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Abstract

This thesis investigates the applicability and use of a multi-objective approach to the
Exceptional Model Mining knowledge discovery problem under linear regression models.
The main contribution of this thesis is twofold.

First, in a single-objective setting, Cook’s distance is often used as a quality measure.
Empirical results show that this distance measure is biased and unsound for measuring
exceptionality. It is shown that this bias arises from repeated sampling from a finite
population of observations. A statistical distribution for Cook’s distance of random
subgroups with fixed support is derived based on asymptotic properties of linear regres-
sion, and a modified Cook’s distance is proposed for which the derived distribution does
not rely on these properties. The latter distribution is shown to be related to Fisher’s
F-distribution.

Second, the performance of multi-objective strategies based on Pareto Local Search is
compared to existing single-objective techniques. Each algorithm’s value to the analyst
is measured by means of attained hypervolume on evidence, generality and confidence
measures. The multi-objective strategies are shown to provide significantly better results
on the majority of benchmark datasets. Apart from attaining a greater hypervolume,
these strategies are shown to yield solutions with greater evidence as well.
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Chapter 1

Introduction

Exceptional Model Mining is a fairly recent contribution to the field of data mining [40].
In Exceptional Model Mining, the goal is to find a concise subgroup of a dataset that
is exceptionally different in some way. Consider a dataset, containing observations on
various attributes or features in the domain under consideration, and consider a model
describing the nature of the relation of a selection of these attributes. A simple linear
regression model, for example, would describe a relation between the model’s dependent
variable and its dependent variable, parametrized by an intercept and a slope.

Exceptional Model Mining aims to identify interesting parts of the dataset, for which
this model is exceptional. Here, a part is considered exceptional when the relation
described by the estimated model for the full dataset does not quite explain the relation
observed for this part of the dataset. To be of value to the analyst, the observations in
such a part must be described in a general way that is non-specific to the exact choice
of observations. As such, they must be identified by a concise description on attributes
in the dataset: for example, the description ‘all observations for men under the age of
55’ is concise, but the description ‘observations 1, 3 and 232 through 310’ is not.

More formally, the Exceptional Model Mining problem is concerned with the task
of finding a concise description of a concept within a dataset, for which the model of
the subgroup — all the observations in the dataset described by this concept — is ex-
ceptionally different from the model of the entire dataset. Exceptional Model Mining is
similar to the Subgroup Discovery data mining problem, however with an important dis-
tinction: Subgroup Discovery only considers the distribution of a single target variable,
where Exceptional Model Mining is formulated independent of the choice of model. As
such, Exceptional Model Mining can be considered a generalization of Subgroup Discov-
ery. Therefore Exceptional Model Mining belongs to the class of supervised descriptive
rule learning problems, designed to capture knowledge contained in datasets.



Similar to Subgroup Discovery, Exceptional Model Mining is designed to provide
the analyst with insight into peculiarities in the dataset. This capture of knowledge,
assisting the analyst in gaining insight into the dataset at hand, will form a central
perspective throughout this work. To properly introduce Exceptional Model Mining in
its broader context, this chapter will first proceed with an introduction from exactly
this perspective.

1.1 Mining for knowledge in databases

Exceptional Model Mining can be considered a strategy for the discovery of knowledge
in databases. Klosgen introduces this general Knowledge Discovery in Databases data
mining task, further denoted as knowledge discovery, as the “search for patterns that
exist in databases, but are hidden among the volumes of data” [36]. Klosgen identifies
the following general requirements for patterns to supply valuable knowledge:

1. Patterns must consist of interpretable problem-relevant attributes, and

2. Patterns must describe many representative cases of the domain.

Klosgen divides knowledge discovery strategies into the paradigms of user-guided
search, visualization, navigation, and low-level strategies for searching and evaluating
patterns. The former strategies involve strong user guidance for discovery of patterns of
interest. As such, these paradigms are impractical from a computational point of view,
and will not be considered in this work.

1.1.1 Automated knowledge discovery

Exceptional Model Mining and other members of the class of supervised descriptive
rule learning problems — this class includes Subgroup Discovery and others [46] —
rely on strategies of Klosgen’s latter paradigm. These automated knowledge discovery
strategies, often described as data mining techniques, can colloquially be envisioned
as a search through a hypothesis space. Here, hypotheses in the problem domain are
specified by means of a pattern language. Such patterns then describe hypotheses in a
way comprehensible to the analyst.

Generally, like any hypothesis, patterns take the form of a concept or antecedent in
what is often a propositional language over problem-relevant independent attributes of
the data, and a consequent that models peculiarities in the dependent attributes in the
data for this concept. Propositional statements on problem-relevant attributes are often
easily interpretable for the analyst. When an appropriate consequent for the pattern is



chosen, propositional antecedents are thus likely to meet Klésgen’s first requirement for

patterns.?

1.1.2 Patterns in Exceptional Model Mining

If we now limit the pattern language to a fixed and appropriately chosen consequent,
the search can be described as a search through the concept space of a problem domain.
Klosgen’s second requirement can then be met by limiting the search to propositions
for which we have enough observations in the dataset. In Exceptional Model Mining,
we find our patterns to have such a fixed consequent: the distribution of the dependent
variables, under some model, is unusual for a concept. Here we define unusual as in
some sense significantly different from the population, that is, the entire dataset. For
our case of Exceptional Model Mining, the pattern space is thus limited to the concept
space, and Exceptional Model Mining can then be defined as the search for concepts with
an unusual distribution of the dependent variables. As follows from Klosgen’s second
requirement, these concepts must adhere to some constraint of minimum support in the
dataset.

1.1.3 The analyst’s goal

In the sequel of this work, we will assume that the analyst is satisfied if some nuggets are
identified by the knowledge mining strategy [35]. For Exceptional Model Mining, these
nuggets take the form of a subgroup of the observations in the dataset, identified by a
concept on problem-relevant attributes of this dataset, featuring an unusual behaviour
or an unusual distribution. We explicitly do not assume that the analyst’s goal is to
describe the entire dataset succinctly, as is often the case for other data mining problems
such as classification.

1.2 Scope and focus of the research

The central question addressed in this thesis is as follows: can Exceptional Model Mining
benefit from a multi-objective approach? As such, the goals of this thesis are to provide
insight into the various dimension of exceptionality of Exceptional Model Mining, and to
improve on existing Exceptional Model Mining strategies by leveraging this knowledge.

So far, no restriction on the class of models to be used have been imposed in the
definitions of Exceptional Model Mining, as long as in some way exceptionality or un-

1Note that this requirement immediately disqualifies concepts that are identified by collections of
indices of subsets of the data. This separates the knowledge discovery strategy from other data mining
techniques such as clustering.



usualness can be measured on these models. For measures and objectives for this broad
range of models would be infeasible to analyse in a single thesis, we limit our scope to
the Exceptional Model Mining task under linear regression models where model class
specific objectives are discussed.

1.3 Structure of the thesis

In the sequel of this thesis, Section 1.4 first introduces the necessary notation and defini-
tions. Chapter 2 then proceeds with a discussion of the existing literature on Exceptional
Model Mining and the quality measures used therein. Here, some shortcomings related
to the existing single-objective approaches and in particular their objectives are estab-
lished. In Chapter 3, an empirical process is outlined where the notion of significance
of unusualness of Exceptional Model Mining under linear regression models is inves-
tigated in relation to other objectives. The insights gained here form the foundation
of further theoretical investigation of the quality measure often used for exceptionality
of subgroups. The results of this further investigation are discussed and validated in
Chapter 4. Further objectives relevant to Exceptional Model Mining are discussed in
Chapter 5.

Having obtained a clearer view on the multi-objective nature of Exceptional Model
Mining, an experiment is set up in Chapter 6 to analyse the merits of a multi-objective
approach, in contrast to single-objective techniques from the literature. Results and
discussion of the results are provided in Chapters 7 and 8. The conclusions on our
analysis and experimentation are then presented in Chapter 9.

1.4 Notation and definitions

This section introduces some notational conventions and definitions used throughout
this work.

Matrices are written uppercase as M, vectors lowercase as v, with transpose -,

inverse -~! and symmetric square root -'/2 where applicable. Observations from a finite
population of variate A are written as a;, indexed by their respective position in the
population. The mean of a vector, variate or sample thereof is written throughout as -,
where the expected value and (co)variance of a vector or a matrix are written as E(-)
and Var(-) respectively. Estimates of a variable are written as *.

Definition 1.1 (Dataset). Let the dataset D denote a collection of n observations.
For notational convenience, the relationship of the variables introduced hereafter to D
is implicitly assumed unless otherwise specified, for in general we consider only a single
dataset. For the purpose of Exceptional Model Mining, we decompose the attributes



of the dataset — usually represented as columns therein — into concept attributes and
model attributes.

We allow restrictions on the concept attributes of a dataset to be imposed by rules,
providing an antecedent of a pattern in the hypothesis space.

Definition 1.2 (Rule). Let a rule on a dataset be an expression in some language,
consisting of constraints on the concept attributes of the dataset. A rule serves as a
single description of a concept, although multiple rules may describe the same concept.
Unless noted otherwise, a propositional language is assumed to be used.

In Exceptional Model Mining, a single model on the model attributes of the dataset
is used in the consequent of a pattern in the hypothesis space. Throughout this work
we assume this model to be a linear regression model.

Definition 1.3 (Linear regression). Let X be a n X p matrix of observations for p
independent variables and y be a n x 1 vector of observations for a single dependent
variable, where columns in X and y are assumed to be disjoint columns in the model
attributes of D from Definition 1.1. Under the linear regression model, X and y are
related as

y=Xp+e (1.1)

with € a n x 1 vector of random unobservable errors, with E(e) = 0 and 8 a p x 1 vector
of true linear regression coefficients. Then

B=(X"X)"'XTy (1.2)

is the p x 1 least-squares estimate of 8 for given X and y. In addition, we denote the
fitted values as § = X 8 and the residuals under the least-squares estimate as é = g —y.

Definition 1.4 (Subgroup). Define a subgroup G as the selection of |G| = k < n
observations in D, with G© its complement in D of size |G| = n — k. We represent
G as a sequence of k unique integers such that 1 < G; < n for all 1 < ¢ < k, where
the presence of an integer j = G; in this sequence represents the inclusion of the jth
observation from D in G. Linear regression on subgroups is analogous to linear regression
on the entire dataset as in definition 1.3, however considering X and y¢g instead of
X and y respectively, where X and yg include only the observations in G. Here, BG
denotes the least-squares estimate of 8 based only on the observations in G, and €g
their residuals under this estimate.

Optimization problems such as Exceptional Model Mining often require comparison
of solutions subject to some quality measure. For multi-dimensional quality measures,
only a partial ordering can be established where one solution may or may not dominate
the other.

Definition 1.5 (Dominance). Consider two solutions s1,s2 € S in an optimization
problem under a dimensional quality measure ¢ : S — R? consisting of d objectives.



Without loss of generality, assume that all objectives in the quality measure are to be
minimized. Then s; <, s2 (say s; dominates sz), if and only if Vi € {1,...,d} : p(s1); <
©(s2); and Fi € {1,...,d} : o(s1); < p(s2);.

Definition 1.6 (Incomparable). As implied by the partial ordering of the dominance
relation, solutions s; and sy may be incomparable with respect to ¢, if and only if
neither one dominates the other: s; || s2 <= s1 £ s2 A sg 4 s1.



Chapter 2

Related work

A successful attempt at Exceptional Model Mining at the very least requires us to
establish the exceptionality of such a model. To be able to judge this quality for a concept
in the database, or more specific, a rule under evaluation, we need a measure that can
be computed without user interaction. For we only consider linear regression models, we
can restrict ourselves to the class of exceptionality measures for linear regression models.
An overview of such measures is given in Section 2.1. This chapter then proceeds with a
discussion of existing techniques for Exceptional Model Mining under linear regression
models.

2.1 Exceptionality measures

Judging the exceptionality of a model boils down to making a comparison between two
models, one the exceptional model and the other the base or reference model, establishing
their distance in some sense. In Exceptional Model Mining, we generally consider the
model on the entire dataset the reference model, where the exceptional model is the
model on a subgroup of the dataset. This section proceeds with a discussion of the
exceptionality measure most often encountered for linear regression, followed by a brief
discussion of possible generalizations and variants.

2.1.1 Cook’s distance

Cook’s distance, introduced in [10], gives a measure of the influence of exclusion of a
single observation on the least squares estimate of the regression coefficients of a linear
regression model. Cook’s distance is then later extended for measuring the influence of



the exclusion of a subgroup G [11] and the retention of G [21], where the latter distance
measure is defined as in Definition 2.1.

Definition 2.1 (Cook’s distance). Let X, y and 8 be defined as in definition 1.3,
and G and B¢ as in definition 1.4. Then Cook’s distance of G is
(Ba —B)" XX (Ba — B)

PG>

Dg =

(2.1)

where 62 is the variance estimate of the residuals under the of the least-squares estimate
with n — p degrees of freedom [10, 11].

Duivesteijn et al. argue that Cook’s distance is a perfect fit for Exceptional Model
Mining under linear regression models. As will be discussed in Section 4.3, this claim
is debatable. Chapter 4 provides further results on the applicability of Cook’s distance
for Exceptional Model Mining.

2.1.2 Weighted Modified Cook’s distance

Krak and Feelders propose a number of modifications to Cook’s distance in [38] to allow
for non-crisp or soft subgroups in an attempt to make the distance measure differentiable.
Krak and Feelders arrive at the quality measure as given in Definition 2.2. Note that
the notation here differs slightly from the notation used by Krak and Feelders in [38].

Definition 2.2 (Weighted Cook’s distance). Let w be an inclusion weight for every
element in the dataset, and 7., be the weighted equivalent to ¢ from definition 1.4.
Weighted Cook’s distance is then defined as

w o 2
Dy = 5119w — 91" (2.2)

n

Apart from the introduction of soft subgroups, other modifications become apparent.
In an attempt to take relative support of a subgroup into account, a factor w is intro-
duced into the equation for Cook’s distance, supposedly equivalent to the introduction
of a factor % for crisp subgroups. In Section 4.2.2 we will show that this correction
factor is not optimal. To make the quality measure less dependent on the number of

1

regression coefficients, the factor p~ is dropped from the equation.

The resulting distance measure is used as quality measure for the Tree-Constrained
Gradient Ascent algorithm as described in Section 2.2.2.

2.1.3 Other exceptionality measures

It is infeasible to provide a comprehensive overview of exceptionality measures, as there
exist infinitely many ways to variate on exceptionality, depending on the specific needs



of the analyst. For instance, the analyst might not — or not exclusively — be interested
in the slope or intercept of the model, but in finding some concept where a model’s
goodness-of-fit, or the magnitude of its regression coefficients differs exceptionally.

As for Cook’s distance, Cook and Weisberg give a few variations on their distance
measure in [12, Section 3.5.1]. It must however be stressed that other quality measures
unrelated to Cook’s distance may prove useful for linear regression models as well, as
the analyst’s requirements vary. The applicability of any variation on exceptionality
thus remains specific to the domain of the dataset and the preferences of the analyst.

2.2 Search strategies

Breadth-first search is often the go-to algorithm when a decision space can be searched
exhaustively. For common datasets, the decision space in Exceptional Model Mining may
however be enormous, and exhaustive search infeasible. Finding concepts that exhibit
exceptional models then requires heuristics, pruning, or other strategies to provide a
more directed search. In this section, an overview of the existing search strategies for
Exceptional Model Mining under linear regression models is given.

