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Abstract 

Roadworks affect road users all over the globe impacting society as a whole through 

loss of valuable time (Ministerie van Infrastructuur en Milieu, 2015; Schrank, Eisele, 

& Lomax, 2012). To improve our understanding of the impact roadworks on society 

as a whole, we need to move to a new source of information. Current techniques, 

such as surveys and road side measurements, require a lot of effort and resources to 

investigate the impact of a single roadwork (Taale, Schuurman, & Bootsma, 2002; 

Cáceres, Wideberg, Benitez, 2007). The costs of traditional technique imply research 

on the true economic impact of roadworks is only scarcely performed. Hence, we are 

in need of an alternative source of information if we want to learn more about the 

impact of roadworks. In this research we propose mobile phone data, i.e. mobility 

data extracted from Call Detail Records (CDRs), as a viable alternative.  

 We will present a method to measure the impact of roadworks using mobile 

phone data. Furthermore, we validate the presented method by comparing the 

outcomes with traditional information sources such as surveys, road side 

measurements, and GPS traces. The standard mobile phone data will be fine-tuned 

to elicit more accurate origins and destinations. After fine-tuning, we find the mobile 

phone data delivers results similar to the traditional sources with much greater ease 

and at unprecedented scale. Moreover, we show we can enrich the mobile phone data 

with data about crucial trip motives, e.g. home-to-work, previously only present in 

mobility surveys. These motives can then be used to measure the economic impact 

to society rather than travel time loss (Kennisinstituut voor Mobiliteitsbeleid, 2013). 

Where traditional techniques would require months of research to measure the 

impact of one roadwork; we show that mobile phone data can measure hundreds with 

a fraction of the time and effort. 

 The rich and plentiful information present in the mobile phone data will also 

be used to predict the impact of roadworks. Using this new found source of 

information, we investigate the underlying structures that result in delays and 

uncertainties in travel times due to roadworks. We, for one, create models that 

explain up to 45% of the variation in the measured impact and suggest research 

directions to further increase this percentage.  
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1 Background 

Roadworks are a necessary evil affecting road users all over the globe. Large 

investments in the road network are required to increase road capacities to support 

the growing number of road users (Schrank, Eisele, & Lomax, 2012). Without these 

investments the roads will become overly congested resulting in waste of valuable 

time and resources. In the US a study by Schrank et al. (2012) found the average 

road user already spends an unnecessary 38 hours a year in congested traffic. This is 

equivalent to a financial loss of up to 121 billion USDs (Schrank et al., 2012). 

Roadworks are performed for maintaining and expanding the road network to help 

alleviate congestion. However, when the roadworks are occurring the road capacity 

is temporarily reduced (Nagel & Schreckenberg, 1992). This by itself has a negative 

impact on road capacity and thus road users (Nagel & Schreckenberg, 1992; Calvert, 

2010). In the Netherlands about 4.3% of all traffic jams are a direct result of 

roadworks (Ministerie van Infrastructuur en Milieu, 2015). This figure does not 

include people taking detours, driving slower, staying at home, and using other 

modes of transportation. By not looking at the larger picture there is a clear tendency 

to underestimate the impact of roadworks.  

 The hindrance caused by roadworks is a significant part of the true cost of 

roadworks (Schrank et al., 2012). Therefore, judging tenders should include factors 

other than price and perhaps quality to minimize the total impact roadworks have on 

society and the economy. A tender is a bid typically by a construction company 

stipulating the conditions under which they want to perform the job. The 

organization who wants the roadworks to be performed, judges the tenders and is 

tasked to choose one. From April 2016 onwards the European Union (EU) guidelines 

state that the tender to be chosen is the one that is the most economically 

advantageous, i.e. the Most Economically Advantageous Tender (MEAT) (De 

Koning, 2015; Crow Commercial Service, 2015). In addition to MEAT, there is 

another common tender method called Best Value Procurement. Best Value 

Procurement differs in approach, but is also judged mainly on being able to show 

you can meet the stated criteria such as impact on traffic flow, hindrance to the direct 

environment, and costs (interview with a tender manager, Appendix A). Of these 

criteria traffic hindrance often weighs heaviest (Taskforce Doorstroming, 2009; 

Crown Commercial Service, 2015). With Best Value Procurement “[t]he more 

confident the contractor is that we will meet the set criteria the higher the fictive 

discount will be” (Appendix A). In 2011, for example, the winning tender on a 

project of about €100 million was the one that got a fictive discount of €30.8 million 

because the tender involved a plan to minimize traffic hindrance (Duijnisveld, Peijs 

& Calvert, 2011).  

Examples of initiatives to alleviate traffic hindrance are working outside 

peak hours, performing roadworks in stages, and paying road users to avoid driving 

in rush hours (Minchin, Thurn, Ellis & Lewis, 2013; Federal Highway 

Administration, 2003; Spitsmijden, 2009; Rijkswaterstaat, 2009b). Working at night 

might not have a significant impact on the cost of roadworks as increased wages are 

countered with an increase in productivity (Minchin, Thurn, Ellis & Lewis, 2013; 
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Federal Highway Administration, 2003). The latter two, i.e. performing roadworks 

in stages and paying road users to avoid rush hours, do result in added costs (Federal 

Highway Administration, 2003; Spitsmijden, 2009). Whether initiatives to alleviate 

traffic hindrance are worth their cost depends on how much hindrance can be 

avoided. For this it becomes highly important to being capable of making good 

predictions of traffic hindrance under different circumstances to see how traffic 

hindrance, and the total cost of roadworks, can be minimized. 

The task of predicting traffic hindrance resulting from roadworks is 

nontrivial, largely because of a lack of good data about the impact of traffic 

hindrance during roadworks. In the Netherlands, where the MEAT procedure is 

already in place, the traffic hindrance associated with the research approaches in the 

tenders are often evaluated beforehand using simulation software (expert interview, 

Appendix B; Duijnisveld, Peijs & Calvert, 2011). Unfortunately, an evaluation study 

to investigate the impact of the roadworks is hardly ever performed (Appendix B). 

Hence, without these studies there is no way to test if the predictions are accurate 

and learn from them such that prediction can become more accurate in the future. If 

the predictions of the simulation tools would have been proven to be consistently 

accurate, or accurate enough, evaluation would be less important, but this is not the 

case. One study by Rijkswaterstaat, who manages the Dutch road network and is 

responsible for judging tenders for roadworks, included also some early predictions 

(Rijkswaterstaat, 2009a). The study showed the early predictions for maximum time 

loss and traffic jam length experienced by the road user was overestimated by 89% 

and 81%, respectively (Rijkswaterstaat, 2009a). Note this is also the only study by 

Rijkswaterstaat that to our knowledge compared the early predictions with the 

outcomes of the evaluation study. The observed difference is substantial and can be 

seen as an indication that we need to improve upon these prediction models foremost 

to reduce the impact of future roadworks. 
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2 Problem statement  

2.1 Measuring the impact of roadworks 

A number of large evaluation studies have been performed to investigate the impact 

of roadworks in the Netherlands (Taale et al., 2002; Rijkswaterstaat, 2009a). The 

large evaluation studies often performed by Rijkswaterstaat nearly always consisted 

of a combination of surveys and roadside measurements (Taale, Schuurman, & 

Bootsma, 2002; Rijkswaterstaat, 2009a). The reason both techniques have to be 

applied in the current situation is that they complement each other’s weaknesses. 

Roadside measurements can, for example, not show what type of road user is 

delayed, which matters as the cost of delay is greater for some users than others 

(Kennisinstituut voor Mobiliteitsbeleid, 2013). However, they do provide very 

accurate and detailed counts on vehicles passing road section. Surveys, on the 

contrary, provide very rich contextual information, e.g. how many travellers take the 

car versus the train. However, they are often small in sample size as they are 

expensive. Moreover, surveys provide only a snapshot of the situation implying they 

will have to be repeated for each distinct roadwork (Cáceres et al., 2007). Surveys 

thus measure people going from A to B and roadside measurements provide 

information about the traffic on the road (figure 2.1).  

 

Figure 2.1, overview of existing mobility measurement techniques 

The downside of using roadside measurements and, particularly, surveys is 

that these studies become time consuming and expensive, e.g. a large evaluation 

study in the Netherlands reportedly costed €400.000 (Cáceres et al., 2007; Taale, 

Schuurman, & Bootsma, 2002). Consequently these studies are scarcely performed, 

limiting our understanding of what the impact of roadworks is and how we can 

reduce their impact on society (Appendix B).  

In this research we want to propose a novel method to measure the impact 

of roadworks that could drastically reduce the amount of labour required to evaluate 

the impact of roadworks. To do this we want to use mobile phone data. This data 

source contains information on how mobile phones and, assuming one phone per 

person, people move about. Using mobile phone data we can plausibly see how 

people travel under normal circumstances and compare this with, for example, 

behaviour and travel times when roadworks are on their path. 

The idea to use mobile phones for traffic management have been around for 

some time now (Astarita & Florian, 2001). Cáceres et al. (2007), for example, 

already tested and showed using a simulation study that GSM data can be used to 

create high-quality Origin-Destination matrices (OD-matrices). One of the main 
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advantages they see in the new technology is that the entire infrastructure for 

measuring the movement of phones is already in place (Cáceres et al., 2007). 

Another advantage, as mentioned by Astarita and Florian (2001), is the great 

diffusion and penetration of mobile phones.  

The data available for this study covers about a fifth of the Dutch population 

from September and October 2015 dwarfing the 0.2% of the population surveyed by 

Onderzoek Verplaatsingen in Nederland (OViN), i.e. one of the largest mobility 

survey in the Netherlands (CBS & RWS, 2015). In contrast to OViN, the mobile 

phone data contains information about individuals over a longer time period. 

Longitudinal data is beneficial as it can provide insight into how behaviour changes 

before after and during an event. Large sample sizes and longitudinal data is already 

available with the roadside measurements. However, mobile phone data provides 

much more contextual information. Unlike roadside measurements, it can reveal 

when and where a person departs and arrives. In addition, mobile phone data is not 

confined to the roads and can thus measure other modes of transportation just as well 

(Keij, 2014). Most importantly though is that the cost profile of studying mobility 

using mobile phone data is completely different from that of the traditional methods. 

The initial effort needed to transform the raw phone data into mobile phone data 

might be substantial, but after the initial phase the variable cost of looking at one 

versus many roadworks is relatively small. Once the method is established it will 

become possible to cost-effectively monitor and evaluate the impact of many 

roadworks by using the data, i.e. Call Detail Records that mobile phone carriers are 

already storing for payment registration. 

 

Figure 2.2, overview of new and existing mobility measurement techniques 

As depicted in figure 2.2, mobile phone data provides similar information 

about travel behaviour as surveys, including a lot of contextual information, but at a 

much larger scale.  
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2.2 Predicting the impact of roadworks 

Predicting the impact of roadworks is a nontrivial task. The study by Rijkswaterstaat 

(2009a) showed their early estimation for the impact of the roadworks were off by 

quite a margin. In literature similar unsatisfying findings are reported for predicting 

the impact of roadworks using simulation packages and or traffic models (Borchardt, 

Pesti, Sun & Ding, 2009; Calvert, 2010).  

Borchardt et al. (2009) tested the accuracy of three simulation tools to 

estimate traffic hindrance. They used VISSIM, i.e. a widely used microscopic multi-

model traffic flow simulation package, as a baseline for evaluating the other two 

(Borchardt et al., 2009). One simulation package showed roughly similar results 

whereas the other deviated by as much as 52% for one of the four test sites (Borchardt 

et al., 2009). Whether any of the three models predicted the impact of roadworks 

correctly has not been investigated. These tools also require very accurate and 

extensive input to correctly simulate the real world. This is input that is hard to obtain 

requiring and expert to provide the correct input (Borchardt et al., 2009). 

Furthermore, several studies report that the models are highly sensitive to the input 

parameters meaning small changes  in the input quickly lead to bad predictions (Park, 

Won, & Yun, 2005; Borchardt et al., 2009; Calvert, 2010). 

Most of these simulation packages, and all three of the models tested by 

Borchardt et al. (2009) lack fundamental information on the total impact of 

roadworks. The majority of these simulation packages are designed to simulate 

traffic flows on a microscopic scale, i.e. on the level of single vehicles and single 

road sections. Calvert (2010), for example, investigated the effect of roadworks on 

travel time over the road section where the roadworks are taking place. The purpose 

of his research is to improve the predictions of travel time through work zones for 

use in navigation software (Calvert, 2010). Nevertheless, by focussing on the 

microscale the predictions miss out on important information such as how many 

people will stay at home, who takes another mode of transportation, and what type 

of road user is affected and by how much. Without this information the predictions 

provide only incomplete information about the true impact of roadworks. 

 There is a logical explanation for measuring the impact of roadworks on a 

microscopic rather than meso- or macroscopic scale. Even though there is few 

information about the true impact of roadworks, there is plenty on the microscopic 

scale. Information on traffic jams can be a prime source of information for designing 

models that predicts the chance, length, and duration of traffic jams resulting from 

roadworks. 

 As the study by Schrank et al. (2012) indicated, the loss of travel time due 

to road congestion has a large financial impact on the economy. Roadworks, 

although temporarily, reduce road capacity even further leading to more congestion 

and traffic jams (Nagel & Schreckenberg, 1992; Calvert, 2010). Prediction on the 

impact of roadworks might, therefore, be most valuable when judged on economic 

cost rather than traffic delay. To do so, one needs to know the composition of the 

traffic being affected as different types of road users are associated with different 

values (Kennisinstituut voor Mobiliteitsbeleid, 2013). Previous evaluation studies 

often do not take into account cost as the focus of the research may differ, e.g. 
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gaining knowledge about traffic hindrance and experiences by road users. 

Nevertheless, some of these studies do indicate that a cost benefit analysis to see if 

the hindrance caused can be justified would be valuable (Rijkswaterstaat, 2008). 

Typical simulation packages might provide information on changes in travel time, 

for example, but will not be able to state the total cost. The exact valuation of the 

travel delay would be very difficult. Mobile phone data can potentially provide a 

practical solution as trip motives might have distinct trip and travel characteristics. 

Relations between trip and traveller characteristics could potentially be extracted 

from mobility surveys such as the OViN (CBS & RWS, 2015). The surveys are too 

small in sample to say something about the composition of road users, especially in 

specific circumstances such as roadworks. Nevertheless, the sample could be 

sufficient to draw conclusions about trip characteristics in relation to trip motives.  

 We thus find there is a lack of models capable of providing accurate 

predictions of the impact of roadworks that take into account the entire financial 

picture. Current models are either very hard to set up, e.g. the micro-simulation 

models, resulting in false predictions or include only part of the total impact, e.g. 

travel time near the roadworks. This might be explained by the absence of data about 

the total impact of roadworks, but that might be solved using mobile phone data. 
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3 Research questions and scope 

3.1 Research questions  

The proposed research is shaped by the main research question. This main research 

question overarches the two main problems that are highlighted in the problem 

statement. These problems are: the lack of a scalable method to acquire more data 

about the true impact of roadworks and the inaccurate and incomplete predictions of 

the impact of roadworks by the current standards. The main research question is split 

into sub research questions that are more convenient to answer and easier to interpret. 

Answering the main research question will be the goal of the proposed research. 

Main research question 
How can mobile phone data be used to improve the measurement and 

prediction of the impact of roadworks on highways? 

The first task that needs to be executed to answer the main research question 

is to acquire data on the impact of roadworks on highways. For this we want to use 

mobile phone data. To the best of our knowledge no method exists in literature or 

elsewhere that tries to measure the impact of roadworks using mobile phone data. 

Therefore, a new method will be developed and presented in this research. The first 

sub research question (sub research question 1) is aimed at answering this part of the 

proposed research.  

Sub research question 1 
How can mobile phone data be used to measure the impact of roadworks 

on highways? 

The second task is creating, testing, and evaluating a model that aims to 

predict the impact of roadworks on highways. A series of subtasks are generally 

involved in creating, testing, and evaluating a model. First, we need to figure out 

what attributes could plausibly influence the impact of roadworks. Sub research 

question 2a is concerned with this subtask. Next a model will be trained using the 

attributes identified to plausible influence the impact of roadworks. The idea is that 

the model will optimally represent the underlying structure and relations between the 

attributes and the impact of roadworks on highways. The impact of roadworks will 

be determined using our own method that is the result of answering sub research 

question 1. The model will be evaluated in two ways. First, the model will be 

evaluated by quantifying how accurate its predictions are. Next, we will compare the 

predictions from our model with the current state of the art. These different types of 

evaluations are represented in sub research questions 2b and 2c, respectively. 

Sub research question 2a 
What is the relation between roadwork characteristics and the impact of 

roadworks on highways?  

Sub research question 2b 
How accurately can our model predict the impact of roadworks on 

highways using mobile phone data? 
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Sub research question 2c 
How does our model compare to the current state of the art in predicting 

the impact of roadworks on highways? 

