
Department of Information and Computing Sciences

Combining local search and heuristics for
solving robust parallel machine scheduling

Master’s Thesis
ICA-3692701

Author:
G.J.P.N. Passage

Supervisors:
dr. ir. J.M. van den Akker

dr. J.A. Hoogeveen

May 2016

Abstract

In the context of parallel machine scheduling with precedence relations, it

is often desirable to obtain schedules which are robust against disturbances.

In this thesis, we apply local search on problem instances of parallel machine

scheduling where processing times of jobs are retrieved from a probability

distribution and we attempt to minimize the expected makespan in order to

maximize robustness of schedules.

We compare two types of objective functions. The first type of objective

functions build upon a previously introduced combination of simulation and

optimization, where expected makespan is approximated by computing the

average makespan of a set of samples from a single schedule. The second

type of objective functions build upon a previously introduced notion of

robustness, where we attempt to incorporate properties of stochastic sched-

ules on a single, deterministic schedule in order to approximate expected

makespan by applying probability theory.

The objective functions are run within our presented local search frame-

work on various problem instances, where the best solutions found within

a given time frame are examined in order to find the best algorithms for

various contexts. We have found that one of the objective functions on a

single schedule introduced in this thesis is significantly more effective for

minimizing the expected makespan than both fixation maximization and

result sampling for nearly all of the tested problem instances.

ii

Acknowledgements

I would first like to thank my thesis supervisors, dr. ir. J.M. van den Akker

and dr. J.A. Hoogeveen, for their exceptional support, insights, enthusiasm

and time investment. Their excellent and frequent feedback has been of

great value to me and allowed me to learn a lot throughout the process

of writing this thesis. Our meetings have always been very pleasant and

instructive. I would also like to thank prof. dr. H.L. Bodlaender as the

second reader of my thesis and for helping me to find this subject.

Furthermore, I would like to thank my fellow student Bert Massop for

his great unconditional support, valuable feedback and frequently helping

me to develop new ideas. I would also like to thank my parents for their

continuous moral support and encouragement. Finally, I would like to thank

the attendees of my thesis defense for their interest, attention and feedback.

iii

Contents

1 Introduction 1

1.1 Problem definition . 2

1.1.1 Graph representation 3

1.2 Related work . 4

1.3 Outline . 6

2 Local Search 7

2.1 Neighbourhoods . 7

2.2 Valid operations . 8

2.3 Local search methods . 11

2.3.1 Variable neighbourhood descent 11

2.3.2 Iterative local search 12

2.3.3 Conclusion . 15

3 Result sampling 16

3.1 Introduction . 16

3.2 A new ILS perturbation step 17

3.3 Reducing the neighbourhood 17

3.4 Finding the best reinsertion 18

3.4.1 Computing critical path lengths using head and tail

times . 19

3.4.2 Runtime analysis . 20

3.5 Neighbourhood operator implementations 21

3.5.1 1-move and 2-move implementation 21

3.5.2 2-swap implementation 21

4 Approximating E(Cmax) based on expected processing times 23

4.1 Approximating the maximum of two normal distributions . . 24

4.1.1 Computing E(X) and σ2(X) for known ρ 24

4.1.2 Computing E(X) and approximating σ2(X) for un-

known ρ . 24

iv

4.2 Expected makespan without precedence relations 25

4.2.1 Aggregated machine load (AML) 25

4.2.2 Gaussian makespan (GM) 26

4.2.3 Iterative Gaussian makespan (IGM) 29

4.3 Incorporating slack from precedence relations (AD) 30

4.4 Approximating completion times using dynamic programming

(DM) . 33

4.4.1 Shortcomings of arctan delay 33

4.4.2 Dynamic makespan framework 34

4.4.3 Computation of max(Si + qij , S
k−1
j) when θ(i) = θ(j) 36

4.4.4 Calculating Pr(δ > 0) and E(δ|δ > 0) when δ is not

normally distributed 37

4.4.5 An illustrative example 39

5 Experiments and results 41

5.1 Problem instances and general setup 41

5.1.1 Distributions . 41

5.1.2 General set-up . 42

5.2 Parameter experiments . 42

5.2.1 Replacement of samples in result sampling 43

5.2.2 VND stop criterion . 45

5.2.3 Perturbation step types 48

5.2.4 Amount of perturbations 49

5.2.5 Experiments for makespan without precedence relations 50

5.2.6 Choosing α and β for the arctan delay function 52

5.3 Final experiments . 52

5.3.1 Experimental set-up 53

5.3.2 Comparison of the approaches 55

5.3.3 Run time . 56

5.3.4 Result deviations . 57

5.3.5 Comparing objective function evaluations 57

6 Conclusion and further research 59

6.1 Summary . 59

6.2 Conclusion . 60

6.3 Further research . 61

6.3.1 Improving efficiency 61

6.3.2 Algorithm improvement 62

6.3.3 Other machine scheduling problems and objectives . . 62

6.3.4 Other notions of robustness 63

v

Appendices 64

A Final experiment results and run times 65

B Limited run time experiments 70

C Final experiment result and run time deviations 73

D Comparison against fixation maximization 75

E Experimental results for problem instances with large qij 77

F Experimental results for function evaluations 80

Bibliography 84

vi

Chapter 1

Introduction

In the past decades, scheduling has been a popular research topic. Schedul-

ing has applications in many fields, such as manufacturing, education, sport

competitions, public transport and load balancing in processors. In general,

scheduling incorporates assigning work to limited resources that can com-

plete the work. In machine scheduling, the work is represented by jobs and

the resources are represented by machines. In parallel machine scheduling,

multiple machines operate at the same time and each machine can handle

at most one job at once without pre-emption.

The majority of the current research in machine scheduling is about

deterministic machine scheduling, where all data are known beforehand.

However in reality, the actual data often differs from the expected data.

The robustness of a schedule defines how well it can handle failures or dis-

turbances. In this research, we investigate a specific problem category of

parallel machine scheduling where processing times are taken stochastically

to represent uncertainty in real-life models. For clarity, we will call this

problem category robust parallel machine scheduling (RPMS). In the con-

text of RPMS, we aim to find an efficient algorithm for generating schedules

which maintain effectiveness with processing time disturbances. We also

analyse which components of a schedule need to be optimized to generate

robust schedules, and how these components can be optimized efficiently.

We use the RPMS problem in this research since it incorporates many

properties of real-life scheduling problems such as release dates, precedence

relations and availability of multiple machines. Therefore, many of the al-

gorithms presented in this research can be used or incorporated to solve

real-life scheduling problems. Examples include batch production in man-

ufacturing and finding schedules in public transport taking possible delays

into account and preventing delay propagations. The notion of robustness

is especially relevant in real-life problems where dependency between jobs

1

should be minimized.

1.1 Problem definition

The RPMS problem consists of a set J of n jobs and a set M of m machines,

where n ≥ 1 and m ≥ 2. Each job must be executed exactly once on a single

machine and it can be scheduled on any machine. Each j ∈ J has a release

date rj , stating that a job cannot be started before rj , and a predefined

processing time pj , stating that a job needs pj time to be executed since

it is scheduled on a machine. pj is independent of the machine the job is

processed on. Execution of a job on a machine cannot be interrupted until

it is completed.

To express disturbances in schedules, we assume that processing times

are stochastic. A deterministic parallel machine scheduling problem instance

can be turned into a RPMS instance by generating stochastic processing

times Pj from a probability distribution D with average pj for all j ∈ J .

In this thesis, Pj follows the same probability distribution class for all jobs,

where only the pj values differ. We enforce that Pj = 0 when a negative Pj
is generated. In the context of a stochastic schedule, Sj and Cj respectively

denote the starting time and completion time of j ∈ J . Since execution

cannot be interrupted, it must be that Cj = Sj +Pj for all j ∈ J . All given

times are in R≥0. The operator θ(j) = mk denotes that j is scheduled on

machine mk ∈ M and the ordered set Jmk
denotes {j|θ(j) = mk} ordered

by Sj . A schedule S of a problem instance can be defined by setting Sj and

θ(j) for each job j.

Additionally, jobs have precedence relations, each stating that a job j

cannot be started until a certain time after another job i is started. More

precisely, let P be a set of r precedence relations. A precedence relation

(i, j) ∈ P for jobs i, j ∈ J expresses the constraint that Sj −Si ≥ qij , where

qij ≥ 0, which means that j should start at least qij time units after i.

For each job j, we denote with pp(j) (ps(j)) the sets of precedence prede-

cessors (successors), that is, i ∈ pp(j) if (i, j) ∈ P and i ∈ ps(j) if (j, i) ∈ P .

Furthermore, for a schedule S, we denote that i is a machine predecessor

(successor) of j, shorthand i = mp(j) (i = ms(j)), if i is scheduled di-

rectly before (after) j on the same machine. If j is the first job on machine

mk ∈ M , we denote that mk = mp(j). If j is the last job on a machine,

ms(j) is undefined. A job j1 is an ancestor (descendent) of jk if there ex-

ists a possibly empty sequence of jobs j2, . . . , jk−1 such that each ji is a

precedence predecessor (successor) of ji+1 for 1 ≤ i < k. Note that i is

also a precedence ancestor (descendent) of j when i is a precedence prede-

cessor (successor), but an ancestor (descendant) is not always a precedence

2

predecessor (successor).

Graham et al. (1979) introduce a commonly used notation to define

machine scheduling problems. Their notation consists of three parts: the

machine environment, the job characteristics and the objective function. A

commonly used objective function is the makespan, which denotes the latest

completion time of any job. Since processing times are defined stochastically

in this thesis, the makespan also becomes stochastic. Therefore, the robust

machine scheduling problem with makespan optimization can be defined us-

ing the notation of Graham et al. (1979) as follows:

P |rj , stoch. pj ,prec|E(Cmax)

Here, Cmax denotes the probability distribution of the makespan, E(Cmax)

denotes the expected makespan and P indicates that we look at parallel

machine scheduling, that is, problems with m machines, where m ≥ 2. The

makespan time in a deterministic schedule, i.e. Pj = pj , is denoted as cmax.

1.1.1 Graph representation

We introduce a graph representation to be able to express some important

properties of RPMS. To express a given schedule S, we consider a graph

G(S) = (V,A), where V is a set of vertices and A is a set of directed arcs,

distributed in three characteristic subsets AP , AM and AD. When S is clear

from context, it is omitted from the graph notation. They are defined as

follows:

V = J ∪M ∪ {s, t}

AP = {(i, j)|(i, j) ∈ P}

AM = {(i, j)|mp(j) = i}

AD = {(s, j)|j ∈ J} ∪ {(j, t)|j ∈ J}

The start and finish of the schedule are represented by the dummy nodes

s and t respectively. Each arc has a weight. The arc set AP represents

precedence relations, where (i, j) ∈ AP has weight qij . The arc set AM
represents execution order on machines, where (i, j) ∈ AM has weight Pi if

i ∈ J or 0 otherwise. The arc set AD represents release dates and completion

times, where each arc (s, j) has weight rj and each arc (j, t) has weight Pj .

This formulation enables us to express the makespan of a schedule S by the

length of longest path in G(S). Note that within a problem instance I, the

arcs in AM can be removed or added to obtain various different schedules

and all other arcs remain constant. We also use vertices representing the

3

machines in order to express mp(j) = mk when j is the first job on mk.

This graph representation is similar to the disjunctive graph model used

for job shop scheduling, as presented by Roy and Sussmann (1964). How-

ever, in the disjunctive graph model, jobs which can potentially be executed

consecutively have an edge drawn between them. In a schedule, these edges

are directed to represent execution order. Recall that for RPMS, jobs can

be scheduled on any machine, contrary to job shop scheduling where oper-

ations are fixed on predefined machines. To represent potential execution

orders of jobs, we would need O(n2) edges, where n = |J |, since any job can

be scheduled before any other job unless it violates precedence constraints.

Therefore, we represent the execution order of jobs on machines in a sched-

ule by the existence of arcs, so there exists no edge between two jobs if they

are not scheduled consecutively on a machine.

With this representation, an arc of length l between i and j, where

i, j ∈ J , denotes that j cannot start less than l time units after i. This

enforces that for j ∈ J , Sj can not be smaller than the length of the longest

path from s to j in a valid schedule. Therefore, since each j ∈ J is also

connected to t with weight pj , the makespan is defined by the longest path

from s to t. Since the remainder of this thesis is written in the context of

makespan minimization, we define Sj to be the longest path from s to j, i.e.

the earliest possible starting time of j in a valid schedule. As a consequence,

a schedule S can be defined uniquely by the sets Jmk
for each mk ∈M .

Note that G may not always represent a valid solution. If G contains a

cycle, it cannot represent a schedule since the execution order of the jobs on

the cycle cannot be defined. Since Sj is defined as the longest path between

s and j, jobs will not overlap and no precedence relations will be violated

in any schedule S.

In Figure 1.1, a graph representation is drawn for a problem instance

with two machines, four jobs and three precedence relations.

1.2 Related work

Recall that a schedule is called robust when the effect of failures and distur-

bances in the schedule is minimal. A delay of a single job j could delay many

more jobs if not enough idle time is planned between successive jobs of j,

which in turn could also delay execution of their successors. Hoppenbrouwer

(2011) proposed a measure for robustness by minimizing the number of dif-

ferent machines on which the successors for each job are scheduled. More

precisely, for any job j and any machine m, let γjm be 1 if any successor of

j is scheduled on m, otherwise γjm = 0. Hoppenbrouwer attempts to maxi-

mize robustness by minimizing
∑

j∈J
∑

m∈M γjm, from now on abbreviated

4

(a) Example schedule with data (b) Graph representation of the example schedule

Figure 1.1: A simple example schedule with the corresponding graph repre-
sentation. Arcs from AD are dotted, arcs from AP are dashed and arcs from
AM are solid. Arc weights are represented by the numbers on the arcs.

as
∑
γ, with the additional condition that the makespan is minimized. Un-

fortunately, it seems hard to find optimal or near-optimal solutions for larger

problem instances. Therefore, Van Roermund (2013) suggested to maximize

robustness by maximizing the number of fixations. A precedence relation is

fixated if the corresponding jobs are executed on the same machine. More

precisely, for each (i, j) ∈ P , let fi,j be 1 if jobs i and j are scheduled on

different machines, otherwise, fi,j = 0. Now, robustness is maximized by

minimizing
∑

(i,j)∈P fi,j . Note that
∑
γ cannot be larger than

∑
(i,j)∈P fi,j

and fixating a precedence relation cannot increase
∑
γ. Van Roermund

(2013) maximizes
∑

(i,j)∈P fi,j for schedules where Cmax ≤ d for some gen-

eral deadline d. Additionally, Van Roermund (2013) specifies a deadline d̄j ,

i.e. it must be that cj ≤ d̄j for each j ∈ J . The approach of Van Roer-

mund (2013) scales up better than the approach of Hoppenbrouwer (2011),

quickly solving problems with up to 60 jobs, 60 relations and 8 machines to

optimality and problems with 60 jobs, 150 precedence relations and 4 or 8

machines to near-optimality.

Van den Akker et al. (2013) attempted to solve stochastic job shop

scheduling with stochastic processing times by combining local search and

simulation, similar to the expected makespan minimization algorithm pre-

sented in Chapter 3. A set of random stochastic realisations are drawn

from a schedule S. These samples are realized using discrete event sim-

ulation. From this sample set, the average of the Cmax values is used to

approximated the expected makespan. For the local search part, they used

simulated annealing and they introduced the critical path block swap and

waiting left shift neighbourhoods, both reversing the order of two subse-

5

quent operations. This approach outperforms the classical methods, where

stochastic values are replaced by deterministic values with some extra slack

time included, depending on the mean value and underlying distribution, to

represent potential delays.

1.3 Outline

For complex machine scheduling problems, it is usually impractical to use

an exact algorithm to solve the problem to optimality. Local search algo-

rithms are commonly applied to find a good approximation of the optimum

in various problems. In Chapter 2, an in-depth explanation is given about

how local search can be applied to solve RPMS.

Makespan minimization is one of the most commonly used objective func-

tions in machine scheduling. Therefore, in this thesis, we investigate only

expected makespan minimization. In Chapter 3, we attempt to minimize the

expected makespan by sampling schedules with different Pj realizations from

the same pj for each j ∈ J and minimizing the makespans of these schedules,

similar to the approach of Van den Akker et al. (2013). In Chapter 4, we in-

troduce various objective functions on a single deterministic schedule, with

the goal of approximating the expected makespan, similar to the approach

of Van Roermund (2013). In Chapter 5, we investigate parameter setting

and present the experimental setup and results. In Chapter 6, we discuss the

found results, present the conclusion and add pointers for further research.

6

Chapter 2

Local Search

The problem P||Cmax is NP-hard, as proven by Lenstra et al. (1977). Since

it is a simplification of RPMS with expected makespan minimization, it

must be that RPMS is also NP-hard. Additionally, there may be precedence

relations and the processing times are stochastic in RPMS. As a consequence,

it is difficult to find an optimal solution even for small problem instances.

Therefore, we use local search algorithms to find good approximations of

the optimum. The goal of this chapter is to define a local search framework

to solve RPMS problems as effectively as possible, exploiting the nature of

RPMS. The implementation details of this framework are specified in later

chapters for solving specific RPMS problems.

2.1 Neighbourhoods

In local search, a better solution may be found by modifying parts of a given

solution. The operator performing this modification is called the neighbour-

hood operator N . A schedule S′ is called a neighbour of a schedule S if

S′ ∈ N(S). The set of all S′ ∈ N(S) is called the neighbourhood of S. For

RPMS, we define the following two neighbourhood operators:

1. The k-move operator. A move selects a single job and selects a new

machine predecessor not equal to its old machine predecessor, or puts it

as the first job on a machine. Note that this new machine predecessor

can be on any machine, including the machine of the old machine

predecessor. The k-move operator applies a sequence of k successive

moves.

2. The k-swap operator. A swap selects two jobs i and j 6= i and

switches their positions in the schedule. The k-swap operator applies

7

a circular series of swaps between k vertices. More precisely, k ver-

tices js1 , · · · , jsk ∈ J are selected and jsi is put behind mp(jsi+1) for

1 ≤ i < k and jsk is put behind mp(js1). Note that k should be at

least 2. When k = 2, a simple swap is performed.

In this research, we only use the 1-move, 2-move and 2-swap operators for

local search neighbourhoods. We use the 5-swap operator as a perturbation

operator in iterative local search, as explained later in this chapter. An

illustration of these neighbourhood operators is given in Figure 2.1.

The k-move operator has a neighbourhood of size O(n2k), since O(n)

jobs and O(n) predecessors can be selected for each move. Since the k-swap

operator selects k jobs, it has a neighbourhood of size O(nk). Note that in

practice, the size of the neighbourhoods could be smaller since some oper-

ations may violate precedence constraints. The simplest operators (1-move

and 2-swap) are the fastest, since operation time linearly depends on k.

Moreover, their neighbourhoods usually have the largest improvement pro-

portion, since partial moves of larger neighbourhood operators often majorly

disrupt the schedule. For makespan minimization, it is often impossible for

the 1-move operator to find an improvement when all machines are nearly

equally occupied, since any move could disrupt this balance. On the other

hand, the 2-swap operator never changes the number of jobs on each ma-

chine, which could be problematic when this distribution is not balanced.

Therefore, it may be a good idea to use both 1-move and 2-swap operators

in a local search algorithm to cancel out their drawbacks. The 2-move op-

erator also cancels out the drawbacks of the 1-move and 2-swap operators,

since it is a generalisation of both operators. However, it is often a less

effective operator, since it contains a relatively large proportion of strongly

disruptive operations. Nevertheless, it may still find improvements when

the 1-move and 2-swap neighbourhoods are exhausted, since the 2-move

neighbourhood is much larger.

