [21] for locating
Bogdanov-Takens points in ODEs. An additional advantage is that the resulting defining
system allows the continuation of Bogdanov-Takens points and detection of triple zero
singularities.
The next step is to perform a parameter-dependent center manifold reduction near codi-
mension 2 bifurcations. Such reduction is necessary for deriving asymptotics of codi-
mension 1 non-equilibrium (e.g. saddle homoclinic orbits and non-hyperbolic cycles),
emanating from some codimension 2 local bifurcations. For this we need a generalization
of the parameter-dependent center manifold currently available for DDEs, see [14, Chap-
ter IX.9]. This generalization should not impose the constraint that the steady-state
remains fixed under variation of parameters. Then the Bogdanov-Takens and fold-Hopf
bifurcations can be treated as well.
We will perform the parameter-dependent manifold reduction and normalization near the
generic and transcritical Bogdanov-Takens, generalized Hopf, fold-Hopf, Hopf-transcritical
and Hopf-Hopf bifurcations. This will allow us to initialize the continuation of the
saddle homoclinic orbits emanating from a (transcritical) Bogdanov-Takens point and
codimension 1 cycle bifurcations emanating from the generalized Hopf, zero-Hopf, Hopf-
transcritical and Hopf-Hopf bifurcations. The homoclinic orbits near the Bogdanov-
Takens bifurcation are approximated with the second-order homoclinic predictor derived
in [32, 1, 36]. The codimension 1 cycle bifurcations are approximated using the predictors
from [37].
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1.1. Structure of this thesis

In Chapters 2, 3 and 4 we will review the sun-star calculus needed for the rest of the
thesis. It contains three key elements:

• The functional analytic framework
• A center manifold
• Normal form calculation

Those already familiar with the theory can safely skip Chapters 2 and 3, except for
Section 3.6, where a generalization of the parameter-dependent center manifold Theorem
for DDEs is given. For those totally unfamiliar with sun-star calculus, this review might
be too concise for the first read. Therefore, the reader may consult [14] on which Chapters
2 and 3 mostly rely.
Using the results obtained in Section 3.6 we describe the computation of the normal
form coefficients on the parameter-dependent center manifold in the infinite dimensional
setting in Chapter 4.
In Chapter 5 we turn our attention to detecting and locating Bogdanov-Takens points
in DDEs with multiple delays. Here we will derive test functions for Bogdanov-Takens
points on fold and Hopf curves. Contrary to all other codimension 2 bifurcations, we can-
not use the bisection method to locate Bogdanov-Takens points on fold curves. Therefore,
we derive a defining system, for which we prove regularity. Then, using Newton’s itera-
tion method, we can accurately locate Bogdanov-Takens points detected on either fold
or Hopf curves.
In Chapter 6 we will apply the method described in Chapter 4 to the generic and trans-
critical Bogdanov-Takens, generalized Hopf, fold-Hopf, Hopf-transcritical and Hopf-Hopf
bifurcations. We will explicitly calculate the normal form coefficients necessary for the
predictors.
Chapter 7 describes how to initialize the continuation of the homoclinic orbits near the
generic and transcritical Bogdanov-Takens bifurcations and the limit cycles near the
generalized Hopf.
In Chapter 8 of this thesis we will illustrate the homoclinic predictors for the generic and
transcritical Bogdanov-Takens and the nonhyperbolic cycle predictors on various models.
After some final comments are made there are four appendices. In the first Appendix
A we perform the center manifold reduction combined with normalization for generic
and transcritical Bogdanov-Takens bifurcation in ODE. Although the generic Bogdanov-
Takens bifurcation has already been treated in [32, 1, 36] an alternative derivation is
presented, one which is more suitable for the DDE case.
Appendices B and C describe the normal forms and predictors. In the first Section of
Appendix C we summarize the method used in [32, 1, 36] to obtain a second-order predic-
tor for the homoclinic orbit near a generic Bogdanov-Takens bifurcation. In the second
Section we will show that the same procedure can be applied to obtain the second-order
predictor for the homoclinic orbits near a transcritical Bogdanov-Takens bifurcation. In

9
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the remaining sections the asymptotics for the codimension 1 cycle bifurcations emanat-
ing from generalized Hopf, fold-Hopf, Hopf-transcritical and Hopf-Hopf bifurcations are
presented.
Lastly, In Appendix D we discuss a subtle nonuniqueness problem with the second-order
predictor for the generic Bogdanov-Takens bifurcation.

1.2. New results

Here is a short list of novelties this thesis brings
• Robust methods for detection of Bogdanov-Takens points on fold and Hopf curves

in DDEs.
• Special defining system to locate and continue Bogdanov-Takens point in DDEs

with multiple delays.
• General method to derive normal form coefficients on the parameter-dependent

center manifold in DDEs. This makes it possible to obtain asymptotics of codi-
mension 1 global bifurcations involving cycles, emanating from codimension 2 local
bifurcations.

• Derivation of the normal form coefficients on the parameter-dependent center mani-
fold for the generic and transcritical Bogdanov-Takens, generalized Hopf, fold-Hopf,
Hopf-transcritical and Hopf-Hopf bifurcations, using the functional analytic frame-
work of sun-star calculus and systematically tracing all freedom in solutions of
singular linear equations.

• A second-order approximation of the homoclinic solutions near the generic and
transcritical Bogdanov-Takens bifurcations in DDEs.

• Predictors for the codimension 1 cycle bifurcations emanating from generalized
Hopf, fold-Hopf, Hopf-transcritical and Hopf-Hopf bifurcations in DDEs.

• Improved derivation of coefficients of the smooth normal form for the generic
Bogdanov-Takens bifurcation in ODEs.

• Actual implementation of all developed methods into the standard public software
DDE-BifTool.

10
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2. Sun-star calculus

In this Chapter we will review the functional analytic framework of sun-star calculus
following [14]. We will start in the first two sections to show the need of the framework
through the variation-of-constants formula and bounded perturbations of the semigroup
generator. In Section 2.3 we describe the framework for a general (non-reflexive) Banach
space X on which a C0-semigroup is defined. Then in the next Section 2.4, we show how
this framework will look like for X = C([−h, 0],R), h > 0 and the shift semigroup

(T0(t)ϕ)(θ) =

{
ϕ(t+ θ), −h ≤ t+ θ ≤ 0,

ϕ(0), t+ θ ≥ 0,

generated by the trivial DDE{
ẋ(t) = 0, t > 0,

x(θ) = ϕ(θ), −h ≤ θ ≤ 0.

In Section 2.5 we turn our attention to general linear DDEs. There we will see how the
framework enables us to construct a semigroup for such DDE using the shift semigroup.

2.1. Variation-of-constant formula

The variation-of-constants formula plays an important role in the study of the stability,
existence of bounded solutions and the asymptotic behavior of non-linear ODEs and
partial differential equations PDEs. In particular it can be used in proving a center
manifold theorem, which plays a key role in the description and understanding of the
dynamics of nonlinear systems and their bifurcations. The variation-of-constants formula
is well known for the finite dimensional semi-linear ordinary differential equation{

u̇(t) = Au(t) +G(u), u ∈ Rn,
u(0) = u0,

and gives the integral equation

u(t) = etAu0 +

ˆ t

0
e(t−s)AG(u(s)) ds,

where etA is the solution operator for the homogeneous system

u̇(t) = Au(t)
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and A a linear operator on Rn. For PDEs or ODEs defined on infinite dimensional
Banach spaces we need the notion of a C0-semigroup.

Definition 2.1. Let X be a complex Banach space and let, for each t ≥ 0, T (t) : X → X
be a bounded linear operator. Then the family {T (t)}t≥0 is called a strongly continuous
semigroup, or a C0-semigroup, if the following three properties hold:

(i) T (0) = I (the identity),
(ii) T (t)T (s) = T (t+ s)for t, s ≥ 0,
(iii) for any ϕ ∈ X, ‖T (t)ϕ− ϕ‖ → 0 as t ↓ 0.

The first two properties are algebraic, and state that T is a representation of the semi-
group (R+,+); the last is topological, and means that the map T is continuous in the
strong operator topology.
One can associate with such a semigroup the abstract differential equation

d

dt
(T (t)ϕ) = A(T (t)ϕ) (2.1)

where the infinitesimal generator A is defined by

Aϕ = lim
t↓0

1

t
(T (t)ϕ− ϕ) (2.2)

whenever the limit exists. Note that the infinitesimal generator A only makes sense if T
is strongly continuous.

Definition 2.2. The domain of A,D(A), is the set of ϕ ∈ X for which this limit does
exist; D(A) is a linear subspace and A is linear on this domain. The operator A is closed,
although not necessarily bounded, and the domain is dense in X.

Obviously, the above etA is a C0-semigroup.
The variation-of-constants formula for DDEs has for some time been a puzzling part of
the theory. Let L be a continuous linear operator from the state spaceX = C([−h, 0],Rn)
into Rn and h > 0 some constant. Consider the DDE{

ẋ(t) = Lxt + g(xt), t ≥ 0,

x(θ) = ϕ, −h ≤ θ ≤ 0,
(2.3)

where the non-linearity g : X → Rn satisfies g(0) = 0 and has a continuous Frechét
derivative such that Dg(0) = 0. Then according to [25] x = x(·;ϕ) is a solution to (2.3)
if and only if x satisfies

xt = T (t)ϕ+

ˆ t

0
T (t− s)X0g(xs) ds (2.4)

13
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in which X0 is the matrix-valued function defined by

X0(θ) =

{
0, h ≤ θ < 0,

I, θ = 0,

where I is the identity matrix in Rn and T (t) is the semigroup associated with the
homogeneous equation

ẋ(t) = Lxt (2.5)

on the state space X. The variation-of-constants formula (2.4) indicates that T (t) is
evaluated at X0 although this function is not continuous and so is not in the state space
X where the semigroup is defined. We refer to equation (2.5) as the unperturbed system
and equation (2.3) as the perturbed system. Then g(xt) perturbs the generator of the
semigroup and causes the right hand side of (2.4) to leave the state space X. In [8] the
sun-star calculus framework was constructed framework a very natural generalization of
the notion of a bounded perturbation of the generator and lead to a new version of the
variation-of-constants formula, namely the formula (3.2) in Chapter 3.

2.2. Shift semigroup I

Another reason to introduce the sun-star calculus is a problem with the domain of the
semigroup generator. First consider the simple DDE

ẋ(t) = αx(t− τ) for t > 0, (2.6)

where α and τ are parameters with τ > 0 and x ∈ R. In order for (2.6) to make sense
we have to define a history function ϕ defined on the interval [−τ, 0]. Then we can solve
the equation for the interval [0, τ ], i.e.

x(t) = x(0) +

ˆ t

0

d

dt
x(s) ds = ϕ(0) +

ˆ t

0
ϕ(s− τ) ds, 0 ≤ t ≤ τ.

By shifting (translating) the result back to the interval [−τ, 0] we can once more inte-
grate the equation. Repeating this process n times and ‘gluing’ the solutions together
gives a solution on the interval [0, nτ ]. In this abstract view of solving the differential
equation (2.6) we can separate two different processes: extending and translating. The
first ingredient is specific for a particular equation, but the second is the same for all
delay equations.
Motivated by above we will consider the trivial DDE{

ẋ(t) = 0, t > 0,

x(θ) = ϕ(θ), −h ≤ θ ≤ 0,
(2.7)

where the extension is as simple as possible. We assume that the initial condition given
by the function ϕ is an element of state-space X = C([−h, 0],Rn). The solution to the

14
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−h 0 h
t

ϕ(t), −h ≤ t ≤ 0

ϕ(0), t ≥ 0

Figure 2.1.: Graph of the solution x(t) ∈ Rn to the trivial DDE defined in (2.7).

trivial DDE is given by

x(t) =

{
ϕ(t), −h ≤ t ≤ 0,

ϕ(0), t ≥ 0,

see Figure 2.1.
In order to distinguish the time at which we inspect the state from the variable passing
through the interval [−h, 0] we shall write

xt(θ) = x(t+ θ), t ≥ 0, and − h ≤ θ ≤ 0. (2.8)

With this notation, xt ∈ X is the state at time t. For each t ≥ 0

(T0(t)ϕ)(θ) =

{
ϕ(t+ θ), −h ≤ t+ θ ≤ 0,

ϕ(0), t+ θ ≥ 0
(2.9)

defines a bounded linear operator T0(t) : X −→ X. The operator T0(t) maps the initial
state ϕ at time zero onto the state xt at time t.
The family {T0(t)}t≥0 of operators defined in equation (2.9) clearly satisfies the conditions
of Definition 2.1. The infinitesimal generator of {T0(t)}t≥0 can be explicitly calculated
and is given in the following Lemma.

Lemma 2.3. [14, Chapter II, Lemma 2.1]. The infinitesimal generator of T0 is given by

D(A0) = {ϕ ∈ X : ϕ̇ ∈ C([−h; 0],C), ϕ̇(0) = 0} , A0ϕ = ϕ̇.

Defining u(t, θ) = (T (t)ϕ)(θ), we can write (2.1) as the partial differential equation

∂u

∂t
=
∂u

∂θ
,

which describes translation with unit speed, and thus incorporates the shifting part.
However the extension rule is incorporated inD(A0) in the form of the condition ϕ̇(0) = 0.

15
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If we perturb the trivial equation (2.7), this rule will change together with the domain
of definition of the generator. This will lead to unpleasant technical complications if we
want to relate solutions of linear and nonlinear equations to each other by means of the
variation-of-constants formula.
The sun-star calculus described in the next Section will overcome these difficulties. It
will allow us to derive a homoclinic predictor near a Bogdanov-Takens bifurcation as in
[32, 1, 36].
The main idea is to embed the space X into a bigger space X�?. It will turn out that one
has a notion of generator on the space X�? as well, for which shifting and extension are
both described by the action of the operator, whereas the domain is determined by the
translation only. In the next Section we will briefly review the process of constructing
the space X�?.

2.3. Sun-star calculus: The abstract setting

In the following there will be five different spaces involved, therefore it can be useful to
consult the diagram in Figure 2.2, where the relations between these spaces are illustrated.

Definition 2.4. Let F be either R or C. A linear operator from X into F is called a
linear functional. Then the collection on all continuous (bounded) linear functionals on
X is called the dual space of X. The notation X? is used to denote the dual space of X,
so that X? is shorthand for B(X,F). We denote the pairing of a functional x? from the
dual space X? and an element x of X with the bracket: x?(x) = 〈x?, x〉.
Definition 2.5. The adjoint operator T ? of an operator T in X is an operator such that

〈x?, Tx〉 = 〈T ?x?, x〉

for all x? ∈ X? and x ∈ X.

Let A be the infinitesimal generator of the C0-semigroup {T (t)}t≥0 defined on a Banach
space X. The adjoint semigroup family {T ?(t)}t≥0 consisting of operators on the dual

X
dual // X?

⋃
��

D(A�?) = X��

'j

OO

X�?

⋂ OO

X�
dualoo = D(A?)

Figure 2.2.: Diagram illustrating the relations between the spaces X,X?, X�, X�?, X��

for the �-reflective case.

16



Chapter 2 2. Sun-star calculus

space X? defined by T ?(t) := (T (t))?. If we equip X? with its norm topology then in
general the family {T ?(t)}t≥0 need not be a C0-semigroup, i.e. it need not be strongly
continuous anymore. Since we want to embed X into a bigger space X�?, where we also
have the notion of a generator, we cannot lose strong continuity when constructing the
spaces in between. We are led to the following definition:

X� :=

{
x? ∈ X? : lim

t↓0
‖T ?(t)x? − x?‖ = 0

}
.

Thus, X� (pronunciation X-sun) is precisely the subspace of X? on which the action
of {T ?(t)}t≥0 is strongly continuous. In order to see that this space is of any relevance,
i.e. for example not empty, and what the generator looks like, we need the notion of the
adjoint operator of a densely defined operator.

Definition 2.6. The adjoint A? of a densely defined unbounded operator A is defined
by x? ∈ D(A?) if and only if y∗ ∈ X? exists such that

〈x?, Ax〉 = 〈y?, x〉

for all x ∈ D(A), and in that case,

A?x? = y?.

Let A be the infinitesimal generator of the semigroup {T (t)}t≥0 as in (2.2). The adjoint
A? is the generator of the adjoint semigroup {T ?(t)}t≥0 in the weak? sense, i.e.,

1

t
〈T ?(t)x? − x?, x〉 converges or all x ∈ X as t ↓ 0

if and only if x? ∈ D(A?) , and in that case, the limit equals 〈A?x?, x〉.
One can show, see [14, Appendix II], that in the norm closure

X� = D(A?). (2.10)

This is the closure with respect to the strong topology of X∗ and shows that D(A?) ⊆
X�. The restriction of {T ?(t)}t≥0 to X� , denoted {T�(t)}t≥0, is a strongly continuous
semigroup of linear bounded operators on the space X�. The infinitesimal generator of
{T�(t)}t≥0 is the operator denoted A� , which is the restriction of A? , to the domain

D(A�) =
{
x? ∈ D(A?) : A?x? ∈ X�

}
.

The domain D(A�) is weak? dense in X?. Starting from the C0-semigroup {T�(t)}t≥0,
we can repeat the same procedure once more and define X�?, X�� , and T�? and T��.
The natural map j : X → X�?, defined by〈

jx, x�
〉

:=
〈
x�, x

〉
, ∀x ∈ X ∀x� ∈ X�,

can be shown to be an embedding. Thus one can identify X�? isomorphically with a
closed subspace of X. If j is onto then X is called �-reflexive with respect to T .

17



Chapter 2 2. Sun-star calculus

2.4. Shift semigroup II

We will calculate {T ?0 (t)}t≥0 for the shift semigroup explicitly and show that it fails to
be strongly continuous. In order to do so we first need to introduce two definitions and
one theorem.

Definition 2.7. A function f : [a, b] → F is said to be of bounded variation (BV ) if
there exists Mf > 0 such that for every partition P : a = σ0 < σ1 < · · · < σn = b of
[a, b],

V (f, P ) =

n∑
i=0

|f(σi+1)− f(σi)| ≤Mf ,

The quantity V (f, P ) is called the variation of f over P , and

V (f) := sup
P
V (f, P ).

An important subspace of BV is the space of all normalized functions of bounded vari-
ation, defined by

NBV := {f ∈ [a, b] : f(a) = 0, and f is right continuous on (a, b)} .

Lastly, we extend the domain of definition of f ∈ NBV to whole R, by putting f(θ) = 0
for θ ≤ 0 and f(θ) = f(h) for θ ≥ h.

Definition 2.8. Let f : [a, b]→ Cn×n and ϕ : [a, b]→ Cn be given. For any partition P
of [a, b] and any choice τj ∈ [σj−1, σj ] we introduce the sum

S(f, ϕ, P ) =
n∑
j=1

(f(σj)− f(σj−1))ϕ(τj).

Suppose A ∈ Cn exists such that

∀ε > 0 ∃δ = δ(ε) > 0 such that |A− S(f, ϕ, P )| < ε

for all partitions P with width µ(P ) < δ and any choice of points τj ∈ [σj−1, σj ]. We
then say that ϕ is Riemann-Stieltjes integrable with respect to f over [a, b] and we shall
write

A =

ˆ b

a
df(τ)ϕ(τ).

The Riemann–Stieltjes integral appears in the original formulation of F. Riesz’s the-
orem which represents the dual space of the Banach space X = C([a, b],Rn) as Rie-
mann–Stieltjes integrals against functions of bounded variation.

Theorem 2.9. (A corollary of the Riesz representation theorem) Let L be a continuous
linear mapping from C([−h, 0],Fn) into Fn. There exists an unique NBV (normalized
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bounded variation) function ζ defined on [0, h] with values in Fn×n such that for all
ϕ ∈ C([−h, 0],Fn)

Lϕ =

ˆ h

0
dζ(θ)ϕ(−θ),

where the integral is an n vector whose ith component is equal to

n∑
j=1

ˆ h

0
ϕj(−θ)dζij(θ).

Example. Consider the DDE

ẋ(t) = −x(t) + β x(t− 1).

Let η : [−1, 0]→ R be given such that

η(θ) =


η(0) = −1,

η(θ) = 0, 0 < θ < 1,

η(1) = −β.

Then
´ 1

0 dη(θ)ϕ(−θ) = −ϕ(0) + βϕ(−1) for all ϕ ∈ C([−1, 0],R).

We are now ready to define the adjoint of the semigroup {T0(t)}t≥0 in (2.9). Let f ∈
X? = C([−h, 0],Cn)? then by Theorem 2.9 there exists an unique NBV function ζ such
that the pairing between f and T0(t)ϕ ∈ X = C([−h, 0],Cn) becomes

〈f, T0(t)ϕ〉 =

ˆ ∞
0

dζ(θ)T0(t)ϕ(−θ)

=

ˆ t

0
dζ(θ)ϕ(0) +

ˆ ∞
t

dζ(θ)ϕ(t− θ)

= f(t)ϕ(0) +

ˆ ∞
0

dσζ(t+ σ)ϕ(−σ).

It follows that
(T ?0 (t)f)(θ) = f(t+ θ), for θ > 0.

Let f(θ) = 0 for θ < h and f(h) 6= 0, the

‖T ?0 (t)f − f‖ = 2|f(h)|, θ > 0.

Thus T ?0 fails to be strongly continuous.
Using the equality in (2.10) for the shift semigroup {T0(t)}t≥0 we have

X� =

{
f ∈ NBV |f(t) = c+

ˆ t

0
g(θ) dθ for t > 0, where c ∈ C and

g ∈ L1 with g(θ) = 0, for (almost all) θ ≥ h
}
.
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Elements of the space X� for the shift semigroup {T0(t)}t≥0 are completely specified by
the pair (c, g) ∈ C× L1([0, h],C). In these coordinates we have

T�0 (t)(c, g) =

(
c+

ˆ t

0
g(θ) dθ, g(t+ ·)

)
, (2.11)

A�0 (c, g) = (g(0), g′),

where the domain of the generator A�0 is given by

D(A�0 ) = {(c, g) : c ∈ C and g ∈ AC with g(θ) = 0 for θ ≥ h}

For the space X�? of the shift semigroup we take the space

X�? = C× L∞([−h, 0],C)

with pairing

〈(α,ϕ), (c, g)〉 = αc+

ˆ h

0
ϕ(−θ)g(θ) dθ.

Using this pairing with equation (2.11) we can calculate

T�?0 (t)(α,ϕ) = (α,ϕαt ) ,

where

ϕαt =

{
ϕ(t+ θ), t+ θ ≤ 0,

α, t+ θ > 0

and the generator is given by

A�?0 (α,ϕ) = (0, ϕ̇), D(A�?0 ) = {(α,ϕ)|ϕ ∈ Lip(α)} , (2.12)

where Lip(α) denotes the subset of L∞([−h, 0],C) whose elements contain a Lipschitz
continuous function which assumes the value α at θ = 0.
Taking the closure of this space gives

X�� = D(A�?0 ) = {(α,ϕ)|ϕ ∈ C(α)} ,

where C(α) denotes the closed subspace of L∞([−h, 0],C) whose elements contain a
continuous function with the value α at zero. Thus the function ϕ ∈ X = C([−h, 0],Rn)
gets assigned to the couple (ϕ(0), ϕ) by the embedding j, we see that X�� = j(X).
From now on, we shall omit the embedding operator j in our notation and identify X
and X��. In other words, we shall go back and forth between

ϕ ∈ X and (ϕ(0), ϕ) ∈ X��.

As explained in [14, II.6] all results obtain upward of Lemma 2.3 holds when replacing
C with Cn or Rn everywhere. A list of the representations of the spaces and the dual
pairings between the spaces is given in Table 2.1 (due to [29]).
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Space Representation Pairing
X φ ∈ C([−h, 0],Rn) 〈f, φ〉 =

´ h
0 df(θ)φ(−θ)

X∗ f ∈ NBV([0, h],Rn)

X� (c, g) ∈ Rn × L1([0, h],Rn) 〈(α, φ), (c, g)〉
X�∗ (a, φ) ∈ Rn × L∞([−h, 0],Rn) = cTα+

´ h
0 g(θ)φ(−θ) dθ

X φ ∈ C([−h, 0],Rn) 〈(c, g), φ〉
X� (c, g) ∈ Rn × L1([0, h],Rn) = cTφ(0) +

´ h
0 g(θ)φ(−θ) dθ

Table 2.1.: Representations for the abstract spaces X,X?, X� and X�? for the case of
the semigroup {T (t)}t≥0 associated with the linear equation (2.13). Also
indicated are the dual pairings that we will encounter in this thesis.

2.5. Bounded Linear Perturbations

We have calculated the �-star space for the trivial DDE from (2.7). Now consider the
linear DDE {

ẋ(t) =
´ h

0 dζ(θ)x(t− θ), t > 0,

x(θ) = ϕ(θ), −h ≤ θ ≤ 0.
(2.13)

We would like to see this equation as bounded perturbation of the trivial DDE. Motivated
by the �-star framework for the shift semigroup above (in particular by equation (2.12))
we write the delay equation in the space X�?

d

dt
xt = A�?0 xt +Bxt, (2.14)

where B : X → X�? is defined by

Bϕ = (〈ζ, ϕ〉n , 0) = 〈ζ, ϕ〉 r�?,

with r�? = (In, 0). The semigroup {T (t)}t≥0 corresponding to (2.14) and the shift
semigroup are related by the abstract integral equation

T (t)x = T0(t)x+

ˆ t

0
T�?0 (t− τ)BT (τ)x dτ. (2.15)

The integral has to be understood in the weak ? sense, i.e.〈ˆ t

0
T�?0 (t− τ)BT (τ)x dτ, x�

〉
:=

ˆ t

0

〈
BT (τ)x, T�0 (t− τ)x�

〉
dτ

for arbitrary x� ∈ X�. So in principle the integral takes values in X�? but one can
show that in fact it takes values in the closed subspace X�� = j(X). It can be
shown that (2.15) defines an unique strongly continuous semigroup T (t) with D(A) ={
x ∈ D(A�?0 ) : A�?0 x+Bx ∈ X

}
and Ax = A�?0 x + Bx. Then, by taking duality and

restriction we obtain semigroups {T (t)}?t≥0, {T (t)}�t≥0 and {T (t)}�?t≥0 with
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• D(A?) = D(A?0) and for x� ∈ D(A?) we have A?x� = A?0x
� +B?x�

• D(A�) = {x� ∈ D(A?0) : A?0x
� +B?x� ∈ X�} and A�x� = A?0x

� +B?x�

• D(A�?) = D(A�?0 ) and A�?x = A�?0 x+Bx

In other words the domains are not affected by the perturbation B. Since the perturba-
tion B is defined only in the finite dimensional span, we see that

A�?(α,ϕ) = (〈ζ, ϕ〉 , ϕ̇). (2.16)

We end this Section with a theorem which relates solutions of (2.13) with the semigroup
defined by the abstract integral equation (2.15).

Theorem 2.10. [14, Theorem III.4.1] Let, with {T0(t)} and B as defined above, {T (t)}
be the semigroup defined by the abstract integral equation (2.15). If x(·;ϕ) is a solution
of (2.13) then

T (t)ϕ = xt(·;ϕ).
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3. Bifurcations of DDEs

3.1. Semiflows for nonlinear DDEs

Consider the nonlinear differential equation

u̇ = A�?0 u+R(u, p), (3.1)

where R : O → X�?,O ⊂ X×Rm is assumed to be smooth. However, the results in this
Section can be weakened to R being locally Lipschitz.
Formal integration of (3.1) leads to the abstract integral equation

u(t) = T0(t)ϕ+

ˆ t

0
T�?0 (t− s)R(u(s), p)ds. (3.2)

As for linear DDEs we needed the notion of a semigroup, here we need the notion of a
non-linear semigroup, called a semiflow.

Definition 3.1. [14, Definition VII.2.1] A semiflow on M is a map S : D → M on an
open subset

D ⊂ [0,∞)×M

with the following properties:
1. For every x ∈M there exists an interval Ix, either Ix = [0,∞) or Ix = [0, tx) with

some tx > 0, so that

{(t, x) ∈ [0,∞)×M |t ∈ Ix} = D;

2. S(0, x) = x on M ;
3. x ∈M, s ∈ Ix and t ∈ IS(s,x) imply t+ s ∈ Ix and

S(t, S(s, x)) = S(t+ s, x);

4. all maps
Ix 3 t 7→ S(t, x) ∈M, x ∈M,

are continuous
5. all maps

{y ∈M : ((t, y) ∈ D} 3 x 7→ S(t, x) ∈M, t ≥ 0,

are continuous.
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Definition 3.2. [14, Definition VII.2.9] Let P be a topological space and let ∆ ⊂ [0,∞)×
M × P be open. A parameterized semiflow Σ : ∆ → M is a map such that for every
p ∈ P , the map Sp : Dp →M , where

Dp = {(t, x) ∈ [0,∞)×M : (t, x, p) ∈ ∆}
and

Sp(t, x) = Σ(t, x, p)

is a semiflow on M .

It can be shown that [14, Theorem VII.3.4] there exists for each initial data ϕ0 and
parameter value p an unique solution uϕ,p(t) of (3.2) on some maximal interval Iϕ,p. Set

∆ := {(t, ϕ, p) ∈ [0,∞)×X × P |t ∈ Iϕ,p} ,
and

Σ(t, ϕ, p) := uϕ,p(t),

then Σ defines a parameterized semiflow. The first two properties of Definition 3.1 are
easy to prove [14, Corollary VII.3.6]. The remaining properties requires more work, which
the reader can verify in [14, VII.4]. Now consider the parameter-dependent DDE{

ẋ(t) = g(xt, α), t > 0,

x(θ) = ϕ(θ), −h ≤ θ ≤ 0,
(3.3)

where g : C([−h, 0],Rn) × Rm → Rn is as smooth a necessary. Let (e1, . . . , en) be the
canonical basis for Rn, then the n elements

r�?i := (ei, 0) ∈ Rn × L∞([−h, 0],Rn),

for i = 1, . . . , n are linearly independent. Define a map R : O → X�?,O ⊂ X × P by

R(ϕ, p) :=

n∑
i=1

gi(ϕ, p)r
�?
i .

The next Proposition states that the maximal solutions of (3.2) are in one-to-one corre-
spondence with the Rn-valued functions of (3.3) .

Proposition 3.3. [14, Proposition VII.6.1] Let (ϕ, p) ∈ O.
1. Suppose x : [−h, t+) → Rn is a solution to equation (3.3) and x0 = ϕ ∈ X. Then
t+ ≤ sup Iϕ,p and for 0 ≤ t ≤ t+,

xt = uϕ,p(t) = Σ(t, ϕ, p).

2. Consider the function x̃ : [−h, 0] ∪ Iϕ,p → Rn, given by x̃0 = ϕ and

x̃(t) = Σ(t, ϕ, p)(0), ∀t ∈ Iϕ,p.
Then x̃ is a solution of (2.13) and

x̃t = Σ(t, ϕ, p), ∀t ∈ Iϕ,p.
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3.2. Spectrum of the Generator

The stability of a steady-state solution of a nonlinear DDE results in analyzing the
spectrum of the generator of the semigroup corresponding to the linear part of the DDE.
Therefore we will concentrate on the spectrum of the generator in this Section. In general,
the spectrum of an operator may consist of three different types of points, namely, the
residual spectrum, the continuous spectrum, and the point spectrum. Moreover, points
of the point spectrum are called eigenvalues of this operator. Consider the linear DDE{

ẋ(t) =
´ h

0 dζ(θ)x(t− θ), t ≥ 0,
x0 = ϕ, −h ≤ θ ≤ 0,

(3.4)

with corresponding generator A and semigroup {T (t)}t≥0. The spectrum σ(A) of A
contains of eigenvalues finite type only, i.e. all eigenvalues are isolated points of σ(A)
and the corresponding (generalized) eigenspaces are finite.

Theorem 3.4.

1. [14, Corollary IV.3.3] The spectrum of A consists of point spectrum only and is
given by

σ(A) = {λ ∈ C| det ∆(λ) = 0} ,
where

∆(λ) = λI −
ˆ h

0
e−λθdζ(θ) (3.5)

is called the characteristic matrix and

det ∆(λ) = 0

the characteristic equation.

2.
σ(A) = σ(A?) = σ(A�) = σ(A�?)

3. The algebraic multiplicity of the eigenvalue λ equals the order of λ as a zero of
det ∆

Example. For the simple DDE (2.6) we can try, as in ODEs, the solution of the form
x(t) = eλt. This leads to the equation

λ− αe−λτ = 0 (3.6)

which has a countable set of complex conjugate solutions, with real parts accumulating
at −∞ and imaginary parts growing fast [51]. Non-real roots z = u+ iv, u = Re z and
v = Im z, of equation (3.6) yield oscillatory solutions

t→ eut (c cos(v t) + d sin(v t)) ,

of the DDE (2.6), which is in obvious contrast to scalar autonomous ODEs, with all
solutions monotone.
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Remark. In DDE-BifTool we will exploit the fact the set

Λ(β) = {λ ∈ σ(A)|Re λ > β}

is a finite set of isolated eigenvalues of A when detecting codim-2 bifurcation.

3.3. Eigenspaces

For the normal form computation of the Bogdanov-Takens bifurcation we will need a rep-
resentation for the (generalized) eigenfunctions and adjoint (generalized) eigenfunctions
of the generator A and A? respectively. These can be constructed using characteristic
matrix (3.5). First we need the notion of a Jordan chain.

Definition 3.5. [14, Chapter IV.4] An ordered set (x0, x1, . . . , xk−1) of vectors in X is
called a Jordan chain for ∆ at λ if x0 6= 0 and

∆(z)
[
x0 + (z − λ)x1 + · · ·+ (z − λ)k−1xk−1

]
= O((z − λ)k)

for |z − λ| → 0. The number k is called the length of the chain and the maximal length
of a chain starting with x0 is called the rank of x0.

Lemma 3.6. [14, Chapter IV.5.12] Let λ be a simple eigenvalue of the generator A, then
there is an eigenfunction φ such that

Aφ = λφ, (3.7)

and an adjoint eigenfunction φ� such that

A?φ� = λφ�. (3.8)

Let (q) and (p) be the Jordan chain for ∆(λ) and ∆(λ)T respectively, i.e. q and p are
null vectors. Then the corresponding eigenfunction and adjoint eigenfunction are given
by

φ(θ) = eλθq,

φ�(θ) = pT + pT
ˆ θ

0
(

ˆ h

σ
eλ(σ−τ)dζ(τ)) dσ,

Furthermore the following identity hold

〈φ�, φ〉 = pT∆′(λ)q, (3.9)

which can be normalized to satisfy 〈φ�, φ〉 = 1.

Lemma 3.7. [29, Lemma 2.5] Let λ1 6= λ2 be simple eigenvalues of A. Let φλ1 be an
eigenfunction of A corresponding to λ1 eigenfunction and φ�λ2 an eigenfunction of A?

corresponding to λ2. Then
〈
φ�λ2 , φλ1

〉
= 0.
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Lemma 3.8. [29, Lemma 2.7] Let λ be eigenvalue of the generator A with algebraic mul-
tiplicity two and geometric multiplicity one, then there are (generalized) eigenfunctions
φ1,2 such that

Aφ0 = λφ0, Aφ1 = λφ1 + φ0 (3.10)

and adjoint (generalized) eigenfunctions φ�1,2 such that

A?φ�1 = λφ�1 , A?φ�0 = λφ�0 + φ�1 . (3.11)

Let (q0, q1) and (p1, p0) be the Jordan chain for ∆(λ) and ∆(λ)T respectively. Then the
(generalized) eigenfunctions and adjoint (generalized) eigenfunctions are given by

φ0(θ) = eλθq0,

φ1(θ) = eλθ(θq0 + q1), (3.12)

φ�1 (θ) = pT1 + pT1

ˆ θ

0
(

ˆ h

σ
eλ(σ−τ)dζ(τ)) dσ,

φ�0 (θ) = pT0 + pT0

ˆ θ

0
(

ˆ h

σ
eλ(σ−τ)dζ(τ)) dσ

+ pT1

ˆ θ

0
(

ˆ h

σ
eλ(σ−τ)(σ − τ) dζ(τ)) dσ.

Furthermore the following identities hold

〈φ�0 , φ0〉 = pT0 ∆′(λ)q0 +
1

2
pT1 ∆′′(λ)q0, (3.13)

〈φ�1 , φ1〉 = 〈φ�0 , φ0〉, (3.14)

〈φ�1 , φ0〉 = 0, (3.15)

〈φ�0 , φ1〉 = pT0 ∆′(λ)q1 +
1

2
pT0 ∆′′(λ)q0 +

1

2
pT1 ∆′′(λ)q1 +

1

6
pT1 ∆′′′(λ)q0. (3.16)

which can be normalized to satisfy 〈φ�0 , φ0〉 = δij.

Proof. The (generalized) eigenspace at the double eigenvalue λ of A is given by

N ((A− λ)2)

which leads to the expressions in (3.10) and similarly for (3.11). The representations
of the (generalized) eigenfunctions and adjoint (generalized) eigenfunctions can be in
Theorem IV.5.5 and IV.5.9 in [14].
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To prove (3.13) observe that

〈φ�0 , φ0〉 =

ˆ h

0
dφ�0 (θ)φ0(−θ)

= pT0 q0 +

ˆ h

0
dφ�

′
0 (θ)φ0(−θ)dθ

= pT0 q0 + pT0

ˆ h

0
(

ˆ h

θ
eλ(θ−τ)dζ(τ)e−λθ) dθ q0

+ pT1

ˆ h

0
(

ˆ h

θ
eλ(θ−τ)(θ − τ) dζ(τ)e−λθ) dθ q0

= pT0 q0 + pT0

ˆ h

0

ˆ τ

0
e−λτ dθ dζ(τ) q0

+ pT1

ˆ h

0

ˆ τ

0
e−λτ (θ − τ) dθ dζ(τ) q0

= pT0 q0 + pT0

ˆ h

0
τe−λτ dζ(τ) q0

+
1

2
pT1

ˆ h

0
τ2e−λτ dθ dζ(τ) q0

= pT0 ∆′(λ)q0 +
1

2
pT1 ∆′′(λ)q0,

where we used Fubini’s theorem to change the order of integration.
Equations (3.14) and (3.15) follow from

〈φ�1 , φ1〉 = 〈A?φ�0 − λφ�0 , φ1〉
= 〈φ�0 , Aφ1〉 − 〈λφ�0 , φ1〉
= 〈φ�0 , λφ1 + φ0〉 − 〈λφ�0 , φ1〉
= 〈φ�0 , φ0〉

and
〈φ�1 , φ0〉 = 〈φ�1 , Aφ1 − λφ1〉 = 〈A?φ�1 , φ1〉 − λ〈φ�1 λφ1〉 = 0.

To prove the normalization conditions 〈φ�0 , φ0〉 = δij we start by showing that 〈φ�0 , φ0〉
is non-vanishing. Consider the direct sum decomposition

X = N ((λ−A)2)⊕R((λ−A)2)

= N ((λ−A)2)⊕R((λ−A)2)

= N ((λ−A)2)⊕ ⊥N ((λ−A?)2),

Theorem IV.2.5 in [14]. Since φ0 ∈ N ((λ−A)2) and N ((λ−A?)2) is spanned by φ�0 and
φ�1 it follows that 〈φ�0 , φ0〉 6= 0. Now a choice has to be made, we can either scale φ0 or
φ�1 with α = 〈φ�1 , φ1〉−1 in order to achieve the normalization

〈φ�1 , φ1〉 = 〈φ�0 , φ0〉 = 1.
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Note that scaling φ0 results also in scaling φ1 in order for φ1 to stay a generalized
eigenfunction and similarly for φ�1 and φ�0 . It remains to normalize 〈φ�0 , φ1〉. Suppose
first we have scaled the function φ0. Then we note that for any scalar δ the function
φ�0 7→ φ�0 + δφ�1 is a generalized eigenvector of A?. By setting δ = −〈φ�0 , φ1〉 we obtain
〈φ�0 , φ1〉 = 0. In the case we scaled the function φ�1 , we note that for any scalar δ the
function φ1 7→ φ1+δφ0 is a generalized eigenvector of A. Then again taking δ = −〈φ�0 , φ1〉
yields 〈φ�0 , φ1〉 = 0.

3.4. Stability around a steady-state

In this Section we keep parameter α fixed and, therefore, we also suppress it in the
notation. Let ϕ0 be a stationary point the semiflow Σ generator by (3.2), that is,

Σ(t, ϕ0) = ϕ0 ∀t ≥ 0.

Equivalently one can show that ϕ̄ is a constant function

ϕ0(θ) = x̄, θ ∈ [−h, 0],

and satisfies
x̄ = f(ϕ0),

see [13, Theorem 3.9].

Definition 3.9. [14, VII.5.7] We say that ϕ0 is (locally) stable whenever for every ε > 0
we can find δ > 0 such that ‖ϕ− ϕ0‖ ≤ δ guarantees that [0,∞)× {ϕ} ⊂ ∆ and

‖Σ(t, ϕ)− ϕ0‖ ≤ ε ∀t ≥ 0.

When ϕ0 is not stable, we say it is unstable. When we can find ε > 0,K > 0 and ω < 0
such that

Σ(t, ϕ0) = Keωk t ≥ 0,

for all ϕ with ‖ϕ− ϕ0‖ ≤ ε, we say that ϕ0 is (locally) exponentially stable.
The next Theorem states the “principle of linearized stability” for DDEs. It relates the
stability of a stationary point to the stability of the semigroup obtained from differenti-
ation of the semiflow.

Theorem 3.10. The stationary point ϕ0 is

(i) unstable if Re λ > 0 for some root λ of the characteristic equation,

(ii) (locally) exponentially stable if Re λ < 0 for all roots λ of the characteristic equa-
tion.

When A does have eigenvalues on the imaginary axis then there exists, as in ODEs, a
center manifold which we will describe in the next Section.
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3.5. Center Manifold

If the spectrum of A contains eigenvalues on the imaginary axis in the complex plane then
there exists, as in ODEs, a invariant local center manifold Wc. Since the (generalized)
eigenspaces are finite dimensional and also the number of eigenvalues is any vertical stripe
in the complex plane are finite, the center manifold Wc is finite dimensional. Consider
the AIE

u(t) = T (t− s)u(s) +

ˆ t

s
T�?(t− τ)R(u(τ)) dτ, (3.17)

where R : X → X�? is defined by R(φ) = r�?g(φ). To prove the existence of a smooth
global center manifold, one needs to define cut-off functions ξ : R+ → R be C∞-smooth
and such that

(i) ξ(y) = 1 for 0 ≤ y ≤ 1,
(ii) 0 ≤ ξ(y) ≤ 1 for 1 ≤ y ≤ 2,
(iii) ξ(y) = 0 for y ≥ 1.