2.2.1 Beam Search

When guaranteed optimality can be trade off for decreased complexity, the search space
in breadth-first search can be strongly reduced by only considering a limited beam of
“best few” solutions for expansion on each depth of the search [42, Section 4.7]. This
strategy, later known as Beam Search [43], has been successfully applied in different
fields of research where guaranteed optimality is not required [4]. Leman et al. propose
using this strategy as a general quality function agnostic search strategy for Exceptional
Model Mining [40]. Krak and Feelders also use this approach as their reference algorithm
in [38].

When used for knowledge discovery, Beam Search is best described as a breadth-first
pruning search for propositional rules in conjunctive form. On each level of search, all
refinements of the rules in the beam of the previous level by addition of one single con-
junctive clause are enumerated and the best w included in the current level beam, where
w is the beam width. The search starts with an empty rule, imposing no restrictions on
the concept, and finishes when the search level reaches a predefined search depth d.

2.2.2 Tree-Constrained Gradient Ascent

Where Beam Search is agnostic of the exceptionality measure in use, the exploitation
of this domain knowledge may lead to a performance improvement. Tree-Constrained



Gradient Ascent, presented by Krak and Feelders in [38], dynamically partitions the
dataset into an included and an excluded part. This is represented as a tree where
leaves represent mutually exclusive sets of dataset rows, and each leaf is assigned a soft
inclusion weight. The tree’s leaves together cover the entire dataset. All positively
weighted leaves — leaves with inclusion weight greater than 50% — then represent
the “included” partition of the dataset. Growing of the tree — splitting leaves — is
interleaved with gradient ascent update steps of the weights of their respective leaves. In
this process, a fixed gradient step size is used. This entire process of iterative splitting
and updating is repeated until convergence is reached, or the maximum number of
iteration is exceeded.

Quality measure

Tree-Constrained Gradient Ascent can, in general, use any quality measure that allows
for soft (i.e. weighted) subgroups and is differentiable to the inclusion weights. Krak
and Feelders propose a weighted variation on Cook’s distance for linear models that
takes into account the support of a subgroup. A definition of this quality measure is
given in Section 2.1.2.

Krak and Feelders also provide the derivative of this quality function with respect
to the weights. It must be noted that the derivation of the derivative of their quality
measure introduces an erroneous 27! and therefore their derivative appears a constant
factor 2 too small.

Apparent pitfalls

Apart from the minor error in the derivative of the quality measure in [38], two potential
pitfalls become apparent on further analysis of the methods used in Tree-Constrained
Gradient Ascent.

Problematic initialization

Krak and Feelders do not describe in [38] how the weights in their initial solution are
chosen. From their implementation, generously made available, and Krak’s original work
[37] we learn that the initial weights are found as

w;={  maxD; ST ' (2.3)
otherwise, 0

with ; ~ U(0,1) for all 1 < ¢ < n, D; Cook’s distance when the ith observation
is removed from the dataset as in [10], and f(z) = (1 + ¢ %)~! the logistic sigmoid

function.

10



As may be noted, the probability of exclusion of any observation from the initial
inclusion set is inversely linear proportional to the maximum individual Cook’s distance
in the dataset. As such, this choice of initialization does severely limit the spread of
initial solutions when the dataset has a few very strong outliers.

Biased derivative

In gradient ascent, the gradient is usually ascended iteratively until convergence. Krak
and Feelders however opt for using only a single step of fixed step size. The question as to
why this choice is made remains unanswered in [37] and [38]. In [38], Krak and Feelders
do however mention: “currently only a single gradient ascent update step is performed
in between two consecutive splitting steps. It would be interesting to investigate the
effect of performing more update steps.” While interesting, the effect of performing more
update steps is likely to be detrimental. Quick analysis of the derivative in use show
that it is not entirely unbiased. Krak and Feelders apparently failed to recognize that
any positive scalar multiple of inclusion weights yields the exact same estimates in the
linear model. Failing to recognize this, a linear dependence on the magnitude of w is
introduced in the derivative, which introduces a bias towards w = 1. This is likely to
negatively affect the results of greater step sizes or repeated updating.

11
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Chapter 3

Exploring existing techniques
under multiple objectives

The previous chapter discussed currently available techniques for Exceptional Model
Mining under linear regression, all of which are designed to optimize the single objective
of exceptionality. In an effort to create an understanding of the behaviour of these
algorithms under this and alternative plausible objective functions, some explorative
experimentation is performed. The sequel of this chapter describes these efforts and the
results obtained. It must be noted that the results reported in this chapter are not the
main contribution of this work, and that given their explorative nature, they may lack
proper justification of decisions made.

3.1 Spread of solutions in a multi-objective space

Due to their single-objective nature, the existing techniques introduced in Section 2.2
only seek to optimize for evidence on exceptionality. Still, the spread of their respective
solutions in a multi-objective solution space can be measured, providing an interesting
insight into the multi-objective behaviour of these techniques. Some techniques may,
for instance, tend to find small subgroups, where others tend to find subgroups with a
particular goodness-of-fit. We assume Cook’s distance, compensated by a factor k for
subgroup size as suggested by Krak and Feelders [37, 38], is used as this single objective.

To gain insight in this spread, or rather behaviour under multiple objectives, an
experiment is setup where the solutions encountered by the existing techniques are
measured for different plausible objective measures on different datasets. Evidence on
exceptionality, the single-objective quality, is measured by means of k-scaled Cook’s

13



Dataset n Model R?

Ames Housing 2930 || SalePrice ~ Bg + B1 - LotArea + Bs - OverallQual | 0.675

Windsor Housing | 546 sell ~ By + By - lot + B2 - bdms + B3 - fo+ By - sty | 0.536

Wine 9600 || Price ~ By + B1 - Cases + Bo - Score + B3 - Age 0.313

Table 3.1: Datasets with their respective sizes and models in use for explorative exper-
imentation.

distance. The subgroup’s support is measured as a measure of generality. Goodness-of-
fit is measured as R?, as a measure of confidence in the resulting model. Finally, the
number of terms in a rule is measured to establish the simplicity of a rule (or rather
its complexity). The datasets and models to be explored form a small arbitrary sample
from those used in Krak and Feelders’ comparative experiment in [38]. This selection
consists of the Ames Housing [15], Windsor Housing [1] and Wine [14] datasets. These
datasets are then used in conjunction with their respective models as in [38]. Table 3.1
provides an overview of the datasets and models used.

3.1.1 Algorithmic settings

For all techniques, a minimum support k,,;, = 50 is used, as earlier suggested by Krak
and Feelders in [38]. It is expected that this provides reasonable protection against de-
tection of spurious patterns, that would have been expected when the minimum support
approached the number of regression coefficients in a model.

Beam Search is used with beam width w = 50 and search depths depending on the
dataset, chosen such that patterns of reasonable simplicity given the size of the dataset
are expected. For Ames Housing and Wine, this amounts to search depths up to 6. For
Windsor Housing, search depths up to 4 are considered. Our own implementation of
the Beam Search algorithm in the R programming environment [48] is used.

While Krak generously provided his C4++ implementation of the Tree-Constrained
Gradient Ascent algorithm, as used to obtain the results provided in [38], this imple-
mentation proved difficult to adapt and instrument for our specific purposes. Hence for
experiments involving Tree-Constrained Gradient Ascent, our own implementation of
the algorithm in the R programming environment is used. In this implementation the
post-processing step is omitted, as any post-hoc pruning of rules does not affect the solu-
tion space the algorithm is able to explore and can only reduce the exceptionality under
Cook’s distance. Throughout our experiments, a minimum split size min_split = 125
and step sizes {0.1,10} are used, as suggested by Krak and Feelders in [38]. As Tree-
Constrained Gradient Ascent returns only a single solution for each run, this experiment
is repeated 1000 times. For each run, the step size is chosen randomly.
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3.1.2 Results

Figures 3.1, 3.2, 3.3, and 3.4 show the results obtained for the different experiments on
Windsor Housing and Wine in all their facets. In these figures, the pairwise relations
between evidence (quality), confidence (r.squared), generality (support), and complexity
(terms) of the results are shown. The figures for Ames Housing are omitted, as an initial
bug in the implementation lead to degenerated results for Tree-Constrained Gradient
Ascent, providing little insight. This bug was later corrected, but no new figures were
generated as the other results appeared sufficiently insightful.

It must be noted that the number of terms for Beam Search solutions cannot be
compared to the number of terms for solutions generated by Tree-Constrained Gradient
Ascent, since both techniques describe solutions in a different propositional language.

What can readily be seen from the figures is that Tree-Constrained Gradient As-
cent yields only a limited number of distinct solutions, a number far smaller than the
number of times the algorithm is repeated. This provides tangible evidence for a flawed
initialization function, as we earlier suggested in Section 2.2.2.

A notable difference between the solutions generated by Beam Search and Tree-
Constrained Gradient Ascent is that the former tends to generate higher-quality solu-
tions for increased rule complexity, where solutions from the latter technique appear to
exhibit an opposite quality—complexity relation.

Figures 3.3 and 3.4 show that for the Wine dataset, Tree-Constrained Gradient
Ascent exhibits a strong bias towards subgroups with extremely low goodness-of-fit,
while Beam Search is able to recover subgroups for which the goodness-of-fit is far
above that of the model on the full data set (see Table 3.1).

With both algorithms, a strong bias towards solutions of low generality can be ob-
served for the Wine dataset. For Beam Search on Windsor Housing, in Figure 3.1,
goodness-of-fit and support are clearly positively correlated, where standard linear re-
gression theory would predict a negative correlation for random samples. Plenty of
the solutions generated, even though they feature a high quality in the sense of a scaled
Cook’s distance, must be considered degenerate from their low goodness-of-fit and might
as well be noise in the dataset. From this it appears that the correction factor k, as
suggested by Krak and Feelders in [38], is not sufficient to drive either algorithm away
from generating degenerate solutions.

3.2 On evidence and support

From the results outlined in the previous section, we observed that correction by a factor
k is not sufficient to prevent a bias of Cook’s distance towards degenerate solutions. To
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Figure 3.1: Solutions obtained from Beam Search on the Windsor Housing dataset,
with search depths {1,2,3,4}. Results with evidence above 60 are colored blue, results
with generality above 50% are colored red.
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above 50% are colored red.
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Figure 3.4: Solutions obtained from Tree-Constrained Gradient Ascent on the Wine
dataset. Results with evidence above 4500 are colored blue, results with generality above
50% are colored red.
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measure exceptionality by means of a statistically sound evidence measure, as intended
by Klosgen, such a bias must be eliminated. This gives rise to an obvious question: what
model, if any, would provide a sufficient correction? In an initial attempt to answer this
question, we start by observing the distribution of Cook’s distance for subgroups in our
datasets.

Consider the distribution of Cook’s distance of a random subset of k& data points,
chosen uniformly from all observations in the dataset without replacement. We empir-
ically derive the probability density for such a distribution within each of our datasets
outlined in the previous section, for each k, by means of sampling and density estimation
in the R programming environment.

Figure 3.5 shows the probability densities measured over the Wine dataset for dif-
ferent supports k, on a logarithmic distance scale. On this scale, within each value of k,
the measured density has the general appearance of a normal distribution. This allows
to guess that within a value of k, Cook’s distance follows a lognormal distribution, that
is to say Dy ~ In N (ug,02) for some py, decreasing in k and constant oz. The prob-
ability densities of the maximum likelihood estimate of the lognormal distribution are
provided as an overlay in Figure 3.5. Figures for Ames Housing and Windsor Housing
show distributions of similar shape, and are omitted for brevity.

Analysis of the mean values for these distributions with respect to their support can
now provide some insight in the scaling behaviour of Cook’s distance in k. Figure 3.6
shows these mean values and their single-sigma confidence intervals under the maximum
likelihood lognormal distribution. Clearly, the scaling behaviour is far from equivalent
to k~1. It should now be obvious that scaling of Cook’s distance with a factor k& does
not properly eliminate its bias towards smaller subgroups — let alone to bias it towards
larger subgroups that may be of greater interest to the analyst, as was intended by the
introduction of the scaling factor in [38].

In order to properly compensate for support bias in Cook’s distance, an empirical
approach may be taken: a look-up table of means can be constructed in a way similar
to how Figure 3.6 is constructed, and the values used as a correction factor. This
does however require estimating probability densities from the data, which is not only
computationally expensive, but also doesn’t provide additional insight in the mechanisms
behind the underlying distribution. As such, we proceed with a theoretical approach
— rather than the current empirical approach — to this distribution in the following
chapter.
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Figure 3.5: Empirical distribution function of Cook’s distance for the Wine dataset with
k =50, k = 500, k = 5000 from left to right respectively, based on 10,000 samples. The
red overlay represents the maximum likelihood estimate of a lognormal distribution for
the empirical distribution.
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Figure 3.6: Empirically determined scaling behaviour of Cook’s distance for the Wine
dataset on a logarithmic scale. Based on 10,000 samples each for 50 values of support

k, sampled uniformly over the size of the dataset. Mean and single-sigma confidence
interval for each k are based on the maximum likelihood lognormal distribution.
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Chapter 4

Cook’s distance

Originally introduced as a measure for detecting outliers or otherwise influential data
points, Cook’s distance provides a measure for the deviation in regression coefficient
estimate by selection of a subgroup from the full dataset. In the previous chapter,
we observed empirically that Cook’s distance does not scale inversely linear in k, the
support of the subgroup, which might disqualify this distance measure from being used
as a statistically sound evidence measure without further compensation than suggested
in [38]. However, these empirical results don’t provide a model of Cook’s distance with
any form of proof or theoretical justification. This chapter focuses from a theoretical
perspective on the numerical distribution of Cook’s distance, in an attempt to establish
its suitability for measuring evidence of exceptionality in Exceptional Model Mining.

We first introduce some additional definitions in Section 4.1, then discuss the related
work on the subject in Section 4.2. We proceed by briefly reviewing the suitability of
Cook’s distance and related distance measures for Exceptional Model Mining, based
on knowledge from the existing literature, in Section 4.3. Subsequently in Section 4.4,
we derive an approximate asymptotic distribution of Cook’s distance and propose an
alternative distance measure that better suits Exceptional Model Mining. A brief ex-
perimental comparison between the two is then given in Section 4.5.

4.1 Definitions

In addition to the notation and definitions introduced in Section 1.4, we introduce two
additional definitions that are required for further analysis of Cook’s distance.

Definition 4.1 (Generalized Cook’s distance). Let the generalized Cook’s distance
for a p x p design matrix M be defined by

De(M) = (Be — B)"M(Bc — B)- (4.1)
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Specialization to the usual definition of Cook’s distance from Definition 2.1 gives the
equivalence
XX

M )
p&?

(4.2)

This definition is equivalent to the generalization Cook and Weisberg introduce in
[11]. Cook and Weisberg however treat the design matrix and the denominator of the
distance measure separately, for which we find no need.

Definition 4.2 (Simple random sampling). Simple random sampling is the random
sampling strategy where k units out of a finite population of n units labeled [1,...,n]
are obtained by selection with equal probability for each unit and without replacement.
We represent a simple random sample as a sequence of the labels comprising the sample,

given in their canonical (i.e. numeric) order.

4.2 Related work

Cook immediately refers to the Fisher-Snedecor distribution (F-distribution) when he
first publishes about his proposed measure in 1977, proposing the median of the F-
distribution as a cutoff level for further analysis [10]. This suggestion has proven to be
a great source for later confusion, criticism and debate [27, 30, 45]. In none of his works
does Cook derive the distribution of his distance measure. Since, several authors have
published on their efforts on deriving a distribution of Cook’s distance. We present here
a selection of different views on Cook’s distance and the derivation of its distribution,
and briefly discuss their applicability to Exceptional Model Mining.