3.2 Scope 

The scope of this project is confined mainly by the strengths and weaknesses of the 

available data. We limit the investigation on the impact of roadworks to roadworks 

occurring on highways or larger roads in the Netherlands. The Netherlands is chosen 

as the mobile phone data is only available for the Netherlands. The roadside 

measurements made public by the Nederlandse Databank Wegverkeersgegevens 

(NDW) consists primarily of measurements made on large roads and highways in 

the Netherlands (NDW, 2015a). Moreover, in the mobile phone data the Netherlands 

is split in a large set of areas. These areas are roughly 5 km to 10 km in diameter and 

movement within these areas cannot be detected. The data is, therefore, less suitable 

to observe short distance movements and better for measuring trips covering larger 

distances, e.g. trips on highways. Roadworks in cities, for example, might hinder 

many local road users, but this group is unlikely to be represented in the mobile 

phone data. On highways people will often travel further and are likelier to be 

represented in the mobile phone data. Hence the focus of this research is roadworks 

on highways and larger roads in the Netherlands. 

 The effects of roadworks can spread to people that are not naturally using 

the road the roadworks are occurring on as is represented in figure 3.1. When people 

start to migrate to detour roads this results in added traffic on these roads. The added 

traffic may result in delays for users that naturally use these roads, which are only 

indirectly related to the roadworks. Determining what detour roads are affected is a 

nontrivial task. For this research we will focus solely on the people that use the road 

where the roadworks are occurring, i.e. the people traveling from A2 to B2 in figure 

3.1. This is most likely also the group that will be most affected by the roadworks.  

 

Figure 3.1, the road users influenced by the roadworks are mostly the people traveling 

from A2 to B2. 
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4 Research approach 

The proposed research will cover two related, but distinct, solutions to the identified 

problems: (1) a new method to measure the impact of roadworks and (2) creating 

and evaluating a model to predict the impact of roadworks using mobile phone data. 

These problems both concern the impact of roadworks, but each will require a 

distinct research approach. The first is a typical design and action research type as it 

ultimately provides prescriptions on how to do something, i.e. how to use mobile 

phone data to measure the impact of roadworks (Gregor, 2006). The second leans 

more towards explanation and prediction research as it concerns predicting 

something, i.e. the impact of roadworks, by using testable propositions and testing 

causal relations (Gregor, 2006). The research approaches for each solution will be 

presented in sections 4.2 and 4.3, respectively.  

 Before this research can be conducted it is important to get a thorough 

understanding of the mobile phone data. When using the data we need to know how 

well it can measure how people are moving across the country. In particular, we want 

to know what trips are sure to be recorded and what trips are less likely to be noticed. 

In the section 4.1 we will go into how the quality and limitations of the data will be 

evaluated and a better understanding of the data used is created.  
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4.1 Data understanding and data quality 

A vast amount of research has already been performed into investigating the use of 

mobile phone data to gather better insights into behaviour, social networks and 

mobility patterns of the masses (Daas et al., 2009; Snijkers, 2009; Ahas, Aasa, 

Roose, Mark, & Silm, 2008; Eagle, Pentland, & Lazer, 2009; Becker et al., 2011; 

Palchykov, Kaski, Kert´esz, Barab´asi, & Dunbar, 2012). Specifically, Human 

Mobility and Networks Lab (HUMNET) have numerous publications related to the 

use of mobile phone data to discover mobility patterns (Wang et al., 2012; 

Alexander, Jiang, Murga & González, 2015). However, there is no gold standard for 

creating and the mobile phone data and as such differences persists.  

The most relevant description of the mobile phone data used in this study can 

currently be found in the works by Keij (2014) and Van Kats (2014) who did there 

Master theses at the organization, i.e. Mezuro, governing the data used in this study. 

Nevertheless, even here the data differs from the data used in this study. We have 

proposed and applied several techniques to improve the mobile phone data and as 

such the process has changed. Hence, we find it is worthwhile to again cover the 

process of creating the mobile phone data. This will also help to increase the 

replicability of this study and create a better understanding of the limitations in the 

data. In chapter 5 we will cover the process of creating the mobile phone data and 

stipulate the general data characteristics and limitations. 

In chapter 5 we will also discuss the effects of the proposed improvements with 

a data quality study. The quality of the mobile phone data will be evaluated by 

comparing the origins and destinations with those acquired from accurate GPS 

measurements. The GPS trace is distilled to origins and destinations in similar 

fashion as the CDRs in the mobile phone data. The origins and destinations are 

thereafter compared by hand on accuracy and completeness. The results of the data 

quality research are reported at the end of chapter 5.  
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4.2 Measuring the impact of roadworks 

The first section of the research will be about determining how Mobile phone data 

can be used to measure the impact of roadworks on highways, i.e. answering sub 

research question 1. 

Sub research question 1 
How can mobile phone data be used to measure the impact of roadworks 

on highways? 

For this part of the research the structure has some strong parallels with the 

extension of the well-known Plan-Do-Check-Act cycle, or more appropriately the 

Plan-Do-Study-Act (PDSA) cycle (Moen & Norman, 2006). A concise explanation 

of the PDSA cycle is well formulated by Berwick (1996). He states “[t]he plan-do-

study-act (PDSA) cycle describes, in essence, inductive learning - the growth of 

knowledge through making changes and then reflecting on the consequences of those 

changes” (Berwick, 1996, p.620).The extension is called the Model for Improvement 

and exists of two parts (Berwick, 1996). The first part consists of asking and 

answering the following three questions: 

1. What are we trying to accomplish? 

2. How will we know that a change is an improvement? 

3. What changes can we make that will result in improvement? 

In short the answers in our situation would be (1) creating a more scalable, accurate, 

and complete method to measure the impact of roadworks, (2) comparing the method 

to the current state of the art, and (3) employing and improving mobile phone data. 

The second part consists of doing the necessary work and is equivalent to the 

traditional PDSA cycle (figure 4.1).  

 

 

Figure 4.1, overview of the PDSA cycle, going clockwise from act to study, complete with a 

short description of what each phase entails. 

The PDSA cycle is meant to continually revise and improve. In this study 

we will perform one cycle of the PDSA. We start the PDSA cycle with the Plan 

phase. In this phase we establish what the objectives are of the research and how to 

reach those objectives, i.e. in our case our research approach. Section 4.2.1 provides 

an overview of what needs to be taken into account when measuring the impact of 
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roadworks. In section 4.2.2 we will describe on a conceptual level how Mobile phone 

data can be used to measure the impact of roadworks on highways. What will be 

discussed in section 4.2.2, however, is not an answer to sub research question 1, it is 

merely a proposal. To answer sub research question 1 we will have to validate the 

proposed method. By validating the proposed method we can check if we succeeded 

in creating a more scalable, accurate, and complete method to measure the impact of 

roadworks. In 4.2.3 through 4.2.7 we will go into detail on how the validation will 

be performed. Performing the research will be the next step and relates to the Do 

phase of the PDSA. After the conclusions we will provide input for future research 

by indicating where possible improvements can be made, i.e. the Act phase.  

4.2.1 Economic impact of roadworks 

The economic impact of roadworks result from a number of factors. The most 

profound are the economic impacts relating to travel delay and uncertainty in travel 

time (Kennisinstituut voor Mobiliteitsbeleid, 2013). When people arrive at work late 

or have to leave earlier to go to a business meeting valuable time is lost that could 

have been spent productively. The economic impact also depends on the motives 

behind the trips. When people are late for work or an important business meeting the 

economic costs are greater than when they are late going to a party. Furthermore, 

people who change their travel behaviour as a result of the roadworks do so because 

of the hindrance caused by the roadworks and are thus also affected. In total there 

are three factors at play that influence the impact of roadworks. These are: (1) 

changes in travel time and travel time reliability, (2) trip motives, and (3) people that 

change their travel behaviour as a result of the roadworks. 

 The economic costs of increases in travel time and travel time reliability are 

represented in the Value of Time (VoT) and Value of Reliability (VoR), respectively. 

VoT and VoR represent the Euros people would on average pay to mitigate an hour 

of travel time and reduce the standard deviation of the travel time, respectively. 

These values are available specifically for VoT and VoR relating to road users in the 

Netherlands (Kennisinstituut voor Mobiliteitsbeleid, 2013).  And as stated earlier, 

the VoT and VoR depend on the trip motives and are hence specified for each motive 

of interest.  

Three categories in particular are of interest. These are trips from and to 

work, business trips, and whatever is left (Kennisinstituut voor Mobiliteitsbeleid, 

2013). Trip motives relate to the purpose of a trip and not to what a person does at 

the destination. For example, when someone leaves to go to work and travels back 

later that day the motives are both work. The reason for this is that the second trip is 

only made because a person left to work earlier that day. Trip motives rather than 

what happens at the destination determines the economic impact. 

The figures estimated and adhered to in the Netherlands for VoT and VoR 

for people traveling by car are presented in table 4.1. These values are derived from 

Kennisinstituut voor Mobiliteitsbeleid (2013), however, they relate to 5 year old 

estimates and hence have to be revised to be relevant for 2015. Guidelines 

established by Ministerie van Verkeer en Waterstaat and Centraal Planbureau 

(2004), i.e. two large Dutch organizations, state the value of travel time should be 

increased by half of the change in wage rates. From 2010 to 2015 wages increased 
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by an average of 11.69% (CPB, 2014). The value of time and value of reliability thus 

increased by 5.85%. The current and updated figures can be found in table 4.1 

Table 4.1  the value of time and value of reliability are shown for trips by car for a variety of 

trip motives with and without brackets for the 2010 and 2015 values, respectively. 

TRIP MOTIVE VALUE OF TIME 

(PER HOUR) 

VALUE OF RELIABILITY 

(PER HOUR) 

HOME TO WORK (€ 9.25)      € 9.79 (€ 3.75)     € 3.97 

BUSINESS (€ 26.25)    € 27.79 (€ 30.00)   € 31.76 

OTHER (€ 7.50)      € 7.94 (€ 4.75)     € 5.03 

AVERAGE (€ 9.00)      € 9.53 (€ 5.75)     € 6.09 

  

When a person decides to change his or her behaviour to avoid the 

roadworks he or she is also affected by the roadworks. By assuming people are 

rational and try to do what is best for them we can state that these people are doing 

something more optimal then taking the trip (expert interview, Appendix C). 

Nevertheless, in a normal situation, i.e. without roadworks, these people would take 

the trip. The economic impact experienced by these people is thus greater than 

without the roadworks, i.e. the baseline, and less than the impact experienced when 

going through the roadworks (Appendix C). We only know the spectrum and not 

exactly how much these people are affected. For this the ‘rule of half’ is developed 

(Appendix C; Eijgenraam, Koopmans, Tang & Verster, 2000). The rule of half states 

that the impact of people that change their behaviour is half of that of the people 

going through the roadworks (Appendix C; Eijgenraam et al., 2000).  

 To summarise, to measure the economic impact of roadworks we need to: 

 Measure the change in travel time; 

 Measure the change in travel time reliability; 

 Measure how many people are usually using the road; 

 Measure how many people keep traveling during the roadworks; and 

 Measure how many people change their travel behaviour, e.g. stay at home 

or change modes of transportation. 

Furthermore, we need to keep track of the motives that govern these trips as motives 

influence the conversion rate to Euros, i.e. the economic cost of the roadworks.  

4.2.2 Method overview 

Here we present the envisioned method to measure the impact of roadworks on 

highways using mobile phone data. The envisioned method, represented in figure 

4.2, is based largely on the information described in the previous section about what 

makes up the impact of roadworks. The envisioned method consists of 5 steps: scale, 

focus, label, compare, and report. In the following paragraphs the raison d’être of 

each step will be explained.  



 

 

 

14 

 

Figure 4.2, the method to measure the impact of roadworks on highways using mobile phone 

data. 

Scale 

In the scale phase the goal is to upscale the sample to the population. The mobile 

phone data provides information about a subset of everyone in the Netherlands. The 

aim is to measure the impact on the entire population and thus scaling is necessary. 

In section 4.2.3 we will go more in depth into how a scaling method will be devised, 

evaluated and applied to the mobile phone data.  

Focus 

In the focus phase the goal is to select the people that can logically be affected by 

the roadwork. As discussed in the scope of this research we only want to focus on 

the impact the roadworks have on the people that usually take the road where the 

roadworks occur. Hence, we need to employ a method to assign trips to the roads 

people are logically using, e.g. by assuming they take the fastest route. In section 

4.2.4 a concise discussion of the relevant literature and a description of the technique 

to assign vehicle trips to a road is given. Moreover, here in 4.2.4 we discuss how to 

evaluate whether the applied technique correctly determines who is logically 

affected. 

Label 

In the label phase the goal is to assign motives to the trips of the people affected. 

Motives, as discussed earlier, are key for calculating the economic impact and thus 

a fundamental part of the research. Section 4.2.5 is dedicated to how we will assign 

trip motives to the trips found in the mobile phone data. 

Compare 

In the compare phase the goal is to measure changes in travel characteristics between 

when a roadwork is occurring and the baseline. This depends on two factors. On the 

one hand, the impact of a roadwork depends on the change in travel time and standard 

deviation of travel time, i.e. travel time reliability. On the on the other hand, it 

depends on the people affected. The latter is a combination between how many 

people keep using the road, change their behaviour, and what the motives are behind 

the trips. These two factors combined suffice to calculate the true impact of a 

roadwork. In section 4.2.6 a detailed description is given on how to compare the 

situation during the roadworks with a baseline situation.  
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Report 

The final phase is the report phase. This phase consists of calculating the economic 

impact of the roadwork from the data acquired in the compare phase and reporting 

the findings. The report phase is essential for going from the measurements and 

calculation performed in the compare phase to actionable information, e.g. how large 

was the economic impact of the roadwork and what makes up this impact.    

4.2.3 Scale 

In the scale phase the mobile phone data will be scaled such that it is a good 

representation of the entire traveling population. This step is nontrivial and ensuring 

the scaling is done correctly can be a tedious task. For scaling a good understanding 

of both the sample that is represented by the mobile phone data and the population 

is needed.  

 There is currently already a scaling method in devised and applied at Mezuro 

to scale the users to the inhabitants for each area, i.e. subsection of the Netherlands 

of which there are a total of 1259 in the mobile phone data. In Appendix E an 

overview and evaluation of the current scaling factor is presented. Evaluation is 

performed to investigate the geographic as well as demographic representativeness 

of the data.  

 In chapter 6 we will propose a new method to scale trips from mobile phone 

users to the traveling population. We see there is a discrepancy with scaling from 

users to the inhabitants per area as compared to scaling to the traveling population 

that we want to address. This is also a remark to other research that scale to the 

inhabitants per area rather than the traveling population (Toole, Colak, Sturt, 

Alexander, Evsukoff, & González, 2015). By scaling to the inhabitants per area one 

does not yet take into account demographic differences. Demographic differences 

are important because of two main reasons. First of all, some people are more likely 

to have a mobile phone than others, e.g. mobile phone penetration is lower than 

average for very young people (Telecompaper, 2015). Second of all, some people, 

e.g. children, will be more likely to be found on the highway on specific days than 

others. Demographic representativeness can thus be an important factor to include 

in the scaling method. Hence, in chapter 6 we will also present a new method to scale 

the mobile phone data, not to the population in general, but to the traveling 

population. Due to the introduction of this new scaling factor the description of the 

old scaling factor is less relevant for this research and hence put only in the appendix. 

 Our new scaling factor will be evaluated by checking whether the scaled 

trips from the mobile phone data comply with the actual vehicle counts on the road. 

Obviously, we have to adjust for the number of people per vehicle as we measure 

mobile phones and, assuming one phone per person, the number of people traveling. 

This differs from the number of vehicles as there might be more than one person per 

vehicle. How we translate people to vehicles and perform the final comparison will, 

for one, be discussed in the next section. The results will, nonetheless, be discussed 

at the end of chapter 6 with a description of the new scaling factor. 
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4.2.4 Focus 

To prove mobile phone data provides insight into what happens on the road we will 

compare the measurements with actual roadside measurements. To evaluate whether 

mobile phone data can also be used to get measure vehicle counts we will compare 

our predictions with roadside measurement data. Roadside measurements provide 

accurate measurements of the number of vehicles on the road and are made 

publically available by NDW (NDW, 2015b). An overview of our approach to see if 

the data sources comply is presented in figure 4.3.  

 We are not the first to evaluate whether mobile phone data can be used to 

observe traffic characteristics on the road. Wang, Hunter, Schechtner and González 

(2012), for example, also derived OD-matrices from CDRs to observe traffic patterns 

on the road in two major cities. While they were able to evaluate the travel times 

with their predicted travel times, a comparison with actual traffic counts was omitted. 

As we do not only care about travel time, but also the number of people on the road 

we need to extend their analysis in this respect. 

 

Figure 4.3, method for comparing traffic counts from roadside measurements with mobile 

phone data. 

The steps presented in figure 4.3 are discussed in the paragraphs below. 

Prepare the roadside measurement data 

The first step is preparing the roadside measurement data. This step consists of 

downloading and converting the raw data to a workable format. Preparation, 

furthermore, consists of creating extra attributes and restructuring of the data for 

analysis. 
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Evaluate the roadside measurement data 

The second step is evaluating the roadside measurement data. As always it is 

important to check the quality of the data that is used. In the best case scenario all 

data is perfectly accurate, but experience teaches us this hardly ever is the case.  

 For the final comparison we want to know (1) the accuracy of the roadside 

measurement sites in general, (2) when we have to discard information due to too 

many missing data, and (3) that the measurement site is at the stated location. 