2.2 Valid operations

Recall that a move is invalid if it creates a cycle in the graph representation

of the schedule. The k-move step will not create a cycle when all individual

moves in a k-move operation do not create a cycle. Therefore, we can

narrow the scope of finding valid k-move operations to finding valid 1-move

operations.

A cycle is created when there exists a path from j ∈ J to some jp ∈ pp(j)
after moving j in graph G(S). Similarly, a cycle is created when there exists

a path from js ∈ ps(j) to j after moving j. Recall that when a job j is the

8

(a) 1-move illustration (b) 2-swap illustration

(c) 2-move illustration (d) 3-swap illustration

Figure 2.1: Example of neighbouring solutions in different neighbourhoods
for a schedule with 2 machines and 6 jobs

9

first job on machine mi, mi is the machine predecessor of j in G. When

a cycle is created by moving j behind a machine predecessor f ∈ J ∪M ,

f is denoted as a forbidden machine predecessor. The set of all forbidden

machine predecessors of j in G(S) is denoted as Fj(S).

Let pp(j)< be the set of jobs for which a path from j<p ∈ pp(j)< to any

jp ∈ pp(j) exists and let pp(j)≤ = pp(j)< ∪ pp(j). If j is placed before any

job in ≤ pp(j), then a cycle is created, since there exists a path from j to

some j≤p ∈≤ pp(j), a path from j≤p to some jp ∈ pp(j) and a path from jp
to j. Therefore, f ∈ Fj(S) if f ∈ pp(j)≤ except when f is the latest job in

pp(j)≤ on its machine, since placing j after f will not create a cycle then.

Additionally, f ∈ Fj(S) if there exists a path from any js ∈ ps(j) to f or

when f ∈ ps(j). All f ∈ Fj(S) can be found by recursively back-tracing the

arcs from all jp and forward-tracing the arcs of all js. This can be done in

O(m + n + r) time when appropriate caching is used. Then, valid 1-move

predecessors for j are represented by (J ∪M) \ Fj(S).

Consider the example schedule in Figure 2.2. We have pp(j)≤ = {M1,M2, j1, j2, j4},
since j4 ∈ pp(j5) and for the remaining machine predecessor candidates,

there exists a path to j4. A cycle is created in G(S) when j is placed be-

fore j1 or j4 and consequently, j1 and j4 are not included in Fj5(S). Since

j6 ∈ ps(j5), we have that j6 ∈ Fj5(S) and since there exists a path from j6
to both j7 and j8, they are contained in Fj5(S) as well.

Figure 2.2: An example schedule with 8 jobs, 2 machines and 4 precedence
relations (j1, j2), (j4, j5), (j5, j6) and (j6, j8). All jobs have pj = 1 and rj = 0
and all precedence relations have qij = 0. Forbidden machine predecessors
of j5 are red and allowed machine predecessors are green.

The valid operations for the k-swap operator can be defined similarly. k

jobs j1 . . . jk can be moved by the k-swap operator if mp(ji+1) 6∈ Fi(S) for

1 ≤ i < k and mp(j1) 6∈ Fk(S).

10

2.3 Local search methods

There exists a large variety of local search methods. The quality of a local

search method is largely dependent on its parameters and the problem it

is applied to. For different problems, different local search methods may

prove to be the most effective. We found that an iterative local search algo-

rithm using a variable neighbourhood descent is effective for finding RPMS

schedules with a low expected makespan. In this section, we explain the

implementation of this algorithm and why we found it to be effective.

2.3.1 Variable neighbourhood descent

In Section 2.1, we have defined various neighbourhood operators, each with

their own benefits and drawbacks. We try to combine these neighbourhoods

in such a way that we cancel out their drawbacks and combine their ben-

efits. Variable neighbourhood descent (VND), introduced by Mladenović

and Hansen (1997), is the simplest local search algorithm using multiple

neighbourhoods. Suppose N1 . . . Nkmax is a sequence of kmax neighbourhood

operators. When a large neighbourhood is fully investigated, the algorithm

could take a long time to complete. It may be beneficial to stop investi-

gating this neighbourhood and try a different neighbourhood or to stop the

algorithm. For this purpose, we introduce a parameter l, specifying the

maximum number of neighbours investigated in a single neighbourhood. A

VND iteration uses a subroutine called first-improvement, which repeatedly

iterates over N(S) until an improvement is found and stops when l neigh-

bours have been investigated or N(S) is exhausted. It returns S if it finds

no improvement. Now, the VND algorithm is defined as follows:

• Generate an initial solution S and let k = 1

• Repeat the following steps until the stopping criterion is met:

– Apply first-improvement on S using the neighbourhood Nk and

investigating at most l neighbours in a random order, returning

a potentially better solution S′.

– If S′ is better than S, continue with S = S′ and k = 1.

– Otherwise, continue with k = k + 1, or stop and return S if

k = kmax.

Note that the first-improvement subroutine could be replaced by the

best-improvement subroutine, where the neighbourhood is searched exhaus-

tively and the best neighbour is returned, but this process takes more CPU

11

time. The stopping criterion is met if all neighbourhoods are investigated

without finding an improvement, or after a certain amount of CPU time.

VND is a simplification of the variable neighbourhood search algorithm

(VNS). In VNS, the first-improvement subroutine is replaced by a local

search subroutine. If the local search subroutine does not find a better solu-

tion, a random neighbour is drawn from the current best solution with the

current neighbourhood. Then, VNS continues with the next neighbourhood

applied on this solution. Drawing a random neighbour is called the shaking

step of VNS. A more detailed explanation of VNS and its variants is given

by Mladenović and Hansen (1997). For RPMS, the shaking step is often so

disruptive that it takes several steps in the next neighbourhood to find an

improvement. Then, it finds a local optimum which is significantly different

from the previous best found solution. Therefore, the power of the neigh-

bourhoods is not combined as it is in VND, where all neighbourhoods are

applied on a local optimum so that the final local optimum is of maximal

quality. For this reason, we have found that VND generally produces better

results for minimizing E(Cmax).

For local search algorithms with variable neighbourhoods, it is important

to consider the order of N1 . . . Nkmax . The most effective neighbourhoods

should be used first, whereas the less effective, often larger neighbourhoods

should only be used if the more effective neighbourhoods have been ex-

hausted. Therefore, it is usually most effective to use the 1-move and 2-swap

operators before performing the 2-move operator.

2.3.2 Iterative local search

Hill climbing is the simplest local search algorithm, where first-improvement

or best-improvement is repeated until no better solution could be found.

A straightforward improvement of hill climbing is multi start local search

(MSLS), where local search is repeated from different starting solutions and

the best found local optimum is returned. MSLS generally finds very diverse

local optima. However, a better local optimum can often be found by slightly

adjusting the current local optimum and starting a local search algorithm

from this modified local optimum. Iterative local search (ILS) is based on

this principle. ILS uses local search to find a local optimum and repeatedly

restarts local search from a modified local optimum. These modifications

are called perturbations. After perturbing a solution and applying the local

search algorithm to find a new solution, an acceptance criterion is necessary

to decide whether we want to continue the process from this new solution

or the previous solution. Using these principles, a general ILS framework is

set up as follows:

12

Algorithm 1 Iterative local search

Precondition: Initial solution S

1: S∗ ← local-search(S)
2: repeat
3: S′ ← perturb(S∗)
4: S∗′ ← local-search(S′)
5: S∗ ← acceptance-criterion(S∗′,S∗)
6: until Termination criterion met

To realize the full potential of ILS, we need to specify the following

parameters:

• The algorithm generating an initial solution.

• The local search sub-procedure.

• The size and type of the perturbation steps.

• The acceptance criterion for accepting either the previously best found

solution or the current solution.

Lourenço et al. (2003) extensively discuss ILS, presenting these parame-

ters and how they can be optimized. Here, we present how these parameters

can be specified for RPMS specifically.

Initial solution The most straightforward way to generate an initial so-

lution is by generating a random valid solution. However, it is often better

to generate a greedy initial solution. It may take a few local search steps

from a random solution to generate a solution of comparable quality to a

greedy solution. Therefore, greedy initial solutions are especially effective

when a good solution should be found within a few local search steps, for

example when the allowed CPU time is low or the problem instance is very

large. Moreover, a greedy initial solution could contain beneficial properties

which might remain in the local search solutions, thereby generating better

local optima. A useful property of greedy initial solutions in RPMS is that

the jobs with the earliest release dates are planned first. However in RPMS,

we have found by initial experiments that ILS is not improved significantly

by starting from a greedy solution. The saved CPU time is negligible, since

in most cases, a better schedule is found after ten iterations from a ran-

dom solution. Moreover, local search has a tendency to find schedules with

the same beneficial properties as a greedy schedule. Nevertheless, since a

13

random initial solution does not provide any benefits, we still use a greedy

initial solution. A greedy initial solution is composed by repeatedly select-

ing the job with the lowest possible starting time from all available jobs and

putting it on the least occupied machine. A job is available when all of its

predecessors from precedence relations are completed.

Local search sub-procedure ILS performs better when the local search

sub-procedure performs better. Hill climbing is the fastest and most straight-

forward sub-procedure. Alternatively, more sophisticated local search algo-

rithms like simulated annealing and tabu search can be used. However,

for RPMS we have found that a VND subroutine generates more promising

results compared to the attempted simulated annealing and tabu search sub-

routines. This could be explained by the fact that local optima are strongly

clustered so that it takes a relatively long time to explore a plateau.

Moreover, it is important to consider the right neighbourhood for the lo-

cal search sub-procedure. Therefore, we use the VND algorithm to combine

the benefits of the presented neighbourhoods. The order of the neighbour-

hoods in the VND algorithm will be specified in the next chapters.

Perturbation steps ILS performs best with a good balance between in-

tensification and diversification. If perturbation steps are too small, the

local search sub-procedure finds a solution S∗′ identical or very similar to

S∗, causing no improvement. If perturbation steps are too large, ILS behaves

like MSLS. As a consequence, the probability of finding a better solution is

decreased and the local search sub-procedure needs more steps to find a new

local optimum. Small perturbation steps enhance intensification, whereas

large perturbation steps enhance diversification.

It is also important to consider the type of perturbation. A good pertur-

bation step is hard to undo by the local search sub-procedure. The k-swap

operator with k > 2 needs k consecutive 1-move or 2-swap steps to undo,

making it a good candidate for perturbation steps. Various values of k for

k-swap perturbations are compared in the experiments.

To enhance diversification, one may choose to combine multi-start local

search with ILS by restarting the ILS algorithm from a new initial solution

after a certain amount of perturbation steps. Alternatively, a large per-

turbation step can be performed instead of a complete restart. Since we

only perform up to 8 perturbations for the entire local search process in the

experiments, we choose not to restart or perform large perturbations.

Acceptance criterion The acceptance criterion also influences the bal-

ance between intensification and diversification. Always accepting S∗′ en-

14

hances diversification, whereas accepting S∗ unless S∗′ is better enhances

intensification. As an intermediate solution, one could accept S∗′ with a

probability, dependent on the quality difference between S∗ and S∗′. How-

ever, since we only perform a few perturbations before the stopping criterion

is met, we only accept S∗′ when it is better than S∗.

2.3.3 Conclusion

To summarize, the implementation of the ILS algorithm used in this research

is given in Algorithm 2.

Algorithm 2 ILS implementation

Precondition: Problem instance P , perturbation amount pa, perturbation
size k, objective function f

1: S ← Greedy-initialize(P)
2: S∗ ← VND(S)
3: i ← 0
4: while i < pa do
5: S′ ← k-swap(S∗)
6: S∗′ ← VND(S′)
7: if f(S∗′) < f(S∗) then
8: S∗ ← S∗′

9: i ← i+ 1

Here, f is an objective function which generates a large (e.g. 10000)

amount of samples and returns the average makespan of these samples for the

given solution, in order to accurately approximate E(Cmax). Furthermore,

the perturbation amount pa denotes the maximum amount of performed

perturbations.

15

Chapter 3

Result sampling

Recall from Section 1.1.1 that one could calculate the longest path in the

graph representation G to calculate the makespan Cmax of a deterministic

RPMS schedule, that is, where each Pj = pj . When each Pj is stochastically

generated from pj , the makespan also becomes stochastic. This introduces

the challenge of finding a good approximation of the expected makespan

E(Cmax). On the one hand, this approximation should be as accurate as

possible, that is, when a schedule S has a better E(Cmax) value than another

schedule S′, the approximation function of E(Cmax) should conclude the

same. On the other hand, the approximation function should be easy to

compute, so that more local search steps can be done in the same time.

3.1 Introduction

One could argue that E(Cmax) of a schedule S can be approximated by

drawing some random stochastic realisations of S and taking the average of

all their Cmax values. Throughout this thesis, we refer to this method as

(result) sampling.

When more samples are used, the objective function becomes more accu-

rate but slower, so a trade-off needs to be made to decide on a good amount

of samples. Additionally, the accuracy of the objective function depends

on the variance of the underlying probability distribution D of processing

times. For example, more samples are required to accurately approximate

E(Cmax) when D is exponentially distributed compared to a uniform distri-

bution U[0.9p, 1.1p].

Result sampling has originally been presented for job shop scheduling by

Van den Akker et al. (2013). The implementation details of our approach

differ from the result sampling approach of Van den Akker et al. (2013),

since we apply sampling for RMPS instead of job shop scheduling. Our local

16

search implementation is different from the local search implementation of

Van den Akker et al. (2013). As the performed experiments in this research

demonstrate, replacing the sample set every iteration is less effective for

RPMS, since it often happens that the selected solution is better for the

current set of samples, but worse for the next set of samples. Consequently,

the local search will not converge to a good local optimum. Moreover, using

only 5 or 10 samples generates very poor results for RPMS.

Van den Akker et al. (2013) present a technique called cutoff sampling,

where the samples with the largest and smallest critical path lengths are

removed from the set of samples. As demonstrated by the experiments,

adding cutoff sampling in addition to sample replacement after every iter-

ation is still less effective than keeping the same sample set. We have also

found that the local search subroutine does not converge if cutoff sampling

is performed while keeping the sample set every iteration, since the selected

samples by cutoff sampling may be different for each iteration. For the re-

mainder of this section, we therefore assume that the same sample set is

used throughout the entire VND subroutine and that cutoff sampling is not

used.

3.2 A new ILS perturbation step

When the used samples are always the same throughout the ILS procedure,

the found local minima will be over-fit on these samples, where the approxi-

mated E(Cmax) may be much lower than the actual E(Cmax). However, the

local search may never converge when samples are replaced too often, since

it often performs a step which is effective for the current group of samples,

but counter-productive for the next group of samples. As an intermediate

approach, one can replace some samples when a local optimum is found by

the local search subroutine of ILS as a perturbation step. Then, the lo-

cal search subroutine can find a new local optimum which is specifically fit

on the new samples, while still keeping some beneficial properties from the

previous sets of samples. The perturbation step size is now the amount of

samples being replaced. This perturbation step is compared to the k-swap

operator in the experiments.

3.3 Reducing the neighbourhood

Recall that j ∈ J can only be moved behind a new machine predecessor

when a cycle is not created in the graph representation. Van den Akker et

al. (2013) state that for the job shop scheduling problem, the neighbourhood

17

can be restricted to jobs on the critical path. We prove that this is also the

case for the RPMS problem.

Theorem 3.3.1. The critical path length can decrease only by reinserting

a job that is currently located on the critical path.

Proof. Suppose there is a job j that is not on the critical path and j is

removed from G. Since j was not on the critical path, the longest path

from s to any job on the critical path should remain the same and therefore,

the critical path should remain the same. Furthermore, reinserting j after

removing it fromG could never cause the critical path length to decrease.

Theorem 3.3.1 implies that for a single sample of a schedule, the 1-

move operator should only reinsert jobs on the critical path to decrease the

makespan. Since the makespan is optimized for many samples at once, it

suffices to pick only the jobs which are on at least one of the critical paths

in the samples. For a large sample size and underlying distributions with

large variance, there can be various critical paths, filtering only very few to

none of the jobs. However, jobs on the critical paths of many samples are

more likely to generate a better solution when reinserted, so we prioritize

job candidate selection by the amount of samples for which the job appears

on the critical path.

3.4 Finding the best reinsertion

The most straightforward 1-move implementation for sampling would re-

peatedly pick a random job, then reinsert this job behind a valid machine

predecessor and then approximate E(Cmax) from the samples. In this sub-

section, we present an efficient technique to find the best reinsertion of a

chosen job, based on the reinsertion technique of Vaessens (1995) for gener-

alized job shop scheduling.

Consider a graph G for a schedule S. Reinserting a job j is done in two

steps:

1. Let i = mp(j). Delete j from its machine by deleting (i, j) from AM .

If there is a job k such that (j, k) ∈ AM , delete (j, k) from AM and

add (i, k) to AM .

2. Find a new allowed machine predecessor i and insert j behind i. A

new edge (i, j) is added. If there is a job k such that mp(k) = i,

replace the edge (i, k) by (j, k) in AM .

For the remainder of this section, we assume j is the job to be moved

and i is the new allowed machine predecessor of j after step 2. The resulting

18

graphs after step 1 and 2 are denoted by G− and Gi respectively. Note that

j is still connected to all its precedence predecessors and successors in G−

and Gi.

For G, we denote the distance of the longest path from s to j excluding j

as the head time hj and the distance of the longest path from j to t including

j as the tail time tj . The head time can be calculated recursively from the

head time of the machine predecessor and precedence predecessors, and the

tail time can be calculated recursively from the tail time of the machine

successor and precedence successors as follows:

hj = max{rj , hmp(j) + Pmp(j),max{hjp + qjpj |jp ∈ pp(j)}}

tj = max{tms(j) + Pj ,max{tjs + qjjs |js ∈ ps(j)}}

For convenience, when any of the partial expressions are not defined in

these equations, they are set to 0. For example, tms(j) + Pj = Pj when j is

the last job on a machine and max{hjp + qjpj |jp ∈ pp(j)} = 0 when pp(j) is

empty. Head (tail) time for G− and Gi are denoted as h−j (t−j) and hij (tij)

respectively, where j is omitted when j is clear from context.

3.4.1 Computing critical path lengths using head and tail
times

To find the best reinsertion, we need to find a new machine predecessor

i such that the critical path length of Gi is minimal. The critical path

length of Gi is equal to the maximum of the longest path length from s to

t without j and the longest path length from s to t with j. Therefore, in

order to find the best reinsertion of j, we need to compute the length of the

longest path without j and the longest path with j for all Gi given that i is a

valid machine predecessor for j. In order to find a linear time algorithm for

best insertion, these measures should both be computed in linear time. The

following theorem helps establishing a linear time algorithm for computing

the longest path length for all reinsertions.

Theorem 3.4.1. The longest path length from s to t containing j in Gi can

be computed in constant time, given the head and tail times for all jobs in

G−.

Proof. Recall that the length of the longest path from s to t with j can

be computed using the head times of all jp ∈ pp(j), the tail times of all

js ∈ ps(j) and hmp(j) and tms(j). Since i will be the new machine predecessor

and ms(i) will be the new machine successor of j in Gi, we need to use hii and

tims(i) instead of hmp(j) and tms(j). By definition of head time, if a path from

19

j to another job k in G− does not exist, then hik = h−k . Similarly, if a path

from k to j in G− does not exist, then tik = t−k . Since Gi must be acyclic,

there exist no paths from j to any jp ∈ pp(j) or from any js ∈ ps(j) to j.