Then the non-linearity R is modified in the center and the hyperbolic directions sepa-
rately; for δ positive we let

Rδ(u) = R(u)ξ

(∥∥P�?0 u
∥∥

δ

)
ξ

(∥∥(I − P�?0

)
u
∥∥

δ

)
.

This is used to prove the existence of a Lipschitz continuous (global) center manifold.
Using results of contractions on scales of Banach spaces a smooth center manifold is
constructed. Either from Theorem IX.5.3 and Corollary IX.7.10 in [14] or Theorem 6.13
in [15] we obtain

Theorem 3.11. (Center manifold: invariance and relation to bounded orbits) Assume
that g ∈ Ck, k ≥ 1, g(0) = 0, Dg(0) = 0 and let Λ0 6= ∅. There exists a Ck-mapping
φ → C(φ) of a neighborhood of the origin in X0 into X and a positive constant δ such
that

(i) Im (C) is locally invariant in the sense that u?(φ)(t) satisfies the equation
C(P0(u?(φ)(t))) = u?(φ)(t) and u?(φ)(t) is a solution of (3.17) on the interval
I = [S, T ], S < 0 < T , provided for t in this interval ‖u?(φ)(t)‖ ≤ δ,

(ii) Im (C) is tangent to X0 at zero: C(0) = 0 and DC(0)ϕ = ϕ for all ϕ ∈ X0,

(iii) Im (C) contains all solutions of (3.17) which are defined on R and bounded above
by δ in the supreme norm.

Here P0 is the projection of X onto the center subspace X0.
Let y(t) = P0(u?(φ)(t)) then y(t) satisfies the equation

y(t) = T (t)y(0) +

ˆ t

0
T�?(t− τ)P�?0 Rδ(C(y(τ))) dτ,

30



Chapter 3 3. Bifurcations of DDEs

and, consequently the ODE in X0 yields

ẏ = Ay + P�?0 Rδ(C(y(τ))), (3.18)

where P�?0 is the projection of X�? onto the center subspace X0. Equivalently, we write
the ODE (3.18) in X�? as

u̇(t) = A�?u(t) +R(uδ(t)), (3.19)

see Theorem VI.2.2 in [14].
In the absence of unstable directions (i.e no positive eigenvalues) the center manifold
is attractive, see Theorem [14, Theorem IX.8.1]. An immediate consequence is that all
solutions which remain bounded and sufficiently small for all time lie on the center mani-
fold. Since our interest here lies with local analysis only (the global bifurcation predicted
by a Bogdanov-Takens point comes from local analysis) we dropped the dependence δ in
equations (3.18) and (3.19) and write

ẏ = Ay + P�?0 R(C(y(τ))) (3.20)

and
u̇(t) = A�?u(t) +R(u(t)). (3.21)

3.6. Parameter-Dependent Center Manifold

Suppose that the steady-state ϕ0 ∈ X = C([−h, 0],Rn) at the critical parameter value
α0 ∈ Rm is a stationary solution of (3.3), i.e.

f(ϕ0, α0) = 0.

By a change of coordinates it can always be arranged that (ϕ0, α0) = (0, 0). Furthermore,
suppose that the linearization has eigenvalues on the imaginary axis.
We follow the method used in [14, Chapter IX.9] to modify the center manifold theorem
in order to include parameter dependence. However, there the assumption that the
equilibrium is fixed for all parameter values α is made. This assumption is commonly
applied in the literature when considering Delay Differential Equations, see for example
[19, 18]. In general this may not always be the case. In particular the equilibrium at the
generic Bogdanov-Takens and fold-Hopf bifurcation can disappear when parameters are
varied.
One way to consider the parameter-dependent center manifold is to extend the DDE
(3.3) as {

ẋ(t) = f(xt, α),

α̇(t) = 0.
(3.22)

That is, we treat parameters as variables, which have trivial dynamics. This approach
was suggested in [14, VII.7] but never elaborated. We need to write the extended system
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as an abstract integral equation in order to apply the center manifold theorem. Therefore,
we need to derive the C0-semigroups {T(t)} and {T�?(t)} corresponding to the extended
system. To do so we expand (3.22) as{

ẋ(t) = Lxt +Mα+ g(xt, α),

α̇(t) = 0,
(3.23)

where

L = D1f(ϕ0, α0),

M = D2f(ϕ0, α0),

and g contains only nonlinear terms with respect to xt and α. The linearization of (3.23),
i.e. when g = 0, is equivalent to the system{

u̇ = A�?0 u+Bu+ J1α,

α̇ = 0,

where
Bu = (Lu) r�?, J1α = (Mα) r�?, (3.24)

and the first equation is an inhomogeneous differential equation. Let
{
T�?0 (t)

}
be the

C0-semigroup on X generated by A�?0 , then{
u(t) = T0(t− s)u(s) +

´ t
s T
�?
0 (t− τ) [Bu(τ) + J1α0] dτ

α(t) = α0.
(3.25)

From [14, Lemma III.2.23] it follows that (3.25) is equivalent to the abstract integral
equation {

u(t) = T (t− s)u(s) +
´ t
s T
�?(t− τ)J1α0 dτ,

α(t) = α0,
(3.26)

where {T (t)} is the C0-semigroup on X generated by A�?0 +B in X. We thus obtain

T(t) =

(
T (t)

´ t
0 T
�?(t− τ)J1 dτ

0 Im×m

)
. (3.27)

Lemma 3.12. The generator A of the C0-semigroup {T(t)} is given by

A =

(
A M
0 0

)
,

where A is the generator of the C0-semigroup {T (t)}.
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Proof. Let w = (u, α0) ∈ X × Rm. Using definition (2.2) it follows that

Aw = lim
t↓0

1

t
(T(t)w − w)

= lim
t↓0

1

t

((
T (t)

´ t
0 T
�?(t− τ) dτM

0 Im×m

)(
u
α0

)
−
(

u
α0

))
= lim

t↓0

1

t

((
T (t)u+

´ t
0 T
�?(t− τ) dτMα0

α0

)
−
(

u
α0

))
= lim

t↓0

1

t

((
T (t)u− u+

´ t
0 T
�?(t− τ) dτMα0

0

))
=

((
Au+Mα0

0

))
=

(
A M
0 0

)
w.

For the C0-semigroup {T�?(t)} more work needs to be done. We have the following
theorem.

Theorem 3.13. The C0-semigroup {T�?(t)} on (X × Rm)�? ∼= X�? × Rm is given by

T�?(t) =

(
T�?(t)

´ t
0 T
�?(t− τ)J1 dτ

0 In×m

)
(3.28)

when we consider X�? as a subspace of X�??? for the component
´ t

0 T
�?(t− τ)J1 dτ .

Proof. First notice that since

〈Tw,w?〉 =

〈(
T (t)

´ t
0 T
�?(t− τ)J1 dτ

0 In×m

)(
u
α0

)
,

(
u?

α?0

)〉
=

〈(
T (t)u

0

)
,

(
u?

α?0

)〉
+

〈( ´ t
0 T (t− τ) dτMα0

α0

)
,

(
u?

α?0

)〉
,

we can treat each component in the block operator matrix (3.27) separately. Therefore,
we only need to focus on the term

´ t
0 T
�?(t− τ)C dτ . Define the operators

L̃1α =

(
Mα

0

)
, : Rm → X�? ∼= Rn × L∞,

L̃2(t)x�? =

ˆ t

0
T�?(σ)x�? dσ, : X�? → X.

It follows that

L̃α := L̃2(t) ◦ L̃1α =

ˆ t

0
T�?(σ)(Mα, 0) dσ, : Rm → X.
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The operator L̃2(t)? maps X? into X� and L̃2(t)? = L̃�2 (t), where L̃�2 (t) : X? → X� is
defined by

L̃�2 (t)x? =

ˆ t

0
T ?(σ)x? dσ

where we consider X� as a subspace of X�??, see [14, Corollary III.2.18]. Let x� =
(c, g) ∈ Rn × L1

∼= X� ⊂ X�??, then〈
L̃1α, x

�
〉

=

〈(
Mα

0

)
, x�

〉
= (Mα, c) =

(
α,MT c

)
,

where (·, ·) is the standard inner product on Rn. It follows that the adjoint L̃?1 : X� → Rm
is given by L̃?1x� = MT c. We obtain that

L̃?x? =
(
L̃?1(t) ◦ L̃�2

)
x? = MT

(ˆ t

0
T ?(σ) dσx?

)
, : X? → Rm.

The map
(
L̃�?2 (t)

)
=
(
L̃�2 (t)

)?
: X�? → X�? is given by

L̃�?2 (t)x�? =

ˆ t

0
T�?(σ)x�? dσ.

Indeed, we have 〈
L̃�2 (t)x?, x�?

〉
=

〈ˆ t

0
T ?(σ)x? dσ, x�?

〉
=

ˆ t

0

〈
T ?(σ)x?, x�?

〉
dσ

=

ˆ t

0

〈
x?, T�?(σ)x�?

〉
dσ

=

〈
x?,

ˆ t

0
T�?(σ)x�? dσ

〉
.

Let x� = (c, 0) ∈ Rn × L1 and x�? = (Mα, 0) ∈ Rn × L∞ ∼= X�?, then(
L̃?1x

�, α
)

=
(
MT c, α

)
= (c,Mα) =

〈(
c
0

)
,

(
Mα

0

)〉
=
〈
x�, x�?

〉
.

Thus L̃??1 : Rm → X�? is given by

L̃??1 α =

(
Mα

0

)
.
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It follows that

L̃??α =
(
L̃�?2 (t) ◦ L̃??1

)
α

= L̃�?2 (t)(Mα, 0)

=

ˆ t

0
T�?(σ)(Mα, 0) dσ

=

ˆ t

0
T�?(σ) dσMα.

and we obtain (3.28).

Lemma 3.14. The generator of {T�?(t)} is given by

A�? =

(
A�? M

0 0

)
,

where A�? is the generator of the C0-semigroup T�?.

Proof. The proof is similar to Lemma 3.12.

The projection P�? from (X×Rm)�? onto the center subspace of A is given by P�?w =
(P�?0 u, α). Next, define the nonlinearity R : X × Rm → X�? × Rm by

R(w) = (R(u, α), 0),

where
R(ϕ, α) = r�? (g(ϕ, α)) (3.29)

and w = (u, α0).
It follows that the abstract integral equation for extended system (3.23) in given by

(u(t), α) = T(t− s)(u(s), α) +

ˆ t

s
T�?(t− τ)R(u(τ), α) dτ. (3.30)

To this equation one can apply the Center Manifold Theorem 3.11. By projecting the
center manifold flow on the center subspace X0 × Rm we obtain the ODE

dz

dt
= Az + P�?(R(C(z))), (3.31)

where z = (y, α). From the abstract integral equation (3.30) we see that the mapping C
from X0 × Rm into X × Rm is given by

C(ϕ, α) = (C1(ϕ, α), α). (3.32)
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We conclude that the ODE (3.31) on the center subspace X0 × Rm can be written as{
ẏ(t) = Ay +Mα+ P�?(R(C1(y, α), α)),

α̇(t) = 0,
(3.33)

and on the center manifold in X�? × Rm as{
u̇(t) = A�?u(t) + J1α+R(u(t), α),

α̇(t) = 0.
(3.34)

Remark 3.15. We implicitly assumed that the mapping (u, α) 7→ R(u, α) from X × Rm
into X�? is Ck-smooth. This condition is violated whenever one takes one of the delays
as parameters, see [14, Remark IX.9.2].
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4. Computation of normal forms on the
parameter-dependent center manifold

4.1. The method

In this Section we will extend the normalization method from [29] to include parameters.
There are two different approaches to choose from. In the first approach the variables and
parameters are treated separately. Then there are two maps relating the original system
and the normal form on the center subspace. In the second approach the parameters
are treated as variables as well. Then there will only one map relating the two systems.
Although the first approach is more natural, there are two advantages to the second
approach. The first advantage is that since there is only one map between the systems,
the expansion is more easy to implement. The second advantage is that it may give more
insight into solving the coefficients. In [32, 1, 36] there is a ‘big’ system to solve to obtain
some coefficients simultaneously. From the second approach it is clearer to see that these
coefficients can be obtained without using this ‘big’ system, making it more adaptable
to the DDE case. Despite these advantages we have chosen to use the first approach in
this thesis to better mimic the ODE case.
Suppose that the steady-steady ϕ0 = 0 at the parameter value α0 = 0 ∈ Rp is a solution
of (3.3),

ẋ = f(ϕ0, α0) = 0.

Let the generator A�? of the linearization of the DDE at ϕ0 = 0 and the critical parameter
value α0 = 0 have 0 < nc < ∞ eigenvalues on the imaginary axis. Then there exists
a finite dimensional local center manifold Wloc of dimension n ≥ nc, depending on the
multiplicities of the eigenvalues, tangent to the center subspaceX0. We consider bounded
solutions u(t) that are in Wloc for all time. Let y(t) be the projection of u(t) onto X0,
i.e. y(t) = P�?0 (u(t)). Since X0 is spanned by some basis Φ of (generalized) eigenvectors
, we can express y(t) uniquely relative to Φ. The corresponding coordinate vector z(t)
of y(t) satisfies some ODE admitting an expansion of the form

ż = G(z, β) =
N∑
|ν|=1

M∑
|µ|=0

1

ν!µ!
gνµz

νβµ +O(‖z‖N+1 ‖β‖M+1), ∀t ∈ R, (4.1)

with unknown normal form coefficients gνµ ∈ Rnc and parameters β. Here ν and µ are
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multi-indices of length n and p respectively. For a multi-index ν one has

ν = (ν1, ν2, . . . , νn),

ν! = ν1!ν2! . . . νn!,

|ν| = ν1 + ν2 + · · ·+ νn,

zν = zν11 z
ν2
2 . . . zνnn .

The series is supposed to be truncated after some sufficiently high order N and M .
On Wloc itself u(t) satisfies the ODE

u̇(t) = A�?u(t) + J1α+R(u(t), α),

where J1 is the derivative with respect to the parameters D2f(ϕ0, α0) ∈ Rn×p and R is
given by (3.29). The nonlinearity can expanded by

R(u, α) =
∑

j = 1 . . . N, k = 1 . . .M,
(j, k) /∈ {(0, 0), (1, 0), (0, 1)}

1

j!k!
Dk

2D
j
1f(0, 0)(

j times︷ ︸︸ ︷
u, . . . , u,

k times︷ ︸︸ ︷
α, . . . α)r�?,

where Dk
2D

j
1f(0, 0)(

j times︷ ︸︸ ︷
u, . . . , u,

k times︷ ︸︸ ︷
α, . . . α) is the jth order Fréchet derivative of f with respect

to its first argument and the kth order derivative of f with respect to its second argument
evaluated at the point (0, 0) ∈ (C([−h, 0),Rn),Rp).
In order to define a coordinate-version of the parameter-dependent center manifold map-
ping C : V × Rp ⊂ X0 → X defined in (3.32) relative to Φ, we introduce the mapping
H : V ⊂ Rnc × Rp → X defined by

H(z, β) = C(ξ(z), β).

Here the coordinate mapping ξ → z(ξ) is a smooth Ck injection onto some neighbourhood
V ⊂ Rnc . Then H admits the expansion

H(z, β) =
N∑
|ν|=1

M∑
|µ|=0

1

ν!µ!
Hνµz

νβµ +O(‖z‖N+1‖β‖M+1). (4.2)

As before, let y(t) be the projection of the solution u(t) onto the center subspace X0 and
z(t) is its coordinate with respect to Φ. It then follows that

u(t) = H(z(t), β), ∀t ∈ R.

Differentiating both sides of this relation yields the homological equation

A�?H(z, β) + J1α+R(H(z, β), α) = DzH(z, β)ż, (4.3)
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due to β̇ = 0. To relate the parameters α to the parameters β, we define the mapping

α = K(β), K : Rp → Rp.

We expand K as

K(β) =

N∑
|µ|=1

1

µ!
Kµβ

µ. (4.4)

Substituting (4.1), (4.2) and (4.4) into (4.3) and equating coefficients of the same order
in z and β, one can solve recursively for the unknown coefficients gν , Hνµ and Kµ by
applying the Fredholm alternative, and taking inverses or bordered inverses as described
in the next Section.

4.2. Solvability

In this Section we are interested in solving the system(
λI −A�?

)( ψ0

ψ(θ)

)
=

(
c
ϕ

)
, (4.5)

where ψ0 = ψ(0). Here (c, ϕ) ∈ Rn × C([−h, 0],Rn) is given. There are two situations
two consider depending on weather λ is an eigenvalues or not. First we suppose that λ
is not an eigenvalue of the generator A, then by Corollary 1 it belongs to the resolvent
ρ(A) of A. In this case there is an unique solution, which can be found by the variations-
of-constants formula.

Corollary 4.1. [14, Corollary IV.5.4] The resolvent (λI − A�?)−1 has the following
representation:

(λI −A�?)−1

(
c
ϕ

)
=

(
ψ(0)
ψ

)
,

where

ψ(θ) = eλθψ0 +

ˆ 0

θ
e−λσϕ(σ) dσ, (−h ≤ θ ≤ 0),

with

ψ0 = ∆(λ)−1

[
c+

ˆ h

0
dζ(τ)

ˆ τ

0
e−λσϕ(σ − τ) dσ

]
Now suppose that λ is an eigenvalue, then there may not be a solution, and if there is,
it may not be unique. The Fredholm alternative gives sufficient and necessary conditions
for the system (4.5) to be solvable.

Lemma 4.2. [46, Lemma 33] (Fredholm solvability) Let λ be arbitrary. Then (4.5) has
a solution (ψ0, ψ(θ)) ∈ D(A�?) if and only of (c, ϕ) annihilates N(λI −A�), i.e. if and
only if 〈

φ�, (c, ϕ)
〉

= 0, ∀φ�(λI −A�).
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Proposition 4.3. Let λ be a simple eigenvalue of ∆. Let {q0} and {p1} be Jordan chains
for ∆(λ), ∆(λ)T respectively, i.e.

∆(λ)q0 = 0, p1∆(λ) = 0. (4.6)

Then the product 〈p1, q0〉 6= 0 and the bordered system(
∆(λ) q0

pT1 0

)(
x
a

)
=

(
y
0

)
, (4.7)

is nonsingular. It defines the unique solution x such that ∆(λ)x = y and 〈p1, x〉 = 0 if
and only if pT1 y = 0. We denote this solution by x = ∆INV (λ)y.

Proof. Equation (4.6) follows from the definition of a Jordan chain. We have the following
decomposition

Rn = R(∆(λ))⊕N (∆(λ))

= N (∆T (λ))⊥ ⊕N (∆(λ)).

Since N (∆(λ)) = q0 and N (∆T (λ))⊥ = {x ∈ Rn : 〈p1, x〉 = 0} it follows that 〈p1, q0〉 is
nonvanishing. Inspecting the null-space of the bordered system in (4.7) yields the system{

∆(λ)x+ aq0 = 0,
pT1 x = 0.

Multiplying the first equation with p1 gives that a = 0. Since x cannot be in the span of
q0 by the second equation, it follows that x = 0. Lastly consider the system{

∆(λ)x+ aq0 = y,
pT1 x = 0.

By the Fredholm alternative we have ∆(0)x = y if and only if pT1 y = 0. Assuming that
pT1 y = 0 is satisfied, it follows that

pT1 ∆(λ)x+ apT1 p1 = a‖p1‖2 = pT1 y = 0.

Therefore, a = 0 and ∆(λ)x = y.

Proposition 4.4. Let λ be a double eigenvalue of ∆. Let {q0, q1} and {p1, p0} be Jordan
chains for ∆(λ), ∆(λ)T respectively, then(

∆(λ) 0n
∆′(λ) ∆(λ)

)(
q0

q1

)
= 0,

(
p0 p1

)( ∆(λ) 0n
∆′(λ) ∆(λ)

)
= 0

holds.
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Proof. By definition
∆(z) [q0 + (z − λ)q1] = O((z − λ))

holds at z = λ. Thus ∆(λ)q0 = 0. Differentiation with respect to z yields

∆′(z) [q0 + (z − λ)q1] + ∆(z)q1 = 0.

Evaluating at z = λ proves the statement for the chain {q0, q1}. The statement for the
chain {p1, p0} follows similarly.

Remark 4.5. This result can be generalized to Jordan chain of length n ∈ N, see [14,
Chapter IV Exercise 5.11].

Proposition 4.6. Suppose that λ is a double eigenvalue of A. Let (q0, q1) and (p1, p0)
be Jordan chains for ∆(λ), ∆(λ)T respectively, then the augmented system(

∆(λ) p1

qT0 0

)(
x
a

)
=

(
y
0

)
, (4.8)

is nonsingular. It defines the unique solution x such that ∆(λ)x = y and 〈q0, x〉 = 0 if
and only if pT1 y = 0. We denote this solution by x = ∆INV (λ)y.

Remark. Note that the same symbol ∆INV is used as in Proposition 4.3. It will be clear
from the contents which bordered system should used.

Proof. Consider the equation(
∆(λ) p1

qT0 0

)(
x
a

)
=

(
0
0

)
,

which is equivalent to the system{
∆(λ)x+ ap1 = 0,

qT0 x = 0.
(4.9)

Since
pT1 ∆(λ)x+ apT1 p1 = apT1 p1 = 0,

we have a = 0. Then x = cq0, for some constant c. The second equation in (4.9) then
implies that c = 0, so that x = 0. Suppose now that (x, a)T is the solution to (4.8).
Lastly consider the system {

∆(λ)x+ ap1 = y,
qT0 x = 0.

By the Fredholm alternative we have ∆(0)x = y if and only if pT1 y = 0. Assuming that
pT1 y = 0 is satisfied, it follows that

pT1 ∆(λ)x+ apT1 p1 = a‖p1‖2 = pT1 y = 0.

Therefore, a = 0 and ∆(λ)x = y.
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Proposition 4.7. [29, Proposition 3.6] Suppose λ is simple eigenvalue of A and assume
that (4.5) is consistent for a given (c, ϕ) ∈ X�?. Let the vectors q, p ∈ Rn and eigen-
functions φ, φ� be as in Lemma 3.6. Assume that the eigenfunctions are normalized to
〈φ, φ�〉 = 1, then

ψ(θ) = eλθψ0 +

ˆ 0

θ
eλ(θ−s)ϕ(s) ds (θ ∈ [−h, 0])

with

ψ0 = ξ + γq, ξ = ∆(λ)INV
[
c+

ˆ h

0
dη(τ)

ˆ τ

0
e−λsϕ(s− τ) ds

]
.

For the constant γ given by

γ = −pT∆′(λ)ξ − pT
ˆ h

0

ˆ h

τ
e−λsdη(s)

ˆ 0

−τ
eλσϕ(σ) dσ dτ.

the pairing
〈
φ�0 , ψ

〉
= 0.

Corollary 4.8. [29, Corollary 3.7] Suppose in addition that (c, ϕ) = (ζ, 0) + κφ, where
ζ ∈ Rn is an arbitrary vector and κ is a scalar. Then

ψ0 = ξ + γq, ψ(θ) = eλθ (ψ0 − κθq) (θ ∈ [−h, 0])

with

ξ = ∆(λ)INV
[
ζ + κ∆′(λ)q

]
, and γ = −pT∆′(λ)ξ +

1

2
κpT∆′′(λ)q.

For readability purposes we will use the notation ψ(θ) = BINV
λ (ζ, κ) whenever conve-

nient.

Proposition 4.9. Suppose λ is a double eigenvalue of A and assume that (4.5) is con-
sistent for a given (c, ϕ) ∈ X�?. Let q0, q1, p0p1 ∈ Rn be as in Lemma 3.8, then

ψ(θ) = eλθψ0 +

ˆ 0

θ
eλ(θ−s)ϕ(s) ds (θ ∈ [−h, 0])

with

ψ0 = ξ + γq0, ξ = ∆(λ)INV
[
c+

ˆ h

0
dη(τ)

ˆ τ

0
e−λθϕ(s− τ) ds

]
.

The constant γ may be arbitrary, however when

γ = −pT0 ∆′(λ)ξ − 1

2
pT1 ∆′′(λ)ξ

− pT0
ˆ h

0

ˆ s

0
e−λs

ˆ 0

−τ
e−λσϕ(σ) dσ dτ dζ(s)

− pT1
ˆ h

0

ˆ s

0
e−λs(τ − s)

ˆ 0

−τ
e−λσϕ(σ) dσ dτ dζ(s),

then the pairing
〈
φ�0 , ψ

〉
= 0.
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Proof. From formula (2.16) we have seen that

A�?(α,ϕ) = (

ˆ h

0
dζ(θ)ψ(t− θ), ψ̇),

it follows that

(
λI −A�?

)( ψ0

ψ

)
=

(
λψ0 −

´ h
0 dζ(θ)ψ(−θ)
λψ − ψ̇

)
=

(
c
ϕ

)
. (4.10)

By the variations-of-constants formula we have

ψ(θ) = eλθψ0 +

ˆ 0

θ
eλ(θ−s)ϕ(s) ds (θ ∈ [−h, 0]) .

Substituting into the first equation of (4.10) yields

∆(λ)ψ0 =

{
c+

ˆ h

0
dζ(τ)

ˆ τ

0
e−λsϕ(s− τ) ds

}
.

It follows that

ψ0 = ∆(λ)INV
{
c+

ˆ h

0
dζ(τ)

ˆ τ

0
e−λsϕ(s− τ) ds

}
+ γq0,

where γ is some constant. Now define

ψ̃(θ) = eλθξ +

ˆ 0

θ
eλ(θ−s)ϕ(s) ds,

so that
ψ(θ) = ψ̃(θ) + γφ0(θ).

Pairing with φ�0 yields 〈
φ�0 , ψ

〉
=
〈
φ�0 , ψ̃ + γφ0

〉
=
〈
φ�0 , ψ̃

〉
+ γ,

thus for γ = −
〈
φ�0 , ψ̃(θ)

〉
the pairing

〈
φ�0 , ψ

〉
vanishes. A straightforward calculation
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yields〈
φ�0 , ψ̃(θ)

〉
=

ˆ h

0
dφ�0 (τ)ψ̃(−τ)

= pT0 ξ +

ˆ h

0

[
φ�0
]′

(τ)ψ̃(−τ)dτ

= pT0 ξ + pT0

ˆ h

0

ˆ h

τ
eλ(τ−s)dζ(s)ψ̃(−τ)dτ

+ pT1

ˆ h

0

ˆ h

τ
eλ(τ−s)(τ − s)dζ(s)ψ̃(−τ)dτ

= pT0 ξ + pT0

ˆ h

0

ˆ h

τ
eλ(τ−s)dζ(s)

(
e−λτξ +

ˆ 0

−τ
e−λ(τ+σ)ϕ(σ) dσ

)
dτ

+ pT1

ˆ h

0

ˆ h

τ
eλ(τ−s)(τ − s)dζ(s)

(
e−λτξ +

ˆ 0

−τ
e−λ(τ+σ)ϕ(σ) dσ

)
dτ

= pT0 ξ + pT0

ˆ h

0

ˆ h

τ
e−λsdζ(s)

(
ξ +

ˆ 0

−τ
e−λσϕ(σ) dσ

)
dτ

+ pT1

ˆ h

0

ˆ h

τ
e−λs(τ − s)dζ(s)

(
ξ +

ˆ 0

−τ
e−λσϕ(σ) dσ

)
dτ

= pT0 ξ +
1

2
pT0

ˆ h

0

ˆ h

τ
e−λs

(
ξ +

ˆ 0

−τ
e−λσϕ(σ) dσ

)
dτdζ(s)

+ pT1

ˆ h

0

ˆ s

0
e−λs(τ − s)

(
ξ +

ˆ 0

−τ
e−λσϕ(σ) dσ

)
dτdζ(s)

= pT0 ∆′(λ)ξ + pT1 ∆′′(λ)ξ + pT0

ˆ h

0

ˆ h

τ
e−λs

(ˆ 0

−τ
e−λσϕ(σ) dσ

)
dτdζ(s)

+ pT1

ˆ h

0

ˆ s

0
e−λs(τ − s)

(ˆ 0

−τ
e−λσϕ(σ) dσ

)
dτdζ(s)

Corollary 4.10. Suppose that in addition that λ = 0, then

ψ(θ) = ξ + γq0 −
ˆ 0

θ
ϕ(s) ds (θ ∈ [−h, 0])

with

ξ = ∆(0)INV
[
−c−

ˆ h

0
dη(τ)

ˆ τ

0
ϕ(s− τ) ds

]
is the solution to the system

A�?
(
ψ(0)
ψ(θ)

)
=

(
c

ϕ(θ)

)
.
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In order for the pairing
〈
φ�0 , ψ

〉
to vanish the constant γ must satisfy

γ = −pT0 ∆′(0)ξ − 1

2
pT1 ∆′′(0)ξ

− pT0
ˆ h

0

ˆ s

0

ˆ 0

−τ
ϕ(σ) dσ dτ dζ(s)

− pT1
ˆ h

0

ˆ s

0
(τ − s)

ˆ 0

−τ
ϕ(σ) dσ dτ dζ(s).
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5. Detection and location of BT-points
in DDEs

In general a Bogdanov-Takens point is encountered while continuing either a Hopf or
a fold bifurcation. In Section 5.1, we first describe the method used for detecting a
Bogdanov-Takens point while continuing a Hopf curve in DDE-BifTool [17], and com-
pare this with the detection method used in MatCont [11, 12]. In this Section we will
also describe the method to detect a Bogdanov-Takens point while continuing a fold
bifurcation curve.
After detecting a BT-point we need to locate the point accurately in order to calculate the
normal form coefficients. This will be done in Section 5.2 by applying Newton-Raphson
to a special defining system based on the Jordan chain of the characteristic matrix.

5.1. Detection

5.1.1. Detection while continuing fold

In DDE-BifTool a fold bifurcation curve is continued using the defining system
f(x0, x0, . . . , x0, α) = 0,

∆(x0, α, 0)q0 = 0,
cT q0 − 1 = 0,

(5.1)

where α ∈ R2. At a fold point the characteristic matrix ∆(x0, α, 0) has a one simple zero
eigenvalue.
From [14, Corollary IV.5.12] we have to following result

Lemma 5.1. Let λ be a simple zero of det ∆. The Jordan chain for ∆ at λ has rank
one and is given by q0 with ∆(λ)q0 = 0. The corresponding eigenvector of A is given by

φλ(θ) = p1e
λθ, −h ≤ θ ≤ 0.

The Jordan chain for ∆T at λ has rank one and is given by p1 with pT1 ∆(λ) = 0. The
corresponding eigenfunction of A? is given by

φ�λ (θ) = p1 +

ˆ θ

0

(ˆ h

σ
eλ(σ−τ)dζT (τ)

)
dσ p1, 0 < θ ≤ h.
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Furthermore, 〈
φ�λ , φλ

〉
= p1∆′(λ)q0 6= 0, (5.2)

where ∆′ denotes the derivative of ∆.

When continuing a fold bifurcation point a Bogdanov-Takens bifurcation can be encoun-
tered in the event of an additional zero eigenvalue. In this situation, we have from
Proposition 4.6, vectors q0, q1, p1, p0 ∈ Rn such that

∆(x0, α, 0)q0 = 0,

∆′(x0, α, 0)q0 = −∆(x0, α, 0)q1,

pT1 ∆(x0, α, 0) = 0,

pT1 ∆(x0, α, 0)′ = −pT0 ∆(x0, α, 0).

(5.3)

holds. Therefor, the identity in (5.2) vanishes

p1∆′(λ)q0 = pT0 ∆(0)q0 = 0

at a Bogdanov-Takens point.

Corollary 5.2. To test for a Bogdanov-Takens point while continuing a fold point we
monitor sign of the function ψfBT = pT1 ∆′(λ)q0 and the derivative of ψfBT with respect to
the parameters.

The monitoring of the derivative is necessary since the functions depends on the vectors
pT1 and q0.

5.1.2. Detection while continuing Hopf

A Bogdanov-Takens point can be detected while continuing either a Hopf or a fold bifur-
cation curve. In DDE-BifTool a Hopf bifurcation point is continued using the defining
system 

f(x0, x0, . . . , x0, α) = 0
∆(x0, α, iω)v = 0

cT v − 1 = 0.
(5.4)

The vector c ∈ Rn is chosen as c = v(0)/(v(0)T v(0)) where v(0) is the initial value of v.
The defining system (5.4) differs from the defining system used in MatCont

f(x0, α) = 0(
A2(x0, α) + κIn

)
v = 0

vT v − 1 = 0
vT l0 = 0,

(5.5)

where A = Dxf(x, α). The reference vector l0 ∈ Rn is not orthogonal to the real two
dimensional eigenspace of A corresponding to the eigenvalues λ1 + λ2 = 0, λ1λ2 = κ. A
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solution to (5.5) with κ > 0 corresponds to the Hopf bifurcation point with ω2 = κ, while
κ < 0 specifies a neutral saddle with two real eigenvalues λ1,2 = ± − κ. A Bogdanov-
Takens point is thus detected by monitoring the sign of κ.
To analyze the sign of ω in the defining system (5.4) while continuing a Hopf point and
passing a Bogdanov-Takens point we consider the normal form of a Bogdanov-Takens
point

ẇ = (ẇ0, ẇ1) =

(
w1

β1 + β2w1 + aw2
0 + bw0w1

)
. (5.6)

on the center manifold. Without loss of generality we assume that a = 1 and b = −1.
Then there is a Hopf bifurcation curve at βH2 = −√−β1 for the equilibrium E1 =(
i
√
β1, 0

)
, where β1 < 0. On the curve βH2 the eigenvalues and eigenvectors of E1 are

given by
±iω0

and

vH∓ =

 ∓ i

ω0
1

 ,

respectively, where ω0 =
√

2(−β1)1/4. The characteristic matrix becomes

∆(x0, α, iω) = iωIn −A,

where A is the Jacobian of (5.6). A simple calculation gives

∆(x0, α, iω) =

(
iω −1

w1 − 2w0 w0 − β2 + iω

)
.

Taking c = (1, 0)T the defining system (5.4) becomes

S(w, β, v, ω) =


w1

β1 + β2w1 + aw2
0 + bw0w1

iωv0 − v1

v0(w1 − 2w0) + v1(w0 − β2 + iω)
v0 − 1

 . (5.7)

The Jacobian of S is given by

DS(w, β, v, ω) =
0 1 0 0 0 0 0

2aw0 + bw1 bw0 + β2 1 w1 0 0 0
0 0 0 0 iω −1 iv0

v1 − 2v0 v0 0 −v1 w1 − 2w0 iω + w0 − β2 iv1

0 0 0 0 0 0 0

 .
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The kernel kerDS(E1, β1, β
H
2 , v

H
∓ ,±ω0) on the Hopf curve is given by

span





± 2β1√
2(−β1)3/4∓iβ1

0

− 4aβ
3/2
1

i
√

2(−β1)3/4+β1

0
0

∓ (−β1)3/4√
2β1

1


,



β1
∓i
√

2(−β1)3/4+β1

0

− 2iaβ
3/2
1

±i
√

2(−β1)3/4+β1

1
0
0
0




.

It follows that the tangent vector to the curve (E1(s), β1(s), βH2 (s), vH∓ (s),±ω0(s)) has a
nonvanishing component ω̇(s) = 1 for all s. Since at a Bogdanov-Takens, where we have
ω0 = 0, we can use ω as a test function as in the ODE case. In this situation one can
thus use the bisection method to locate the Bogdanov-Takens point, which only relays
on the continuity of the curve ω(s). The transcritical Bogdanov-Takens bifurcation can
be treated similar. We obtain the following Lemma.

Lemma 5.3. A regular test function for a generic or transcritical Bogdanov-Takens point
encountered on a Hopf curve is

ψHBT = ω0.

5.2. Defining systems for BT-points in DDEs

Suppose the generator A of the C0-semigroup associated to (3.3) has a double zero
eigenvalue at (x(t), x(t − τ1), . . . , x(t − τm), α) = (x0, x0, . . . , x0, α0). Then by Lemma
3.8 there are nonzero vectors v, w ∈ Rn such that

∆(x0, α0, 0)v = 0 (5.8)

and
∆′(x0, α0, 0)v = −∆(x0, α0, 0)w. (5.9)

A possible defining system could thus contain f̃(x) = f(x, x, . . . , x, α) = 0, ∆(x, α, 0)v =
0 and ∆′(x, α, 0)v + ∆(x, α, 0)w = 0. Since f̃ : Rn+2 → Rn and ∆(x, α, 0) : Rn → Rn
we need 2 more constraints. Any multiple of v in (5.8) still satisfies (5.8). As a first
constraint we can therefore demand that (v, v) = 1. Notice that we need to scale w with
the same factor 1/(v, v) such that (5.9) is still satisfied. We now notice that q1 in (5.9)
can be replaced by w + cv, for some constant c. It follows that (w + cv, v) = (w, v) + c.
Thus for c = −(w, v) we have (w̃, q0) = 0, where w̃ = w + cv. For the second constraint
we thus demand that (w, v) = 0. We therefore calculate a BT-point by solving the
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defining system

S̄(x, v, w, α) =


f(x, x, . . . , x, α)

∆(x, α, 0)v
∆′(x, α, 0)v + ∆(x, α, 0)w

(v, v)− 1
(w, v)

 . (5.10)

In order to apply the standard Newton iteration procedure we need (5.10) to be regular
at a BT-point. Before given regularity conditions we will first look what has been done
in the ODE case in the article [3]. Then we will look at a defining system in the DDE
case in which only one time delay is assumed in the article [54].

5.2.1. Defining systems with implicitly defined functions

In [21] a defining system for computing a BT-point is given for which the algebraic
multiplicity of the zero eigenvalue at the critical value may be greater or equal to 2. In
[3] the same defining system is used when the algebraic multiplicity is equal to 2. Since
this is the case of interests for us now we will describe the defining system given there.
For a moment we therefore consider the ODE

u̇(t) = f(u(t), α), (5.11)

where u(t) ∈ Rn, α = (α1, α2) ∈ R2 and f ∈ Ck(Rn+2,Rn), k ≥ 3. We assume that
(u0, α0) is a BT-point of (5.11), that is (u0, α0) is a stationary point of (5.11) and

J0 =

(
0 1
0 0

)
(5.12)

is the only entry in the Jordan normal form of

f0
u =

∂f

∂u
(u0, α0), (5.13)

which belongs to the zero eigenvalue. Let us assume that we are given vectors b0, c0 ∈ Rn
such that the (n+ 1)× (n+ 1) matrix (where T represents the transpose)

Ã(u, α) =

(
fu(u, α) b0
cT0 0

)
(5.14)

is non-singular for (u, α) in some domain Ω ∈ Rn+2. Then we calculate a BT-point by
solving the following defining system

S̃(u, α) =

f(u, α)
g(u, α)
h(u, α)

 = 0. (5.15)

Here the functions g, h ∈ Ck−1(Ω,R) are implicitly defined through

Ã

(
v
g

)
=

(
0
1

)
, Ã

(
w
h

)
=

(
v
0

)
for (u, α) ∈ Ω. (5.16)
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The vanishing of g and h in (5.16) implies that

Ãv = 0 Ãw = v. (5.17)

It follows that v and w are in span of the generalized eigenspace of the zero eigenvalue.
However, it does not imply that the generalized eigenspace is 2-dimensional. Thus care
should be taken when finding a solution to the defining system (5.15).
For the Newton process we need to calculate the Jacobian of S̃(u, α).

Lemma 5.4. [3] In addition to (5.16) define the function ḡ, h̄ ∈ Ck−1(Ω,R) and Ψ, ζ ∈
Ck−1(Ω,Rn) by the adjoint equations(

ΨT ḡ
)
Ã =

(
0 1

)
,

(
ζT h̄

)
Ã =

(
ΨT 0

)
. (5.18)

Then the following relations hold for all z ∈ (u, α) ∈ Ω

g = ḡ = −ΨT fuv, h = h̄ = ΨT v (5.19)

and
gz = −ΨT fuzv, hz = −ΨT fuzw − ζT fuzv. (5.20)

It follows that the Jacobian of (5.15) can be calculated by

S̃′ =

fu fα
gu gα
hu hα

 =

 fu fα
−ΨT fuuv −ΨT fuαv

−ΨT fuuw − ζT fuuv −ΨT fuαw − ζT fuαv

 . (5.21)

For the Newton process we need the Jacobian S̃′ to be non-singular at a BT-point (u0, α0).
Let the superscript ’0’ always denote evaluation (u0, α0).