Cook’s distance as updating in regression

Muller and Mok provide in [45] an extensive review of the distribution of Cook’s distance
for linear regression problems with independent and identically distributed Gaussian
errors, for cases where the subgroup misses only a single data point from the entire
dataset, i.e. |G¢| = 1.

Their approach relies on their observation that Cook’s distance of a single data point
removal is a measure combining the leverage, i.e. the corresponding diagonal element
of the hat matrix, and the squared residual error of this data point. Assuming that
the dataset at hand has independent and identically distributed Gaussian errors, they
relate the leverage to an F-distribution and relate the squared residual (conditional
to the leverage) to a S-distribution, and then derive a combined distribution function
through integration. In addition, Muller and Mok provide useful computational forms
of the distribution function that allow for computation by numerical integration, as well
as several forms that are inexact but easier to compute.
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The results by Muller and Mok are strongly related to the results by Beckman and
Trussell, who earlier described the effects of updating a regression by adding an ad-
ditional data point on the regression coefficient estimates, and the distribution of the
studentized residual of the added data point [3]. It follows immediately from their re-
sults that change in residuals depends on the data point added, introducing correlation
between residuals. Removal of a data point can of course be seen as the reversal of the
process described by Beckman and Trussell, having similar impact on the correlation of
residuals. This correlation makes the results by Muller and Mok unlikely to allow for
generalization to the case where the subgroup is determined by the deletion of multiple
data points. For this reason, their results can be considered essentially useless for appli-
cation in Exceptional Model Mining, where subgroups of mostly any size are considered.
In addition, Muller and Mok assume in their analysis that the errors are independent
and identically distributed Gaussians, which is an assumption that we cannot reasonably
expect to hold for datasets we may encounter “in the wild”.

Cook’s distance as a function of eigenvalues

Jensen and Ramirez take quite another approach to modelling the distribution of Cook’s
distance [30, 32]. They first decompose linear regression to a canonical decomposition,
that is, by expressing the linear regression on a subgroup G as a function of the eigenvalue
decomposition of the subsetted hat matrix of the subgroup’s complement, i.e. Hgc =
Xo(XTX) "' X", This decomposition essentially allows for prediction of X e based
on B from the full data, which forms the foundation of their work. Then, by assuming
the random errors € to be independent and identically distributed Gaussians, they are
able to derive a distribution related to a generalized F-distribution for Cook’s distance
when |G¢| < p, dependent on the eigenvalues of the aforementioned Hc.

While interesting in nature, this distribution is not tabulated as far as we are aware,
and may be hard to calculate. Jensen and Ramirez claim to have developed an algo-
rithm for its computation [31], but their routines appear to have never been published.
Fortunately, they show in their original work that said distribution is bound from below
by a scaled but otherwise unmodified F-distribution, which may prove a more usable
approach when an exact result is not required.

Unfortunately their results do not extend to the case where |G| > p. While not
explicitly noted in the work by Jensen and Ramirez, it can easily be seen that any Hc
for |G¢| > p is degenerate of rank < p, for it is a product of matrices with rank < p.
Hence, Hgc has at most p non-zero eigenvalues, from which at most p rows of X can
be reliably predicted: the prediction of more rows is underdetermined.

As with the results from Muller and Mok, the techniques of Jensen and Ramirez are
hardly applicable to our Exceptional Model Mining problem at hand due to the inherent
subgroup size limitation and the assumption of normality.
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Cook’s distance as a matrix trace

Diaz-Garcia et al. analyze the distribution of Cook’s distance (and some proposed vari-
ants) for the multivariate multiple linear regression model in [17, 18]. Under this model,
a n X v matrix Y is considered instead of the vector y in the linear regression equation.
B then becomes a p x v matrix B. If we choose v = 1 however, the resulting model is the
univariate multiple linear regression model and we can apply their results as usual. In
the sequel of this discussion, we will assume v = 1 and consider the case where |G¢| > 1.

In their work, Diaz-Garcia et al. rewrite Cook’s distance as

D¢ = 1(égcéfc(I — Hee) " Hee (I — Hge) ™)

—Ft
62|GC
n—

= |GCT) tr(Pg'/*QaPs''?)

with Pcl;/2 = HGc1/2(I — Hgc)~'/2, where they assert without much justification that
Q¢ then has a matrix-variate beta distribution, under the assumption that € are inde-
pendent and identically distributed Gaussians. Thus, it is said that P(;l/ 2QgPG1/ 2 has
a generalized matrix-variate beta distribution, and Cook’s distance has the distribution
of the trace of said generalized matrix-variate distribution.

While their results appear useful for Exceptional Model Mining, as they do not im-
pose any restriction on the size of |G¢|, Diaz-Garcia et al. mention that the distribution
they have derived has not yet been tabulated. Their analysis also lacks results on val-
ues of the parameters of their conjectured generalized matrix-variate beta distribution.
Hence, while their results are interesting from an entirely theoretical point of view, they
are by themselves unusable in a practical setting.

Cook’s distance as an external norm measure

Gray takes a more general approach in his works on influence diagnostics, of which
Cook’s distance can be considered a special case. In his approach in [27], Gray differen-
tiates between two classes of influence measures: external and internal norms. Both take
the form of a generalized Cook’s distance as shown in equation 4.1, however differing
slightly in the choice of M. He pinpoints the difference between both to the choice of
reference set considered. For external norms, this reference set is comprised of all pos-
sible estimates B found as least squares estimates by repeated sampling of y for fixed
X. For internal norms however, this reference set is comprised of the B¢ for all (‘g‘)
subgroups of fixed X and fixed y. Put differently, internal norms are conditional on X
and y, whereas external norms are conditional only on X.

In significance testing, the difference between the two classes described by Gray
exhibits as a difference in the null hypotheses they test against, and hence in the design
matrices M employed. Ignoring any potential shift in mean for the full model (that
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is, under the assumption that 3 is representative for B), the external null hypothesis is
effectively

Hy : BG = Ba (43)

for which the external norm then provides a statistic. Internal norms, however, provide
a statistic for the conditional null hypothesis

Ho:Bc =7 (4.4)

for fixed [:3 .

Cook’s distance, in its original form, clearly measures the deviation in the regression
estimate as a function of the covariance estimate on the assumed model, for it defines
M=62X"X = @(B)*l. It follows that Cook’s distance is a member of the class
of external norm measures. This is not surprising, since Cook’s distance was presented
as a measure for detecting outliers — data points that deviate significantly from the
(estimated) true model.

Gray suggests that internal norm measures are better for finding subsets with high
influence or disproportionate effect when compared to other subsets in the same data
problem [27]. This suggests that this class of influence norms are better suited for Ex-
ceptional Model Mining. Section 4.3 provides further discussion and results on this
subject.

A computational approach

Kim and Storer take a computational approach to the problem of finding appropriate
cutoff values for Cook’s distance in [34]. Instead of deriving a theoretical distribution,
they empirically determine their distribution parameters of interest by means of Monte
Carlo simulation. Their method operates on a designed hat matrix instead of one com-
puted from X, thereby completely ignoring the descriptive information available in the
dataset. Their results hence lack descriptive power. Considering this and the computa-
tional overhead associated with such an empirical approach, we will not further discuss
these results but continue to focus on a more theoretical approach to Cook’s distance
instead.

4.2.1 Variations on Cook’s distance

Gray proposes an internal norm influence measure as an alternative to Cook’s distance.
In this norm, the matrix M is one of the pre-computed covariance matrix estimates for
each deletion size |G| [27]. For |G| = 1 this estimate is easy to compute, for there are
only n of such subgroups and exhaustive enumeration is possible. Generally, there are
(IC?CI) subgroups for given |GC|. It is easily seen that exhaustive enumeration is infeasible
for |G¢| > 1 (or |G| > 1 by symmetry), and the covariance estimate must always be
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approximated, e.g. by sampling. In his later work, Gray gives an approximation of these
covariance matrices based on scaling the covariance matrix estimate for |G¢| = 1 [26].

Countless other variations on Cook’s distance have been proposed, including but
not limited to those presented in [27, 30, 45]. These variations often detect slightly
different outliers, but are mainly proposed to allow for a simpler analysis of their distance
distributions. Surprisingly, none of the proposed alternatives appear to belong to the
class of internal norms.

4.2.2 Scaling behavior under subgroup size

It may now be obvious to the reader that the generalized Cook’s distance is not invariant
under change in subgroup size for fixed design matrix M. As such, any derivation of
the distance distribution must take this factor into account.

To start with the exceptional case, Muller and Mok need not compensate for this
variation, as they consider only subgroups with |G| = 1.

While Jensen and Ramirez do correct for the scale difference in the expected value
of Cook’s distance related to different subgroup sizes, they do this by correcting with a
factor |G| [32], which Gray shows to be flawed for large |G| [26] and for which we find
results similar to those of Gray in section 4.4. For large n and |G¢| < p with p < n,
the scaling proposed by Jensen and Ramirez gives a reasonable approximation. Note
however that these conditions usually do not hold for Exceptional Model Mining.

The results reported by Diaz-Garcia et al. are unclear about the exact scaling in
terms of |G¢|. Although a correction factor |G| is introduced in the analysis, Diaz-
Garcia et al. provide no clues on how the trace of the matrix variate beta distribution
of their choice, for which they have omitted the required parameters, scales in the size
of the matrix diagonal and thereby in |G€|.

4.3 Exceptional Model Mining and external norms

Duivesteijn characterizes quality measures for Exceptional Model Mining as follows:
“The typical quality measure in EMM indicates how exceptional the model fitted on
the targets in the subgroup is, compared |[...] to the model fitted on the targets in the
whole dataset” [23]. For a usual definition of exceptional as “unlikely to have occurred by
chance”; a chosen quality measure cannot be appropriate for Exceptional Model Mining
unless some statistic can be provided that takes into account the expected quality of a
randomly chosen subgroup. Without this statistic, comparison of subgroups of different
sizes is infeasible, and the quality measure may not be well-suited for Exceptional Model
Mining.
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So far, Cook’s distance in its original form has been proposed and used for judging
the distance of subgroup regression models in Exceptional Model Mining [22, 23, 38].
Quality measures that take the general form of Cook’s distance (see Definition 4.1)
measure the distance to the model fitted on the full dataset however weighted by some
matrix M. For models with p > 1 however, the choice of this design matrix has a strong
influence on which subgroups are considered exceptional.

As we have argued in the discussion of Gray’s results, external norm influence mea-
sures — and therefore Cook’s distance in its original form — measure the deviation of
a model based on an estimate of the asymptotic properties of the model for an infinite
dataset. How to interpret Cook’s distance then depends on how well the regression
estimates for the dataset have converged to their true values. Due to the questionable
assumptions (such as normality) under which all of the distributions for Cook’s distance
in the literature have been derived, none of these results give us a statistic to measure
the true exceptionality of Cook’s distance, or external norm influence measures in gen-
eral, for real datasets. Lacking such a statistic, external norm influence measures must
be considered ill-suited to Exceptional Model Mining.

4.4 Results on Cook’s distance

Muller and Mok, Jensen and Ramirez and Diaz-Garcia et al. all fail to recognize [18, 30,
32, 45] that the distribution of Cook’s distance for subgroups of a dataset is related to
repeated sampling from a finite population without replacement. Gray does recognize
this important aspect when distinguishing between internal and external norms [27] and
establishing his results on the approximate scaling of the design matrix of his proposed
internal norm [26], but he does not give a distribution for either this norm or Cook’s
distance.

The sequel of this section discusses our results on the distribution of the regression
coefficient estimates and Cook’s distance where the subgroup G is chosen by simple
random sampling. We first show some basic properties of least-squares regression co-
efficients for these subgroups, and then proceed by showing how this relates to Cook’s
distance. Finally, we present an alternative internal norm influence measure based on the
generalized Cook’s distance from Definition 4.1 for which we establish an approximate
distribution.

4.4.1 Regression coefficient estimates in samples from a finite
population

Cochran has developed an approximation to the expected value and the variance of the
ratio of two univariate random variables in [9, theorem 2.5]. In this section, we generalize
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Cochran’s results to the multivariate case in a way similar to what Gray proposes in the
appendix of [26], and show how linear regression relates to the ratio of two variates.

Regression coefficents as a ratio of variates

In order to establish how the least-squares estimate is distributed under random samples
of the dataset at hand, we first need to understand how the observations in X and y
relate to give rise to this estimate. To this end, we decompose the least-squares estimate
into two different components, the ratio of which is the estimate.

Corrolary 4.3. The regression coefficient estimate ﬁ is a ratio of two variates.

Proof. Let a; = x]y;, and b; = x] z;, of dimensions p x 1 and p x p respectively, where
x; denotes the ith row vector of X. Here, all a; and b; are observations for two variates
A and B, each observed for the ith sampling unit in the finite population of rows of
X and y combined. Let A =n"13"" a; and B=n"13"  b; denote the population
mean for A and B respectively. We can now rewrite the estimate from Definition 1.3 as

follows:
p=(X"X)"'XTy
n -1 5
~(Sate) Setw
i=1 i=1
4.5
n -1y ( )
() -
i=1 i=1
=B7'A
Hence, the regression coefficient estimate is the ratio of A to B. O

For it might not be immediately obvious that this notation does indeed represent a
ratio, consider a univariate linear regression model, that is, with p = 1. Then A and B

~ Zr‘il a;
ﬂ = 7%_ =
Zz‘:l b

are scalar and we can write:

UUj\ pdl

(4.6)

Expected value of the sample estimate

Now that we have established that the least-squares estimate is a ratio of two variates,
we can use Cochran’s theory on ratio estimates (when generalized to the multivariate
case) to derive further properties. For repeated sampling from an infinite population, it
is known that B approaches the true 8 and E[B] = B [39]. In the sequel of this section,
we will show that a similar result holds approximately for Bg.
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Theorem 4.4. For subgroup G chosen by simple random sampling,

A

E[BG} ~ B (4.7)

Proof. Let a=k~'Y,_sa; and b= k™', . b; denote the sample mean of A and B
respectively for simple random sample G, with k£ = |G|. Now, with proof analogous to
the one in Corollary 4.3,

Be =bta. (4.8)

We then find
Bo—B=b"'a-p Lo
26—1(5—53). 4

Note that b is an unbiased estimate of B: if k is sufficiently large, b can be considered
approximately equal to B. For the distribution of the ratio of two random variables,
a— BB and b, is hard to establish, we approximate it by replacing the denominator of
the ratio by B, and find

Bo—B~B! (5 - BB). (4.10)
This introduces a slight bias, which can however be considered negligible for large sam-
ples [9, p. 153]. For the expectation of the difference, we can move the constants B!

and ,5’ outside of the expectation [7, p. 25], and use that a and b are unbiased estimators
of A and B respectively [9, p. 22].

— B! (E[é] - E[B}B) (4.11)

_B(A-A (4.12)
= 0,.
Finally, adding the constant B to both sides of the equation gives
E[BG} ~ 8. (4.13)
O
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Covariance of the sample estimate

In order to derive a distribution on Cook’s distance, it is imperative that we have
knowledge on the covariance of the regression coefficient estimates. Again following
Cochran’s approach, in this section we approximate this covariance and analyze its
scaling behaviour on the size of the subgroup at hand.