 The accuracy of the roadside measurement sites is determined by comparing 

vehicle counts of consecutive measurement sites that are not separated by an on or 

off ramp. Hence, vehicles measured at the first site should also pass the second. If 

the measurement sites are 100% accurate they should provide the same 

measurements. The deviation between consecutive sites is used to quantify the 

accuracy of the roadside measurement sites. 

 Often there are some errors in measurement. This is not a big deal per se, 

but measurement sites providing erroneous data might indicate those measurement 

sites are untrustworthy. Hence we will also evaluate the relation between missing 

data and the accuracy of the roadside measurements using the same method 

described in the previous paragraph.  

 The final evaluation step consists of validating the location of the 

measurement sites. The location of the measurement sites are reported by humans 

and might contain discrepancies. At a conference by the NDW questions were also 

raised regarding the accuracy of the locations of the measurement sites. Hence, we 

will try to discard measurement sites that are possibly wrongly located. We aim to 

identify these measurement sites by checking whether they measure similar traffic 

counts as their neighbours. We cluster the sites on their vehicle counts and will check 

whether measurement sites in the same cluster are also located on the same road. If 

they are then they are most likely correctly located. If the measurement sites are far 

away from other sites in their cluster they are probably not at the stated location. 

This measure will be our final barrier between all measurement sites and the ones 

we can trust and to which the mobile phone data will be compared. 

Select the roadside measurement data 

The third and final step regarding the roadside measurement data is drawing a sample 

from all the good sites passing our evaluation tests. This sample will consists of about 

100 measurement sites all located at least 5 km apart to ensure both a sufficient 

statistical power and independence of measurements. All sampled sites, furthermore, 

will have to be located on Dutch highways, as this is the scope of the research.  

Select the mobile phone movement data 

Here we select all trips over the road passing a selected roadside measurement site. 

This is done in two stages. First we identify whether a trip is performed by train or 

over the road using the algorithm developed by Keij (2014). Thereafter, we select all 

origin and destination pairs that cross the roads where the selected roadside 

measurement devices are located. Whether the logical route between an origin and 

destination crosses a specific road is determined using a route assignment algorithm. 
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What route assignment algorithm is applied and why will be discussed in chapter 7 

(section 7.2.1). In essence what we evaluate here is whether the chosen route 

assignment method correctly estimates routes from the origin and destinations in the 

mobile phone data. 

Convert the mobile phone movement data 

Converting the mobile phone movement data consists of (1) scaling the trips to go 

from mobile phones in our sample to the traveling population and (2) translating the 

traveling population to vehicles on the road. The first is done by applying our own 

scaling method that will be presented in chapter 6. The second is done by dividing 

the people found on the road by the average number of people per vehicle. 

Compensating for people per vehicle is done, for one, by taking into account the type 

of day, e.g. weekdays and holidays et cetera, and trip motive. In chapter 7, i.e. the 

chapter about comparing vehicle counts, we will provide more information and 

evidence that we can use trip motives and day types to get to stable people per vehicle 

ratios. After scaling the sample to the traveling population and going from people to 

vehicles on the road we can start the comparison between the two data sources.  

Compare both datasets 

The comparison will include 100 sites spread over the Dutch road network on major 

highways. The comparison will include a correlation analysis, which will show if the 

same patterns and vehicle counts are observed from both data sources. Moreover, 

the comparison will also be done to see if total vehicle counts match. When the 

scaling is done correctly and all trips are recorded the traffic counts should be equal. 

Whether this is the case will also be discussed at the end of chapter 6 when we 

evaluate the scaling factor.  

4.2.5 Label 

In the mobile phone data we can see travel patterns, but not the motive of the trips. 

Travel patterns and trip characteristics, e.g. leaving home early in the morning, might 

provide enough contextual information to make an educated guess about the motive 

of a trip. To do so a model has to be created in which trip characteristics are linked 

to trip motives, i.e. the reason why a trip is taken. The three motives of interests are: 

home-to-work, business, and other (Kennisinstituut voor Mobiliteitsbeleid, 2013).  

Trip characteristics, e.g. when does a person leave, will help to infer what 

the motive is of a specific trip. The idea is to use the OViN dataset to determine how 

trip characteristics relate to trip motive. Thereafter, we will use this information to 

make predictions about trip motives on the mobile phone data. A number of 

attributes such as start and end of a trip, leaving from or going to home, et cetera can 

be found in both datasets (CBS & RWS, 2015). By training a model using these 

common attributes on the OViN dataset will allow us to make predictions on the 

mobile phone dataset.  

 For model creation the well-known and popular Cross Industry Standard 

Process for Data Mining (CRISP-DM) of Wirth and Hipp (2000), depicted in figure 

4.4, will be used (Marbán, Mariscal, & Segovia, 2009). CRISP-DM is a 

comprehensive method for data mining and knowledge discovery (Wirth & Hipp, 
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2000). Data mining is defined in the Oxford dictionary as “The practice of examining 

large pre-existing databases in order to generate new information” 

(Oxforddictionaries, n.d.). Data mining is represented in the steps from data 

understanding through modelling. The entire CRISP-DM method is devised for 

knowledge discovery. What we aim to do by creating a model to predict trip motives 

is a typical data mining and knowledge discovery type of assignment. The goal is to 

generate new information about how trip motives relate to trip characteristics. We 

want to incorporate this new knowledge in a model to predict what the motive is of 

a trip for trips in the mobile phone data. Hence, CRISP-DM fits our task perfectly.  

 

Figuur 4.4, Overview of the steps and chronological relations in the CRISP-DM method. 

CRISP-DM consists of six intertwining steps (Wirth & Hipp, 2000). These 

steps are presented in figure 4.4 and well documented by Chapman et al. (2000). The 

first step is business understanding. This step consists of getting a grasp of the project 

objectives (Chapman et al., 2000). The second step is data understanding. During 

data understanding the data is gathered, data quality concerns are discussed, and 

some first insights and hypotheses might be discovered (Chapman et al., 2000). The 

third step is data preparation. Here data sources are merged, variables are constructed 

and selected, and data cleansing is performed (Chapman et al., 2000). After this step 

the final dataset used to for modelling is finished. In the fourth step, i.e. modelling, 

various modelling techniques are applied. Because various techniques might have 

various data requirements there may be some back and forth between modelling and 

data preparation (Chapman et al., 2000). After a model is created the model is 
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evaluated. Evaluation of the model is the fifth step in the CRISP-DM method. 

Evaluation is performed to see if the project objectives are satisfied (Chapman et al., 

2000). If a satisfactory model is found it still has to be deployed. Deployment, i.e. 

the sixth and last step, consists of applying the knowledge gained during the project 

(Chapman et al., 2000). In our situation this step would involve applying the created 

model to estimate trip motives on the mobile phone data. Proving that the trip motive 

can be determined from trip characteristics is part of the evaluation phase in the 

CRISP-DM method. This will also be the validation step to show labelling is possible 

and can be included in the mobile phone data.  

Chapter 8 will be the applied CRISP-DM method where we go over each 

step and present our model and results regarding trip motive prediction. 

4.2.6 Compare 

The compare phase is about determining the effect of roadworks on travel time, 

travel reliability, and travel behaviour in general of the people affected. This is a 

matter of putting the measurements into context. Knowing the average travel time is 

20 minutes provides very little useful information without knowing that during the 

roadworks this increased to 28 minutes. Context thus is key. We have to compare 

the situation during the roadworks with a baseline. Finding a good baseline and 

calculating the differences between the roadwork and the baseline situation is the 

goal of this phase. 

 A good baseline is one where the only difference to the roadwork situation 

is the fact that it lacks the roadwork. In science this is called a controlled experiment, 

i.e. an experiment where only one variable is changed to measure the effect of 

changing that one variable. There are two distinct techniques to get a good baseline. 

These are making sure all external variables during the baseline match those where 

the roadworks take place. This implies, for one, including only moments in the 

baseline where the weather approximately equals that when the roadworks occur. 

The advantage is that the roadworks are now truly the only variable that is changed 

and we will approximate the controlled experiment. However, being very strict on 

the inclusion criteria can dramatically reduce our sample. Our data spans September 

and October 2015, roughly eight and a half weeks. Hence, if the roadworks occur on 

a Monday we have at most eight comparable days, i.e. Mondays, in our baseline. As 

the weather differs over these days the sample becomes smaller. Low sample sizes 

lead to more noise that can obstruct us in finding the true impact of the roadworks. 

Now one could wait and use data covering a longer period or try to correct for 

changing weather conditions rather than excluding these measurements. We will 

choose the latter and as a result we have much more data in the baseline providing a 

more trustworthy baseline. 

 To correct for variations in the baseline we will create a linear regression 

model. The goal of the model will be to predict what the travel time would be given 

the variables we cannot control for, e.g. weather and distance travelled. The 

difference between the actual travel time and the predicted travel time is the 

corrected travel time. When the corrected travel time is larger than zero, travel time 

is longer than average for that type of day. A negative corrected travel time implies 

people are traveling faster than normal.  
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 Before establishing a good baseline we also have to select the data that will 

be used for analysis. Obviously we will use the mobile phone data, but within this 

data we can cherry pick the information fitting our needs best. We can, for example, 

select only the people with many data points for more accurate travel time 

measurements. In addition, there may be more ways in which we can cherry pick our 

data that will result in more accurate and trustworthy results. How to do this properly 

is a nontrivial task. We will use findings from all previous chapters, in particular, the 

one about data quality to help determine how our dataset will be composed. 

 In chapter 9 we will discuss first how to create the most optimal dataset from 

the mobile phone data to perform the analyses. Thereafter, we will create a model 

that helps to correct for variations in the measurements due to variances in external 

variables, e.g. weather.  

4.2.7 Report 

The report phase is the final phase in the proposed method to measure the impact of 

roadworks. Here metadata about the roadworks is presented along with the output 

from the compare phase. Moreover, the economic impact of the roadworks is 

calculated and reported.  

Calculating the impact of the roadworks involves converting differences in 

travel time and travel time reliability for the road users into a monetary value, e.g. 

Euros. The results from this calculation are multiplied with (1) the total number of 

people that keep traveling over the road section where the roadworks occur and (2) 

half the people no longer found on the road, e.g. those who decides to stay at home. 

This has to be done for all trip motives because while the travel time and travel time 

reliability will be equal for all road users, the costs are not (Kennisinstituut voor 

Mobiliteitsbeleid, 2013). The total will amount to the measured economic impact of 

the roadwork. 

 Finally, a proof of concept will be included in this study. The proof of 

concept will serve as a practical summary of all five steps and help to show the added 

value of our method, i.e. the ease and accuracy at which the economic impact 

roadworks can be measured. Chapter 10 constitutes the proof of concept where we 

also discuss whether we achieved our goal of creating a more scalable, accurate, and 

complete method to measure the impact of roadworks. Chapter 10 will also be a 

prime example of the deliverable created in the report phase. 
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4.3 Predicting the impact of roadworks  

In the proposed research we aim to find out if mobile phone data can help to improve 

the accuracy of predictions of the impact of roadworks on Dutch highways. For this 

it is necessary to investigate what characteristics influence the impact of roadworks, 

how accurate these characteristics help to predict the impact of roadworks, and how 

our prediction model compares to the current state of the art. These aims are 

represented in sub research questions 2a through 2c. 

Sub research question 2a 
What is the relation between roadwork characteristics and the impact of 

roadworks on highways?  

Sub research question 2b 
How accurately can our model predict the impact of roadworks on 

highways using mobile phone data? 

Sub research question 2c 
How does our model compare to the current state of the art in predicting 

the impact of roadworks on highways? 

Answering each sub research question will require a unique approach. These 

approaches are elaborated upon in 4.2.1, 4.2.2, and 4.2.3, respectively. 

4.3.1 Characteristics influencing the impact of roadworks 

To predict the impact of roadworks it is important to know what may influence the 

impact of roadworks and how. Hence sub research question 2a is formulated. To 

answer this sub research question a twostep process is taken. First a list of 

characteristics is created. This list will consist of characteristics of the work zone, 

e.g. number of lanes closed, the as well as external characteristics that plausibly 

influence the impact of the roadworks. These characteristics include the composition 

of the traffic, mobility management techniques applied, and more types of 

characteristics that may influence the impact of the roadworks. These characteristics 

will be the building blocks for our model. Although ideally only the truly important 

characteristics are used there is no guarantee this is the case. Analysis during model 

creation and evaluation will help determine what characteristics are truly important. 

The second step is determining the structure of the relation between the characteristic 

and the impact of roadworks. The model fundamentally aims to describe the 

underlying relations. Hence, knowing their structure is key to ensure the model is 

able to do so. It will help when designing the model and preparing the data.  

The first step consists of creating a list of all possible characteristics that 

may influence the impact of roadworks. These characteristics are extracted from 

literature and personal expertise built over the course of the study (figure 5). Proven 

relations between roadwork characteristics and the impact of roadworks can be 

extracted from literature. Moreover, relations that appear logical and have not been 

in literature will also be included, i.e. they are added based on personal expertise.  
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4.3.2 Accuracy of predicting the impact of roadworks 

The first step is creating a model designed to predict the impact of roadworks. The 

input for this model is a combination of the characteristics that may influence the 

impact of roadworks and the impact of roadworks as measured using mobile phone 

data. The first is found by investigating literature and statistical analysis as just 

described. The latter, i.e. measuring the impact of roadworks, will be done using 

mobile phone data as described in chapter 4.1.  

 Gathering the data about roadworks is fundamental. Ideally information is 

gathered on all roadwork on Dutch highways between the start of November 2014 

and the end of January 2015. Within this timeframe the mobile phone data is 

available for this study. One source of information is the website vananaarbeter.nl. 

On this website governed by Rijkswaterstaat there is a list of most roadworks in the 

Netherlands and some basic information such as number of lanes closed and a rough 

estimation of the additional travel time (Ministerie van Infrastructuur en Milieu & 

Rijkswaterstaat, 2015). Additional information can be found either online or via 

contact with Rijkswaterstaat. 

 Once all the data is gathered the next logical step is to create a model for 

predicting the impact of roadworks. Years of development in traffic engineering led 

to three types of macroscopic methods for modelling traffic flows: explanative 

deductive models, explorative inductive models, and intermediate models 

(Papageorgiou, 1997). The first is based purely on traffic flow theory, the second is 

based purely on empirical data, and the third is a mixture combining both traffic flow 

theory and empirical data (Papageorgiou, 1997). The most obvious direction from a 

data science perspective appears to be using empirical data and choosing a machine 

learning technique that allows the model to embody or mimic fundamental relations 

as identified in traffic engineering theory. Using the information from our literature 

study and by using visualization and experimentation we aim to get an idea of the 

structure of the final model. Figure 4.5 provides an early indication of how the model 

may appear. The overall layout is partially inspired by the model created by Calvert 

(2010). 

 

Figure 4.5, structure of a model for predicting the impact of roadworks.  

Training a model is only part of the task here. The model needs to be tested 

and evaluated to find out its strengths and weaknesses. In chapter 11 we also evaluate 

our model in terms of how accurately it can predict the impact of roadworks. Where 

it works well and where the model is way off. In chapter 11 we will furthermore 

discuss what we think misses from our model that could help improve its predictive 

capabilities. 
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4.3.3 Model comparison with the state of the art 

The final step in this research is comparing the model with predictions made by, for 

example, Rijkswaterstaat or road construction companies. This comparison will 

provide insight into whether the created model is any good. Without the comparison 

it becomes impossible to state whether predictions that deviate 10% from the 

measured impact of roadworks are an improvement or not.  

Information about the predicted impact of roadworks is partially available 

online. On the website vananaarbeter.nl there is some information about the expected 

travel delay available (Ministerie van Infrastructuur en Milieu & Rijkswaterstaat, 

2015). The range of expected travel delay, however, appears to be quite large. The 

provided timeframes for travel delay are 5 to 10 minutes, 10 to 30 minutes, and 30 

or more minutes. 15 to 30 minutes or greater than 30 minutes. To see if this is actually 

the best prediction of travel delay an interview at vananaarbeter.nl will be conducted. 

Travel delay, nevertheless, is only part of the impact of roadworks.  

The impact of roadworks is more complex than the delay in travel time. 

Estimations of the true impact of roadworks are not available online. Interviews at 

Rijkswaterstaat and road construction companies will be planned to try and extract 

this information.  

All information related to our model and evaluations to come is presented in 

chapter 11 
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5 Data understanding and data quality 

This chapter serves as an introduction and a critical review of the use of mobile 

phone data as a data source.  In short we will discuss how the dataset at Mezuro is 

currently created (section 5.1). Thereafter, we discuss the proposed changes (section 

5.2), general data characteristics (section 5.3) and limitations (section 5.4). Data 

quality is assessed in section 5.5, followed by a conclusion stating the most important 

findings of this chapter in section 5.6. 

5.1 Creating the mobile phone data 

 

Figure 5.1, from left to right: a cell tower with antennas for various frequencies (2G/3G/4G), 

a camouflaged cell tower, and a cell tower located on top of a building. 

5.1.1 The physical telecom network infrastructure 

The telecom network has been set up to enable mobile devices to communicate. To 

enable mobile devices to communicate, cells are attached to a cell tower or a high 

building (figure 5.1), called the cell site, and provide signal to devices within range. 

The area that a cell provides service to takes the shape of a two dimensional cone. 