Lemma 5.5. [3] Let (u0, α0) be a BT-point of (5.11) in some domain Ω ∈ Rn+2 where
the matrices (5.14) are non-singular. Then (u0, α0) is a regular solution of the defining
system (5.15) if and only the following transversality conditions are satisfied

0 6= Ψ0T f0
α, (T1)

0 6= Ψ0T f0
uuv

0v0
(
ζ0T f0

uzv
0δ2 + Ψ0T f0

uzw
0δ2

)
−Ψ0T f0

uzv
0δ2

(
ζ0T f0

uuv
0v0 + Ψ0T f0

uuv
0w0

)
. (T2)

The vector δ2 is constructed in such a way that (5.11) is put into linear normal form (in-
cluding parameters). For more information on the vector δ2 and a proof of Lemma 5.5 we
refer to [3]. The first transversality condition (T1) is equivalent to rank (fu, fα) = n and
hence a necessary condition for the non-singularity of S′0. In the second transversality
condition (T2) we see the non-degeneracy condition ab 6= 0 for the co-dim 2 Bogdanov-
Takens bifurcation.
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We now consider a DDE of the form (3.3). By using Proposition 4.4 we can determine
the analog defining system of (5.16) for DDEs. Let A denote the generator of the C0-
semigroup associated with the DDE. Suppose that α = 0 is eigenvalue of algebraic
multiplicity 2 and geometric multiplicity 1. Let

∆0 := ∆(x0, α0, 0) (5.22)

and
∆ := ∆(x, α, 0) (5.23)

be the characteristic matrix at a BT-point and the characteristic matrix at a point (x, α)
nearby the BT-point respectively. Then there are vectors v0 and w0 such that

∆0v0 = 0, (5.24)

∆0w0 = −∆
′0v0. (5.25)

Since the matrix ∆(x0, α0, 0) has rank n− 1 we can assume, as in (5.14), that there are
vectors b0, c0 ∈ Rn such that

A(x, α) =

(
∆(x, x, . . . , x, α, 0) b0

cT0 0

)
(5.26)

is non-singular for some neighborhood Ω ∈ Rn+2 of (x0, α0). Then we calculate a BT-
point by solving the following defining system

S(x, α) =

f(x, x, . . . , x, α)
g(x, α)
h(x, α)

 = 0. (5.27)

Here the functions g, h ∈ Ck−1(Ω,R) are implicitly defined through

A

(
v
g

)
=

(
0
1

)
, A

(
w
h

)
=

(
−∆′(x, α, 0)v

0

)
for (x, α) ∈ Ω. (5.28)

The equivalent of Lemma 5.4 becomes

Lemma 5.6. In addition to (5.28) define the function ḡ, h̄ ∈ Ck−1(Ω,R) and Ψ, ζ ∈
Ck−1(Ω,Rn) by the adjoint equations(

ΨT ḡ
)
A =

(
0 1

)
,

(
ζT h̄

)
A =

(
−ΨT∆′(x, α, 0) 0

)
. (5.29)

Then the following relations hold for all z ∈ (x, α) ∈ Ω

g = ḡ = −ΨT∆v, (5.30)

h = h̄ = −ΨT∆′v (5.31)

and

gz = −ΨT∆zv, (5.32)

hz = −ΨT∆zw − ζT∆zv −ΨT∆′zv (5.33)
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Proof. Equations (5.28) and (5.29) give the following 8 identities

∆v + b0g = 0, (5.34)
c0v = 1, (5.35)
∆w + b0h = −∆′v, (5.36)
c0w = 0, (5.37)

ΨT∆ + c0ḡ = 0, (5.38)

ΨT b0 = 1, (5.39)

ζT∆ + c0h̄ = −ΨT∆′, (5.40)

ζT b0 = 0. (5.41)

Equations (5.34) and (5.39) gives ΨT∆v + g = 0. Equations (5.35) and (5.38) gives
ΨT∆v+ḡ = 0. It follows that g = ḡ = −ΨT∆v. For the identity of the function h we first
notice that equations (5.37) and (5.38) gives ΨT∆w = 0 and equations (5.34) and (5.41)
gives ζ∆v = 0. Then equations (5.36) and (5.39) gives ΨT∆w + ΨT b0h = h = −ΨT∆′v
and equations (5.35) and (5.40) gives ζT∆v + cT0 h̄v = h̄ = −ΨT∆′v. Thus, we have
h = −h̄ = ΨT∆′v. For the identity of gz we differentiate (5.30), (5.34) and (5.38) with
respect to z = (x, α)

gz = −ΨT
z ∆v −ΨT∆zv −ΨT∆vz, (5.42)

∆zv + ∆vz + b0gz = 0, (5.43)

ΨT
z ∆ + ΨT∆z + c0gz = 0. (5.44)

Multiplying (5.43) and (5.44) with ΨT from the left and v from the right respectively
gives The last 2 equations together with (5.42) implies that gz = −ΨT∆zv. Lastly, for
the identity of hz, we differentiate (5.31), (5.36) and (5.40) with respect to z = (x, α)

hz = −ΨT
z ∆′v −ΨT∆′zv −ΨT∆′vz, (5.45)

∆zw + ∆wz + b0hz = −∆′zv −∆′vz, (5.46)

ζTz ∆ + ζT∆z + c0hz = −ΨT
z ∆′ −ΨT∆′z. (5.47)

Multiplying (5.46) and (5.47) with Ψ from the left and v from the right respectively gives

ΨT∆zw + ΨT∆wz + hz = −ΨT∆′zv −ΨT∆′vz, (5.48)

ζTz ∆v + ζT∆zv + hz = −ΨT
z ∆′v −ΨT∆′zv. (5.49)

Using equations (5.37) and (5.41) we notice that ΨT∆wz = −gc0wz = 0 and ζTz ∆v =
−ζTz b0g = 0. Thus equations (5.48) and (5.49) can be simplified to

ΨT∆zw + hz = −ΨT∆′zv −ΨT∆′vz, (5.50)

ζT∆zv + hz = −ΨT
z ∆′v −ΨT∆′zv. (5.51)
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Solving (5.50) for ΨT∆′vz and (5.51) for ΨT
z ∆′v and substituting the result into (5.45)

gives, after rearranging terms,

hz = −ΨT∆zw − ζT∆zv −ΨT∆′zv. (5.52)

The Jacobian of the defining system (5.27) is now given by

S′(x, α) =

fx fα
gx gα
hx hα

 (5.53)

=


−∆ fα
−ΨT∆xv −ΨT∆αv
−ΨT∆xw − ζT∆xv −ΨT∆αw − ζT∆αv
−ΨT∆′xv −ΨT∆′αv

 . (5.54)

Here we cannot mimic the proof of Lemma 5.5 for the non-singularity of S′. This is
a result of replacing the Jacobian fu(u, α) in (5.14) with the characteristic matrix at
(x, α, 0) in (5.26). Indeed at the zero eigenvector the Jordan normal form of fu(u, α) has
a Jordan block at a BT-point whereas the characteristic matrix at a BT-point in general
does not.
To derive transversality condition for the non-singularity of S′ at a BT-point we start by
investigating when S′ is injective. By expanding S′(x0, α0)ϑ = 0 with ϑ = (ϑ1, c1, c2) ∈
Ω, we obtain

−∆ϑ1 + c1fα1 + c2fα2 = 0, (5.55)

−ΨT∆xvϑ1 − c1ΨT∆α1v − c2ΨT∆α2v = 0 (5.56)

and

−ΨT∆xwϑ1 − ζT∆xvϑ1 −ΨT∆′xvϑ1

− c1ΨT∆α1w − c2ΨT∆α2w − c1ζ
T∆α1v

− c2ζ
T∆α2v − c1ΨT∆α1v − c2ΨT∆α2v = 0 (5.57)

Multiplying (5.55) by ΨT from the left gives

c1ΨT fα1 + c2ΨT fα2 = 0.

Assuming the transversality condition

Ψfα1 6= 0, (5.58)

this yields

c1 = −ΨT fα2

ΨT fα1

c2 := cαc2 (5.59)
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If ϑ1 6= 0 there is a vector vαsuch that ϑ1 = c2vα. It follows that from (5.55)

ϑ1 = c2vα + cv, (5.60)

for some constant c.
Substituting (5.59) and (5.60) into (5.56) gives

−ΨT∆xv(c2vα + cv)− cαc2ΨT∆α1v − c2ΨT∆α2v = 0 (5.61)

Collecting terms in c2 and c yields

− c2ΨT (∆xvα + cα∆α1 + ∆α2)v − cΨT∆xvv = 0 (5.62)

Substituting (5.59) and (5.60) into (5.57) gives

−ΨT∆xw(c2vα + cv)− ζT∆xv(c2vα + cv)−ΨT∆′xv(c2vα + cv)

− cαc2ΨT∆α1w − c2ΨT∆α2w − cαc2ζ
T∆α1v

− c2ζ
T∆α2v − cαc2ΨT∆α1v − c2ΨT∆α2v = 0

Collecting terms in c2 and c yields

− c2ΨT (∆′xvα + cα∆α1 + ∆α2)v

− c2ΨT (∆xvα + cα∆α1 + ∆α2)w − c2ζ
T (∆xvα + cα∆α1 + ∆α2)v

− c(ΨT∆xw + ζT∆xv + ΨT∆′xv)v = 0.

We impose a second transversality condition

d0 := det

(
ΨTA1v ΨTB1v

ΨTA1w + ζTA1v + ΨTA2v ΨTB1w + ζTB1v + ΨTB2v

)
6= 0 (5.63)

where
A1 := ∆xv, A2 := ∆′xv (5.64)

and
B1 := ∆xvα + cα∆α1 + ∆α2 , B2 := ∆′xvα + cα∆α1 + ∆α2 . (5.65)

Lemma 5.7. Suppose ΨT fα1 6= 0 and d0 6= 0 are both satisfied. Then the defining system
S is regular at a BT-point.

Proof. Using the definitions of A1, A2, B1 and B2 in (5.62) and (5.62) yields

− c2ΨTB1v − cΨTA1v = 0 (5.66)

and
−c2(ΨTB1w + ζTB1v + ΨTB2v)− c(ΨTA1w + ζTA1v + ΨTA2v) = 0.

respectively. Since d 6= 0 it follows that c2 = c = 0. From (5.60) that ϑ = 0. Surjectivity
is proved in a similar way.
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5.2.2. Defining systems without implicitly defined functions

We are now also able to proof the regularity of the defining system (5.10).

Lemma 5.8. Suppose ΨT fα1 6= 0 and d0 6= 0 are both satisfied. Then the defining system
(5.10) is regular at a BT-point.

Proof. The Jacobian of S̄ reads

S̄′(w) =


−∆ 0 0 fα1 fα2

∆xq0 ∆ 0 ∆α1q0 ∆α2q0

∆′xq0 + ∆xq1 ∆′ ∆ ∆′α1
q0 + ∆α1q1 ∆′α2

q0 + ∆α2q1

0 2q0 0 0 0
0 q1 q0 0 0

 , (5.67)

where w = (x, q0, q1, α1, α2). By expanding S̄′(x0, q0
0, q

0
1, α

0
1, α

0
2)ϑ = 0 with

ϑ = (ϑ1, ϑ2, ϑ3, c1, c2) ∈ Ω, we obtain

−∆ϑ1 + c1fα1 + c2fα2 = 0, (5.68)

∆xvϑ1 + ∆ϑ2 + c1∆α1v + c2∆α2v = 0, (5.69)

(∆′xv + ∆xw)ϑ1 + ∆′ϑ2 + ∆ϑ3

+ c1(∆′α1
v + ∆α1w) + c2(∆′α2

v + ∆α2w) = 0, (5.70)

2vϑ2 = 0 (5.71)

and
wϑ2 + vϑ3 = 0. (5.72)

We see that (5.68) and (5.55) are the equivalent. By multiplying (5.69) by ΨT from the
left we get

ΨT∆xvϑ1 + c1ΨT∆α1v + c2ΨT∆α2v = 0, (5.73)

which is equivalent to (5.56). Multiplying (5.69) and (5.70) from the left by ζ and ΨT

respectively yields

ζ∆xvϑ1 + ζ∆ϑ2 + c1ζ∆α1v + c2ζ∆α2v = 0, (5.74)

ΨT (∆′xv + ∆xw)ϑ1 + ΨT∆′ϑ2 + ΨT∆ϑ3

+ c1ΨT (∆′α1
v + ∆α1w) + c2ΨT (∆′α2

v + ∆α2w) = 0. (5.75)

Adding the last two equations gives (5.57). Since the equations (5.55), (5.56) and (5.57)
are equivalent to the equations (5.68), (5.69) and (5.70) if that, under the assumption
d0 6= 0 that

c = c2 = c1 = ϑ1 = 0. (5.76)

Substituting into (5.69) yields
∆ϑ2 = 0. (5.77)
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It follows that ϑ2 = c̃v, for some constant . By substituting into ϑ2 = c̃v into (5.71) we
obtain that c̃ = 0 so that ϑ2. In a similar way we substitute (5.76) into (5.70) to obtain

∆ϑ3 = 0. (5.78)

Together with (5.72) gives that ϑ3 = 0.
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6. Coefficients of parameter-dependent
normal forms

Using the method outlined in Section 4.1, will derive those coefficients needed for the
predictors of the nonhyperbolic cycles emanating from generalized Hopf, fold-Hopf, Hopf-
transcritical and Hopf-Hopf bifurcations, and the predictors of the homoclinic orbits
emanating from generic and transcritical Bogdanov-Takens bifurcation, see Appendix
C. We assume in all situations that ϕ0 = 0 is a steady-state of the DDE (3.3) at the
parameter value α0 = 0 ∈ R2.

6.1. Generic Bogdanov-Takens bifurcation

Let the eigenvectors φ0, φ1 and adjoint eigenvectors φ�1 , φ
�
0 be as in Lemma 3.8, with

λ = 0. The smooth normal form on the parameter-dependent center manifold takes the
form

ẇ = G(w, β)

=

(
w1

β1 + β2w1 + aw2
0 + bw0w1 + g1(w, β)

)
+O(‖β‖w2

1) +O(‖β‖2 ‖w‖2 + ‖β‖ ‖w‖3 + ‖w‖4),

(6.1)

where w = (w0, w1), β = (β1, β2) and

g1(w, β2) = (a1β2 + dw0)w2
0 + (b1β2 + ew0)w1w0.

This normal form can be derived from [7]. The functions H,K and R defined in Section
4.1 can be expanded as
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H(w, β) = [φ0, φ1]w + [H0010, H0001]β +
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1

+H1010β1w0 +H1001β2w0 +H0110β1w1 +H0101β2w1 +
1

2
H0002β

2
2

+
1

6
H3000w

3
0 +

1

2
H2100w

2
0w1 +H1101β2w1w0 +

1

2
H2001β2w

2
0

+O(|w1|3 + |w0w
2
1|+ |β2w

2
1|+ |β1|‖w‖2 + ‖β‖2‖w‖+ ‖β‖3)

+O(β2
1 + |β1β2|) +O(‖(w, β)‖4), (6.2)

K(β) = [K10,K01]β +
1

2
K02β

2
2 +O(β2

1 + |β1β2|) +O(‖β‖3) (6.3)

and

R(u, α) =

(
1

2
D2

1f(0, 0)(u, u) +
1

6
D3

1f(0, 0)(u, u, u) +D2D1f(0, 0)(u, α)

+D2f(0, 0)(α) +
1

2
D2

1f(0, 0)(α, α) +
1

2
D2D

2
1(u, u, α)

+O
(
‖u‖ ‖α‖2 + ‖α‖3

)
+O(‖u, α‖4)

)
r�?.

Using the notation used in [32, 1, 36], we write that last expression as

R(u, α) =
1

2
B(u, u) +

1

6
C(u, u, u) +A1(u, α) +

1

2
J2(α, α)

+
1

2
B2(u, u, α) +O

(
‖u‖ ‖α‖2 + ‖α‖3

)
+O(‖u, α‖4), (6.4)

where
B(u, u) = D2

1f(0, 0)(u, u)r�?

and similar for the other multilinear forms.
We insert the Taylor expansions (6.4), (6.2) and (6.3) into the homological equation

A�?H(w, β) + J1K(β) +R(H(w, β),K(β)) = DwH(w, β)ẇ, (6.5)

see (4.3). Collecting the w2
0, w0w1 and w2

1 terms in the homological equations lead to
the systems

A�?H2000 =2aφ1 −B(φ0, φ0), (6.6)
A�?H1100 =H2000 + bφ1 −B(φ0, φ1), (6.7)
A�?H0200 =2H1100 −B(φ1, φ1). (6.8)
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By pairing equations (6.6) and (6.7) with φ�1 yields

a =
1

2
pT1 B(φ0, φ0),

b = −
〈
φ�1 , H2000

〉
+ pT1 B(φ0, φ1).

Pairing equation (6.8) with φ�0 yields〈
φ�1 , H2000

〉
= −pT0 B(φ0, φ0),

so that
b = pT0 B(φ0, φ0) + pT1 B(φ0, φ1).

In order to solve for H2000, H1100 and H0200 we write (6.8) as

A�?H2000 = 2a

(
q1

θq0 + q1

)
−
(
B(φ0, φ0)

0

)
,

A�?H1100 =

(
H2000(0)
H2000(θ)

)
+ b

(
q1

θq0 + q1

)
−
(
B(φ0, φ1)

0

)
,

A�?H0200 = 2

(
H1100(0)
H1100(θ)

)
−
(
B(φ1, φ1)

0

)
.

(6.9)

Using Corollary 4.10 it follows that

H2000(θ) = ξ1 +
(
γ1 + aθ2

)
q0 + 2aθq1,

where

ξ1 = ∆(0)INV
[
B(φ0, φ0)− 2a∆′(0)q1 − a∆′′(0)q0

]
.

Here ∆(0)INV is defined as in Proposition 4.6. In order for equation (6.8) to be solvable,
we need

2
〈
φ�1 , H1100

〉
− pT1 B(φ1, φ1) = 0.

Let
H̃2000(θ) = ξ1 + aθ2q0 + 2aθq1,

so that
H2000(θ) = H̃2000(θ) + γ1φ0,
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then

2
〈
φ�1 , H1100

〉
− pT1 B(φ1, φ1) = 2

〈
φ�1 , H1100(θ)

〉
− pT1 B(φ1, φ1),

= 2
〈
A�φ�0 , H1100(θ)

〉
− pT1 B(φ1, φ1),

= 2
〈
φ�0 , A

�?H1100(θ)
〉
− pT1 B(φ1, φ1),

= 2
〈
φ�0 , H2000 + bφ1 −B(φ0, φ1)

〉
− pT1 B(φ1, φ1),

= 2
〈
φ�0 , H̃2000(θ) + γ1φ0

〉
− 2pT0 B(φ0, φ1)

− pT1 B(φ1, φ1),

= 2
〈
φ�0 , H̃2000(θ)

〉
+ 2γ1 − 2pT0 B(φ0, φ1)

− pT1 B(φ1, φ1).

Since 〈
φ�0 , H̃2000(θ)

〉
= p0

(a
3

∆(3)(0)q0 + a∆′′(0)q1 + ∆′(0)ξ1

)
+ p1

(
a

12
∆(4)(0)q0 +

a

3
∆(3)(0)q1 +

1

2
∆′′(0)ξ1

)
,

it follows that

γ1 = −p0

(a
3

∆(3)(0)q0 + a∆′′(0)q1 + ∆′(0)ξ1

)
− p1

(
a

12
∆(4)(0)q0 +

a

3
∆(3)(0)q1 +

1

2
∆′′(0)ξ1

)
+ pT0 B(φ0, φ1) +

1

2
pT1 B(φ1, φ1).

Using the expression for H2000 we can calculate

H1100(θ) = ξ2 + θξ1 +

(
γ1θ +

b

2
θ2 +

a

3
θ3

)
q0 +

(
bθ + aθ2

)
q1,

where

ξ2 = ∆(0)INV
[
B(φ0, φ1)−∆′(0)ξ1 −

(
γ1∆′(0) +

1

2
b∆′′(0) +

a

3
∆′′′(0)

)
q0

−
(
b∆′(0) + a∆′′(0)

)
q1

]
.

The H0200 term is given by

H0200(θ) = ξ3 + 2θξ2 + θ2ξ1

+

(
γ1θ

2 +
b

3
θ3 +

a

6
θ4

)
q0 +

(
2a

3
θ3 + bθ2

)
q1,
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where

ξ3 = ∆(0)INV
[
B(φ1, φ1)− 2∆′(0)ξ2 −∆′′(0)ξ1

+

(
−γ1∆′′(0)− b

3
∆(3)(0)− a

6
∆(4)(0)

)
q0

+

(
−2a

3
∆(3)(0)− b∆′′(0)

)
q1

]
.

Collecting the linear β1,2 terms yields the systems

A�?H0010 = φ1 − J1K10, (6.10)
A�?H0001 = −J1K01,

which we write as

A�?H0010 =

(
q1

θq0 + q1

)
−
(
J1K10

0

)
,

A�?H0001 = −
(
J1K01

0

)
.

(6.11)

Here we made the implicit identification between J1 and M, see (3.24). We have two
alternatives to solve H0010, H0001,K10 and K01, either we follow [32, 1, 36], in which a
‘big’ system is used, or we follow Appendix A.1, where only scaling and translation is
used. In the next two subSection we will derive both alternatives.

6.1.1. Solving H0010, H0001, K10 and K01 with big system

Using Corollary 4.10 it follows that

H0010(θ) = ξ4 +
1

2
θ2q0 + θq1, (6.12)

where

∆(0)ξ4 = J1K10 −
1

2
∆′′(0)q0 −∆′(0)q1. (6.13)

Similarly, we find that

H0001(θ) = ξ5, (6.14)

where
∆(0)ξ5 = J1K01. (6.15)

Combining equations (6.13) and (6.15) yields the n× (n+ 2) dimensional system(
−∆(0) J1

)( ξ4 ξ5

K10 K01

)
=

(
1

2
∆′′(0)q0 + ∆′(0)q1 0

)
.
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In order to determine (ξ4,K10) and (ξ5,K01) we extent the system with 2 more equations.
To this end we start by collecting the w0β1, w0β2, w1β1 and w1β2-terms in the homological
equation

A�?H1010 +A1(φ0,K10) = −B(φ0, H0010) +H1100, (6.16)
A�?H1001 +A1(φ0,K01) = −B(φ0, H0001), (6.17)
A�?H0110 +A1(φ1,K10) = −B(φ1, H0010) +H0200 +H1010,

A�?H0101 +A1(φ1,K01) = −B(φ1, H0001) +H1001 + φ1.

Pairing these equations with φ�1 yields

pT1 A1(φ0,K10) + pT1 B(φ0, H0010) =
〈
φ�1 , H1100

〉
, (6.18)

pT1 A1(φ0,K01) + pT1 B(φ0, H0001) = 0, (6.19)

pT1 A1(φ1,K10) + pT1 B(φ1, H0010) =
〈
φ�1 , H0200

〉
+
〈
φ�1 , H1010

〉
, (6.20)

pT1 A1(φ1,K01) + pT1 B(φ1, H0001) =
〈
φ�1 , H1001

〉
+ 1. (6.21)

Pairing equations (6.16) and(6.17) with φ�0 yields

pT0 A1(φ0,K10) + pT0 B(φ0, H0010) =
〈
φ�0 , H1100

〉
−
〈
φ�1 , H1010

〉
, (6.22)

pT0 A1(φ0,K01) + pT0 B(φ0, H0001) = −
〈
φ�1 , H1001

〉
. (6.23)

Adding (6.21) to (6.23) and (6.20) to (6.22) gives

pT0 A1(φ0,K01) + pT1 A1(φ1,K01) + pT0 B(φ0, H0001) (6.24)

+pT1 B(φ1, H0001) = 1,

pT0 A1(φ0,K10) + pT1 A1(φ1,K10) + pT0 B(φ0, H0010) (6.25)

+pT1 B(φ1, H0010) =
〈
φ�1 , H0200

〉
+
〈
φ�0 , H1100

〉
.

From the w2
1-terms in the homological equations we obtain

A�?H0200 = 2H1100 −B(φ1, φ1),

from which we derive that〈
φ�1 , H0200

〉
= 2

〈
φ�0 , H1100

〉
− pT0 B(φ1, φ1), (6.26)〈

φ�1 , H1100

〉
=

1

2
pT1 B(φ1, φ1). (6.27)

Substituting (6.26) and (6.27) into (6.25) and (6.18) respectively, yields

pT1 A1(φ0,K10) + pT1 B(φ0, H0010) =
1

2
pT1 B(φ1, φ1), (6.28)

pT0 A1(φ0,K10) + pT1 A1(φ1,K10) + pT0 B(φ0, H0010)

+pT1 B(φ1, H0010) = 3
〈
φ�0 , H1100

〉
− pT0 B(φ1, φ1). (6.29)
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Combining the last two equations with (6.19) and (6.24) gives the so-called “big” system(
pT1 Bφ0 pT1 A1φ0

pT0 Bφ0 + pT1 Bφ1 pT0 A1φ0 + pT1 A1φ1

)(
H0010 H0001

K10 K01

)
=

( 1

2
pT1 B(φ1, φ1) 0

3
〈
φ�0 , H1100

〉
− pT0 B(φ1, φ1) 1

)
. (6.30)

From now on we assume that there are finitely many delays

0 = τ0 ≤ τ1 ≤ · · · ≤ τm = h.

This allows us to write the multilinear form B as

Bi =
(
B0
i B1

i · · · Bm
i

)
,

where

Bj
i =


∂fi

∂xj1∂x
j
1

· · · ∂fi

∂xj1∂x
j
n

...
. . .

...
∂fi

∂xjn∂x
j
1

· · · ∂fi

∂xjn∂x
j
n

 .

Using the formula given in (6.12) we see that

(
pT1 Bφ0 pT1 A1φ0

)( H0010

K10

)
=

p1

(
B0φ0(0) B1φ0(−τ1) · · · Bmφ0(−τm) p1A1φ0

)

×


ξ4

ξ4 − τ1q1 + 1
2τ

2
1 q0

...
ξ4 − τmq1 + 1

2τ
2
mq0

K10

 =
1

2
pT1 B(φ1, φ1),

which we can write as(
pT1

(
Σm
j=0B

jφ0(−τj)
)

pT1 A1φ0

)( ξ4

K10

)
=

1

2
pT1 B(φ1, φ1)− pT1

(
Σm
j=1B

jφ0(−τj)
(
−τjq1 +

1

2
τ2
j q0

))
.
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Using the same method for the entry p0Bφ0 + p1Bφ1 yields the system
−∆(0) J1

pT1

(
Σm
j=0B

jφ0(τj)
)

pT1 A1φ0

pT0

(
Σm
j=0B

jφ0(τj)
)

+ pT1

(
Σm
j=0B

jφ1(τj)
)

pT0 A1φ0 + pT1 A1φ1


([

ξ4 ξ5

K10 K01

])
=

 E1 0
E2 0
E3 1

 , (6.31)

where

E1 =∆′(0)q1 +
1

2
∆′′(0)q0,

E2 =
1

2
pT1 B(φ1, φ1) + pT1

(
Σm
j=1B

jφ0(−τj)
(
−τjq1 +

1

2
τ2
j q0

))
,

E3 =3
〈
φ�0 , H1100

〉
− pT0 B(φ1, φ1)

− pT0
(

Σm
j=1B

jφ0(−τj)
(
−τjq1 +

1

2
τ2
j q0

))
− pT1

(
Σm
j=1B

jφ1(−τj)
(
−τjq1 +

1

2
τ2
j q0

))
.

from which we can determine (ξ4, ξ5,K10,K01). Here
〈
φ�0 , H1100

〉
is given by〈

φ�0 , H1100

〉
= pT0

(
1

12
a∆(4)(0)q0 +

1

6
b∆(3)(0)q0 +

1

2
γ1∆′′(0)

)
q0

+ pT0

(
1

3
a∆(3)(0) +

1

2
b∆′′(0)

)
q1

+ pT0

(
1

2
∆′′(0)ξ1 + ∆′(0)ξ2

)
+ pT1

(
− 1

60
a∆(5)(0) +

1

24
b∆(4)(0) +

1

6
γ1∆(3)(0)

)
q0

+ pT1

(
1

12
a∆(4)(0) +

1

6
b∆(3)(0)

)
q1

+ pT1

(
1

6
∆(3)(0)ξ1 +

1

2
∆′′(0)ξ2

)
. (6.32)

6.1.2. Solving H0010, H0001, K10 and K01 without a big system

Let γ = (γ1, γ2) = pT1 J1, then by applying the Fredholm alternative to (6.11) it follows
that

K10 = s1 + δ1s2,
K01 = δ2s2,

(6.33)
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where s1 = 1
γ21+γ22

(
γ1

γ2

)
, s2 =

(
−γ2

γ1

)
and δ1,2 are some constants to be determined

below. Using Corollary 4.10 it follows that

H0010(θ) = ∆INV (0)J1s1 + δ1∆INV (0)J1s2 (6.34)

+ ∆INV (0)

[
J1(s1 + δ1s2)− 1

2
∆′′(0)q0 −∆′(0)q1

]
(6.35)

+
1

2
θ2q0 + θq1 + ζ1φ0(θ), (6.36)

H0001(θ) = δ2∆INV (0)J1s2 + ζ2φ0(θ). (6.37)

For the moment we fix the values δ1 = 0, δ2 = 1 and ξ1,2 = 0 to obtain

K10 = s1,

K01 = s2,

H0010(θ) = ∆INV (0)J1s1 + ∆INV (0)

[
J1s1 −

1

2
∆′′(0)q0 −∆′(0)q1

]
+

1

2
θ2q0 + θq1 + ζ1φ0(θ),

H0001 = ∆INV (0)J1s2 + ζ2φ0(θ).

(6.38)

Evaluating these vectors on the equations (6.19) and (6.24) gives

v1 = pT1 A1(φ0,K01) + pT1 B(φ0, H0001),

v2 = pT0 A1(φ0,K01) + pT0 B(φ0, H0001) + pT1 A1(φ1,K01) + pT1 B(φ1, H0001).

To make (v1, v2) = (0, 1) we first use the freedom H0001 → H0001 + ζ2φ0, so that

pT1 A1(φ0,K01) + pT1 B(φ0, H0001)→ pT1 A1(φ0,K01) + pT1 B(φ0, H0001) + 2aζ2.

Thus, for

ζ2 = −p
T
1 A1(φ0,K01) + pT1 B(φ0, H0001)

2a

we have v1 = 0. Then we can scale (H0001,K01) → δ2(H0001,K01) to make v2 = 1
without affecting v0. This gives

δ2 =
1

pT0 A1(φ0,K01) + pT0 B(φ0, H0001) + pT1 A1(φ1,K01) + pT1 B(φ1, H0001)
.

Rearranging equations (6.28) and (6.29) yields

1

2
pT1 B(φ1, φ1) = pT1 B(φ0, H0010) + pT1 A1(φ0,K10),

3
〈
φ�0 , H1100

〉
= pT0 B(φ1, φ1) + pT0 B(φ0, H0010) + pT0 A1(φ0,K10)

+ pT1 B(φ1, H0010) + pT1 A1(φ1,K10).
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Note that the first equation looks different from the ODE case in Appendix A.1, but is
identical. Evaluating (6.38) on the right hand side of these equations gives

v3 = pT0 B(φ1, φ1) + pT0 B(φ0, H0010) + pT0 A1(φ0,K10) + pT1 B(φ1, H0010) + pT1 A1(φ1,K10),

v4 = pT1 B(φ0, H0010) + pT1 A1(φ0,K10).

To make v4 =
1

2
pT1 B(φ1, φ1) we use the freedom H0010 → H0010 + ζ1φ0, so that

v4 → v4 + 2aξ1

Thus, for

ζ1 =

1

2
pT1 B(φ1, φ1)− pT1 B(φ0, H0010)− pT1 A1(φ0,K10)

2a

we have v4 =
1

2
pT1 B(φ1, φ1). Then, after reevaluating v3, we can translate (H0010,K10)→

(H0010 + δ1H0001,K10 + δ1K01) to make v3 = 3
〈
φ�0 , H1100

〉
without affecting v4, see

equation (6.19). This gives, using equation (6.24),

v3 → v3 + δ1.

It follows that for

δ1 = 3
〈
φ�0 , H1100

〉
− pT0 B(φ1, φ1)− pT0 B(φ0, H0010)

− pT0 A1(φ0,K10)− pT1 B(φ1, H0010)− pT1 A1(φ1,K10)

we obtain v3 = 3
〈
φ�0 , H1100

〉
. Here

〈
φ�0 , H1100

〉
is given by (6.32).

6.1.3. Determining coefficients K02, H0002, H1001, H0101

We now determine the coefficients K02 and H0002 by collecting the β2
2 term

A�?H0002 = −
(
2A1(H0001,K01) +B(H0001, H0001)

+ J2(K01,K01) + J�?1 K02

)
.

The solvability condition implies that

pT1 J1K02 = −pT1
(
2A1(H0001,K01) +B(H0001, H0001)

+ J2(K01,K01)
)
.

From equation (6.10) we derive that

1 = pT1 J1K10,
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therefore

K02 = −pT1
(
2A1(H0001,K01) +B(H0001, H0001)

+ J2(K01,K01)
)
K10.

Having calculated K02, its easy to see that

H0002(θ) = ∆(0)INV
[
2A1(H0001,K01) +B (H0001, H0001)

+ J2 (K01,K01) + J1K02

]
+ γ6q0.

Collecting the w0β2 and w1β2-terms in the homological equations yields

A�?H1001 = − (A1(φ0,K01) +B(φ0, H0001)) ,

A�?H0101 = − (A1(φ1,K01) +B(φ1, H0001)) +H1001 + φ1.

It follows that

H1001(θ) = ξ7,

H0101(θ) = ξ8 +
θ2

2
q0 + θq1,

where

ξ7 = ∆(0)INV [A1(φ0,K01) +B(φ0, H0001)] ,

ξ8 = ∆(0)INV
[
A1(φ1,K01) +B(φ1, H0001)− ξ7 −

∆′′(0)

2
q0 −∆′(0)q1

]
.

6.1.4. Determining coefficients d, e, a1, b1

The w3
0, w

2
0w1, w

2
0β2 and w0w1β2 terms in the homological equation lead to the systems

A�?H3000 =6aH1100 − (3B(φ0, H2000) + C(φ0, φ0, φ0)) + 6dφ1

A�?H2100 =2aH0200 + 2bH1100 +H3000 + 2eφ1

− (2B(φ0, H1100) +B(φ1, H2000) + C(φ1, φ0, φ0)) ,

A�?H2001 =2aH0101 + 2a2φ1 −
(
A1(H2000,K01)

+ 2B(φ0, H1001) +B(H0001, H2000)

+B2(φ0, φ0,K01) + C(φ0, φ0, H0001)

)
,

A�?H1101 =bH0101 +H1100 +H2001 + b2φ1 −
(
A1(H1100,K01)

+B(φ0, H0101) +B(φ1, H1001)

+B(H0001, H1100) +B2(φ0, φ1,K01)

+ C(φ0, φ1, H0001)

)
.
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The solvability condition gives the following expressions for the cubic coefficients:

d = −1

2
apT1 B(φ1, φ1) +

1

2
pT1

(
B(φ0, H2000) +

1

6
C(φ0, φ0, φ0)

)
,

H3000(θ) = ξ9 +

(
a2θ4

2
+ abθ3 + 3aγ1θ

2 + 3dθ2

)
q0

+
(
2a2θ3 + 3abθ2 + 6dθ

)
q1 + 3aθ (θξ1 + 2ξ2) ,

e = pT1

(
B(φ0, H1100) +

1

2
B(φ1, H2000) +

1

2
C(φ1, φ0, φ0)

)
− pT1

(
b∆′(0)ξ2 + a∆′(0)ξ3 +

1

2
∆′(0)ξ9

+
1

2
b2∆′′(0)q1 +

3

2
d∆′′(0)q1 +

1

2
bγ1∆′′(0)q0

+
1

2
b∆′′(0)ξ1 +

5

2
a∆′′(0)ξ2

+
1

6
b2∆(3)(0)q0 +

1

2
d∆(3)(0)q0 −

1

12
a2∆(5)(0)q0

+
5

12
a2∆(4)(0)q1 +

7

24
ab∆(4)(0)q0 +

7

6
ab∆(3)(0)q1

+
5

6
a∆(3)(0)ξ1 +

5

6
aγ1∆(3)(0)q0

)
,

a2 =
1

2
pT1

(
A1(H2000,K01) + 2B(φ0, H1001) +B(H0001, H2000)

+B2(φ0, φ0,K01) + C(φ0, φ0, H0001)

)
apT0

(
A1(φ1,K01) +B(φ1, H0001) +A1(φ0,K01)

+B(φ0, H0001),

H2001(θ) = ξ10 +

(
aθ3

3
+ a2θ

2

)
q0 +

(
aθ2 + 2a2θ

)
q1,

b2 = −pT1
(
−A1(K01, H1100)−B(H0001, H1100)−B(φ0, H0101)

−B(φ1, H1001)−B2(φ0, φ1,K01)− C(φ0, φ1, H0001)

+ ∆′(0)ξ2 + b∆′(0)ξ8 + ∆′(0)ξ11 + b∆′′(0)q1

+ a2∆′′(0)q1 +
1

2
γ1∆′′(0)q0 + a∆′′(0)ξ8

+
1

6
a∆(4)(0)q0 +

1

3
a2∆(3)(0)q0 +

2

3
a∆(3)(0)q1

+
1

3
b∆(3)(0)q0 +

1

2
∆′′(0)ξ1

)
,
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where

ξ9 = ∆(0)INV
[
3B(φ0, H

2000) + C(φ0, φ0, φ0)

+

(
−1

2
a2∆(4)(0)− ab∆(3)(0)− 3aγ1∆′′(0)− 3d∆′′(0)

)
q0

+
(
−2a2∆3(0)− 3ab∆′′(0)− 6d∆′(0)

)
q1 − 3a

(
∆′′(0)ξ1 + 2∆′(0)ξ2

)]
, (6.39)

ξ10 = ∆(0)INV
[
A1(K01, H2000) +B(H0001, H2000) + 2B(H1001, φ0)

+B2(K01, φ0, φ0) + C(H0001, φ0, φ0)

−
(
−a∆′′(0)− 2a2∆′(0)

)
q1 + 2a∆′(0)ξ8

+

(
−1

3
a∆(3)(0)− a2∆′′(0)

)
q0

]
. (6.40)

6.2. Transcritical Bogdanov-Takens bifurcation

Here we consider the case in which the origin remains a steady-state under variation
of the parameters. For ODEs this hasn’t been done yet. Therefore, we derived the
homoclinic predictor and center manifold reduction combined with normalization in the
Appendices.
The eigenvectors φ0, φ1 and adjoint eigenvectors φ�1 , φ

�
0 are the same as in the previous

Section. The ODE on the parameter-dependent center manifold takes the form

ẇ = G(w, β)

=

(
w1

β1w0 + β2w1 + aw2
0 + bw0w1 + g2(w, β)

)
+O(‖β‖w2

1) +O(‖β‖2 ‖w‖2 + ‖β‖ ‖w‖3 + ‖w‖4),

(6.41)

where w = (w0, w1) and β = (β1, β2) and where

g2(w, β) = (a1β2 + a2β1 + dw0)w2
0 + (b1β2 + b2β1 + ew0)w1w0.

The function H,K and R can be expanded as
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H(w, β) =[φ0, φ1]w +
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1 +H1010β1w0

+H1001β2w0 +H0110β1w1 +H0101β2w1 +
1

2
H0102β

2
2w1

+H0111β1β2w1 +
1

2
H0120β

2
1w1 +

1

2
H1002β

2
2w0 +H1011β1β2w0

+
1

2
H1020β

2
1w0 +H1101β2w1w0 +H1110β1w1w0

+
1

2
H2001β2w

2
0 +

1

2
H2010β1w

2
0 +

1

2
H2100w1w

2
0 +

1

6
H3000w

3
0

+O(|β2w
2
1|+ |β1w

2
1|+ |w3

1|+ |w0w
2
1|) +O(‖(w, β)‖4), (6.42)

K(β) = [K10,K01]β +
1

2
K20β

2
1 +K11β1β2 +

1

2
K02β

2
2 +O(‖β‖3). (6.43)

and

R(u, α) =

(
1

2
B(u, u) +

1

6
C(u, u, u) +A1(u, α)

+
1

2
B2(u, u, α) +O

(
‖u‖ ‖α‖2

)
+O(‖u, α‖4)

)
. (6.44)

Note that, since the steady-state ϕ0 remains fixed under variations of parameters, we left
out all coefficients in the expansion of H which solely depend on the parameters.
We insert the Taylor expansions (6.4), (6.42) and (6.3) into the homological equation

A�?H(z, α) +R(H(z, α), α) = DzH(z, α)ż, (6.45)

see (4.3).

6.2.1. Linear and quadratic terms

Collecting the coefficients of the linear and quadratic terms in the homological equation
lead to the systems
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w0 : A�?φ0 = 0,

w1 : A�?φ1 = φ0,

w2
0 : A�?H2000 = 2aφ1 −B(φ0, φ0), (6.46)

w0w1 : A�?H1100 = bφ1 +H2000 −B(φ0, φ1), (6.47)

w2
1 : A�?H0200 = 2H1100 −B(φ1, φ1),

w0β1 : A�?H1010 = φ1 −A1(φ0,K10), (6.48)
w0β2 : A�?H1001 = −A1(φ0,K01), (6.49)
w1β1 : A�?H0110 = −A1(φ1,K10) +H1010, (6.50)
w1β2 : A�?H0101 = −A1(φ1,K01) +H1001 + φ1. (6.51)

The solvability condition implies that

0 = 2a− pT1 B(φ0, φ0), (6.52)

0 = b+
〈
φ�1 , H2000

〉
− pT1 B(φ0, φ1), (6.53)

0 = 2
〈
φ�1 , H1100

〉
− pT1 B(φ1, φ1), (6.54)

0 = 1− pT1 A1(φ0,K10), (6.55)

0 = −pT1 (A(φ0,K01), (6.56)

0 = −pT1 A1(φ1,K10) +
〈
φ�1 , H1010

〉
, (6.57)

0 = −pT1 A1(φ1,K01) +
〈
φ�1 , H1001

〉
+ 1. (6.58)

Pairing equations (6.48) and (6.49) with φ�0 yields〈
φ�1 , H1010

〉
= −pT1 A1(φ0,K10),〈

φ�1 , H1001

〉
= −pT1 A1(q0,K01).

Substituting into equations (6.57) and (6.58) gives

0 = −pT1 A1(φ1,K10)− pT1 A1(φ0,K10),

0 = −pT1 A1(φ1,K01)− pT1 A1(q0,K01) + 1.

Together with equations (6.55), and (6.56), one computes K10 and K01 by solving the
2-dimensional system(

pT1 A1φ0

pT0 A1φ0 + pT1 A1φ1

)([
K10 K01

])
=

(
1 0
0 1

)
.

Since the quadratic w terms remain unchanged compared with generic case we have

a =
1

2
pT1 B(φ0, φ0),

b = pT0 B(φ0, φ0) + pT1 B(φ0, φ1)
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and

H2000(θ) = ξ1 +
(
γ1 + aθ2

)
q0 + 2aθq1,

H1100(θ) = ξ2 + θξ1 +

(
γ1θ +

b

2
θ2 +

a

3
θ3

)
q0 +

(
bθ + aθ2

)
q1,

H0200(θ) = ξ3 + 2θξ2 + θ2ξ1 +

(
γ1θ

2 +
b

3
θ3 +

a

6
θ4

)
q0

+

(
2a

3
θ3 + bθ2

)
q1, (6.59)

where

∆(0)ξ1 = B(φ0, φ0)− 2a∆′(0)q1 − a∆′′(0)q0,

∆(0)ξ2 = B(φ0, φ1)−∆′(0)ξ1 −
(
γ1∆′(0) +

1

2
b∆′′(0) +

a

3
∆′′′(0)

)
q0,

−
(
b∆′(0) + a∆′′(0)

)
q1,

∆(0)ξ3 = B(φ1, φ1)− 2∆′(0)ξ2 −∆′′(0)ξ1

+

(
−γ1∆′′(0)− b

3
∆(3)(0)− a

6
∆(4)(0)

)
q0

+

(
−2a

3
∆(3)(0)− b∆′′(0)

)
q1.

and

γ1 = −p0

(a
3

∆(3)(0)q0 + a∆′′(0)q1 + ∆′(0)ξ1

)
− p1

(
a

12
∆(4)(0)q0 +

a

3
∆(3)(0)q1 +

1

2
∆′′(0)ξ1

)
+ pT0 B(φ0, φ1) +

1

2
pT1 B(φ1, φ1).