Theorem 4.5. For subgroup G chosen by simple random sampling,

nd — kn?

k(n—p)(

Var || ~ XTX) " X Tdiag(é)? X (X X))~ (4.14)

Proof. Starting with the approximation of the difference from Equation 4.10 derived
in Theorem 4.4, first observe that our sample variance is invariant under addition of a
constant, say —ﬁ. This gives

Var {,ég} = Var [BG - BA}
~ Var [B_l (5 — BB)}

Chatfield and Colling give us the identity Var [PTQ} = PT Var[Q] P for constant matrix
P [7, p. 25], which we put to use in moving the constant B~! out of the variance. For

(4.15)

notational convenience, mtroduce variate d; = a; — b; ﬂ with sample mean d = a — b,B
and population mean D = BB = 0p. From this we obtain

Var[ﬁc} ~ (B_l) [é BB] : (4.16)

Cochran shows that the sample variance of a simple random sample of given size from
a finite population can be obtained by applying the finite population correction ”Tfk
to the internal variance (or dispersion) of the population [9, p. 25]. This allows us to
find an estimate for Var [a] by applying this correction to internal covariance of D for
our entire dataset, which we will denote S;%. Note that an unbiased estimate of the
internal covariance can easily and effectively be computed from the dataset, by means
of summation over the squared deviation from D of all d;, with n — p degrees of freedom.

Substitution then gives

Var [Bg} ~ i (B_I)TSd2I_5>_1. (4.17)



Working out the definition of S;?, we find

(n—p)Sa® = (di —D)(d;i — D)

=3 (aTyi— aTwiB) (aTys — alwif) (418)

= Z%T(yz — i) i

=1
= X " diag(y — 9)°X
= X " diag(é)*X.

Substitution of B~! and > did] in equation 4.17 then completes the proof.

_ 2 _ _
Var|Bg| ~ " i n’zp(XTx) X7 diag(¢)2X (XTX) "
,n3 _ k’n2 1 . (419)
=) (X'X) XTdiag(¢)’X (X 'X)
0

In the estimate of the internal covariance matrix, weights are assigned to the data
points based on their residuals. Data points with zero residual have zero weight in this
estimate. This is as expected: by least-squares theory, deletion of a data point with
zero residual does not move the regression coefficient estimate, and such a data point
can thus be seen as not contributing to the internal covariance.

As can be seen from Equation 4.19, the covariance of the regression estimates for
a subgroup depends on the residuals of the full model — and thus on the values of y,
which Cook’s distance does not observe — in a non-obvious way. This introduces a
major difficulty for the further analysis of Cook’s distance. We can however show that
asymptotically for large n and under moderate assumptions, the covariance depends on
X alone except for scaling.

Theorem 4.6. For subgroup G chosen by simple random sampling, with random inde-
pendent and identically distributed errors e with € = 0 and variance o2, asymptotically
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forn — oo,

A ? 2/ vTy) !
Var[fo] ~ 1o (XTX) (4.20)

Proof. Asymptotically the least-squares estimates of the regression coefficients converge
to the true values [39], thus we find that under the initial assumptions, 8 = 8 is exact.
It now follows from Definition 1.3 that in this case € =y — gy = €.

Var[Ba] ~ kY X TX) T X diag(e)? X (XTX) (4.21)
ar|Bg| ~ = p) iag(e .

For errors e are assumed to be independent and identically distributed random variables,
for constant X asymptotically
X T diag(e)’X = E [XT diag(e)* X|
= X" E[diag(e)?] X (4.22)
=X"(o’1)X
by linearity of expectations. Substitution then gives

n3 — kn?

Var| | ~ T (XTX) T X (02 1) X (XX)
k(n —p) 493
~n® — kn? 2(XTX)71 (4.23)
k(n — p) 7
which completes the proof. O

4.4.2 Cook’s distance for simple random samples

Under the same asymptotic assumptions as in the previous discussion, we now have all
we need to derive an approximate distribution for Cook’s distance.

Theorem 4.7. For subgroup G chosen by simple random sampling, with random inde-
pendent and identically distributed errors € with € = 0 and variance o2, asymptotically
for n — oo, approximately

kEn—p+1)

D~ F — 1). 4.24
n2 — kn G (p7n p+ ) ( )

Proof. Note that X "X is a constant scalar multiple of the inverse of the variance esti-
mate of BG from Theorem 4.6. Slightly rewriting these results, we find

XTX ~ MJZ Var {BG} !
k(n —p) 1.5
n® —kn? , - ~171 (4.25)
= gy Var[Bo -5 .
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Using this approximate identity we can rewrite Cook’s distance from Definition 2.1 to

~ ~ ~ ~1—1 . ~
wd — kn? ,(Ba—B)T Var|Ba - B] (B - B)
D¢ ~ o) o2 e . (4.26)

For asymptotically no? = (n — p)6? is exact, we may simplify to

n? —kn A A

. . R -1
Do~ " (B — B)" Var B — B] - (Ba — B). (4.27)
Cochran argues that for the univariate case, B — B is normally correlated [9, p. 153],
Gray gives the same result for the multivariate case in the appendix of [26]. We find
BG - B to be p-variate normally correlated with mean 0, (from Theorem 4.4) and

estimated variance Var [ﬁg — B}

The right-hand side of Equation 4.27 now has the form of a scaled T?-statistic as
introduced by Hotelling in [29]. As such, we find Cook’s distance to be a scaled Hotelling’s
T? statistic:

n?—kn1

Do~ —— T2, 4.28
G P (4.28)

Rao further relates Hotelling’s T2 to the F-distribution in [49, p. 458] as

—p+ 172
%; ~F(p,n—p+1). (4.29)

From here, substitution of our former result for T2 leaves us with

k(n—p+1)
—————Dg~F — 1 4.
o Do~ Fpn-ptl) (4.30)
approximately, which completes the proof. O

4.4.3 A modified Cook’s distance

In our previous theorem we have shown that under asymptotic assumptions, we can
derive a distribution of Cook’s distance. For datasets of limited size however, we cannot
be sure that these assumptions hold. Least-squares regression coefficient estimates have
been shown to converge in mean square and almost surely under moderate assumptions,
but the analysis of the rate of this convergence is complex [39].

Note that the asymptotic assumptions in our proof for Cook’s distance are only
required for us to be able to find an estimate on the design matrix employed. As such,
we may construct a modified Cook’s distance based on the generalized Cook’s distance,
for which we do not have to assume convergence and may still derive a distribution.
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Theorem 4.8. For subgroup G chosen by simple random sampling, approzimately

(n—p+1)(n—pk
n?p(n — k)

Dg (XTX (xT diag(é)2x)’1XTX) ~F(pn—p+1). (4.31)

Proof. This proof is analogous to the proof for Theorem 4.7, however using the covari-
ance estimate without asymptotic assumptions from Equation 4.19. Observe that the
right-hand side of the equation

~ 11 ~ ~ ~ 11 . ~
De (cVar |8c - ] ) =B - B Var[Bo— 8] (Ba-B)  (432)
has the form of a scaled Hotelling’s T statistic:
n ~ -1
= Dg <cVar [,6@ — ﬁ] > -T2 (4.33)
We can then reuse the relation Rao gives for Hotelling’s 72 and the F-distribution from
Equation 4.29, giving

n—p+1

o Da <cVar {BG - B} _1> ~F(p,n—p+1). (4.34)

n®—kn?

Now substituting ¢ by Wn—p) and Var [,@G - B} by its approximation from Equation

4.19, we find after simplification that approximately

(n—p+1)(n—pk
n?p(n — k)

Dg (XTX (xT diag(é)2X)’1XTX) ~F(pn—p+1). (4.35)
O

Theorem 4.8 describes an internal norm influence measure based on the generalized
Cook’s distance from Definition 4.1 with a known statistical distribution. From this
result, we derive our modified Cook’s distance.

Definition 4.9 (Modified Cook’s distance). Let our modified Cook’s distance be
defined as
D, = D¢ (XTX (XT diag(¢)2X) ’IXTX) (4.36)
and let its F-measure be
(n—p+1(n-pk
n?p(n — k)

which is distributed according to the F-distribution with p and n — p + 1 degrees of

D, (4.37)

freedom for random samples, as shown in Theorem 4.8.

Our modified Cook’s distance is a true internal norm influence measure: the deviation
of the regression coefficient estimates is measured with respect to the internal covariance
of the full dataset, instead of the expected sample covariance for repeated sampling
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from an infinite population. Asymptotically however, our modified Cook’s distance can
be shown to be equivalent to the original except for a constant scaling factor, for they
asymptotically have identical design matrices, which follows immediately from Equation
4.22.

As our modified Cook’s distance measure does not depend on the asymptotic prop-
erties of the dataset at hand, we consider this measure more suitable for Exceptional
Model Mining than Cook’s distance in its original form, for reasons outlined in Section
4.3.

4.5 Empirical verification

Figures 4.1 and 4.2 show the distributions of Cook’s distance and our modified Cook’s
distance, for the Ames Housing and Windsor Housing dataset respectively, both su-
perimposed with the prediction arising from the approximate distribution derived in
Theorem 4.7 for Cook’s distance and Theorem 4.8 for our modified Cook’s distance.

For Cook’s distance in its original form on Ames Housing, it is clear that our pre-
diction is way off. The ratio of the measured distance distribution to the predicted
distance distribution is approximately 9, exhibiting primarily as an offset error (as well
as a smaller scaling error) on the logarithmic scale. Note that the scaling behavior of
Cook’s distance is still predicted quite well. Further analysis points out that this is
caused by the internal covariance matrix differing substantially from the asymptotic es-
timate, both in magnitude and sign. For Windsor Housing however, these matrices line
up substantially better, and the results improve equivalently.

The distribution derived for our modified Cook’s distance predicts very well on the
troublesome Ames Housing dataset, and even better on the Windsor Housing dataset.
The small deviation in mean for small subsets on Windsor Housing can be attributed to
the approximation introduced in Theorem 4.4, but is deemed negligible for larger sub-
groups. Note that in practice, following from the requirements identified by Klosgen,
Exceptional Model Mining will not be used for finding small subgroups, as such sub-
groups will provide almost no insight in the dataset at hand due to their small relative
size. As such, this approximation is unlikely to be problematic in practice.
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Figure 4.1: The distribution of Cook’s distance D¢ (top) and our modified Cook’s distance Dy (bottom)
for randomly chosen subgroups from the Ames Housing dataset. Sampled for 512 different subgroup sizes
(supports), based on 10,000 samples per subgroup size. The black line and gray area indicate the measured
mean and 95% confidence interval, where the red lines indicate the predicted equivalents following Theorem 4.7
and 4.8. Results are presented on a logarithmic vertical scale for legibility.



WindsorHousing dataset, 512 x 10,000 samples
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Figure 4.2: The distribution of Cook’s distance D¢ (top) and our modified Cook’s distance Dy (bottom)
for randomly chosen subgroups from the Windsor Housing dataset. Sampled for 512 different subgroup sizes
(supports), based on 10,000 samples per subgroup size. The black line and gray area indicate the measured

mean and 95% confidence interval, where the red lines indicate the predicted equivalents following Theorem 4.7
and 4.8. Results are presented on a logarithmic vertical scale for legibility.



4.6 Concluding remarks

The expected distance of the model parameters for a subgroup, compared to those for
the full dataset, strongly depends on the subgroup’s support. Near-complete subgroups
will usually not differ much from the full dataset, while it is reasonable to expect the
existence of extremely small subgroups that differ substantially. In the trade-off between
evidence and generality, the analyst may consider both to be interesting as long as a
subgroup’s evidence is substantially greater than expected given its support. To establish
this interestingness, proper knowledge on the distribution of the evidence with respect
to support is required. This does not only involve the scaling behaviour in mean value,
but also the scaling behaviour in variance and skewness of the distribution, albeit to a
lesser extent.

For the original Cook’s distance, only non-tabulated generalized distributions or dis-
tributions subject to strong assumptions have been published in the literature. Theorem
4.7 shows that we can only derive a distribution on Cook’s distance Dg when certain
asymptotic properties hold on the dataset and model under consideration, which can
be observed in Figure 4.1 to be quite off. For our modified Cook’s distance D, from
Definition 4.9 however, a reasonable approximation can be derived as has been shown in
Theorem 4.8. This knowledge allows the data miner to judge a subgroup’s evidence of
exceptionality in a statistically sound way, regardless of the subgroup’s support, as the
F-measure for D¢, from Definition 4.9 can be compared against a known F-distribution.
As such, the use of our modified Cook’s distance is more suitable for Exceptional Model
Mining and other data mining tasks than Cook’s distance in its original form.
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Chapter 5

Mining for knowledge in
multiple objectives

In this chapter, we further investigate the objectives relevant to Exceptional Model
Mining, and the potential merits of a multi-objective approach to this data mining
problem. Traditional search strategies for knowledge discovery tend to optimize only a
single objective. Depending on how the resulting solutions are chosen, the analyst may
end up with only a single solution or a set of usually highly similar solutions, leaving
little to no choice at all. This traditional approach ignores the fact that interestingness
of a solution to the analyst cannot be based on a single objective function, for many of
the analyst’s interests are inherently conflicting.

The goal of this chapter is to establish a roadmap for subsequent experimentation
on Exceptional Model Mining, which will be discussed in Chapter 6. First, an intro-
duction to data mining in a multi-objective setting is given and relevant terminology
is established. Previous multi-objective algorithmic results on problems closely related
to Exceptional Model Mining are discussed subsequently. Finally, general strategies for
dealing with multi-objective problems from related work are discussed.

5.1 On interesting subgroup objectives

According to Klosgen’s criteria, as discussed in-depth in Section 1.1, subgroup concepts
must be interpretable, application relevant, and “interesting” in a statistically signifi-
cant way [35]. Interpretability and application relevance can be enforced by choice of the
concept space. Subsequently, all solutions to be found by an automated discovery strat-
egy are to be judged on their interestingness to the analyst. Klosgen identifies several
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criteria of interestingness [36], of which only the following can be determined without

further user interaction:

Evidence The significance of the peculiarities in the consequent.
Simplicity The syntactical complexity of a pattern.

Generality The fraction of all observations represented by the concept.

Kloésgen concentrates primarily on evidence and generality, and leaves it to the analyst
to implement simplicity constraints in the chosen concept language.

Klésgen argues in [36] that exhaustive search of a large concept space without strong
user interaction for intermediate introduction of search bias is infeasible. Additionally,
Kloésgen describes knowledge discovery as “an interactive process which depends on the
goals of the analyst”, and argues that no automated system can replace an analyst
completely. This forms a direct case against methods that attempt to return a single
best result, or a set of results that has little internal variance: the analyst must be given
a choice.

Generally applicable heuristic strategies such as beam search can be considered, not
requiring domain knowledge for their workings, to alleviate the need for user interaction.
However, single-objective methods usually converge to sets of similar solutions that are
most interesting on that specific choice of objective, but may not capture the real interest
of the analyst, let alone provide choice. For this exact reason, traditional single-objective
algorithms have the tendency to excel on certain datasets, yet completely fail on others.
Garcia et al. identify this as a consequence of the ‘no free lunch’ theorem: one single
algorithm cannot have the best behaviour for all problems [25].

While free lunch cannot be had, instead of compromising interestingness to the
analyst, a knowledge discovery strategy can at least make sure that the analyst has
plenty of choice. The general solution is to always include one of the best attainable
results in the trade-off between the analyst’s conflicting interests. This is where a multi-
objective Pareto-based approach may come in. Multi-objective approaches in the Pareto
sense allow to find a set of best trade-offs, i.e. a highly varied set of results, allowing
the analyst a post-hoc choice.