The service area is controlled by the following parameters: angle, radius, direction 

and location (figure 5.2). The location, direction, angle and radius of all cells are 

registered in the cell plan. Each row in the cell plan corresponds to a single cell at a 

given moment in time. The cell plan thus allows us to approximate where a cell 

phone is located when an event is generated. When a cell tower is changed this is 

also added to the cell plan. Only the most current information is stored about each 

cell. 
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Figure 5.2, the adjustable parameters of a single cell located on a cell tower. 

 The second key source of information is the table with events. This table 

consists of records where a mobile phone has communicated with a cell tower. For 

each record the table has information about the unique person identifier, which is a 

one-way-hashed version of a person’s phone number, a timestamp, event type, 

country code and corresponding cell tower id. These records are the Call Detail 

Records (CDRs) we talked about previously. Although the phone records are hashed, 

there is still information about the country of origin for foreigners. This helps to 

provide additional information about, for example, how many Germans visit the 

Dutch shores compared to other nationalities. There are a number of event types such 

as voice, SMS, and data. This information will not be used in this research, but could 

serve valuable when trying to infer additional information about the type of user. 

 The cell table provides information about the whereabouts of the cell towers 

and the events table shows what cell tower a person was near at what moment in 

time. Linked together these two data sources provide information about the 

whereabouts of mobile phones at specific moments in time. In the next section we 

will discuss how to go from these timestamped locations to origins and destinations. 
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5.1.2 From locations to origins and destinations 

The origin and destination algorithm retrieves useful information about trips from 

the cells a person is connected to. The general idea is that a person is moving when 

he connects with a cell that the cells he has connected to at his previous location have 

no overlap. When a person stays in an area for 30 minutes or more without traveling 

that person is assigned a destination.  

 The algorithm in use is slightly deviates from the one just described. The 

above algorithm has to check if there is overlap with all previous cells since the 

person arrived at the previous location. This is computationally very expensive 

considering the enormous amount of users for which this has to be done. A much 

quicker way to process the data is to only check if there is overlap with the first cell 

touched at the previous location. The algorithm in the previous paragraph would be 

ideal, but is unfeasible at this moment. The current algorithm might be less accurate, 

but may provide good results nonetheless at a fraction of the computational time 

needed. The expensive algorithm will be referred to as the gold standard and the 

other as the current algorithm. How good both algorithms are will be evaluated in 

section 5.5.  

 

Figure 5.3, the cells connected to while traveling. The red dots is a GPS trace and the blue 

areas are cells that the user had events with. Destinations, i.e. where a person stays for longer 

period are depicted with yellow stars. 
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In figure 5.3 we provide an example of how a series of events at cell towers, 

depicted with blue in figure 5.3, leads to destinations, the yellow stars in figure 5.3.  

5.2 Proposed changes 

There are three main changes we want to make to the mobile phone movement data. 

All of them are either directly or indirectly related to producing more accurate travel 

times. Accurate travel times are the foundation of this research, but have been low 

priority for many other studies as those often are more interested in where the trip is 

going rather than the trip itself. 

 Travel time in the mobile phone data is currently defined as the difference 

between the last event at the origin and the first event at the destination. We have no 

idea whether the last event before being observed traveling was when the person was 

at home or already on his way. This is because it takes a while before a person leaves 

the area we define as the origin. For the destination the same holds. Travel distance 

is also measured from the centre of the origin to the centre of the destination area as 

depicted in figure 5.4.  

 

Figure 5.4, travel time versus travel distance measured in the mobile phone data. 

The first change we propose is discarding events with cells that have a very 

large radius. When the cells have a large radius we encounter the following two 

issues. First of all, the cell with radii of up to 40 km cover a significant part of the 

country. Because we cannot see within the area below the cell we have only a very 

rough approximation of the person’s location. Hence, trips on shorter distances will 

be less likely to be recorded. Also as we know less accurately when a person starts 

and stops moving we lose accuracy in the reported travel times. Reducing the 

maximum allowed cell size can thus lead to more accurate location specifications 

and more precise travel time recordings. 

The downside to discarding events with large cell radii is losing data.  To 

get a grasp on what we lose we analyse how many events are still available when 

deciding to remove cells with a radius greater than a certain value. The effects on the 

number of events discarded by setting a limit to the cell radius can be seen in table 

5.2. Near 10 to 12.5 km there are still a 91% and 94% of events still available, 

respectively. Moreover, the coverage in the Netherlands is such that even without 

these cells with radii larger than 10 or 12.5 km the entire country is still represented 

in the cell plan. The introduction of the thresholds thus does not induce a geographic 

bias. In section 5.5 we evaluate the effect of using 10 and 12.5 km as cut-off points 

for the maximum allowed cell size. This is also compared to the current situation to 

see if the threshold put on maximum cell radius has a positive effect on data quality.  
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Table 5.2, percentage of events compared to the maximum allowed cell size 

CELL RADIUS UP TO (KM) PERCENTAGE OF EVENTS 

2.5 60% 

5 77% 

7.5 86% 

10 91% 

12.5 94% 

15 95% 

 The second change we propose is to allow for staying in an area for over 30 

minutes up to an hour provided the person continuous to travel in the same direction. 

Typically a person gets a destination after 30 minutes. However, in heavy traffic the 

travel velocity can drop dramatically and this may result in people getting a 

destination while actually stuck in traffic. We think this does not have a major impact 

in general. With a cell of 12.5 km in radius, i.e. 25 km in diameter, it would require 

velocities over a 25 km stretch to be below 50 km/h, for example. Nevertheless, in it 

is feasible, especially with heavy roadworks occurring. Our proposed change would 

double the allowed duration for people that continue to travel in the same direction 

and thus mitigate the chance of these ‘traffic jam destinations’. To test if people keep 

to travel in the same direction we first pick the following three destinations: the 

destination with a stay under an hour, the destination before that one, and the 

destination after that one (figure 5.5). When distance d1 plus distance d2 divided by 

distance d3 are smaller than the square root of two we assume the traffic jam 

destination is on the path from the origin to the true destination. Then the traffic jam 

destination will be removed and values such as travel time will be recalculated.   

 

Figure 5.5, destination under an hour within the grey area are assumed to be on path from 

destination before that one to the destination after that one.  

The third change we propose is to compensate for the number of events a 

person has during a day. When a person has many events the last event before leaving 

the origin was probably just before leaving the origin area. In contrast, when a person 

has for example 24 events a day, the event before leaving the origin might have been 

an hour before the person started traveling. The number of events per day can thus 

influence the measured travel time arbitrarily and we want to compensate for this. 
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We perform this compensation by subtracting the average time between events from 

the travel time. When a person, for example, has 144 events a day that comes down 

to 1 event every 10 minutes. Roughly between 0 and 10 minutes before the person 

leaves the origin area the last event was recorded at the origin. Because we do not 

know the exact moment we assume the event was 5 minutes, i.e. half the average 

time between events, before leaving the origin area. Vice versa the first event in the 

destination area was approximately 5 minutes after entering that area. To get a better 

estimation of the true travel time we will subtract the average time between events 

from the actual travel time for each person in the mobile phone data.  

Obviously the proposed change will remove the travel time in the first and 

last section of the trip, i.e. the part in the blind spots at the origin and destination. To 

add these section we will artificially fill this time by adding the average time needed 

to travel in the blind spots at a given speed. On average we find cell radii of 

approximately 6.258 km for cells under 12.5 km (assuming we will go to smaller 

cell radii). Considering the trips are distributed evenly between the start and end of 

the blind spot, i.e. the 6.258 km, a person would travel half that distance in a blind 

spot. We further assume the first and last part of the trip are in urban areas, where 

average travel velocity (as the crow flies) is estimated at 27.5 km/h. Using this 

information we can calculate the average time a person travels in a blind spot that 

turns out to be just shy of 7 minutes, i.e. 6.258 km divided by 27.5 km/h. In total we 

thus have to add approximately 14 minutes to compensate for the time travelled in 

the blind spots.  
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5.3 General Data Characteristics 

By analysing the general data characteristics of the mobile phone data we hope to 

provide an overview of the size and scope of the dataset and highlight trends that 

exist within the data. At the time of writing about 370 million events are generated 

per day by 3 million subscribers. However, the first thing that has come to our 

attention when analysing these numbers, is that the number of events produced on a 

daily basis has been increasing steadily over time (see figure 5.6). This is due to the 

increasing number of subscribers who are switching to 4G technology, which 

produces about 5 times more events than 3G technology. This trend is beneficial for 

the data quality, because the core of the location estimation algorithm is based on 

these events. The more events we have the greater the accuracy of the resulting 

mobile phone data. 

 

Figure 5.6, the average number of events per user in 2015. 

In figure 5.6 we also see some drops in the average that require explanation. 

First of we must note that the exact details of when events are created are not known 

in detail, not even at the service provider itself as the network is mostly outsourced. 

However, we are aware of a positive correlation between phone usage and the 

number of events created distilled from experience. Thus, generally speaking, the 

more a phone is used the more events are created. The drops occur mostly during the 

weekend and especially on Sundays. We expect the drops to be caused by business 

users leaving their phone off during the weekend and religious people who tend to 

do less on Sundays in general. 
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5.4 Limitations 

The limitations that affect the mobile phone location data can be divided into two 

main categories. The first category consists of limitations that are due to privacy 

regulations, while the second category of limitations are due to the technical specifics 

underlying this data source. The subsequent sections extensively discuss these 

limitations and elaborate upon the consequences these limitations have for this 

research project. 

5.4.1 Limitations due to Privacy Regulations 

Privacy has always been an important aspect of mobile phone location data as 

formalized by the Dutch Data Protection Directive (in Dutch this law is called “Wet 

Bescherming Persoonsgegevens”). Before the mobile phone location data can be 

analysed, three measures need to be taken in order to satisfy these privacy 

regulations. 

 Firstly, data at the level of the individual can only be processed at the servers 

that belong to the service provider. Output that is sent from the service provider to 

Mezuro is ridded of unique identifiers that can be used to track a device. 

Consequently, individuals cannot be traced. 

 Secondly, the phone numbers are hashed (i.e. a type of encryption) using a 

hash key that is changed every month, which implies that the unique key to identify 

a person by changes every month. Hence, the spatio-temporal trace a person leaves 

behind can be associated with an individual for the maximum duration of one month. 

 Thirdly, to prevent any unauthorised person from viewing the data of an 

individual person, outputs that aggregate 15 persons or less are omitted. That is 

because mobility patterns from mobile phone data are so unique that only four spatio-

temporal records are necessary to be able to identify 95% of the users according to 

research by De Montjoye, Hidalgo, Verleysen, and Blondel (2013). This has 

implications on all instances where in the output less than 15 users are aggregated. 

Most notably, this has implication in for example rural areas, with very little activity, 

and in all areas where short time periods are selected, as these data are prone to being 

omitted. When these three measures are combined they ensure that it is impossible 

to identify individuals using this data. 
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5.4.2 Technical Limitations 

In addition to privacy limitations there are also technical limitations. In particular, 

trips on shorter distances might fall below the same cell and are hence not recorded. 

To get a feeling of how many trips are recorded when we only include trips over a 

minimum distance we compared the trip counts with those of OViN, i.e. a large 

mobility survey in the Netherlands. In this chapter the data quality of OViN will not 

be discussed in depth, because this chapter is limited to a discussion about mobile 

phone location data. For a quality assessment of OViN we refer to chapter 8 where 

the OViN is discussed in greater detail as it is the main source of data used to predict 

trip motive.  

 

Figure 5.7, Comparison between OViN and Mezuro of the relative number of trips per travel 

distance. Both datasets have their number of trips set to 100% at a travel distance of 26 km. 

 Figure 5.7 depicts a graph that represents the number of trips per travel 

distance from OViN and Mezuro. Within this graph the number of trips of both 

datasets has been set to 100% at a travel distance of 26 km. In the OViN there would 

be no reason any trip would not show up in the data, thus also not a trip over 26 km. 

In the mobile phone data we know the largest trip within an area is 26 km. The 

maximum cell radii is set to 12.5 km. Because the angle of the cell may be 180 

degrees this implies the maximum trip length in the blind spot of a cell would be 25 

km. Why the limit is at 12.5 km will become clear in the next section. 

 Figure 5.7 shows that the trips on smaller distances are not reliably detected. 

We observe that both lines stay very close until trips smaller than approximately 10 

km are included. Beyond the 10 km mark there is an increasing amount of trips 

absent in the mobile phone data. This is the result of trips not happening between 

different Mezuro areas or trips staying within the reach of the same cell towers. For 

this research we will not look at these shorter trips and exclude them from the data. 

As we look at highways, we also expect not to encounter many trips below 10 km 

and hence do not think this will significantly affect the outcome of the research.  
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5.5 Data quality evaluation study 

In section 5.5.1 the results of the comparison with the GPS trace are presented. In 

section 5.5.2 we provide a further quality check in terms of evaluating the likelihood 

that realistic travel times can be recorded for each of the four algorithms. The data 

used in this analysis is derived from a test set with data of friends from Mezuro and 

consists of approximately 20 people. 

5.5.1 Comparisons with GPS 

In this section we provide an analysis of the data quality by comparing the mobile 

phone data with a GPS trace. The GPS trace is covers the entire month of February 

2015. The analysis will thus cover 28 days of measurement. The GPS trace is from 

one the employees of Mezuro for whom the privacy regulations are lifted to do this 

and similar evaluation studies. In total four algorithms are compared against the GPS 

trace: the gold standard, the current algorithm, the current algorithms with only cells 

under 10 km, and the current algorithm with only cells under 12.5 km. These 

algorithms all provide us with information about the origins and destinations of the 

person of interest. We will evaluate the algorithms based on the number of trips 

acknowledges, the percentage of correctly predicting the origin and the percentage 

of correctly predicting the destination. A destination is defined similarly as in the 

mobile phone data, i.e. a person needs to be near stationary for half an hour or more 

except for traffic jam destinations as explained in 5.2. Near stationary we define in 

our GPS algorithm as moving less than 5 km in radius. Locations are compared based 

on the areas also in the mobile phone data. When a person has a destination in the 

GPS trace the average of the longitude and latitude at a location are mapped to these 

areas. We observed a total of 52 trips. 

 

Figure 5.8, percentage of trips observed in the GPS trace that can also be found in the mobile 

phone data. 

In figure 5.8 the percentage of trips observed for all four algorithms is 

depicted. The percentage of trips observed means the number of trips in the GPS 

data that can be traced back to the origins and destinations in the mobile phone data. 

When origins and or destinations are not exactly correct, but rather positioned in 

neighbouring areas they are still counted. 
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From figure 5.8 we observe that the current algorithm performs much worse 

than the other three, with the gold standard righteously performing best. The current 

algorithm with only cells under 12.5 km performs nearly as good as the gold 

standard. The one with only cells under 10 km does slightly worse. We expect too 

many events are left out resulting in worse performance. We must note that mistakes 

are most often made on trips with shorter distances. Long distance trips were well 

recorded with all algorithms. 

 For all trips that can be traced back from the GPS to the mobile phone data 

we also evaluated how often the origin was exactly correct, i.e. the same location as 

in the GPS trace (figure 5.9). We found all algorithms performed well. With the gold 

standard and cells under 12.5 km providing the best results. When the algorithms 

were off, they were nearly always located in a neighbouring area. The graph with the 

destinations is omitted as very similar results are found. 

 

Figure 5.9, percentages of origins correct for all four algorithms. 

 To conclude, the current algorithm performs worse than all alternatives. The 

gold standard, as we expect, outperforms all algorithms. However, the idea of 

leaving out events with cells above a certain radius appears to be fruitful. Both 

algorithms presented in blue perform well. In particular, the current algorithm with 

only cells under 12.5 km appears to be very nearly as good as the gold standard. It 

manages to observe 96% of the trips found in the GPS compared to the 98% of the 

gold standard and just as often measures the correct origin for the observed trips. 
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5.5.2 Evaluation of measured travel times 

The measured travel times are evaluated by measuring the percentage of unrealistic 

travel times. Unrealistic travel times we define here as travel times leading to a 

velocity, as the crow flies, greater than 145 km/h.  OViN, i.e. a data source containing 

travel information about Dutch citizens. 

   

 

Figure 5.10, percentage of unrealistic travel times (> 145 km/h) is shown for all four 

algorithms and plotted against a threshold for the minimum length of a trip. 

The percentage of trips that are too fast, i.e. over 145 km/h are shown in 

figure 5.10. There is a clear relation visible between the threshold put on the distance 

of the trips and the percentage of unrealistic travel times. This we would expect 

because the distance over which travel time is measured will become shorter relative 

to the distance between origin and destination (see figure 5.4). Moreover, from figure 

5.10 we see the number of unrealistic travel times is much higher for the current 

algorithm than for the others and stays higher. Travel times are calculated by using 

the last event before leaving the origin and the first event at the destination. With the 

current algorithm cells are much larger and thus a person may have been travelling 

for longer before we observe them leaving the origin and vice versa after entering 

the destination decreasing travel times and increasing the likelihood of unrealistic 

travel times.  