Consequently, we have that ∀jp ∈ {pp(j) ∪ {mp(j)}} : hijp = h−jp and ∀js ∈
{ps(j)∪{ms(j)}} : tijs = t−js . In order for i to be a valid machine predecessor

for j, there should not exist a path from j to i in G−. Additionally, there

should not exist a path from ms(i) to j in G−. Therefore, we find that

hii = h−i and tims(i) = t−ms(i). Now, if we compute maxjp∈pp(j)(h
−
jp

) and

maxjs∈ps(j)(t
−
js

) beforehand, we can compute hij and tij in constant time by

directly using the head and tail times of G−. Consequently, the longest path

from s to t with j in Gi can be computed in constant time.

3.4.2 Runtime analysis

Recall from Section 2.2 that finding valid machine predecessors for j can

be done in O(m + n + r) time. Suppose head and tail times are computed

in (reverse) topological ordering so that head (times) times of all predeces-

sors (successors) of each job are known. Now, computing the head and tail

times for a single job takes O(1 + |pp(j)|) or O(1 + |ps(j)|) time. There-

fore, computing all head and tail times in G− takes O(n + r) time, since∑
j∈J(|pp(j)| + |ps(j)|) = 2r. The longest path from s to t without j can

easily be computed in O(n + m + r) time using the head and tail times of

G−. Since the longest path from s to t with j in Gi can be computed in

constant time using the head and tail time sof G−, the longest paths from s

to t in all Gi with j can be computed in O(n) time. The best reinsertion for

j is behind job i for which Gi has the smallest critical path length. Adding

up the time required to find this job i, we need O(n + m + r) time. In

comparison, O(m+ n+ r) time is required to evaluate the solution quality

after a random insertion in the worst case. Therefore, the runtime of the

best reinsertion algorithm only differs in constant time factor compared to

random insertion. For this reason, we apply best insertion instead of random

insertion for the result sampling implementations.

Gambardella and Mastrolilli (1996) present an even more efficient imple-

mentation, using sophisticated algorithms to further reduce the candidate

set and often finding a best reinsertion in O(log n) time for the flexible job

shop problem. These algorithms can also be implemented to make sampling

for RPMS faster. However, since the difference in computation speed will

be insignificant in practice for small n and to keep the research simple, we

use a simpler implementation. It should thus be noted that result sampling

may be optimized by applying the algorithms of Gambardella and Mastrolilli

(1996).

20

3.5 Neighbourhood operator implementations

Now that the best reinsertion of a given job j can be found in O(m+n+ r)

time, the 1-move operator can be optimized. To approximate E(Cmax), we

need to calculate the critical path lengths of all Gi in all samples. This takes

O(s · (m+n+r)) time, where s is the amount of samples. The best machine

predecessor i should now have the smallest sum of critical path lengths over

Gi in all samples.

3.5.1 1-move and 2-move implementation

The best 1-move operation is one of the best reinsertions for all j ∈ J .

Therefore, it takes O(n · s · (m + n + r)) time to evaluate the whole neigh-

bourhood of the 1-move operator.

Recall that the 2-move operation performs two successive 1-move oper-

ations. Suppose that j1 and j2 are reinserted in the first and final move,

respectively. After the first move, the best reinsertion for the final move will

be the best reinsertion of the 2-move. However, it is possible that the first

move of the best 2-move operation results in a (temporarily) worse schedule

than the original schedule and consequently, it is also possible that j1 is not

on the critical path in the original schedule. Nevertheless, it is likely that

the best 2-move operation includes a good first move. For the experiments,

we only try a limited amount of 2-move operations for the same schedule

before halting the local search due to time constraints. Within this limit, we

generally do not perform more than n2 operations. Additionally, we note

that it is generally more effective to try the best first moves. Therefore,

we also use the best reinsertion technique for finding the first move, which

reduces the neighbourhood size to O(n2). Now, exhaustively running the

2-move operator takes O(n2 · s · (m+ n+ r)) time. Finally, to save compu-

tation time, we do not allow to reinsert j to its original position for the first

move, since then, the 2-move operation may reduce to a 1-move operation.

3.5.2 2-swap implementation

The best reinsertion technique cannot be applied for the 2-swap operator,

since it involves moving two jobs and the fast best reinsertion technique can

only be applied for a single move. Without this technique, finding the best

reinsertion for a single job requires computing the critical path length of

n schedules. As a consequence, it is no longer more effective than random

insertion. A single random insertion step of the 2-swap operator requires

O(s · (m + n + r)) time. Since O(n2) jobs can be swapped, exhaustively

running the 2-swap operator takes O(n2 · s · (m+n+ r)) time, similar to the

21

2-move operator. The 2-move operator is generally more effective than the

2-swap operator for result sampling, since it performs two successive best

reinsertions instead of random swaps within almost the same time. For this

reason, it is questionable whether the 2-swap operator should be included

in the VND subroutine or that instead, the limit for the amount of 2-move

attempts should increase. Small-scale experiments have shown that the

2-swap still coincidently finds better schedules than the 2-move operator.

Therefore, we have decided to include the 2-swap operator as well in the

VND subroutine for sampling, but only after the 2-move attempt limit has

been reached. The 2-move operator is used only when the 1-move operator

is exhausted. Now, when the 2-swap attempt limit has been reached, the

VND subroutine is aborted.

22

Chapter 4

Approximating E(Cmax)

based on expected processing

times

Many samples may be needed to approximate E(Cmax) accurately for RPMS

using simulation. Therefore, it may be more effective to approximate E(Cmax)

using an objective function on a single, deterministic instance of a schedule,

which should capture properties of stochastic schedules. In this chapter, we

present various ways to approximate E(Cmax) using a single sample where

Pj = pj . In the first part of this chapter, we approximate E(Cmax) by

first approximating the expected makespan without precedence relations in

Section 4.2 and then adding the approximated delay caused by precedence

relations in Section 4.3. In Section 4.4, we approximate the probability den-

sity functions (PDFs) of all Cj and then approximate E(Cmax) using the

completion times of the final jobs on each machine, using the technique de-

scribed in Section 4.2.3. Since the computation of X = max(D1, D2) for two

normal distributions D1 and D2 is an important building block for the ob-

jective functions presented in Section 4.2.3 and Section 4.4, we will present

two ways to compute of E(X) and σ2(X) first in Section 4.1.

Note that the absolute difference between the outcomes of the approxi-

mation objective function and the expected makespan is not important. For

example, when schedule S has a lower deterministic makespan than another

schedule S′, the objective function cmax/10 and the objective function cmax
will both conclude that S is a better schedule, despite the fact that the

latter function is significantly closer to the expected makespan in terms of

absolute difference. Instead, the most accurate objective functions should

have the strongest correlation with a ‘perfect’ expected makespan objective

function when comparing schedules.

23

4.1 Approximating the maximum of two normal

distributions

Before we present the objective functions for approximating E(Cmax), we

explain how we can approximate X = max(D1, D2) for D1 = N (µ1, σ
2
1) and

D2 = N (µ2, σ
2
2). Note that the maximum of two normal distributions is

not normally distributed. Nevertheless, in order to reuse X in the context

of maximization of normal distributions, we assume that X is normally

distributed. Therefore, we are interested in computing E(X) and σ2(X).

When the correlation ρ between D1 and D2 is known, E(X) and σ2(X)

can be computed exactly and quickly. This computation is presented in

Section 4.1.1. When ρ is unknown, E(X) can still be computed exactly

though σ2(X) needs to be approximated. This approximation is presented

in Section 4.1.2.

4.1.1 Computing E(X) and σ2(X) for known ρ

Let θ =
√
σ2

1 + σ2
2 − 2ρσ1σ2. Furthermore, let Φ(x) and φ(x) denote the

CDF and the PDF of the standard normal distribution respectively. As

stated by Nadarajah and Kotz (2008), E(X) and E(X2) can be computed

as follows:

E(X) = µ1Φ(
µ1 − µ2

θ
) + µ2Φ(

µ2 − µ1

θ
) + θφ(

µ1 − µ2

θ
) (4.1)

E(X2) =(σ2
1 + µ2

1)Φ(
µ1 − µ2

θ
) + (σ2

2 + µ2
2)Φ(

µ2 − µ1

θ
)

+ (µ1 + µ2)θφ(
µ1 − µ2

θ
)

(4.2)

Now, from probability theory, we have that σ2(X) = E(X2)− E(X)2.

4.1.2 Computing E(X) and approximating σ2(X) for unknown
ρ

Let δ = D2 −D1. We have that E(max(D1, D2)) = E(D1) +E(max(0, δ)).

Let ∆ = E(max(0, δ)) so we have µ(X) = µ(D1) + ∆. If δ > 0 then

max(D1, D2) = D2 and otherwise, max(D1, D2) = D1. Since σ2(X) de-

pends on which of D1 and D2 is the greatest, we obtain:

σ2(X) ≈ Pr(δ > 0) · σ2
2 + Pr(δ ≤ 0) · σ2

1

Note that when D1 = D2, we have that σ2(X) ≤ σ2(D1) and σ2(X) ≤

24

σ2(D2). When D1 and D2 are not similar, σ2(X) is still slightly overesti-

mated in this computation. Finally, it remains to compute ∆ and Pr(δ > 0)

(where Pr(δ ≤ 0) = 1− Pr(δ > 0)). Using probability theory, we obtain:

∆ =E(max(0, δ))

=Pr(δ ≤ 0) · E(max(0, δ)|δ ≤ 0)

+ Pr(δ > 0) · E(max(0, δ)|δ > 0)

=Pr(δ > 0) · E(δ|δ > 0)

To ensure that both values in the maximum computation are normal dis-

tributions, we replace 0 byN (0, 0) in the computation. When δ = N (µδ, σ
2
δ),

we have:

Pr(δ > 0) = 1− Pr(δ ≤ 0) = 1− Φ(
−µδ
σδ

)

Let α = −µδ/σδ and let λ(α) = φ(α)
1−Φ(α) . As explained by Greene (2003),

we have

E(δ|δ > 0) = µδ + σδ · λ(α)

4.2 Expected makespan without precedence rela-

tions

The machine causing the deterministic makespan is not the only forecaster

of the expected makespan. Especially when the underlying probability dis-

tribution D of Pj has a large variance, the makespan in a stochastic real-

isation may be caused by a different machine. In this section, we present

some methods of approximating the expected makespan without precedence

relations by examining the probability distributions of the completion times

of all machines.

4.2.1 Aggregated machine load (AML)

Let Cmax(mk) and cmax(mk) denote the completion time of the final job on

mk ∈ M in a stochastic and deterministic (i.e. Pj = pj) schedule, respec-

tively. Cmax(mk) will be denoted as the machine load of mk. Intuitively, the

larger cmax(mk) compared to other machine loads, the greater the probabil-

ity that mk causes the makespan in a stochastic instance. Therefore, it is

more effective to remove jobs from machines for which cmax(mk) is relatively

25

large, since it is more likely that the expected makespan in stochastic in-

stances decreases as a consequence. To approximate the expected makespan,

we define a value lk for each mk to approximate the likeliness of mk to

cause the makespan in a stochastic schedule. We assume that lk is twice

as large as li for machines k and i if cmax(mi) < cmax(mk) and there are

no other machines x for which cmax(mi) < cmax(mx) < cmax(mk). For-

mally, let lk = 2−MCi(mk), where MC denotes the array of machine loads

in nonincreasing order and MCi(mk) denote the position of mk in MC, i.e.

MCi(mk) is 1 if mk has the largest load and m if mk has the smallest load.

Now, a simple but more accurate function than the deterministic makespan

for approximating E(Cmax) is formulated as follows:

E(Cmax) ≈

∑
mk∈M

lk · cmax(mk)∑
mk∈M

lk

Note that the outcome of this function is independent of machine order-

ing in MC for machines with equal loads. Therefore, machines with equal

loads are ordered arbitrarily in MC. We denote this objective function as

the aggregated machine load (AML). This objective function is relatively

easy to compute, but it is only a very rough approximation since the value

of lk depends only on the ordering of MCi(mk) and not on the actual dif-

ferences between the loads.

Illustrative example Consider the example presented in Figure 4.1. We

have cmax(m1) = 5 and cmax(m2) = 6 if all jobs are scheduled as early as

possible. After sorting the machine loads, we have that MCi(m1) = 2 and

MCi(m2) = 1 and thus c1 = 2−2, c2 = 2−1 and
∑

mk∈M (ck) = 3
4 . We can

now compute

E(Cmax) ≈
1
4 · 5 + 1

2 · 6
3
4

= 5
2

3

4.2.2 Gaussian makespan (GM)

To precisely calculate the expected makespan, we need to calculate the PDFs

of the machine loads, followed by calculating the expected maximum of these

PDFs. Unfortunately, it is impractical to calculate both of these measures

precisely, so we need to resort to approximation functions.

The PDF of a machine load Cmax(mk) can be computed by aggregating the

PDFs of the processing times of the jobs on mk. To do this precisely, we

need to compute the convolutions of these PDFs, but this is inconvenient

26

Figure 4.1: Example schedule with data

when the number of jobs per machine becomes big, where this computa-

tion becomes very time-consuming. Therefore, we approximate the PDF

of Cmax(mk) with a normal distribution, using the central limit theorem.

Now, Cmax(mk) can be approximated quickly by converting the PDFs of

each Pj to a normal distribution and aggregating the PDFs of each Pj where

θ(j) = k. Let σ2(D) denote the variance of the underlying distribution of

Pj , i.e. the variance of Pj when pj = 1. For example, σ2(D) = 1 when

D is an exponential distribution or σ2(D) = 0.25 when D is a 4-Erlang

distribution. Now, σ(Pj) = σ(D) · pj . Since we assume that there are no

precedence relations involved in this section, we have that each Cmax(mk)

is independent. Therefore, the PDF of Cmax(mk) ≈ N(µ(mk), σ
2(mk)) is

approximated as follows:

µ(mk) = cmax(mk) (4.3)

σ2(mk) =
∑
j∈Jmk

σ2(Pj) = σ2(D) ·
∑
j∈Jmk

p2
j (4.4)

Here, Jmk
is defined as the set of jobs being scheduled on machine mk.

Note that cmax(mk) 6=
∑

j∈Jmk
pj when there is machine idle time in the

deterministic schedule. Additionally, note that σ2(mk) is an approxima-

tion, since precedence relations could also introduce or reduce variance on

the PDF of Cmax(mk). To approximate E(Cmax) from the PDFs of the

machine loads, we approximate the PDF of the maximum of the machine

loads and take its mean. The mean of the maximum of machine loads can

be approximated by dividing the distribution in intervals and computing

the probability that Cmax lies in a given interval. Then, for each interval,

we multiply the probability of the interval occurrence by the mean of the

interval and finally, we sum these outcomes. Formally, consider a set of s

uniformly distributed values x1, . . . , xs representing the limits of these in-

27

tervals, sorted in ascending order. In Section 5.2.5, it is discussed how these

values are chosen. The probability that Cmax is between two values xi and

xi+1 equals Pr(Cmax ≤ xi+1)− Pr(Cmax ≤ xi) and the mean of this inter-

val is (xi+1 + xi)/2. Suppose Pr(Cmax ≤ x1) = a and Pr(Cmax ≥ xs) = b.

Now, E(Cmax) is approximated as follows:

E(Cmax) = max
mk∈M

Cmax(mk)

≈
∑s−1

i=1 (Pr(Cmax ≤ xi+1)− Pr(Cmax ≤ xi)) · xi+1+xi
2

1− (a+ b)

(4.5)

The equation is divided by 1− (a+ b), since the intervals below x1 and

above xs are disregarded and consequently, 1 − (a + b) is the sum of the

interval probabilities. The objective function from Equation (4.5) will be

denoted as the Gaussian makespan (GM) function. Note that the GM func-

tion becomes more accurate for large s, but also more difficult to compute.

Furthermore, it is important to find a good balance between the values of

s, a and b. If a and b are too small, the width of the intervals becomes

relatively large which causes inaccuracy. However, if a and b are too large,

an important part of the PDF may be disregarded. Finally, the values a

and b should be as close as possible in order to prevent underestimation or

overestimation of the average of the PDF.

In order to compute Pr(Cmax ≤ xi), we note that the following holds:

Pr(Cmax ≤ x) = Pr(∀mk ∈M : Cmax(mk) ≤ x)

=
∏

mk∈M
Pr(Cmax(mk) ≤ x)

=
∏

mk∈M
Φ(
x− µ(mk)

σ(mk)
)

(4.6)

Here, Φ(x) denotes the CDF of the standard normal distribution, which

is defined as Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2 dt.

Illustrative example Consider the schedule presented in Figure 4.1, where

we ignore precedence relations. Let Pj be distributed from a 4-Erlang dis-

tribution so that σ2(Pj) = 0.25 · pj . We have µ(m1) = 5 and µ(m2) = 6.

For the variances of Cmax(mk), we have

σ2(m1) = 0.25 · 12 + 0.25 · 32 + 0.25 · 12 = 2.75

28

σ2(m2) = 0.25 · 22 + 0.25 · 22 = 2

Now, consider 4 load values {x1 = 5, x2 = 6, x3 = 7, x4 = 8}. We have

Pr(Cmax ≤ 5) = Φ(
5− 5√

2.75
) · Φ(

5− 6√
2

) ≈ 0.5 · 0.24 = 0.12

Pr(Cmax ≤ 6) = Φ(
6− 5√

2.75
) · Φ(

6− 6√
2

) ≈ 0.727 · 0.5 = 0.363

Pr(Cmax ≤ 7) = Φ(
7− 5√

2.75
) · Φ(

7− 6√
2

) ≈ 0.886 · 0.76 = 0.674

Pr(Cmax ≤ 8) = Φ(
8− 5√

2.75
) · Φ(

8− 6√
2

) ≈ 0.965 · 0.921 = 0.889

Additionally, a = 0.12 and b = 1− 0.889 = 0.111. Now, we can compute

E(Cmax) as follows:

E(Cmax) ≈ (0.363− 0.12) · 5.5 + (0.674− 0.363) · 6.5 + (0.889− 0.674) · 7.5
1− (0.12 + 0.111)

≈ 1.337 + 2.022 + 1.613

0.769

≈ 6.492

(4.7)

Note that the value of E(Cmax) measured using a million samples for

this example without precedence constraint is approximately 6.507.

4.2.3 Iterative Gaussian makespan (IGM)

The most computationally expensive part of the GM function is the approx-

imation of the maximum of machine loads when the PDFs of the machine

loads have been approximated. In this subsection, we present a method to

approximate the maximum of machine loads significantly faster and nearly

as accurate. Similar to the GM function, we assume that the PDFs of

the machine loads are normally distributed using Equation (4.3) and Equa-

tion (4.4). For readability, let Cmax(m≤k) denote the PDF of the makespan

when only regarding machinesm1 tomk, i.e. max1≤i≤k(Cmax(mi)). We iter-

atively compute Cmax(m≤k) from Cmax(m≤k−1) or equivalently Cmax(m<k).

Due to the iterative nature of this objective function, it is denoted as the

iterative Gaussian makespan (IGM). Preserving the ordering of machines,

the IGM function is computed as follows:

In order to compute the IGM function, max(Cmax(m<k), Cmax(mk))

needs to be approximated. As a simplification, we assume Cmax(m≤k) is

29

Algorithm 3 Iterative Gaussian makespan

Precondition: Cmax(m1), . . . , Cmax(mm)

1: Cmax(m≤1) ← Cmax(m1)
2: for k ∈ {2, . . . ,m} do
3: Cmax(m≤k) ← max(Cmax(m<k), Cmax(mk))

return E(Cmax(m≤m))

normally distributed in order to save computation time. Note that for large

m, the actual PDF of the expected maximum of machine loads differs more

strongly from a normal distribution and the IGM function becomes less

accurate as a consequence.

Since precedence relations are disregarded, all Cmax(mk) are indepen-

dent. Therefore, we can use the approximation of max(D1, D2) presented in

Section 4.1.1 for D1 = Cmax(m<k), D2 = Cmax(mk) and X = Cmax(m≤k)

with ρ = 0.