Novak et al. provide an analysis of various algorithms for strategies in the Supervised
Descriptive Rule Discovery framework in [46] — this framework unifies various auto-
mated knowledge discovery strategies such as Contrast Set Mining, Emerging Pattern
Mining and Subgroup Discovery. As a generalization of Subgroup Discovery, Exceptional
Model Mining also fits in this framework. Novak et al. conclude that all algorithms they
considered “aim at optimizing a trade off between rule coverage and precision”! [46].

11In the terminology used in this work, ‘coverage’ is denoted as generality and ‘precision’ as evidence.
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This emphasizes the multi-objective nature of knowledge discovery — and thereby Ex-
ceptional Model Mining — as earlier identified by Klésgen [36]. However, none of the
considered algorithms truly exploit this characteristic by taking a multi-objective ap-
proach. In the following sections we will discuss existing algorithms that are claimed to
feature a multi-objective approach.

5.2 Multi-objective Subgroup Discovery

Several attempts at leveraging multidimensional objectives have been made for the Sub-
group Discovery knowledge discovery task. For Exceptional Model Mining however, we
are not aware of any such attempts in the literature. With Subgroup Discovery being
closely related to Exceptional Model Mining, the latter being a generalization of the
former, results on Subgroup Discovery are likely to be somewhat applicable to Excep-
tional Model Mining. As such, we proceed by discussing these previous results from
the literature, while taking into consideration their applicability to Exceptional Model
Mining.

5.2.1 Linear-weighted “multi-objective” Subgroup Discovery

Del Jesus et al. present SDIGA, a novel approach to Subgroup Discovery based on an
evolutionary strategy [33]. To overcome limits imposed by discretization of the data —
Del Jesus et al. note this to be often required for reasons of search space reduction
and interpretability of the resulting rules — they represent subgroups as fuzzy rules.
These fuzzy rules are concepts in disjunctive normal form, where all numerical attributes
are replaced by overlapping linguistic labels from “low” to “high”, avoiding what they
describe as unnatural boundaries. Del Jesus et al. claim that this leads to simple rules
that are highly actionable, and thus of high interest to the analyst.

Del Jesus et al. introduce a hybrid evolutionary strategy to finding simple and gen-
eral concepts with significant evidence. Their approach is based on a combination of
local search, where newly found solutions are improved by means of hill-climbing, and
evolution, where promising solutions are mutated and recombined to introduce variation
and find entirely new solutions. Concepts are encoded as binary strings, where groups
of consecutive bits represent the inclusion (or exclusion) of linguistic terms in the con-
cept, each group encoding for one independent variable. Two-point crossover is used as
a recombination operator. Two mutation strategies are employed, namely either elimi-
nating all constraints on one variable in the concept, or assigning it a random choice of

linguistic terms.

Fitness of solutions is evaluated as a linear combination of generality and evidence,
where the former is measured as relative support: the fraction of cases represented by
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the concept, not represented by any of the existing rules. The idea behind this approach
to generality is that this leads to a good covering of the dataset by all rules in the
population. One might however argue that, as already pointed out by Klosgen, the
analyst is not interested in a complete description of the dataset, but in the nuggets
contained therein instead. Also, as the multiple objectives are considered in a linearly
weighted fashion, the algorithm is strongly biased in the direction of the trade-off line
represented by the weights. It is therefore doubtful that this approach is helpful to the
analyst, or that it will provide him the desired choice.

Pachén et al. take another evolutionary approach to Subgroup Discovery, where
both categorical and continuous attributes in the concept space can be used without
further prior discretization [47]. While the authors repeatedly label their method as
“multi-objective”, in reality, only a single objective that is a linear combination of sev-
eral objectives is optimized. Hence, their algorithm is again not a true multi-objective
evolutionary algorithm in the Pareto sense, and may not always give the analyst an
appropriate choice of concepts.

The genetic encoding employed by Pachoén et al., however, allows for a lack of dis-
cretization. Each gene, of which there are a fixed number, encodes for either the mini-
mum and maximum value of the interval for an ordered variable, or the set of possible
values for an unordered variable. By fixing the number of genes, a lower bound is
introduced on the simplicity of the concepts considered.

The genetic operators used are uniform crossover (by which both possible candidates
are evaluated, and the best chosen), and point mutation where either the upper and
lower bounds of an interval are modified or values are added or removed from the set of
possible values for that variable. The intervals are always reduced to values that belong
to the database.

As mentioned before, the fitness measure employed is a linear combination of several
measures, including significance of evidence and generality. In addition, measures for
confidence, negative terms for size of the intervals, and a negative term for covering
already covered observations are employed.

Here, the measure for confidence in Subgroup Discovery — representing the fraction
of observations matched by the antecedent of the pattern with the target attribute equal
to the consequent rule — sparks particular interest, as it determines a goodness-of-fit
for which the R? measure can be substituted in linear regression. Is is worth noting that
this objective is missing in the domain analysis of Klosgen [36], as it should be obvious
to the reader that high-confidence patterns should be preferable to the analyst. As such,
we may extend the objectives in the overview from Section 5.1 as follows:

Confidence The accuracy of the consequent for all observations represented by the
concept.
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Pachén et al. report that their method outperforms existing methods for Subgroup
Discovery. We must however note that their algorithm consistently finds either more
significant results (at some times combined with high confidence), or more general re-
sults, but never both for the same dataset. This again depends on the dataset at hand,
and as such highlights the potential merits of a true multi-objective approach.

5.2.2 Pareto multi-objective Subgroup Discovery

Gonzilez et al. later extend the SDIGA algorithm to a true multi-objective approach
in NMEEF-SD [6]. In their report, they recognize that no single quality measure may
be sufficient for Subgroup Discovery, and that the best trade-off between the conflict-
ing quality measures can be obtained by means of a true multi-objective evolutionary
algorithm. The aim of their approach is to improve diversity in the population, which
we have earlier considered to be invaluable to the analyst. Gonzalez et al. realize this
by using the NSGA-II elitist evolutionary model, the aim of which is to find a broad
approximation of the entire Pareto front by partitioning the objective space into niches
and adopting selection strategies that take into account the crowdedness of a niche. The
reader is referred to [16] for further details on NSGA-II.

As is the case for SDIGA, the concept space in NMEEF-SD is also based on fuzzy lin-
guistic rules, and uses the same genetic representation for concepts, except for employing
integers instead of bit sequences to represent variables. The same genetic operators as
in SDIGA are employed. In addition to the NSGA-II scheme, a re-initialization step is
used when the Pareto front estimate is detected to have stopped evolving. The objective
functions under evaluation again include evidence, generality and confidence. Gonzélez
et al. report that their algorithm outperforms all existing algorithms they evaluated.

5.3 Multi-objective search for Exceptional Models

Drugan and Thierens describe a generally applicable approach to multi-objective op-
timization in [19]. Their approach is based on a Pareto local search mechanism: the
exploration of the neighbourhood of non-dominated solutions in a population of so-
lutions by means of local search. To avoid exploration of already explored regions,
a deactivation mechanism is introduced. Drugan and Thierens describe a variety of
neighbourhood exploration strategies or improvement strategies, and provide stochastic
perturbation mechanisms to introduce new solutions when the entire neighbourhood is
explored. These perturbation strategies include a multi-restart strategy based on ran-
dom reinitialization, and a genetic strategy that is biased towards preserving common
structures in the set of non-dominated solutions.
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It must be noted that except for a domain-specific neighbourhood definition, Drugan
and Thierens’ Pareto Local Search strategies do not rely on domain knowledge and can
as such be applied to any multi-objective problem. As such, for a proper definition of
neighbourhood and encoding of solutions, these Pareto Local Search strategies can be
expected to be applicable to Exceptional Model Mining as well. As previously discussed
in Section 5.2.1, Pachén et al. have shown that concept encoding based on limits for
continuous variables is useful in Subgroup Discovery. Since concept encoding does not
necessarily differ for other tasks in supervised descriptive rule discovery, this approach
is promising for all other problems in this class as well, including Exceptional Model
Mining. While the strategy by Pachén et al. is not a true multi-objective approach, this
does not constrain further usability of their concept encoding. When encoding concepts
in knowledge discovery as intervals, we observe that care must be taken to properly
handle the dependencies between the minimum and the maximum of the interval. One
potential solution to drop the dependence between the two values, is to encode an interval
center and an interval width, both of which can be adjusted independently without a
strong bias towards infeasible solutions.

Chen et al. propose a new hybrid local search-based optimization algorithm for multi-
objective problems on continuous decision spaces [8] names NSLS. Similar to evolution-
ary strategies, a generational approach is taken, and existing solutions are used to gen-
erate offspring. NSLS is not entirely an evolutionary strategy however, for it does not
feature recombination. Rather, it uses Gaussian perturbation where the severity of per-
turbation on a variable is based on its variance in the population. NSLS is structurally
similar to NSGA-II. Its main contribution however, is that it replaces the spread-biased
selection mechanism based on crowding distance in NSGA-II, by selection of farthest
candidates. Chen et al. claim superiority of their approach to many existing algorithms
on several synthetic test problems. While promising, its potential for use on Exceptional
Model Mining may be limited unless it is assumed that datasets feature only continuous
(or otherwise ordinal) attributes, or a different perturbation strategy is devised that
allows for nominal attributes in the decision space.
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Chapter 6
Experimental setup

In the previous chapter, an outline is given for experimentation on Exceptional Model
Mining in a multi-objective setting. This chapter provides the design of an experiment
to evaluate the effectiveness of a multi-objective local search approach to exceptional
model mining, compared to existing single-objective techniques.

6.1 Benchmark datasets

The algorithms evaluated in this experiment are judged on their relative performance
on a selection of datasets and models describing this data. To account for possible
performance bias on number of records in the dataset, dataset dimensionality, model
complexity, underlying “true” mechanism of subgroup appearance and such, care is
taken to compile a set of varied datasets with respect to these properties. No further
preferences are used in the compilation of this set, as for the purposes of this experiment,
the semantics of the found subgroups themselves are not of particular interest. As such,
the selection of datasets on other properties is done rather arbitrarily, and primarily
based on the choice of datasets in [38]. Again, we must stress that the exact choice of
datasets is not important for this experiment, as long as they are substantially different
in general. Models are selected as to provide a reasonable global fit, wherever possible.
Care is taken to not introduce overly complex models, as that would reduce the number
of attributes available for the description of concepts, and decrease the descriptive quality

and expected maximum evidence of subgroups.

The benchmark datasets chosen are Ames Housing, Windsor Housing, Wine, Student
Performance (both the ‘mathematics’ and the ‘Portuguese’ class, further abbreviated
as ‘mat’ and ‘por’ respectively) and Census 90. Tables 6.1 and 6.2 list the benchmark
models used on these datasets and the expected mechanisms behind subgroups in the
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datasets, while Table 6.3 lists some descriptive statistics on these datasets and their
models. This section proceeds with a brief introduction and some justification of our
choice of datasets.

Ames Housing and Windsor Housing

Ames Housing [15] and Windsor Housing [1] are datasets of similar nature, both con-
taining pricing and additional information from house sales in the cities of Ames and
Windsor respectively. As such, it can be expected that both datasets may show sub-
groups as a result of hedonistic pricing as described by Anglin and Ramazan in [1] for
Windsor Housing. Ames Housing, however, is of far greater dimensionality than Wind-
sor Housing — both in number of records and in number of attributes. For this reason,
both datasets are included in the benchmark set. Their benchmark models then predict
the sale price of houses based on a small selections of independent attributes that ap-
pear to provide a reasonable fit for either dataset (see Table 6.3), corresponding to the
selection chosen by Krak and Feelders in [38] for these datasets.

Wine

The Wine dataset [14] again measures pricing — of wines instead of housing — influenced
by hedonism, as reported by Constanigro et al. in [14]. This dataset is remarkable for
having a vast number of binary attributes, yet only a single non-binary attribute (except
for those used in the regression model). Again, a simple model is chosen, corresponding
to that in [38].

Student Performance

One pair of datasets — the Student Performance datasets [13, 41] — has not been used
as a benchmark in [38]. These datasets describe various properties of secondary school
students following courses in Portuguese or mathematics (or both). For these courses,
students are assigned grades for three different exams at different times during the
course. These exam grades are also included in the dataset. This pair gives a wonderful
possiblity to benchmark the algorithms using a simple model with great goodness-of-fit,
by the expected correlation between the test results, hence predicting the final exam
grade based on the previously obtained grades. This good fit is demonstrated by the
respective R? values in Table 6.3.

Census 90

Krak and Feelders also include the Adult dataset in their benchmarks [38], which consists
of census data on the income of various individuals in the United States of America [41].
This dataset however is ill-suited for linear regression, as the target variable (income) is
discretized into less than and more than $50,000, making it more of a dataset suitable
for classification.
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Still, census datasets are a viable candidate for benchmarking. Census datasets
are expected to be interesting due to the expectation of a discrimination subgroup
mechanism (such as discrimination on gender [5] and race [28]) yielding high-quality
subgroups. Also, the high quantity of data usually available from the census gives the
opportunity to benchmark on a larger dataset.

For the original data that this dataset is based on, that is, prior to discretization
of income, is to our best knowledge unavailable, we introduce a new dataset, Census
90. Our Census 90 dataset is derived from a 20,000-household sample of the 1990
1% unweighted IPUMS census data [50]. Data is preprocessed similarly to the “Adult”
dataset [41], however without discretization of income. As such, only representative
employed persons are included: these are the cases with age, total personal income,
person inclusion weight and usual hours of work per week satisfying

(AGE > 16) A (INCTOT > 100) A (PERWT > 1) A (UHRSWORK > 0).

Total income INCTOT is then scaled logarithmically to increase spread. An attempt
has been made to include most of the other variables provided in the Adult dataset,
where they were available in the IPUMS data. Descriptive properties of this dataset
under our simple benchmark model (see Table 6.1) are listed in Table 6.3.

6.2 Comparison and analysis

For every dataset, each algorithm under comparison is evaluated r times until the stop
criterion is reached. For each such algorithm evaluation, for the resulting rules and their
respective subgroups the following criteria are measured':

Evidence (unusualness) by means of the F-measure of our modified Cook’s distance
D¢, from Definition 4.9, or 0 for rules matching the entire dataset.

Generality (support) by means of the fraction 7’2

Confidence (goodness-of-fit) by means of R?.

Here, evidence and generality are taken from Klosgen’s framework as discussed more in-
depth in Section 5.1, and confidence as the trivial analog to the confidence measure in
Subgroup Discovery as discussed in Section 5.2.1. The simplicity measure from Klésgen’s
framework is not included, as this would require all algorithms under comparison to use
concept representations of comparable expressivity. This would impose undue limits on
the choice of algorithms under comparison.

1Note that the terminology used for these objective functions in the literature differs between authors,
in the sequel of this chapter, the choice of terminology typeset in bold will be used.
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Dataset

Model

Ames Housing

SalePrice ~ Bg + B1 - LotArea + B2 - OverallQual

Windsor Housing

sell~ Bo+ By - lot+ By - bdms + B3 - fo+ B4 - sty

Wine

Price ~ By + B1 - Cases+ Bs - Score + B3 - Age

Student Performance (por)

G3~Bo+pB1-GlI+ B2 G2

Student Performance (mat)

G3~Bo+pB1-GlI+ B2 G2

log(INCTOT) ~ Bo + B1 - AGE+

C 90
ensts 8, - UHRSWORK + B3 - EDUC
Table 6.1: Overview of benchmark datasets and models.
Dataset Prediction Subgroup mechanism

Ames Housing

house pricing

hedonism®

Windsor Housing

house pricing

hedonism [1]

Wine

wine pricing

hedonism [14]

Student Performance (por)

student grades

unknown

Student Performance (mat)

student grades

unknown

Census 90

income

discrimination [5, 28]

@: under the assumption that the results in [1] apply to house prices in Ames as well

b. mechanisms are known for income in general, but not reported for this dataset in specific

Table 6.2: Overview of prediction targets and subgroup mechanisms known from the

literature for the benchmark datasets.