For trips with an origin or destination very close to where the roadworks 

occur the roadworks may be in a blind spot near the origin or destination. Delays in 

travel times would then not be measured. Hence, when measuring the impact of 

roadworks we advise to leave these trips out of the measurements related to travel 

time. There is, however, no reason to belief these people are not affected by the 

impact of the roadworks or that they are delayed much more or less than the other 

travellers. We will, therefore, assign the same travel delay to these people as to the 

rest of the travellers that are affected by the roadworks.  
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5.6 Conclusion 

The negative effects observed by looking at descriptive statistics of the mobile phone 

location data are irrelevant as they occur outside the period that is analysed within 

the context of this research.  

The positive effects observed however, are influential as the increased 

adoption of 4G technology by the majority of the subscribers leads to more events 

being produced, which in the long run leads to more accurate location estimation.  

Next to that three measures are taken to satisfy privacy regulations. Firstly, 

data can only be processed at the mobile phone service provider. Secondly, mobile 

phone numbers are hashed using a hash key that changes every month. Thirdly, 

outputs can only be viewed in aggregate when they contain at least 15 persons. 

Logically, these three measures that are taken to satisfy privacy regulations cause 

limitations for the analysis of the data. In particular the 15 persons or more limitation 

is relevant for this research. The rule implies we might have to increase the time 

frame to ensure enough users have passed a road section to be seen. These privacy 

limitations are thus important to keep in mind in further analyses.  

 We also evaluated the impact of discarding events at cells with larger radii. 

By comparing with a GPS trace it showed disregarding events with cells greater than 

12.5 km in radius the mobile phone data becomes more valuable. The data becomes 

more precise in terms of determining the correct origin and destination and becomes 

more complete in terms of percentage of trips observed. By including the threshold 

during data preparation the data quality is greatly improved. 

 Regarding travel times we found the measurements in general are usable. 

There are a number of limitations, however, that need to be kept in mind. First of all, 

the travel time is measured when the origin is left and the destination area is entered. 

Hence there are blind spots near the origin and destination where travel time is not 

measured. We thus advise to only take into account trips over 10 km. Furthermore, 

trips with unrealistic travel times, i.e. trips with an average velocity over 145 km/h, 

to be filtered from measurements regarding travel times. Finally, when the origin or 

destination of a trip is very close to the roadwork, i.e. plausibly within the blind spot, 

these trips and corresponding travel times should not be included. The trips can, 

nonetheless, be included for vehicle count analysis. When this is done we advise to 

assign the average delay experienced by other trips passing the roadworks to these 

trips.  
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6 Scaling 

In this chapter we will discuss a new scaling method that can scale mobile phone 

users to the traveling population (section 6.1). Furthermore, we discuss whether the 

scaling factor is successful. This we do by comparing absolute vehicle counts on the 

road with the actual number of vehicles on the road inferred from the mobile phone 

data as discussed in 4.2.3 (section 6.2). 

6.1 Scaling method 

The new scaling factor needs to improve the current scaling factors on a number of 

aspects. The current scaling factor succeeds in adjusting the sample to the population 

by adjusting for the number of people per area (Appendix D). The current scaling 

factor, however, scales to the number of inhabitants per area and not to the number 

of people found on the road (Appendix D). This is an important distinction that has 

to be made as we want to measure how many people are affected by the roadworks. 

The scaling factor proposed here will, in essence, describe the ratio between the 

number of people we expect to be traveling and the number of users in the mobile 

phone data that we expect to observe traveling. 

The chance a person is found on the road is related to the age of that person. 

Children under the age of 15, for example, will go to school during workdays, i.e. 

Monday through Friday, whereas people in the age group 40 to 45 might go drive to 

work. Hence, depending on the age group and the type of day the chance to see a 

person traveling a certain distance may change.  

We make a distinction between four day types. These are workdays, 

Saturdays, Sundays, and workdays during the holidays. These day types provide 

insights into the distinct travel behaviours, with differences mainly observed for the 

young and old inhabitants. Further distinctions in day types did not provide 

additional information and would further spread our sample introducing noise. 

Hence we decide to only differentiate on these four. The likelihood of a person taking 

a trip of at least 10 km or more is represented in figure 6.1. From this figure we 

observe significant differences in travel behaviour based on age groups. A scaling 

factor to go from users to people traveling will thus have to include this information.  
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Figure 6.1, chance of observing a person making a trip over 10 km during a day depending 

on the age group and type of day. 

 In addition to differences in chance of traveling, different age groups have 

also a different representation in our sample. A child of 5 years-old, for example, is 

much less likely (4%) to possess a mobile phone than an adult aged 25 (96%) 

(Ofcom, 2014; Telecompaper, 2015). Therefore, we need to determine the 

penetration of mobile phones per age group and apply a correction on the data. This 

is because the 25 year old is much more likely to show up in our sample then the 5 

year old. 

 Our scaling factor will include the above information to get a good 

representation of the people traveling from the mobile phones we observe traveling. 

The proposed scaling method is formally represented in a Process Deliverable 

Diagram (PDD). The PDD is shown on the next page (figure 6.2). In a PDD the 

processes are shown on the left and the product of the action on the right (Van de 

Weerd & Brinkkemper, 2008). The PDD is accompanied by two tables, one 

describing the processes (Appendix E, table E1) and one describing the products 

(Appendix E, table E2). A comprehensive fictional example of how the scaling factor 

is calculated can be found in Appendix F. The next paragraphs will provide a brief 

overview of the steps and products in the scaling method.  

 The number of inhabitants traveling can be calculated in three simple steps. 

First, multiply the number of inhabitants by the distribution of age groups across the 

population for that area. Second, multiply the inhabitants per age group with the 

chance they are traveling. Note this differs also per type of day. Third, take the sum 

over all age groups to get the number of inhabitants expect to travel. 
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Figure 6.5, a PDD showing how the new scaling method can be calculated. 

 For the number of users we want to do exactly the same. However, we have 

information about the number of users and not the number of users by age group, 

which we do have for the inhabitants per area. Hence, we first need to calculate the 

chance of a user being in our sample. The chance of a user being in our sample 

depends on (1) the age distribution in that area, (2) the chance of having a mobile 

phone per age group, and (3) the penetration of the telecom provider in the 

population per age group. 

 The age distribution is the first step to get an estimate of the distribution of 

our sample over the age groups. The second is the change of having a mobile phone 

per age group. A child of 5 years-old, for example, is much less likely (4%) to 
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possess a mobile phone than an adult aged 25 (96%) (Ofcom, 2014; Telecompaper, 

2015). Therefore, we need to determine the penetration of mobile phones per age 

group and apply a correction on the data. This is because the 25 year old is much 

more likely to show up in our sample then the 5 year old. The third step is 

compensating for the penetration of the telecom provided in the population per age 

group. It may be that the provider targets a specific demographic resulting in a bias 

within the sample. By incorporating the market share of the provider per age group 

you can compensate for this bias with respect to the scaling factor. Unfortunately, 

we do not have data covering the provider market share per age group. We, therefore, 

make the assumption that the chance a mobile phone user is uniform across age 

groups in our sample. Offermans et al. (2013) got a good grasp of whether the data 

is representative for the population and they stated that appears to be the case. We, 

therefore, do not expect this to have much effect for our scaling factors. For other 

telecom providers with a more bias user base we do recommend to use it. 

 Finally, the number of traveling users is estimated from our expected 

number of users per age group and the chance of traveling per age group. By dividing 

the number of expected inhabitants traveling by the number of expected users 

traveling the scaling factor is determined each day for each area. 
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6.2 Evaluation  

Here we provide the results of our comparison between absolute vehicle counts on 

the road and vehicles inferred from the mobile phone data. The comparison is 

performed on 95 distinct locations on highways in the Netherlands and spans 

October 2015. This is the same data we also use to test if we can observe the same 

patterns in traffic intensity from both the mobile phone data and the roadside 

measurement data. In the next chapter we go deeper into how the datasets are 

prepared and constructed. Hence, a description is omitted here. 

To convert mobile phones to vehicles there are at least to fundamental steps. 

The first is converting people to vehicles, and the second is scaling the sample to the 

population. How the former is performed will be discussed in 7.2.2 and hence a 

description is omitted here. The latter, i.e. scaling our sample to the population, is 

done using the method described in 6.1 and is what we evaluate here. 

In figure 6.5 we show the four steps and corresponding average people and 

vehicle counts. In blue from left to right we go from people on the road, to scaled 

people on the road and finally vehicles inferred from the mobile phone movement 

data. In yellow on the right we have the vehicles measured from roadside 

measurement devices. From here we can see that the scaling works well, but still 

produces a slight overestimation of the number of vehicles found on the road. The 

difference being a mere 11.7%.   

 

Figure 6.6, vehicles inferred from the mobile phone data to vehicles measured on the road. 

 As is depicted in figure 6.7 the scaling factor successfully scales the sample 

to the traveling population for the majority of measurement sites irrespective of the 

day of week. Nonetheless, there are some outliers. These outliers are also the result 

of the 11.7% difference we just found comparing total vehicle counts. We, for one, 

count 1.6 and 1.8 times as much vehicles than there are found on the road from 

Zwolle to the South of the Netherlands and between Amsterdam and Schiphol, 

respectively. On both occasions we find the roads are very close to a busy railroad. 

Because this makes distinguishing people from more difficult, we suspect the added 

vehicles found on the road are misclassified train passengers. On two other locations 

we infer up to 35% less vehicles than there are found on the road. One location is in 

Southern Limburg on the A76 between Germany and Belgium. Here it might be the 

case that the road is used by a lot of foreigners who are more difficult to detect, e.g. 
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because they leave off their phone to prevent roaming charges. The other is in the 

centre of Rotterdam. Here we have no explanation of why we should measure fewer 

vehicles. The only logical explanation here is a fault in the route assignment 

algorithm that assumes there is another, more optimal path, people will take. 

 

Figure 7.7, the ratio of vehicles from the mobile phone data versus those measured on the 

road for the middle 50% of comparison sites. The median is located where yellow meets grey. 

6.3 Conclusion 

In this chapter we have presented a new scaling method. The scaling factor aims to 

scale to the traveling rather than general population and is unique in this aspect. To 

do so demographic characteristics such as mobile phone use and chance of traveling 

are taken into account. 

Furthermore, we show in 6.2 that the scaling factor helps us to get good 

estimates of the true traveling population. In the end that is all what the scaling factor 

has to do, i.e. correctly going from sample to population. Hence, we find the 

presented scaling factor is a success. On some occasions there is some deviation 

between the vehicles inferred and those measured, but this is not surprising given 

that we also had to distinguish train from road users, decide who travels over any 

specific road, and translate people to vehicles. 
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7 Focus 

In this chapter the technique to assign people from the Origin Destination (OD) 

matrix to the road is evaluated. As discussed in 4.2.4, this is done by comparing 

roadside measurement data with the mobile phone data. The complete method 

describing how measurements from both sources are compared is represented in 

figure 7.1. This is the same figure displayed and explained in 4.2.4 and will not be 

further discussed here.  

 

Figure 7.1, method for comparing traffic counts from roadside measurements with mobile 

phone data. 

 In section 7.1 we discuss the preparation evaluation and select phase related 

to the roadside measurement data. In section 7.2 the select and convert phases of the 

mobile phone data are discussed. After these steps we have vehicle counts for 

selected road sections on highways in the Netherlands from both data sources. In 

section 7.3 we will compare these vehicle counts to see if we can observe similar 

vehicle count patterns in both data sources.  
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7.1 Roadside measurement data 

7.1.1 Prepare 

The number of vehicles measured on the road is obtained via road site measurements 

provided as open data by Nationaal Databank Wegverkeersgegevens (NDW). NDW 

is a government initiative in the Netherlands that collects the measurement data from 

different parties such as Rijkswaterstaat (similar to the Ministry of Transportation in 

the USA). Most of the roadside measurements are taken using an inductive-loop 

measurement device placed on or in the road’s surface with a self-reported accuracy 

upwards of 90%. An overview of the types of roadside measurement devices, the 

number of occurrences on the Dutch road network, and the mean self-reported 

accuracies of each type of device is shown in Table 7.1 (NDW, 2015). 

Table 7.1, roadside measurement devices in the Dutch road network. 

MEASUREMENT DEVICE COUNTS ACCURACY 

Inductive-loop vehicle detector 21.711 99% 

Automatic Number-Plate Recognition 1.484 95% 

Bluetooth 1.409 Unknown 

Infrared 948 100% 

Floating Car Data (from navigation systems) 24 Unknown 

 

The information represented in table 7.1 covers all measurement sites in the 

Netherlands, including information on the use of parking lots and gas station et 

cetera. Moreover, the measurements from these measurements sites contain 

predominantly raw data. For major roads Rijkswaterstaat cleaned the raw data by, 

for one, removing outliers. The algorithm processing the raw data is called Monibas, 

an algorithm that is proven to be highly accurate (Technical University Delft, 2006). 

The Monibas processed data are present in the data as a separate measurement sites. 

In total there are 13.693 measurement sites for which Monibas is applied, all of 

which employ raw data from inductive-loop vehicle detectors. Research by the 

Technical University Delft (2006) commissioned by Rijkswaterstaat concludes 

Monibas data, in particular for real-time reporting, is by far the superior algorithm 

among competing algorithms at the time and is also much more accurate than the 

raw data. Hence sites with Monibas data are preferred and are taken as a baseline for 

the comparisons to see how well CDRs are translatable to vehicles on the road 

Monibas sites. 

Raw data is provided by NDW (NDW, 2015b) in xml format and converted 

to a manageable csv using software written in Python (Van Rossum & Drake, 1995). 

The csv contains information about the measurement site as a whole for 15 minute 

periods, e.g. the average vehicle count or average velocity. In addition, it contains 

information about the minimum and maximum vehicle counts and velocities as well 

as information on the number of trucks passing by. To keep data manageable, 

information about the independent lanes are aggregated to a single vehicle count. In 
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total data size is reduced a factor 800, i.e. from approximately 80 GB to 100 MB for 

a day of information, while maintaining all the relevant information for this analysis. 

Data for October 2015 has been downloaded and prepared using the 

conversion software just discussed. When downloading the data not all minutes 

appear to be present. Data for October 2015 was much more complete than 

September 2015. Hence, the data for September 2015 is left out in this analysis. All 

days in October has at least 1400 of the 1440 minutes present (97%).   

7.1.2 Evaluate 

Quality constraints will be applied to ensure only the most trustworthy and error free 

roadside measurements will be used to test the accuracy of the trip assignment of the 

mobile phone data. Research shows the roadside measurements may be reasonably 

accurate and the self-reported accuracy of these measurement devices is high (Nihan, 

Wang, & Zhang, 2002). Nevertheless, there might still be exceptions to the rule and 

it never hurts to double check the data quality. 

 For the final comparison we want to know (1) the accuracy of the roadside 

measurement sites in general, (2) when we have to discard information due to too 

many missing data, and (3) that the measurement site is at the stated location. To test 

this the roadside measurement sites will be evaluated on the following three aspects. 

These, respectively, are: (1) compliance between consecutive measurement sites, (2) 

missing/erroneous data, and (3) measurement site location validation.  

Compliance between consecutive measurement sites 

To test compliance between consecutive measurement sites we first make a selection 

of sites for comparison. Measurement sites are chosen such that there is no off or on 

ramp between two measurement sites and all vehicles passing the first measurement 

site also have to pass the second measurement site. In total 60 measurement sites on 

Dutch highways are chosen for analysis. This means there are 30 unique locations, 

i.e. 2 consecutive measurement sites per locations. We also consistently chose two 

sites in going one direction and two sites going the other direction. The points on the 

map in figure 7.2 show where the location of the chosen measurements sites.  
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Figure 7.2, locations of the consecutive roadside measurement sites (black dots). 

For all sites we find a very high correlation between what consecutive 

measurement sites report. Pearson correlations are all near one and greater than 

0.977, which confirms there is high compliance between measurement sites. 

Furthermore, we wanted to see if there are sites with strong biases. To do this we 

calculated the difference between consecutive measurement sites at each location 

and divided this by the average vehicle count over both sites. The measurements 

used are those of the average vehicle counts per 15 minutes. The bias, or deviation 

in average vehicles measured in percentages, are shown in figure 7.3. 
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Figure 7.3, deviation in vehicle counts between consecutive measurements. 

We observe from figure 7.3 that most sites have at most a very small bias. 

The majority of the locations show a deviation between sites between -1% and 1%. 

This is no cause for concern as it can be explained by people driving in between the 

measurement devices when switching lanes, for example. There are, however, two 

outliers visible that do require further investigation. One outlier can be found at 5% 

and one near -5.5% in figure 7.3. For these sites we are unable to detect one of the 

two supposedly consecutive measurement sites for both outliers with Google Street 

view. The measurement devices should be installed prior to the imagery on Google 

Street View and are typically easy to distinguish in the road. Hence we expect these 

measurement devices to be located elsewhere than stated by the NDW. This is also 

the reason that later on we will provide a measure to check whether the measurement 

sites are where there should be. The outliers found are discarded from further 

analyses in this chapter. 

Missing/erroneous data 

The next phase in our evaluation is investigating how the number of missing minutes 

relates to the quality of the measurements. The measure we employ to test data 

quality is the mean absolute deviation between consecutive measurement sites. The 

hypothesis we explore in this subsection is that data quality improves when there is 

less missing data. Typically we use the average of the measured vehicle counts and 

multiply this by 15 to get to the 15 minute vehicle count average. For example, when 

6 minutes contain errors the 15 minute average is the mean vehicle count over the 

remaining 9 minutes. With missing data we start to lose some certainty and start 

estimating rather than measuring. However, by only using data without missing 

minutes of data we may exclude too many data points from our sample. Here we try 

to get a grasp of how data quality relates to having missing data to quantify when the 

data is still acceptable and when to discard the data.  