Illustrative example Consider the schedule presented in Figure 4.1 with

σ2(D) = 0.25. We have Cmax(m<2) = Cmax(m1) = N(µ, σ2) with µ = 5

and σ2 = 2.75, similar to the example of the GM function. Now, to compute

the expected makespan, we need to compute Cmax(m≤2). Let Cmax(m<2) =

D1 = N (µ1, σ
2
1), Cmax(m2) = D2 = N (µ2, σ

2
2) and X = max(D1, D2) =

Cmax(m≤2) = E(Cmax). Since X = E(Cmax), only E(X) is relevant to

compute. Using ρ = 0, we have θ =
√
σ2

1 + σ2
2 − 0 =

√
2.75 + 2 ≈ 2.179 and

µ1−µ2
θ ≈ −1

2.179 = −0.459. Now, we obtain

E(Cmax) = E(X) ≈ 5 · Φ(−0.459) + 6 · Φ(0.459) + 2.179 · φ(−0.459)

≈ 5 · 0.323 + 6 · 0.677 + 2.179 · 0.359 = 6.459
(4.8)

4.3 Incorporating slack from precedence relations

(AD)

To complete the E(Cmax) approximation, we add the expected delays caused

by precedence relations. Consider the realisation of a schedule S where

Pj = pj , where sj denotes the earliest possible starting time of S, i.e. the

longest path from s to j in G. In order to approximate expected delays

caused by precedence relations, we first define the notion of expected delay:

30

Definition 4.3.1. The expected delay of a job j equals E(Sj) − sj, i.e.

the expected increase of starting time of j when the processing times become

stochastic.

To illustrate how expected delay may be caused, consider S5 and the

precedence relation (j4, j5) in Figure 4.1, ignoring the precedence relation

(j2, j5) for simplicity. It is clear that in a stochastic schedule, S5 is either

equal to C2 or S4, depending on which of these times is greater. In other

words, S5 = max(C2, S4). Now, the following holds:

E(S5) = E(max(C2, S4)) > E(C2) = s5

To conclude, we have E(S5) > s5 and consequently, expected delay oc-

curs. In general, expected delay of j occurs when at least two machine

and/or precedence predecessor relations are involved for j, i.e. when j has

at least two precedence predecessors or a machine predecessor and a single

precedence predecessor. Note that when a job j gets delayed, it may in turn

also delay descendants of j. Also note that expected delay is never negative.

Recall that Van Roermund (2013) introduced the notion of fixations,

where two jobs i and j are fixated if (i, j) ∈ P and θ(i) = θ(j). When

jobs are fixated, they cannot delay jobs on other machines and therefore,

the total expected delay will be lower. Van Roermund (2013) minimizes

expected delay by maximizing the amount of fixations. In this section, we

attempt to define a more accurate notion of expected delay.

If (i, j) ∈ P and θ(i) 6= θ(j), it is important to consider the difference

between sj and si. The expected delay depends on the probability that

delay occurs and the average delay impact. The delay probability depends

on sj−si−qij and σ(D), where delay probability is maximal when sj−si−qij
is minimal and delay probability decreases more steeply for low σ(D). To

approximate the delay probability, we need a function that steeply decreases

for small sj−si−qij and approaches 0 for large sj−si−qij . Based on the cost

function for idle times between two consecutive flights introduced by Diepen

et al. (2013) in the Schiphol gate assignment problem, we use the function

f(x) = π
2 −arctan(x). Finally, we need to approximate delay impact, which

is correlated with σ2(D), since large variance causes large expected delays.

Let Pf = {(i, j) ∈ P |θ(i) 6= θ(j)} denote the set of non-fixated precedence

relations. Recall that this set of precedence relations cause probability of

delay propagation. Therefore, the expected delay d(i, j) of j caused by a

single predecessor i ∈ pp(j) is defined as follows:

d(i, j) =
π

2
− arctan(

sj − si − qij
σ(D)

· β)) (4.9)

31

Here, β scales the slope of the arctan function. An example plot is drawn

in Figure 4.2. Note that the effect of delay propagation does not linearly

depend on the amount of predecessors of a job, since the probability that

new predecessors cause delay decreases when there are other predecessors

that may cause delay. Therefore, we assume that the total delay depends

on the square root of the sum of squares of delay. Now, the delay function

is defined as follows:

σ(D) · α ·
∑
j∈J

√ ∑
(i,j)∈Pf∩pp(j)

d(i, j)2 (4.10)

This function will be denoted as the arctan delay (AD) function. Here,

α scales the maximum penalty. Note that a delayed job early in the schedule

has a bigger delay propagation probability, whereas the delay of job later

in the schedule is often larger since the starting time uncertainty of its

predecessors is greater. Since these drawbacks cancel out, we have chosen

not to involve starting time in the slack function.

Figure 4.2: The AD function for α = 1, β = 1 and σ(D) = 2 (red) and
σ(D) = 1 (blue). The x-axis represents sj − si − qij .

Finally, we note that fixated precedence relations may also cause ex-

pected delay. For example, the precedence relation (j2, j5) causes idle time

on M1 when P2 < q2,5 in Figure 4.1. However, this effect is generally less

significant than expected delay caused by non-fixated precedence relations

and is therefore not included in the AD function.

Illustrative example Consider the schedule presented in Figure 4.1. Let

α = 0.3, β = 0.3 and σ(D) = 0.5. First, we compute arctan(
sj−si−qij
σ(D) · β)

for each non-fixated precedence relation (i, j) ∈ Pf :

32

(2, 3) : arctan(
2− 1− 1

0.5
· 0.5) = 0

(2, 4) : arctan(
4− 1− 2

0.5
· 0.5) ≈ 0.54

(4, 5) : arctan(
4− 4− 0

0.5
· 0.5) = 0

Now, the AD function equals

0.5 · 0.3 · (
√

(
π

2
− 0)2 + (

π

2
− 0.54)2 +

√
(
π

2
− 0)2) ≈ 0.15 · 3.967 ≈ 0.595

When the outcome of the AD function is added to the outcome of the GM

function, we get an approximation of the expected makespan with an ap-

proximation of delay caused by precedence relations included. The final ap-

proximated value of the expected makespan becomes 6.492 + 0.595 ≈ 7.087.

The value of E(Cmax) measured using a million samples is approximately

6.735 so in this case, the AD function overestimates the expected delay

caused by precedence relations. One could decrease the value of α for a

more accurate approximation for this schedule, though this may cause un-

derestimation of E(Cmax) for other schedules when the same value of α is

used.

4.4 Approximating completion times using dynamic

programming (DM)

A large number of notations are used and introduced in this section. In order

to clarify the notations used to define the objective function introduced in

this section, a summary of the notations is given in Table 4.1.

4.4.1 Shortcomings of arctan delay

Though the AD function incorporates more elements of expected delay

caused by precedence relations than the maximization of fixations, it is still

a rather rough estimate. In Figure 4.3, two example schedules are illustrated

which are equally evaluated by the AD function, since sj − si − qij is equal

in both schedules for all precedence relations. However, E(Cmax) differs sig-

nificantly for these schedules. In Figure 4.3a, S4 is equal to C2 if S3 ≤ C2,

whereas S4 is always equal to S3 in Figure 4.3b. Therefore, expected delay

occurs exclusively in Figure 4.3a.

33

Terminology Definition and explanation

Skj

An approximation of j using mp(j) and the first
k precedence relations in the given ordering of
pp(j).

δ

Si+qij−Sk−1
j for precedence relation (i, j); used

in order to approximate Skj . Measures the differ-
ence between Si + qij and the previous approxi-
mation of Sj .

∆
Pr(δ > 0) ·E(δ|δ > 0); measures expected delay
caused by i ∈ pp(j) relative to Sk−1

j .

D(x)
A PDF following the distribution of D with
mean x, e.g. D(4) is equal to Pj for a job j
such that pj = 4.

D(i→ j)
D(µ(Sk−1

j) − µ(Si)), i.e. the PDF of the time
between the start of j and the start of i.

D<x
The partial distribution of D where the domain
of D is restricted such that Pr(D<x ≥ x) = 0.
In other words, the PDF of D truncated after x.

Table 4.1: Notations used to define the DM function

The AD function does not take precedence relations on the same machine

into account. However, in both figures, the precedence relation (1, 3) causes

an expected delay of j3, since S3 = max(1, C1) now and E(S3) > 1 as a

consequence. Additionally, in Figure 4.3a, it is more likely that j3 causes

delay of j5 compared to Figure 4.3b. Moreover, the expected delay of j3 and

j4 in Figure 4.3a causes extra expected delay of j5 when delay is propagated.

We also observe that delay propagation of j3 has more effect in Figure 4.3a

than in Figure 4.3b, since there is idle time between j3 and j5 in Figure 4.3b.

Finally, we observe that the expected delay of j5 will be greater than the

expected delay of j3, since more uncertainty is involved in the starting and

completion time of the predecessors of j5. We can now conclude that in order

to accurately approximate slack caused by a precedence relation (i, j) ∈ P ,

the expected delay of Si, the expected completion time of mp(j) and the

PDFs of Cmp(j) and Si should also be taken into account and it may also be

important to take precedence relations on the same machine into account.

4.4.2 Dynamic makespan framework

If we assume that the PDF of each job is normally distributed, similar to the

assumption of the GM and IGM functions, we can approximate the PDF

of Sj and Cj by aggregating approximated PDFs of the predecessors of j

34

(a) (b)

Figure 4.3: Two deterministic instances of example schedules with 5 jobs,
2 machines and 3 precedence relations (j1, j3) with q1,3 = 1, (j3, j4) with
q3,4 = 0 and (j4, j5) with q4,5 = 2. In schedule (b), job 2 is removed and
p3 = 1, whereas p3 = 2 in (a). All jobs have rj = 0.

using the central limit theorem. Since the PDF of Sj depends on rj , Cmp(j)
and Si for all i ∈ pp(j), it can be computed as follows:

Sj = max(rj , Cmp(j),maxi∈pp(j)(Si + qij))

Obviously, we have Cj = Sj + Pj . Non-existent values are replaced by 0

in the equation (e.g. Cmp(j) = 0 when j is the first job on the machine). In

order to compute each Sj and Cj , the values for Cmp(j) and all Si for i ∈ pp(j)
should be known. Therefore, Sj and Cj are computed for jobs in topological

ordering from the graph representation introduced in Section 1.1.1. When

the PDFs of all jobs are known, we can compute their expected maximum

with the functions introduced in Section 4.2. Since dynamic programming

is used in order to compute Sj and Cj , we denote this objective function as

the dynamic makespan (DM) function.

Since we have assumed that all these PDFs are normally distributed, we

can approximate Sj similar to the approximation of E(Cmax) with the IGM

function:

For readability, let i = ik. We order the precedence relations such that

i1 = mp(j) if (mp(j), j) ∈ pp(j) and the precedence relations (i, j) for which

θ(i) = θ(j) are handled before the precedence relations for which θ(i) 6= θ(j).

An explanation for this specific ordering is given in Section 4.4.3 Now, when

we assume all Skj are normally distributed, the approximation of Sj becomes

a series of maximum approximations between pairs of normal distributions.

For max(rj , S
|pp(j)|
j), we have that rj = N (rj , 0) is independent of S

|pp(j)|
j .

35

Algorithm 4 Sj computation for dynamic makespan

Precondition: Cmp(j) (optional); ordered set of i ∈ pp(j): {i1, . . . , i|pp(j)|},
∀i ∈ pp(j) : µ(Si), σ

2(Si)

1: if j is the first job on its machine then
2: S0

j ← 0
3: else
4: S0

j ← Cmp(j)

5: for k ∈ {1, . . . , |pp(j)|} do
6: Skj ← max(Sk−1

j , Sik + qikj)

return max(rj , S
|pp(j)|
j)

Furthermore, when θ(i) 6= θ(j), we assume that Si and Sk−1
j are independent

in order to save computation time. Therefore, we can use the approxima-

tion of max(D1, D2) presented in Section 4.1.1 for these two cases using

ρ = 0. Note that the accuracy of the DM function can be improved by

reasoning that Si and Sk−1
j are dependent in some way, at the expense of

run time. Since dependency assumptions of Si and Sk−1
j can effectively be

made when θ(i) = θ(j), the computation of max(Si + qij , S
k−1
j) becomes

more complicated in that case.

4.4.3 Computation of max(Si + qij, S
k−1
j) when θ(i) = θ(j)

Since the correlation between Si and Sk−1
j is unknown when θ(i) = θ(j),

we will use the max(D1, D2) approximation presented in Section 4.1.2. In

order to do this, it remains to compute δ. Recall that all Si and Cmp(j)
are known since all Sj are computed in topological ordering of the graph

representation. For this computation, we distinguish two cases:

• mp(j) = i. Since i1 = mp(j), we have Sk−1
j = Cmp(j) and Cmp(j)−Si =

Pi so that δkj = qij − Pi and hence, δkj is of the same probability

distribution class as D. Note that this assumption cannot be made

when mp(j) 6= i1 since then, the PDF of Sk−1
j depends on more than

Cmp(j) and Sk−1
j − Si 6= Pi. Since δ may not be normally distributed

now, we may have to compute Pr(δ > 0) and E(δ|δ > 0) differently.

The computation of these values when D is not normally distributed

is given in Section 4.4.4.

• mp(j) 6= i. Since Skj computations for θi = θj are performed first, we

assume that Sk−1
j − Si = Pi + . . . + Pmp(j) so that the variance of δij

only depends on the variance of processing times of jobs between i and

36

j. Note that when Sk−1
j is computed using precedence predecessors

on different machines, the dependence between Sk−1
j and Si becomes

much weaker in general. Now, we can approximate δ in two different

ways.

If we assume that Pi + . . . + Pmp(j) is normally distributed, we have

µ(δij) = µ(Si) + qij −µ(Sk−1
j) and σ2(δkj) = σ2(Pi) + . . .+ σ2(Pmp(j)).

Alternatively, δkj could be expressed using the same PDF class as D.

Let D(x) be the PDF generated from D with mean x, e.g. Pj = D(pj).

Let D(i → j) = D(µ(Sk−1
j) − µ(Si)), i.e. the aggregated PDF of the

jobs between i and j Now, if we assume that Pi+ . . .+Pmp(j) = D(i→
j), then Sk−1

j − Si = D(i→ j) so that δ = qij −D(i→ j).

Since summing PDFs of jobs reduces the variance relative to the mean,

D(i→ j) will have a significantly greater variance than the real PDF

of Pi+. . .+Pmp(j). As a consequence, assuming Cmp(j)−Si = D(i→ j)

may be more inaccurate than assuming Pi + . . . + Pmp(j) is normally

distributed, especially when Cmp(j)−Ci is large. Therefore, we choose

the expression where δ is normally distributed here.

4.4.4 Calculating Pr(δ > 0) and E(δ|δ > 0) when δ is not
normally distributed

Let δ = qij − Pi. First, we rewrite the expression Pr(δ > 0).

Pr(δ > 0) = Pr(qij − Pi > 0)

= Pr(qij > Pi)

= Pr(Pi < qij)

(4.11)

In order to compute Pr(δ > 0) and E(δ|δ > 0), we compute Pr(Pi < qij)

and E(Pi|Pi < qij).

In the experiments we assume that D is a uniform distribution, a normal

distribution, an exponential distribution or an Erlang distribution. If D is

normally distributed, E(δ|δ > 0) can be directly computed as described in

Section 4.1.2, using µδ = qij − pi and σ2
δ = σ2(Pi). For the other distri-

butions, Pr(Pi < qij) can be computed using the CDF of D parametrized

with qij . Let E(P
<qij
i) = E(Pi|Pi < qij) for convenience. We explain how

E(P
<qij
i) is calculated using P

<qij
i for each distribution.

Uniform distribution Consider the case that Pi is uniformly distributed

with lower bound a and upper bound b, e.g. a = 0.8 · pi and b = 1.2 · pi. In

order to compute E(P
<qij
i), we distinguish three cases:

37

• a ≥ qij : now, the entire range from a to b is not included in P
<qij
i .

Therefore, Pr(Pi < qij) = 0 and the value of E(P
<qij
i) becomes irrel-

evant.

• a < qij and b ≥ qij : since Pi is truncated after qij , µ(P
<qij
i) is the

mean of a and qij , i.e.
a+qij

2 .

• a < qij and b < qij : now, the mean of P
<qij
i is equal to the mean of

Pi which is a+b
2 .

Exponential distribution Let λ denote the mean of Pi. As stated and

proven by Olive (2008), if Y ∼ TEXP (λ, b = kλ) for truncation point b,

then E(Y) = λ(1−(k+e)e−k

1−e−k). Therefore, if k = qij/λ, we have

E(P
<qij
i) = λ(

1− (k + 1)e−k

1− e−k
)

Erlang distribution Unfortunately, we have not found a way to easily

compute E(P
<qij
i) exactly. A naive way to approximate this value is by

resorting to a caching table T containing several pairs of (x,E(P<xi) and

finding the entry in T such that x is as near as possible to qij . A huge

drawback of this approach is that a new table would need to be generated

for every distinct Pi. Let y = qij/pi. In order to improve this approach,

we note that E(P
<qij
i) = pi · E(D(1)<y). Now, we can resort to a caching

table T containing several pairs of (x,E(D(1)<x)) instead, only requiring a

distinct table T for each value of k in an Erlang-k distribution. Furthermore,

to improve precision, we look up the greatest smaller entry and the smallest

greater entry in T relative to y instead of looking up the entry x such

that x is as near as possible to y. To be precise, we look up two entries

(a,E(D(1)<a)) ∈ T and (b, E(D(1)<b)) ∈ T such that a ≤ y ≤ b and there

is no entry (x,E(D(1)<x)) ∈ T such that a < x < y or y < x < b. First,

suppose there exists no such b, that is, y is greater than the greatest key

of T . In this case, we assume E(D(1)<y) ≈ 1, since then, the truncated

mean of the Erlang distribution approaches the mean of the whole Erlang

distribution. Otherwise, we assume that E(D(1)<y) is a linear combination

of E(D(1)<a) and E(D(1)<b). Suppose y = c · a + (1 − c) · b for some

0 ≤ c ≤ 1. Now, we have

E(P
<qij
i) = pi · E(D(1)<y)

≈ pi · (c · E(D(1)<a) + (1− c) · E(D(1)<b))
(4.12)

38

When the amount of entries in T and the upper bound of b is large

enough, this approach should give a very efficient and accurate approxima-

tion of E(P
<qij
i) when D is an Erlang distribution.