R? n

Dataset p | Attr. (bin, nom, ord)
Ames Housing 0.675 | 2930 | 3 | 77 (2, 21, 54)

Windsor Housing 0.536 | 546 5| 7(6,0,1)

Wine 0.313 | 9600 | 4 | 26 (25,0, 1)

Student Performance (por) | 0.848 | 649 3 | 30 (13, 4, 13)

Student Performance (mat) | 0.822 | 395 3 | 30 (13, 4, 13)

Census 90 0.370 | 26623 | 4 | 13 (2, 10, 1)

Table 6.3: Descriptive statistics for the datasets used under the models outlined in Table
6.1. Shown are global goodness-of-fit measured by R?, number of records n, number of
concept attributes and their types (binary, other nominal/categorical, ordered /numeric),

and number of regression coefficients p.
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To compare different runs of algorithms within a dataset, the dominated hypervolume
(or Lebesgue measure of the non-dominated front) of each non-dominated result set is
used as a scalar performance measure. The hypervolume not only increases when single
objectives are improved, but also when the solutions are spread more widely. This
makes the hypervolume an indicator for the potential of the entire solution set in terms
of interestingness to the analyst, making attained hypervolume a suitable measure for
the performance of the algorithms under comparison.

For the criteria used have ranges of [0, 00)?, (0,1], and (0, 1] respectively, the dom-
inated hypervolume is calculated with respect to the reference vector (0,0,0) and the
axes of the identity basis. Note that this measure is ill-suited to compare results from dif-
ferent datasets, for no knowledge is assumed on the actual Pareto front of each dataset.
Accordingly, the reference vector is chosen pessimistically. Hypervolume is calculated
in the R programming environment [48] by means of the mco package version 1.0-15.1
[44], implementing the efficient hypervolume indicator algorithm presented by Fonseca
et al. in [24].

For each dataset, the results for each algorithm are compared following the routine
outlined by Bader in [2]. Here it is established whether there is a significant difference
between algorithms by means of a Kruskal-Wallis rank sum test with @ = 0.05, and if
so, the Conover—Inman post-hoc procedure is applied at the same confidence level. The
former test establishes whether there is a pair of algorithms that performs significantly
different, and the latter procedure determines for each pair of algorithms whether their
performance difference is significant. Here, the null hypothesis is that all algorithms
perform equally well, that is, the choice of algorithm does not significantly affect the
hypervolume obtained.

Apart from results on the final resulting sets, we are also interested in establishing
an overview of the speed of convergence of our algorithms under comparison. To this
end, not only the hypervolume for each resulting set is measured, but also intermediate
sets are measured intermittently before the stop criterion is reached.

6.3 Algorithms and variants

The performance of different variants of multi-objective algorithms is compared to two
existing single-objective approaches.

2Note that the range of the F-measure for our modified Cook’s Distance is limited by the dataset
at hand. One can establish an upper bound on the attainable distance by enumerating all subgroups
consisting of p records, and finding the maximum of their respective distances, as the regression estimates
are always a linear combination of the estimates for these subgroups [26]. This is however irrelevant to
our calculations, so infinity is assumed instead.
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6.3.1 Reference single-objective algorithms

Two algorithms are included in this experiment as single-objective references. The gener-
ically applicable Beam Search strategy is chosen for its simplicity and for not requiring
use of any domain knowledge at all. In addition, the Tree-Constrained Gradient Ascent
algorithm, a state of the art algorithm that is reported to outperform Beam Search for
a wide variety of datasets [38], is compared against.

The sequel of this section primarily discusses their implementation details. For a
more general overview of these algorithms the reader is referred to Section 2.2.

Beam Search

Usually Beam Search is fixed to a certain search depth, but for rules are constrained
further at each search level — thereby reducing generality — solutions encountered
before the final level must also be considered. Therefore a slightly modified Beam
Search algorithm is used. This algorithm will be denoted Archiving Beam Search.

Where Beam Search only returns the final beam, with the top solutions found at
the final search level, Archiving Beam Search keeps the beam found at the end of each
search level in an archive, including the final beam, and yields the union of this archive.
Pseudocode for Archiving Beam Search is given in Algorithm 1. Arguments are the
attributes A to refine on, the refinement operator N that refines a rule on a given
attribute, a quality function ¢, search depth d and beam width w.

Note that in implementation, computational complexity can be reduced by keeping
beam’s rules sorted by quality.

For this experiment our own implementation of this algorithm in the R programming
language is used. Let the refinement operator A(a,r) be defined such that it returns
the complete set of rules adding a single conjunctive clause to r. To this end, clauses
¢t and ¢~ are generated for each value v in 7,(0,(D)), where o, denotes the selection
of observations matching r, and 7, the projection on a. For ordinal attributes, these
clauses are ‘> v’ and ‘< v’ respectively; for unordered attributes, these clauses are ‘= v’
and ‘# v’ The union of the set of all 7 A ¢™ and r A ¢~ is then returned as the set of

refinements.

The quality measure ¢(r) is chosen to be our modified Cook’s distance for the sub-
group of D by selection on 7.

Tree-Constrained Gradient Ascent

For this experiment our own implementation of the Tree-Constrained Gradient Ascent
algorithm from [38] without post-processing is used, implemented in the R programming
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Algorithm 1 The Beam Search algorithm.

1: function ARCHIVINGBEAMSEARCH(A, N, ¢, d, w)

2 By« {T} > Start with a base rule matching all observations
3 for i + 1 up to d do

4 B+ 0

5: for r € B;_1 do

6 for a € A do

7 for ' € N(a,r) do

8 r~ <—argmin,ep, , ©(r)

9: if |B;| = w and ¢(r') > ¢(r~) then

10: B+ {r'}uB;\{r }

11: end if

12: end for

13: end for

14: end for > B; contains the top-w refinements of B;_;
15: end for

16: return Ule B;

17: end function

language. The reader is referred to Section 2.2.2 and Krak and Feelders [38] for a detailed
discussion of the algorithm and pseudocode of its operation.

Krak and Feelders do not specify the exact initialization used in [38], so our initializa-
tion is based on the initialization procedure outlined in the earlier work of Krak on this
subject in [37, Section 4.4]. This way, random initial solutions that are already biased
towards possible exceptionalities in the dataset are generated. As pointed out earlier
(see Section 2.2.2), this initialization can be problematic on datasets that contain a few
strong outliers, leading to initialization procedure always generating the same subgroup
(that is, the subgroup where only those outliers are removed), or only slight variations
thereon. To overcome this limitation, the uniformity of the spread of distances in the
calculation is improved by taking the square root of the normalized distances when
computing the selection probabilities.

6.3.2 Pareto Local Search

As the benchmark multi-objective strategy in this experiment, Pareto Local Search is
chosen. Several stochastic variants of Pareto Local Search, as outlined by Drugan and
Thierens in [19], are evaluated. All algorithmic variants use the same base algorithm for
local search, but use other criteria to choose which solution to explore, and use different
restart mechanisms. The base algorithm for the Pareto Local Search experiment is first
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defined, proceeded by an outline of the variants to be evaluated. This section heavily
draws on the results of Drugan and Thierens in [19], however with rewritten pseudocode
to match notational conventions elsewhere in this chapter. For all algorithms described

here, our own implementation in the R programming environment is used.

Preliminaries

The base algorithm for Pareto Local Search, as defined by Drugan and Thierens in [19],
is given in Algorithm 2.

Algorithm 2 The Pareto Local Search algorithm.

1: function PARETOLOCALSEARCH(Z, N, ¢, V, R)

2 R + R

3 while 3r € R\ V do

4 R+ I(N,p, R, 1) > Search neighbourhood
5: R’ + NONDOMINATED (¢, R’ U R") > Update non-dominated front
6 V<« Vu{r} > Mark rule as visited
7 end while
8 return V, R’
9: end function

Here, Z(NV, ¢, R,7) denotes a Pareto improvement strategy that yields a set of local
improvements from the neighbourhood A of r with respect to the current front R,
measured on dominance relations on . Here, NONDOMINATED(p, R) = {r € R |
—3(r" € R) : (") < ¢(r)} yields the non-dominated solutions in R with respect to ¢.

Improvement strategies

As the improvement strategy plays an important role in local search, two different strate-
gies, i.e. variants of Z, are benchmarked. The performance of the ‘first improvement’
and ‘neutral improvement’ strategy, as given by Drugan and Thierens, is tested. Drugan
and Thierens give a ‘best improvement’ strategy as well, but we consider this strategy
prohibitively expensive to use in a local search setting for our problem. Their respec-
tive pseudocode is listed in Algorithms 3 and 4. The reader is referred to Drugan and
Thierens [19] for an in-depth discussion of these strategies and their properties.

Neighbourhood of a rule

We define the neighbourhood N (r) for our Pareto Local Search experiments as the small-
est possible changes to r, under the constraint that the rules satisfy a given minimum
support k,,;n. While the search space for ordinal attributes is often continuous, our
dataset has a finite number of elements, so the search space can losslessly be discretized
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Algorithm 3 The first improvement strategy Zp (N, ¢, R, 1)

1. R+ R
2: for all 7 € N(r) in random order do
3: if Vi € R (") < (") V (') || (r") then

4: R’ <+ NONDOMINATED (¢, R’ U {r'})
5: if p(r') < ¢(r) then

6: return R\ R

7 end if

8: end if

9: end for

10: return R'\ R

Algorithm 4 The neutral improvement strategy Zn (N, o, R, 7)

1. R <R

2: for all 7/ € N(r) in random order do

3 if Vi’ € R (") < (") V (') || ¢(r") then
4 R’ + NONDOMINATED(¢, R U {r'})

5: return R\ R

6 end if

7: end for

8: return ()
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for the purpose of this experiment. This limits the neighbourhood to a manageable size,
linear in the number of attributes.

The smallest possible changes are considered to be:

e The upper or lower bound of exactly one of the ordinal variables in 7 is either
increased or decreased. Values must always be present in the dataset, except for
sentinels positive or negative infinity. After choice of direction, the new value is
chosen such that the difference between the original and the new value is minimized
and at least one additional data point is added or removed from the support of
the rule.

e One allowed value is added or removed for one of the unordered variables in r.

Multi-restart Pareto Local Search

The Pareto Local Search requires an initial unvisited solution to start its exploration.
Two different variants on the generation of such solutions are included in this experiment.
The first and simplest variant included in this experiment is the Multi-restart Pareto
Local Search algorithm given by Drugan and Thierens in [19]. The respective pseudocode
is given in Algorithm 5.

Algorithm 5 The Multi-restart Pareto Local Search algorithm.
function MULTIRESTARTPLS(Z, N, ¢)
R+ 10
Vi

1:

2

3

4 while the stopping criterion is not met do
5: 7 <~ RANDOMSOLUTION()

6 R’ + DEACTIVATE(y, R, T)

7 V, R + PARETOLOCALSEARCH(Z, N, ¢, V, R’)
8 R < NONDOMINATED(¢p, R U R')

9 end while

10: return V, R

11: end function

The deactivation function DEACTIVATE(p, R,7) = NONDOMINATED(¢, {r} U {r’ €
R | o(r") || ¢(r)}) helps to reduce the number of solutions explored, without loss of
completeness when the ‘best improvement’ strategy is used [19]. While this improvement
strategy is not used in this experiment, we still consider deactivation beneficial to the
speed of convergence, as suggested by Dubois for strategies that reduce the breadth of
the search in general. [20]
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Initialization

At initialization on restart, as denoted in Algorithm 5 by the RANDOMSOLUTION pro-
cedure, a random rule is generated subject to the constraint of minimum support ks -
Rules are chosen by iteratively adding constraints to an initially empty rule (a rule that
matches all records). At each iteration, a restrictive clause on one of the attributes —
sampled uniformly random without replacement — is added to the rule, the value of
which is also sampled uniformly random, such that the expected decrease in support
is 50%. After each iteration, the algorithm stops with a probability chosen such that
the expected support of a generated rule is 4k,,;,, or continues for another iteration.
The algorithm stops immediately when the rule voids the minimum support constraint,
returning the last-valid rule instead.

Genetic Pareto Local Search

Assuming mutual information in the population, genetic algorithms may outperform
random restarts. To this end, a genetic variant on Multi-restart Pareto Local Search is
included in this experiment, as a second variant on the generation of initial solutions for
Pareto Local Search. The pseudocode for Genetic Pareto Local Search, based on that
from Drugan and Thierens in [19], is given in Algorithm 6.

Algorithm 6 The Genetic Pareto Local Search algorithm.

1: function GENETICPLS(Z, N, ¢, a)

2 V, R + MULTIRESTARTPLS(Z, N, ¢)

3 while the stopping criterion is not met do
4 Select r randomly from R

5: if > U(0,1) or |R| < 2 then

6 " < MUTATE(r)

7 else

8 Select r” # r randomly from R

9: r’ <~ RECOMBINE(r, r")

10: end if

11: R’ <~ DEACTIVATE(p, R, ")

12: V, R + PARETOLOCALSEARCH(Z, N, ¢, V,R’)
13: R < NONDOMINATED(¢p, R U R')

14: end while

15: return R

16: end function

Note that the internal stopping criterion for the call to MULTIRESTARTPLS must
be one that is met far earlier than the stopping criterion for the entire algorithm.
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Genetic encoding

Encoding of ‘chromosome = rule’ is used, where rules are in conjunctive normal form.
The population then describes a collection of rules. For each ordinal attribute, a con-
straint is encoded as a tuple of (center, width). Unordered (i.e. nominal/categorical)
attributes are represented as sets of possible values.

Mutation

We define the mutation operator MUTATE as one or more moves of center or width,
or addition(s) or deletion(s) of a possible value. The number of such moves is drawn
from the exponential distribution with rate A\ = 1, rounded towards positive infinity.
This gives a number of mutations expected between 1 and 2, but never smaller than 1,
and with a slight, but strongly decreasing, probability of a larger number of mutations
(thereby being more influential but also more destructive).

In contrast to the perturbations in the neighbourhood definition, mutations must
not necessarily be the smallest possible change. Instead, we define a mutation on the
center of a constraint as addition with a sample from the normal distribution with mean
1 = 0 and standard deviation o = width/2. A mutation on the width is then defined
as multiplication with a sample from the exponential distribution with rate A = 1, in
order to prevent the width becoming negative. We finally define a mutation on possible
values to be a uniform random sample of uniform random length of not-yet-possible (or
currently possible) values for a single attribute to be added (or deleted) to (or from)
the set of possible values. Care is taken to disqualify such samples that would lead to a
violation of k.-

Recombination

No structure is assumed in the positions of attributes in the dataset at hand, so the
recombination operator RECOMBINE is based on uniform crossover. However, a uniform
choice between all constraints of both parent rules is highly likely to result in a rule
with support below k,,;,. Therefore one parent, p1, is randomly picked as the base, and
constraint attributes (either center, width, or a single possible value) are picked uniform
randomly and for each such attribute, a value is selected with equal probability from
either parent. This process continues until there are no attributes left, or the current
choice would lead to a violation of the minimum support.