The remaining four unknowns in equations (6.48)-(6.51) can now be solved using Corol-
lary 4.10

H1010 =ξ4 +
θ2

2
q0 + θq1, (6.60)

H1001 =ξ5,

H0110 =ξ6 + θξ4 +
θ3

6
q0 +

θ2

2
q1,

H0101 =ξ7 + θξ5 +
θ2

2
q0 + θq1, (6.61)
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where

∆(0)ξ4 = A1(φ0,K10)− 1

2
∆′′(0)q0 −∆′(0)q1,

∆(0)ξ5 = A1(φ0,K01),

∆(0)ξ6 = A1(φ1,K10)−∆′(0)ξ4 −
1

6
∆(3)(0)q0 −

1

2
q1∆′′(0),

∆(0)ξ7 = A1(φ1,K01)−∆′(0)ξ5 −
1

2
∆′′(0)q0 −∆′(0)q1.

6.2.2. Cubic terms

6.2.2.1. Coefficients K20,K02 and K11

To solve the coefficients K20,K02 and K11 we collect the w0β
2
1 ,w0β

2
2 ,w1β

2
1 ,w1β

2
2 ,w0β1β2

and w1β1β2 terms in the homological equation

w0β
2
1 : A�?H1020 = 2H0110 − 2A1(H1010,K10)−A1(φ0,K20), (6.62)

w1β
2
1 : A�?H0120 = H1020 − 2A1(H0110,K10)−A1(φ1,K20), (6.63)

w0β
2
2 : A�?H1002 = −2A1(H1001,K01)−A1(φ0,K02), (6.64)

w1β
2
2 : A�?H0102 = 2H0101 +H1002 − 2A1(H0101,K01)−A1(φ1,K02), (6.65)

w0β1β2 : A�?H1011 = H0101 −A1(H1001,K10)−A1(H1010,K01)

−A1(φ0,K11), (6.66)
w1β1β2 : A�?H0111 = H0110 +H1011 −A1(H0101,K10)−A1(H0110,K01)

−A1(φ1,K11). (6.67)

Pairing with φ�1 yields

0 = 2
〈
φ�1 , H0110

〉
− pT1 (2A1(H1010,K10) +A1(φ0,K20)) , (6.68)

0 =
〈
φ�1 , H1020

〉
− pT1 (2A1(H0110,K10) +A1(φ1,K20)) , (6.69)

0 = −pT1 (2A1(H1001,K01) +A1(φ0,K02)) , (6.70)

0 = 2
〈
φ�1 , H0101

〉
+
〈
φ�1 , H1002

〉
− pT1 (2A1(H0101,K01) +A1(φ1,K02)) , (6.71)

0 =
〈
φ�1 , H0101

〉
− pT1 (A1(H1001,K10) +A1(H1010,K01) +A1(φ0,K11)) , (6.72)

0 =
〈
φ�1 , H0110

〉
+
〈
φ�1 , H1011

〉
− pT1

(
A1(H0101,K10) +A1(H0110,K01)

+A1(φ1,K11)
)
. (6.73)

Pairing equations (6.63),(6.64) and (6.66) with φ�0 yields〈
φ�1 , H1020

〉
= 2

〈
φ�0 , H0110

〉
− pT0

(
2A1(H1010,K10) + pT0 A1(φ0,K20)

)
,〈

φ�1 , H1002

〉
= −pT0 (2A1(H1001,K01) +A1(φ0,K02)) ,〈

φ�1 , H1011

〉
=
〈
φ�0 , H0101

〉
− pT0 (A1(H1001,K10) +A1(H1010,K01) +A1(φ0,K11)) .
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By substituting these equations into (6.69),(6.71) and (6.73) we obtain

0 = 2
〈
φ�0 , H0110

〉
− pT0

(
2A1(H1010,K10) + pT0 A1(φ0,K20)

)
− pT1 (2A1(H0110,K10) +A1(φ1,K20)) ,

0 = 2
〈
φ�1 , H0101

〉
− pT0 (2A1(H1001,K01) +A1(φ0,K02))

− pT1 (2A1(H0101,K01) +A1(φ1,K02)) ,

0 =
〈
φ�1 , H0110

〉
+
〈
φ�0 , H0101

〉
− pT0 (A1(H1001,K10) +A1(H1010,K01))

− pT0 A1(φ0,K11)− pT1 (A1(H0101,K10) +A1(H0110,K01) +A1(φ1,K11)) .

Together with equations (6.68), (6.70) and (6.72), one computes K20,K02 and K11 by
solving the 2-dimensional system(

pT1 A1φ0

pT0 A1φ0 + pT1 A1φ1

)([
K20 K02 K11

])
=

(
E1 E3 E5

E2 E4 E6

)
,

where

E1 = 2
〈
φ�1 , H0110

〉
− 2pT1 A1(H1010,K10),

E2 = 2
〈
φ�0 , H0110

〉
− 2pT0 A1(H1010,K10)− 2pT1 A1(H0110,K10),

E3 = −2pT1 A1(H1001,K01),

E4 = 2
〈
φ�1 , H0101

〉
− 2pT0 A1(H1001,K01)− 2pT1 A1(H0101,K01)

E5 =
〈
φ�1 , H0101

〉
− pT1 (A1(H1001,K10) +A1(H1010,K01)) ,

E6 =
〈
φ�1 , H0110

〉
+
〈
φ�0 , H0101

〉
− pT0 (A1(H1001,K10) +A1(H1010,K01))

− pT1 (A1(H0101,K10) +A1(H0110,K01)) .

Using the expression in equations (6.60)-(6.61) one calculates the pairings

〈
φ�1 , H0110

〉
= pT1

(
1

2
∆′′(0)ξ4 + ∆′(0)ξ6 +

1

24
∆(4)(0)q0 +

1

6
∆(3)(0)q1

)
,

〈
φ�0 , H0110

〉
= pT1

(
1

6
∆(3)(0)ξ4 +

1

2
∆′′(0)ξ6 −

1

120
∆(5)(0)q0 +

1

24
∆(4)(0)q1

)
+ pT0

(
1

2
∆′′(0)ξ4 + ∆′(0)ξ6 +

1

24
∆(4)(0)q0 +

1

6
∆(3)(0)q1

)
,

〈
φ�1 , H0101

〉
= pT1

(
1

2
∆′′(0)ξ5 + ∆′(0)ξ7 +

1

6
∆(3)(0)q0 +

1

2
q1∆′′(0)

)
,

〈
φ�0 , H0101

〉
= pT0

(
1

2
∆′′(0)ξ5 + ∆′(0)ξ7 +

1

6
∆(3)(0)q0 +

1

2
q1∆′′(0)

)
+ pT1

(
1

6
∆(3)(0)ξ5 +

1

2
∆′′(0)ξ7 +

1

24
∆(4)(0)q0 +

1

6
∆(3)(0)q1

)
.
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6.2.2.2. Coefficients a, a1, a2, b1, b2, d and e

To solve the coefficients a, a1, a2, b1, b2, d and e we collect the w3
0, w2

0w1, w2
0β1, w2

0β2,
w0w1β1 and w0w1β2 terms in the homological equation

w3
0 : A�?H3000 = 6dφ1 + 6aH1100 − 3B(φ0, H2000)− C(φ0, φ0, φ0), (6.74)

w2
0w1 : A�?H2100 = 2eφ1 + 2aH0200 + 2bH1100 +H3000 − C(φ0, φ0, φ1)

− 2B(φ0, H1100)−B(φ1, H2000), (6.75)

w2
0β2 : A�?H2001 = 2a1φ1 + 2aH0101 −A1(H2000,K01)− 2B(φ0, H1001)

−B2(φ0, φ0,K01), (6.76)

w2
0β1 : A�?H2010 = 2a2φ1 + 2aH0110 + 2H1100 −A1(H2000,K10)

− 2B(φ0, H1010)−B2(φ0, φ0,K10) (6.77)
w0w1β2 : A�?H1101 = b1φ1 +H1100 +H2001 + bH0101 −A1(H1100,K01)

−B(φ0, H0101)−B(φ1, H1001)

−B2(φ0, φ1,K01). (6.78)
w0w1β1 : A�?H1110 = b2φ1 +H0200 +H2010 + bH0110 −A1(H1100,K10)

−B(φ0, H0110)−B(φ1, H1010)

−B2(φ0, φ1,K10), (6.79)

Pairing with φ�1 yields and rearranging yields

d = −a
〈
φ�1 , H1100

〉
+

1

6
pT1 (3B(φ0, H2000) + C(φ0, φ0, φ0)) ,

e = −a
〈
φ�1 , H0200

〉
− b

〈
φ�1 , H1100

〉
− 1

2

〈
φ�1 , H3000

〉
+

1

2
pT1 (C(φ0, φ0, φ1) + 2B(φ0, H1100) +B(φ1, H2000)) ,

a1 = −a
〈
φ�1 , H0101

〉
+

1

2
pT1
(
A1(H2000,K01) + 2B(φ0, H1001)

+B2(φ0, φ0,K01)
)
,

a2 = −a
〈
φ�1 , H0110

〉
−
〈
φ�1 , H1100

〉
+

1

2
pT1
(
A1(H2000,K10)

+ 2B(φ0, H1010) +B2(φ0, φ0,K10)
)
,

b1 = −
〈
φ�1 , H1100

〉
−
〈
φ�1 , H2001

〉
− b

〈
φ�1 , H0101

〉
+ pT1

(
A1(H1100,K01)

+B(φ0, H0101) +B(φ1, H1001) +B2(φ0, φ1,K01)
)
,

b2 = −
〈
φ�1 , H0200

〉
−
〈
φ�1 , H2010

〉
− b

〈
φ�1 , H0110

〉
+ pT1

(
A1(H1100,K10)

+B(φ0, H0110) +B(φ1, H1010) +B2(φ0, φ1,K10)
)
.
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Pairing equations (6.74), (6.76) and (6.77) with φ�0 yields〈
φ�1 , H3000

〉
= 6a

〈
φ�0 , H1100

〉
− pT0 (3B(φ0, H2000) + C(φ0, φ0, φ0)) ,〈

φ�1 , H2001

〉
= 2a

〈
φ�0 , H0101

〉
− pT0

(
A1(H2000,K01) + 2B(φ0, H1001)

+B2(φ0, φ0,K01)
)
,〈

φ�1 , H2010

〉
= 2a

〈
φ�0 , H0110

〉
+ 2

〈
φ�0 , H1100

〉
− pT0

(
A1(H2000,K10)

+ 2B(φ0, H1010) +B2(φ0, φ0,K10)
)
.

It thus remains to calculate
〈
φ�1 , H1100

〉
,
〈
φ�1 , H0200

〉
and

〈
φ�0 , H1100

〉
. From equation

(6.54) it follows that 〈
φ�1 , H1100

〉
=

1

2
pT1 B(φ1, φ1).

From equation (6.59) and the representation of φ�1 in (3.12) we obtain

〈
φ�1 , H0200

〉
= pT1

(
− 1

30
a∆(5)(0)q0 +

1

6
a∆(4)(0)q1 +

1

12
b∆(4)(0)q0

+
1

3
b∆(3)(0)q1 +

1

3
∆(3)(0)ξ1 + ∆′′(0)ξ2

+ ∆′(0)ξ3 +
1

3
γ1∆(3)(0)q0.

Then, pairing equation (6.47) with φ�0 we obtain〈
φ�1 , H0200

〉
= 2

〈
φ�1 , H1100

〉
− pT1 B(φ1, φ1).

Remark 6.1. One can easily check that the transformations

H1100 → H1100 + γφ0,

H0200 → H1100 + γφ0,

H1010 → H1010 + γφ0,

H1001 → H1001 + γφ0,

H0110 → H0110 + γφ0,

H0101 → H0101 + γφ0,

leave the coefficients K10,K01,K20,K11,K02, a, b, d, e, a1, a2, b1, b2 invariant.

6.3. Generalized Hopf bifurcation

Since the eigenvalues (B.3) are simple, Lemma 3.6 gives an eigenfunction φ and an adjoint
eigenfunction φ� such that

Aφ = iω0φ, , A?φ� = iω0φ
�. (6.80)
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Let the vectors q, p ∈ Rn satisfy

∆(iω0)q = 0, pT∆(iω0) = 0,

then the eigenfunctions are given by

φ(θ) = eiω0θq,

φ�(θ) = pT + pT
ˆ θ

0
(

ˆ h

σ
eiω0(σ−τ)dζ(τ)) dσ.

Furthermore, using Lemma 3.6 we normalize the eigenfunctions such that〈
φ�, φ

〉
= 1

holds.
Any point y ∈ X0 from the critical eigenspace can be represented as

y = zφ+ z̄φ̄, z ∈ C,

where z = 〈φ�, y〉. Therefore, the homological equation (4.3) can be written as

A�?H(z, β) + J1K(β) +R(H(z, β),K(β)) = DzH(z, β)ż +Dz̄H(z, β) ˙̄z. (6.81)

Then H, K and R admits the expansions

H(z, z̄, β) =zφ+ z̄φ̄

+
3∑

j+k=2

1∑
|µ|=0

1

j!k!µ!
Hjkµz

j z̄kβµ +O(‖z‖4‖β‖2), (6.82)

K(β) =K10β1 +K01β2 +O(‖β‖2), (6.83)

R(u, β) =
1

2
B(u, u) +A1(u, β) +O

(
‖u‖3 + ‖u‖ ‖β‖2 + ‖β‖3

))
,

where β = (β1, β2).
For the predictors derived in Section C.3 we need the parameter-dependent normal form

ż = (iω + β1 + ib11β1 + ib12β2) z + (β2 + Im(c1(0))i) z|z|2 + (d2(0) + Im(c2(0))i) z|z|4.

Critical normal form coefficients We start by calculating the critical normal form
coefficients. Collecting the coefficients of the terms z2, zz̄, z3 and z2z̄ in the homological
equation yields the systems(

A�? − 2iω0

)
H2000 = −B (φ, φ) ,

A�?H1100 = −B
(
φ, φ̄

)
,(

A�? − 3iω0

)
H3000 = −3B (φ,H2000)− C (φ, φ, φ) ,(

A�? − iω0

)
H2100 = −B

(
φ̄,H2000

)
− 2B (φ,H1100)− C

(
φ, φ, φ̄

)
.
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The first three solutions can be solved using Corollary 4.1, we have

H2000 = e2iω0θ∆−1(2iω)B(φ, φ),

H1100 = ∆−1(0)B(φ, φ̄),

H3000 = e3iω0θ∆−1(3iω) (3B (φ,H2000) + C (φ, φ, φ)) .

For the fourth equation Corollary 4.8 gives the solution

H2100 = BINV
iω0

((
φ̄,H2000

)
+ 2B (φ,H1100) + C

(
φ, φ, φ̄

))
.

Notice that the Fredholm alternative implies that the expression

pT
(
B
(
φ̄,H2000

)
+ 2B (φ,H1100) + C

(
φ, φ, φ̄

))
vanishes, which implies that the first Lyapunov coefficient also vanishes. Continuing to
compute the second Lyapunov coefficient we collect the coefficients corresponding to the
z3z̄ and z2z̄2 terms in the homological equation. We obtain the systems(

A�? − 2iω0

)
H3100 = 6c1H2000 −B

(
φ̄,H3000

)
− 3B (φ,H2100)− 3B (H1100, H2000)

− 3C
(
φ, φ̄,H2000

)
− 3C (φ, φ,H1100)−D

(
φ, φ, φ, φ̄

)
,

A�?H2200 = −2B
(
φ̄,H2100

)
− 2B (φ,H1200)−B (H0200, H2000)

− 2B (H1100, H1100)− C (φ, φ,H0200)− 4C
(
φ, φ̄,H1100

)
− C

(
φ̄, φ̄,H2000

)
−D

(
φ, φ, φ̄, φ̄

)
.

Both system are non-singular and can be solved with Corollary (4.1). The critical normal
form coefficient c2(0) is calculated by applying the Fredholm alternative to the system
obtained from the coefficient corresponding to the z3z̄2 term in the homological equation.
This gives

c2(0) =
1

12
pT
(

2B
(
φ̄,H3100

)
+ 3B (φ,H2200) +B

(
H2000, H3000

)
+ 6B (H1100, H2100) + 3B

(
H2100, H2000

)
+ 6C

(
φ̄,H1100, H2000

)
+ 6C

(
φ, φ̄,H2100

)
+ C

(
φ̄, φ̄,H3000

)
+ 3C

(
φ, φ,H2100

)
+ 3C

(
φ,H2000, H2000

)
+ 6C (φ,H1100, H1100)

+D
(
φ, φ, φ,H2000

)
+ 6D

(
φ, φ, φ̄,H1100

)
+ 3D

(
φ, φ̄, φ̄,H2000

)
+ E

(
φ, φ, φ, φ̄, φ̄

))
.

Parameter-related coefficients Next we derive the parameter-related coefficients that
provide a linear approximation to the parameter transformation. Following [37] and
[4] first expand the eigenvalue λ(α) and c1(α) in the normal form (B.4) in the original
parameters α and truncated to the fifth order
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ż = (iω0 + γ110α1 + γ101α2) z + (c1(0) + γ210α1 + γ201α2) z|z|2 + c2(α)z|z|4. (6.84)

The parameters β are given through the relation

α =

(
Re

(
γ110 γ101

γ210 γ201

))−1

β

and
∂

∂β1
b1(β) = Im(γ110α1 + γ101α2), compare with (C.70).

The homological equation (4.3) becomes

A�?H(z, z̄, α) + J1α+R(H(z, z̄, α), α) = DzH(z, z̄, α)ż +Dz̄H(z, z̄, α) ˙̄z, (6.85)

where H and R admits the expansions

H(z, z̄, α1, α2) =zφ+ z̄φ̄

+
3∑

j+k=2

1∑
|µ|=0

1

j!k!µ!
Hjkµz

j z̄kα+O(‖z‖4‖α‖2), (6.86)

R(u, α) =
1

2
B(u, u) +A1(u, α) +O

(
‖u‖3 + ‖u‖ ‖α‖2 + ‖u‖2 ‖α‖+ ‖α‖2

))
.

Collecting the coefficients of the terms α and zα in the homological equation yields the
systems

A�?H00µ = −J1vµ,(
A�? − iω0

)
H10µ = γ1µφ−A (φ, vµ)−B (φ,H00µ) ,

where µ = (10), (01) and v10 = (1, 0)T , v01 = (0, 1)T . The first equation has the solution

H00µ = ∆(0)−1J1vµ

and the Fredholm alternative gives

γ1µ = pT (A1 (φ, vµ) +B (φ,H00µ)) .

This leads to the solutions

H10µ = BINV
iω0

(A1 (φ, vµ) +B (φ,H00µ) ,−γ1µ)

for the second equation.
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To determine γ2µ we collect the coefficients corresponding to the z2β, zz̄α and z2z̄α terms
in the homological equation. We obtain the systems(

A�? − 2iω0

)
H20µ = 2γ1µH2000 −A1 (H2000, vµ)− 2B (φ,H10µ)

−B (H2000, H00µ)−B2 (φ, φ, vµ)− C (φ, φ,H00µ) ,

A�?H11µ = 2 Re(γ1µ)H1100 −B
(
φ̄,H10µ

)
−B2

(
φ, φ̄, vµ

)
− C

(
φ, φ̄,H0µ

)
−A1 (H1100, vµ)−B (φ,H01µ)−B (H1100, H00µ) ,(

A�? − iω0

)
H21µ = 2γ2µφ+ (2γ1µ + γ̄1µ)H2100 + 2c1(0)H10µ −A1 (H2100, vµ)

−B
(
φ̄,H20µ

)
− 2B (φ,H11µ)−B (H2100, H00µ)

−B (H2000, H01µ)− 2B (H1100, H10µ)−B2

(
H2000, φ̄, vµ

)
− 2B2 (φ,H1100, vµ)− 2C

(
φ, φ̄,H10µ

)
− C

(
H2000, φ̄,H00µ

)
− C (φ, φ,H01µ)− 2C (φ,H1100, H00µ)− C1

(
φ, φ, φ̄, vµ

)
−D

(
φ, φ, φ̄,H00µ

)
.

Using Corollary 4.1 we find the solutions

H20µ(θ) = e2iω0θ∆(2iω0)−1

[
− 2γ1µH2000(0) +A1 (H2000, vµ) + 2B (φ,H10µ)

+B (H2000, H00µ) +B2 (φ, φ, vµ) + C (φ, φ,H00µ)

]
− 2γ1µ

ˆ h

0
dζ(τ)

ˆ τ

0
e−2iω0σH2000(σ − τ) dσ

− 2γ1µ

ˆ 0

θ
e−2iω0σH2000(σ) dσ

= e2iω0θ∆(2iω0)−1

[
− 2γ1µH2000(0) +A1 (H2000, vµ) + 2B (φ,H10µ)

+B (H2000, H00µ) +B2 (φ, φ, vµ) + C (φ, φ,H00µ)

]
− 2γ1µ

(
∆′(2iω)− I

)
∆−1(2iω)B(φ, φ),

+ 2γ1µ∆−1(2iω)B(φ, φ) θ,

H11µ(θ) = ∆(0)−1

[
− 2 Re(γ1µ)H1100(0) +B

(
φ̄,H10µ

)
+B2

(
φ, φ̄, vµ

)
+ C

(
φ, φ̄,H0µ

)
+A1 (H1100, vµ) +B (φ,H01µ) +B (H1100, H00µ)

]
− 2 Re(γ1µ)

(
∆′(0)− I

)
∆−1(0)B(φ, φ̄)

+ 2 Re(γ1µ) ∆−1(0)B(φ, φ̄) θ.
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Applying the Fredholm alternative gives

γ2µ =
1

2
pT
[
A1 (H2100, vµ) +B

(
φ̄,H20µ

)
+ 2B (φ,H11µ)

+B (H2100, H00µ) +B (H2000, H01µ) + 2B (H1100, H10µ)

+B2

(
H2000, φ̄, vµ

)
+ 2B2 (φ,H1100, vµ) + 2C

(
φ, φ̄,H10µ

)
+ C

(
H2000, φ̄,H00µ

)
+ C (φ, φ,H01µ) + 2C (φ,H1100, H00µ)

+ C1

(
φ, φ, φ̄, vµ

)
+D

(
φ, φ, φ̄,H00µ

)
.

6.4. Fold-Hopf bifurcation

Since the eigenvalues (B.5) are simple Lemma 3.6 gives eigenfunctions φ0,1 and adjoint
eigenfunctions φ�0,1 such that

Aφ0 = 0, Aφ1 = iω0φ1, A?φ�0 = 0, A?φ�1 = iω0φ
�
1 . (6.87)

Let the vectors q0, q1, p0, p1 ∈ Rn satisfy

∆(0)q0 = 0, ∆(iω0)q1 = 0, pT0 ∆(0) = 0, pT1 ∆(iω0) = 0,

then the eigenfunctions are given by

φ0(θ) = q0,

φ�0 (θ) = pT0 + pT0

ˆ θ

0
(

ˆ h

σ
dζ(τ)) dσ,

φ1(θ) = eiω0θq1,

φ�1 (θ) = pT1 + pT1

ˆ θ

0
(

ˆ h

σ
eiω0(σ−τ)dζ(τ)) dσ.

Furthermore, using Lemma 3.6 and 3.7 we normalize the eigenfunctions such that the
‘bi-orthogonality’ relation 〈

φ�i , φj
〉

= δij , 1 ≤ i, j ≤ 2,

holds.
Following [33], any point y ∈ X0 from the critical eigenspace can be represented as

y = z0φ0 + z1φ1 + z̄1φ̄1, z1,2 ∈ C,

where z0 =
〈
φ�0 , y,

〉
and z1 =

〈
φ�1 , y,

〉
. Therefore, the homological equation (4.3) can

be written as

A�?H(z, β) + J1(β) +R(H(z, β),K(β))

= Dz0H(z, β)ż0 +Dz1H(z, β)ż1 +Dz̄1H(z, β) ˙̄z1, (6.88)
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where z = (z1, z2). Here, the functions H, K and R admits the expansions

H(z0, z1, z̄1, β1, β2) =z0φ0 + z1φ1 + z̄1φ̄1

+
3∑

j+k+l=2

1∑
|µ|=0

1

j!k!l!µ!
Hjklµz

j
0z
k
1 z̄

l
1β

µ +O(‖z‖4‖β‖2), (6.89)

K(β) =K10β1 +K01β2 +O(‖β‖2),

R(u, β) =
1

2
B(u, u) +A1(u, β) +O

(
‖u‖3 + ‖u‖ ‖β‖2 + ‖β‖3

))
.

Critical normal form coefficients We start by solving the critical normal form coeffi-
cients. Collecting the z2

0 , z
2
1 , z0z1, z1z̄1 we obtain the systems

A�?H20000 =g200φ0 −B(φ0, φ0),(
A�? − 2iω0

)
H02000 =−B(φ1, φ1),(

A�? − iω0

)
H11000 =g110φ1 −B(φ0, φ1),

A�?H01100 =g011φ0 −B(φ1, φ̄1).

By the Fredholm alternative we obtain the quadratic coefficients

g200 =
1

2
pT0 B(φ0, φ0), g110 = pT1 B(φ0, φ1), g011 = pT0 B(φ1, φ̄1).

Then, using Corollary 4.1 and 4.8 we obtain

H20000(θ) =BINV
0 (B(φ0, φ0),−g200),

H02000(θ) =e2iω0θ∆(2iω0)−1B(φ0, φ0),

H11000(θ) =BINV
iω0

(B(φ0, φ1),−g110),

H01100(θ) =BINV
0 (B(φ1, φ̄1),−g011).

Collecting the resonant zj0z
k
1 z̄

l
1 term in (6.88) with j + k + l = 3 yield the systems

A�?H30000 =6g300φ0 + 3g200H20000 − 3B(φ0, H20000)− C(φ0, φ0, φ0),

A�?H11100 =g111φ0 −B(φ0, H01100)−B(φ1, H10100)−B(φ̄1, H11000)

− C(φ0, φ1, φ̄1) + (g101 + g110)H01100 + g011H20000,(
A�? − iω0

)
H21000 =2g210φ1 − 2B(φ0, H11000)−B(φ1, H20000)− C(φ0, φ0, φ1)

+ (2g110 + g200)H11000,(
A�? − iω0

)
H02100 =2g021φ1 − 2B(φ1, H01100)−B(φ̄1, H02000)− C(φ1, φ1, φ̄1)

+ 2g011H11000.
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The Fredholm alternative yields

g300 =
1

6
pT0 (3B(φ0, H20000) + C(φ0, φ0, φ0)) ,

g111 = pT0
(
B(φ0, H01100) +B(φ1, H̄11000) +B(φ̄1, H11000) + C(φ0, φ1, φ̄1)

)
,

g210 =
1

2
pT1 (2B(φ0, H11000) +B(φ1, H20000) + C(φ0, φ0, φ1)) ,

g021 =
1

2
pT1
(
2B(φ1, H01100) +B(φ̄1, H02000) + C(φ1, φ1, φ̄1)

)
.

Parameter-related coefficients The parameter-related linear terms in (6.88) give

A�?H00010 =φ0 − J1K10,

A�?H00001 =− J1K01.

Let γ = (γ1, γ2) = pT1 J1, then by the Fredholm alternative we obtain the orthogonal
frame

K10 = s1 + δ1s2, K01 = δ2s2, (6.90)

where
sT1 = γ/‖γ‖2, sT2 = (−γ2, γ1)

and δ1,2 ∈ R are some constants. Using Corollary (4.8) we obtain

H00010(θ) = ∆(0)INV (J1K10 −∆′(0)q0) + δ3q0 + θq0

= r1 + δ1r2 + δ3q0 − r3,
H00001(θ) = δ2r2 + δ4q0,

(6.91)

where

r1 = ∆(0)INV (J1s1) , r2 = ∆(0)INV (J1s2) , r3 = ∆(0)INV
(
∆′(0)q0

)
− θq0,

and the constants δ3 and δ4 are not chosen such that
〈
φ�0 , H00010

〉
= 0 and

〈
φ�0 , H00001

〉
=

0, but will be determined below.
Collecting the z0β1, z0β2, z1β1 and z1β2 terms in the homological equation yields the
systems

A�?H10010 =H20000 −B(φ0, H00010)−A1(φ0,K10),

A�?H10001 =−B(φ0, H00001)−A1(φ0,K01),(
A�? − iω0

)
H01010 =H11000 −B(φ1, H00010)−A1(φ1,K10),(

A�? − iω0

)
H01001 =φ1 −B(φ1, H00001)−A1(φ1,K01).
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The Fredholm alternative yields

0 =pT0 B(φ0, H00010) + pT0 A1(φ0,K10),

0 =pT0 B(φ0, H00001) + pT0 A1(φ0,K01),

0 =pT1 B(φ1, H00010) + pT1 A1(φ1,K10),

1 =pT1 B(φ1, H00001) + pT1 A1(φ1,K01).

Substituting (6.90) and (6.91) into the above equations yields

0 =pT0 B(φ0, r1) + δ1p
T
0 B(φ0, r2) + δ3p

T
0 B(φ0, q0)− pT0 B(φ0, r3)

+ pT0 A1(φ0, s1) + δ1p
T
0 A1(φ0, s2),

0 =δ2p
T
0 B(φ0, r2) + δ4p

T
0 B(φ0, q0) + δ2p

T
0 A1(φ0, s2),

0 =pT1 B(φ1, r1) + δ1p
T
1 B(φ1, r2) + δ3p

T
1 B(φ1, q0)− pT1 B(φ1, r3)

+ pT1 A1(φ1, s1) + δ1p
T
1 A1(φ1, s2),

1 =δ2p
T
1 B(φ1, r2) + δ4p

T
1 B(φ1, q0) + δ2p

T
1 A1(φ1, s2).

Which we can solve for δ1, δ2, δ3 and δ4 by solving the systems

LL

(
δ1

δ3

)
= −

(
pT0 A1(φ0, s1) + pT0 B(φ0, r1)− pT0 B(φ0, r3)
pT1 A1(φ1, s1) + pT1 B(φ1, r1)− pT1 B(φ1, r3)

)
,

Re(LL)

(
δ2

δ4

)
=

(
0
1

)
,

where

LL =

(
pT0 B(φ0, r2) + pT0 A1(φ0, s2) pT0 B(φ0, φ0)
pT1 B(φ1, r2) + pT1 A1(φ1, s2) pT1 B(φ1, φ0)

)
.

6.5. Hopf-transcritical bifurcation

The critical normal form coefficients for the Hopf-transcritical bifurcation remain the
same as for the fold-Hopf bifurcation. Therefore, we proceed with the parameter-related
equations. The homological equation (4.3) can be written as

A�?H(z, β) +R(H(z, β),K(β))

= Dz0H(z, β)ż0 +Dz1H(z, β)ż1 +Dz̄1H(z, β) ˙̄z1, (6.92)
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where z = (z1, z2). Here, the functions H, K and R admits the expansions

H(z0, z1, z̄1, β1, β2) =z0φ0 + z1φ1 + z̄1φ̄1

+

3∑
j+k+l=2

1∑
|µ|=0

1

j!k!l!µ!
Hjklµz

j
0z
k
1 z̄

l
1β

µ +O(‖z‖4‖β‖2), (6.93)

K(β) =K10β1 +K01β2 +O(‖β‖2),

R(u, β) =
1

2
B(u, u) +A1(u, β) +O

(
‖u‖3 + ‖u‖ ‖β‖2

))
.

Collecting the coefficients of the z0β1, z0β2, z1β1 and z1β2 terms in the homological equa-
tion we obtain the systems

A�?H10010 =φ0 −A1(φ0,K10), (6.94)
A�?H10001 =−A1(φ0,K01),(

A�? − iω0

)
H01010 =−A1(φ1,K10),(

A�? − iω0

)
H01001 =φ1 −A1(φ1,K01). (6.95)

By the Fredholm alternative we have

0 =1− pT0 A1(φ0,K10), (6.96)

0 =− pT0 A1(φ0,K01),

0 =− pT1 A1(φ1,K10),

0 =1− pT1 A1(φ1,K01). (6.97)

Let

K10 = δ1e1 + δ2e2,

K01 = δ3e1 + δ4e2,

where e1 = (1, 0), e2 = (0, 1) and δi (i = 1, . . . , 4) ∈ R are to be determined. Substituting
into equations (6.96)-(6.97), give the systems(

pT0 A1(φ0, e1) pT0 A1(φ0, e2)
pT1 A1(φ1, e1) pT1 A1(φ1, e2)

)(
δ1

δ2

)
=

(
1
0

)
and (

pT0 A1(φ0, e1) pT0 A1(φ0, e2)
pT1 A1(φ1, e1) pT0 A1(φ1, e2)

)(
δ3

δ4

)
=

(
0
1

)
.

Having determined K10 and K01 equations (6.94)-(6.95) are consistent, we obtain

H10010(θ) = BINV
0 (A1(φ0,K10),−1),

H10001(θ) = BINV
0 (A1(φ0,K01), 0),

H01010(θ) = BINV
iω0

(A1(φ1,K10), 0),

H01001(θ) = BINV
iω0

(A1(φ1,K01),−1).
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Collecting the coefficient of the z̄2
1 term in the homological equation gives the systems(

A�? + 2iω0

)
H00200 = −B(φ̄1, φ̄1).

Using using Corollary 4.1 we obtain

H00200 = e−2iω0θ∆(−2iω0)−1B(φ̄1, φ̄1).

6.6. Hopf-Hopf bifurcation

Since the eigenvalues (B.12) are simple Lemma 3.6 gives eigenfunctions φ1,2 and adjoint
eigenfunctions φ�1,2 such that

Aφ1 = iω1φ1, Aφ2 = iω2φ2, A?φ�1 = iω1φ
�
1 , A?φ�2 = iω2φ

�
2 . (6.98)

Let the vectors q1, q2, p1, p2 ∈ Rn satisfy

∆(iω1)q1 = 0, ∆(iω2)q2 = 0, p1∆(iω1) = 0, p2∆(iω2) = 0,

then the eigenfunctions are given by

φ1(θ) = eiω1θq1,

φ�1 (θ) = pT1 + pT1

ˆ θ

0
(

ˆ h

σ
eiω1(σ−τ)dζ(τ)) dσ,

φ2(θ) = eiω2θq2,

φ�2 (θ) = pT2 + pT2

ˆ θ

0
(

ˆ h

σ
eiω2(σ−τ)dζ(τ)) dσ.

Furthermore, using Lemma 3.6 and 3.7 we normalize the eigenfunctions such that the
‘bi-orthogonality’ relation 〈

φ�i , φj
〉

= δij , 1 ≤ i, j ≤ 2,

holds.
Following [33], any point y ∈ X0 from the critical eigenspace can be represented as

y = z1φ1 + z̄1φ̄1 + z2φ2 + z̄2φ̄2, z1,2 ∈ C,

where z1 =
〈
φ�1 , y,

〉
and z2 =

〈
φ�2 , y,

〉
. Therefore, the homological equation (4.3) can

be written as

A�?H(z, β) + J1(β) +R(H(z, β),K(β))

= Dz1H(z, β)ż1 +Dz̄1H(z, β) ˙̄z1 +Dz2H(z, β)ż2 +Dz̄2H(z, β) ˙̄z2, (6.99)
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where z = (z1, z2). Then H, K and R admits the expansions

H(z1, z̄1, z2, z̄2, β1, β2) =z1φ1 + z̄1φ̄1 + z2φ2 + z̄2φ̄2+

+
3∑

j+k+l+m=2

1∑
|µ|=0

1

j!k!l!m!µ!
Hjklmµz

j
1z̄
k
1z

l
2z̄
m
2 β

µ +O(‖z‖6‖β‖2),

(6.100)

K(β) =K10β1 +K01β2 +O(‖β‖2), (6.101)

R(u, β) =
1

2
B(u, u) +A1(u, β) +O

(
‖u‖3 + ‖u‖ ‖β‖2 + ‖β‖3

))
.

The linear terms in (6.99) give back the eigenfunctions (6.98) and the parameter-related
equations

A�?H0000µ = −J1Kµ,

where µ = (10), (01). Let
Kµ = γ1µe1 + γ2µe2, (6.102)

where e1 =

(
1
0

)
and e2 =

(
0
1

)
. Then

H0000µ(θ) = −γ1µ∆(0)−1J1e1 − γ2µ∆(0)−1J1e2 (6.103)

Collecting the ziβj , 1 ≤ i, j ≤ 2 terms yields the systems

(A�? − iω1)H100010 = φ1 −A1(φ1,K10)−B(φ1, H000010),

(A�? − iω1)H100001 = −A1(φ1,K01)−B(φ1, H000001),

(A�? − iω2)H001010 = −A1(φ2,K10)−B(φ2, H000010),

(A�? − iω2)H001001 = φ2 −A1(φ2,K01)−B(φ2, H000001).

By the Fredholm alternative we obtain

1 = pT1 (A1(φ1,K10) +B(φ1, H000010)) ,
0 = pT1 (A1(φ1,K01) +B(φ1, H000001)) ,
0 = pT2 (A1(φ2,K10) +B(φ2, H000010)) ,
1 = pT2 (A1(φ2,K01) +B(φ2, H000001)) .

(6.104)

Substituting (6.102) and (6.103) into (6.104) yields
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1 = pT1

(
γ110A1(φ1, e1) + γ210A1(φ1, e2)

−γ110B(φ1,∆(0)−1J1e1)− γ210B(φ1,∆(0)−1J1e2)

)
,

0 = pT1

(
γ101A1(φ1, e1) + γ201A1(φ1, e2)

−γ101B(φ1,∆(0)−1J1e1)− γ201B(φ1,∆(0)−1J1e2)

)
,

0 = pT2

(
γ110A1(φ2, e1) + γ210A1(φ2, e2)

−γ110B(φ2,∆(0)−1J1e1)− γ210B(φ2,∆(0)−1J1e2)

)
,

1 = pT2

(
γ101A1(φ2, e1) + γ201A1(φ2, e2)

−γ101B(φ2,∆(0)−1J1e1)− γ201B(φ2,∆(0)−1J1e2)

)
.

(6.105)

Note that ∆(0)−1J1ei is a constant function of θ. We can solve (6.105) for (γ1µ, γ2µ) by
solving the two 2× 2-dimensional systems

Re(

(
M11 M12

M31 M32

)
)

(
γ110

γ101

)
=

(
1
0

)
Re(

(
M23 M24

M43 M44

)
)

(
γ210

γ201

)
=

(
0
1

)
,

where

M11 = pT1
(
A1(φ1, e1)−B(φ1,∆(0)−1J1e1)

)
,

M12 = pT1
(
A1(φ1, e2)−B(φ1,∆(0)−1J1e2)

)
,

M23 = pT1
(
A1(φ1, e1)−B(φ1,∆(0)−1J1e1)

)
,

M24 = pT1
(
A1(φ1, e2)−B(φ1,∆(0)−1J1e2)

)
,

M31 = pT2
(
A1(φ2, e1)−B(φ2,∆(0)−1J1e1)

)
,

M32 = pT2
(
A1(φ2, e2)−B(φ2,∆(0)−1J1e2)

)
,

M43 = pT2
(
A1(φ2, e1)−B(φ2,∆(0)−1J1e1)

)
,

M44 = pT2
(
A1(φ2, e2)−B(φ2,∆(0)−1J1e2)

)
.

Lastly, for initialization of the Neimark-Sacker curves (C.87), we need the resonant cubic
critical normal form coefficients g2100, g1011, g1110 and g0021. Collecting the z1|z1|2, z1|z2|2,
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z1|z2|2 and |z1|2z2 terms in the homological equations leads to the systems(
A�? − iω1

)
H210000 =2g2100φ1 − 2B(φ1, H110000)−B(φ̄1, H200000)− C(φ1, φ1, φ̄1),(

A�? − iω1

)
H101100 =g1011φ1 −B(φ̄2, H101000)−B(φ1, H001100)−B(φ2, H100100)

− C(φ1, φ2, φ̄2),(
A�? − iω2

)
H111000 =g1110φ2 −B(φ̄1, H101000)−B(φ1, H011000)−B(φ2, H110000)

− C(φ1, φ̄1, φ2),(
A�? − iω2

)
H002100 =2g0021φ2 − 2B(φ2, H001100)−B(φ̄2, H002000)− C(φ2, φ2, φ̄2).

Using the Fredholm alternatives yields

g2100 =
1

2
pT1
(
2B(φ1, H110000) +B(φ̄1, H200000) + C(φ1, φ1, φ̄1)

)
,

g1011 = pT1
(
B(φ̄2, H101000) +B(φ1, H001100) +B(φ2, H100100) + C(φ1, φ2, φ̄2)

)
,

g1110 = pT2
(
B(φ̄1, H101000)−B(φ1, H̄100100)−B(φ2, H110000) + C(φ1, φ̄1, φ2)

)
,

g0021 =
1

2
pT2
(
2B(φ2, H001100) +B(φ̄2, H002000) + C(φ2, φ2, φ̄2)

)
.

It thus remains to obtain expression for the functions H110000, H200000, H101000, H001100,
H100100 and H002000. For this we collect the |z1|2, z2

1 , z1z2, |z2|2, z1z̄2 and z2z̄1 terms in
the homological equations, yielding to the systems

A�?H110000 =−B(φ1, φ̄1),(
A�? − 2iω1

)
H200000 =−B(φ1, φ1),(

A�? − iω1 − iω2

)
H101000 =−B(φ1, φ2),

A�?H001100 =−B(φ2, φ̄2),(
A�? − iω1 + iω2

)
H100100 =−B(φ1, φ̄2),(

A�? − 2iω2

)
H002000 =−B(φ2, φ2).