4.4.5 An illustrative example

Consider the schedule presented in Figure 4.1. Suppose D is a 4-Erlang

distribution so that σ(D) = 0.5. In this example, we only compute the

approximation of S2
5 and assume the required approximated PDFs of S2, C2

and S4 have been precomputed as such:

µ(S2) ≈ 1.199;σ2(S2) = 0.292

µ(C2) ≈ 4.199;σ2(C2) = 2.335

µ(S4) ≈ 4.335;σ2(S4) = 0.789

First, we order the precedence relations such that i1 = j2 and i2 = j4. We

start with S0
5 = C2 ≈ N (4.199, 2.335). Since j2 = mp(5), we approximate

S1
5 using Section 4.1.2 and δ = q25 − P2 = 3 − D(3). We have Pr(δ >

0) = Pr(Pi < qij) = Pr(D(3) < 3) ≈ 0.567. To approximate µ(P
<qij
i), we

have y = qij/µ(Pi) = 1. Since D is an Erlang distribution, there is no easy

way to compute µ(D(i −→ j)) exactly. Therefore, we look up the entries

(a, µ(D(1)<a)) ∈ T and (b, µ(D(1)<b)) ∈ T in the caching table T so that

a ≤ y ≤ b and there exists no entry (x, µ(D(1)<x)) ∈ T such that a < x < y

or y < x < b. Suppose a = 0.99 and b = 1.02, so we find the entries

(0.99, 0.6516) and (1.02, 0.6656). We have y = 2
3a+ (1− 2

3)b, therefore

µ(D(3)<3) = µ(D(3)) · µ(D(1)<1) ≈ 3 · (2

3
· 0.6516 +

1

3
· 0.6656) = 1.969

It follows that E(δ|δ > 0) ≈ 3 − 1.969 ≈ 1.031 and therefore, ∆ =

Pr(δ > 0) · E(δ|δ > 0) ≈ 0.567 · 1.031 ≈ 0.585 so that

µ(S1
5) = µ(S0

5) + ∆

≈ 4.199 + 0.585 ≈ 4.784
(4.13)

Furthermore, we have

σ2(S1
5) = Pr(δ > 0) · σ2(S2) + Pr(δ ≤ 0) · σ2(C2)

≈ 0.567 · 0.292 + 0.433 · 2.335 ≈ 1.061
(4.14)

39

Now, we incorporate the precedence relation (4, 5) to obtain S2
5 . We

have θ(4) 6= θ(5). Using Section 4.1.1, ρ = 0, D1 = S1
5 = N (4.784, 1.061)

and D2 = S4 + q45 = N (4.335, 0.789), we have θ =
√
σ2

1 + σ2
2 − 0 ≈√

1.061 + 0.789 ≈ 1.36 and µ1−µ2
θ ≈ 4.784−4.335

1.36 ≈ 0.33. Now, we obtain

E(X) ≈ 4.784 · Φ(0.33) + 4.335 · Φ(−0.33) + 1.36 · φ(0.33)

≈ 4.784 · 0.629 + 4.335 · 0.371 + 1.36 · 0.378 ≈ 5.131

E(X2) ≈ (1.061 + 4.7842) · 0.629 + (0.789 + 4.3352) · 0.371 + (4.784 + 4.335) · 1.36 · 0.378

≈ 27.02

σ2(X) = E(X2)− E(X)2 ≈ 27.02− 5.1312 ≈ 0.683

(4.15)

To conclude, we obtain S2
5 = N (5.131, 0.683).

40

Chapter 5

Experiments and results

In this chapter, we compare the algorithms presented in the previous chap-

ters by running them on a set of problem instances. In the first section, we

present the problem instances and settings. In order to properly compare

these algorithms, we present experimental results to find the right param-

eters in the second section. Using these parameters, we perform the final

experiments in the third section.

5.1 Problem instances and general setup

The problem instances are randomly generated similar to the problem in-

stances used by Van Roermund (2013). Instances are titled as nj-rr-mm,

e.g. 30j-15r-4m is a problem instance with 30 jobs, 15 relations and 4 ma-

chines. The processing times pj are natural numbers between 1 and 20 and

the release dates rj are natural numbers between 0 and bn/2c. The prece-

dence relations are randomly selected between pairs of jobs such that no

cycle occurs in G and each qij is a natural number between 0 and pi.

5.1.1 Distributions

For the experiments, we use the following four probability distributions for

D.

• The uniform distribution [0.8×pj , 1.2×pj] or Uniform(20) shorthand,

where 20 denotes the offset between pj and the distribution limits in

terms of percentage of pj .

• The normal distribution µ(Pj) = pj , σ(Pj) = 0.3 × pj or Normal(30)

shorthand, where 30 denotes the standard deviation in terms of per-

centage of pj .

41

• The Erlang distribution with shape parameter k = 4 and rate param-

eter λ = 4/pj or 4-Erlang shorthand.

• The exponential distribution with λ = 1/pj .

For the parameter experiments, we only use the Uniform(20) and expo-

nential distributions, since these are the most diverse. For the final experi-

ments, we use all distributions.

5.1.2 General set-up

All experiments are run using ILS with a VND subroutine. We use the notion

of ILS(x) to express that we perform x perturbations in an ILS algorithm.

Note that ILS(0) denotes a single VND run. To approximate E(Cmax) after

(part of) a run, we generate a large amount of samples and take the average

makespan of these samples. In the experiments, we use 10,000 samples

after a VND subroutine of the ILS algorithm in order to decide whether the

ILS algorithm continues with the current solution or the previously found

best solution. The same 10,000 samples are used throughout the entire ILS

run after each perturbation, effectively applying Common Random Numbers

to minimize comparison bias as explained by Kelton and Law (2000). To

approximate the quality of the final schedule, 100,000 samples are used.

These samples are preserved throughout all experiments within a problem

instance to guarantee a fair comparison. For result sampling, we use the

neighbourhood order 1-move, 2-move, 2-swap as described in Section 3.5.2

and for approximation objective functions, we use the neighbourhood order

1-move, 2-swap, 2-move.

5.2 Parameter experiments

In order to find the right parameters, we run multiple experiments for one

or more problem instances while varying a single parameter and choose

either the best performing parameter or a parameter value with a good

performance/run time ratio. For each parameter experiment, the default

values of the other parameter experiments are used unless otherwise stated.

The distributions D = Uniform(20) and D = Exponential are used to

enhance comparison variety. We repeat each experiment 10 to 30 times to

improve accuracy, that is, we run each experiment 10 to 30 times using a

different random seed every run. For most experiments, we only use small

problem instances with 30 jobs, since we assume that for most experiments,

similar conclusions can be drawn from larger problem instances when the

amount of jobs, relations and machines are scaled up linearly. However, to

42

maximally support our conclusions, the problem instances are picked to be

as diverse as possible in terms of used distribution D and values of r and m.

5.2.1 Replacement of samples in result sampling

Recall that in Section 3.1, we stated that we do not replace samples in a

VND subroutine for result sampling. To support this decision, we compare

sampling with no sample replacement (noReplace), sampling with sample

replacement after every improvement (replace) and sampling with sample

replacement after every improvement and cutoff sampling (cutoff). The

amount of samples used is denoted in the legend as the number behind

the sampling algorithm, e.g. noReplace 100 denotes that samples are not

replaced after every improvement and 100 samples are used. For cutoff

sampling, we eliminate 20% of the samples with greatest cmax and 30%

of the samples with smallest cmax, effectively eliminating half of the sam-

ples. Therefore, for cutoff sampling, the presented amount of samples is

the amount of samples after cutoff sampling is performed, e.g. cutoff 100

denotes that originally, 200 samples are used but 100 samples are left over

after performing cutoff sampling. Since the replace and cutoff algorithms

do not converge, we stop when we have found 100 improvements. It gener-

ally takes 20-80 improvements to find a local optimum for noReplace. The

problem is run 30 times using a 30j-40r-5m problem instance and ILS(0)

is used. After each schedule improvement (according to the used objective

function for approximating E(Cmax)), the quality of a schedule is measured

by running the schedule with 30,000 samples for the exponential distribution

and 10,000 samples for the uniform distribution.

In Figure 5.1, the performance of noReplace, replace and cutoff is shown

after a certain percentage of total improvements is found. In Figure 5.1a, the

exponential distribution is used and in Figure 5.1b, the uniform distribution

is used. We have chosen to use percentage of total improvements instead of

the absolute amount of total improvements, since the amount of improve-

ments found before the algorithm stops may vary significantly for noReplace

and consequently, the results will be inaccurate for the largest amount of im-

provements since only few runs reach that amount of improvements. From

Figure 5.1a, it becomes apparent that after the maximum percentage of

improvements, noReplace clearly performs better than the other sampling

algorithms with the same amount of samples used. Furthermore, cutoff has

the worst performance. From Figure 5.1a and Figure 5.1b, it can be seen

that no significant improvement is found after finding ±50 improvements for

replace and cutoff. Since the uniform distribution with 20% offset is used in

Figure 5.1b, fewer samples are used than for Figure 5.1a, since less wildly

43

distributed samples require fewer samples for accurate E(Cmax) approxima-

tion. In Figure 5.1b, the performance difference is much less obvious even

though fewer samples are used and 30 runs have been performed. Cutoff

sampling still seems to perform slightly worse, but noReplace and replace

seem to be nearly as effective.

For noReplace, it should be noted that even though the found local

minimum is overfit on the used set of 30 to 1000 samples, the schedule quality

still consistently improves on the independent set of 30000 or 10000 samples

even after more than 80% of improvements are found, especially when D =

Exponential and 1000 samples are used. Since the final improvements will

often not be found when only using a single neighbourhood instead of VND,

we can conclude that for RPMS with noReplace result sampling, VND is

significantly more effective than using a single neighbourhood when many

samples are used.

(a) D = Exponential (b) D = Uniform(20)

Figure 5.1: The performance of various result sampling algorithms showing
the average objective found after x% of improvements is found before the
VND subroutine stops.

Figure 5.2 shows the run time needed to find the solution for the 30 best

found solutions for each algorithm used, where the exponential distribution

is used in Figure 5.2a and the uniform distribution is used in Figure 5.2b.

From Figure 5.2, it can be seen that the run time of the result sampling

algorithms is similar when the same amount of samples is used. The run

time variance is larger for noReplace than for the other algorithms, since

the amount of improvements found by noReplace before finding a local op-

timum may vary. From the Pareto frontier in Figure 5.2a, it can be seen

44

that noReplace is slightly more effective than the other algorithms. In Fig-

ure 5.2b, there is no significant performance difference, however it should

be noted that noReplace with 100 samples is generally faster than the other

algorithms, whereas the schedule quality is only slightly worse. Note that

horizontal sequences of green and blue points in Figure 5.2b appear when

the best solution is found multiple times in a single run.

(a) D = Exponential (b) D = Uniform(20)

Figure 5.2: The value of the best solution found and the time needed to find
this solution for each single run.

From Figure 5.1 and Figure 5.2, we can conclude that noReplace is the

most effective algorithm for result sampling. Therefore, we choose to use

noReplace for result sampling in the next experiments.

5.2.2 VND stop criterion

Recall that the VND subroutine is stopped when no improvement is found

after a certain amount of neighbourhood moves is performed. When too few

moves are performed, the VND subroutine stops while significant improve-

ments can be made without using much more time. When too many moves

are performed, much time will be used only to find minor improvements or

no improvements at all. A good maximum amount of neighbourhood moves

should find a solution that is nearly as good as when the neighbourhood

is completely exhausted, taking significantly less time. Recall from Sec-

tion 2.3.1 that l denotes the maximum amount of neighbours investigated

in the VND subroutine in order to find a single schedule improvement. To

find a good value for l, we run a single VND instance where at most 50

45

up to 1000 neighbourhood moves are allowed to find an improvement. Fi-

nally, we compare the performance of the solutions found after attempting

at most these amount of moves to find a single improvement. Three differ-

ent problem instances are used and 30 runs are performed for each problem

instance. In order to perform 50 to 1000 moves without restarting runs, let

N1 . . . Nkmax denote the neighbourhoods used by the VND algorithm. Now,

the used VND algorithm is run as follows:

• Generate an initial solution S and let k = 1 and l = 50

• Repeat the following steps until l = 1000:

– Run a single VND step by investigating at most l neighbours per

neighbourhood for N1 . . . Nkmax , returning a potentially better

solution S′. Note that the search is stopped for a neighbourhood

before l neighbours have been found when that neighbourhood is

exhausted.

– If S′ is better than S, continue with S = S′ and k = 1.

– Otherwise, repetitively increment l and attempt a single neigh-

bourhood move for N1 . . . Nkmax until a better solution is found

or l = 1000. When a better solution S′ is found, output the tuple

of l and E(Cmax) of S′ for the current value of l and continue the

process with k = 1 and S = S′.

Figure 5.3a and Figure 5.3c show the average performance relative to the

solution found after an iteration limit 1000 of the RS 300 and DM algorithm

respectively after iteration limit 50 to 1000, using problem instances 30j-

15r-3m, 30j-15r-8m and 30j-70r-5m. Figure 5.3b and Figure 5.3d show the

times needed to find these solutions. We expect that a best reinsertion step

will have a significantly greater chance of finding a better solution than a

random reinsertion step. Therefore, fewer neighbourhood moves should be

necessary for result sampling algorithms than for objective functions to find

a good solution. From Figure 5.3a, it can be seen that most improvements

have been found after 300 neighbourhood move attempts have already been

performed without success, where the E(Cmax) value is only 0.1% off the

E(Cmax) value of the local optimum on average. However, from Figure 5.3c,

it can be seen that it may often take more than 300 neighbourhood moves

to find improvements, though most improvements have been found after 600

improvements, where the E(Cmax) value is less than 0.1% off the E(Cmax)

value of the local optimum on average. Therefore, we choose an iteration

limit of 300 for result sampling and 600 for objective functions such as DM

for problem instances with n = 30.

46

(a) Performance of RS 300 (b) Required time for RS 300

(c) Performance of DM (d) Required time for DM

Figure 5.3: Experimental results for the maximal amount of neighbourhood
moves (iterations) without finding an improvement before stopping the VND
subroutine. Schedules are compared with the best found schedule in terms of
percentage of objective, e.g. a schedule is ranked 102% when its measured
expected makespan is 51 and the expected makespan of the best found
schedule for that run is 50.

Figure 5.4 shows the relative performance of RS 300 (Figure 5.4a) and

DM (Figure 5.4b) for the 100j-100r-8m problem instance for an iteration

limit of 150 up to 3000. From Figure 5.4, it can be seen that the amount

of iterations required to find a relatively good solution roughly scales up

linearly with the value of n. Therefore, we choose an iteration limit of 1000

47

for result sampling and 2000 for objective functions for problem instances

with n = 100.

(a) Required time for RS 300 (b) Performance of DM

Figure 5.4: Experimental results for the maximal amount of neighbourhood
moves (iterations) without finding an improvement before stopping the VND
subroutine for problem instances with 100 jobs.

5.2.3 Perturbation step types

Recall that we introduced two perturbation step types: the k-swap operator

in Section 2.3.2 and sample replacement in Section 3.2. As explained in

Section 2.3.2, the perturbation step size should be chosen such that there is

a balance between intensification and diversification.

We have conducted experiments for the k-swap operator with 2 ≤ k ≤ 6

and perturbations where 10% to 100% of the samples are replaced. To make

a fair comparison between the experiments, we first run a single VND sub-

routine and use the same resulting solution for all experiments. Then, for

each experiment, a perturbation is performed and the VND subroutine is

run again. Finally, the improvement between the first and the second VND

subroutine is measured, which is 0 if the second solution is not better. In

total, 30 runs have been performed for each problem instance and result

sampling with 300 samples is used. The average improvement after running

VND again after the perturbation step is shown in Figure 5.5a and Fig-

ure 5.5b for the k-swap and the sample replacement perturbation operator

respectively. Figure 5.5c and Figure 5.5d show the average run time of the

second VND subroutine for the k-swap and the sample replacement operator

respectively. Even though 30 runs have been performed, it can be seen that

48

the results have a strong variance and are not very reliable as a consequence.

This is caused by the fact that many runs are wasted since no improvement

is found.

When comparing Figure 5.5a and Figure 5.5b, it becomes evident that

replacing samples is relatively less effective when D = Uniform(20) com-

pared to k-swap. For D = Exponential, it is not clear which perturbation

step type is the best. Sample replacement seems slightly more effective,

but this conclusion is unreliable because of the large variance. Furthermore,

the larger perturbation steps of both k-swap and sample replacement seem

most effective. The VND subroutine of sample replacement finishes signif-

icantly faster for problems with D = Uniform(20). Since the resulting

performance is also worse, it is likely that the perturbation steps of sample

replacement are too small, even when all samples are replaced. This holds

to a lesser degree when D = Exponential, since exponentially distributed

samples generally differ greatly. Since the k-swap perturbation operator is

generally more effective than sample replacement and k-swap is most effec-

tive for larger values of k, we choose the 5-swap operator for perturbation

steps.

5.2.4 Amount of perturbations

Similar to the stop criterion, we need to make a trade-off between sched-

ule quality and run time in order to choose the right amount of perturba-

tions. Performing many perturbations will cause the algorithm to run for

a very long time without much chance of improvement, whereas significant

improvement could be made in relatively little time when too few or no per-

turbations are performed. To find a balance between schedule quality and

run time, we perform 10 runs for various problem instances where at most

20 perturbations are performed, using RS 300. Each schedule found after a

VND round is compared to the best schedule after 20 perturbation and the

schedule quality offset is measured.

Figure 5.6 shows the average performance after 0 to 20 perturbations

relative to the solution found after 20 perturbations (Figure 5.6a) and the

time required to find these solutions (Figure 5.6b). From Figure 5.6a, it can

be seen that most improvement is made after the first few VND rounds.

Figure 5.6b shows that the required run time increases in a linear fashion.

For the final experiments, we present results after both 0 and 8 perturbations

for faster algorithms, since the schedules improves significantly less after

more than 8 perturbations. For the slower algorithms, RS 300 and RS

1000, we use at most 2 and 0 perturbations respectively in order to save run

time.

49

(a) Performance of k-swap (b) Performance of replacing samples

(c) Time required for VND subroutine af-
ter k-swap

(d) Time required for VND subroutine af-
ter replacing samples

Figure 5.5: Experimental results for various k-swap and sample replacement
perturbation steps. The best schedule found after a single perturbation step
is compared with the schedule found by the first VND subroutine and the
average relative improvement and run time of the second VND subroutine
is shown.

5.2.5 Experiments for makespan without precedence rela-
tions

In order to decide which objective function is used for approximating the

expected makespan without precedence relations for the final experiments,

we compare the GM (Section 4.2.2) function with various parameter settings

50

(a) (b)

Figure 5.6: Experimental results for the perturbation amount parameter.
The results are compared with the best found result after 20 perturbations.

with the AML (Section 4.2.1) and IGM (Section 4.2.3) functions. In order to

find an appropriate set of values x1 . . . xs for the GM function, we introduce

two new parameters d and b. Here, d denotes the difference between xk and

xk+1 relative to cmax, i.e. xk+1 − xk = cmax · d. Furthermore, b serves as

a lower bound for x1 and an upper bound for xs, i.e. x1 . . . xs are chosen

such that Pr(Cmax ≤ x1) ≥ b and Pr(Cmax ≤ xs) ≥ 1 − b for maximal s.

Let xc = cmax. Now, all xk where 1 ≤ k < c are computed by subtracting

cmax · d from xk+1 until Pr(Cmax ≤ xk−1) < b and all xk where c < k ≤ s

are computed by adding cmax · d to xk−1 until Pr(Cmax ≤ xk+1) > 1− b.
For each experiment, 30 runs of a single VND round are performed.

We only test problem instances with no precedence relations involved, since

the AML, IGM and GM functions ignore the presence of precedence re-

lations and consequently, adding precedence relations to the problem in-

stances may cause extra unnecessary result variance. Furthermore, we have

used D = Normal(30) instead of D = Uniform(20) in order to investigate

whether the IGM and GM functions perform relatively better on normal

distributions compared to the AML function, since then, no evaluation ac-

curacy is lost by assuming that Pj is normally distributed, contrary to the

case when Pj is exponentially distributed. Table 5.1 shows the average per-

formance and required run time for each of the objective functions for the

30j-0r-3m and 30j-0r-8m problem instances. From Table 5.1, it becomes

apparent the GM function performs slightly better for small d and b at the

cost of a significantly greater run time. Furthermore, it becomes apparent

51

that the run time depends on m for all objective functions except the AML

function. Even though 30 runs have been performed, the performance dif-

ference between the objective functions is unclear because of the relatively

large result variance. It can be seen that the IGM function is approximately

as effective as the GM 2/2 function, but significantly faster. Furthermore,

the IGM function seems slightly more effective than the AML function,

though the IGM function also seems slightly slower for large m. The ex-

pected decrease of accuracy of the IGM function for larger m cannot be

measured from the results, since the result variance is too large. Finally, no

significant improvement of accuracy can be measured for the IGM and GM

functions compared to the AML functions when D = Normal(30). Since

the IGM function has a good balance between effectiveness and required

run time, we choose to pair the IGM function with the AD function in the

final experiments.