The same sites and measurements are used here as in the previous subsection 

without the spotted outliers. The mean absolute deviation in consecutive 

measurement sites is based on 15 minute vehicle counts. Note this differs from what 

is presented in figure 7.3 as there we used total counts per site rather than differences 

per site per 15 minutes. The results are shown in figure 7.4 in relation to the 

maximum number of minutes with errors.  
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Figure 7.4, the relation between de deviation in vehicle counts and the maximum number of 

erroneous minutes per location. 

We observe that the deviation is very small for the first part, but grows 

rapidly at and past 7 minutes with errors. At 7 minutes with errors we also see the 

mean absolute deviation growing to above 5% and resulting at a deviation of 29% at 

14 erroneous minutes. For further analysis we will only include measurements made 

with 6 or less minutes with errors. When we use the 6 minute criteria the 15 minute 

vehicle counts of all measurement sites appear to follow a normal distribution shown 

in figure 7.5.  

 

Figure 7.5, histogram of the percentual deviation in measurements per 15 minute interval 

for all locations grouped.  

From figure 7.5 we observe that the differences between consecutive sites 

appear to be normally distributed with a mean at 0. The standard deviation of the 

shown distribution is 0.045. When the error in measurement of each site is normally 

distributed and equal amongst sites, the σ for each measurement site becomes 

approximately 0.032 following the variance sum law. This is very acceptable and 

provides us with a good indication of how accurate the roadside measurements are.  

By excluding all measurements with more than 6 minutes we discard part of 

the available data. The percentage of good quarters, i.e. with six or less erroneous 

minutes, for all Monibas measurement sites for October 2015 is shown in figure 7.6. 
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Figure 7.6, percentage of good quarters (with 6 or less erroneous minutes) plotted for all 

7796 Monibas measurement sites in the database. 

 From figure 7.6 it becomes clear approximately 60% of the roadside 

measurement sites produce consistently good quarters. 30% produces good data 

some of the time and 10% of the sites do not produce any good quarters at all. 

Although it is not directly relevant here because we can cherry pick the good sites, 

we find the error rate of the measurement sites preposterously high. The costs per 

measurement site is in the range of thousands to tens of thousands of euros a year 

(Middleton & Parker, 2002; ITS International, 2010; Verkeersmonitoring met 

inductielussen, n.d.). In other word (using €10.000 as a rough approximation of the 

actual costs of a site) there is about €7.8 million being spend on sites that do not 

produce any good data and another €23.4 million on the 30% of sites that have some 

good quarters. The good news, however, is that there are still about 4.775 sites that 

have 95% or more good quarters that we can compare with the mobile phone data.  

Measurement site location validation 

For the final comparison we want to be sure the selected roadside measurement sites 

are at the correct location. For this we will opt for and present a novel automated 

method to decide what measurement sites are likely at the stated location and what 

measurement sites are not. 

 The method is founded on the following premise: measurement sites that are 

located on the same road near each other will produce more similar vehicle counts 

than measurement sites further apart. The idea is thus to (1) cluster measurement 

sites based on their vehicle counts and (2) check if sites within each cluster should 

be located on the same road based on the metadata about the measurement sites. If 

70% of the measurement sites within one cluster belong to the same road and are 

headed the same direction these measurement sites are most probably where the 

metadata states they are. If the site belongs to a completely scattered cluster or the 

majority of the sites belong to one road, but this measurement site is on a different 

road, the measurement site is probably not where it should be.  

Clustering will be performed using the K-means algorithm as described by 

Hartigan and Wong (1979). As stated by Hartigan and Wong (1979): “The aim of 

the K-means algorithm is to divide M points in N dimensions into K clusters so that 

the within-cluster sum of squares is minimized”. For us the N dimensions the 
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vehicles measured for specific hours for which we have measurements and the M 

points are unique measurement sites. Typically, one starts by randomly assigning K 

points and set these points as cluster centres. In the following iterations over the M 

points all points are assigned to the nearest cluster. Thereafter, the cluster centres 

will be recalculated. This process may repeat itself a number of times and finally one 

is left with K clusters that together incorporate all M points. We set the maximum 

number of iterations to 200 to ensure a good (local) optimum is found. The within-

group sum of squares is the measure we try to minimize here. It is defined as the sum 

over all squared distances between each point and the cluster centre it belongs to. 

When K equals M each point is essentially a cluster centre and the within group sum 

of squares is 0. Selecting M clusters would be pointless. Hence, we want to select 

the number of clusters that provide a good trade-off between a low within group sum 

of squares in combination with a low K. The goal is to find this point where more 

clusters produce only a small reduction of the total within cluster distance. This point 

is called the ‘elbow point’. The plot in which the elbow point can be determined is 

called a scree plot. Scree plots were originally proposed by Cattell (1966) to find the 

number of components that should be included in Principal Component Analysis. In 

cluster analysis the same principles from Cattell’s (1996) research are still applied, 

but for determining the number of clusters rather than components.  

For our analysis we first selected all measurement sites that on average have 

95% or more average vehicle counts meeting the missing data criteria from the 

previous section. This leaves us with 4.775 measurement sites. We then discarded 

any hourly vehicle counts with average vehicle counts not meeting our criteria. As 

k-means is unable to handle missing data we than had to select all hours from 

October where every measurement site has good measurements. In total all this 

leaves us with 145 hours spread over the month October 2015 for which we have 

good data on all selected measurement sites. To ensure each hour gets equal 

importance the vehicle counts are normalized for each hour. Otherwise a 1% 

difference in vehicle counts during rush hour would result in a greater distance 

between sites than a 1% difference in vehicle counts during the quiet night time. This 

appears strange as we would assume two sites with, for example, 1.500 versus 1.600 

vehicles are more similar than two sites with, for example, 100 versus 200 vehicles 

measured. Scaling will help bring vehicle counts in perspective and provide a more 

just measure to compare compliance between sites. 
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Figure 7.7, scree plot providing an indication of the number of clusters in the roadside 

measurement data. 

Figure 7.7 shows a scree plot that helps us get a grasp of the number of 

clusters in our dataset. Unfortunately, figure 7.7 does not provide concluding results 

that drive us to state whether the true number of clusters is 70, 90, 150, or 240. At 

all locations the trend goes from ‘strong’ downward to nearly levelling out. As the 

true number of clusters is unknown and the scree plot is inconclusive the best we can 

do is taking an educated guess as to what the true number of clusters will be. The 

scree plot is, nonetheless, useful as it confirms that the number of true clusters is in 

the range of a hundred to a few hundreds. Note that selecting the correct number of 

clusters is more of an art than a science. On the one hand, we want the clusters to be 

large enough to determine whether part of the cluster is wrongly located. On the 

other hand, we want clusters to be small and thus specific enough such that each 

cluster will cover only one location.  

We choose 240 as the number of clusters. At 240 clusters there are on 

average 14 measurement sites per cluster. From the knowledge gained by working 

with the roadside measurement data we expect this to be a good compromise.  

Figure 7.8 shows the result of our clustering. In figure 7.8 we depicted all 

measurement sites on the right lanes with the colour unique for each identified 

cluster. Because of the large number of clusters it is rather difficult to identify the 

outliers from the image below. However, figure 7.8 provides us with confidence that 

the clustering is reasonable as we observe long strings of the same colour, i.e. cluster, 

on many major roads. This also shows the vehicles measured on the same roads in 

consecutive order often provide very similar measurements. On some occasions, 

nonetheless, we find a continuous stream of, for example, blue dots being separated 

by a single different colour point. These are plausibly the points where the 

measurement site either has a false location or provides false measurements. 
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Figure 7.8, clusters of similar measurement sites on the right lanes on the Dutch road 

network. 

Further analysis shows that of all clusters just under half (49%) has solely 

measurement sites on one side of the road, i.e. exclusively left lane or right lane. 

When we are strict and state the measurement sites need to be (1) on the same side 

of the road and (2) on the same road we reduce the number of clusters to 103 (35%) 

and the measurement sites to 1.076 (32%). The relation between the number of 

completely identical locations, i.e. based on road name and side of the road, and the 

number of clusters is depicted in figure 7.9. 
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Figure 7.9, percentage of sites at the same road and on in the same direction for all 240 

clusters. 

 The goal here, however, is not to be very strict. The goal here is to identify 

outliers, i.e. measurement sites that are on a different location than the other 

measurement sites in its cluster. We draw the line at 70% meaning that 70% of the 

measurement sites within one cluster need to be on the same road in the same 

direction. The remaining measurement sites in the clusters will be discarded as they 

are probably outliers. This leaves us with 1.761 good measurement sites. 140 

measurement sites, although good according to the minimum number of errors 

criteria, are discarded as outliers. These 140 sites are plausibly wrongly located or 

producing trivial information.  

Conclusion 

We constructed two criteria that will help us to extract the most trustworthy of road 

side measurement sites. These are making sure the used measurements have 6 or less 

minutes of erroneous data and meet the clustering criteria, i.e. it belongs to the 

majority (70+ %) of measurement sites on the same road within a cluster. 

Furthermore, we found that road side measurement sites are very accurate overall, 

when they meet the above criteria. We may expect a standard deviation from the true 

vehicle counts of approximately 3.2%.  
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7.1.3 Select 

The final step regarding roadside measurement data is selecting good measurement 

sites for the final comparison with the mobile phone data. To get a good sample we 

will (1) only select sites that we consider good, i.e. with 95% of the data meeting the 

6 minutes or less of erroneous data, and (2) select sites randomly over the road 

network.  

 The step in the select phase is filtering out the measurement sites that are 

bad, leaving us with the good sites. Furthermore, for comparison only the sites that 

measure traffic staying on the highways are used. 23% of the sites measure how 

many people enter or leave the road at the exits. These sites we did not evaluate 

because no two consecutive sites measure the number of people leaving. Hence, the 

quality of these sites are uncertain. We expect the measurements here to be slightly 

worse because people might be cutting corners, for example, and consequently 

skipping the traffic detectors in the road (Appendix B).  

The second step is selecting a subset of the good sites. We might investigate 

the relationship on all measurement sites, however, this will not result in a good test. 

The distribution of measurement sites over the road network is not uniform. Near the 

larger cities in the Netherlands where roads are busier, more measurement sites are 

positioned, e.g. between Amsterdam Rotterdam and Utrecht. Using all sites for 

comparison will thus result in a bias as comparisons near major cities will be more 

valued than those in less congested areas, which possess fewer measurement sites. 

To limit the bias we select measurement sites randomly such that each site on the 

same road have to be at least a 5 km distance from all other selected sites. In total 

100 sites are selected. There are 50 sites going one direction and 50 sites going the 

other direction. The sample is generated in R where distances are calculated using 

the geosphere package (Hijmans, 2015). The locations of the selected sites will be 

shown later with the corresponding correlation coefficients, i.e. the results, in section 

7.3, figure 7.13. 
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7.2 Mobile phone data 

7.2.1 Select 

Route assignment from OD-matrices 

There is a large volume of published studies describing how to assigning vehicle 

trips from Origin Destination pairs (OD-pairs) (Prato, 2009; Ortúzar & Willumsen, 

2011). The key assumption often made is that people are rational and take the route 

that minimizes their travel cost (Ortúzar & Willumsen, 2011). Travel cost can be 

seen as a combination of multiple factors such as travel time, distance, cost of fuel, 

congestion charges, et cetera (Ortúzar & Willumsen, 2011). The most important 

factors, explaining 60% to 80% of all route choices in practice, are travel time and 

distance (Ortúzar & Willumsen, 2011). Methods taking the shortest path or k shortest 

paths as the possible route choices between OD-pairs account for the largest group 

of path generation methods (Prato, 2009). At the moment the dataset available for 

this study uses Dijkstra’s shortest time path algorithm to link OD-pairs to road 

sections (Dijkstra, 1959). The shortest time path is chosen by time rather than 

distance. This is done by taking into account the maximum speed allowed on a road 

section based on the information from Open Street Maps (OpenStreetMap 

contributors, 2014).  

The shortest time path algorithm, however, has its limitations. Knowing 

what vehicle trips to take into account when performing post-hoc analysis of the 

impact of roadworks is fundamental and the shortest time path allocation method is 

not 100% accurate. Prato (2009) argues that the shortest time path method might not 

be ideal as it does not take personal preferences or abstractive measures of route 

attractiveness into account. By applying the shortest time path algorithm all vehicle 

trips from A to B are assigned to a specific road, which may be unrealistic. 

Nevertheless, as 60% to 80% of all route choices can be explained by a combination 

of time and distance there is still support for using the shortest time path (Ortúzar & 

Willumsen, 2011). We may find that a portion of travellers are found on other roads. 

Roads that are often congested, for instance, may be avoided and other roads may be 

used more than the shortest time path algorithm may identify. When scaling from 

the sample to the entire traveling population this has to be kept in mind as it may 

influence the scaling factor. Nevertheless, we propose to use the shortest time path 

algorithm for this research regardless of its imperfections. The algorithm is already 

in place and might still provide adequate results. As indicated earlier this research 

aims to improve the state of the art and encourages future research to build upon it. 

Implementing a newer more advanced trip assignment method is left for future 

research.  

To get from OD-pairs to devices on a road we need to know what route, i.e. 

set of connected roads, a device took to get from the origin to the destination. For 

each OD-pair in the OD-matrix a route is pre-assigned based on the shortest time 

principle, i.e. the path from origin to destination that takes the least amount of time. 

The total amount of GSM-equipped devices assigned to a piece of road is then 

determined by taking the sum of all OD-pairs of which the route contains the road 

of interest. The digital version of the Dutch road network is obtained from Open 

Street Maps (OSM). From the OSM data the shortest time is calculated and the 
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shortest time routes thus contain all road parts as supplied by OSM. This implies that 

for each piece of a road, up to the level of detail of OSM, devices passing that piece 

of road can be inferred. The shortest time route assignment is an assumption that 

may influence how well devices measures relates to vehicles measures on the road. 

In this chapter we validate, for one, whether the route assignment using the shortest 

path is a good assumption.   

 The roadside measurement sites selected in 7.1.3 are linked to the roads in 

OSM. This is done by assigning the measurement site to the nearest road where the 

road name, e.g. A2, is equal. For all Monibas measurement sites we checked by hand 

whether the imposed link appeared correct. We then selected the road section 

corresponding the roadside measurement sites selected for analysis. 

Handling the minimum of 15’ rule 

The data from CDRs are constrained by a ‘minimum of 15’ rule. This rule entails 

that only if a minimum of 15 devices can be aggregated for an activity we get precise 

measurements. If less than 15 devices are measured the output will be zero, although 

anywhere between zero and fifteen devices are observed. The minimum of 15 rule is 

in place to ensure the privacy of the people owning the GSM-equipped devices as 

discussed in 5.4.1. 

 The minimum of 15 rule brings a number of unique challenges to obtain 

information from the CDRs. In particular, when looking at either very short time 

frames or investigating movements between low populated areas there is a real 

chance to drop below the threshold of 15. For comparison between CDRs and 

roadside measurements this has to be taken into consideration. Two measures taken 

for this analysis to decrease the chance of dropping below 15 measured devices. The 

first measure is to take all OD-pairs that pass a road section and group them together 

as one. On the one hand, there is now no way to distinguish between different OD-

pairs and observe where people passing a road section originate from or go to, thus 

loosing detail in the information. One the other hand, a much larger sample is taken, 

thus the chance of dropping below the 15 threshold and loosing information in 

general becomes much smaller.  

Figure 7.10 shows the origin (yellow) and destination (blue) of all OD-pairs 

passing a road section along the A2 between Amsterdam and Utrecht. Note the 

colour indicates the number of origin and destination links per area. It is not affected 

by the number of trips from each origin and arriving in each destination. 

The second measure taken is to take a sufficiently large time fame. Although 

the roadside measurements are available on minute basis, for the CDRs a timeframes 

of hours are taken. This is to be sure the minimum of 15 rule is met. We tried to do 

timeframes of 15 minutes, but too often the minimum of 15 rule was not satisfied. 

Moreover, because the timestamping is only an approximation a time frame 

of an hour would be more representative of when a person really drove past the road 

section. For the analyses in this chapter time frames of an hour are used. 
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Timestamping 

When comparing the mobile phone data with the traffic counts we want to compare 

them based on how many vehicles are measured on the road at a certain moment in 

time. For the roadside measurements the timestamps are already in place. For the 

mobile phone data this has to be constructed as there is no information about where 

a person is during a trip, only that the person moved from A to B between time t0 

and t1. 