Using Corollary 4.1 we obtain the solutions

H110000(θ) =∆(0)−1B(φ1, φ̄1),

H200000(θ) =e2iω1θ∆(2iω1)−1B(φ1, φ1),

H101000(θ) =ei(ω1+ω2)θ∆(i (ω1 + ω2))−1B(φ1, φ2),

H001100(θ) =∆(0)−1B(φ2, φ̄2),

H100100(θ) =ei(ω1−ω2)θ∆(i (ω1 − ω2))−1B(φ1, φ̄2),

H011000(θ) =e2iω2θ∆(2iω2)−1B(φ2, φ2).
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7. Implementation in DDE-BifTool

In this Chapter we briefly describe the implementation of the predictors in DDE-BifTool
and it should be read with the source code at hand, which can be downloaded from
sourceforge.net1. The procedure is similar in all cases. First convert the bifurcation point
to its type, i.e. a Bogdanov-Takens, a fold-Hopf, etc. Then calculate the coefficients as
derived in Chapter 6. Call the predictor file to setup a branch with two initial points using
the predictors from Appendix C. Then the branch of homoclinic orbits or non-hyperbolic
limit cycles can be continued as usual.
In the first Section we mainly follow the method used in [32, 1, 36] to initialize the contin-
uation of the homoclinic orbit emanating from the generic and transcritical Bogdanov-
Takens bifurcation. In the second Section we only describe the method to initialize
the continuation of limit cycles emanating from generalized Hopf points. The remain-
ing cases, i.e. the fold-Hopf, Hopf-transcritical and Hopf-Hopf bifurcations, are treated
similarly.

7.1. Bogdanov-Takens

We suppose that the parameter-dependent DDE (3.3) is a Bogdanov-Takens point at
the steady-state ϕ0 and parameter α0. Furthermore, we assume that one has success-
fully located a Bogdanov-Takens point denoted by bt with DDE-BifTool. For both the
generic and transcritical case there are vectors q0, q1, p1, p0 such that the normalizations
in Lemma 3.8 hold. These are calculated in the file p_tobt(funcs,point). Depending on
weather a generic or transcritical Bogdanov-Takens bifurcation is considered either the
function nmfm_bt_pm(funcs,bt) or p_totbt(funcs,point) should be called. In these files
the coefficients derived in Section 6.1 and 6.2, respectively.

7.1.1. Initialize continuation homoclinic orbit in the generic case

Step 1: Compute coefficients a, b, H2000, H1100, H0200, K10, K01, H0001, H0010, K02,
H0002, H1001, H0101, d, e, a2, and b2.

Step 2: Let A := ‖x(±∞, ε)− x(0, ε)‖ be the amplitude of the initial homoclinic orbit.
Using (C.9) we approximate A for small ε by

A =

∥∥∥∥ε2

(
2

a

)
φ0 − ε2

(−4

a

)
φ0

∥∥∥∥ = ε2 6

|a| ‖φ0‖ = ε2 6
√
m

|a| .

1https://sourceforge.net/projects/ddebiftool/files/latest/download

https://sourceforge.net/projects/ddebiftool/files/latest/download
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Here we used that for finitely many delays m we have

‖φ0‖ = ‖Φ0‖ = ‖ (q0, . . . q0)‖︸ ︷︷ ︸
m times

=
√
m.

The amplitude is chosen by the user, so that we get

ε =

√
A|a|
6
√
m
.

Step 3: We choose the initial half-return time T such that, at the end points, the dis-
tance,

k := ‖x(±∞, ε)− x(±T, ε)‖
is sufficiently small. For ε small we approximate k using (C.9) as

k = ε2 6sech2(±εT )

|a| ‖φ0‖ .

Hence the initial half-return time is given by solving

k = Asech2(εT ) ‖φ0‖ ,

or, equivalently,
sech(εT ) =

√
l1,

where l1 =

√
k

A ‖φ0‖
> 0. We conclude that

T =
1

ε
sech−1(l1) =

1

ε
log

(
1 +

√
1− l21
l1

)
.

Step 4: Compute the initial homoclinic orbit by discretizing the interval [0, 1] into equidis-
tant point fi (the fine mesh) and the evaluate (C.9) at each t where t is given by

t = (2fi − 1)T, fi ∈ [0, 1].

By taking the limit of t in (C.9) to infinity the saddle point is approximated by

x0 = ε2
(

10b

7a
H0001 +

2

a
φ0

)
.

Note that x0 is uniquely defined, since H0001(θ) and φ(θ) are constant functions.
Step 5: Compute a second homoclinic orbit with slightly bigger amplitude and add the

two orbits to a homoclinic branch. Then the branch of homoclinic orbits can be
continued.
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7.1.2. Initialize continuation homoclinic orbits in the transcritical case

Step1: Compute coefficients a, b, H2000, H1100, H0200, K10, K01, H1010, H1001, H0110,
H0101, K20, K02, d, e, a1, a2, b1 and b2.

Step2: Let A := ‖x(±∞, ε)− x(0, ε)‖ be the amplitude of the initial homoclinic orbit.
Using (C.42) we approximate A for small ε by

A =

∥∥∥∥ε2

(
− 1

2a

)
φ0 − ε2

(
1

a

)
φ0

∥∥∥∥ = ε2 3

2|a| ‖φ0‖ = ε2 3
√
m

2|a| .

Here we used that for finitely many delays m we have

‖φ0‖ = ‖Φ0‖ = ‖ (q0, . . . q0)‖︸ ︷︷ ︸
m times

=
√
m.

The amplitude is chosen by the user, so that we get

ε =

√
A

2|a|
3
√
m

Step3: We choose the initial half-return time T such that, at the end points, the distance,

k := ‖x(±∞, ε)− x(±T, ε)‖

is sufficiently small. For ε small we approximate k using (C.42) as

k = ε2 3sech2(εT )

2|a| ‖φ0‖ .

Hence the initial half-return time is given by solving

k = Asech2(εT ) ‖φ0‖ ,

or equivalently
sech(εT ) =

√
l1,

where l1 =

√
k

A ‖φ0‖
> 0. We conclude that

T =
1

ε
sech−1(l1) =

1

ε
log

(
1 +

√
1− l21
l1

)
.

Step 4: Compute the initial homoclinic orbits by discretizing the interval [0, 1] into
equidistant point fi (the fine mesh) and the evaluate (C.42) and(C.69) at each
t where t is given by

t = (2fi − 1)T, fi ∈ [0, 1].
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By taking the limit of t in (C.42) and (C.69) to infinity the saddle points are
approximated by

s1 = 0,

s2 =
1

a
ε2φ0,

respectively.
Step 5: Compute for both homoclinic orbits a second homoclinic orbit with slightly

bigger amplitude and add the two orbits to a homoclinic branch. Then the branches
of homoclinic orbits can be continued.

7.2. Generalized Hopf

Step 1: Compute the coefficients H1001, H0001, H1100, H2000, H3000, H2100 and the sec-
ond Lyapunov coefficient c2(0).

Step 2: Compute the initial periodic orbit by discretizing the interval [0, 1] into equidis-
tant point fi (the fine mesh) and then evaluate (C.74) at each t where t is given
by

t = (2fi − 1)T, fi ∈ [0, 1]

and ε � 1 is provided by the user. Here the period T is given by (C.73). Substi-
tuting, (C.72) into equation 6.83 we obtain an approximation for the parameters.

Step 3: Compute a second period orbit as in step 2 with slightly bigger ε
Step 4: From the data collected in step 2 and step 3 setup a branch of non-hyperbolic

limit cycles with the same structure used in the DDE-BifTool extension
ddebiftool_extra_psol. Now the branch can be continued as usual.
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8. Examples

In this Chapter we demonstrate the predictors of the nonhyperbolic cycles emanating
from generalized Hopf, fold-Hopf, Hopf-transcritical and Hopf-Hopf bifurcations, and the
predictors of the homoclinic orbits emanating from generic and transcritical Bogdanov-
Takens bifurcations, in various models. In the first example we include the minimal
Matlab/Octave code to reproduce the main results. This code can then be used as a
starting point to investigate other models, by simple modifications. The code for the
other examples can be found online on sourceforge.net1.

8.1. Delayed feedback on the dynamical model of a financial
system

In [45] the delayed financial system
ẋ = z + (y − a)x+ k1(x− x(t− τ1)),
ẏ = 1− by − x2 + k2(y − y(t− τ2)),
ż = −x− cz + k3(z − z(t− τ3))

(8.1)

is considered. The variables and parameters have the following meaning:
• The variables x, y and z describes the interest rate, the investment demand, and

the price index respectively.
• a > 0 is the saving amount.
• b > 0 is the cost per investment.
• c > 0 is the elasticity of demand of commercial markets.
• ki (i = 1, 2, 3) are the feedback strength.

We fix the parameters

b = 0.1, c = 1, k1 = k2 = 0, k3 = 1

and take a and τ3 as control parameters. It can analytically verified that the steady-state

H0 = (x0, y0, z0) = (0,
1

b
, 0)

1https://sourceforge.net/projects/ddebiftool/files/latest/download

https://sourceforge.net/projects/ddebiftool/files/latest/download
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undergoes a Hopf bifurcation at parameter values (a, τ3) ≈ (10, 0.9708), see [45, Theorem
3 (iii)]. To treat τ3 as an ordinary parameter we rescale the time by

t→ t

τ3
.

Then the system (8.1) becomes
ẋ = τ3 (z + (y − a)x) ,
ẏ = τ3

(
1− by − x2

)
,

ż = τ3 (−x− cz + (z − z(t− 1))) ,
(8.2)

where we have taken into account that k1 = k2 = 0, k3 = 1. Continuing the Hopf
point H0 at (a, τ3) ≈ (10, 0.9708), a generalized Hopf point is detected at parameter
values (a, τ3) ≈ (13.0581, 1.7659), with the second Lyapunov coefficient `2 ≈ 0.0227. We
continue the curve LPC of fold bifurcation of limit cycles emanating from the generalized
Hopf point using the predictor from Section C.3. In Figure 8.1 we have plotted the Hopf
curve, the continued curve LPC and the predictor in parameter space. There we see
that for nearby parameter values the continued curve LPC and the predictor are nearly
identical. In Figure 8.2 we compare the limit cycles along the curve LPC with the
predicted limit cycle given by C.74.

%% i n i t i a l i z e system
c l e a r % c l e a r v a r i a b l e s
c l o s e a l l % c l o s e f i g u r e s
addpath ( ' . . / . . / dd eb i f t o o l ' , . . .

' . . / . . / ddeb i f too l_extra_pso l ' , . . .
' . . / . . / ddebiftool_extra_nmfm ' , . . .
' . . / . . / d d e b i f t o o l_ u t i l i t i e s ' ) ;

% f i x ed cons tant s
b=0.1 ; c=1; k1=0; k2=0; k3=1;

% DDE
sys_sonpark=@(xx , par ) [ . . .
par (2 ) ∗( xx ( 3 , 1 , : ) +(xx ( 2 , 1 , : )−par (1 ) ) ∗xx ( 1 , 1 , : )+k1 ∗( xx ( 1 , 1 , : )−xx ( 1 , 2 , : ) ) ) ;
par (2 ) ∗(1−b∗xx ( 2 , 1 , : )−xx ( 1 , 1 , : )^2+k2 ∗( xx ( 2 , 1 , : )−xx ( 2 , 3 , : ) ) ) ;
par (2 ) ∗(−xx ( 1 , 1 , : )−c∗xx ( 3 , 1 , : )+k3 ∗( xx ( 3 , 1 , : )−xx ( 3 , 4 , : ) ) ) ] ;

funcs=set_funcs ( . . .
' sys_rhs ' , @(xx , par ) sys_sonpark (xx , par ) , . . .
' sys_tau ' , @( ) [ 3 4 5 ] , . . .
' x_vector ized ' , 1 ) ;

%% setup hopf po int
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LPC branch
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Generalized Hopf point

Figure 8.1.: Bifurcation diagram near a generalized Hopf bifurcation in the delayed finan-
cial system (8.1). We see that the predictor gives a good approximation to
the continued curve LPC for nearby parameter values in parameter space.
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Figure 8.2.: Plot of nonhyperbolic limit cycles along the curve LPC in phase-space
emanating from the generalized Hopf bifurcation in the delayed financial
system (8.1). The yellow orbits are the computed limit cycles. The blue
orbit is the predicted limit cycle.
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ind_a=1;
ind_tau3=2;

s t s t . kind= ' s t s t ' ;
x s ta r =0;
y s ta r=1/b ;
z s t a r =0;
a=10;
tau3 =0.9708;
s t s t . x=[ x s ta r ; y s ta r ; z s t a r ] ;
s t s t . parameter=[a tau3 0 0 1 ] ;

method=df_mthod ( funcs , ' s t s t ' ) ;
[ s t s t , s ]=p_correc ( funcs , s t s t , [ ] , [ ] , method . po int ) ;
s t s t . s t a b i l i t y=p_stabi l ( funcs , s t s t , method . s t a b i l i t y ) ;
s t s t . s t a b i l i t y . l 1

%% cont inue hopf po int
hopf1=p_tohopf ( funcs , s t s t ) ;
hopf2=hopf1 ;
hopf2 . parameter ( ind_a )=hopf2 . parameter ( ind_a ) +0.001;

method=df_mthod ( funcs , ' hopf ' ) ;
[ hopf2 , s ]=p_correc ( funcs , hopf2 , ind_tau3 , [ ] , method . po int )

hopf_br=df_brnch ( funcs , [ ind_a ind_tau3 ] , ' hopf ' ) ;
hopf_br . po int=hopf1 ;
hopf_br . po int (2 )=hopf2 ;

f i g u r e (1 ) ; c l f ;
hopf_br . parameter .max_bound=[ [ ind_a 1 7 ] ; [ ind_tau3 3 ] ] ;
hopf_br . method . cont inuat i on . steplength_growth_factor =1.05;
hopf_br=br_contn ( funcs , hopf_br , 200 ) ;

%% detec t codim−2 b i f u r c a t i o n s
hopf_br=br_stabl ( funcs , hopf_br , 0 , 0 ) ;
[ hopf_br , hopf_test funcs ]= LocateSpec i a lPo in t s ( funcs , hopf_br ) ;

%% ext ra c t g en e r a l i z e d Hopf po int
genh_ind=br_get f l ag s ( hopf_br , ' genh ' ) ;
genh=hopf_br . po int ( genh_ind ) ;

%% cont inue LPC us ing the p r ed i c t o r
[ LPCfuncs , LPCbranch , p so l ]=init_GH_LPC( funcs , genh , 0 . 5 ) ;

% f i g u r e (2 ) ;
LPCbranch=br_contn (LPCfuncs , LPCbranch , 5 0 ) ;

%% plo t b i f u r c a t i o n diagram
f i g u r e (2 ) ; c l f ; hold on

cm=colormap ( ' l i n e s ' ) ;
f i g u r e (2 ) ; c l f ; hold on
getpar s=@( br , ind ) array fun (@(p)p . parameter ( ind ) , br ) ;
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getx=@( br , ind ) array fun (@(p)p . x ( ind ) , br ) ;
hopf_br_pl=p lo t ( ge tpar s ( hopf_br . point , ind_a ) , ge tpar s ( hopf_br . point , ind_tau3

) , ' Color ' ,cm( 1 , : ) ) ;
LPCbranch_pl=p lo t ( ge tpar s (LPCbranch . point , ind_a ) , ge tpar s (LPCbranch . point ,

ind_tau3 ) , ' Color ' ,cm( 2 , : ) ) ;

% add p r ed i c t o r
eps=l i n s p a c e (0 , 2 ) ;
betas =[0∗ eps ; −2∗genh .nmfm. L2∗ eps . ^ 2 ] ;
gamma110=genh .nmfm. gamma110 ;
gamma101=genh .nmfm. gamma101 ;
gamma210=genh .nmfm. gamma210 ;
gamma201=genh .nmfm. gamma201 ;
KK=inv ( r e a l ( [ [ gamma110 gamma101 ; gamma210 gamma201 ] ] ) ) ∗ betas ;

pred i tor_pl=p lo t ( genh . parameter ( ind_a )+KK( 1 , : ) , genh . parameter ( ind_tau3 )+KK
( 2 , : ) , ' . ' ) ;

genh_pl=p lo t ( genh . parameter ( ind_a ) , genh . parameter ( ind_tau3 ) , 'k . ' , '
MarkerSize ' , 16) ;

l egend ( [ hopf_br_pl LPCbranch_pl pred i tor_pl genh_pl ] , . . .
{ 'Hopf␣branch ' , 'LPC␣branch ' , 'LPC␣ p r ed i c t o r ' , ' Genera l i zed ␣Hopf␣ po int ' }) ;

ax i s ( [ 7 . 5 5 8 6 16.6371 1 .6591 1 . 8 0 0 4 ] ) ;
x l ab e l ( ' $a$ ' , ' I n t e r p r e t e r ' , 'LaTeX ' ) ;
y l ab e l ( ' $\tau_3$ ' , ' I n t e r p r e t e r ' , 'LaTeX ' ) ;

%% plo t c y c l e s on the curve LPCbranch
f i g u r e (4 ) ; c l f ; hold on
p lo t3 ( p so l . p r o f i l e ( 1 , : ) , p so l . p r o f i l e ( 2 , : ) , p so l . p r o f i l e ( 3 , : ) , ' Color ' ,cm( 1 , : )

) ;
% p lo t LPC in phase−space
f o r i =10:30

p lo t3 (LPCbranch . po int ( i ) . p r o f i l e ( 1 , : ) , LPCbranch . po int ( i ) . p r o f i l e ( 2 , : )
, . . .
LPCbranch . po int ( i ) . p r o f i l e ( 3 , : ) , ' Color ' ,cm( 3 , : ) ) ;

end

x l ab e l ( ' $x$ ' , ' I n t e r p r e t e r ' , 'LaTeX ' ) ;
y l ab e l ( ' $y$ ' , ' I n t e r p r e t e r ' , 'LaTeX ' ) ;
z l a b e l ( ' $z$ ' , ' I n t e r p r e t e r ' , 'LaTeX ' ) ;

view (−76 ,28)
g r id on
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8.2. A neural mass model

In [48] and [46] the following model of two interacting layers of neurons is considered{
ẋ1(t) = −x1(t)− ag(bx1(t− τ1)) + cg(dx2(t− τ2)),
ẋ2(t) = −x2(t)− ag(bx2(t− τ1)) + cg(dx1(t− τ2)).

(8.3)

The variables x1(t) and x2(t) represent the population-averaged neural activity at time
t in layers one and two, respectively. The parameter a > 0 is a measure of the strength
of inhibitory feedback, while c > 0 measures the strength of the excitatory effect of
one layer on the other. The parameters b > 0 and d > 0 are saturation rates and the
delays τ1,2 represent time lags in the inhibitory feedback loop and excitatory inter-layer
connection. Note that the system is symmetric with respect to interchanging the labels
1 and 2, so equilibria are necessarily of the form (x0, x0). The function g is smooth,
strictly increasing and satisfies g(0) = 0 and g′(0) = 1. We fix the numerical parameter
values

b = 2.0, d = 1.2, τ1 = 12.7, τ2 = 20.2,

and take for g : R→ R the sigmoidal form

g(z) = [tanh(z − 1) + tanh(1)] cosh(1)2.

The trivial equilibrium (x1, x2) = (0, 0) undergoes a Hopf-Hopf at parameter values
(c, a) ≈ (0.5741, 0.2798). The critical normal form coefficients are given by

g2100 ≈− 0.0007 + 0.0020i,

g1011 ≈− 0.0020 + 0.0040i,

g1110 ≈− 0.0016− 0.0045i,

g0021 ≈− 0.0008− 0.0022i,

θ ≈2.4716,

δ ≈2.2107.

From [34] we conclude that we are in simple case I, i.e. nearby the Hopf-Hopf point there
will be two stable periodic orbits present and an unstable torus. By using the predictors
two Neimark-Sacker curves are obtained. In Figure 8.3 the predictors for the parameter
values are compared with continued Neimark-Sacker curves.

Remark 8.1. As mentioned in the introduction, the expressions for the critical normal
form coefficients for DDEs have first been derived in [29]. There the model (8.3) has
been used to verify the expressions. However, due to a mistake in the expressions for the
zero-Hopf and Hopf-Hopf bifurcations the coefficients obtained are wrong. In particular,
the prediction of a stable torus in Section 4.2.9 in [29] is incorrect. Numerical simulation
over a longer time of integration show that the torus slowly shrinks to a stable cycle.
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Figure 8.3.: Bifurcation diagram near the Hopf-Hopf point. The two Neimark-Sacker
curves emanate from the Hopf-Hopf point. In (a) the predicted parameter
values (red dots) are located to a high precision at the continued Neimark-
Sacker curves (orange). The blue curves are the Hopf branches, which meet
transversely at the Hopf-Hopf point.
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8.3. Delayed Ratio-Dependent Holling-Tanner Predator
Prey System

In [39] the Bogdanov-Takens bifurcation of the following delayed predator prey system
ẋ = rx

(
1− x

K

)
− αy(x− m̄)

Ay + x− m̄ − h̄,

ẏ = sy

(
1− dy(t− τ̄)

x(t− τ̄)− m̄

)
,

(8.4)

is considered. Here x and y stand for prey and predator population (or densities) at time
t, respectively. The predator growth is of logistic type with growth rate r and carrying
capacity K in the absence of predation; α and A stand for the predator capturing rate
and half saturation constant, respectively; s is the intrinsic growth rate of predator;
however, carrying capacity x/b (b is the conversion rate of prey into predators) is the
function on the population size of prey. The parameters α,A, m̄, h̄, s, b, and τ̄ are all
positive constants. m̄ is a constant number of prey using refuges; h is the rate of prey
harvesting. System (8.4) can be transformed into

ẋ = (x+m)(1− x−m)− xy

ay + x
− h,

ẏ = δy

(
β − y(t− τ)

x(t− τ)

)
,

(8.5)

see [39] for the transformation and the meaning of the new parameters. Let

0 < m <
1

2

(
1− β

aβ + 1

)
,

h =
1

4

(
β

aβ + 1
− 1

)2

+
mβ

aβ + 1
.

(8.6)

Then P? = (x?, y?) is an interior positive equilibrium point of systems (8.5), where

x? = −1

2

(
β

aβ + 1
+ 2m− 1

)
, y? = βx?. (8.7)

We fix the parameter values (β, τ, a,m, h, δ) = (0.5, 0.7812, 0.5, 0.02, 0.098, 0.64). Then
there is a codimension 2 Bogdanov-Takens point at (x?, y?) = (0.28, 0.14) with critical
normal form coefficients (a, b) = (−0.3816222682,−1.6894735830). We start the contin-
uation with (β, δ) free, amplitude=0.02 and TTolerance=1e-03. The dependence of P?
on the parameter β yields a generic Bogdanov-Takens bifurcation. In Figure 8.4 we have
plotted the predicted and corrected orbit in phase space and the homoclinic predictor
in parameter space. In Figure 8.4b one can see the similarity with the unfolding of the
normal form for the generic Bogdanov-Takens bifurcation in Figure B.1. However the
phase portraits are different since the sign of the product ab is positive. This leads to
unstable periodic orbits near the Bogdanov-Takens curve as seen in the simulation in
Figure 8.4d.
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Remark 8.2. The parameter-dependent normal form reduction in [39] is incorrect because
the results from [18] were used based on the assumption that steady-state remains fixed
under variation of parameters.
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Figure 8.4.: (a) The comparison of (nearly identical) homoclinic orbits in phase space be-
tween computed (blue) and predicted (red) using the second-orbit corrector
for amplitude=0.02 and TTolerance=1e-03. (b) Predicted (red) and com-
puted (blue) homoclinic bifurcation curves in parameter space. The black
curve is the Hopf curve. The green curve is the fold curve. The red dot is
the Bogdanov-Takens point. (c) Time plot of the homoclinic orbits from (a).
In the simulation in (d) at (β, δ) ≈ (0.4912, 0.5396) we see that the periodic
orbit (red) near the Hopf curve is unstable, as predicted by the sign of the
normal form coefficients ab.
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8.4. A neural network

In this example we will consider the model{
µu̇1(t) = −u1(t) + q11α(u1(t-T ))− q12u2(t-T ) + e1,

µu̇2(t) = −u2(t) + q21α(u1(t-T ))− q22u2(t-T ) + e2,
(8.8)

which describes the dynamics of a neural network consisting of an excitatory and in-
hibitory neurons [20]. The variables and parameters occurring in (8.8) have the following
neurophysiological meaning:

• u1, u2 : R → R denote the total post-synaptic potential of the excitatory and
inhibitory neuron, respectively.

• µ > 0 is a time constant characterizing the dynamical properties of cell membrane.
• qik ≥ 0 represents the strength of the connection line from the kth neuron to the
ith neuron.

• α : R → R is the transfer function which describes the activity generation of the
excitatory neuron as a function of its total potential u1. The function α is smooth,
increasing and has an unique turning point at u1 = θ. The transfer function
corresponding to the inhibitory neuron is assumed to be the identity.

• T ≥ 0 is a time delay reflecting synaptic delay, axonal and dendritic propagation
time.

• e1 and e2 are external stimuli acting on the excitatory and inhibitory neuron,
respectively.

We consider equation (8.8) with

α(u1) =
1

1 + e−4u1
− 1

2
, q11 = 2.6, q21 = 1.0, q22 = 0.0,

µ = 1.0, T = 1.0, e2 = 0.0,

and Q := q12, E := e1 as bifurcation parameters. Substituting into (8.8) yields{
u̇1(t) = −u1(t) + 2.6α(u1(t-T ))−Qu2(t-T ) + E,

u̇2(t) = −u2(t) + α(u1(t-T )).
(8.9)

Notice that for any steady-state we have the symmetry (u1, u2, E) → (−u1,−u2,−E).
There a two generic codimension 2 Bogdanov-Takens bifurcation in this system. One is
located at P0 = (u1, u2, Q,E) ≈ (−0.2617,−0.2402, 2.6000, 0.0505). The second follows
from the symmetry. We start the continuation with (Q,E) free, amplitude=0.04 and
TTolerance=1e-03. The dependence of P0 on the parameters (Q,E) yields a generic
Bogdanov-Takens bifurcation, see [20]. Notice that the normal form reduction in [20] is
wrong, which leads to the normal form for a transcritical Bogdanov-Takens bifurcation.
In Figure 8.5 we have plotted the predicted and corrected orbit in phase space and the
homoclinic predictor in parameter space.
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Figure 8.5.: (a) The comparison of (nearly identical) homoclinic orbits in phase space
between computed (blue) and predicted (red) using the second-orbit correc-
tor for amplitude=0.04 and TTolerance=1e-03. (b) Predicted (red) and
computed (blue) homoclinic bifurcation curves in parameter space. The
black curves are the Hopf curves. The green curve is the fold curve. (c)
The comparison of both homoclinic orbits in phase space between com-
puted (blue) and predicted (dashed red) using the second-orbit corrector
for amplitude=0.6 and TTolerance=1e-04. (d) Simulation with the Matlab
integrator dde23 of the dynamics in phase space at the point of intersection
of the homoclinic curves in Figure 8.5b.
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8.5. Van der Pol oscillator with delayed feedback

We consider the Van der Pol oscillator with delay feedback [31] given by

ẍ(t) + ε(x2(t)− 1)ẋ(t) + x(t) = εg(x(t− τ)) (8.10)

where ε > 0 is a parameter, τ > 0 is a delay and g : R → R is a smooth function with
g(0) = 0 and g′(0) 6= 0. We rewrite the Van der Pol equation (8.10) as{

ẋ1 = x2,
ẋ2 = εg(x1(t− τ))− ε(x2

1 − 1)x2 − x1.
(8.11)

Rescaling time with t→ t

τ
to normalize the delay yields{

ẋ1 = τx2,
ẋ2 = τ

(
εg(x1(t− τ))− ε(x2

1 − 1)x2 − x1

)
.

(8.12)

As in [31], we consider (8.10) with

g(x) =
ex − 1

c1ex + c2
,

with c1 =
1

4
and c2 =

1

2
. Then the trivial equilibrium undergoes a Bogdanov-Takens

bifurcation at parameter values (τ, ε) = (0.75, 0.75). In Figure 8.6 we have plotted the
predicted and corrected orbits in phase space and the homoclinic predictors in parameter
space.
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Figure 8.6.: (a) The comparison of homoclinic orbits= to the trivial equilibrium be-
tween computed (blue) and predicted (red) using the second-orbit correc-
tor for amplitude=0.05 and TTolerance=1e-08. (b) The comparison of
homoclinic orbits in phase space to the nontrivial equilibrium between
computed (blue) and predicted (red) using the second-orbit corrector for
amplitude=0.5 and TTolerance=1e-08. (c) Predicted (dashed red) and
computed (blue) homoclinic bifurcation curves in parameter space. The
black curves are the Hopf curves. The green curve is the fold curve. (d)
Simulation with the Matlab integrator dde23 of the dynamics in phase space
at (ε, τ) ≈ (0.7528, 0.0.7549), between the Hopf and homoclinic bifurcation
curves. The yellow and red curves converge to the blue cycle as predicted.
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Figure 8.7.: The graph of architecture for model (8.13)

8.6. Tri-neuron BAM neural network model

We consider a three-component system of a tri-neuron BAM (bidirectional associative
memory) neural network model with multiple delays [16]. The architecture of this BAM
model is illustrated in Figure 8.7.
In this model, there is only one neuron with the activation function f1 on the I-layer and
there are two neurons with respective activation functions f2 and f3 on the J-layer. We
assume that the time delay from the I-layer to the J-layer is τ1, while the time delay
from the J-layer to the I-layer is τ2. Then the network can be described by the following
DDE: 

ẋ1(t) = −µ1x1(t) + c21f1(x2(t− τ2)) + c31f1(x3(t− τ2)),

ẋ2(t) = −µ2x2(t) + c12f2(x1(t− τ1)),

ẋ3(t) = −µ3x3(t) + c13f3(x1(t− τ1)),

(8.13)

where:
• xi(t) (i = 1, 2, 3) denote the state of the neuron at time t;
• µi(i = 1, 2, 3) describe the attenuation rate of internal neurons processing on the
I-layer and the J-layer and µi > 0;

• the real constants ci1and c1i (2, 3) denote the neurons in two layers: the I-layer and
the J-layer.

Letting u1(t) = x1(t − τ1), u2(t) = x2(t), u3(t) = x3(t) and τ = τ1 + τ2, then system
(8.13) is equivalent to the following system:
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u̇1(t) = −µ1u1(t) + c21f1(u2(t− τ)) + c31f1(u3(t− τ)),

u̇2(t) = −µ2u2(t) + c12f2(u1(t)),

u̇3(t) = −µ3u3(t) + c13f3(u1(t)).

(8.14)

Lemma 8.3. Assume that fi(0) = 0 (i = 1, 2, 3), f ′i(0) 6= 0 (i = 1, 2, 3) and µ2 6= µ3,
then the steady-state (u1, u2, u3) = (0, 0, 0) has a double zero eigenvalue at

c21 = c0
21 =

µ2
2 (µ1 (µ3τ + 1) + µ3)

c12 (µ2 − µ3) f ′1(0)f ′2(0)
,

c31 = c0
31 =

µ2
3 (µ1 (µ2τ + 1) + µ2)

c13 (µ3 − µ2) f ′1(0)f ′3(0)
.

Proof. The characteristic matrix of (8.14) is given by

∆(λ) =

 λ+ µ1 −e−λτ c21f
′
1(0) −e−λτ c31f

′
1(0)

−c12f
′
2(0) λ+ µ2 0

−c13f
′
3(0) 0 λ+ µ3

 .

Thus the characteristic equation becomes

det ∆(λ) = λ3 + (µ1 + µ2 + µ3)λ2 +
(
− c12c21f

′
1(0)f ′2(0)e−λτ

− c13c31f
′
1(0)f ′3(0)e−λτ + µ1µ2 + µ3µ2 + µ1µ3

)
λ

+ µ1µ2µ3 − e−λτ
(
c12c21µ3f

′
2(0) + c13c31µ2f

′
3(0)

)
f ′1(0) = 0. (8.15)

Clearly, λ = 0 is a root if and only if

µ1µ2µ3 =
(
c12c21µ3f

′
2(0) + c13c31µ2f

′
3(0)

)
f ′1(0).

Taking the derivative of (8.15) with respect to λ gives

d

dλ
det ∆(λ) = 3λ2 + 2 (µ1 + µ2 + µ3)λ+

(
− c12c21f

′
1(0)f ′2(0)e−λτ

− c13c31f
′
1(0)f ′3(0)e−λτ + µ1µ2 + µ3µ2 + µ1µ3

)
+ τ

(
c12c21f

′
2(0)e−λτ + c13c31f

′
3(0)e−λτ

)
f ′1(0)λ

+ τe−λτ
(
c12c21µ3f

′
2(0) + c13c31µ2f

′
3(0)

)
f ′1(0) = 0. (8.16)

Therefore, we have
d

dλ
det ∆(0) =

(
− c12c21f

′
1(0)f ′2(0)− c13c31f

′
1(0)f ′3(0) + µ1µ2 + µ3µ2 + µ1µ3

)
= 0.

For any τ > 0, it is easy to see that det ∆(λ) =
d

dλ
det ∆(λ) = 0 if and only if the

following conditions are satisfied
((1− τµ3)c12c21f

′
2(0) + (1− τµ2)c13c31f

′
3(0)) f ′1(0) = µ1µ2 + µ3µ2 + µ1µ3,

(c12c21µ3f
′
2(0) + c13c31µ2f

′
3(0)) f ′1(0) = µ1µ2µ3.

(8.17)
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By solving (8.17) for (c21, c31) we get (c21, c31) = (c0
21, c

0
31).

Taking the derivative of (8.16) yields

d2

dλ2
det ∆(λ) = 6λ+ 2 (µ1 + µ2 + µ3) + τf ′1(0)

(
c12c21f

′
2(0)e−λτ + c13c31f

′
3(0)e−λτ

)
+ τ

(
c12c21f

′
2(0)e−λτ + c13c31f

′
3(0)e−λτ

)
f ′1(0)

− τ2
(
c12c21f

′
2(0)e−λτ + c13c31f

′
3(0)e−λτ

)
f ′1(0)λ

− τ2e−λτ
(
c12c21µ3f

′
2(0) + c13c31µ2f

′
3(0)

)
f ′1(0) = 0. (8.18)

Then we can obtain

d2

dλ2
det ∆(0)|(c21,c31)=(c021,c

0
31)

= 2 (µ1 + µ2 + µ3) + 2τf ′1(0)
(
c12c

0
21f
′
2(0) + c13c

0
31f
′
3(0)

)
− τ2f ′1(0)

(
c12c

0
21µ3f

′
2(0) + c13c

0
31µ2f

′
3(0)

)
= 2 (µ1 + µ2 + µ3) + τ

(
µ2

2 (µ1 (µ3τ + 1) + µ3)

(µ2 − µ3)
+
µ2

3 (µ1 (µ2τ + 1) + µ2)

(µ3 − µ2)

)
− τ2

(
µ2

2 (µ1 (µ3τ + 1) + µ3)

(µ2 − µ3)
µ3 +

µ2
3 (µ1 (µ2τ + 1) + µ2)

(µ3 − µ2)
µ2

)
= 2 (µ1 + µ2 + µ3) + 2τ (µ1µ2 + µ1µ3 + µ2µ3) + τ2µ1µ2µ3.

Since τ > 0 and µi > 0(i = 1, 2, 3) the second derivative of the characteristic equations
at (λ, c21, c31) = (0, c0

21, c
0
31) doesn’t vanish and we obtain a double zero eigenvalue.

Consider that there are eigenvalues λ 6= 0 on the imaginary axis for (c0
21, c

0
31). Substitut-

ing λ = iω, (ω > 0) and (c0
21, c

0
31) into (8.15), and rearranging terms according to its real

and imaginary part yields{
a2ω

2 − a0 = b0 cos τω + b1ω sin τω,

−ω3 + a1ω = b0 sin τω − b1ω cos τω,
(8.19)

where

a2 = µ1 + µ2 + µ3,

a1 = µ1µ2 + µ2µ3 + µ1µ3,

a0 = µ1µ2µ3

b0 = −f ′1(0)
(
c12c

0
21µ3f

′
2(0) + c13c

0
31µ2f

′
3(0)

)
,

b1 = −f ′1(0)
(
c12c

0
21f
′
2(0) + c13c

0
31f
′
3(0)

)
.

By squaring and adding the above equations, it follows that(
ω3 − a1ω

)
2 +

(
a0 − a2ω

2
)

2 = b21ω
2 + b20.
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Simplifying yields
ω6 + d1ω

4 + d2ω
2 = 0, (8.20)

where

d1 = µ2
1 + µ2

2 + µ2
3

d2 = µ2
1µ

2
2 + µ2

3µ
2
2 + µ2

1µ
2
3 − (τµ1µ2µ3 + µ1µ2 + µ3µ2 + µ1µ3)2 < 0.

Substituting z = ω2 into (8.20) and dividing the resulting equation by z 6= 0 yields

z2 + d1z + d2 = 0.

Solving for positive z gives

z0 =
1

2

(
−d1 +

√
d2

1 − 4d2

)
.

By letting ω0 =
√
z0, we obtain from (8.19)

cos τω0 =
a2b0ω

2
0 − a1b1ω

2
0 − a0b0 + b1ω

4
0

b21ω
2
0 + b20

.

Lemma 8.4. [16, Lemma 3] Let (c21, c31) = (c0
21, c

0
31) and 0 < τ < τ0, where

τ0 =
1

ω0
arccos

a2b0ω
2
0 − a1b1ω

2
0 − a0b0 + b1ω

4
0

b21ω
2
0 + b20

,

them all roots of the characteristic equation (8.15), except the double zero roots, have
negative real parts.

Remark 8.5. Note that the obtained expressions for (c0
21, c

0
31) are different from the ex-

pressions obtained in [16]. All though numerical simulation was used, the error there was
not discovered. Here we see that the predictor is of great value, which gives an extra
verification of the analysis.

Remark 8.6. We rederived the expression for τ0 since the derivation in [16] contained an
error.
As in the simulations in [16, Example 1] we consider (8.14) with the activation functions

f1(x) = tanh(x) + 0.1x2, f2(x) = f3(x) = tanh(x),

and parameters

µ1 = 0.1, µ2 = 0.3, µ3 = 0.2, c12 = c13 = 1, τ = 5.

Then from Lemma 8.3 we obtain two critical values

(c0
21, c

0
31) = (0.36,−0.22).
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Furthermore, since τ < τ0 = 5.46336 the center manifold is attractive. We write the
system (8.14) as

u̇1(t) = −µ1u1(t) +
(
c0

21 + α1

)
f1(u2(t− τ)) +

(
c0

31 + α2

)
f1(u3(t− τ)),

u̇2(t) = −µ2u2(t) + c12f2(u1(t)),

u̇3(t) = −µ3u3(t) + c13f3(u1(t)),

(8.21)

where (α1, α2) are the new parameter values such that at (α1, α2) = (0, 0) we have a
Bogdanov-Takens bifurcation. The critical normal form coefficients

(a, b) ≈ (0.0012060198,−0.0135096097),

indicate stable cycles. In Figure 8.8 we have plotted the predicted and corrected orbits
in phase space and the homoclinic predictors in parameter space. Note that in Figure
8.8b the continued homoclinic orbit, corresponding to the curve in the upper half plane,
only exists for a very short time. Without the predictor this homoclinic orbit would be
difficult to find. In Figure 8.9 simulations are made to confirm the dynamics.
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Figure 8.8.: (a) The comparison of homoclinic orbits in phase space to the nontrivial
equilibrium between computed (blue) and predicted (red) using the second-
orbit corrector for amplitude=1e-3 and TTolerance=1e-9. (b) Predicted
(red) and computed (blue) homoclinic bifurcation curves in parameter space.
The black curves are the Hopf curves. The green curve is the fold curve. (c)
Continued homoclinic orbit to the nontrivial equilibrium in phase space. (d)
Simulation of orbit starting near the origin and converging to the homoclinic
orbit for parameter values (α1, α2) ≈ (−0.1701,−0.1598).
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Figure 8.9.: (a) The Hopf curve in the upper half plane connects the Bogdanov-Takens
point at the origin to a generic Bogdanov-Takens point. The red dot cor-
responds to the parameter value of the simulation in (c). (b) Plot of
the homoclinic curve in the lower half plane. The red dot corresponds
to the simulation in (d). (c) Simulation of orbit started at (u0, u1, u2) =
(0.003471872461226, 0.011366542840623, 0.016898360549174) shows a peri-
odic orbit at parameter value (α1, α2) ≈ (−0.00168, 0.001295) between the
Hopf and homoclinic bifurcation curves in the upper half plane. (d) Simula-
tion of orbit starting near the origin, (u0, u1, u2) = (0.0001, 0, 0) for param-
eter value (α1, α2) ≈ (−0.1871− 0.1333), converging to a periodic orbit.
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8.7. Neimark-Sacker curves emanating from a Hopf-Hopf
point

In [28] the state-dependent DDE

u̇(t) = −γu(t)− κ1u(t− a1 − cu(t))− κ2u(t− a2 − cu(t)) (8.22)

is considered. For the parameter values

κ1 = 5.95, κ2 = 2.3, c = 1, γ = 4.75, a1 = 1.3, a2 = 6

a stable torus is present near a Hopf-Hopf bifurcation. We will keep the parameters c, γ, a1

and a2 fixed for the rest of this example. Since there are no normal form coefficients for
state-dependent DDEs available, the state-dependent DDE must first be approximated
with constant delays. Expanding the delays about their steady-state u = 0 values yields

u(t− ai − cu(t)) = u(t− ai) + u̇(t− ai)(−cu(t)) +
1

2
ü(t− ai)(−cu(t))2 + . . . .

Then, using the state-dependent DDE (8.22) we remove the u̇, ü terms etc.

u̇(t) = −γu(t)− κ1u(t− a1 − cu(t))− κ2u(t− a2 − cu(t))

= −γu(t)− κ1u(t− a1)− κ2u(t− a2) + h.o.t

Therefore

u̇(t− ai) = γu(t− ai)− κ1u(t− a1 − ai)− κ2u(t− a2 − ai) + h.o.t.