Table 5.2 show the required run time for the AML, IGM and GM 2/2

functions when precedence relations are involved and the AD function is used

to approximate the expected delay caused by these precedence relations.

From Table 5.2, it can be seen that when precedence relations are involved,

the GM function is still significantly slower than the AML and IGM func-

tions. Consequently, we can conclude that approximating E(Cmax) without

precedence relations using GM requires much more run time than than ap-

proximating the slack caused by precedence relations using the AD function.

5.2.6 Choosing α and β for the arctan delay function

In order to choose the best α and β values for the AD function, we have run

the AD function paired with the IGM function using four different values

for α and β. For each experiments, 30 runs of a single VND round are

performed. The results are presented in Table 5.3. Except for the results

for α = 0.1, it can be seen that the variance of the results is larger than the

mutual result differences and the best parameter values cannot unanimously

be chosen. Therefore, we choose the middle ground, α = 0.5 and β = 0.3.

Note that there is no significant difference in run time, since the run time

of an AD function evaluation does not depend on α or β.

5.3 Final experiments

In this section, we describe the experiments for comparing the effectiveness

of result sampling (RS), the combination of the iterative gaussian makespan

and arctan delay (IGM/AD) function and the dynamic makespan (DM)

function. We first explain the experimental set-up and then we interpret

52

Method
Normal (30) Exponential

30j-0r-3m 30j-0r-8m 30j-0r-3m 30j-0r-8m
result time result time result time result time

AML 0.05 0.16 0.264 0.35 0.258 0.16 0.503 0.35
IGM 0.05 0.15 0.206 0.5 0.261 0.15 0.421 0.45
GM 10/5 0.261 0.39 0.363 1.92 0.327 0.47 0.453 3.16
GM 10/2 0.049 0.33 0.263 1.99 0.627 0.71 0.452 3.6
GM 10/1 0.172 0.44 0.18 2.18 0.293 0.75 0.435 4.32
GM 5/5 0.125 0.38 0.177 2.65 0.446 0.8 0.416 5.49
GM 5/2 0.04 0.39 0.209 3.14 0.626 1.38 0.402 6.28
GM 5/1 0.152 0.51 0.144 3.42 0.507 1.3 0.458 7.62
GM 2/5 0.048 0.62 0.205 5.46 0.268 1.28 0.387 12.7
GM 2/2 0.122 0.7 0.206 6.8 0.557 2.37 0.318 14.71
GM 2/1 0.063 0.72 0.164 7.28 0.638 3.51 0.395 16.8
GM 1/5 0.042 1.06 0.181 9.2 0.531 3.34 0.398 24.54
GM 1/2 0.053 1.22 0.169 12.17 0.353 3.64 0.36 27.31
GM 1/1 0.044 1.29 0.163 12.99 0.542 6.53 0.397 30.8

Table 5.1: Experimental results for various E(Cmax) measures without
precedence relations. Results show the average absolute offset from the
global best found solution for each problem instance. Time is in seconds.
GM (X/Y) denotes a GM run for d = X/100 and b = Y/100.

Measure time σ

AML 0.51 0.14
IGM 0.63 0.17
GM 2/2 9.03 3

Table 5.2: Averaged runtime in seconds for three E(Cmax) measures, includ-
ing run time deviation. The 30-30-5 problem instance and D = Exponential
is used to illustrate runtimes when precedence relations are involved.

the results.

5.3.1 Experimental set-up

The goal of these experiments is to find out which algorithms have the best

performance in various different circumstances. Theoretically, the optimal

or near-optimal solution can be found by using an extremely large amount

of samples (e.g. one million) and a large amount of large perturbation

steps or local search restarts. In practice however, this will take too much

time. Therefore, for a given problem instance of some kind, we want to find

53

30j-20r-5m 30j-70r-5m
D α\β 0.1 0.3 0.5 1 0.1 0.3 0.5 1

Uni

0.1 0.147 0.16 0.16 0.158 2.467 2.849 2.729 2.875
0.3 0.166 0.142 0.149 0.155 2.689 2.921 2.712 2.742
0.5 0.171 0.121 0.117 0.117 2.956 2.467 2.676 3.013
1 0.074 0.101 0.105 0.087 2.199 2.548 2.409 2.698

Exp

0.1 1.101 1.592 1.771 1.812 7.723 7.724 7.269 6.23
0.3 0.918 1 1.175 1.597 5.048 3.658 4.992 5.162
0.5 1.053 0.999 1.186 1.336 3.694 3.264 3.677 4.908
1 1.071 0.936 1.026 1.124 3.682 3.336 4.112 4.81

Table 5.3: Experimental results for E(Cmax) measures with precedence re-
lations where D = Uniform(20) (upper rows) and D = Exponential (lower
rows). Results show the average absolute offset from the global best found
solution for each problem instance. Rows denote tested alpha values and
probability distributions and columns denote tested problem instances and
beta values for the AD function.

out which algorithms have the best performance when run time is limited,

i.e. which algorithms represent the Pareto frontier of average run time and

average makespan.

The Pareto frontier may be different for different problem instances or

different processing time probability distributions. Therefore, we vary the

amount of relations and machines for a fixed amount of jobs in the experi-

ments and we use four different probability density functions for D. Larger

problem instances with 100 jobs are included as well to investigate the scal-

ability of the approaches. The experiments are repeated five times and the

average of the results of these runs is presented in the result tables.

In Appendix A, the average makespans and run times for all attempted

problem instances are presented. In order to identify the Pareto frontier,

we present the best performing algorithms and their corresponding aver-

age makespan with a given time constraint (e.g. less than 10 seconds) in

Appendix B. The deviations in terms of percentage for makespans for prob-

lem instances are presented in Appendix C. The algorithms IGM/AD, DM

and RS 100 are compared with the optimal solution found by Van Roer-

mund (2013) in Appendix D. For the experiments in Appendix D, 8 ILS

perturbations are performed and 10 runs instead of 5 are performed for

each experiment. In order to test the performance for larger qij , we have

run experiments with problem instances where each qij is exponentially dis-

tributed with an average of pi, contrary to the other problem instances used

throughout this thesis where qij is uniformly distributed between 0 and pi.

In Appendix E, the results and best performing algorithms within a time

54

constraint are shown for these problem instances. For these experiments, 12

ILS perturbations and 10 runs per experiment are performed, where only

problem instances with 30 jobs and 5 machines are used.

In addition to local search experiments, we compare the evaluations of

the objective functions presented in this thesis with an E(Cmax) measure

using 10000 samples on a large set of schedules S. We refer to the set of

objective functions presented in this thesis as F and the E(Cmax) approx-

imation using 10000 samples as f∗. In order to compare f ∈ F and f∗,

we measure the correlation of function evaluations on the schedules and a

measure which we refer to as the position offset. For the position offset, we

first order the schedules by increasing E(Cmax) using f and f∗. The most

accurate objective functions will order the schedules most similar to the or-

dering by f∗. For a schedule S ∈ S, the difference between the positional

index of S in the orderings by f and f∗ measures the error ES of f . Now,

the position offset is defined as follows:

100

|S|2
∑
S∈S

ES

The factor 100
|S|2 scales the total error so that the position offset represents

the average error in terms of percentage, relative to the amount of samples.

For instance, a position offset of 10 denotes that the average ES value is 10%

of the size of the ordering. The schedules are obtained separately for each

problem instance and D by performing a VND algorithm 30 times in a row

and gathering the schedules found after each improvement. Each VND run

is started from a random schedule in order to enhance diversity. Finally, we

dispose a quarter of the schedules with the worst f∗ value so that we keep

various schedules with nearly the same E(Cmax) value. The results of these

experiments are presented in Appendix F.

5.3.2 Comparison of the approaches

From the tables in Appendix A and Appendix B, it can be observed that

DM is much more effective than IGM/AD for nearly all problem instances,

though it only requires slightly more run time. The effectiveness of IGM/AD

declines for large r compared to result sampling, whereas DM still remains

roughly as effective as RS 100 though it is approximately 5 times as fast.

Furthermore, when the variance of D is small, e.g. when D = Uniform(20)

or D = Normal(30), we observe that RS 100 (8) often outperforms RS

300 (2) and RS 1000 (0), while using less run time. In other words, using

relatively few samples and many ILS perturbations is most effective when

the variance of D is small, wheras result sampling with many samples and

55

few perturbations is most effective when the variance of D is large.

From the table in Appendix D, it becomes apparent that the performance

of the fixation maximization algorithm of Van Roermund (2013) is roughly

comparable to the IGM/AD approach. Fixation maximization has the best

performance for small σ2(D) and small r, since Van Roermund (2013) en-

sures that cmax is minimized and this becomes relatively important when

the total expected delay caused by precedence relations is small. The local

search algorithm used in this research does not guarantee minimization of

cmax, although the approximation objective functions and result sampling

algorithms perform much better than fixation minization when expected de-

lay caused by precedence relations is large, i.e. for large r and large σ2(D).

This may be caused by the fact that the amount of fixated precedence re-

lations is a significantly less accurate measure for expected delay caused

by precedence relations compared to the objective functions used in this

research.

From the tables in Appendix E, it can be seen that the effectiveness of

IGM/AD declines even more strongly for large r compared to result sam-

pling for problem instances where qij is exponentially distributed with av-

erage pi. However, DM still competes with RS 100 for problem instances

with large r in terms of accuracy.

5.3.3 Run time

From the table in Appendix A, it becomes apparent that in terms of run

time, IGM/AD and DM are comparable to RS 30. The run time depends

roughly linearly on the amount of samples used. Furthermore, for problem

instances with large r, the run times of all objective functions become slightly

slower (up to a factor 2).

When comparing run times of problem instances with 100 jobs with

run times of problem instances with 30 jobs, we find that the run time of

IGM/AD and DM increases approximately 10-15 times, whereas the run

time of result sampling increases approximately 20-30 times. This may be

caused by the fact that not only the evaluation time of neighbourhood can-

didates increases, but also the neighbourhood size and the amount of im-

provements required to find a local optimum. Therefore, we expect that all

algorithms presented in this research scale with a factor of approximately

O(n3) in order to keep their performance. The smaller run time increase

of the IGM/AD and DM functions can be explained by the fact that ap-

proximation time of E(Cmax) when all Cmax(mk) are known depends on m

rather than n. Only the remainder of computations depend on r and n.

56

5.3.4 Result deviations

From the tables in Appendix C, it becomes apparent that the result variance

is inversely correlated with algorithm performance. In other words, the less

accurate algorithms generally have a greater result variance. It can also be

seen that result variance increases with r : n and m : n ratio. This may be

caused by the fact that the error accumulation increases when the r : n and

m : n ratio is large. Finally, we observe that result variance is significantly

greater when D has greater variance. This observation is mostly notable for

problem instances and algorithms where makespan variance is low.

5.3.5 Comparing objective function evaluations

From the tables in Appendix F, we can observe some performance difference

between result sampling and objective functions without simulation. Result

sampling is relatively most effective on problem instances with many prece-

dence relations, many machines and small σ(D), whereas objective functions

without simulation perform well on problem instances with few relations and

machines where D = Exponential. For the former problem instances, it can

be seen that DM performs similar to RS 100, IGM/AD performs similar

to RS 30 and cmax performs significantly worse than RS 30. For the latter

problem instances, it can be seen that DM performs similar to RS 1000,

IGM/AD performs similar to RS 300 and cmax performs similar to RS 100.

We also observe that the correlation and position offset are inversely corre-

lated for all problem instances and distributions. Furthermore, the IGM/AD

function approaches the performance of cmax for large r and it approaches

the performance of DM for small r, indicating that the AD function does

not approximate delay caused by precedence relations accurately when delay

propagation is frequent. For the evaluation times, we find that the DM and

IGM/AD functions are less than twice as slow as the cmax computation and

10-20 times faster than RS 30.

σ(D) strongly reduces the effectiveness for result sampling, since signif-

icantly more samples are required to represent the various outcomes. For

small r and D = Exponential, the single sample where Pj = pj may be

more representative for approximating E(Cmax) than 30 randomly gener-

ated samples. Result sampling is relatively most effective for large r, since

the various outcomes of delay propagation can be found effectively, especially

when many samples are used. The assumptions made for the objective func-

tions without simulation introduce a small error for each of the precedence

relations. The effect of error accumulation is significantly more present when

many precedence relations are involved, since errors propagate when delays

propagate. Nevertheless, result sampling is only more effective than DM

57

when allowing at least 30 times more run time in all tested cases, making

the DM function significantly more practical for approximation purposes in

general.

58

Chapter 6

Conclusion and further

research

In this chapter, we summarize the approaches and draw the most important

conclusions from the experiments. Finally, we present pointers for future

research in the context of minimizing E(Cmax) and maximizing robustness

in general.

6.1 Summary

In this thesis, we have studied the problem of maximizing the robustness in

machine scheduling. We have used the expected makespan of the Robust

Parallel Machine Scheduling (RPMS) problem as the performance measure

of robustness, where processing times are drawn from a probability distri-

bution. The expected makespan is optimized by using objective functions

for approximating E(Cmax) within a local search framework.

For the local search framework, we have used iterative local search (ILS)

with a variable neighbourhood descent (VND) subroutine. For VND, we

have consecutively used three neighbourhoods: the 1-move, 2-swap and 2-

move neighbourhoods. For the ILS perturbation step, we have used the

5-swap neighbourhood. Finally, we have examined valid neighbourhood

operations.

Based on the graph representation presented in Chapter 1, we have im-

plemented and compared two different types of objective functions. The

first type of approximation of expected makespan is called Result Sampling

(RS), which uses the average makespan of a set of stochastic samples. We

have found that replacement of samples during the local search is not ef-

fective for RPMS, since the local search does not converge and the power

of the different neighbourhoods is not combined. We have found that re-

59

placement of samples as a perturbation step is less effective than the k-swap

operator, since the operator is not disruptive enough in most cases. Fur-

thermore, we have prioritized job reinsertion by the amount of samples for

which the job is located on the critical path. Finally, we have applied an

|s| ·O(m+ n+ r) algorithm for finding the best reinsertion for a single job

for the 1-move operator and applied this algorithm for effectively finding

good 2-move operations.

The second type of approximation of expected makespan uses a single,

deterministic schedule where properties of stochastic schedules are captured

by applying probability theory. First, we have presented an approach which

combines the approximation of expected makespan without regarding prece-

dence relations, called the iterative Gaussian makespan (IGM) function,

with approximation of the slack time caused by precedence relations, called

the arctan delay (AD) function. Then, we have presented the dynamic

makespan (DM) function, which approximates the PDF of the starting and

completion time for each job using the PDFs of the starting and completion

times of its machine predecessors and precedence predecessors, using the

expected delay caused by precedence relations.

6.2 Conclusion

In the context of minimizing the expected makespan of the RPMS prob-

lem, we have compared the result sampling approach based on the work of

Van den Akker et al. (2013) with our presented approaches capturing prop-

erties of stochastic schedules in a single deterministic schedule. From the

local search experiments, we have found that the dynamic makespan (DM)

function finds better solutions than result sampling for up to 100 samples

for all problem instances while requiring significantly less run time. Fur-

thermore, the DM function performs significantly better than the paired

iterative Gaussian makespan and arctan delay IGM/AD function, though it

only requires slightly more run time, rendering the IGM/AD function use-

less in most cases. The DM function is more effective than the approach of

Van Roermund (2013) except for problem instances with few jobs and prece-

dence relations where the underlying probability distribution of processing

times (D) has small variance. The amount of performed perturbations is

relatively more effective when D has small variance, whereas the amount of

samples used by result sampling is more effective when D has large vari-

ance. In terms of function evaluation accuracy, the DM function is most

accurate when D has large variance and r is small and result sampling is

most accurate when D has small variance and r is large. We have also found

that the best performing algorithms generally have the smallest performance

60

variance when multiple runs are performed, especially when using many ILS

perturbations.

6.3 Further research

Within the context of maximizing robustness, many enhancements can be

made to improve the performance of the algorithms presented in this thesis,

to find new algorithms building upon these algorithms and to apply these

algorithms within a wider context than RPMS with E(Cmax) maximization.

6.3.1 Improving efficiency

Recall from Section 3.3 that job selection in local search for result sam-

pling is prioritized by the amount of critical paths it occurs on. We have

not presented a way to prioritize job selection for the objective functions

presented in Chapter 4. Selection of neighbourhood operations could be

prioritized using a heuristic. A simple prioritization could prefer to select

jobs on the critical path. The amount of fixations gained (or lost) by moving

the job to a particular machine could be used for prioritization, since the

amount of fixations is often correlated with the value of the used objective

function. Alternatively, we note that jobs with many descendants should

be scheduled as early as possible, whereas jobs with many ancestors should

be scheduled as late as possible. This notion can also be used in order to

find a prioritization of jobs. A more sophisticated heuristic would try to

prune neighbourhood operations by computing a lower bound for the ob-

jective function after moving a job to a certain position. The computation

of this lower bound should be significantly faster than the computation of

the entire objective function. If this lower bound exceeds the value of the

objective function for the current schedule, the operation could effectively

be pruned from the neighbourhood.

In addition to picking more effective operations first, computation time

can also be saved by means of caching. Random insertions can be sped

up slightly by caching the valid machine predecessors for each job, so they

do not have to be recomputed before each random insertion. Additionally,

the head and tail times of G−, presented in Section 3.4.1 can sometimes be

partially reused when new jobs j are attempted for best-reinsertions.

Unfortunately, the best reinsertion algorithm for result sampling is not

directly applicable for the objective functions without result sampling, since

their evaluation depends on more than head and tail times only. Never-

theless, partial computations may still be reusable. For the IGM function,

computation of the head and tail times may help in order to quickly com-

61

pute all Cmax(mk) values for the best reinsertion algorithm for local search.

Furthermore, E(Cmax) only needs partial recalculation for each attempted

reinsertion on the same machine. For the DM and AD function, the PDFs

of starting and completion times or expected delay values for jobs i can be

reused after reinsertion of a job j when there exists no path from j to i in

G both before removing j from G and after reinserting j into G.

6.3.2 Algorithm improvement

The quality of the algorithms presented in this thesis may be improved by

various means. For result sampling, we have used a set of random samples.

Especially when few samples are used, these samples may be biased so that

minimizing the average makespan of these samples may result in a much

more optimistic average makespan than the actual value of E(Cmax). Opti-

mization bias can be minimized by selecting samples such that they satisfy

a set of properties in order to enhance diversity and balance. An example of

reduction of optimization bias is cutoff sampling, presented in Section 3.1.

The DM function presented in Section 4.4 can be improved at the ex-

pense of run time. One of the most troublesome assumptions is that given

a job j and i ∈ pp(j), we assume that Si and Sk−1
j are independent. Depen-

dency of jobs causes overestimation of σ2(δij), since dependencies eliminate

a part of the variance of the difference between the PDF of Si and Sj . The

degree of dependency between i and j could be approximated for a more ac-

curate approximation of σ2(δij). Furthermore, instead of assuming that all

Sj are normally distributed, one could approximate the convolution of the

PDFs of predecessors using the work of Schaller and Temnov (2008) in the

general case and Bibinger (2013) for exponential distributions specifically.

This is especially important when D = Exponential, since the exponential

distribution and normal distribution differ strongly.