6.4 General setup
Results from r = 10 independent runs are collected for each combination of dataset and

algorithm. The minimum support is fixed to k,,;n = 50, representing a sound minimum
considering the number of dependent variables in the regression models used (see Table
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Experiment | Algorithm Configuration
ABS Archiving Beam search d=20
w = 50
. . n=20.1
TCGA Tree-Constrain Gradient Ascent . ,
mian_split = 2kin
MPLS f Multi-restart Pareto Local Search | Z = Zp
MPLS n Multi-restart Pareto Local Search | 7 = Zx
I=1Ir
GPLS f Genetic Pareto Local Search a=0.5
Typrs = 90s
IT=1In
GPLS n Genetic Pareto Local Search a=0.5
Typrs = 90s

Table 6.4: Algorithm-specific settings for the algorithms under comparison.

6.3). To not put any algorithm at an inherent advantage, the stop criterion is chosen
in time units instead of a particular number of evaluations, the definition of which may
vary depending on the algorithm at hand. All algorithms are set to stop after 30 minutes
of computation time each, or earlier when they terminate beforehand (as may be the
case with Archiving Beam Search).

Table 6.4 lists all algorithmic configurations under consideration to be evaluated, as
well as their settings.

For Archiving Beam Search, a beam width of w = 50 is chosen, allowing for a
spread of different solutions, and the search depth is set to d = 20. The latter is chosen
artificially high in order not to put Beam Search at an inherent disadvantage for the
higher dimensional datasets. Note that we don’t expect many results in the final beams
due to the subgroup size being strictly monotonically decreasing in search level in Beam

Search, soon reaching the limits of minimum support k.

Tree-Constrained Gradient Ascent is configured with ascent step size n = 0.1, a value
already suggested by its author ([37]) and chosen to prevent immediate overfitting that
is aggravated by the algorithm’s suboptimal initialization procedure (see Section 6.3.1
and 2.2.2).

Finally, for the Genetic Pareto Local Search variants, the mutation probability is
chosen as @ = 0.5, lacking prior knowledge on the effects of mutation and recombination
on this class of problems under the encoding described in Section 6.3.2. The time spent
on initialization of the Pareto front by means of Multi-restart Pareto Local Search is
limited to Thprs = 90 seconds, representing a 5% share of the total running time of the
Genetic Pareto Local Search algorithm.
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Each algorithm run is performed in a single thread on an Intel(R) Core(TM) i5-
3470 CPU @ 3.20GHz, running the GNU/Linux kernel version 4.1.8. The execution
environment is R version 3.2.3 [48], enhanced by the compiler package for just-in-time
compilation of program code. Time is measured as actual CPU time (“user time”)
allocated to the execution of the algorithm.
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Chapter 7

Results

For each dataset, the quality of the Pareto non-dominated set found by each algorithm
is measured in 10 independent runs, and the results ranked by hypervolume of this set.
A summary of the results obtained is outlined in Table 7.2. Either Archiving Beam
Search or a Pareto Local Search variant performs best on average, Tree-Constrained
Gradient Ascent is consistently outperformed by either one of the former; as well on the
measure of hypervolume as well as on the more direct measure of evidence, that is, the
modified Cook’s Distance. It must be noted that the number of solutions on the Pareto
non-dominated front reported varies wildly among the algorithms.

To the collection of hypervolumes obtained for all runs of the algorithms under com-
parison, the Kruskal-Wallis rank sum test is applied to test for existence of a difference
between the results obtained by each of the algorithms, that is, whether the choice of
algorithm significantly impacts the hypervolume obtained. The results for this test are
outlined in Table 7.1. For all datasets a significant result is obtained (at confidence
level « = 0.05 with 5 degrees of freedom). We must thus reject the null hypothesis of
the Kruskal-Wallis test for all datasets, and may assume that the choice of algorithm
influences the obtained hypervolume.

As such, we can proceed with the Conover—Inman post-hoc procedure to establish
in more detail which algorithms perform better than others for each dataset. The
results for this procedure are outlined in Table 7.3, along with the mean rank of each
algorithm. Here, each row algorithm is measured against each worse column algorithm
and tested for significance of their difference in results (at confidence level 2a = 0.05
with 54 degrees of freedom?!). The better algorithms consistently outperform their lesser
algorithms significantly, except within the class of Pareto Local Search algorithms, where

1The Cononver-Inman procedure, which is essentially a t-test, finds p = 0.5 when the ranks are
exactly equal. As such, a must be chosen half that of the Kruskal-Wallis test to obtain results at the
same confidence level.
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Dataset Best algorithm | p-value
Ames Housing ABS 6.58 x 1079
Windsor Housing any *PLS 2.29 x 10~11
Wine MPLS f 8.82 x 107?
Student Performance (por) | MPLS f 5.08 x 10710
Student Performance (mat) | MPLS n 4.54 x 1078
Census 90 ABS 3.74 x 1076

Table 7.1: Results of the Kruskal-Wallis test on the influence of the choice of algorithm
on the hypervolume results for each dataset. For each dataset, the best algorithm and its
significance (e.g. the best algorithm performs significantly better than another algorithm
at a confidence level of o = 0.05) is given. Significant values are typeset bold.

results are often close. A final exception is Tree-Constrained Gradient Ascent in Census
90, that matches up closely with the Pareto Local Search class of algorithms under the
neutral improvement strategy.

For Windsor Housing, Table 7.2 indicates that all Pareto Local Search-based algo-
rithms obtain a Pareto non-dominated front of identical quality. As such, we cannot
identify a unique best algorithm for this dataset, as demonstrated in Table 7.1. It is how-
ever clear from Table 7.3 that the Pareto Local Search class of algorithms all perform
significantly better than either Archiving Beam Search or Tree-Constrained Gradient
Ascent, no matter the choice of particular Pareto Local Search algorithm tested.

Then, Figure 7.1 shows the development of the obtained hypervolume for each algo-
rithm, averaged over all runs. As can be seen from the figures, Archiving Beam Search
often terminated long before its maximum execution time, producing no new results.
For Windsor Housing, results consistently appear to have converged after less than 10
minutes of execution. For all other combinations of algorithms and datasets, the rate of
convergence has strongly dropped near the end of execution, but the solutions do not
yet appear to be stable at that point.
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AMES HousING

Front Hypervolume || Evidence | Generality | Confidence
ABS 35 11724 8340.5 0.995 0.744
TCGA 20.6 176 544.3 0.572 0.814
MPLS n || 2560.4 | 105.4 2601.2 0.713 0.981
MPLS f || 17594.6 | 67.6 229.7 0.535 0.96
GPLS f 17040.6 | 67.1 228.1 0.532 0.962
GPLS n | 1587.9 | 43.3 1512.6 0.34 0.97

WINDSOR HoUSING
Front | Hypervolume || Evidence | Generality | Confidence

MPLS n || 58 124 29.9 1 0.777
MPLS f || 58 124 29.9 1 0.777
GPLS n | 58 124 29.9 1 0.777
GPLS f 58 124 29.9 1 0.777
ABS 28 11.9 29.9 0.978 0.652
TCGA 7.3 10.1 28 0.689 0.577
WINE
Front | Hypervolume || Evidence | Generality | Confidence
MPLS f || 4869.7 | 784.5 17382.1 1 0.817
GPLS n | 3116.2 | 787.3 19445.6 1 0.817
MPLS n || 2964.5 | 781.2 18364.6 1 0.817
GPLS f | 4602.8 | 706.2 9798.3 1 0.797
ABS 14 599.9 4096.9 0.949 0.732
TCGA 8.5 371.8 7054.5 0.166 0.406

STUDENT PERFORMANCE (POR)

Front | Hypervolume || Evidence | Generality | Confidence

MPLS f || 4728.1 | 18.2 138.5 1 0.988
GPLS f || 4390.6 | 17.5 127.7 1 0.988
MPLS n || 1794.8 | 16.6 94.3 1 0.987
GPLS n || 2409.7 | 15.9 99.4 1 0.987
ABS 44 13.3 124.6 0.998 0.899
TCGA 11.2 8.5 13.7 0.889 0.921

STUDENT PERFORMANCE (MAT)

Front | Hypervolume || Evidence | Generality | Confidence

MPLS n || 1410.6 | 30.8 60.8 1 0.991
MPLS f || 2019.3 | 30.1 55.6 1 0.992
GPLS n | 1550.8 | 30.1 57.2 1 0.991
GPLS f 2227.2 | 28.5 44.6 1 0.99

ABS 38 27.7 48.5 0.98 0.945
TCGA 4.9 25.7 37.2 0.853 0.939

CENSUS 90
Front | Hypervolume || Evidence | Generality | Confidence

ABS 49 459.1 22443.6 0.994 0.508
GPLS f 7335.2 | 244.1 1451.7 0.801 0.667
MPLS f || 6515.1 | 229.2 1135.3 0.8 0.661
GPLS n | 3602.7 | 124.8 2217.2 0.427 0.911
TCGA 2.1 109.1 705 0.458 0.338
MPLS n || 3128.8 | 109.1 2729.2 0.458 0.876

Table 7.2: Result summary over the runs of all algorithms on all datasets. The rows (algorithms) are ordered by
their respective mean ranks as outlined in Table 7.3. Front and Hypervolume denote the mean size of the Pareto
non-dominated front of the final solution of all runs, Evidence, Generality and Confidence denote the mean over all
runs of the maximum of each respective property of the solutions on the Pareto non-dominated front.



Mean hypervolume

Mean hypervolume

Mean hypervolume

400 600 800 1000

400 600 800

200

15 20 25 30

10

Ames Housing

ABS
TCGA
MPLS n
MPLS f
. GPLS n
GPLS f

Time (m)

Wine

ABS
TCGA
MPLS n
‘ MPLS f
l GPLSn
GPLS f

T T T T T T T
0 5 10 15 20 25 30

Time (m)

Student Performance (mat)

ABS
TCGA
MPLS n
MPLS f
GPLS n
n GPLS f

T T T T T T T
0 5 10 15 20 25 30

Time (m)

Mean hypervolume

Mean hypervolume

Mean hypervolume

12

10

15

10

200 300 400

100

Windsor Housing

ABS
TCGA
MPLS n
MPLS f
GPLS n
B GPLS f

T T T T T T T
0 5 10 15 20 25 30

Time (m)

Student Performance (por)

ABS
TCGA
MPLS n
MPLS f
GPLS n
GPLS f

T T T T T T T
0 5 10 15 20 25 30

Time (m)

Census 90

ABS
TCGA
MPLS n
MPLS f
GPLS n
GPLS f

T T T T T T T
0 5 10 15 20 25 30

Time (m)

Figure 7.1: Mean results of attained hypervolume over all runs of each algorithm during execution.



AMES HousING

Mean rank | TCGA | MPLS n | MPLS f | GPLS f | GPLS n
ABS 5.5 0.005 < 0.001 < 0.001 | < 0.001 | < 0.001
TCGA 15.5 < 0.001 < 0.001 | <€ 0.001 | < 0.001
MPLS n || 29.9 0.001 < 0.001 | < 0.001
MPLS f || 41.8 0.384 0.069
GPLS f 42.9 0.116
GPLS n || 474

WINDSOR HOUSING

Mean rank | MPLS f | GPLS n | GPLS f | ABS TCGA
MPLS n || 20.5 0.5 0.5 0.5 < 0.001 | < 0.001
MPLS f || 20.5 0.5 0.5 < 0.001 | < 0.001
GPLS n || 20.5 0.5 < 0.001 | < 0.001
GPLS f 20.5 < 0.001 | < 0.001
ABS 45.5 < 0.001
TCGA 55.5

WINE

Mean rank | GPLS n | MPLS n | GPLS f | ABS TCGA
MPLS f 11.1 0.010 0.002 < 0.001 | < 0.001 | < 0.001
GPLS n || 20.2 0.249 0.024 < 0.001 | < 0.001
MPLS n || 22.8 0.093 < 0.001 | < 0.001
GPLS f 27.9 < 0.001 | < 0.001
ABS 45.5 0.006
TCGA 55.5

STUDENT PERFORMANCE (POR)

Mean rank | GPLS f | MPLS n | GPLS n | ABS TCGA
MPLS f || 8.2 0.005 < 0.001 < 0.001 | <€ 0.001 | < 0.001
GPLS 15.7 < 0.001 < 0.001 | <€ 0.001 | < 0.001
MPLS n || 26.6 0.042 < 0.001 | < 0.001
GPLS n || 31.5 < 0.001 | < 0.001
ABS 45.5 < 0.001
TCGA 55.5

STUDENT PERFORMANCE (MAT)

Mean rank | MPLS f | GPLS n | GPLS f | ABS TCGA
MPLS n || 16.2 0.364 0.155 0.003 < 0.001 | < 0.001
MPLS f 17.7 0.251 0.008 < 0.001 | < 0.001
GPLS n || 20.6 0.036 < 0.001 | < 0.001
GPLS f 28.5 < 0.001 | < 0.001
ABS 44.5 0.007
TCGA 55.5

CENSsUs 90

Mean rank | GPLS f | MPLS f | GPLS n | TCGA | MPLS n
ABS 5.5 < 0.001 | < 0.001 | <€ 0.001 | < 0.001 | < 0.001
GPLS f 26.3 0.405 0.006 0.006 0.002
MPLS f 27.6 0.012 0.010 0.003
GPLS n || 40.2 0.478 0.309
TCGA 40.5 0.329
MPLS n || 42.9

Table 7.3: Results of the Conover-Inman post-hoc procedure on each algorithm’s performance measured by hy-
pervolume. Algorithms are ordered by their mean ranks. Significant values, where the row algorithm performs
significantly better than the column algorithm, are typeset bold at the same confidence level as used for Kruskal—
Wallis in Table 7.1 (e.g. 2a0 = 0.05).



Chapter 8

Discussion

From the results in Table 7.2, the potential of our multi-objective approach over exist-
ing single-objective approaches immediately becomes clear. Here it can be seen that for
most of the datasets under evaluation, not only does our multi-objective approach find
a solution front with a larger hypervolume — an indicator for the diversity and hence
usefulness of the solution front — but also does it find a solution front that contains
solutions with higher evidence, that is, more exceptional models. This indicates that the
inclusion of more than a single objective allows the strategy to break out of local optima,
where the existing single-objective algorithms would get stuck. An illustrative example
of this can be found in Figure 7.1, the graph for Student Performance (por) in partic-
ular. Here, the single-objective Archiving Beam Search gets stuck in a local optimum
almost immediately, and Tree-Constrained Gradient Ascent fails to find substantial im-
provements after about 15 minutes of computation time. Our multi-objective Pareto
Local Search strategies however continue to find better solutions, clearly escaping local
optima, as can in particular be observed in the strong bumps in the mean hypervolumes
for the Pareto Local Search variants under the first-improvement strategy in Figure 7.1.

In the subsequent sections, we provide a more in-depth discussion on the performance
of the algorithms under comparison, and the factors contributing to their respective
differences.

8.1 Convergence of the algorithms

All classes of algorithms show greatly varying rates of hypervolume convergence, as can
be seen in the mean hypervolume progressions in Figure 7.1.

Except for its results on Windsor Housing, Archiving Beam Search reaches a nearly
converged hypervolume in the shortest amount of time. This is to be expected from the
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way the algorithm operates. Archiving Beam Search first explores all single-clause rules
in the concept space, and keeps just a few (in this case, 50) of them having maximum
evidence. The number of possible single-clause rules is bound by the number of unique
values in the dataset, which cannot exceed n times the number of concept attributes.
These initial solutions can thus be explored in a limited amount of time. As the F-
measure of our modified Cook’s distance is used as a quality measure for Archiving
Beam Search, more specific rules have equal expected evidence compared to less specific
rules, i.e. the quality measure is expected to be invariant under generality. Therefore, a
reasonable spread over generality is expected after optimizing for evidence solely. The
effect of generality on goodness-of-fit is inversely proportional in general, but as kpin
is chosen much higher than p for any dataset, no great effect can be expected. As
Archiving Beam Search optimizes solely on evidence, addition of clauses to any rule, as
done in every sequential search level, is not expected to greatly increase the attained
hypervolume.