Expanding up to order three yields

u̇(t) = −γu(t)− κ1u(t− a1)− κ2u(t− a2)

− cu(t)
2∑
i=1

κi

γu(t− ai) +
2∑
j=1

κju(t− ai − aj)


−

2∑
i,j=1

κiκjcu(t)u(t− ai)
[
γu(t− ai − aj) +

2∑
m=1

κmu(t− ai − aj − am)

− 1

2
(c(u(t))2

2∑
i=1

κi

γ2u(t− ai) + 2γ
2∑
j=1

κju(t− ai − aj)

+
2∑

j,m=1

κjκmu(t− ai − aj − am)

+ h.o.t.
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Truncating the higher order terms gives the DDE

u̇(t) =− γu− κ1u(t− τ1)− κ2u(t− τ2)

− κ1cu(γu(t− τ1) + κ1u(t− τ3) + κ2u(t− τ4))

− κ2cu(γu(t− τ2) + κ1u(t− τ4) + κ2u(t− τ5))

− κ1κ1c
2u(t)u(t− τ1)(γu(t− τ3) + κ1u(t− τ6) + κ2u(t− τ7))

− κ1κ2c
2uu(t− τ1)(γu(t− τ4) + κ1u(t− τ7) + κ2u(t− τ8))

− κ2κ1c
2u(t)u(t− τ2)(γu(t− τ4) + κ1u(t− τ7) + κ2u(t− τ8))

− κ2κ2c
2uu(t− τ2)(γu(t− τ5) + κ1u(t− τ8) + κ2u(t− τ9))

− 1

2
(cu(t))2κ1(γ2u(t− τ1) + 2γ(κ1u(t− τ3) + κ2u(t− τ4))

+ κ1κ1u(t− τ6) + 2κ1κ2u(t− τ7) + κ2κ2u(t− τ8))

− 1

2
(cu(t))2κ2(γ2u(t− τ2) + 2γ(κ1u(t− τ4) + κ2u(t− τ5))

+ κ1κ1u(t− τ7) + 2κ1κ2u(t− τ8) + κ2κ2u(t− τ9))

with 9 constant delays, where

τ1 = a1,

τ2 = a2,

τ3 = 2a1,

τ4 = a1 + a2,

τ5 = 2a2,

τ6 = 3a1,

τ7 = 2a1 + a2,

τ8 = a1 + 2a2,

τ9 = 3a2.

Using DDE-BifTool we find a Hopf-Hopf point at parameter values

(κ1, κ2) ≈ (2.0809, 3.7868)

with critical normal form coefficients

g2100 =− 0.027604441169896− 0.017897738883975i,

g1011 =− 0.020673889394881− 0.015338623328501i,

g1110 =0.000615291160368− 0.032074905848412i,

g0021 =− 0.003907332082037− 0.011857396811775i,

θ =5.291049995449255,

δ =− 0.022289571325884.
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We conclude that we are in the ‘simple’ case III, see [34]. Thus, a stable torus is indeed
predicted. Furthermore, two Neimark-Sacker bifurcations curves should emanate from
the Hopf-Hopf point. Using the predictors from Section C.6, we initialize and continue
these curves, see Figure 8.10.
To simulate the torus we fixed the parameters

κ1 = 2.757858545579159, κ2 = 3.383471633934356.

and take the history function u(t) = 0.036964714041287, see Figure 8.10.
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Figure 8.10.: Bifurcation diagram near the Hopf-Hopf point. The two Neimark-Sacker
curves emanate from the Hopf-Hopf point. In (a) the predicted parameter
values overlap the continued Neimark-Sacker curves. In (b) a larger part of
the bifurcation diagram in shown.
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Figure 8.11.: A stable torus near a Neimark-Sacker bifurcation curve at (κ1, κ2) =
2.757858545579159, 3.3834716339343560. For the simulation 3000 time
steps were used, with only the last 400 time steps plotted. Furthermore,
the torus remains stable after increasing the time steps to 300.000.
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8.8. Van der Pol’s oscillator with delayed position and
velocity feedback

In [6] a generalization of the Van der Pol’s oscillator treated in Section 8.5 is considered.
In the Van der Pol’s oscillator (8.10) the nonlinear forcing g only depends on the delayed
position. In [30] it is shown that under certain conditions a zero-Hopf bifurcation is
present. However, only two of the four possible bifurcation diagrams of the zero-Hopf
bifurcation were possible. By letting the forcing g also depend on the delayed velocity
ẋ(t − τ) a full realization of all four generic unfoldings can be obtained. Therefore, the
generalization of Van der Pol’s oscillator with delayed feedback

ẍ(t) + ε(x2(t)− 1)ẋ(t) + x(t) = g(ẋ(t− τ), x(t− τ)), (8.23)

is considered in [6], where g ∈ C3, g(0, 0) = 0, gẋ(0, 0) = a and gx(0, 0) = b. One
immediately sees that the trivial equilibrium (ẋ, x) = (0, 0) is an equilibrium for all
parameter values (µ1, µ2) = (b− 1, τ − τ0). Then the normal form (B.6) cannot be used
here. Instead the normal form for the Transcritical-Hopf bifurcation must be used, see
for example [23]. Since we are in the first place interested in verifying the predictors for
the generic fold-Hopf bifurcation we artificially modify the DDE (8.23) to

ẍ(t) + ε(x2(t)− 1)ẋ(t) + x(t) = 0.05µ1 + g(ẋ(t− τ), x(t− τ)), (8.24)

i.e. we remove the fixed equilibrium at the origin.
Linearization of equation (8.23) around the trivial solution x = 0 gives

ẍ(t)− εẋ(t) + x(t) = aẋ(t− τ) + bx(t− τ).

From which we obtain the characteristic equation

∆(λ, τ) = λ2 − ελ+ 1− (aλ+ b)e−λτ = 0.

Let
b = 1, τ = τ0 6= ε+ a, ε2 − a2 < 2, (8.25)

then the characteristic equation has a simple zero and a pair of purely imaginary roots
λ = ±iω0. Here ω0 and τ0 are defined by

ω0 =
√

2− ε2 + a2, τ0 =
1

ω0
arccos

(
1− (1 + εa)ω2

0

a2ω2
0 + 1

)
,

see [6, Proposition 2.1]. We set the function g to

g(x2, x1) = (1 + µ1)x1 − 0.2x2 − 0.2x2
1 − 0.2x1x2 − 0.2x2

2 + 0.5x3
1 (8.26)

and ε = 0.3. Then the conditions (8.25) are satisfied and

ω0 ≈ 1.396424004376894, τ0 ≈ 1.757290761249588.
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This leads to the critical normal form coefficients

e− 0.147637371155013,

s = 1,

θ = −0.630334154175547.

We conclude that we are in unfolding case III. Furthermore, since the DDE (8.24) with
g as in (8.26) does not contain terms of order four or higher the dynamics should be
described by the truncated normal form (B.9). We thus, in particular expect a stable
limit cycle, a stable torus, and a spherelike surface to be present for nearby parameter
values (µ1, µ2). In Figure 8.12 the bifurcation diagram of the fold-Hopf point is shown.
We see the resemblance with the theoretical unfolding in Figure B.3 by a reflection in
the µ1 axis. In Figures 8.13 and 8.14 we simulated the dynamics below and above the
Neimark-Sacker curve. The obtained plot correspond with the predictions made.

Hopf-transcritical bifurcation Setting µ1 = 0 in (8.24) yields a Hopf-transcritical at
the origin. Since the critical normal form coefficients remain the same, there will be
two Neimark-Sacker bifurcation curves. Furthermore, the fold and Hopf curve will meet
transversely. This is illustrated in the bifurcation diagram in Figure 8.15.
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Figure 8.12.: Unfolding of the fold-Hopf point in (8.24) with DDE-BifTool. The Neimark-
Sacker curve was initiated using the predictor described in Section C.4.
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Figure 8.13.: Simulation over 12.000 time steps at parameter values (µ1, µ2) =
(−0.006871405962603, 0.003871232826592− 0.0008) just below the
Neimark-Sacker curve in the unfolding of the fold-Hopf point, see Figure
8.12. As predicted a stable cycle is present.
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(a) Simulation over 300.000 time steps at parameter values (µ1, µ2) =
(−0.006871405962603, 0.003871232826592 + 0.00001) just above the Neimark-
Sacker curve in the unfolding of the fold-Hopf point, see Figure 8.12 As predicted
a stable torus is present.

(b) Simulation over 300.000 time steps at parameter values (µ1, µ2) =
(−0.006871405962603, 0.003871232826592 + 0.0000792541), where the torus be-
comes a spherelike surface.

Figure 8.14.: Simulation near the fold-Hopf point at the origin in (8.24).
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Figure 8.15.: Bifurcation diagram near the Hopf-transcritical point in (8.24) with
DDE-BifTool. The Neimark-Sacker curves were initiated using the pre-
dictor described in Section C.5.
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9. Final remarks

Unfortunately, there is a point at which one needs to stop working on a Master thesis.
Even though there are so many things to further investigate. For example, the defining
system derived in Chapter 5 could be used to continue Bogdanov-Takens points in three
parameters and detect triple zero bifurcations, for which normal form coefficients can
be computed. In Section 8.7 the state-dependent DDE is approximated with a DDE
with discrete delays, since there is no normal forms for state-dependent DDEs available
yet. Much research is possible here. Another subject not been touched on yet is the
computation of normal form for cycles in DDE. With the framework of sun-star calculus
and the method for deriving coefficients on the (parameterized) center manifold available,
the next logical step to take is to ‘lift’ the normal forms for cycles, as done in [10] in the
finite dimensional case, to the infinite dimensional setting. Another direction in which
one may go is to optimize the algorithms used to continue cycles and their bifurcations,
a subject not being touched upon in this thesis at all. While testing the models used for
the examples in this thesis it could take a lot of time to continue homoclinic orbits and
cycles. Lastly, one major disadvantage of DDE-BifTool is the lacking of a graphical user
interface (GUI). This may discourage students and researchers from using it. Therefore,
I think it is essential for adding this to the software.



A. Center manifold reduction with
normalization for BT bifurcation in
ODE

In this Appendix we derive the coefficients needed for the homoclinic predictor(s) ema-
nating the generic and transcritical Bogdanov-Takens in an ODE

ẋ = f(x, α), (A.1)

where x ∈ Rn, α ∈ Rm with n ≥ 2, m = 2, and f as smooth as necessary, has an
equilibrium at (x0, α0) = (0, 0). The Taylor expansion of (A.1) at the equilibrium is
given by

f(x, α) = Ax+
1

2
B(x, x) +

1

6
C(x, x, x) +A1(x, α) + J1(α) + J2(α, α)

+
1

2
B2(x, x, α) +O

(
‖x‖4 + ‖x‖ ‖α‖2 + ‖α‖3

)
,

(A.2)

where A = fx(x0, α0), J1 = fα(x0, α0), and B, J2, C,A1 and B2 are the standard multi-
linear forms. Suppose furthermore that at the equilibrium (x0, α0) the Jacobian matrix
A has a double (but not semi-simple) zero eigenvalue. Then, there exist two real linearly
independent (generalized) eigenvectors, q0,1 ∈ Rn, of A, such that

Aq0 = 0, Aq1 = q0,

and two adjoint (generalized) eigenvectors p0,1 ∈ Rn, of A, such that

pT1 A = 0, pT0 A = p1.

Using the standard inner product 〈·, ·〉 on Rn these vectors can be normalized to satisfy

pTi qj = δij , i = 0, 1, j = 0, 1.

As in [35], we impose the condition

qT0 q0 = 1, qT1 q0 = 0,

to uniquely define the vectors {q0, q1, p1, p0} up to a ± sign.



Appendix A A. Center manifold reduction with normalization for BT bifurcation in ODE

A.1. Generic Bogdanov-Takens bifurcation

We want to relate the system (A.1) near (x0, α0) to the smooth normal form
ẇ0 = w1,

ẇ1 = β1 + β2w1 + (a+ a1β2)w2
0

+ (b+ b1β2)w0w1 + dw3
0 + ew2

0w1,

(A.3)

corresponding to the bifurcation on its center manifold following [1, 32]. In order to
relate both systems to each other, we need a parameterization H of the center manifold
in terms of the original variables x and a transformation K of the bifurcation branch to
the original parameters α,

x = H(w, β), H : Rnc+2 → Rn,
α = K(β), K : R2 → Rn.

We thus obtained the center manifold (x, α) = (H(w, β),K(β)) for this system. The
invariance of the center manifold implies the homological equation

Hw0(w, β)ẇ0 +Hw1(w, β)ẇ1 = f(H(w, β),K(β)). (A.4)

We expand the mappings H and K as

H(w, β) = [q0, q1]w + [H0010, H0001]β +
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1

+H1010β1w0 +H1001β2w0 +H0110β1w1 +H0101β2w1 +
1

2
H0002β

2
2

+
1

6
H3000w

3
0 +

1

2
H2100w

2
0w1 +H1101β2w1w0 +

1

2
H2001β2w

2
0

+O(|w1|3 + |w0w
2
1|+ |β2w

2
1|+ |β1|‖w‖2 + ‖β‖2‖w‖+ ‖β‖3)

+O(β2
1 + |β1β2|) +O(‖(w, β)‖4), (A.5)

K(β) = [K10,K01]β +
1

2
K02β

2
2 +O(β2

1 + |β1β2|) +O(‖β‖3). (A.6)

Below we will derive the coefficients needed to relate the homoclinic orbit in (A.3) to
the homoclinic orbit on the center manifold of (A.1). The derivation in [1, 32] leads to a
‘big’ system to be solved. The derivation presented here does not involve a ‘big’ system,
making more suitable to implement for the DDE case, cf. Section 6.1.1 and 6.1.2.

A.1.1. Linear terms

Collecting the coefficients of linear terms in the homological equation (A.4) yields the
systems
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w0 : Aq0 = 0,

w1 : Aq1 = q0,

β1 : AH0010 = q1 − J1K10, (A.7)
β2 : AH0001 = −J1K01.

Let γ = (γ1, γ2) = pT1 J1, then it follows from the Fredholm alternative that

K10 = s1 + δ1s2,
K01 = δ2s2,

H0010 = q0 −AINV J1s1 − δ1A
INV J1s2 + ξ1q0,

H0001 = −δ2A
INV J1s2 + ξ2q0.

(A.8)

where s1 = 1
γ21+γ22

(
γ1

γ2

)
, s2 =

(
−γ2

γ1

)
and δ1,2, ξ1,2 are some constants to be de-

termined. The expression x = AINV y is defined by solving the non-singular bordered
system (

A p1

qT0 0

)(
x
s

)
=

(
y
0

)
. (A.9)

A.1.2. Coefficients a, b,H2000, H1100, H0200

Collecting the quadratic terms wβ and ww in the homological equation yields the systems

w0β2 : AH1001 = −A1(K01, q0)−B(H0001, q0), (A.10)
w1β2 : AH0101 = q1 +H1001 −A1(K01, q1)−B(H0001, q1), (A.11)
w1β1 : AH0110 = H0200 +H1010 −B(H0010, q1)−A1(K10, q1), (A.12)

w2
1 : AH0200 = 2H1100 −B(q1, q1), (A.13)

w0β1 : AH1010 = H1100 −B(H0010, q0)−A1(K10, q0), (A.14)
w0w1 : AH1100 = bq1 +H2000 −B(q0, q1), (A.15)

w2
0 : AH2000 = 2aq1 −B(q0,q0). (A.16)

From the Fredholm alternative we obtain
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0 = pT1 A1(K01, q0) + pT1 B(H0001, q0), (A.17)

1 = −pT1 H1001 + pT1 A1(K01, q1) + pT1 B(H0001, q1), (A.18)

0 = pT1 H0200 + pT1 H1010 − pT1 B(H0010, q1)− pT1 A1(K10, q1), (A.19)

0 = 2pT1 H1100 − pT1 B(q1, q1), (A.20)

0 = pT1 H1100 − pT1 B(H0010, q0)− pT1 A1(K10, q0), (A.21)

0 = b+ pT1 H2000 − pT1 B(q0, q1), (A.22)

0 = 2a− pT1 B(q0,q0), (A.23)

Multiplying the equations (A.10)-(A.16) with pT0 yields

pT1 H1001 = −pT0 A1(K01, q0)− pT0 B(H0001, q0), (A.24)

pT1 H0101 = pT0 H1001 − pT0 A1(K01, q1)− pT0 B(H0001, q1) (A.25)

pT1 H0110 = pT0 H0200 + pT0 H1010 − pT0 B(H0010, q1)− pT0 A1(K10, q1) (A.26)

pT1 H0200 = 2pT0 H1100 − pT0 B(q1, q1), (A.27)

pT1 H1010 = pT0 H1100 − pT0 B(H0010, q0)− pT0 A1(K10, q0) (A.28)

pT1 H1100 = pT0 H2000 − pT0 B(q0, q1) (A.29)

pT1 H2000 = −pT0 B(q0,q0). (A.30)

Substituting these equation into equations (A.17)-(A.23) we obtain

0 = pT1 A1(K01, q0) + pT1 B(H0001, q0), (A.31)

1 = pT0 A1(K01, q0) + pT0 B(H0001, q0) + pT1 A1(K01, q1) + pT1 B(H0001, q1), (A.32)

0 = 3pT0 H1100 − pT0 B(q1, q1)− pT0 B(H0010, q0)− pT0 A1(K10, q0), (A.33)

− pT1 B(H0010, q1)− pT1 A1(K10, q1), (A.34)

0 = 2pT0 H2000 − 2pT0 B(q0, q1)− pT1 B(q1, q1), (A.35)

0 = pT0 H2000 − pT0 B(q0, q1)− pT1 B(H0010, q0)− pT1 A1(K10, q0), (A.36)

0 = b− pT0 B(q0,q0)− pT1 B(q0, q1), (A.37)

0 = 2a− pT1 B(q0,q0). (A.38)

From the last two equations we have

a =
1

2
pT1 B(q0, q0),

b = pT1 B(q0, q1)− pT1 H2000 = pT1 B(q0, q1)− pT0 AH2000

= pT1 B(q0, q1) + pT0 B(q0,q0)
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and subsequently

H2000 = AINV (2aq1 −B(q0,q0)) + ξ3q0,

H1100 = AINV (bq1 +H2000 −B(q0, q1)) + ξ4q0, (A.39)

where ξ3,4 are some constants. The constant ξ3 is determined by equation (A.35) and
gives

ξ3 = −pT0 (H2000) + pT0 B(q0, q1) +
1

2
pT1 B(q1, q1).

Then we can solve

H0200 = AINV (2H1100 −B(q1, q1)) + 2ξ4q1 + ξ5q0.

A.1.3. Determining H0010, K10, H0001 and K01

Take the equations (A.8) and fix the values δ1 = 0, δ2 = 1 and ξ1,2 = 0 to obtain
K10 = s1,

K01 = s2,

H0010 = q0 −AINV J1s1,

H0001 = −AINV J1s2.

(A.40)

Evaluating these vectors on the equations (A.31) and (A.32) gives

v1 = pT1 A1(K01, q0) + pT1 B(H0001, q0),

v2 = pT0 A1(K01, q0) + pT0 B(H0001, q0) + pT1 A1(K01, q1) + pT1 B(H0001, q1).

To make (v1, v2) = (0, 1) we first use the freedom H0001 → H0001 + ξ2q0, so that

pT1 A1(K01, q0) + pT1 B(H0001, q0)→ pT1 A1(K01, q0) + pT1 B(H0001, q0) + 2aξ2.

Thus, for

ξ2 = −p
T
1 A1(K01, q0) + pT1 B(H0001, q0)

2a

we have v1 = 0. Then we can scale

(H0001,K01)→ δ2(H0001,K01)

to make v2 = 1 without affecting v0. This gives

δ2 =
1

pT0 A1(K01, q0) + pT0 B(H0001, q0) + pT1 A1(K01, q1) + pT1 B(H0001, q1)
.
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Rearranging equations (A.33) and (A.36) yields

3pT0 H1100 = pT0 B(q1, q1) + pT0 B(H0010, q0) + pT0 A1(K10, q0)

+ pT1 B(H0010, q1) + pT1 A1(K10, q1),

pT0 H2000 = pT0 B(q0, q1) + pT1 B(H0010, q0) + pT1 A1(K10, q0).

Evaluating (A.40) on these equations gives

v3 = pT0 B(q1, q1) + pT0 B(H0010, q0) + pT0 A1(K10, q0) + pT1 B(H0010, q1) + pT1 A1(K10, q1),

v4 = pT0 B(q0, q1) + pT1 B(H0010, q0) + pT1 A1(K10, q0).

To make v4 = pT0 H2000 we use the freedom H0010 → H0010 + ξ1q0, so that

v4 → v4 + 2aξ1

Thus, for

ξ1 =
pT0 H2000 − pT0 B(q0, q1)− pT1 B(H0010, q0)− pT1 A1(K10, q0)

2a

we have v4 = pT0 H2000. Then, after reevaluating v3, we can translate (H0010,K10) →
(H0010 +δ1H0001,K10 +δ1K01) to make v3 = 3pT0 H1100 without affecting v4, see equation
(A.31). This gives, using equation (A.32),

v3 → v3 + δ1.

It follows that for

δ1 = 3pT0 H1100 − pT0 B(q1, q1)− pT0 B(H0010, q0)− pT0 A1(K10, q0)

− pT1 B(H0010, q1)− pT1 A1(K10, q1)

we obtain v3 = 3pT0 H1100. Notice that as before δ1 still depends on ξ4 due to the freedom
H1100 → H1100 + ξ4q0 and translates

(H0010,K10)→ (H0010 + 3ξ4H0001,K10 + 3ξ4K01).

This way of determining H0010,K10, H0001 and K01 is more suitable to implement in the
DDE case. Also, it gives better inside on how the freedom affects the vectors.

A.1.4. Coefficients K02, H0002, H1001, H0101

The β2
2 term in the homological equation yields the equation

AH0002 + J1K02 = − (2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01)) . (A.41)
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The Fredholm alternative gives

pT1 J1K02 = −pT1 (2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01)) . (A.42)

Using that
pT1 J1K10 = 1 (A.43)

we see that

K02 = −
[
pT1 (2A1(K01, H0001) +B(H0001, H0001) + J2(K01,K01))

]
K10

solves (A.42). Note that K02 is not uniquely defined since equation (A.41) still admits
the freedom

(H0002,K02)→ (H0002,K02) + δ3 (H0001,K01) .

Also, K02 is affected by the freedom in H1100. Indeed, since H1100 → H1100 +ξ4q0 implies

(H0010,K10)→ (H0010 + 3ξ4H0001,K10 + 3ξ4K01),

we have
K02 → K02 − 3ξ4z1K01,

where
z1 = pT1 (2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01)) . (A.44)

Now that (A.41) is consistent, we have

H0002 = −AINV (J1K02 + 2A1(K01, H0001) +B(H0001, H0001) + J2(K01,K01))

+ ξ6q0 + δ3H0001,

for some constant ξ6.
Lastly, equations (A.10)-(A.11) give

H1001 = AINV (−A1(K01, q0)−B(H0001, q0)) + ξ7q0, (A.45)

H0101 = AINV (q1 +H1001 −A1(K01, q1)−B(H0001, q1)) + ξ7q1 + ξ8q0, (A.46)

for some constants ξ7,8.
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A.1.5. Coefficients d, e, a1, b1

Collecting the systems corresponding to the w3
0, w

2
0w1, w

2
0β2 and w0w1β2 term in the

homological equations yields

w3
0 : AH3000 = 6dq1 + 6aH1100 − 3B(q0, H2000)− C(q0, q0, q0), (A.47)

w2
0w1 : AH2100 = 2eq1 + 2aH0200 + 2bH1100 +H3000

− 2B(q0, H1100)−B(q1, H2000)− C(q0, q0, q1), (A.48)

w2
0β2 : AH2001 = 2a1q1 + 2aH0101 −A1(K01, H2000)− 2B(q0, H1001)

−B(H0001, H2000)−B2(q0, q0,K01)− C(q0, q0, H0001), (A.49)
w0w1β2 : AH1101 = b1q1 + bH0101 +H1100 +H2001 −A1(K01, H1100)

−B(q0, H0101)−B(q1, H1001)−B(H0001, H1100)

−B2(q0, q1,K01)− C(q0, q1, H0001). (A.50)

Multiplying the systems with pT1 and solving for the coefficients d, e, a1 and b1 yields

d = pT1

(
−aH1100 +

1

2
B(q0, H2000) +

1

6
C(q0, q0, q0)

)
,

e = pT1

(
− aH0200 − bH1100 −

1

2
H3000 +B(q0, H1100)

+
1

2
B(q1, H2000) +

1

2
C(q0, q0, q1)

)
,

a1 = pT1

(
− aH0101 +

1

2
A1(K01, H2000) +B(q0, H1001)

+
1

2
B(H0001, H2000) +

1

2
B2(q0, q0,K01) +

1

2
C(q0, q0, H0001)

)
,

b1 = pT1

(
− bH0101 −H1100 −H2001 +B(q0, H0101) +A1(K01, H1100)

+B(q1, H1001) +B(H0001, H1100) +B2(q0, q1,K01) + C(q0, q1, H0001)

)
,

where

pT1 H3000 = pT0 AH3000

= pT0 (6aH1100 − 3B(q0, H2000)− C(q0, q0, q0)) ,

pT1 H2001 = pT0 AH2001

= pT0

(
2aH0101 −A1(K01, H2000)− 2B(q0, H1001)

−B(H0001, H2000)−B2(q0, q0,K01)− C(q0, q0, H0001)

)
.
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A.2. Transcritical Bogdanov-Takens bifurcation

In this Section we impose the constraint that the equilibrium at the origin remains fixed
under parameter variation as in [27]. Then, the Taylor expansion (A.2) becomes

f(x, α) = Ax+
1

2
B(x, x) +A1(x, α) +

1

6
C(x, x, x) +

1

2
B2(x, x, α)

O
(
‖x‖4 + ‖x‖ ‖α‖2 + ‖x‖2 ‖α‖

)
.

(A.51)

We want to relate this system to the smooth normal form
ẇ0 = w1,

ẇ1 = β1w0 + β2w1 + aw2
0 + bw0w1

+ (a1β2 + a2β1 + dw0)w2
0 + (b1β2 + b2β1 + ew0)w1w0,

see (C.11), corresponding to this bifurcation on its center manifold. In order to relate
both systems to each other, we need a parameterization H of the center manifold in
terms of the original variables x and a transformation K of the bifurcation branch to the
original parameters α,

x = H(w, β), H : Rnc+2 → Rn,
α = K(β), K : R2 → Rn.

We thus obtained the center manifold (x, α) = (H(w, β),K(β)) for this system. The
invariance of the center manifold implies the homological equation

Hw0(w, β)ẇ0 +Hw1(w, β)ẇ1 = f(H(w, β),K(β)). (A.52)

We can expand the mappings H and K as

H(w, β) =q0w0 + q1w1

+
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1 +H1010β1w0

+H1001β2w0 +H0110β1w1 +H0101β2w1 +
1

2
H0102β

2
2w1

+H0111β1β2w1 +
1

2
H0120β

2
1w1 +

1

2
H0201β2w

2
1 +

1

2
H0210β1w

2
1

+
1

6
H0300w

3
1 +

1

2
H1002β

2
2w0 +H1011β1β2w0 +

1

2
H1020β

2
1w0

+H1101β2w1w0 +H1110β1w1w0 +
1

2
H1200w

2
1w0 +

1

2
H2001β2w

2
0

+
1

2
H2010β1w

2
0 +

1

2
H2100w1w

2
0 +

1

6
H3000w

3
0 +O(‖w‖4), (A.53)

K(β) =K10β1 +K01β2 +
1

2
K20β

2
1 +K11β1β2 +

1

2
K02β

2
2 +O(‖β‖3). (A.54)
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Note that, since the equilibrium x0 remains fixed under variations of parameters, we left
out all coefficients of which the terms (w, β) solely depend on the parameters β.
Then the left hand side of the homological equation (A.52) becomes

Hw0(w, β)ẇ0 +Hw1(w, β)ẇ1 =

(q0 +H2000w0 +H1100w1 +H1010β1 +H1001β2)w1

+ (q1 +H1100w0 +H0200w1 +H0110β1 +H0101β2)

×
(
β1w0 + β2w1 + aw2

0 + bw0w1

+ (a1β2 + a2β1 + dw0)w2
0 + (b1β2 + b2β1 + ew0)w1w0

)
= q0w1

+ aq1w
2
0 +H1100w

2
1 + (H2000 + bq1)w0w1

+H1010w1β1 + (H1001 + q1)w1β2

+ (6aH1100 + 6dq1)w3
0 + 2H1200w

3
1

+ (2aH0200 + 2bH1100 + 2eq1 +H3000)w2
0w1

+ (2aH0110 + 2a2q1 + 2H1100)w2
0β1

+ (2aH0101 + 2a1q1)w2
0β2 + (2bH0200 + 2H2100)w0w

2
1

+ 2H0110β
2
1w0 + 2H1110β1w

2
1 + (2H0200 + 2H1101)β2w

2
1

+H1020w1β
2
1 + (2H0101 +H1002)w1β

2
2

+ (bH0110 + b2q1 +H0200 +H2010)w0w1β1

+ (bH0101 + b1q1 +H1100 +H2001)w0w1β2

+H0101w0β1β2 + (H0110 +H1011)w1β1β2. (A.55)

Inserting (A.53) and (A.54) into the right hand side of the homological equation (A.52)
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yields

f(H(w, β),K(β)) =

AH(w, β) +
1

2
B(H(w, β), H(w, β)) +

1

6
C(H(w, β), H(w, β), H(w, β))

+A1(H(w, β),K(β)) +
1

2
B2(H(w, β), H(w, β),K(β)) + . . .

= A(q0w0 + q1w1 +
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1 +H1010β1w0

+H1001β2w0 +H0110β1w1 +H0101β2w1 +
1

2
H0102β

2
2w1

+H0111β1β2w1 +
1

2
H0120β

2
1w1 +

1

2
H0201β2w

2
1 +

1

2
H0210β1w

2
1

+
1

6
H0300w

3
1 +

1

2
H1002β

2
2w0 +H1011β1β2w0 +

1

2
H1020β

2
1w0

+H1101β2w1w0 +H1110β1w1w0 +
1

2
H1200w

2
1w0 +

1

2
H2001β2w

2
0

+
1

2
H2010β1w

2
0 +

1

2
H2100w1w

2
0 +

1

6
H3000w

3
0)

+
1

2
B(q0w0 + q1w1 +

1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1 +H1010β1w0

+H1001β2w0 +H0110β1w1 +H0101β2w1, q0w0 + q1w1

+
1

2
H2000w

2
0 +H1100w0w1 +

1

2
H0200w

2
1 +H1010β1w0 +H1001β2w0

+H0110β1w1 +H0101β2w1)

+
1

6
C(q0w0 + q1w1, q0w0 + q1w1, q0w0 + q1w1)

+A1(q0w0 + q1w1 +
1

2
H2000w

2
0 +H1100w0w1

+
1

2
H0200w

2
1 +H1010β1w0 +H1001β2w0 +H0110β1w1 +H0101β2w1,

K10β1 +K01β2 +
1

2
K20β

2
1 +K11β1β2 +

1

2
K02β

2
2)

+
1

2
B2(q0w0 + q1w1, q0w0 + q1w1,K10β1 +K01β2) + . . .
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=Aq0w0 +Aq1w1

+
1

2
(AH2000 +B(q0, q0))w2

0 +
1

2
(AH0200 +B(q1, q1))w2

1

+ (AH1100 +B(q0, q1))w0w1 + (AH1010 +A1(q0,K10))w0β1

+ (AH0110 +A1(q1,K10))w1β1 + (AH0101 +A1(q1,K01))w1β2

+ (C(q0, q0, q0) +AH3000 + 3B(q0, H2000))w3
0

+ (C(q1, q1, q1) +AH0300 + 3B(q1, H0200))w3
1

+ (C(q0, q0, q1) +AH2100 + 2B(q0, H1100) + 2B(q1, H2000))w2
0w1

+ (A1(K10, H2000) +AH2010 + 2B(q0, H1010) +B2(q0, q0,K10))β1w
2
0

+ (A1(K01, H2000) +AH2001 + 2B(q0, H1001) +B2(q0, q0,K01))β2w
2
0

+ (C(q0, q1, q1) +AH1200 +B(q0, H0200) + 2B(q1, H1100))w0w
2
1

+ (2A1(K10, H1010) +AH1020 +A1(q0,K20))β2
1w0

+ (2A1(K01, H1001) +AH1002 +A1(q0,K02))β2
2w0

+ (A1(K10, H0200) +AH0210 + 2B(q1, H0110) +B2(q1, q1,K10))β1w
2
1

+ (A1(K01, H0200) +AH0201 + 2B(q1, H0101) +B2(q1, q1,K01))β2w
2
1

+ (2A1(K10, H0110) +AH0120 +A1(q1,K20))β2
1w1

+ (2A1(K01, H0101) +AH0102 +A1(q1,K02))β2
2w1

+ (A1(K10, H1100) +AH1110 +B(q0, H0110) +B(q1, H1010) +B2(q0, q1,K10))β1w0w1

+ (A1(K01, H1100) +AH1101 +B(q0, H0101) +B(q1, H1001) +B2(q0, q1,K01))β2w0w1

+ (A1(K01, H1010) +A1(K10, H1001) +AH1011 +A1(q0,K11))β1β2w0

+ (A1(K01, H0110) +A1(K10, H0101) +AH0111 +A1(q1,K11))β1β2w1 + . . . . (A.56)
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A.2.1. Linear and quadratic terms

Equating (A.55) with (A.56) and collecting the linear and quadratic terms in (w, β) by
leads to the equations

w0 : Aq0 = 0

w1 : Aq1 = q0

w2
0 : AH2000 = 2aq1 −B(q0, q0) (A.57)

w0w1 : AH1100 = bq1 +H2000 −B(q0, q1)

w2
1 : AH0200 = 2H1100 −B(q1, q1)

w0β1 : AH1010 = q1 −A1(q0,K10) (A.58)
w0β2 : AH1001 = −A1(q0,K01) (A.59)
w1β1 : AH0110 = −A1(q1,K10) +H1010 (A.60)
w1β2 : AH0101 = −A1(q1,K01) +H1001 + q1 (A.61)

Left multiplying the equations corresponding to the quadratic terms with the adjoint
vector pT1 , yields,

0 = 2a− pT1 B(q0, q0),

0 = b+ pT1 H2000 − pT1 B(q0, q1),

0 = 2pT1 H1100 − pT1 B(q1, q1),

0 = 1− pT1 A1(q0,K10), (A.62)

0 = −pT1 A1(q0,K01), (A.63)

0 = −pT1 A1(q1,K10) + pT1 H1010, (A.64)

0 = −pT1 A1(q1,K01) + pT1 H1001 + 1. (A.65)

From the first two equations we have

a =
1

2
pT1 B(q0, q0),

b = −pT1 H2000 + pT1 B(q0, q1).

Multiplying (A.57) with pT0 from the left yields

pT1 H2000 = −pT0 B(q0, q0).

It follows that
b = pT0 B(q0, q0) + pT1 B(q0, q1).

We thus recover the critical normal coefficients (a, b) for the generic Bogdanov-Takens
bifurcation.
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Multiplying (A.58) and (A.59) with pT0 from the left yields

pT1 H1010 = −pT0 A1(q0,K10),

pT1 H1001 = −pT0 A1(q0,K01).

Substituting into equations (A.64) and (A.65) gives

0 = −pT1 A1(q1,K10)− pT0 A1(q0,K10),

0 = −pT1 A1(q1,K01)− pT0 A1(q0,K01) + 1.

Together with equations (A.62) and (A.63), one computes K10 and K01 by solving the
2-dimensional system(

pT1 A1q0

pT0 A1q0 + pT1 A1q1

)([
K10 K01

])
=

(
1 0
0 1

)
.

The operator AINV , defined in Lemma 4.6, can serve to tackle the remaining unknowns
in equations (A.57)-(A.61):

H2000 = AINV (2aq1 −B(q0, q0)) ,

H1100 = AINV (bq1 +H2000 −B(q0, q1)) ,

H0200 = AINV (2H1100 −B(q1, q1)) ,

H1010 = AINV (q1 −A1(q0,K10)) ,

H1001 = AINV (−A1(q0,K01)) ,

H0110 = AINV (−A1(q1,K10) +H1010) ,

H0101 = AINV (−A1(q1,K01) +H1001 + q1) ,

where AINV is as in (A.9). To ensure that 2H1100 − B(q1, q1) is in the image of A we
have to translate H2000 with a scalar multiple of q0. The solvability condition implies
that

2pT1 H1100 = pT1 B(q1, q1)

Let
H2000 = H̃2000 + γq0,

where H̃2000 is given by AINV (2aq1 −B(q0, q0)), then

pT1 H1100 =
〈
AT p0, H1100

〉
= 〈p0, AH1100〉
= pT0 (bq1 +H2000 −B(q0, q1))

= pT0 H̃2000 + γ − pT0 B(q0, q1).

Therefore
γ =

1

2
pT1 B(q1, q1)− pT0 H̃2000 + pT0 B(q0, q1).
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A.2.2. Cubic terms

Equating (A.55) with (A.56) and collecting the cubic terms in (w, β) by leads to the
equations

w3
0 : AH3000 = −C(q0, q0, q0) + 6aH1100 − 3B(q0, H2000) + 6dq1, (A.66)

w3
1 : AH0300 = −C(q1, q1, q1)− 3B(q1, H0200) + 3H1200,

w2
0w1 : AH2100 = −C(q0, q0, q1) + 2aH0200 + 2bH1100 − 2B(q0, H1100) (A.67)

−B(q1, H2000) +H3000 + 2eq1,

w2
0β1 : AH2010 = 2aH0110 −A1(H2000,K10)− 2B(q0, H1010)

−B2(q0, q0,K10) + 2H1100 + 2a2q1, (A.68)

w2
0β2 : AH2001 = 2aH0101 −A1(H2000,K01)− 2B(q0, H1001)

−B2(q0, q0,K01) + 2a1q1, (A.69)

w0w
2
1 : AH1200 = −C(q0, q1, q1) + 2bH0200 −B(q0, H0200)− 2B(q1, H1100)

+ 2H2100,

w0β
2
1 : AH1020 = −2A1(H1010,K10)−A1(q0,K20) + 2H0110, (A.70)

w0β
2
2 : AH1002 = −2A1(H1001,K01)−A1(q0,K02), (A.71)

w2
1β1 : AH0210 = −A1(H0200,K10)− 2B(q1, H0110)−B2(q1, q1,K10) + 2H1110,

w2
1β2 : AH0201 = −A1(H0200,K01)− 2B(q1, H0101)−B2(q1, q1,K01)

+ 2H0200 + 2H1101,

w1β
2
1 : AH0120 = −2A1(H0110,K10)−A1(q1,K20) +H1020, (A.72)

w1β
2
2 : AH0102 = −2A1(H0101,K01)−A1(q1,K02) + 2H0101 +H1002, (A.73)

w0w1β1 : AH1110 = −A1(H1100,K10) + bH0110 −B(q0, H0110)−B(q1, H1010)

−B2(q0, q1,K10) +H0200 +H2010 + b2q1, (A.74)
w0w1β2 : AH1101 = −A1(H1100,K01) + bH0101 −B(q0, H0101)−B(q1, H1001)

−B2(q0, q1,K01) +H1100 +H2001 + b1q1, (A.75)
w0β1β2 : AH1011 = −A1(H1001,K10)−A1(H1010,K01)−A1(q0,K11) +H0101, (A.76)
w1β1β2 : AH0111 = −A1(H0101,K10)−A1(H0110,K01)−A1(q1,K11) +H0110

+H1011. (A.77)

A.2.3. Coefficients K20, K11 and K02

To solve the coefficients K20,K02 and K11 we left multiply the systems in equations
(A.70), (A.72), (A.71), (A.73), (A.76) and (A.77) with pT1
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0 = pT1 (−2A1(H1010,K10)−A1(q0,K20) + 2H0110) , (A.78)

0 = pT1 (−2A1(H0110,K10)−A1(q1,K20) +H1020) , (A.79)

0 = pT1 (−2A1(H1001,K01)−A1(q0,K02)) , (A.80)

0 = pT1 (−2A1(H0101,K01)−A1(q1,K02) + 2H0101 +H1002) , (A.81)

0 = pT1 (−A1(H1001,K10)−A1(H1010,K01)−A1(q0,K11) +H0101) , (A.82)

0 = pT1 (−A1(H0101,K10)−A1(H0110,K01)−A1(q1,K11) +H0110 +H1011) . (A.83)

Left multiplying equations (A.70),(A.71) and (A.76) with pT0 yields

pT1 H1020 = pT0 (−2A1(H1010,K10)−A1(q0,K20) + 2H0110) ,

pT1 H1002 = pT0 (−2A1(H1001,K01)−A1(q0,K02)) ,

pT1 H1011 = pT0 (−A1(H1001,K10)−A1(H1010,K01)−A1(q0,K11) +H0101) .

By substituting these equations into (A.79), (A.81) and (A.83) we obtain

0 =pT1 (−2A1(H0110,K10)−A1(q1,K20))

+ pT0 (−2A1(H1010,K10)−A1(q0,K20) + 2H0110) ,

0 =pT1 (−2A1(H0101,K01)−A1(q1,K02) + 2H0101)

pT0 (−2A1(H1001,K01)−A1(q0,K02)) ,

0 =pT1 (−A1(H0101,K10)−A1(H0110,K01)−A1(q1,K11) +H0110)

pT0 (−A1(H1001,K10)−A1(H1010,K01)−A1(q0,K11) +H0101) .

Together with equations (A.78), (A.80) and (A.82), one computes K20,K02 and K11 by
solving the 2-dimensional system(

pT1 A1q0

pT0 A1q0 + pT1 A1q1

)([
K20 K02 K11

])
=

(
E1 E3 E5

E2 E4 E6

)
,

where

E1 = pT1 (−2A1(H1010,K10) + 2H0110)

E2 = pT1 (−2A1(H0110,K10))

+ pT0 (−2A1(H1010,K10) + 2H0110) ,

E3 = −2pT1 A1(H1001,K01)

E4 = pT1 (−2A1(H0101,K01) + 2H0101)

pT0 (−2A1(H1001,K01)) ,

E5 = pT1 (−A1(H1001,K10)−A1(H1010,K01) +H0101)

E6 = pT1 (−A1(H0101,K10)−A1(H0110,K01) +H0110)

pT0 (−A1(H1001,K10)−A1(H1010,K01) +H0101) .
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A.2.4. The coefficients a1, a2, b1, b2, d and e.