6.3.3 Other machine scheduling problems and objectives

In this thesis, we used the context of the robust parallel machine schedul-

ing problem with precedence relations between starting times and expected

makespan minimization as a measure for robustness. Although this is a

specific context, the RPMS problem is quite generic and therefore, the al-

gorithms presented in this thesis may also be effective on other parallel

machine scheduling problems such as job shop scheduling. The algorithms

should also still be effective when only a part of the jobs have uncertain

processing times or when processing times follow varying probability dis-

tributions. Although the best-insertion algorithm used for result sampling

may not be applicable for other objective functions than E(Cmax), many

62

algorithms presented in this thesis could be completely or partially reused

in order to optimize other objective functions.

6.3.4 Other notions of robustness

Another application of robustness maximization is the minimization of non-

punctuality, which is defined as follows. Within a problem instance, we want

to find a schedule S where Cmax is bounded by a maximum and as few jobs

as possible finish more than ∆ seconds later than planned in a stochastic

realisation of S. This objective function can be measured by using a large

amount of samples and the starting times of jobs within a schedule S can

be optimized by running an ILP. This notion of robustness can directly be

applied in the context of minimizing delay in public transport schedules.

63

Appendices

64

Appendix A

Final experiment results and

run times

The following tables show the absolute results (average makespan) and run

times in seconds for the final experiments described in Section 5.3. The

deviations of the results and run times are shown in Appendix C.

65

Method IGM/AD DM RS 30 RS 100 RS 300 RS 1000

Perturbations 0 5 0 5 0 5 0 5 0 2 0

30j-15r-4m

Uniform (20)
result 75.9 75.78 75.78 75.78 76.02 75.79 75.75 75.72 75.72 75.72 75.78

time 3.78 8.9 3.42 8.22 4.71 21 13.7 68.8 56.8 123 144

Normal (30)
result 81.67 81.67 81.8 81.64 81.98 81.83 81.82 81.78 81.7 81.68 81.74

time 3.74 8.7 3.58 9.03 4.91 22.3 14 73.5 46.2 126 147

Erlang (4)
result 88.88 88.83 88.93 88.79 89.76 89.19 89.33 88.95 88.89 88.87 88.85

time 6.47 11.5 6.13 12 6.34 22.6 15.2 78.4 41.6 121 178

Exponential
result 107.21 107.05 107.77 107.01 108.7 107.88 108.39 107.63 107.57 107.22 106.93

time 3.68 8.55 3.54 8.51 3.87 16.4 12.6 56.3 37.7 92.5 171

30j-30r-4m

Uniform (20)
result 77.44 77.37 77.39 77.37 77.47 77.37 77.43 77.37 77.38 77.37 77.38

time 3.71 9.9 3.83 10.4 5.57 27.9 18.2 86.9 49.4 138 233

Normal (30)
result 83.26 83.12 83.09 83.06 83.27 83.19 83.12 83.1 83.1 83.09 83.05

time 3.83 9.89 3.87 10.9 5.79 27.1 15.8 83.5 62.8 145 250

Erlang (4)
result 90.53 90.14 89.97 89.89 90.7 90.31 90.1 89.97 89.98 89.95 89.97

time 6.61 11.9 6.31 12.8 5.49 26.1 15.9 79.2 45.8 134 201

Exponential
result 108.91 108.11 108.11 107.79 109.29 108.87 108.82 107.82 107.93 107.8 107.88

time 3.68 9.35 3.75 10.1 4.59 22.4 11.4 64.3 40.2 118 186

30j-75r-4m

Uniform (20)
result 78.74 76.99 77.51 77.04 78.01 77.1 77.86 76.67 77.72 77.01 77.5

time 3.85 11.4 4.46 13.6 5.94 34.7 17.1 98.4 53 160 290

Normal (30)
result 85.5 84.79 84.35 83.76 85.42 83.76 84.24 83.73 84.4 84.16 84.27

time 3.71 11 4.83 15.2 7.29 35.9 27.3 122 46.3 158 235

Erlang (4)
result 94.71 94 94.59 93.23 94.55 93.25 94.16 92.64 93.17 92.93 93.12

time 6.55 13.9 6.93 16.3 7.62 33.1 27.8 110 80.4 165 296

Exponential
result 119.75 118.44 117.56 116.31 120.6 118.32 117.8 116.33 117.6 116.11 115.55

time 3.92 10.9 4.57 13.1 7.06 29.3 20.1 95.9 79.9 194 276

Table A.1: Processed results for the final experiments for 30-*-4 problem instances

66

Method IGM/AD DM RS 30 RS 100 RS 300 RS 1000

Perturbations 0 5 0 5 0 5 0 5 0 2 0

30j-15r-8m

Uniform (20)
result 41.44 41.36 41.45 41.36 41.49 41.4 41.56 41.33 41.47 41.35 41.41

time 3.86 9.42 3.67 8.88 4.63 19.5 14.7 78.8 42.5 118 213

Normal (30)
result 47.29 47.07 47.24 47.11 47.59 47.35 47.28 47.12 47.21 47.12 47.08

time 3.73 9.01 3.75 9.07 5.08 21.6 14.9 73 32.9 106 270

Erlang (4)
result 55.12 55.01 55.02 54.9 55.62 55.31 55.55 55.05 55.13 55.06 55.09

time 6.29 11.6 6.29 11.7 4.42 21.1 12.5 63.4 50 117 176

Exponential
result 75.21 74.81 74.78 74.74 76.65 76.13 75.55 75.23 75.21 74.96 74.73

time 3.76 8.99 3.57 8.3 3.91 16.9 11.5 48.6 29.6 93.7 235

30j-30r-8m

Uniform (20)
result 29.93 29.86 29.89 29.79 29.88 29.8 29.84 29.79 29.8 29.79 29.8

time 3.59 9.29 3.62 9.53 3.79 17.9 10.7 70.8 37.8 109 305

Normal (30)
result 33.57 33.38 33.33 33.23 33.47 33.34 33.34 33.28 33.36 33.26 33.29

time 3.65 9.24 4.23 11.3 5.27 25 15.5 69.1 71.7 170 231

Erlang (4)
result 38.8 38.75 38.64 38.51 38.79 38.72 38.64 38.61 38.57 38.53 38.57

time 6.34 11.6 6.48 13.1 6.3 21.2 13.8 69.2 48.4 144 192

Exponential
result 52.55 52.37 52.09 51.98 53.88 52.74 52.39 52.07 51.99 51.95 51.93

time 3.5 8.69 3.72 9.41 3.75 19.3 11.8 63.5 37.7 94.7 175

30j-75r-8m

Uniform (20)
result 50.11 49.66 49.54 49.52 49.58 49.54 49.53 49.52 49.53 49.52 49.53

time 4.21 12.4 4.57 13 2.78 11.6 6.06 27.7 15.6 40.4 87

Normal (30)
result 54.53 54.42 53 52.91 53.62 53.21 53.01 52.94 53.07 52.97 52.94

time 4.19 12.1 5.11 15.2 3.93 17.3 30.3 142 113 279 613

Erlang (4)
result 63.3 62.26 60.72 60.56 61.4 61.21 60.99 60.8 60.8 60.74 60.63

time 6.5 14.1 7.08 16 6.82 32.8 25.3 127 82.3 237 478

Exponential
result 84.79 84.26 81.96 81.72 84.57 83.09 82.52 82.09 82.09 81.92 81.65

time 4.1 11.1 4.64 12.7 7.3 31.5 22.5 105 77.5 168 418

Table A.2: Processed results for the final experiments for 30-*-8 problem instances

67

Method IGM/AD DM RS 30 RS 100 RS 300 RS 1000

Perturbations 0 5 0 5 0 5 0 5 0 2 0

100j-50r-6m

Uniform (20)
result 186.5 186.42 186.35 186.33 186.51 186.43 186.43 186.35 186.33 186.32 186.32

time 37.3 134 25.6 112 130 487 546 2166 1436 4248 5401

Normal (30)
result 198.37 198.29 197.83 197.8 198.29 198.03 197.94 197.89 197.83 197.81 197.75

time 33.7 120 31.9 143 80.1 404 388 1722 1487 3220 4388

Erlang (4)
result 212.78 212.69 211.57 211.49 212.85 212.26 211.88 211.7 211.45 211.44 211.41

time 42.5 128 43.9 162 88 370 299 1328 1744 3200 4818

Exponential
result 251.69 250.77 247.89 247.53 251.04 249.75 248.75 248.05 247.52 247.47 246.73

time 35.8 111 40.2 143 53.6 236 219 959 785 1654 4507

100j-100r-6m

Uniform (20)
result 173.43 173.32 173.24 173.23 173.31 173.28 173.3 173.22 173.22 173.21 173.22

time 48.3 182 31.5 144 134 548 606 2581 1764 4766 7901

Normal (30)
result 184.7 184.41 184.07 184.02 184.76 184.38 184.18 184.09 184.01 184 183.97

time 44.2 151 38.4 171 105 498 452 2052 1607 3644 5353

Erlang (4)
result 198.75 198.1 197.22 196.99 198.62 198.07 197.56 197.42 197.23 197.15 197.03

time 57 177 53.8 205 68.9 440 278 1651 1327 3445 6240

Exponential
result 236.82 235.27 232.37 232.3 238.77 236.28 234.99 233.75 232.66 232.45 231.27

time 57.1 187 49.4 167 66.8 290 227 1241 1292 2652 5724

100j-250r-6m

Uniform (20)
result 175.77 175.64 175.72 175.6 175.73 175.7 175.69 175.61 175.64 175.59 175.64

time 49 220 45.3 238 215 987 716 3392 2459 6541 7805

Normal (30)
result 187.52 187.31 187.09 186.79 187.94 187.41 187.29 186.96 186.94 186.83 186.87

time 52.6 210 79.8 338 170 729 845 3453 2759 6931 9849

Erlang (4)
result 202.6 201.92 201.87 200.93 204.02 202.53 201.87 201.63 201.53 201.34 201.03

time 78 234 118 402 141 663 697 3176 2023 5570 10219

Exponential
result 245.63 244.17 244.2 242.51 250.34 247.59 246.04 244.84 242.46 242.03 240.84

time 65.2 255 74.7 286 69.9 385 351 1750 2160 4588 7917

Table A.3: Processed results for the final experiments for 100-*-6 problem instances

68

Method IGM/AD DM RS 30 RS 100 RS 300 RS 1000

Perturbations 0 5 0 5 0 5 0 5 0 2 0

100j-50r-12m

Uniform (20)
result 95.52 95.33 95.44 95.33 95.56 95.5 95.46 95.32 95.34 95.3 95.29

time 37.1 141 29.4 116 118 449 365 1871 1761 4485 8184

Normal (30)
result 105.97 105.87 105.72 105.63 106.6 106.26 105.97 105.79 105.74 105.71 105.65

time 36.5 131 38 141 78.8 347 226 1470 1155 3442 7178

Erlang (4)
result 119.98 119.97 119.49 119.46 120.74 120.31 120.03 119.73 119.45 119.41 119.37

time 48.1 129 44.4 147 95.4 346 237 1225 1309 2809 5885

Exponential
result 157.1 156.67 155.54 155.38 159.31 158.02 157.69 156.45 155.81 155.75 155.28

time 41.1 142 35.5 129 58.9 213 177 800 985 1899 3678

100j-100r-12m

Uniform (20)
result 95.96 92.01 91.01 90.87 91.53 91.16 91.17 90.96 91.22 91.08 90.97

time 58.1 219 52.2 189 102 606 611 2619 2752 6399 9230

Normal (30)
result 104.2 102.06 101.42 101.21 102.32 101.82 101.96 101.58 101.52 101.36 101.33

time 53.4 191 55.5 191 115 470 387 1842 2475 4453 8219

Erlang (4)
result 119.14 116.81 115.53 115.35 117.66 116.92 116.52 115.95 115.94 115.76 115.51

time 57.5 194 61.3 203 65.6 341 324 1643 1653 3344 6671

Exponential
result 157.71 154.97 152.53 151.84 156.19 155.16 154.37 153.43 152.76 152.32 151.54

time 48.1 153 45.6 148 55 228 155 957 1107 2510 4749

100j-250r-12m

Uniform (20)
result 109.94 104.12 100.88 100.18 101.25 100.49 100.84 100.38 100.76 100.24 100.64

time 60.5 300 89.6 379 131 937 1238 4955 3994 9304 13979

Normal (30)
result 120.55 115.3 113.06 111.91 114.39 113.48 113.51 112.58 112.52 112.33 112.26

time 56.8 272 95.2 362 177 873 893 3693 4055 8190 10759

Erlang (4)
result 136.29 132.55 130.45 129.2 133.09 131.79 130.44 129.44 129.63 129.03 128.85

time 66.7 248 89.5 302 154 570 735 2246 2151 5585 12357

Exponential
result 181.19 178.21 174.72 172.79 181.33 178.51 176.8 175.37 173.85 173.55 172.49

time 65 232 75.9 242 90.8 421 435 1641 2081 3744 7744

Table A.4: Processed results for the final experiments for 100-*-12 problem instances

69

Appendix B

Limited run time

experiments

The following tables show the best performing algorithms when run time

is limited for the final experiments described in Section 5.3. The number

between the brackets in the methods (e.g. the 1 in DM (1)) denote the

amount of perturbations performed.

70

Time limit <10s <30s <100s overall

30j-15r-4m

Uniform (20)
method DM (7) DM (8) RS 300 (0) RS 300 (0)
result 75.74 75.72 75.72 75.72

Normal (30)
method DM (5) DM (8) DM (8) DM (8)
result 81.64 81.62 81.62 81.62

Erlang (4)
method IGM/AD (3) DM (7) DM (7) DM (7)
result 88.85 88.73 88.73 88.73

Exponential
method DM (4) DM (8) DM (8) DM (8)
result 107.01 106.9 106.9 106.9

30j-30r-4m

Uniform (20)
method DM (3) DM (7) DM (7) DM (7)
result 77.37 77.36 77.36 77.36

Normal (30)
method DM (4) DM (8) DM (8) RS 1000 (0)
result 83.06 83.06 83.06 83.05

Erlang (4)
method DM (2) DM (8) DM (8) DM (8)
result 89.91 89.89 89.89 89.89

Exponential
method DM (3) DM (8) DM (8) DM (8)
result 107.74 107.71 107.71 107.71

30j-75r-4m

Uniform (20)
method DM (2) DM (8) RS 100 (5) RS 100 (8)
result 77.24 76.85 76.67 76.65

Normal (30)
method DM (2) DM (8) DM (8) DM (8)
result 83.95 83.43 83.43 83.43

Erlang (4)
method DM (1) DM (8) RS 100 (4) RS 100 (8)
result 94.05 93.1 92.64 92.45

Exponential
method DM (3) DM (7) DM (7) RS 1000 (0)
result 116.79 116.07 116.07 115.55

30j-15r-8m

Uniform (20)
method DM (5) DM (8) RS 100 (7) RS 100 (7)
result 41.36 41.33 41.3 41.3

Normal (30)
method IGM/AD (5) IGM/AD (5) IGM/AD (5) IGM/AD (5)
result 47.07 47.07 47.07 47.07

Erlang (4)
method DM (3) DM (7) DM (7) DM (7)
result 54.9 54.89 54.89 54.89

Exponential
method DM (4) DM (4) DM (4) RS 1000 (0)
result 74.74 74.74 74.74 74.73

30j-30r-8m

Uniform (20)
method DM (5) RS 30 (7) RS 100 (6) RS 100 (6)
result 29.79 29.79 29.78 29.78

Normal (30)
method DM (4) DM (5) DM (5) DM (5)
result 33.24 33.23 33.23 33.23

Erlang (4)
method DM (2) DM (8) DM (8) DM (8)
result 38.54 38.49 38.49 38.49

Exponential
method DM (4) DM (8) DM (8) RS 1000 (0)
result 51.98 51.94 51.94 51.93

30j-75r-8m

Uniform (20)
method DM (3) RS 100 (5) RS 100 (5) RS 100 (5)
result 49.52 49.52 49.52 49.52

Normal (30)
method DM (2) DM (6) DM (6) DM (6)
result 52.95 52.9 52.9 52.9

Erlang (4)
method DM (1) DM (8) DM (8) DM (8)
result 60.59 60.55 60.55 60.55

Exponential
method DM (3) DM (5) DM (5) RS 1000 (0)
result 81.72 81.72 81.72 81.65

Table B.1: Best algorithms with limited run time for problem instances with 30 jobs

71

Time limit <300s <1000s <3000s overall

100j-50r-6m

Uniform (20)
method DM (6) DM (6) RS 300 (1) RS 1000 (0)
result 186.33 186.33 186.33 186.32

Normal (30)
method DM (6) DM (6) DM (6) RS 1000 (0)
result 197.8 197.8 197.8 197.75

Erlang (4)
method DM (7) DM (7) RS 300 (0) RS 1000 (0)
result 211.48 211.48 211.45 211.41

Exponential
method DM (8) DM (8) RS 300 (2) RS 1000 (0)
result 247.49 247.49 247.47 246.73

100j-100r-6m

Uniform (20)
method DM (4) DM (4) RS 300 (0) RS 300 (2)
result 173.23 173.23 173.22 173.21

Normal (30)
method DM (8) DM (8) RS 300 (1) RS 1000 (0)
result 184.01 184.01 184 183.97

Erlang (4)
method DM (5) DM (5) DM (5) DM (5)
result 196.99 196.99 196.99 196.99

Exponential
method DM (8) DM (8) DM (8) RS 1000 (0)
result 232.02 232.02 232.02 231.27

100j-250r-6m

Uniform (20)
method DM (4) DM (7) DM (7) DM (7)
result 175.6 175.59 175.59 175.59

Normal (30)
method DM (4) DM (8) DM (8) DM (8)
result 186.86 186.78 186.78 186.78

Erlang (4)
method DM (3) DM (8) DM (8) DM (8)
result 201.04 200.89 200.89 200.89

Exponential
method DM (4) DM (7) DM (7) RS 1000 (0)
result 242.51 241.93 241.93 240.84

100j-50r-12m

Uniform (20)
method IGM/AD (7) IGM/AD (7) RS 100 (8) RS 1000 (0)
result 95.32 95.32 95.29 95.29

Normal (30)
method DM (8) DM (8) DM (8) DM (8)
result 105.62 105.62 105.62 105.62

Erlang (4)
method DM (7) DM (7) DM (7) RS 1000 (0)
result 119.39 119.39 119.39 119.37

Exponential
method DM (6) DM (6) DM (6) RS 1000 (0)
result 155.37 155.37 155.37 155.28

100j-100r-12m

Uniform (20)
method DM (7) DM (7) DM (7) DM (7)
result 90.87 90.87 90.87 90.87

Normal (30)
method DM (8) DM (8) DM (8) DM (8)
result 101.14 101.14 101.14 101.14

Erlang (4)
method DM (8) DM (8) DM (8) DM (8)
result 115.32 115.32 115.32 115.32

Exponential
method DM (8) DM (8) DM (8) RS 1000 (0)
result 151.71 151.71 151.71 151.54

100j-250r-12m

Uniform (20)
method DM (3) DM (8) DM (8) DM (8)
result 100.23 100.1 100.1 100.1

Normal (30)
method DM (3) DM (7) DM (7) DM (7)
result 112.03 111.89 111.89 111.89

Erlang (4)
method DM (4) DM (8) DM (8) RS 1000 (0)
result 129.36 128.97 128.97 128.85

Exponential
method DM (5) DM (8) DM (8) DM (8)
result 172.79 172.33 172.33 172.33

Table B.2: Best algorithms with limited run time for problem instances with 100 jobs

72

Appendix C

Final experiment result and

run time deviations

The following table shows the relative makespan deviation for the final ex-

periments described in Section 5.3 in terms of percentage. For example,

when the average makespan is 80 and the relative deviation is 1.2, the ab-

solute makespan deviation is 80 · 1.2
100 = 0.96.