The Pareto Local Search algorithms under the first-improvement strategy can be seen
to exhibit similar behaviour. In these algorithms, again a large number of neighbourhood
solutions is explored and added to the non-dominated front, even when they do not
strictly dominate the base solution under exploration. In support of a multi-objective
approach, on most datasets the Pareto Local Search algorithms soon reach hypervolume
parity with Archiving Beam Search, and continue to improve where Archiving Beam
Search fails to find further improvements.

For the Pareto Local Search variants, before the solution front can be considered con-
verged, the maximum attained generality must be nearing 1 — under the assumption
that the local search starts from rules of low generality, as is the case in this experiment.
This follows immediately from the definition of non-domination under the objective func-
tions in this experiment: if the most general rule in the population is relaxed, increasing
its generality, the resulting rule will always be non-dominated in the population, and
the hypervolume is increased?.

It can be observed in Table 7.2 that for all datasets where Pareto Local Search vari-
ants perform well, their solution Pareto non-dominated front has maximum generality
of (approximately) 1. On the other datasets, the maximum generality stays far from 1.
From this we must assume that on the datasets where the Pareto Local Search variants
did not perform well, this is at least partially explained by lack of convergence. In the
following section, we will discuss one of the factors that we find to strongly influence
the rate of convergence.

1The single exception to this is when the empty rule — a rule that imposes no restrictions on the
concept, thereby matching all observations in the dataset — is added to the population: the evidence
of the empty rule is zero, and hence adding the rule does not increase the hypervolume.
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8.1.1 Impact of concept space dimensionality

Notable exceptions to the convergence of the Pareto Local Search variants can be ob-
served for the Ames Housing and Census 90 datasets, where Archiving Beam Search
and Tree-Constrained Gradient Ascent solidly outperform our multi-objective strate-
gies. Table 7.2 and Figure 7.1 provide some insight in the mechanism behind this. From
Table 7.2 we learn that the Pareto Local Search strategies, in particular those using the
first-improvement strategy, generate an immense Pareto non-dominated front. As for
each solution on the front, its neighbourhood must be explored, this inherently leads to
slow convergence. This is further aggravated by the increased computation complexity
of checking for non-domination on larger fronts.

The vast size of the non-dominated fronts on some of the datasets may be explained
by the relative size of their concept spaces. Ames Housing, in particular, has a vast num-
ber of ordinal attributes. Census 90 features only a small number attributes, however
most of them nominal with large dimensionality. Both datasets therefore sport a large
concept space, i.e. the decision space represented by all possible constraints on the at-
tributes. The other datasets feature either a smaller number of attributes, or attributes
of small dimensionality, and hence have considerably smaller concept spaces. When
the concept space of a dataset is of large enough dimensionality, an almost arbitrary
selection of observations can be represented by a set of constraints on the attributes.
In such a case, the minimal relaxation of a constraint will lead to the addition of only
small number of observations in the subgroup, and a proper choice of constraint allows
for nearly all selections of observations to add. An equivalent observation can be made
when a constraint is made slightly more specific instead of more relaxed. In general, an
appropriately chosen observation can be omitted from the subgroup without decreasing
the subgroup’s evidence. This smaller subgroup will feature a worse generality, but often
a slightly better confidence, as R? is slightly inversely proportional to subgroup size. As
such, the original subgroup and its smaller variant will often both be non-dominated by
the other, and the smaller subgroup will have a high likelihood of being non-dominated
in the population if the original subgroup was non-dominated there as well.

Note that these symptoms of slow convergence are related to the choice of the neigh-
bourhood operator, as minimal changes do not necessarily have to belong to the neigh-
bourhood of a rule. Pareto Local Search strategies with the three-dimensional objective
of evidence, generality and confidence, can be expected to converge slowly on datasets
with high-dimensional concept spaces under the neighbourhood operator used in this
experiment. It remains an open question whether a different choice of neighbourhood
operator may alleviate the severity of slow convergence.
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8.1.2 Impact of bias towards complex rules

As becomes clear from Figure 7.1, on Ames Housing, the Archiving Beam Search reaches
a hypervolume far higher than that of the other algorithms, already at its first search
level. The mean evidence, listed in Table 7.2, follows this observation. Considering the
bottom-up mode of rule exploration of Archiving Beam Search, this means that a small
collection of simple rules — rules with a small number of clauses — can already span a
large hypervolume and have high evidence in this dataset. Apparently, Ames Housing
features simple yet high-quality subgroups: a small selection of its attributes appears to
have a strong influence on the regression estimates. The same observations appear to
hold for the Census 90 dataset.

Due to the initialization procedure chosen for the Pareto Local Search variants, their
mode of operation is more top-down, thus biased towards complex rules. This bias
proves detrimental on datasets such as Ames Housing and Census 90, for it results in
failure to explore simple rules in an early stage. Given this strong clue as to why the
Pareto Local Search variants are consistently outperformed on these datasets, another
initialization procedure that is more biased towards simple rules may be considered to
overcome this limitation. Tree-Constrained Gradient Ascent appears to be affected by
the same method of failure, but here the bias towards complex rules is inherent to the
algorithm and cannot be fixed by another choice of initialization.

8.1.3 Sensitivity to implementation efficiency

While care has been taken to implement each algorithm as computationally efficient
as possible, there may still be possible improvements to each implementation that the
author is unaware of. All algorithms are implemented in the same programming lan-
guage, and experiments performed under identical conditions on the same machine.
Still, it cannot be denied that seemingly minor choices in implementation may impact
the quality of the results as long as an algorithm has not fully converged when the stop
criterion is reached. This is inherent to measuring an algorithm’s performance against
time, instead of some fixed and comparable measure such as number of fitness function
evaluations. Due to the different natures of the algorithms under consideration, there
exists no such a common measure other than computation time. To minimize the im-
pact of any discrepancies in computational efficiency, an attempt was made to choose
the maximum computation time to be sufficiently high. Even though most experiments
do not appear to have converged when the stop criterion is reached, this choice allows
us to observe from the rate of hypervolume increase in Figure 7.1, that significant dif-
ferences in the relative performance of the algorithms are unlikely to arise within this
order of magnitude of computation time.
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H Hypervolume | Front H Evidence | Generality | Confidence

ABS 1172.4 35 8340.5 0.995 0.744
TCGA 176 20.6 544.3 0.572 0.814
MPLS n EGC || 1054 2560.4 2601.2 0.713 0.981
MPLS n EG 141 361 1573.5 0.723 0.842
MPLS n EC 38.6 48 2385 0.717 0.974
MPLS f ECG | 67.6 17594.6 || 229.7 0.535 0.96

MPLS f EG 122.2 849.4 990 0.666 0.793
MPLS f EC 33.4 464.9 893.8 0.524 0.955
GPLS n ECG || 43.3 1587.9 1512.6 0.34 0.97

GPLS n EG 226.7 525.6 3606.2 0.721 0.894
GPLS n EC 34.2 72.1 2001 0.617 0.961
GPLS f ECG 67.1 17040.6 || 228.1 0.532 0.962
GPLS f EG 161.7 783 2054.8 0.663 0.832
GPLS f EC 39.6 551.1 1199.4 0.44 0.951

Table 8.1: Result summary over the runs of all considered algorithms and objective
functions. Front and Hypervolume denote the mean size of the Pareto non-dominated
front of the final solution of all runs, Evidence, Generality and Confidence denote the
mean over all runs of the maximum of each respective property of the solutions on
the Pareto non-dominated front. Hypervolume is measured in the three-dimensional
evidence — generality — confidence objective regardless of the objective function used in
the experiment on Ames Housing.

8.2 Choice of objective functions

As pointed out in Section 8.1.1, some datasets may feature enormous Pareto non-
dominated fronts under the choice of objective functions used in this experiment, lead-
ing to slow convergence. To get an impression of how influential the choice of objective
functions is, and with that choice the dimensionality of the objective, an additional ex-
periment is performed. To this end, all Pareto Local Search variants are again evaluated
on Ames Housing, the results of which were previously hypothesized to be affected by
the choice of objective functions, however with different choices of objective functions.
For all Pareto Local Search variants, the complete three-dimensional evidence — gener-
ality — confidence (EGC) as well as the two-dimensional evidence — generality (EG) and
evidence — confidence (EC) objective functions are evaluated. As in the original exper-
iment, each experiment variant is measured for 10 runs. To allow us to compare the
results for all experiments, we still evaluate the original three-dimensional hypervolume
as described in Section 6.2.
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Figure 8.1: Mean results of attained full-dimensional hypervolume over all runs of Pareto Local Search during
execution, for different selections of objective functions. Results are grouped by their Pareto Local Search variant
and improvement strategy, and include the reference results from the original experiment for Archiving Beam Search
and Tree-Constrained Gradient Ascent.
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The mean progression of hypervolume over time for these variants is shown in Fig-
ure 8.1. From this figure, it immediately becomes clear that the choice of objective
functions strongly impacts the results. As previously hypothesized in Section 8.1.1, the
combination of the generality and confidence objectives is likely to strongly increase the
size of the Pareto non-dominated front and hence reduce the speed of convergence to
a point where it impacts the quality of the results obtained when the stop criterion
is reached. Table 8.1 supports this observation: the Pareto non-dominated front size
is consistently larger when both objectives are included. For all Pareto Local Search
variants, the difference in hypervolume between the EG and either the EGC or EC
objective function of the same variant shows to be significant in the Conover—Inman
post-hoc procedure at a confidence level of 2o = 0.05 (MPLS n: p = 0.024, MPLS f:
p = 0.003, GPLS n: p < 0.001, GPLS f: p < 0.001). Figure 8.1 shows that the mean
hypervolume of Genetic Pareto Local Search with the neutral-improvement strategy is
greater than that of Tree-Constrained Gradient Ascent. This difference however is not
significant (p = 0.446).

Comparing the mean maximum attained generality for the different objective func-
tions, it become clear that the experiments under the evidence — generality objective
function get closer to convergence than those under the other objective functions. The
merits of this increased convergence are demonstrated by both a vastly greater mean
hypervolume and greater mean maximum evidence, represented by far less solutions
in the Pareto non-dominated solution front. Multi-restart Pareto Local Search under
the neutral-improvement strategy forms a single exception: here, all mean maximum
generalities are roughly equal and convergence can be considered comparable as well.

8.3 Effectiveness of a genetic approach

Judging from Table 7.3, the Genetic Pareto Local Search variants never perform sig-
nificantly better than their multi-restart counterparts. From this, we learn that the
mutation and recombination operators as used in this experiment must be unlikely to
yield high-quality offspring. Considering that the recombination operator used is a sim-
ple uniform crossover (only modified to bail out early when the minimum support ki
is void), the expected performance of the genetic approach is based on the assumption
of similarity of solutions in the population. The lack of a performance improvement
over random restarts hence implies that solutions on the Pareto non-dominated front
encountered in the experiment have little in common. Note that the mutation operator,
when applied generously, can with probability mimic random restarts, which explains
why Genetic Pareto Local Search does not always perform significantly worse than its
multi-restart counterpart. Without the expected improvement over random restarts, we
must judge the genetic approach taken in this experiment to be ineffective when com-
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pared to the multi-restart approach. As our results suggest the absence of a common
denominator in rules on the Pareto non-dominated front, we may assume that a genetic
approach for this class of data mining problem is unlikely to be effective in general.

8.4 Tree-Constrained Gradient Ascent initialization

anomalies

Tree-Constrained Gradient Ascent can almost universally be seen to slowly but gradually
reach a point where the hypervolume stabilizes. A notable exception here is the Census
90 dataset, where a sudden increase is seen after a minute of computation, followed by
no substantial improvement at all. Table 7.2 provides a clue as to what happened here:
the non-dominated Pareto front contains only 2.1 solutions on average. This means
that Tree-Constrained Gradient Ascent was usually unable to find new non-dominated
solutions after a short amount of time, where only a few solutions had made it to
the front. Given the 3-dimensional nature our objective function, any three reasonable
solutions would likely have been non-dominated by each other, and would thus have been
included in the front. From the lack thereof we can conclude that on Census 90, the
initialization procedure is probably at fault, generating (almost) always the same initial
solutions. Another choice of power — a square root has been introduced in Section 6.3.1
to slightly alleviate this problems already — or another choice of initialization altogether
might have alleviated this. Further analysis of this problem is however not within the
scope of this work.

8.5 Directions for future research

Our results point out that Tree-Constrained Gradient Ascent can be a useful strategy
for some datasets, but fails on others. As discussed earlier, Tree-Constrained Gradient
Ascent features potential for improvement in its initialization procedure, the correct-
ness of the derivative of its objective function and the choice of step size. It remains
to be investigated whether any such improvements would lead to considerably better

performance.

As for Pareto Local Search, other strategies may be investigated to increase the speed
of convergence (and possibly decrease the size of the solution front), which we observed to
be one of the bottlenecks of our current multi-objective approach. Various algorithmic
variations may lead to such a decrease. In particular, we suggest to investigate the
impact of niching mechanisms such as employed in NSGA-II [16], as this has been
reported to work well on Subgroup Discovery [6]. Other solutions to directly reduce the
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size of the non-dominated front without impacting its spread, such as farthest-candidate
pruning [8], may be investigated as well.

We must note that Pareto Local Search is just one of many imaginable multi-objective
search strategies. As such, we suggest future research on other strategies that leverage
the multi-objective nature of Exceptional Model Mining. In particular, strategies that
use more domain knowledge about the models at hand, as is the case in Tree-Constrained
Gradient Ascent, may be worth investigating.

As our small-scale experimental results in Section 8.2 show, our current choice of
objectives leaves room for improvement. Further investigation may also reconsider the
choice of objective functions in this experiment.
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Chapter 9

Conclusion

Existing single-objective approaches to Exceptional Model Mining leave much to be
desired. Exceptional Model Mining is inherently a multi-objective problem, and so is
knowledge discovery in general. The most pressing issue with single-objective approaches
to knowledge discovery is the relation between generality and evidence, both of which are
features of interest to the analyst, but can often not be optimized simultaneously due
to their inversely proportional relationship. For Exceptional Model Mining on linear
regression models, the trade-off between these two properties has not yet seen much
analysis in the existing literature.

Our analysis of Cook’s distance measure for subgroups in Exceptional Model Mining
has shown that the usual correction applied to compensate for subgroup size cannot be
considered valid from a statistical point of view. We have developed a modified Cook’s
distance that is a proper internal influence measure, and have derived its statistical
distribution. This distribution correctly recognizes the finite population sampling prop-
erties of Cook’s distance for subgroups, taking subgroup size into account. Empirical
results have confirmed that the derived distribution on this measure is indeed correct.

Furthermore we have demonstrated that multi-objective Pareto Local Search strate-
gies yield significant improvements over existing single-objective approaches on the ma-
jority of the datasets under evaluation. Here, the multi-objective strategies yield a
greater hypervolume, and thus a greater choice for the analyst. As their results also
feature greater evidence, the multi-objective strategies outperform the existing evidence-
based single-objective algorithms, even when only considering the objective they tend to
optimize. This demonstrates the ability of the multi-objective strategies to escape from
local optima. For the minority of datasets where our strategies did not perform well,
a reasonable explanation for their failure can be found in the exact choice of objectives
and initialization procedure. Hence, we must conclude that Exceptional Model Mining
can certainly benefit from a multi-objective approach.
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