 For timestamping we will use the middle of the trip. For example if a person 

leaves at 9:00 and arrives at 9:50 we assume the person crossed the road at 9:25. This 

is not super accurate as the road with the roadside measurement device might 

actually be crossed earlier or later during the trip. However, this is not a major 

limitation because we are never much off given we compare only hourly vehicle 

counts. 76% of the trips over 10 km in the Netherlands end within an hour and within 

2 hours over 94% of the trips are completed (CBS, 2014a). Hence in only 24% of 

the cases we are able to be more than an hour off the real moment when the 

measurement site is crossed and in just 6% of the cases we can be off more than 2 

hours. Moreover, while sometimes the middle of the trip is earlier than the actual 

moment of crossing the measurement device, i.e. when the road section is near the 

end of the trip, the opposite is just as likely. For some people the road section is close 

Figure 7.10, map of the origins (Yellow) and destinations (Blue) passing the A2 from 

Amsterdam to Utrecht.  
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to the origin and for some close to the destination. When we make an error on one 

side this might is compensated by an error on the other. Overall, we thus expect that 

the middle of the trip will result in good estimates for the hourly vehicle counts. 

Hence, we will not attempt to devise a more precise timestamping method just for 

this comparison.   

7.2.2 Convert 

In essence the mobile phone data measures the movement of mobile phones and thus 

people rather than vehicles. A translation is thus required to go from people to 

vehicles on the road.  

To get a good estimate of the number of people per vehicle, survey data from 

5 years of OViN are used, starting at 2010 and ending at 2014. In the combined data 

there is information about 97.432 trips that are comparable to those in our mobile 

phone data. To get comparable trips in the OViN we applied some selection criteria. 

We discarded trips outside the Netherlands and trips under 10 km, which is the 

distance ‘as the crow flies’. Furthermore, trips with unrealistic travel times, i.e. trips 

with velocities above 145 km/h, are discarded as these trips are most likely errors. 

OViN is chosen because it contains information about the means of transportation, 

e.g. train, car or bus, and for people traveling by car there is a distinction between 

being a passenger and a driver. This we will link to known people per vehicle ratios 

for the different means of transportation to get a good estimate of the chance a person 

is a driver. The percentage of people traveling over the road that are drivers is directly 

related to the number of people per vehicle and hence can be extracted from the 

OViN. 

An overview of all means of transportation of trips greater than 10km with 

vehicles that can be found on highways is shown in table 7.2. The two largest groups 

by a margin are car (driver) and car (passenger). Here the description provides 

enough context to know if the person is a driver or not. The third largest group bus 

(public transport) accounts for nearly 5% of all trips. The chance of being a driver 

for this class (11%) and the class motor is extracted from literature on Dutch public 

transport (Otten et al., 2014). Bus (private) is assumed to be similar to bus (public 

transport). All other classes combined including taxi and freight truck only account 

for just over 1% of all trips. The assigned chances of being a driver for these classes 

are based on personal experience. Provided their low share amongst all trips the 

possible impact of mistakes due to guess work is considered to be negligible.  
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Table 7.2, different types of means of transportation, their prevalence on the Dutch roads, 

and the change of being a driver. 

MEANS OF 

TRANSPORTATION 

% OF TRIPS CHANCE OF BEING A 

DRIVER 

Bus (public transport) 4.93% 11% 

Bus (private) 0.57% 11% 

Camper 0.05% 50% 

Car (driver) 43.67% 100% 

Car (passenger) 17.09% 0% 

Delivery van 0.52% 95% 

Motor 0.44% 87% 

Taxi 0.44% 50% 

Freight truck 0.06% 100% 

Other / not on highway 32.23% - 

We find the motive of a trip, rather than hours of the day or day of the week, 

can provide very stable and coherent people per vehicle ratios. In figure 7.11 the 

people per vehicle ratio, i.e. the inverse of the chance of being a driver, is depicted 

for each of the three motives, i.e. work, business and other, and hour of the day. As 

can be observed from figure 7.11 is that the ratio people per vehicle is stable over 

the majority of the day. The unstable pattern in the early morning can be attributed 

to a low sample size in the early hours of the day. Note that we included the motive 

other twice, once for workdays and once for weekends. This we did as there was a 

clear difference in people per vehicle between the two day types for this motive. 

During the weekend there are generally more people per vehicle for non-work and 

business related activities. The people per vehicle ratios applied are 2.02 for other 

weekend, 1.64 for other workdays, 1.08 for business, and 1.10 for work trips. 

 

Figure 7.11, people per vehicle ratio plotted for different trip motives averaged per hour of 

the day for October 2015, with an additional separation for the motive other between 

workdays and weekend. 
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7.3 Comparison of the data sources 

As we now finished the data gathering and preparation stages for both data sources 

we can now perform a sound comparison. Part of the comparison with respect to 

total vehicle counts has already been discussed in section 6.2 to evaluate the scaling 

factor. We found the absolute vehicle counts to correspond very well for the majority 

of measurement sites. Here, however, we will test whether patterns in traffic intensity 

on the road can be inferred from the mobile phone data by comparing it to the gold 

standard, i.e. road side measurements. If this is also the case we can say we can 

correctly infer vehicle counts from the mobile phone data.  

The most common measure that states how well patterns occurring in one 

data series correspond to those in another is the Pearson correlation coefficient. If 

when one data series goes up by 10% the other does the same for all data points the 

correlation coefficient will be 1. When the opposite is true, i.e. one goes up then the 

other goes down, the correlation coefficient is -1, and when there is no relation it will 

be 0. In figure 7.12 a histogram of the Pearson correlation coefficients is shown. We 

can see that for the majority of the locations the Pearson correlation coefficient is 

above 0.9 indicating a very high correlation.  

 

Figure 7.12, Pearson correlation coefficients for 100 selected test sites in October 2015. 

On some occasions, however, it drops even below 0.8, which is still high in 

general but low compared to our other findings. To find out why these outliers are 

present we performed some further analyses. As it turns out there is a logical 

explanation of why these outliers exists. The route assignment algorithm only 

contains paths from the centre of an area to the centre of another area. Hence, trips 

cannot be assigned to roads beyond the centre of an area when that area nears the 

border. Hence there are no or very few origin destination combinations crossing 

these roads resulting in very low or non-existent vehicle counts.  

In figure 7.13 we show the Pearson correlation coefficients of all 100 

selected sites, note some overlap between points is possible. Below the dark blue 

points all the way at the left of the Netherlands are four points in total. This is where 

the Pearson correlation coefficients are much lower than average and vehicles are 

hardly detected in the mobile phone data  
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Figure 7.13, all 100 sites plotted with on a map with their respective colours indicating the 

Pearson correlation coefficient. 

  Points with a correlation coefficient at and below 0.8 are removed from the 

analyses performed in 6.2 and hence only 95 measurement sites are compared there. 

For the later roadwork analyses we will not investigate roadworks happening near 

the country border as vehicle counts may be misinterpreted. 

 When vehicle counts over a week are compared we get the results as shown 

in figure 7.14. Here we selected one of the higher correlating measurement sites and 

use only the first week, starting on Monday, of October 2015. The latter we do to 

provide a clearer graph. Note that the drop on October 6th 2015 is due to missing data 

and is not taken into account for the other analyses. Overall, we find the results are 
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great and, with the exception of roads near the country border, we are confident the 

relatively simple least time path algorithm suffices in assigning people to the road. 

 

Figure 7.14, hourly averages of vehicles measured on the road and those inferred from the 

mobile phone data. 
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7.4 Conclusion 

We performed an extensive analysis of roadside measurement data and explained 

how to use mobile phone data to go to vehicles on the road. Furthermore, we selected 

a 100 sites that met all criteria and performed an analysis. The analysis was 

performed to see whether road intensities on the road can be inferred from the mobile 

phone data. 

 The key lessons from the results in this chapter with respect to the roadside 

measurement data, mobile phone data, and the comparison are the following.  

 We found the roadside measurements are very accurate overall. The number 

of minutes with errors, however, do affect the compliance and thus quality of the 

measurements. By only including measurements with 6 or less minutes of errors the 

average standard deviation of measurement sites are estimated to be 3.2%, which is 

quite accurate. Moreover, we found that in some occasions the roadside 

measurements are not where they should be. Clustering was performed to check 

whether they are at the correct location, i.e. road section, and the results appear 

promising. Of the 100 selected sites we never encountered an instance where we still 

expected the measurement site to be wrongly located. 

 The mobile phone data had to be converted from phones to vehicles. This is 

done based on the trip motives. For different trip motives, e.g. other work and 

business, the people per vehicle ratio appears to provide a very stable estimate. We 

did, however, find that during the weekend the recreational traffic has slightly more 

people per vehicle than during workdays. Hence, we make a distinction for this trip 

motive. For the other two trip motives no correction was needed.  

 Overall, the results of the comparison as presented in 6.2 and 7.3 about 

absolute vehicle count and patterns in vehicle counts, respectively, are both very 

promising. However, we do have to keep in mind the shortest time path algorithm is 

not yet able to assign vehicles to roads near the border resulting in a few outliers. 

Roadworks near the country border can thus not yet be evaluated. Nevertheless, for 

the remainder of the country we can definitely state we are able to measure who will 

be affected by roadworks by using the rather simple shortest time path algorithm.  
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8 Label 

As discussed prior, the label phase consists to determine the motive of trips. For 

different trip motives there are different VoT and VoR stated, i.e. the economic 

impact differs per motive. We want to use trip and person characteristics to predict 

the motive of a trip. For this a model has to be created that can determine trip motives 

based on a set of trip and person characteristics. To create the model the CRISP-DM 

method is applied as discussed in section 4.2.5. The following six sections will 

contain the products resulting from performing the CRISP-DM method. Ultimately, 

this will lead to and include adding trip motive to the mobile phone data. 

8.1 Business understanding 

The main objective of labelling is to be able to assign trip motives to the mobile 

phone data. The reason for doing this is because delay experienced by people going 

from and to work is more costly than delay experienced by people going shopping 

(Kennisinstituut voor Mobiliteitsbeleid, 2013). Cost distinctions are made for trips 

with the following motives: home-to-work, business, and other (Kennisinstituut voor 

Mobiliteitsbeleid, 2013). In OViN home-to-work trips are defined as trips to and 

from a work location. This can be a regular as well as temporary work location. 

Hence, this also includes locations for on-call employees, part-timers and voluntary 

workers (CBS, 2014). Business trips are defined as trips that are due to work, 

excluding trips that are to regular work locations. This category mainly concerns 

service trips, customer visits, meetings and symposiums (CBS, 2014). All trips not 

belonging to either of these two groups we characterize with the motive other. The 

goal here is to get the most accurate estimate about the motive of a trip for these 

three groups.  

It is important to understand that we always look at travel behaviour from a 

population or aggregated perspective. Consider for example the following situation. 

What we care about is being able to estimate the composition of the travellers such 

that we can assign cost to the delay. There is no reason to suspect travel motive 

influences the delay that will be experienced. There may be some fluctuations in the 

delay experienced per traveller, but this is more likely to be the result of random 

errors in measurement than actual differences in experienced delay. Hence the aim 

is more geared towards predicting the distributions well rather than predicting well 

on individual level.  

 In the end the goal is to use the model to make predictions on the mobile 

phone data. Because of technical constructs there are a few crucial points to take into 

account when designing the model. First of all, for this research, the mobile phone 

database can only be reached through SQL-queries. This is important to keep in mind 

because some models are easier to convert to SQL than others. Moreover, to be of 

practical use in the long run the query has to run faster than it takes new data to enter 

the database. If it takes, for example, two days to process one day of data this is 

unsustainable. Ideally it takes much less than a day, e.g. one hour max, to be able to 

also add trip motives to historical data and allow for other processes to run.  

 In summary there are three critical success factors. First, the model needs to 

significantly improve the estimation on the classes home-to-work, business, and 
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other compared to the baseline, i.e. the a-priori information on the underlying 

distributions. Second, the model needs to be applicable in an SQL type of 

environment. Third, trip motives should be addable to the mobile phone data within 

a reasonable time frame, e.g. approximately one hour. 

8.2 Data understanding 

To link trip and or people characteristics to trip motive it is key to have a data source 

in which both are present. In the Netherlands the largest source of information 

containing both trip characteristics and trip motives is the OViN. This is a yearly 

survey aimed to gain information about mobility patterns of inhabitants. The survey 

is performed by the Centraal Bureau Statistiek (CBS), i.e. a large organization that 

is tasked to gather and present statistics about the country and its inhabitants. OViN 

gathers information across the Netherlands and across age groups about mobility. 

Other data sources about mobility patterns in the Netherlands do exist. The most 

noteworthy is from the Mobiliteits Paneel Nederland (MPN). The key differences 

are that the MPN covers three days in a person’s life and OViN one, but at the cost 

of a ten time smaller sample size. Moreover, the three days available appear to be 

only a slight addition. Weekly patters, for example, are still not visible with the 

MPN. Because of the superior sample size and the fact MPN still does not allow to 

see weekly patters, the OViN is preferred over the MPN. This does imply we can 

only distinguish daily patterns and cannot identify travel patterns that span multiple 

days, e.g. a person always going to work at the same location. Additional information 

could potentially be generated by employing both data sources. Combining these 

data sources would require significant effort and given the limited time available for 

this research this will be left for future research. Moreover, if the model created just 

using OViN produces satisfactory results there may be no incentive to put in the 

extra effort. 

 Results of the OViN surveys for the years 2010, 2011, 2012, 2013 and 2014 

are combined to provide a more stable and robust sample. The plausibility of the 

results found in the OViN survey have been analysed by the CBS and both passed 

the tests (CBS 2010; CBS 2014b; CBS, 2014c; CBS, 2015b). This is an indication 

the quality of the data appears logical on a high level. Weight factors are included in 

the results to compensate for biases in the sample. These weight factors can 

compensate for biases on household, person, and trip level. Because we try to predict 

motives for trips the weight factors on trip levels need to be included when training 

our model. In total the dataset contains information on about 650 thousand trips 

spread over the five years. 

 Because of the earlier design decision to focus on trips longer than 10 km, 

only a subset of the results from OViN are relevant. OViN does have distance classes 

to state the distance of a trip, but these are not necessarily as the crow flies. In the 

mobile phone data only trips over 10 km are taken where the distance is measured 

as the crow flies. Fortunately, the OViN does include the four digit postal codes of 

the origin and destination. An additional database retrieved from postcodedata.nl is 

merged with OViN to add GPS coordinates to the origin and destination (Postcode 

Data, 2014). Before adding the GPS coordinates to the dataset the GPS coordinates 

per postal code, e.g. 1234AA, are averaged to get the average for the four digit postal 
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code as present in OViN. In data preparation the GPS coordinates are translated to 

distances and by taking into account the reported travel times also the velocities are 

calculated. 

 When performing a quick scan over the velocities calculated we encounter 

some strange behaviour. Occasionally the velocities for trips over 10 km are much 

greater than can be physically possible and are incoherent with other answers. For 

example, one interviewee noted she walked from one side of the country to the other 

within ten minutes. This might have been a trip smaller than 10 km, which we would 

normally exclude. Unrealistic trips like these we want to keep out of our dataset. 

Hence, we decided trips going over 145 km/h will be excluded.  

 The mobile phone data is also an important dataset that needs to be 

understood here. On this dataset the model has to be applied. Hence, the 

characteristics used to predict trip motive have to be present also in this dataset. In 

Appendix G table G1 a list of the attributes present in the mobile phone data is 

presented along with a short description.  

Time of departure and time of arrival are present in both datasets. However, 

there is an important distinction between OViN and the mobile phone data. While 

OViN knows the exact moment a person leaves and arrives we only have an 

estimation in the mobile phone data. In the mobile phone data the departure time is 

the first event before leaving the origin area and the departure time the first event at 

the destination area. Based on the average number of events of the users we estimate 

the true arrival and departure times as has been elaborated upon in 5.5.2. This 

adjusted time will then be used such that both datasets provide an indication of the 

true departure and arrival times. Furthermore, there is an attribute Homebased in the 

mobile phone data that we think can provide valuable information about the trip 

motive. In OViN this attribute is not present per default and hence is constructed. 

How the homebased attribute, among others, is added will be discussed in the 

following section. i.e. data preparation.  
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8.3 Data preparation 

In this section we will discuss how additional attributes are constructed, and how the 

dataset is filtered to contain only useful information. Data preparation and analysis 

has been performed in R (R Core Team, 2014).  R is a language and environment 

that was developed to perform statistical computation (R Core Team, 2014). R is 

chosen because it is freely available, has many useful extensions, and provides 

greater flexibility than for example SPSS or Excel. 

 A description is provided stating exactly how all attributes are created. The 

order of presentation is also the order in which the attributes are created. Some 

attributes are created before the dataset is reduced because of quality concerns stated 

in Data Understanding or because it is not relevant to our research, e.g. information 

outside the scope of this research. The name or names of each attribute is shown in 

bold and when data reduction is performed the text is italic. A description of each 

attribute can be found in Appendix G table G2. 

The first data cleansing step is duplicates in OViN. In OViN each trip can 

also have sub trips. For example, a trip include going to the train station by foot, 

taking the train, and going to work by foot. Then the motive is assigned to all three 

trips. Removing ‘duplicates’ reduces the number of trips by approximately 9%. 

Trip motive 

Business trips and home-work trips area already defined in OViN. All other 

categories are merged into the category other. 

Homebased 

In OViN there is an attribute stating the goal of a trip. If this goal is going home we 

know the postal code of the destination is the home postal code. For all people that 

once stated the goal of their trip is going home we can thus infer the home location. 

Based on this we can decide on a person level if someone is leaving home, going 

home, or is traveling between locations that do not include the home postal code. 