Lastly, we need to solve the coefficients a1, a2, b1, b2, d and e.
Left multiplying equations (A.66), (A.67), (A.69), (A.68), (A.75) and (A.74) with pT1 and
rearranging terms yields

d =
1

6
pT1

(
− 6aH1100 + 3B(q0, H2000) + C(q0, q0, q0)

)
,

e =
1

2
pT1

(
− 2aH0200 − 2bH1100 + 2B(q0, H1100)

+B(q1, H2000)−H3000 + C(q0, q0, q1)

)
.

a1 =
1

2
pT1

(
− 2aH0101 +A1(H2000,K01) + 2B(q0, H1001) +B2(q0, q0,K01)

)
,

a2 =
1

2
pT1

(
− 2aH0110 +A1(H2000,K10) + 2B(q0, H1010) +B2(q0, q0,K10)− 2H1100

)
,

b1 =pT1

(
A1(H1100,K01)− bH0101 +B(q1, H1001) +B2(q0, q1,K01)−H1100 −H2001

)
,

b2 =pT1

(
A1(H1100,K10)− bH0110 +B(q0, H0110) +B(q1, H1010) +B2(q0, q1,K10)

−H0200 −H2010

)
,

Where the expressions pT1 H2001, pT1 H2010 and pT1 H3000 can be found by left multiplying
equations (A.66) (A.69) and (A.68) with pT1

pT1 H3000 = pT0

(
− C(q0, q0, q0) + 6aH1100 − 3B(q0, H2000)

)
,

pT1 H2001 = pT0

(
2aH0101 −A1(H2000,K01)− 2B(q0, H1001)−B2(q0, q0,K01)

)
,

pT1 H2010 = pT0

(
2aH0110 −A1(H2000,K10)− 2B(q0, H1010)−B2(q0, q0,K10) + 2H1100

)
.
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B. Parameter-dependent normal forms
for codim 2 equilibrium bifurcations

B.1. Bogdanov-Takens bifurcation

Suppose that the system (ODE) at the critical parameter value α0 = (0, 0) ∈ R2 under-
goes a Bogdanov-Takens bifurcation at the origin. Then the smooth normal form on the
parameter-dependent center manifold takes the form

ẇ = G(w, β)

=

(
w1

β1 + β2w1 + aw2
0 + bw0w1 + g1(w, β)

)
+O(‖β‖w2

1) +O(‖β‖2 ‖w‖2 + ‖β‖ ‖w‖3 + ‖w‖4),

where w = (w0, w1), β = (β1, β2) and

g1(w, β2) = (a1β2 + dw0)w2
0 + (b1β2 + ew0)w1w0.

This normal form can be derived from [7]. The restriction of (ODE) to the two-dimensional
center manifold W c at the critical parameter value α0 can be transformed to the smooth
normal form {

ẇ0 = w1,
ẇ1 = aw2

0 + bw0w1 +O(‖ (w0, w1) ‖3).

The following two-parameter family provides an universal unfolding of the codimension
2 Bogdanov-Takens bifurcation

ẇ =

(
w1

β1 + β2w1 + aw2
0 + bw0w1

)
, (B.1)

[22]. In Figure B.1 the bifurcation diagram for a = 1 and b = −1 is shown. A detailed
analysis of this, or equivalent unfoldings, can be found in many textbooks and articles,
see for example [5, 22, 34].

B.2. Transcritical Bogdanov-Takens bifurcation

Many articles in which Bogdanov-Takens bifurcations in DDEs are studied, deal with
models in which the steady-state remains fixed under variation of parameters [53, 55, 50,
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Figure B.1.: Phase portraits for the generic Bogdanov-Takens bifurcation given by (B.1)
with a = 1 and b = −1. There is a supercritical Hopf bifurcation curve, i.e.
the limit cycles in the Hopf bifurcations are stable; a homoclinic bifurcation
curve and a fold bifurcation curve, which all meet each other tangentially at
the origin. The Hopf curve is given by β2 = −√−β1 for β1 < 0. The fold

bifurcation curve is given by β1 = 0. At β2 =
10

7
β1 + O(β

3/2
1 ) for β1 < 0,

there exists a homoclinic orbit which can be found by using Melnikov’s
integral, see [22].
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26, 38, 16, 31, 44]. Under this constraint the unfolding cannot be given by (B.1) anymore
and we have to consider the normal form

ẇ =

(
w1

β1w0 + β2w1 + aw2
0 + bw0w1

)
. (B.2)

The trivial equilibrium at the origin undergoes a transcritical bifurcation at β1 = 0.
Therefore, we will refer to this case as a transcritical Bogdanov-Takens bifurcation.
Without loss of generality, we assume that a > 0 and b < 0. This will lead to supercrit-
ical Hopf curves. Other possible values can be obtained by straightforward reflections
(including time reversal). In particular, the reflection β1 → −β1 together with the trans-

formation (w0, β2) → (w0 −
β1

a
, β2 +

b

a
β1) leaves the normal form (B.2) invariant. This

extra reflection symmetry compared with the generic Bogdanov-Takens bifurcation leads
to one additional Hopf and one additional homoclinic bifurcation curve. In Figure B.2
we have plotted the bifurcation diagram. For a more detailed analysis we refer to [27].
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Figure B.2.: Phase portraits for the transcritical Bogdanov-Takens bifurcation given by
(B.2) with a = 1 and b = −1. In contrast to the generic Bogdanov-Takens
bifurcations there are now two Hopf and homoclinic bifurcation curves. One
Hopf curve is given by β2 = −β1 for β1 > 0. The other Hopf curve is given

by β2 = 0 for β1 < 0. At β2 = −6

7
β1 + O(β

3/2
1 ) for β1 > 0, there exists a

homoclinic orbit which can be found by using Melnikov’s integral, see [22].

The second homoclinic orbit is given by β2 =
1

7
β1 + O(β

3/2
1 ) for β1 < 0,

which is derived using the extra reflection. Lastly there is a transcritical
bifurcation curve for β1 = 0.
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B.3. Generalized Hopf bifurcation

Suppose that the system (3.3) has an equilibrium x = 0 at the critical parameter value
α0 = (0, 0) ∈ R2 with the purely imaginary eigenvalues

λ1,2 = ±iω0, ω0 > 0. (B.3)

Furthermore, suppose that the first Lyapunov coefficient `1(0) = 0, then the restriction
of (3.3) to the two-dimensional center manifold W c can be transformed to the normal
form

ż = λ(α)z + c1(α)z|z|2 + c2(α)z|z|4 +O(|z|6), (B.4)

where λ(α), c1(α), c2(α) are complex functions with ω0`1(0) = Re c1(0) = 0, λ(0) = iω0

and ω0`2(0) = Re c2(0) 6= 0. Lastly, suppose that the map α 7→ (µ(α), `1(α)) is regular
at α = 0, Then, by the introduction of a complex variable, applying smooth invertible
coordinate transformations that depend smoothly on the parameters, and performing
smooth parameter and time changes, the system can be reduced to the complex form

ż = (β1 + i) z + β2z|z|2 ± z|z|4 +O(|z|6).

B.4. Fold-Hopf bifurcation

Suppose that the system (3.3) has an equilibrium x = 0 at the critical parameter value
α0 = (0, 0) ∈ R2 with the eigenvalues

λ1 = 0, λ2,3 = ±iω0, (B.5)

where ω0 > 0. The restriction of (3.3) to the three-dimensional center manifold W c can
be transformed to the normal form

ż0 = γ(α) + g200(α)z2
0 + g011(α)|z1|2 + g300(α)z3

0 + g111(α)z0|z1|2
+O

(
‖ (z0, z1, z1) ‖4

)
,

ż1 = Λ(α)z1 + g110(α)z0z1 + g210(α)w2z1 + g021(α)z1|z1|2 +O
(
‖ (z0, z1, z1) ‖4

)
,

(B.6)
where z0 ∈ R, z1 ∈ C, γ(0) = 0,Λ(0) = iω0 and the functions gjkl(α) are real in the
first equation and complex in the second. If g110(0)g011(0) 6= 0, then, generically, the
restriction of (3.3) to the three-dimensional center manifold W c can be reduced to the
system {

ż0 = δ(α) + bz2
0 + c|z1|2 +O(‖ (z0, z1, z1) ‖4),

ż1 = (β2(α) + iω0(α))z1 + dz0z1 + ez2
0z1 +O(‖ (z0, z1, z1) ‖4),

(B.7)

where ω, b, c and e are real functions of α, while d is a complex function of α:

ω(0) = 0, b(0) = g200, c(0) = g011, d(0) = g110 − iω0
g300

g200
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and
e(0) = Re

(
g210 + g110

(
Reg021

g011
− 3

2

g300

g200
+

g111

2g011

)
− g021g200

g011

)
.

The normal form given by (B.6) is referred to as the Poincaré normal form, while the
normal form (B.7) is referred to as the Gavrilov normal form. As in the generalized Hopf
bifurcation, a time reparametrization is needed to transfer the Poincaré normal form to
the Gavrilov normal form. Therefore, we will use the Poincaré normal form to derive
the coefficients. If we furthermore assume that e(0) is non-zero and the map α 7→ β is
regular at α = α0, the Gavrilov normal form (B.7) can be transformed into{

ż0 = β1 + z2
0 + s|z1|2 +O(‖ (z0, z1, z1) ‖4),

ż1 = (β2 + iω0)z1 + (θ + iϑ) z0z1 + z2
0z1 +O(‖ (z0, z1, z1) ‖4),

(B.8)

where
s = sign [b(0)c(0)] and θ(0) = Re

g100(0)

g200(0)
.

Truncating the fourth order terms in (B.8) and making the substitution z = ρeiϕ we
obtain the system 

ż0 = β1 + z2
0 + sρ2,

ρ̇ = ρ
(
β2 + θz0 + z2

0

)
,

ϕ̇ = ω0 + ϑz0

(B.9)

Removing the azimuthal term we obtain the amplitude system{
ẇ = β1 + z2

0 + sρ2,
ρ̇ = ρ

(
β2 + θz0 + z2

0

)
.

(B.10)

Equilibrium points of (B.10) with ρ = 0 correspond to equilibrium points for (B.8).
Equilibrium points of (B.10) with ρ > 0 correspond to periodic solutions for (B.8). Limit
cycles of (B.10) correspond to invariant tori for (B.8). Lastly, heteroclinic solutions of
(B.10) correspond to spherelike surface for (B.8).
Depending on the signs of s and θ(0) in (B.10) 4 bifurcation diagrams for nearby param-
eter values can be distinguished:

I. s = 1, θ > 0 subcritical Hopf bifurcations and no tori
II. s = −1, θ < 0 subcritical Hopf bifurcations and no tori
III. s = 1, θ < 0 sub- and supercritical Hopf bifurcations and torus "heteroclinic de-

struction"
IV. s = −1, θ > 0 sub- and supercritical Hopf bifurcation and torus "blow-up"

The stability of the torus depend on the sign of e(0). In Figure B.3 the bifurcation
diagram of the amplitude system (B.10) with s = 1, θ < 0 and e < 0 is shown. This
unfolding will be seen in the example in Section 8.8. For the remaining unfoldings of
(B.10) and a more detailed analysis we refer to [34].
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Figure B.3.: Unfolding of the fold-Hopf bifurcation when s = 1, θ(0) < 0 and e(0) < 0.
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Remark B.1. All results obtained for the truncated normal form (B.10) cannot be trans-
ferred back to the whole system (B.8). However, one can show using the Implicit Func-
tion Theorem, that the Neimark-Sacker, fold, and sub- and supercritical Hopf bifurcation
curves survive adding higher order terms to system (B.9).

B.5. Hopf-transcritical

As for the Bogdanov-Takens bifurcation, many articles in which fold-Hopf bifurcations
in DDEs are studied, deal with models in which the steady-state remains fixed under
variation of parameters. Under this constraint the unfolding cannot be given by (B.6)
anymore and we have to consider the normal form

ż0 = γ(α)z2
0 + g200(α)z2

0 + g011(α)|z1|2 + g300(α)z3
0 + g111(α)z0|z1|2

+O
(
‖ (z0, z1, z1) ‖4

)
,

ż1 = Λ(α)z1 + g110(α)z0z1 + g210(α)w2z1 + g021(α)z1|z1|2 +O
(
‖ (z0, z1, z1) ‖4

)
,

(B.11)
The bifurcation analysis can be carried out similar to the fold-Hopf case, [23]. An alter-
native approach is presented in [52]. There the transformation

z1 → z1 + δ

is made to transform the amplitude system of the Hopf-transcritical into the amplitude
system (B.10). There are in general two solutions δ±, yielding to an additional Neimark-
Sacker bifurcation curve in cases III and IV compared with the fold-Hopf bifurcation.
Furthermore, the fold bifurcation curve becomes a transcritical bifurcation curve, which
meets the Hopf bifurcation curve transversely.

B.6. Hopf-Hopf bifurcation

Suppose that the system (3.3) at the critical parameter value α0 = (0, 0) ∈ R2 undergoes
two Hopf bifurcation simultaneously. Then the generator A contains two pairs of purely
imaginary eigenvalues

λ1,4 = ±ω1, λ2,3 = ±ω2, (B.12)

where we assume that ω1 > ω2 > 0. When no other eigenvalues on the imaginary axis
exists this phenomenon is called the Hopf-Hopf bifurcation or double-Hopf bifurcation.
Assume, furthermore that the non-resonance conditions

kω1 6= lω2, k, l > 0, k + l≤5

are satisfied. The restriction of (3.3) to the four-dimensional center manifold W c can be
transformed to the normal form
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ż1 = (iω1 + β1) z1 + g2100z1|z1|2 + g1011z1|z2|2 + g3200z1|z1|4

+g2111z1|z1|2|z2|2 + g1022z1|z2|4 +O
(
‖z1, z1, z2, z2‖6

)
,

ż2 = (iω2 + β2) z2 + g1110z2|z1|2 + g0021z2|z2|2 + g2210z2|z1|4
+g1121z2|z1|2|z2|2 + g0032z2|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
,

(B.13)

where z1,, z2 ∈ C2 and gjklm ∈ C. Moreover, if

(Re g2100) (Re g1011) (Re g1110) (Re g0021) 6= 0

and the critical eigenpairs cross the imaginary axis with nonzero velocities, then (3.3)
can be reduced to the system

ż1 = (iω1 + β1) z1 + 1
2p11z1|z1|2 + p12z1|z2|2 + ir1z1|z1|4

+1
4s1z1|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
,

ż2 = (iω2 + β2) z2 + p21z2|z1|2 + 1
2p22z2|z2|2 + 1

4s2z2|z1|4
+ir2z2|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
,

where the coefficients pjk and sk are complex, while the numbers rk are real. Moreover,
the real parts of the critical values are given by the expressions

Re
(
p11 p12

p21 p22

)
= Re

(
g2100 g1011

g1110 g0021

)
and

Re s1 = Re g1022 +
1

3
Re g1011

(
6
Re g1121

Re g1110
− 4

Re g0032

Re g0021
− 6

(Re g3200) (Re g0021)

(Re g2100) (Re g1110)

)
,

Re s2 = Re g2210 +
1

3
Re g1110

(
6
Re g2111

Re g1011
− 4

Re g3200

Re g2100
− 6

(Re g2100) (Re g0032)

(Re g1011) (Re g0021)

)
.

Depending on the sign of

(Re p11) (Re p22) = (Re g2100) (Re g0021) ,

this bifurcation exhibits either ‘simple’ or ‘difficult’ dynamics for nearby parameter val-
ues. Each case includes many subcases depending on the signs of

θ =
Re g1011

Re g0021
, δ =

Re g1110

Re g2100
,

see [34]. Generically, in all cases there are two half-lines along which there is a Neimark-
Sacker bifurcation of limit cycles.
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C. Predictors

In [1] a generalization of the Lindstedt-Poincaré method is used to approximate the
homoclinic orbit emanating from a generic Bogdanov-Takens bifurcation. In the first
Section we will shortly review the method and show the obtained results. In the second we
will apply the same method to the transcritical Bogdanov-Takens bifurcation. However,
in contrast to the generic Bogdanov-Takens bifurcation, there are two homoclinic orbits
to approximate. One homoclinic solution to the trivial solution and another to the
nontrivial equilibrium. These cases need to be treated separately. In the remaining
sections we list known asymptotics for codimension 1 nonhyperbolic cycles emanating
from generalized Hopf, fold-Hopf and Hopf-Hopf bifurcations obtained in [37]. Following
the same method as in [37] we also derive asymptotics for codimension 1 nonhyperbolic
cycles emanating from the Hopf-transcritical bifurcation.

C.1. Generic Bogdanov-Takens bifurcation

The smooth normal form for the restriction of a generic system (3.3) to its parameter-
dependent two-dimensional center manifold near the Bogdanov-Takens bifurcation is

ẇ = G1(w, β)

=

(
w1

β1 + β2w1 + aw2
0 + bw0w1 + g1(w, β)

)
+O(|β1|‖w‖2 + |β2|w2

1) +O(‖β‖2 ‖w‖2 + ‖β‖ ‖w‖3 + ‖w‖4),

(C.1)

where
g1(w, β) = (a1β2 + dw0)w2

0 + (b1β2 + ew0)w1w0.

To approximate homoclinic solution we take the normal form (C.1) and apply the singular
rescaling

β1 = −4

a
ε4, β2 =

b

a
ε2τ,

w0 =
ε2

a
u, w1 =

ε3

a
v, εt = s.

This gives 
u̇ = v,

v̇ = −4 + u2 + ε
b

a
v(u+ τ) + ε2 1

a2
u2 (a1bτ + du)

+ε3 1
a2
uv (bb1τ + eu) +O(ε4),

(C.2)
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or

ü− u2 + 4 = ε
b

a
u̇(u+ τ) + ε2 1

a2
u2 (a1bτ + du) + ε3 1

a2
uu̇ (bb1τ + eu) +O(ε4). (C.3)

The dot now indicates the derivative with respect to s. For ε = 0, (C.2) is a Hamiltonian
system with the first integral

L(u, v) =
1

2
v2 + 4u− 1

3
u3 = h. (C.4)

The Hamiltonian system has a well-known explicit homoclinic solution (u0(s), v0(s))
given by {

u0(s) = 2(1− 3 sech2(s)),

v0(s) = 12 sech2(s) tanh(s).

This solution defines a homoclinic orbit to the saddle (2, 0).
Introduce the non-linear transformation of time,

dζ

ds
= ω(ζ), (C.5)

where ω(ζ) is a bounded function for all ζ. The new parameterization of time transforms
(C.3) into

ω
d

dζ
(ωu̇)− u2 + 4 = ε

b

a
ωu̇(u+ τ) + ε2 1

a2
u2 (a1bτ + du) + ε3 1

a2
uωu̇ (bb1τ + eu) +O(ε4).

(C.6)
The homoclinic solutions of (C.3) can be parameterized by ε and approximate by

u(ζ)
v(ζ)
ω(ζ)
τ

 =


u0(ζ)
v0(ζ)
ω0(ζ)
τ0

+ε


u1(ζ)
v1(ζ)
ω1(ζ)
τ1

+ε2


u2(ζ)
v2(ζ)
ω2(ζ)
τ2

+ε3


u3(ζ)
v3(ζ)
ω3(ζ)
τ3

+O(ε4). (C.7)

By substituting the series expansion (C.7) into equation (C.6) and then successively
collecting the terms with equal power in ε, the unknowns ui, vi, ωi(ζ) for i = 0, 1, 2, 3 and
τi for i = 0, 1, 2 have been solved. One obtains the following second-order correction

τ0 = 10
7 , τ1 = 0, τ2 = 1

a

(
100
49 b1 − 4 eb

)
+ 1

a2

(
288
2401b

2 − 50ba1
49 + 146

49 d
)
,

u0(ζ) = −6 sech2(ζ) + 2,
v0(ζ) = 12 sech2(ζ) tanh(ζ),
u1(ζ) = 0,

v1(ζ) = − 6b
7a tanh(ζ)v0(ζ),

u2(ζ) = 1
49a2

(210a1b− 18b2 − 147d) sech2(ζ)− 2
7

5a1b+7d
a2

,

v2(ζ) =
(
− 5a1b

14a2
+ 3b2

7a2
+ 3d

2a2
−
(

27b2

98a2
+ 9d

4a2

)
sech2(ζ)

)
v0(ζ).
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We omit the third order approximation to the homoclinic orbit, which has also been de-
rived. The second-order approximation to the homoclinic orbit of the smooth Bogdanov-
Takens normal form system is given by

w0(t) =
ε2

a

(∑2
i=0 ε

iui(ζ)
)

+O(ε5),

w1(t) =
ε3

a

(∑2
i=0 ε

iv(ζ)
)

+O(ε6),

β1 = −4

a
ε4,

β2 =
b

a
ε2
(
τ0 + ε2τ2

)
+O(ε5).

(C.8)

Substituting (C.8) into equations (6.2) and (6.3) gives the second-order homoclinic pre-
dictors

α =
10

7

b

a
K01ε

2 +

(
b

a
τ2K01 +

50b2

49a2
K02 −

4

a
K10

)
ε4,

x = ε2

(
10b

7a
H0001 +

1

a
u0(ζ)φ0

)
+ ε3

(
1

a
v0(ζ)φ1 +

1

a
u1(ζ)φ0

)
+ ε4

(
− 4

a
H0010 +

50b2

49a2
H0002 +

b

a
τ2H0001

+
1

a
u2(ζ)φ0 +

1

a
v1(ζ)φ1 +

1

2a2
H2000u

2
0(ζ) +

10b

7a2
H1001u0(ζ)

)
+O(ε5), (C.9)

for the original system (3.3).

C.2. Transcritical Bogdanov-Takens bifurcation

Suppose that a smooth autonomous 2D ODE has an equilibrium with a double (but
not semi-simple) zero eigenvalue. It is well known (see, e.g. [22]) that such system is
C∞-equivalent near this equilibrium to the critical normal form

ẇ =

(
w1

aw2
0 + bw0w1

)
+O(‖w‖3), (C.10)

where w = (w0, w1) and the w0-component of the O(‖w‖3)-term is identically zero. We
assume that ab 6= 0, i.e. that we consider a non-degenerate (codim 2) BT singularity.
Any generic smooth two-parameter perturbation of (C.10), with the equilibrium at the
origin is hold fixed, is topologically equivalent near the origin to the system

ẇ =

(
w1

β1w0 + β2w1 + aw2
0 + bw0w1

)
+O(‖w‖3),

where β = (β1, β2) are the unfolding parameters [27]. To accurately approximate ho-
moclinic solutions in the two-parameter perturbation of (C.10), one has to consider the
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smooth normal form

ẇ = G(w, β)

=

(
w1

β1w0 + β2w1 + aw2
0 + bw0w1 + g(w, β)

)
+O(‖β‖w2

1) +O(‖β‖2 ‖w‖2 + ‖β‖ ‖w‖3 + ‖w‖4),

(C.11)

where
g(w, β) = (a1β2 + a2β1 + dw0)w2

0 + (b1β2 + b2β1 + ew0)w1w0.

The next step is to study homoclinic solutions of the normal form (C.11). There are
two homoclinic orbits to consider, see (B.2). One, in which the trivial equilibrium is
the saddle to the homoclinic orbit, and the second, in which the nontrivial equilibrium,
which coincides with the trivial equilibrium for β = 0, is the saddle to the homoclinic
orbit. These two cases can be distinguished by the sign of β1, since the coefficients in
g(w, β) do not effect the linear approximation to the homoclinic orbits.

C.2.1. Homoclinic to the trivial solution

To approximate homoclinic to the trivial solution we take the normal form (C.11) and
apply the singular rescaling

β1 = ε2, β2 =
b

a
ε2τ,

w0 =
ε2

a
u, w1 =

ε3

a
v, εt = s.

This gives 
u̇ = v,

v̇ = u (1 + u) + ε
b

a
v(u+ τ) + ε2 1

a2
u2 (a1bτ + aa2 + du)

+ε3 1
a2
uv (ab2 + bb1τ + eu) +O(ε4),

(C.12)

or
ü− u (1 + u) =ε

b

a
u̇(u+ τ) + ε2 1

a2
u2 (a1bτ + aa2 + du)

+ ε3 1

a2
uu̇ (ab2 + bb1τ + eu) +O(ε4),

(C.13)

where 0 < ε � 1 and τ are the new parameters. The dot now indicates the derivative
with respect to s. For ε = 0, (C.13) is a Hamiltonian system with the first integral

L(u, v) =
1

2

(
v2 − u2

)
− 1

3
u3 = h. (C.14)

Every closed orbit of (C.14) surrounding (−1, 0) corresponds to a level curve

Γh =

{
(u, v) : L(u, v) = h,−1

6
< h < 0

}
.
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Figure C.1.: Contourplot of the Hamiltonian L in (C.14).

Γh shrinks to the equilibrium (−1, 0) as h → −1

6
and tends to a homoclinic orbit as

h→ 0, see Figure C.1.
The Hamiltonian system L has a homoclinic orbit(

u0(s)
v0(s)

)
=

3

2

(
− sech2(s/2)

sech2(s/2) tanh(s/2)

)
. (C.15)

to the saddle at the origin. Indeed, substituting homoclinic orbit (C.15) into the Hamil-
tonian L yields

L(u0, v0) =
9

8
sech4(s/2) tanh2(s/2)− 9

8
sech4(s/2) +

9

8
sech6(s/2)

=
9

8
sech4(s/2)

(
1− sech2(s/2)

)
− 9

8
sech4(s/2) +

9

8
sech6(s/2).

= 0.

Furthermore, {
(u0(±∞), v0(±∞) = (0, 0)) ,

(u0(0), v0(0)) =
(
−3

2 , 0
)
,

shows that the solution is indeed a homoclinic solution. Our next aim is to prove existence
of homoclinic orbits for the perturbed system (C.12) for ε 6= 0, as done in [3] for the
general case. We introduce the Banach spaces

X0 =

{
z ∈ C(R,R2) : lim

t→∞
z(t) and lim

t→−∞
z(t) exists

}
with norm

‖z‖0 = sup {‖z(t)‖ : t ∈ R} , ‖ · ‖ some norm in Rm
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and
X1 =

{
z ∈ C1(R,R2) : z, ż ∈ X0

}
, ‖z‖1 = ‖z‖0 + ‖ż‖0.

With h = (z, ε) = (u, v, ε) ∈ X0 × R let us write (C.12) as

F (h, τ) = 0 (C.16)

where F : X1 × R× R→ X0 × R is defined by

F (h, τ) =

(
ż − g(z, ε, τ)

v(0)

)
,

with

g(z, ε, τ) =

(
v

u (1 + u)

)
+ ε

(
0

b

a
v(u+ τ)

)
+ ε2

(
0

1
a2
u2 (a1bτ + aa2 + du)

)

+ ε3

(
0

1
a2
uu̇ (ab2 + bb1τ + eu)

)
+O(ε4).

The condition u̇(0) = v(0) = 0 is used to fix the phase of the homoclinic orbits.
Setting h0 = (z0, 0) = (u0, v0, 0) we find

F (h0, τ) = 0 for all τ.

Hence we have a trivial branch (h0, τ) of homoclinic orbits and we look for values of τ
at which bifurcation occurs.

Theorem C.1. Consider the two-parameter system (C.12) and assume that ab 6= 0.
Then equation (C.16) has an unique simple bifurcation point (in the sense of [9]) at
(h0, τ0) with

τ0 =
6

7
.

The emanating C1-branch can be parameterized by ε

(h(ε), τ(ε)) = (z(ε), ε, τ(ε)) ∈ X1 × R2. (C.17)

It has tangent (
z′(0), 1, τ ′(0)

)
=
(
z1, 1, τ

′(0)
)

where z1 = (u1, v1) is the unique solution in X1 of the linear systemu̇− v = 0

v̇ − u (2u0 + 1) =
b

a
v0(u0 + τ0)

and v(0) = 0. (C.18)
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Proof. Consider the linearization of F with respect to h ∈ X1 × R about the trivial
solution of (h0, τ)

Fw(h0, τ)w =

(
Lz − gε(z0, 0, τ)ε

v(0)

)
, w = (z, ε) = (u, v, ε) ∈ X1 × R.

where L : X1 → X0 is given by (cf, (C.12))

Lz =

(
u̇− v

v̇ − u(2u0 + 1)

)
, z = (u, v) (C.19)

We need a few facts from the Fredholm theory of linear differential operator Lz = ż −
A(t)z which have the property that limt→∞A(t) = limt→−∞A(t) exists and has no
eigenvalues on the imaginary axis (see [2, Lemma 2.2], and also [43, Lemma 4.2]; [24]).

(i). L : X1 → X0 is Fredholm of index 0;
(ii). dim N(L)= dim N(L∗) where L∗z = ż +A(t)T z;
(iii). z ∈ R(L) ⇐⇒

´∞
−∞ΨT (t)z(t) dt = 0 ∀Ψ ∈ N(L∗).

For the special case (C.19) we have

N(L) = span {ż0} , N(L∗) = span {(−v̇0, u̇0)} . (C.20)

Using (i) and the bordering Lemma [2] we find that Fh(h0, τ) : X1 × R → X0 × R also
has Fredholm index 0. Since v̇(0) 6= 0 the only way that Fh(h0, τ) can have nontrivial
null space is the case

gε(z0, 0, τ) ∈ R(L).

By (iii), (C.20) and (C.15) this is equivalent to a vanishing Melnikov integral

0 =

ˆ ∞
−∞

(−v̇0, u̇0)gε(z0, 0, τ) dt

=

ˆ ∞
−∞

3 tanh
(
t
2

)
sech2

(
t
2

) (
3
2bτ tanh

(
t
2

)
sech2

(
t
2

)
− 9

4b tanh
(
t
2

)
sech4

(
t
2

))
2a

dt

=
6b(7τ − 6)

35a
(C.21)

This is satisfied at τ = τ0 and we obtain

N (Fh(h0, τ0)) = span {(z1, 1)} , R (Fh(h0, τ0)) = R(L)× R (C.22)

where z1 is the unique solution of (C.18).
The final condition for bifurcation from (h0, τ0) is (cf. [9])

Fwτ (h0, τ0)

(
z1

1

)
/∈ R (Fh(h0, τ0)) .
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Using (C.22) and once more (iii) and (C.20) this turns out to be equivalent to

0 6=
ˆ ∞
−∞

(−v̇0, u̇0)gετ (z0, 0, τ) dt =

ˆ ∞
−∞

9b tanh2
(
t
2

)
sech4

(
t
2

)
4a

dt =
3b

5a

which is true by assumption.

Actually, the homoclinic branch is as smooth in ε as (C.12). Introduce the non-linear
transformation of time,

dζ

ds
= ω(ζ), (C.23)

where ω(ζ) is a bounded function for all ζ. Since ω(ζ) also depends on ε, we can expand
ω(ζ) in a power series of ε:

ω(ζ) = ω0(ζ) + εω1(ζ) + ε2ω2(ζ) + ε3ω3(ζ) + . . . , (C.24)

Using that

d

ds
u =

dζ

ds

d

dζ
u = ω(ζ)

d

dζ
u = ω(ζ)û′

and
d2

ds2
u = ω(ζ)

d

dζ

(
ω(ζ)û′

)
,

where the prime denotes the derivative of û with respect to the new independent variable
ζ, the new parameterization of time transforms (C.13) into

ω
d

dζ

(
ωû′
)
− û (1 + û) =ε

b

a
ωû′(û+ τ) + ε2 1

a2
û2 (a1bτ + aa2 + dû)

+ ε3 1

a2
ωû′ (ab2 + bb1τ + eû) û+O(ε4).

(C.25)

We approximate the branch (C.17) parameterized by ε
û(ζ)
v̂(ζ)
ω(ζ)
τ

 =


û0(ζ)
v̂0(ζ)
ω0(ζ)
τ0

+ ε


û1(ζ)
v̂1(ζ)
ω1(ζ)
τ1

+ ε2


û2(ζ)
v̂2(ζ)
ω2(ζ)
τ2

+ ε3


û3(ζ)
v̂3(ζ)
ω3(ζ)
τ3

+O(ε4).

(C.26)
Substituting (C.26) into (C.25) and collecting the terms of order ε0 gives the system

ω0
d

dζ

(
ω0û

′
0

)
− (1 + û0)û0 = 0.

Then, for ω0 = 1 we obtain
û′′0 − (1 + û0)û0 = 0, (C.27)
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which is equivalent to (C.13) with ε = 0 and thus has the exact homoclinic solution(
u0(s)
v0(s)

)
=

3

2

(
− sech2(s/2)

sech2(s/2) tanh(s/2)

)
. (C.28)

Substituting ω0 = 1 and (C.26) into (C.25) and collecting the terms of order ε1, ε2 and
ε3 gives the systems:

Order(ε1) :
d

dζ
(ω1û

′
0) + ω1û

′′
0 + û′′1 − (2û0 + 1) û1 =

b

a
û′0 (û0 + τ0) , (C.29)

Order(ε2) :
d

dζ

(
ω1û

′
1

)
+ ω1û

′′
1 +

d

dζ

(
ω2û

′
0

)
+ ω2û

′′
0

+ û′′2 − (2û0 + 1) û2 + ω1
d

dζ

(
ω1û

′
0

)
− û2

1

=
1

a2
û2

0 (a1bτ0 + aa2 + dû0)

+
b

a

(
û′0(û1 + τ1) + û′1(û0 + τ0) + ω1û

′
0(û0 + τ0)

)
, (C.30)

Order(ε3) :
d

dζ

(
ω1û

′
2

)
+ ω1û

′′
2 +

d

dζ

(
ω3û

′
0

)
+ ω3û

′′
0

+
d

dζ

(
ω2û

′
1

)
+ ω2û

′′
1 + û′′3 − (2û0 + 1)û3

+ ω1
d

dζ

(
ω1û

′
1

)
+ ω1

d

dζ

(
ω2û

′
0

)
+ ω2

d

dζ

(
ω1û

′
0

)
− 2û1û2

=
1

a2
û′0 (ab2 + bb1τ0 + eû0) û0

+
b

a

(
û′0(û2 + τ2) + û′1(û1 + τ1) + û′2(û0 + τ0)

+ ω1

[
û′0(û1 + τ1) + û′1(û0 + τ0)

]
+ ω2

[
û′0(û0 + τ0)

])
+

1

a2

(
û2

0(a1bτ1 + dû0) + 2û0û
′
1(a1bτ0 + aa2 + dû0)

)
. (C.31)

We assume that for ε 6= 0 the homoclinic orbit of (C.25) is still given by
û(ζ) = σsech2(

ζ

2
),

v̂(ζ) = û′(ζ) = −σω(ζ)sech2(
ζ

2
)tanh(

ζ

2
),

(C.32)

where σ is a parameter that depends on ε,

σ = σ0 + εσ1 + ε2σ2 + ε3σ3 + . . . . (C.33)
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For which it follows that σ0 = −3
2 and

ûi(ζ) = σisech2(
ζ

2
), i = 1, 2, 3, (C.34)

v̂1(ζ) =

(
3

2
ω1 − σ1

)
sech2(

ζ

2
)tanh(

ζ

2
), (C.35)

v̂2(ζ) =

(
3

2
ω2 − σ1ω1 − σ2

)
sech2(

ζ

2
)tanh(

ζ

2
),

v̂3(ζ) =

(
3

2
ω3 − σ1ω2 − σ2ω1 − σ3

)
sech2(

ζ

2
)tanh(

ζ

2
). (C.36)

Using assumptions (C.34)-(C.36) we solve the linear equations (C.29)-(C.31) for û(ζ) one
by one to determine τi−1, σi and ωi(ζ) for i = 1, 2, 3.
We multiply both sides of (C.29) with û′0 and integrate both sides from ζ0 to ζ, and get

ˆ ζ

ζ0

û′0
d

dζ
(ω1û

′
0) dx+

ˆ ζ

ζ0

û′0ω1û
′′
0 dx (C.37)

+

ˆ ζ

ζ0

û′0û
′′
1 dx−

ˆ ζ

ζ0

û′0 (2û0 + 1) û1 dx (C.38)

=
b

a

ˆ ζ

ζ0

(
û′0
)2

(û0 + τ0) dx

Differentiating (C.27) with respect to ζ yields

û′′′0 = û′0(1 + 2û0),

so that ˆ ζ

ζ0

û1û
′′′
0 dx =

ˆ ζ

ζ0

û1û
′
0(1 + 2û0)dx. (C.39)

Using this expression and integration by parts we can simplify (C.37) and (C.38) to
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become
ˆ ζ

ζ0

û′0
d

dζ
(ω1û

′
0) dx+

ˆ ζ

ζ0

û′0ω1û
′′
0 dx = ω1

(
û′0
)2∣∣∣∣ζ

ζ0

−
ˆ ζ

ζ0

û′′0ω1û
′
0 dx

+

ˆ ζ

ζ0

û′0ω1û
′′
0 dx

= ω1

(
û′0
)2∣∣∣∣ζ

ζ0

,

ˆ ζ

ζ0

û′0û
′′
1 dx−

ˆ ζ

ζ0

û′0 (2û0 + 1) û1 dx =

ˆ ζ

ζ0

û′0û
′′
1 dx−

ˆ ζ

ζ0

û1û
′′′
0 dx

=
(
û′0û

′
1 − û1û

′′
0

)∣∣∣∣ζ
ζ0

−
ˆ ζ

ζ0

û′′0û
′
1 dx

−
ˆ
û′′0û

′
1 dx

=
(
û′0û

′
1 − û1û

′′
0

)∣∣∣∣ζ
ζ0

.

Therefore, (C.29) can be written as

ω1

(
û′0
)2∣∣∣∣ζ

ζ0

+
(
û′0û

′
1 − û1û

′′
0

)∣∣∣∣ζ
ζ0

=
b

a

ˆ ζ

ζ0

(
û′0
)2

(û0 + τ0) dx. (C.40)

Setting ζ0 = −∞ or ζ =∞ gives

0 =
b

a

ˆ ζ

ζ0

(
û′0
)2

(û0 + τ0) dx

=
6

35

b

a
(7τ0 − 6) ,

from which we recover (C.21) and thus once more that τ0 = 6
7 . Taking the integration

boundaries ζ0 = 0 and ζ =∞ in (C.40) we obtain

3σ1

4
= 0,

we which it follows that σ1 = 0. To obtain ω1 we set the integration boundaries in (C.40)
from ζ0 = 0 to ζ, which yields

9

4
tanh2

(
ζ

2

)
sech4

(
ζ

2

)
w1(ζ) =

3

280
(6(10 cosh(ζ) + cosh(2ζ) + 9)

− 6(10 cosh(ζ)

+ cosh(2ζ) + 24)) tanh3

(
ζ

2

)
sech4

(
ζ

2

)
.

165



Appendix C C. Predictors

After simplifying we obtain

ω1(ζ) = − b
a

3

7
tanh

(
ζ

2

)
.

Substituting σ1 and ω1 into (C.34) and (C.35) gives the first-order correction to the initial
homoclinic solution (û0, v̂0)û1(ζ) = 0,

v̂1(ζ) = − 9
14sech

2(
ζ

2
)tanh2(

ζ

2
).

We can apply to same procedure to equation (C.30). First we multiply both sides with
û′0

Order(ε2) :û′0
d

dζ

(
ω2û

′
0

)
+ û′0ω2û

′′
0 + û′0û

′′
2 − û′0 (2û0 + 1) û2 + û′0ω1

d

dζ

(
ω1û

′
0

)
= û′0

[
1

a2
û2

0 (a1bτ0 + aa2 + dû0) +
b

a
û′0 (τ1 + ω1(û0 + τ0))

]
Using the identity

ˆ ζ

ζ0

û′0ω1
d

dζ

(
ω1û

′
0

)
dx =

1

2

(
ω1û

′
0

)2
=

81

392
tanh4

(
ζ

2

)
sech4

(
ζ

2

)∣∣∣∣ζ
ζ0

we obtain the equality

ω2 (û′0)2

∣∣∣∣ζ
ζ0

+ (û′0û
′
2 − û2û

′′
0)

∣∣∣∣ζ
ζ0

+ 81
392 tanh4

(
ζ
2

)
sech4

(
ζ
2

)∣∣∣∣ζ
ζ0

=
´ ζ
ζ0
û′0

[
1
a2
û2

0 (a1bτ0 + aa2 + dû0) +
b

a
û′0 (τ1 + ω1(û0 + τ0))

]
dx.

To this equation we repeat the last procedure of changing the integration variables and
obtain 

τ1 = 0,

σ2 = 3(6ab−336a1b−392aa2+441d)
784a2

,

ω2(ζ) = −9sech2( ζ2)(−4a2+4a(a−2b) cosh(ζ)+6ab+49d)
784a2

,

with
û2(ζ) = −3sech2( ζ2)(6ab−336a1b−392aa2+441d)

784a2
,

v̂2(ζ) = −3 tanh( ζ2)sech4( ζ2)
1568a2

(
cosh(ζ)

(
36a2 − 78ab− 441d

)
+ 336a1b(cosh(ζ) + 1)

+12a(4b− 3a) + 392aa2(cosh(ζ) + 1)

)
.
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Lastly, we turn our attention to the third order terms. Multiplying both sides of equation
(C.31) with û′0 yields

û′0
d

dζ

(
ω1û

′
2

)
+ û′0ω1û

′′
2 + û′0

d

dζ

(
ω3û

′
0

)
+ û′0ω3û

′′
0

+ û′0û
′′
3 − û′0(2û0 + 1)û3 + û′0ω1

d

dζ

(
ω2û

′
0

)
+ û′0ω2

d

dζ

(
ω1û

′
0

)
= û′0

[
1

a2
û′0 (ab2 + bb1τ0 + eû0) û0 +

b

a

(
û′0(û2 + τ2) + û′2(û0 + τ0)

+ ω1û
′
0τ1 + ω2

[
û′0(û0 + τ0)

])
+

1

a2

(
û2

0(a1bτ1 + dû0)
)]
.

Integrating both sides from ξ0 to ξ and simplifying yields

ω1

(
û′2
)2∣∣∣∣ζ

ζ0

+ ω3

(
û′0
)2∣∣∣∣ζ

ζ0

+
(
û′0û

′
3 − û3û

′′
0

)∣∣∣∣ζ
ζ0

+
243 tanh3

(
ζ
2

)
sech6

(
ζ
2

) (
−4a2 + 4a(a− 2b) cosh(ζ) + 6ab+ 49d

)
21952a2

=

=

ˆ ζ

ζ0

û′0

[
1

a2
û′0 (ab2 + bb1τ0 + eû0) û0 +

b

a

(
û′0(û2 + τ2) + û′2(û0 + τ0)

+ ω1û
′
0τ1 + ω2

[
û′0(û0 + τ0)

])
+

1

a2

(
û2

0(a1bτ1 + dû0)
)]
dx.