73

Method IGM/AD DM RS 30 RS 100 RS 300 RS 1000

Perturbations 0 5 0 5 0 5 0 5 0 2 0

30j-15r-4m
Uniform (20) 0.168 0.157 0.172 0.163 0.431 0.096 0.056 0.006 0.006 0.005 0.174

Exponential 0.298 0.239 0.395 0.196 1.14 0.464 0.704 0.284 0.528 0.238 0.281

30j-30r-4m
Uniform (20) 0.087 0.011 0.059 0.011 0.125 0.02 0.081 0.018 0.009 0.017 0.004

Exponential 0.492 0.145 0.211 0.214 0.626 0.258 0.51 0.194 0.174 0.205 0.121

30j-75r-4m
Uniform (20) 0.859 0.483 0.876 0.411 1 0.445 0.356 0.35 0.698 0.4 0.232

Exponential 1.09 0.527 0.576 0.502 1.29 0.446 0.744 0.385 0.627 0.613 0.393

30j-15r-8m
Uniform (20) 0.227 0.266 0.308 0.222 0.348 0.294 0.524 0.187 0.549 0.147 0.332

Exponential 0.219 0.172 0.17 0.085 0.655 0.602 0.352 0.407 0.157 0.29 0.119

30j-30r-8m
Uniform (20) 0.275 0.107 0.218 0.042 0.134 0.031 0.181 0.06 0.056 0.053 0.058

Exponential 0.267 0.123 0.111 0.229 1.97 1.31 0.714 0.2 0.205 0.174 0.265

30j-75r-8m
Uniform (20) 0.339 0.29 0.037 0.004 0.074 0.055 0.01 0.002 0.013 0.001 0.015

Exponential 0.379 0.427 0.297 0.105 0.464 0.293 0.762 0.296 0.304 0.143 0.192

100j-50r-6m
Uniform (20) 0.015 0.032 0.009 0.005 0.045 0.049 0.066 0.008 0.009 0.01 0.008

Exponential 0.246 0.196 0.217 0.198 0.618 0.081 0.255 0.173 0.053 0.047 0.03

100j-100r-6m
Uniform (20) 0.043 0.025 0.011 0.012 0.027 0.017 0.032 0.01 0.011 0.009 0.006

Exponential 0.239 0.124 0.136 0.096 0.482 0.416 0.392 0.192 0.18 0.129 0.168

100j-250r-6m
Uniform (20) 0.112 0.021 0.03 0.021 0.037 0.031 0.036 0.014 0.054 0.023 0.058

Exponential 0.401 0.181 0.335 0.296 0.752 0.56 0.398 0.306 0.284 0.378 0.347

100j-50r-12m
Uniform (20) 0.271 0.008 0.112 0.048 0.149 0.127 0.249 0.043 0.065 0.034 0.035

Exponential 0.105 0.128 0.192 0.128 0.913 0.67 0.233 0.152 0.249 0.265 0.165

100j-100r-12m
Uniform (20) 1.51 0.279 0.205 0.097 0.241 0.145 0.154 0.045 0.207 0.206 0.136

Exponential 1.04 0.323 0.313 0.202 0.818 0.752 0.362 0.491 0.307 0.251 0.232

100j-250r-12m
Uniform (20) 1.63 1.45 0.35 0.083 0.595 0.048 0.469 0.226 0.212 0.126 0.572

Exponential 1.01 0.59 0.422 0.052 1.15 0.651 0.094 0.354 0.262 0.2 0.101

Table C.1: Relative standard deviations for the final experiments in terms of percentage.

74

Appendix D

Comparison against fixation

maximization

The following table compares the average E(Cmax) of the schedules found by

the AGM/AD, DM and RS 100 algorithms with the optimal solution found

by Van Roermund (2013) (in the Fixation column) for problem instances

from Van Roermund (2013). The best results for each problem instance are

printed in bold type.

75

Method Fixation IGM/AD DM RS 100

20j-10r-5m

Uniform (20) 48.32 48.41 48.4 48.36

Normal (30) 53.84 53.89 53.71 53.88

Erlang (4) 60.92 61.02 60.85 61.04

Exponential 78.81 78.7 78.02 78.28

20j-30r-5m

Uniform (20) 54.32 54.35 54.35 54.35

Normal (30) 60.59 60.74 60.56 60.59

Erlang (4) 68.95 69.24 69 68.97

Exponential 90.24 89.93 89.04 89.7

30j-40r-2m

Uniform (20) 134.4 134.21 134.11 134.11

Normal (30) 140.25 138.89 138.23 138.25

Erlang (4) 147.91 145.1 142.9 143.01

Exponential 168.57 170.73 156.47 155.65

30j-40r-8m

Uniform (20) 64.47 64 64 64

Normal (30) 65.53 64.47 64.08 64.11

Erlang (4) 69.18 67.97 66.08 66.16

Exponential 85.7 84.51 80.98 81.39

40j-30r-5m

Uniform (20) 80.7 80.49 80.5 80.47

Normal (30) 87.96 87.37 87.25 87.29

Erlang (4) 97.38 96.09 95.71 95.8

Exponential 122.01 118.41 117.49 117.75

40j-50r-5m

Uniform (20) 95.81 95.36 95.32 95.34

Normal (30) 104.09 103.36 103.18 103.26

Erlang (4) 114.74 113.44 112.92 113.17

Exponential 142.47 139.27 138.06 138.54

76

Appendix E

Experimental results for

problem instances with large

qij

The following tables show the experimental results for the experiments where

qij is exponentially distributed with average pi for the final experiments de-

scribed in Section 5.3. Table E.1 shows the results and run times, similar

to the tables in Appendix A and Table E.2 shows the best performing algo-

rithms for limited run time, similar to the tables in Appendix B.

77

Method IGM/AD DM RS 30 RS 100 RS 300

Perturbations 0 8 0 8 0 8 0 8 0 3

30j-15r-5m

Uniform (20)
result 62.02 61.69 61.83 61.67 61.92 61.7 61.81 61.63 61.88 61.67

time 2.9 10.5 2.02 10.8 5.07 36 14.8 118 41.6 176

Exponential
result 95.71 95.49 95.1 95.01 97.09 95.98 95.88 95.49 95.53 95.28

time 2.84 11.3 1.88 10 3.81 25.9 9.57 79.3 28.3 117

30j-30r-5m

Uniform (20)
result 62.86 61.86 62.14 61.77 62.22 61.83 62.1 61.75 62.01 61.79

time 2.85 12 2.22 12.5 5.78 40.6 20.5 135 38.8 167

Exponential
result 99.56 97.85 98.59 97.73 100.34 99.03 98.37 97.68 98.28 97.68

time 2.91 12 1.99 11.9 5.24 29.5 13.9 93.1 32.3 112

30j-75r-5m

Uniform (20)
result 96.84 96.15 96.06 96.06 96.07 96.06 96.06 96.06 96.06 96.06

time 3 13.7 2.3 14.2 2.21 14 3.73 30.2 8.62 35.6

Exponential
result 131.94 128.48 122.87 121.68 124.56 123.17 122.62 121.75 121.99 121.84

time 3.12 14.6 2.71 16.9 5.24 36.9 18.5 138 52.4 201

Table E.1: Processed results for the experiments for problem instances with exponentially distributed qij

78

Time limit <10s <30s <100s overall

30j-15r-5m

Uniform (20)
method DM (7) DM (12) DM (12) RS 100 (12)

result 61.68 61.63 61.63 61.62

Exponential
method DM (6) DM (6) DM (6) DM (6)

result 95 95 95 95

30j-30r-5m

Uniform (20)
method DM (5) DM (12) DM (12) RS 100 (12)

result 61.83 61.71 61.71 61.69

Exponential
method DM (6) DM (11) DM (11) RS 100 (10)

result 97.85 97.66 97.66 97.64

30j-75r-5m

Uniform (20)
method DM (0) DM (0) DM (0) DM (0)

result 96.06 96.06 96.06 96.06

Exponential
method DM (4) DM (12) DM (12) DM (12)

result 122.09 121.64 121.64 121.64

Table E.2: Best algorithms with limited run time for problem instances with exponentially distributed qij

79

Appendix F

Experimental results for

function evaluations

The following tables show the experimental results for comparison of ob-

jective function evaluations on various schedules. A detailed explanation

of how these comparisons are performed is given in Section 5.3.1. The run

time denotes the total number of seconds required to compute the objective

function for all schedules.

80

Method cmax IGM/AD DM RS 30 RS 100 RS 300 RS 1000

30j-15r-4m

Uniform (20)

correlation 0.9482 0.9945 0.9967 0.9773 0.9934 0.9974 0.9991

position offset 9.52 1.91 1.6 9.75 4.59 2.81 1.84

time 0.157 0.223 0.101 1.65 5.53 17.4 62.8

Normal (30)

correlation 0.8359 0.9773 0.9847 0.776 0.9083 0.9729 0.9913

position offset 13.49 4.5 3.84 15.11 12.88 9.38 5.55

time 0.121 0.128 0.153 2.04 6.82 22.1 82

Erlang (4)

correlation 0.7856 0.9384 0.9816 0.6712 0.8397 0.9265 0.9808

position offset 15.71 8.24 3.57 21.32 14.94 9.87 7.36

time 0.133 0.144 0.217 2.17 7.18 23.2 84.8

Exponential

correlation 0.7109 0.8827 0.9705 0.4938 0.6043 0.8576 0.927

position offset 18.57 10.3 6.55 24.45 22.26 11.31 9.54

time 0.136 0.149 0.144 2.42 8.06 25.7 95.2

30j-30r-4m

Uniform (20)

correlation 0.9587 0.9956 0.9964 0.9774 0.994 0.9983 0.9995

position offset 8.56 1.66 1.5 6.83 3.42 2.09 1.34

time 0.089 0.097 0.11 1.59 5.29 17.1 61.3

Normal (30)

correlation 0.8764 0.9847 0.9816 0.8628 0.9473 0.9736 0.9931

position offset 12.14 3.75 2.91 13.2 7.94 6.78 3.6

time 0.104 0.122 0.161 1.92 6.4 20.6 74.8

Erlang (4)

correlation 0.8762 0.9711 0.9816 0.7364 0.8855 0.9613 0.9835

position offset 13.07 5.42 4.3 18.09 13.08 8.1 6.02

time 0.101 0.123 0.165 1.83 6.12 19.8 72.3

Exponential

correlation 0.7803 0.9444 0.9694 0.6532 0.816 0.9194 0.9795

position offset 15.28 7.56 5.38 18.2 13.94 9.24 6.34

time 0.113 0.116 0.135 1.89 6.26 20.1 72.9

Table F.1: Results for the function evaluation experiments (part 1)

81

Method cmax IGM/AD DM RS 30 RS 100 RS 300 RS 1000

30j-75r-4m

Uniform (20)

correlation 0.9815 0.9897 0.9978 0.9955 0.9968 0.9993 0.9998

position offset 4.66 3.16 1.39 2.9 1.16 0.85 0.48

time 0.186 0.174 0.226 2.85 9.53 29.8 101

Normal (30)

correlation 0.9416 0.9769 0.9926 0.9694 0.9899 0.9965 0.9988

position offset 8.04 4.48 2.6 6.35 3.28 2.42 1.21

time 0.136 0.158 0.262 2.53 8.47 26.7 90.3

Erlang (4)

correlation 0.8803 0.9388 0.9813 0.9031 0.9694 0.993 0.9969

position offset 10.64 7.61 3.25 9.4 5.84 3.81 2.04

time 0.128 0.146 0.237 2.34 7.86 24.7 83.4

Exponential

correlation 0.7456 0.8782 0.9752 0.7708 0.9238 0.9665 0.9906

position offset 16.3 11 5.04 15.84 7.87 7 3.58

time 0.138 0.159 0.206 2.6 8.66 27.4 92.7

30j-15r-8m

Uniform (20)

correlation 0.9609 0.9989 0.9998 0.9913 0.9977 0.9993 0.9997

position offset 6.51 1.24 0.42 3.15 1.94 0.99 0.71

time 0.139 0.125 0.1 1.77 5.88 18.7 76.7

Normal (30)

correlation 0.9187 0.9952 0.9991 0.9674 0.9871 0.9945 0.9977

position offset 8.5 2.54 1.17 8.85 5.16 3.42 1.73

time 0.119 0.135 0.122 1.88 6.29 20.1 75.7

Erlang (4)

correlation 0.8948 0.987 0.9958 0.8909 0.9413 0.9802 0.9928

position offset 10.27 4.16 2.27 16.2 9.63 6.6 3.66

time 0.103 0.135 0.118 1.77 5.9 18.6 76.2

Exponential

correlation 0.8388 0.9443 0.9839 0.6458 0.812 0.9448 0.9749

position offset 12.09 9.14 4.79 17.09 15.49 11.33 6.51

time 0.099 0.131 0.095 1.74 5.76 18.2 68.6

Table F.2: Results for the function evaluation experiments (part 2)

82

Method cmax IGM/AD DM RS 30 RS 100 RS 300 RS 1000

30j-30r-8m

Uniform (20)

correlation 0.964 0.9965 0.9995 0.9937 0.9971 0.9996 0.9998

position offset 12.03 3.16 0.95 2.52 2.19 1.11 0.59

time 0.116 0.143 0.128 2.11 6.97 22.6 84.5

Normal (30)

correlation 0.8939 0.9703 0.9969 0.9548 0.9886 0.9968 0.9985

position offset 15.12 8.75 2.26 8.57 5.31 2.62 1.89

time 0.142 0.153 0.169 2.38 7.97 25.5 101

Erlang (4)

correlation 0.8206 0.9397 0.9819 0.8844 0.9713 0.9883 0.9964

position offset 15.34 10.63 3.95 13.38 7.89 5.85 3.64

time 0.135 0.144 0.158 2.25 7.5 23.9 95

Exponential

correlation 0.5649 0.832 0.9577 0.6817 0.8846 0.9462 0.9863

position offset 25.9 16.07 9.87 21.76 15.17 14.22 7.24

time 0.136 0.152 0.125 2.18 7.25 23 91.3

30j-75r-8m

Uniform (20)

correlation 0.9567 0.9816 0.9935 0.9915 0.9976 0.9997 0.9996

position offset 18.12 10.39 3.52 4.62 2.12 2.04 1.58

time 0.213 0.249 0.226 3.84 12.8 41.1 146

Normal (30)

correlation 0.9072 0.9454 0.9912 0.979 0.9921 0.9979 0.9993

position offset 18.18 11.59 2.36 6.51 4.17 2.38 0.9

time 0.209 0.242 0.277 3.76 12.6 41.4 142

Erlang (4)

correlation 0.828 0.883 0.9619 0.9525 0.9793 0.9917 0.9982

position offset 16.99 11.74 3.03 9.32 5.92 3.73 2.3

time 0.194 0.257 0.264 3.64 12.1 39.2 142

Exponential

correlation 0.7033 0.8394 0.9805 0.8393 0.9418 0.9754 0.994

position offset 23.07 14.86 4.81 15.62 8.1 6.18 3.57

time 0.174 0.198 0.177 3.07 10.2 32.2 112

Table F.3: Results for the function evaluation experiments (part 3)

83

Bibliography

Bibinger, Markus (2013). “Notes on the sum and maximum of independent

exponentially distributed random variables with different scale parame-

ters”. In: arXiv preprint arXiv:1307.3945.

Diepen, Guido et al. (2013). “Robust planning of airport platform buses”.

In: Computers & Operations Research 40.3, pages 747–757.

Gambardella, L.M. and M. Mastrolilli (1996). “Effective neighborhood func-

tions for the flexible job shop problem”. In: Journal of Scheduling 3.3.

Graham, R.L. et al. (1979). “Optimization and approximation in determin-

istic sequencing and scheduling: a survey”. In: Annals of Discrete Math-

ematics 5.2, pages 287–326.

Greene, William H (2003). Econometric analysis. Pearson Education India.

Hoppenbrouwer, D.J. (2011). “Robust parallel machine scheduling with re-

lations between jobs”. Master’s thesis. Universiteit Utrecht.

Kelton, W David and Averill M Law (2000). Simulation modeling and anal-

ysis. McGraw Hill Boston.

Lenstra, J.K. et al. (1977). “Complexity of machine scheduling problems”.

In: Annals of discrete mathematics 1, pages 343–362.

Lourenço, H.R. et al. (2003). Iterated local search. Springer.

Mladenović, N. and P. Hansen (1997). “Variable neighborhood search”. In:

Computers & Operations Research 24.11, pages 1097–1100.

Nadarajah, Saralees and Samuel Kotz (2008). “Exact distribution of the

max/min of two Gaussian random variables”. In: Very Large Scale Inte-

gration (VLSI) Systems, IEEE Transactions on 16.2, pages 210–212.

Olive, David (2008). “Truncated distributions”. In: Applied Robust Statis-

tics, pages 104–130.

Roy, B. and B. Sussmann (1964). “Les problemes dordonnancement avec

contraintes disjonctives”. In: Note ds 9.

Schaller, Peter and Grigory Temnov (2008). “Efficient and precise compu-

tation of convolutions: applying fft to heavy tailed distributions”. In:

Computational Methods in Applied Mathematics Comput. Methods Appl.

Math. 8.2, pages 187–200.

84

Vaessens, R.J.M. (1995). Generalized job shop scheduling: complexity and lo-

cal search. Eindhoven University of Technology Eindhoven, The Nether-

lands.

Van Roermund, D.J. (2013). “Robustness in parallel machine scheduling”.

Master’s thesis. Universiteit Utrecht.

Van den Akker, J.M. et al. (2013). “Finding robust solutions for the stochas-

tic Job Shop Scheduling problem by including simulation in local search”.

In: Experimental Algorithms. Springer, pages 402–413.

85

	Introduction
	Problem definition
	Graph representation

	Related work
	Outline

	Local Search
	Neighbourhoods
	Valid operations
	Local search methods
	Variable neighbourhood descent
	Iterative local search
	Conclusion

	Result sampling
	Introduction
	A new ILS perturbation step
	Reducing the neighbourhood
	Finding the best reinsertion
	Computing critical path lengths using head and tail times
	Runtime analysis

	Neighbourhood operator implementations
	1-move and 2-move implementation
	2-swap implementation

	Approximating E(Cmax) based on expected processing times
	Approximating the maximum of two normal distributions
	Computing E(X) and 2(X) for known
	Computing E(X) and approximating 2(X) for unknown

	Expected makespan without precedence relations
	Aggregated machine load (AML)
	Gaussian makespan (GM)
	Iterative Gaussian makespan (IGM)

	Incorporating slack from precedence relations (AD)
	Approximating completion times using dynamic programming (DM)
	Shortcomings of arctan delay
	Dynamic makespan framework
	Computation of max(Si + qij, Sjk - 1) when (i) = (j)
	Calculating Pr(> 0) and E(| > 0) when is not normally distributed
	An illustrative example

	Experiments and results
	Problem instances and general setup
	Distributions
	General set-up

	Parameter experiments
	Replacement of samples in result sampling
	VND stop criterion
	Perturbation step types
	Amount of perturbations
	Experiments for makespan without precedence relations
	Choosing and for the arctan delay function

	Final experiments
	Experimental set-up
	Comparison of the approaches
	Run time
	Result deviations
	Comparing objective function evaluations

	Conclusion and further research
	Summary
	Conclusion
	Further research
	Improving efficiency
	Algorithm improvement
	Other machine scheduling problems and objectives
	Other notions of robustness

	Appendices
	Final experiment results and run times
	Limited run time experiments
	Final experiment result and run time deviations
	Comparison against fixation maximization
	Experimental results for problem instances with large qij
	Experimental results for function evaluations
	Bibliography