Changing the integration variables as above we obtain
τ2 =

3(6a2b+686a2b2−588a1b2−686a2ab+588abb1−686ae+735bd)
2401a2b

,

σ3 = 0,

ω3(ζ) = tanh
(
ζ
2

)(
c8

cosh(ζ)+1 + c9

)
,

where

c8 =
3bd

8a3
+

3b2

28a2
− 27d

56a2
+

e

a2
− 39b

196a
+

27

343
,

c9 =
108a2

1b
2

343a4
− 81a1bd

98a4
+

243d2

448a4
+

1737a1b
2

2401a3
− 5085bd

5488a3

+
36a1a2b

49a3
− 27a2d

28a3
− 22905b2

268912a2
+

579a2b

686a2
− 18b1b

49a2

+
3e

7a2
+

3a2
2

7a2
+

549b

4802a
− 3b2

7a
− 27

686
,
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with {
û3(ζ) = 0,

v̂3(ζ) = 3sech2
(
ζ
2

)
tanh2

(
ζ
2

)(
c10

cosh(ζ)+1 + c11

)
,

where

c10 =
9bd

16a3
+

9b2

56a2
− 81d

112a2
+

3e

2a2
− 117b

392a
+

81

686
,

c11 =
162a2

1b
2

343a4
− 243a1bd

196a4
+

729d2

896a4
+

5211a1b
2

4802a3

− 15255bd

10976a3
+

54a1a2b

49a3
− 81a2d

56a3
− 68715b2

537824a2

+
27a1b

49a2
+

1737a2b

1372a2
− 27b1b

49a2
− 81d

112a2
+

9e

14a2

+
9a2

2

14a2
+

3105b

19208a
− 9b2

14a
+

9a2

14a
− 81

1372
.

The second-order approximation for the emanating homoclinic orbit to the trivial equi-
librium for the normal form (C.11) is given by

w0(t) =
ε2

a

(
û0(t) + εû1(t) + ε2û2(t)

)
+O(ε5),

w1(t) =
ε3

a

(
v̂0(t) + εv̂1(t) + ε2v̂2(t)

)
+O(ε6),

β1 = ε2,

β2 = ε2(τ0 + ετ1 + ε2τ2) +O(ε5)

=
6

7

b

a
ε2 +

3

2401a3

(
−588a1b

2 + 98a (−7a2b+ 7ab2 + 6bb1)

−686ae+ 6b3 + 735bd
)
ε4 +O(ε5).

(C.41)

Substituting (C.41) into equations (6.42) and (6.43) gives the second-order homoclinic
predictors

α =

(
b

a
ε2
(
τ0 + ε2τ2

))
K01,

x =

(
10b

7a
H0001 +

1

a
u0(ζ)φ0

)
ε2 +

1

a
v0(ζ)φ1ε

3 +

(
− 4

a
H0010 +

50b2

49a2
H0002

+
b

a

(
1

a

(
100

49
b1 − 4

e

b

)
+

1

a2

(
−50

49
ba1 +

288

2401
b2 +

146

49
d

))
H0001

+
1

a
u2(ζ)φ0 +

1

a
v1(ζ)φ1 +

1

2a2
H2000u

2
0(ζ) +

10b

7a2
H1001u0(ζ)

)
ε4 +O(ε5), (C.42)

for the original system (3.3).
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C.2.2. Homoclinic orbit to the nontrivial equilibrium

To approximate the second homoclinic orbit emanating from the transcritical Bogdanov-
Takens bifurcation we use the transformation

β1 = −ε2, β2 =
b

a
ε2τ,

w0 =
ε2

a
u, w1 =

ε3

a
v, εt = s.

This transforms the normal form (C.11) into
u̇ = v,

v̇ = u (u− 1) + ε
b

a
v(u+ τ) + ε2 1

a2
u2 (a1bτ − aa2 + du)

+ε3 1
a2
uv (−ab2 + bb1τ + eu) +O(ε4).

(C.43)

or
ü− u (u− 1) =ε

b

a
u̇(u+ τ) + ε2 1

a2
u2 (a1bτ − aa2 + du)

+ ε3 1

a2
uu̇ (−ab2 + bb1τ + eu) +O(ε4),

(C.44)

where 0 < ε � 1 and τ are the new parameters. The dot now indicates the derivative
with respect to s.
For ε = 0 this system is Hamiltonian with the first integral

L(u, v) =
1

2

(
v2 + u2

)
− 1

3
u3 = h, (C.45)

which has the exact homoclinic solution

(
u0(s)
v0(s)

)
=

 1− 3

2
sech2(s/2)

3

2
sech2(s/2) tanh(s/2)

 . (C.46)

Every closed orbit of (C.45) surrounding (0, 0) corresponds to a level curve

Γh =

{
(u, v) : L(u, v) = h, 0 < h <

1

6

}
.

Γh shrinks to the equilibrium (0, 0) as h→ 0 and tends to a homoclinic orbit as h→ 1
6 ,

see Figure C.2.

Theorem C.2. Consider the two-parameter system (C.43) and assume that ab 6= 0.
Then equation (C.16) has an unique simple bifurcation point (in the sense of [9]) at
(h0, τ0) with

τ0 = −1

7
. (C.47)
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Figure C.2.: Contourplot of the Hamiltonian L in (C.45). There are periodic orbits sur-

rounding the trivial equilibrium. At h =
1

6
≈ 0.167 there is a homoclinic

orbit connecting to the equilibrium at (1, 0).

The emanating C1-branch can be parameterized by ε

(h(ε), τ(ε)) = (z(ε), ε, τ(ε)) ∈ X1 × R2. (C.48)

It has tangent (
z′(0), 1, τ ′(0)

)
=
(
z1, 1, τ

′(0)
)

where z1 = (u1, v1) is the unique solution in X1 of the linear systemu̇− v = 0

v̇ − u (2u0 − 1) =
b

a
v0(u0 + τ0)

and v(0) = 0. (C.49)

Proof. With h = (z, ε) = (u, v, ε) ∈ X0 × R let us write (C.43) as

F (h, τ) = 0 (C.50)

where F : X1 × R× R→ X0 × R is defined by

F (h, τ) =

(
ż − g(z, ε, τ)

v(0)

)
,

with

g(z, ε, τ) =

(
v

u (u− 1)

)
+ ε

(
0

b

a
v(u+ τ)

)
+ ε2

(
0

1
a2
u2 (a1bτ − aa2 + du)

)

+ ε3

(
0

1
a2
uu̇ (−ab2 + bb1τ + eu)

)
+O(ε4).
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The condition u̇(0) = v(0) = 0 is used to fix the phase of the homoclinic orbits.
Setting h0 = (z0, 0) = (u0, v0, 0) we find

F (h0, τ) = 0 for all τ.

Hence we have a trivial branch (h0, τ) of homoclinic orbits and we look for values of τ at
which bifurcation occurs. Following the proof of (C.1), we obtain τ0 from the vanishing
of the Melnikov integral

0 =

ˆ ∞
−∞

(−v̇0, u̇0)gε(z0, 0, τ) dt

=

ˆ ∞
−∞

3

2a
tanh

(
t

2

)
sech2

(
t

2

)[
3

2
bτ tanh

(
t

2

)
sech2

(
t

2

)
+

3

2
b tanh

(
t

2

)(
1− 3

2
sech2

(
t

2

))
sech2

(
t

2

)]
dt (C.51)

=
6b(7τ + 1)

35a
(C.52)

This is satisfied at τ = τ0 = −1

7
. Furthermore, we need to verify that

0 6=
ˆ ∞
−∞

(−v̇0, u̇0)gετ (z0, 0, τ) dt =

ˆ ∞
−∞

9b tanh2
(
t
2

)
sech4

(
t
2

)
4a

dt =
3b

5a
.

Which is true by assumption.

Using the nonlinear time transformation from (C.23), we obtain the second-order differ-
ential equation

ω
d

dζ

(
ωû′
)
− û (û− 1) =ε

b

a
ωû′(û+ τ) + ε2 1

a2
û2 (a1bτ − aa2 + dû)

+ ε3 1

a2
ωû′ (−ab2 + bb1τ + eû) û+O(ε4).

(C.53)

Substituting (C.26) into (C.25) and collecting the terms of order ε0 gives the system

ω0
d

dζ

(
ω0û

′
0

)
− û0(û0 − 1) = 0.

Then, for ω0 = 1 we obtain
û′′0 − û0(û0 − 1) = 0, (C.54)

which has the exact homoclinic solution

(
u0(s)
v0(s)

)
=

 1− 3

2
sech2(s/2)

3

2
sech2(s/2) tanh(s/2)

 . (C.55)
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Substituting ω0 = 1 and (C.26) into (C.25) and collecting the terms of order ε1, ε2 and
ε3 gives the systems:

Order(ε1) :
d

dζ
(ω1û

′
0) + ω1û

′′
0 + û′′1 − (2û0 − 1) û1 =

b

a
û′0 (û0 + τ0) , (C.56)

Order(ε2) :
d

dζ

(
ω1û

′
1

)
+ ω1û

′′
1 +

d

dζ

(
ω2û

′
0

)
+ ω2û

′′
0

+ û′′2 − (2û0 − 1) û2 + ω1
d

dζ

(
ω1û

′
0

)
− û2

1

=
1

a2
û2

0 (a1bτ0 − aa2 + dû0)

+
b

a

(
û′0(û1 + τ1) + û′1(û0 + τ0) + ω1û

′
0(û0 + τ0)

)
(C.57)

Order(ε3) :
d

dζ

(
ω1û

′
2

)
+ ω1û

′′
2 +

d

dζ

(
ω3û

′
0

)
+ ω3û

′′
0

+
d

dζ

(
ω2û

′
1

)
+ ω2û

′′
1 + û′′3 − (2û0 − 1)û3

+ ω1
d

dζ

(
ω1û

′
1

)
+ ω1

d

dζ

(
ω2û

′
0

)
+ ω2

d

dζ

(
ω1û

′
0

)
− 2û1û2

=
1

a2
û′0 (−ab2 + bb1τ0 + eû0) û0

+
b

a

(
û′0(û2 + τ2) + û′1(û1 + τ1) + û′2(û0 + τ0)

+ ω1

[
û′0(û1 + τ1) + û′1(û0 + τ0)

]
+ ω2

[
û′0(û0 + τ0)

])
+

1

a2

(
û2

0(a1bτ1 + dû0) + 2û0û
′
1(a1bτ0 − aa2 + dû0)

)
(C.58)

We assume that for ε 6= 0 the homoclinic orbit of (C.53) is still given by
û(ζ) = δ + σsech2(

ζ

2
),

v̂(ζ) = û′(ζ) = −σω(ζ)sech2(
ζ

2
)tanh(

ζ

2
),

(C.59)

where σ and δ is a parameter that depends on ε,{
σ = σ0 + εσ1 + ε2σ2 + ε3σ3 + . . .

δ = δ0 + εδ1 + ε2δ2 + ε3δ3 + . . .
(C.60)
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For which it follows that σ0 = −3
2 and

ûi(ζ) = δi + σisech2(
ζ

2
), i = 1, 2, 3, (C.61)

v̂1(ζ) =

(
3

2
ω1 − σ1

)
sech2(

ζ

2
)tanh(

ζ

2
), (C.62)

v̂2(ζ) =

(
3

2
ω2 − σ1ω1 − σ2

)
sech2(

ζ

2
)tanh(

ζ

2
),

v̂3(ζ) =

(
3

2
ω3 − σ1ω2 − σ2ω1 − σ3

)
sech2(

ζ

2
)tanh(

ζ

2
). (C.63)

Using assumptions (C.61)-(C.63) we solve the linear equations (C.56)-(C.58) for û(ζ) one
by one to determine τi−1,δi σi and ωi(ζ) for i = 1, 2, 3.
We multiply both sides of (C.56) with û′0 and integrate both sides from ζ0 to ζ, and get

ˆ ζ

ζ0

û′0
d

dζ
(ω1û

′
0) dx+

ˆ ζ

ζ0

û′0ω1û
′′
0 dx (C.64)

+

ˆ ζ

ζ0

û′0û
′′
1 dx−

ˆ ζ

ζ0

û′0 (2û0 − 1) û1 dx (C.65)

=
b

a

ˆ ζ

ζ0

(
û′0
)2

(û0 + τ0) dx

Differentiating (C.54) with respect to ζ yields

û′′′0 = û′0(2û0 − 1),

so that ˆ ζ

ζ0

û1û
′′′
0 dx =

ˆ ζ

ζ0

û1û
′
0(2û0 − 1)dx. (C.66)

Using this expression and integration by parts we can simplify (C.64) and (C.65) to
become
ˆ ζ

ζ0

û′0
d

dζ
(ω1û

′
0) dx+

ˆ ζ

ζ0

û′0ω1û
′′
0 dx = ω1

(
û′0
)2∣∣∣∣ζ

ζ0

−
ˆ ζ

ζ0

û′′0ω1û
′
0 dx+

ˆ ζ

ζ0

û′0ω1û
′′
0 dx

= ω1

(
û′0
)2∣∣∣∣ζ

ζ0

,

ˆ ζ

ζ0

û′0û
′′
1 dx−

ˆ ζ

ζ0

û′0 (2û0 − 1) û1 dx =

ˆ ζ

ζ0

û′0û
′′
1 dx−

ˆ ζ

ζ0

û1û
′′′
0 dx

=
(
û′0û

′
1 − û1û

′′
0

)∣∣∣∣ζ
ζ0

−
ˆ ζ

ζ0

û′′0û
′
1 dx−

ˆ
û′′0û

′
1 dx

=
(
û′0û

′
1 − û1û

′′
0

)∣∣∣∣ζ
ζ0

.
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Therefore, (C.29) can be written as

ω1

(
û′0
)2∣∣∣∣ζ

ζ0

+
(
û′0û

′
1 − û1û

′′
0

)∣∣∣∣ζ
ζ0

=
b

a

ˆ ζ

ζ0

(
û′0
)2

(û0 + τ0) dx. (C.67)

Setting ζ0 = −∞ or ζ =∞ gives

0 =
b

a

ˆ ζ

ζ0

(
û′0
)2

(û0 + τ0) dx =
6

35

b

a
(1 + 7τ0) ,

from which we recover (C.47) and thus once more that τ0 = −1
7 . Taking the integration

boundaries ζ0 = 0 and ζ =∞ in (C.67) we obtain

3

4
(δ1 + σ1) = 0,

from which it follows that σ1 = −δ1. We set the integration boundaries in (C.67) from
ζ0 = 0 to ζ, which yields

3

16
tanh2

(
ζ

2

)
sech4

(
ζ

2

)
(δ1(12 cosh(ζ) + cosh(2ζ) + 15) + 12ω1(ζ))

=
864

7

b

a
sinh10

(
ζ

2

)
csch7(ζ).

.

Taking the limit of ζ → ∞ in the above expression implies that This condition implies
that

δ1 = 0.

Here we used the function ω1 is a bounded function. Thus ω1(ζ) is given by

ω1(ζ) = −
3b tanh

(
ζ
2

)
7a

.

Substituting σ1,δ1 and ω1 into (C.34) and (C.35) gives the first-order correction to the
initial homoclinic solution (û0, v̂0)û1(ζ) = 0,

v̂1(ζ) = − 9
14sech

2(
ζ

2
)tanh2(

ζ

2
).

We can apply to same procedure to equation (C.30). First we again multiply both sides
with û′0

û′0
d

dζ

(
ω2û

′
0

)
+ û′0ω2û

′′
0 + û′0û

′′
2 − û′0 (2û0 − 1) û2 + û′0ω1

d

dζ

(
ω1û

′
0

)
= û′0

[
1

a2
û2

0 (a1bτ0 − aa2 + dû0) +
b

a

(
û′0τ1 + ω1û

′
0(û0 + τ0)

) ]
.
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Using the identity
ˆ ζ

ζ0

û′0ω1
d

dζ

(
ω1û

′
0

)
dx =

1

2

(
ω1û

′
0

)2∣∣∣∣ζ
ζ0

=
2592

49

b2

a2
sinh12

(
ζ

2

)
csch8(ζ)

∣∣∣∣ζ
ζ0

we obtain the equality

ω2 (û′0)2

∣∣∣∣ζ
ζ0

+ (û′0û
′
2 − û2û

′′
0)

∣∣∣∣ζ
ζ0

+ 2592
49

b2

a2
sinh12

(
ζ
2

)
csch8(ζ)

∣∣∣∣ζ
ζ0

=
´ ζ
ζ0
û′0

[
1
a2
û2

0 (a1bτ0 − aa2 + dû0) +
b

a
û′0 (τ1 + ω1(û0 + τ0)) .

Taking the integration boundaries as before leads to
τ1 = 0

δ2 = a1b+7aa2−7d
7a2

σ2 = −3(56a1b+392aa2+6b2−343d)
784a2

ω2(ζ) =
4(9b2+49d) cosh(ζ)−18b2−245d

392a2(cosh(ζ)+1)

with 

û2(ζ) =
sech2( ζ2)

784a2

(
56a1b(cosh(ζ)− 2) + 392aa2(cosh(ζ)− 2)

−18b2 − 392d cosh(ζ) + 637d

)
,

v̂2(ζ) =
3 tanh( ζ2)sech2( ζ2)
784a2(cosh(ζ)+1)

(
56a1b(cosh(ζ) + 1) + 392aa2(cosh(ζ) + 1)

+21
(
2b2 − 7d

)
cosh(ζ)− 12

(
b2 + 49d

))
.

Lastly, we turn our attention to the third order terms. Multiplying both sides of equation
(C.58) with û′0 yields

û′0
d

dζ

(
ω3û

′
0

)
+ û′0ω3û

′′
0 + û′0û

′′
3 − û′0(2û0 − 1)û3

+ û′0ω1
d

dζ

(
ω2û

′
0

)
+ û′0ω2

d

dζ

(
ω1û

′
0

)
+ û′0

d

dζ

(
ω1û

′
2

)
+ û′0ω1û

′′
2

=
1

a2
û′0 (−ab2 + bb1τ0 + eû0) û0 +

b

a

(
û′0(û2 + τ2) + û′2(û0 + τ0)

+ ω1

[
û′0(û1 + τ1) + û′1(û0 + τ0)

]
+ ω2

[
û′0(û0 + τ0)

])
+

1

a2
û2

0(a1bτ1 + dû0).

Integrating both sides from ξ0 to ξ and simplifying yields
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ω3

(
û′0
)2∣∣∣∣ζ

ζ0

+
(
û′0û

′
3 − û3û

′′
0

)∣∣∣∣ζ
ζ0

+
27b tanh3

(
ζ
2

)
sech6

(
ζ
2

) (
−4
(
9b2 + 49d

)
cosh(ζ) + 18b2 + 245d

)
21952a3

−
108b sinh10

(
ζ
2

)
csch7(ζ)

(
56a1b+ 392aa2 + 6b2 − 343d

)
343a3

=

ˆ ζ

ζ0

1

a2
û′0 (−ab2 + bb1τ0 + eû0) û0 +

b

a

(
û′0(û2 + τ2) + û′2(û0 + τ0)

+ ω1

[
û′0(û1 + τ1) + û′1(û0 + τ0)

]
+ ω2

[
û′0(û0 + τ0)

])
+

1

a2
û2

0(a1bτ1 + dû0) dx.

Changing the integration variables as above we obtain

τ2 = −49a1b2+49a(−7a2b+7ab2+bb1)−343ae+18b3+490bd
2401a2b

,

δ3 = 0,

σ3 = 0,

ω3(ζ) = − 1
115248a3

[
19208a3δ3 cosh(ζ) + 3 tanh

(
ζ
2

)
×
(

7sech2
(
ζ
2

) (
−1372ae+ 18b3 + 147bd

)
+12

(
98a1b

2 − 98a (−7a2b+ 7ab2 + bb1) + 686ae+ 6b3 − 637bd
))]

.

with 

û3(ζ) = 0,

v̂3(ζ) = − 1
76832a3

[
3 tanh2

(
ζ
2

)
sech2

(
ζ
2

)
+6
(
588a1b

2 − 196a (−21a2b+ 7ab2 + bb1)

+1372ae+ 54b3 − 3675bd
))]

.

The second-order approximation for the emanating homoclinic orbit to the trivial equi-
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librium for the normal form (C.11) is given by

w0(t) =
ε2

a

(
û0(t) + εû1(t) + ε2û2(t)

)
+O(ε5),

w1(t) =
ε3

a

(
v̂0(t) + εv̂1(t) + ε2v̂2(t)

)
+O(ε6),

β1 = −ε2,

β2 = ε2(τ0 + ετ1 + ε2τ2) +O(ε5)

=
1

7

b

a
ε2 +

1

2401a3

(
343a2b2 − 49a1b

2 − 343aa2b+ 49ab1b

−343ae+ 18b3 + 490bd
)
ε4 +O(ε5).

(C.68)

Substituting (C.68) into equations (6.42) and (6.43) gives the second-order homoclinic
predictors

α =

(
− b

7a
K01 −K10

)
ε2 +

(
b2

98a2
K02 +

b

7a
K11 +

1
2
K20+

1

2401a3

(
343a2b2 − 343aa2b+ 49abb1− 343ae− 49a1b

2 + 18b3 + 490bd
)
K01

)
ε4,

x =
1

a
φ0u0(ζ)ε2 +

1

a
(φ0u1(ζ) + φ1v0(ζ)) ε3 +

1

2a2

(
2bτ0H1001u0(ζ)

− 2aH1010u0(ζ) +H2000u0(ζ)2 + 2aφ0u2(ζ) + 2aφ1v1(ζ)

)
+O(ε5), (C.69)

for the original system (3.3).

C.3. Generalized-Hopf bifurcation

The normal form is given by

ż = λ(β)z + c1(β)z|z|2 + c2(β)z|z|4 +O(|z|6), z ∈ C, (C.70)

where λ(0) = iω. This bifurcation is characterized by

`1 = Re(c1(0)) = 0, `2 = Re(c2(0)) 6= 0.

It is well known that a curve LPC of fold bifurcation of limit cycles emanate from this
point. To approximate this curve we substitute z = ρeiψ, λ(β) = iω+β1+ib1(β)+O(|β|2),
with b1(0) = 0 and Re(c1(0)) = β2 +O(|β|2) into (C.70) and truncate the normal form
the fifth order in z

ż = ρ̇eiψ + ρiψ̇eiψ

= (iω + β1 + ib1(β)) ρeiψ + (β2 + Im(c1(0))i) ρ3eiψ + (`2 + Im(c2(0))i) ρ5eiψ.
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Separating the real and imaginary parts yields{
ρ̇ = ρ

(
β1 + β2ρ

2 + `2ρ
4
)
,

ψ̇ = ω + b1(β) + Im(c1(0))ρ2 + Im(c2(0))ρ4.
(C.71)

The curve LPC occurs when {
0 = β1 + β2ρ

2 + `2ρ
4,

0 = 2β2ρ+ 4`2ρ
3.

Therefore, the curve LPC in (C.70) can be approximated by

ρ = ε, β1 = `2ε
4, β2 = −2`2ε

2, (C.72)

for ε > 0. From the second equation in the amplitude system (C.71) we obtain an
approximation for the period given by

T =
2π

ω +
∂

β1
b1β1 +

∂

β2
b1β2 + Im(c1(0))ε2

=
2π

ω +

(
Im(c1(0))− 2`2

∂

β2
b1

)
ε2
, (C.73)

using equitation (C.72). For a fourth order approximation in ε also the seventh order
derivatives would be needed, see [40, Remark 3.3.2]. Lastly, to approximate the cycle we
substitute z = εeiψ and (C.72) in (6.82), this gives

x = H(εeiψ, εe−iψ, `2ε
4,−2`2ε

2)

= 2 Re(eiψφ)ε+
(
H1100 − 2`2H0001 + Re(e2iψH2000)

)
ε2

+

(
−4`2 Re(eiψH1001) +

1

3
Re(e3iψH3000) + Re(eiψH2100)

)
ε3 +O(|ε|4), (C.74)

with ψ ∈ [0, 2π).
Since `1 = Re(c1(0)) = β2 +O(|β|2), it is easy to see that the Hopf curve in the original
system is related to the truncated normal form by

(β1, β2, z) = (0, ε, 0)

for ε 6= 0 small.

C.4. Fold-Hopf bifurcation

Following [37] we truncate the normal form (B.6) to obtain the system
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{
ż0 = β1 + g200z

2
0 + g011|z1|2 + g111z0|z1|2,

ż1 = (iω + β2 + ib1(β))z1 + g110z0z1 + g210z
2
0z1 + g021z1|z1|2, (C.75)

with b1(0) = 0. Letting z1 = ρeiψ we have

ż1 = ρ̇eiψ + ρiψ̇eiψ

= (iω + β2 + ib1(β))ρeiψ + g110z0ρe
iψ + g210z

2
0ρe

iψ + g021e
iψρ3.

Separating the real and imaginary parts yields the three dimensional system
ż0 = β1 + g200z

2
0 + g011ρ

2 + g111z0ρ
2,

ρ̇ = ρ
(
β2 + Re(g110)z0 + Re(g210)z2

0 + Re(g021)ρ2
)
,

ψ̇ = ω0 + b1(β) + Im(g110)z0 + Im(g210)z2
0 + Im(g021)ρ2.

(C.76)

The first two equations are independent of the third equation and can be studied sepa-
rately. Therefore, we consider the system{

ż0 = β1 + g200z
2
0 + g011ρ

2 + g111z0ρ
2,

ρ̇ = ρ
(
β2 + Re(g110)z0 + Re(g210)z2

0 + Re(g021)ρ2
)
.

(C.77)

A Hopf bifurcation in the system (C.77) corresponds to a Neimark-Sacker bifurcation in
the original system. The Jacobian of (C.77) is given by

J =

(
2g200z0 + g111ρ

2

ρ (Re(g110) + 2 Re(g210)z0 + Re(g021))

2g011ρ+ 2g111z0ρ
β2 + Re(g110)z0 + Re(g210)z2

0 + 3 Re(g021)ρ2

)
.

Eigenvalues of J are purely imaginary when the trace of J vanishes, i.e.

2g200z0 + g111ρ
2 + β2 + Re(g110)z0 + Re(g210)z2

0 + 3 Re(g021)ρ2 = 0

and the determinant of J is positive. Let ρ = ε, then the approximation to the Neimark-
Sacker curve can be obtained by solving the system

0 = β1 + g200z
2
0 + g011ε

2 + g111z0ε
2,

0 = β2 + Re(g110)z0 + Re(g210)z2
0 + Re(g021)ε2,

0 = 2g200z0 + g111ε
2 + β2 + Re(g110)z0 + Re(g210)z2

0 + 3 Re(g021)ε2

for (z0, β1, β2). We obtain

179



Appendix C C. Predictors


z0 = − (2 Re(g021)+g111)

2g200
ε2,

β1 = −g011ε
2,

β2 = Re(g110)(2 Re(g021)+g111)−2 Re(g021)g200
2g200

ε2.

(C.78)

Substituting (C.78) into the determinant of J and expending in ε yields

det J = −2 (g011 Re(g110)) ε2 +O(ε4).

We conclude that for ε small the determinant of J is positive when g011 Re(g110) < 0.
An approximation for the period of the cycle for the Neimark-Sacker predictor can be
obtained from the third equation in the system (C.76), yielding

T =
2π

ω +
∂

β1
b1β1 +

∂

β2
b1β2 + Im(g110)z0 + Im(g210)z2

0 + Im(g021)ε2
.

Here (z0, β1, β2) are as in (C.78). Lastly, to approximate the cycle itself we substitute
z1 = εeiψ and (C.78) into (6.89), this gives

x = H
(
z0, εe

iψ, εe−iψ, β1, β2

)
= 2 Re

(
eiψφ1

)
ε+

(
Re(g110) (2 Re(g021) + g111)− 2 Re(g021)g200

2g200
H00001

− g011H00010 +H01100 −
(

2 Re(g021) + g111

2g200

)
φ0 + Re

(
e2iψH̄02000

))
ε2,

with ψ ∈ [0, 2π).

C.4.1. Fold

The fold curve in the normal form is obtained by substituting ρ = 0 in the system (C.77).
Then β2 is unrestricted and

z0 = ±
√
− β1

g200
.

The fold curve is therefore given by

(β1, β2) = (0, β2) .

C.5. Hopf-transcritical bifurcation

As in the fold-Hopf bifurcation in the previous Section we truncate the normal form
(B.11) to obtain the system
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{
ż0 = β1z0 + g200z

2
0 + g011|z1|2 + g111z0|z1|2,

ż1 = (iω + β2 + ib1(β))z1 + g110z0z1 + g210z
2
0z + g021z1|z1|2, (C.79)

where b1(0) = 0. Letting z1 = ρeiψ we have

ż1 = ρ̇eiψ + ρiψ̇eiψ

= (iω + β2 + ib1(β))ρeiψ + g110z0ρe
iψ + g210z

2
0ρe

iψ + g021e
iψρ3.

Separating the real and imaginary parts yields the three dimensional system
ż0 = β1z0 + g200z

2
0 + g011ρ

2 + g111z0ρ
2,

ρ̇ = ρ
(
β2 + Re(g110)z0 + Re(g210)z2

0 + Re(g021)ρ2
)
,

ψ̇ = ω0 + b1(β) + Im(g110)z0 + Im(g210)z2
0 + Im(g021)ρ2.

(C.80)

The first two equations are independent of the third equation and can be studied sepa-
rately. Therefore, we consider the system{

ż0 = β1z0 + g200z
2
0 + g011ρ

2 + g111z0ρ
2,

ρ̇ = ρ
(
β2 + Re(g110)z0 + Re(g210)z2

0 + Re(g021)ρ2
)
.

(C.81)

A Hopf bifurcation in the system (C.81) corresponds to a Neimark-Sacker bifurcation in
the original system. The Jacobian of (C.81) is given by

J =

(
β1 + 2g200z0 + g111ρ

2

ρ (Re(g110) + 2 Re(g210)z0 + Re(g021))

2g011ρ+ 2g111z0ρ
β2 + Re(g110)z0 + Re(g210)z2

0 + 3 Re(g021)ρ2

)
.

Eigenvalues of J are purely imaginary when the trace of J vanishes, i.e.

β1 + 2g200z0 + g111ρ
2 + β2 + Re(g110)z0 + Re(g210)z2

0 + 3 Re(g021)ρ2 = 0

and the determinant of J is positive. Let ρ = ε, then the approximation to the Neimark-
Sacker curve can be obtained by solving the system

0 = β1z0 + g200z
2
0 + g011ε

2 + g111z0ε
2,

0 = β2 + Re(g110)z0 + Re(g210)z2
0 + Re(g021)ε2,

0 = β1 + 2g200z0 + g111ε
2 + β2 + Re(g110)z0 + Re(g210)z2

0 + 3 Re(g021)ε2

for (z0, β1, β2). We obtain
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z0 = −Re(g021)ε2±L
g200

,

β1 = −g011ε
2 ± 2L,

β2 = 1
g2200

(
Re(g021)ε2 ((Re(g110)− g200) g200 ± 2 Re(g210)L)

+g200

(
±Re(g110)L− g011 Re(g210)ε2

)
− 2 Re(g021)2 Re(g210)ε4

)
,

(C.82)

where L = ε
√

Re(g021)2ε2 + g011g200. Substituting (C.82) into the determinant of J and
expending in ε yields

det J = −2 (g011 Re(g110)) ε2 +O(ε4).

We conclude that for ε small the determinant of J is positive when g011 Re(g110) < 0.
An approximation for the period of the cycle for the Neimark-Sacker predictor can be
obtained from the third equation in the system (C.80), yielding

T =
2π

ω +
∂

β1
b1β1 +

∂

β2
b1β2 + Im(g110)z0 + Im(g210)z2

0 + Im(g021)ε2
.

Here (z0, β1, β2) are as in (C.82). Lastly, to approximate the cycle itself we substitute
z1 = εeiψ and (C.82) into (6.89), this gives

x = H
(
z0, εe

iψ, εe−iψ, β1, β2

)
=

(
∓ g011√

g011g200
φ0 + 2 Re

(
eiψφ1

))
ε+

(
± 2
√
g011g200 Re

(
eiψH01010

)
+ Re

(
e2iψH02000

)
+H01100 − 2g011H10010 ∓ 2

√
g011g200

g200
Re
(
eiψH11000

)
+

g011

2g200
H20000 −

Re (g021)

g200
q0 ± 2

Re (g110)
√
g011g200

g200
Re
(
eiψH01001

)
− Re (g110) g011

g200
H10001

)
ε2,

with ψ ∈ [0, 2π).

C.5.1. Transcritical bifurcation

The fold curve in the normal form is obtained by substituting ρ = 0 in the system (C.81).
Then β2 is unrestricted and

z0 = − β1

g200
.
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The fold curve is therefore given by

(β1, β2) = (0, β2) .

C.6. Hopf-Hopf bifurcation

We take the normal form (B.13) and truncate to the third order{
ż1 = (iω1 + β1 + ib1(β)) z1 + g2100z1|z1|2 + g1011z1|z2|2,
ż2 = (iω2 + β2 + ib2(β)) z2 + g1110z2|z1|2 + g0021z2|z2|2. (C.83)

Letting (z1, z2) =
(
ρ1e

iψ1 , ρ2e
iψ2
)
we have

ż1 = ρ̇1e
iψ1 + ρ1iψ̇1e

iψ1

= (iω1 + β1 + ib1(β)) ρ1e
iψ1 + g2100ρ

3
1e
iψ1 + g1011ρ1e

iψ1ρ2
2,

ż2 = ρ̇2e
iψ2 + ρ2iψ̇2e

iψ2

= (iω2 + β2 + ib2(β)) ρ2e
iψ2 + g1110ρ2e

iψ2ρ2
1 + g0021ρ

3
2e
iψ2 .

Separating the real and imaginary parts yields the four dimensional system
ρ̇1 = ρ1

(
β1 + Re(g2100)ρ2

1 + Re(g1011)ρ2
2

)
,

ρ̇2 = ρ2

(
β2 + Re(g1110)ρ2

1 + Re(g0021)ρ2
2

)
,

ψ̇1 = ω1 + b1(β) + Im(g2100)ρ2
1 + Im(g1011)ρ2

2,

ψ̇2 = ω2 + b2(β) + Im(g1110)ρ2
1 + Im(g0021)ρ2

2.

(C.84)

There are two semi-trivial equilibria

(ρ1, ρ2) =

(√
− β1

Re(g2100)
, 0

)
, (ρ1, ρ2) =

(
0,

√
− β2

Re(g0021)

)

of the amplitude system of (C.84). Translating to the original system provides the Hopf
bifurcation curves

H1 = {(β1, β2) : β1 = 0} , and H2 = {(β1, β2) : β2 = 0} .

A nontrivial equilibrium to the amplitude system is given by

(ρ1, ρ2)

=

( √
β2 Re g1011 − β1 Re g0021√

Re g0021 Re g2100 − Re g1011 Re g1110
,

√
β2 Re g2100 − β1 Re g1110√

Re g1011 Re g1110 − Re g0021 Re g2100

)
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and corresponds to a torus of the original system. When

Re(g1110)β1 = Re(g2100)β2 (C.85)

the nontrivial equilibrium coincides with the first semi-trivial equilibrium, and thus giving
a predictor to a Neimark-Sacker bifurcation curve. Similarly, when

Re(g0021)β1 = Re(g1011)β2 (C.86)

the nontrivial equilibrium coincides with the second semi-trivial equilibrium, and gives
a predictor for a second Neimark-Sacker bifurcation curve. Therefore, we obtain two
Neimark-Sacker bifurcation curves in (C.83), with approximation given by

(ρ1, ρ2, β1, β2) =
(
ε, 0,−Re(g2100)ε2,−Re(g1110)ε2

)
,

(ρ1, ρ2, β1, β2) =
(
0, ε,−Re(g1011)ε2,−Re(g0021)ε2

)
,

(C.87)

where ε > 0, which coincide with the predictors given in [37] and [41].

Period An approximation for the period of the cycle for the Neimark-Sacker predictors
can be obtained from the third and fourth equation in the system (C.84), yielding

T1 =
2π

ω1 +
∂

β1
b1(β)β1 +

∂

β2
b1(β)β2 + Im(g2100)ε2

,

T2 =
2π

ω2 +
∂

β1
b2(β)β1 +

∂

β2
b2(β)β2 + Im(g0021)ε2

.

Here (β1, β2) are as in C.85 and (C.86), respectively. Lastly, to approximate the cycles
we substitute z1 = εeiψ1 and (C.85), and z2 = εeiψ2 and (C.86) into (6.100). We obtain

x = H
(
εeiψ1 , εe−iψ1 , 0, 0, β1, β2

)
= 2 Re

(
eiψ1φ1

)
ε+

(
− Re(g1110)H00001 − Re(g2100)H00010

+H110000 + Re
(
e2iψ1H200000

))
ε2

and

x = H
(

0, 0, εeiψ2 , εe−iψ2 , β1, β2

)
= 2 Re

(
eiψ2φ2

)
ε+

(
− Re(g0021)H00001 − Re(g1011)H00010

+H001100 + Re
(
e2iψ1H002000

))
ε2

with ψ ∈ [0, 2π).
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D. Nonuniqueness problem with the
second-order predictor

Below we illustrate that the second-order homoclinic predictor derived in [1, 32] is not
unique. We show that there is a transformation which does not affect the ‘form’ of
the normal form, but does alter the predictor. Two possible directions of solving the
nonuniqueness of the predictor are presented.
We take the smooth normal form for the generic Bogdanov-Takens bifurcation and trun-
cate 

ẋ0 = x1,

ẋ1 = α1 + α2x1 + (a+ a1α2)x2
0

+ (b+ b1α2)x0x1 + dx3
0 + ex2

0x1.

(D.1)

The second order predictor is given by
α1 = −4

a
ε4,

α2 =
b

a
ε2
(

10
7 + ε2

(
1
a

(
100
49 b1 − 4 eb

)
+ 1

a2

(
288
2401b

2 − 50ba1
49 + 146

49 d
)))

.
(D.2)

The transformation 
x0 = w0 + ξ7w0β2 = w0 (1 + ξ7β2) ,

x1 = w1 + ξ7w1β2 = w1 (1 + ξ7β2) ,

α1 = β1 + ξ7β1β2 = β1 (1 + ξ7β2) ,

α2 = β2.

(D.3)

gives the system
ẇ0 = w1,

ẇ1 = β1 + β2w1 + aw2
0 + bw1w0 + (a1 + aξ7 + a1β2ξ7)β2w

2
0

+ (b1 + bξ7 + b1β2ξ7)β2w1w0 +
(
d+ 2β2dξ7 + β2

2dξ
2
7

)
w3

0

+
(
e+ 2β2eξ7 + β2

2eξ
2
7

)
w1w

2
0,

which is included in the smooth normal form. Truncating to the third order gives
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ẇ0 = w1,

ẇ1 = β1 + β2w1 + aw2
0 + bw1w0 + (a1 + aξ7)β2w

2
0 + (b1 + bξ7)β2w1w0

+dw3
0 + ew1w

2
0,

(D.4)

which has the second order predictor
β1 = −4

a
ε4,

β2 =
b

a
ε2
(

10
7 + ε2

(
1
a

(
100
49 (b1 + bξ7)− 4 eb

)
+ 1

a2

(
288
2401b

2 − 50b(a1+aξ7)
49 + 146

49 d
)))

=
b

a
ε2
(

10
7 + ε2

(
1
a

(
100
49 b1 − 4 eb

)
+ 1

a2

(
288
2401b

2 − 50ba1
49 + 146

49 d
)

+ 50bξ7
a49

))
.

(D.5)
Substituting into the transformation (D.3) does not give back (D.5). However, this is to
be expected since the predictors are not solutions to the systems, but approximate the
solutions. The problem is that the predictor is invariant under the transformation in the
K11 direction, which corresponds to the term β1β2 in the transformation (D.3). Indeed,
the systems (D.1) and (D.4) are related by the transformation

α =
10

7

b

a
K01ε

2 +

(
b

a
τ2K01 +

50b2

49a2
K02 −

4

a
K10

)
ε4,

in which no K11 term is present. Therefore, the transformation (D.3) gives a predictor
for the system (D.4), which cannot be transformed back to the original system. One way
to solve this problem is to use the freedom in H1001 → H1001 + ξ7q0 to make K11 vanish.
This can be done since

K11 = z1K10,

where

z1 = pT1

(
H0101 −A1(K10, H0001)−A1(K01, H0010)−B(H0001, H0010)− J2(K01,K10)

)
and H0101 can be translated by H̃0101 = H0101 + ξ7q1. Then for

ξ7 = pT1

(
H0101 −A1(K10, H0001)−A1(K01, H0010)−B(H0001, H0010)− J2(K01,K10)

)
we have K11 = 0. However, with this line of reasoning H0101 should be made zero as
well, since the systems (D.1) and (D.4) are related by the transformation

x = ε2

(
10b

7a
H0001 +

1

a
u0(ζ)q0

)
+ ε3

(
1

a
v0(ζ)q1 +

1

a
u1(ζ)q0

)
+ ε4

(
− 4

a
H0010

+
50b2

49a2
H0002 +

b

a
τ2H0001 +

1

a
u2(ζ)q0 +

1

a
v1(ζ)q1 +

1

2a2
H2000u

2
0(ζ)

+
10b

7a2
H1001u0(ζ)

)
+O(ε5),
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in state space. Although this can be done in this specific situation, this may not be true
in general.
Another way to try to solve the problem is to include the K11 term into the predictor,
i.e. we use the predictor

α =
10

7

b

a
K01ε

2 +

(
b

a
τ2K01 +

50b2

49a2
K02 −

4

a
K10

)
ε4 − 40b

7a2
K11ε

6. (D.6)

In Figure D.1 we compare these two strategies for the system{
ẋ0 = x1 + ω7x1α2,

ẋ1 = α1 + α2x1 + ax2
0 + bx0x1.

(D.7)
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alpha1
×10 -3

-4 -2 0 2 4 6 8 10 12

a
lp

h
a

2

-0.09

-0.08
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-0.02

-0.01

0

0.01

Figure D.1.: Comparison of the predictors using the freedom in H1001 → H1001 +ξ7q0, for
the systems (D.7) with ω7 = 12 in parameter space. The dark blue curve
is the computed homoclinic curve. The black curve is the predictor as it
is implemented now. The red curve is the predictor with K11 made zero.
Lastly, the green curve is created by using the extended predictor (D.6)
without using any freedom.
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