Travel distance 

Travel distance is calculated by linking the postal codes of the origin and destination 

location with their respective longitude and latitude. The link between postal codes, 

longitude, and latitude are provided by an external data source (Postcode Data, 

2014). Originally the external data source includes postal codes with digits and two 

characters, e.g. 1234AA. Longitude and latitude are averaged per four digit postal 

code, e.g. 1234. The longitude and latitude are than linked to the origin postal code 

and destination postal code. Using the R package Geosphere and specifically with 

the function distm the travel distance is calculated from these longitude and latitude 

combinations (Hijmans, 2015). 

 All trips under 10 km are discarded as they fall outside of the scope of this 

research. As the majority of trips are below this threshold the dataset is reduced by 

another 76%. 
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Departure / arrival time 

Values are calculated by multiplying the start / end hour of a trip by 60 minutes and 

adding the start / end minute of a trip. Start / end hour and start / end minute are 

readily available in OViN. 

First / last trip start / end 

The start / end of the first trip is calculated by aggregating over the entire OViN 

dataset per person id and taking the start / end time of the first trip. The first and last 

trip start / end is added to all trips taken for each person.  

Velocity 

The velocity of each trip is calculated by dividing the trip’s travel distance (converted 

from meter to km) by the difference between trip’s end time and trip’s start time 

(converted from minutes to hours). 

 As stated in data understanding the trips over 145 km/h are unrealistic and 

either the origin or destination is incorrectly reported. These trips are, therefore, 

also left out. This results in a data reduction of 9%. Moreover, although this may 

have been done earlier, the few trips that are solely abroad are subtracted. Finally, 

trips with no value for the attribute trip motive that we aim to predict are removed 

(20%). In the end this leaves us with a total of 97.423 unique trips. 

Weekday 

Day of week is calculated from the date attribute. Day of week is a numeric value 

ranging from 0 on Monday to 6 on Sunday. 

Holiday 

Whether it is a holiday depends on the part of the country a person lives in. In the 

Netherlands there are three regions: North, Middle, and South. Each region has their 

own holiday periods. We thus had to map the postal code from the home location, 

already constructed to calculate homebased, to these three regions. This we did by 

first going from postal codes to municipalities and mapping those to the regions 

defined by the government (Rijksoverheid, n.d.). After adding the region information 

to OViN we linked this to holiday information to know whether a trip in OViN was 

during a holiday period or not (Landenportal, n.d.).    
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8.4 Modelling 

The modelling phase has two distinct phases. First, an algorithm has to be chosen. 

Thereafter, we need to determine how to best implement the chosen algorithm to get 

the best model as a result. Section 8.4.1 will discuss what type of algorithm fits our 

task best. Section 8.4.2 will, thereafter, focus on how to apply the algorithm, i.e. 

what settings to evaluate and later use, to get the best possible model.   

8.4.1 Model choice 

For model choice it is important to take into account the structure of the available 

data and our goals, which are elaborated upon in the business understanding phase. 

What is apparent from the data is that we have three classes to predict. The model 

chosen will thus have to be a classification rather than regression type of model. 

Furthermore, there are approximately twelve input variables and all of these are 

either numeric or binary (0, 1). There is one exception, i.e. the homebased variable. 

The homebased variable can has the value -1 when the home location is the origin, 

1 if the home location is the destination and 0 when the home location is not involved 

in the trip. However, if needed the information can be translated by creating two 

binary variables. To our knowledge all popular classification algorithms allow for 

numeric data and thus this does not provide any noteworthy restrictions on our model 

choice. On the business side it is important that the model can be implemented 

relatively easily into SQL and that the implementation is relatively fast, e.g. runs a 

day of data within one hour. These constraints, as discussed earlier, are crucial for 

the model to be useful in practice. Moreover, these constraints significantly narrow 

the candidate classification algorithms.  

Neural networks and support vector machines have been shown to provide 

solid results (Pradhan, 2013; Baesens, Van Gestel, Viaene, Stepanova, Suykens, & 

Vanthienen, 2003). However, implementing these algorithms into SQL is not a 

straightforward task. Neural networks and support vector machines also have the 

disadvantages of being more difficult to explain and visualize. Decision trees and 

probability estimation trees (PETs) are much easier to explain and convert into SQL.  

The trees are basically an ordered set of if else statements that will lead to a 

value. In case of decision trees the values are hard label, e.g. business trip, and for 

PETs the values contain probabilities, e.g. business (50% chance) home work (25% 

chance) and other (25% chance). For predictions on groups rather than individuals 

soft labels, i.e. probabilities, are preferred (Niculescu-Mizil & Caruana, 2005). “[I]n 

data mining applications the interest is often more in the class probabilities 

themselves, rather than in performing a class assignment.” (Hastie, Tibshirani, 

Friedman, 2009, p. 348). In the above example, if a 100 people would have been 

labelled with a hard label we would get 100 business trips. With a soft label it would 

be 50 business trips, 25 home work trips, and 25 of the class other. The latter will 

typically be a better representation of the underlying population. Hence, we prefer a 

PET over a standard, i.e. hard label, decision tree. 

Another well-known classification algorithm is decision forest, which is 

basically a large collection of short decision trees. Each tree in the forest provides a 

prediction and based on all the predictions one final verdict is given. This could also 
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be in the shape of a hard and soft label, i.e. probabilities of belonging to a class. 

Because a decision forest is in essence a collection of decision trees it is also a 

collection of if else statements. However, a decision forest would take much longer 

to make predictions. For example, a large decision tree with a depth of 20 is already 

large, but would per instance at most take 20 if else statements. A decision forest 

works well when there are hundreds up to thousands of small trees. If each tree would 

only consist of one if else statement it might requires orders of magnitude more 

computation time. Implementing a decision forest is not feasible given the long 

execution time. 

 For this study we will implement a PET. The PET is preferred over the 

alternatives because it is (1) easy to translate into SQL, (2) probably provides a better 

estimation of the distribution than a decision tree, and (3) requires little computation 

time at implementation. 

8.4.2 Training a PET 

Numerous studies have been performed to determine how to best predict class 

probabilities using PETs (Niculescu-Mizil & Caruana, 2005; Zadrozny & Elkan, 

2001). Because the goal of decision trees, i.e. predicting hard labels with maximum 

accuracy, differs from probability estimation trees, i.e. estimating class probabilities, 

the two models have to be trained and evaluated differently (Provost & Domingos, 

2000). For decision trees the standard procedure is to train the tree and perform 

pruning afterwards (Esposito, Malerba, Semeraro & Kay, 1997). Pruning is 

performed to check if leaves are worth the added complexity they bring to the model 

and remove them if they are not (Provos & Domigos, 2000; Zadrozny & Elkan, 

2001). The idea is that complex trees model are likely to over fit the training data. 

Overfitting implies the model incorporates too much noise and outliers and so 

reduces the predictive power of the model on unseen data. Predicting well on unseen 

data is obviously the goal and, therefore, pruning is crucial.  

For probability estimation trees, however, the story is a little different 

(Provos & Domigos, 2000; Zadrozny & Elkan, 2001).  For getting good estimates 

pruning can also be a culprit, hurting results (idem). While pruning removes outliers 

it also tends to remove leaves if they have little predictive power because the 

underlying probabilities are too similar. The latter would actually help the 

effectiveness of probability estimation trees, because these focus on distributions and 

changes herein rather than the best accuracy of predicting classes (Provos 7 

Domigos, 2000). An example of this can be found in figure 8.1. The bottom left two 

leaves do not truly add to the predictive power. In both cases the tree would predict 

just as many good or wrong as when these leaves would be pruned. However, for a 

probability estimation tree the bottom two leaves do add value. They show the 

chance on the bottom right leave is 50/50 and that of the left is 25/75, i.e. a 

noteworthy difference. 
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Figure 8.1, example of a probability estimation tree. 

 Provos and Domigos (2002) tested how well probability estimation trees 

would perform with a variety of settings. They did this on 25 publically available 

dataset commonly used for testing data mining algorithms, e.g. the Iris and Hepatitis 

datasets that are also built into R (idem). Pruning, for one, performed better than not 

pruning. They hypothesize that even though pruning removes useful information it 

also results in leaves that are produced from very few observations (idem). It may, 

for example, be the case a distribution at a leaf node is only built on five observations 

that all belong to one class. As a result the leaf will say all future observations belong 

with a 100% certainty to that class.  

Laplace correction is one technique occasionally implemented to address the 

issue overly confident distributions at leaves with few observations. Laplace 

correction is applied to reduce the confidence of the leaf by adding one observation 

to each of the classes artificially. Consequently, instead of having five observations 

of one class you get six of that class and one of each other class. This will result in a 

more uniform distribution. When applying Laplace correction on the unpruned tree 

the results found were slightly better than with pruning, although not significantly 

so (idem).  

Zadrozny and Elkan (2001), for one, point out that applying Laplace 

correction might not be ideal as it results in a more uniform distribution, which might 

not be the true underlying distribution. Rather than using Laplace correction they 

went for m-estimation in their study (idem). M-estimation is largely similar to the 

Laplace correction, but draws the distribution closer towards the a-priori distribution 

rather than a uniform distributions.  

 

Equations 8.1 and 8.2 will show how class probability is calculated before 

and after m-estimation, respectively. In the equations pi stands for the probability of 

class i, ki stands for the number of observations of class i at the leave, and n stands 

for the total number of observations of the leave of interest. Bi is the apriori 

probability of encountering class i and m is a multiplier that determines how much 

smoothing is applied. The optimal value for m can be determined by using cross 

validation (Cussens, 1993). 

p𝑖 =  
𝑘𝑖

𝑛
            (eq. 8.1) 

p𝑖 =  
𝑘𝑖+𝑚 ∗ 𝑏𝑖

𝑛+𝑚
             (eq. 8.2) 
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 An alternative to smoothing, e.g. by applying m-estimation, is to perform 

isotonic regression (Niculescu-Mizil & Caruana, 2005). The issue with isotonic 

regression is that it is hard to implement in our situation. Isotonic regression implies 

the class probability has to be continuously increasing or decreasing and that is not 

necessarily the case in our situation. Moreover, it is designed to be used for binary 

classification and extending the algorithm to a multi-class problem is non-trivial 

(Niculescu-Mizil & Caruana, 2005). 

 In addition to applying smoothing, Zadrozny and Elkan (2001) propose to 

perform curtailment. Curtailment is the act of ignoring leaves that have less than to 

be established number of observations (idem). This differs from traditional methods 

to reduce the complexity of a tree such as applying a threshold on the number of 

observations each leaf should have during creation of the tree. Curtailment occurs 

after a tree is created.  

 

Figure 8.2, a decision tree before and after curtailment, i.e. without node 5, with at least 20 

observations needed. 

In figure 8.2 an example of a tree is provided where the grey leaf is a leaf 

that is being ignored because it does not meet the minimum number of observations 

criteria. When an observation would end up in a grey leaf the distribution of the 

parent node will be used, provided it has sufficient observations otherwise it will go 

to the grandparent. This process can continue all the way back to the root node. Even 

though Zadrozny and Elkan (2001) show promising results when applying 

curtailment we show here that curtailment can result in biases in prediction. Imagine 

each leaf should have at least 20 observations to provide sound estimations of the 

distribution. Curtailment will than result in the black tree as shown in figure 8.2 

where leaf 5 is left out because the lack of observations. Whenever an observation 

ends up in that leaf during prediction the distribution of node 2, i.e. its parent node, 

will be assigned. Now imagine 60 new observations entering node 2 and we want to 

predict the distribution. If the tree is correct this would result in 20 yesses and 40 

no’s, i.e. using the left class as yes and the right class as no. In the tree after 

curtailment about forty-five observations go to node 4, which results in 10 yesses, 

and fifteen go to node 2 as node 5 does not meet the criteria, which results in a further 

5 yesses. In total we get 15 rather than the expected and correct 20 yesses. This 

example shows curtailment can result in artificial biases and, therefore, we abstain 

from using it. The general idea of setting a minimum to the number of observations 

that should be in a leaf appears useful nonetheless. For this we propose to use 

minleaf, which is an old technique that only allows the tree to grow further leaves if 
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at least a certain number of observations will end up in each leaf.  Setting minleaf at 

20 in our example would have resulted in a tree without nodes 4 and 5 which implies 

the 20/40 distribution at leaf 2 would be assigned to new observations, which is 

correct. Cross validation, as with curtailment, will be used to determine what the 

threshold on minleaf should be to deliver the best results. 
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8.5 Evaluation 

Evaluation is about finding out how good our model performs under different 

circumstances when trained using a variety of settings. Finally, this will help us to 

answer questions such as “Does the model add to what we already know?”, “How 

accurate is the model in different circumstances?”, and “What settings will result in 

the best model?”. 

 This section is divided in four subsections. In 8.5.1 the method to correctly 

evaluate the model is described. In 8.5.2 the evaluation results are presented with 

analysis following in the subsequent section, i.e. section 8.5.3. A description of the 

best model including information about what attributes add much to the predictive 

power of the model can be found in section 8.5.4. 

8.5.1 Evaluation method 

When evaluating the created models it is key to have a good measure of how good a 

model is. Moreover, the measure will have to fit the task the model is designed for. 

A popular quote states: “Everybody is a genius. But if you judge a fish by its ability 

to climb a tree, it will live its whole life believing that it is stupid.” The same goes 

for model evaluation. The goal of our model is to provide accurate estimations of the 

trip motives of people driving past a certain road section. We do not necessarily care 

about each individual. Hence, the goodness measure should be about predicting 

distributions accurately and not individual observations.  

As a goodness measure we will use the Chi-square test. The Chi-square test 

evaluates whether a distribution, in our case the estimated distribution, might 

represent the actual distribution, i.e. the distribution in the test set. When the 

distribution do not significantly differ, with a confidence level of .95 (α is .05), we 

assume the prediction is correct and otherwise that the prediction is false. The Chi-

square test has two assumptions that have to be satisfied for the test to be meaningful. 

These are: 

 Independence of observations, i.e. each observation needs to be unique and 

unrelated to any other observation (Field, Miles & Field, 2012). 

 Each class should have at least five observations. When there are less than 

five observations it is generally assumed the test has too little statistical 

power (Field, Miles & Field, 2012). Hence, with less than five observations 

per class the test does not provide conclusive evidence.  

A few attributes selected for our model go beyond trip level. For example, the first 

trip a person takes during a day. Hence, not every observation is completely 

independent. To ensure independence observations all people present in the test data 

will have their trips removed from the training data. By doing this independence is 

assured. The minimum of five observations rule depends greatly on how the test data 

is constructed from the total dataset, which occurs randomly. Hence, we will check 

each time whether there are enough observations per class with each Chi-square test 

that will be performed. By doing so both assumptions will be met and the results 

from the Chi-square tests will be meaningful. 
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In addition to the Chi-square test we will also compare estimates of the resulting 

average VoT for subsets of the population compared to the country average. In the 

end the VoT and VoR are the values that will convert loss in travel time and travel 

time reliability into monetary values. Being able to predict these well is one of the 

main reasons to do this trip motive prediction and it is thus important to also judge 

the models in this respect. 

 Once a goodness measure has been established the next step is to determine 

in which situation and with which settings the model performs well. For us it is 

important that the model is able to predict trip motive for people driving over a 

particular road. The model thus does not only have to perform well on a country 

level, but also when zoomed in to province and even municipality level. There are 

thus three unique situations in which the model has to perform well that differ along 

the axis of granularity. In terms of settings there are two axis. As established in 8.4.2 

there are two settings, i.e. adjustable parameters, that will determine how well our 

final model will perform. These are the weights set for m-estimation, i.e. the number 

of dummy variables taken into account, and the value for minleaf, i.e. the minimum 

number of observations needed per leaf to continue growing the tree. Figure 8.3 

provides an overview of all axes along which potential models will be evaluated. 

 

Figure 8.3, axes of evaluation. Potential models will be tested on three levels of granularity 

with a variety of settings for minleaf and m-estimation weights. 

Evaluation will be performed by training the model on a subset of the data 

and testing the model on the remainder of the data. Note that the train data in this 

case has the trips for people removed that occur also in the test data to ensure 

independence of observations. Chi-square tests will be performed to see how well 

the model can predict the distribution of trip motives in the test data. To test whether 

the models perform significantly better than the baseline, i.e. an estimation using the 

a-priori distribution, the McNemar-test will be performed. The McNemar-test tests 

if there are differences between two groups based on one dichotomous, i.e. yes or 

no, dependent variable. Where the dependent paired t-test evaluates continuous 

variables, the McNemar-test evaluates dependent dichotomous variables.  In our case 

the variables are dependent, for example, how well the model predicts trip motives 

for people going to Amsterdam versus the baseline model. The outcomes are 

dichotomous as the distribution is either equal or it is not. McNemar-test thus appears 

to be a good fit for what we aim to do. Dietterich (1996) also indicated the McNemar-
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test is one of the most promising statistical tests to test whether one classification 

algorithm outperforms another. All assumptions for the McNemar-test are also 

satisfied given our variables are truly dichotomous, i.e. there is no overlap between 

classes. The McNemar-test will thus provide good insight into how well our model 

performs and what the added benefit is of employing our model. An alpha of .05 will 

be used to test for significance. 

8.5.2 Evaluation results 

In total we evaluated each level, e.g. country, with fourteen unique values for minleaf 

and m-estimation resulting in a total of 84 combinations.  

On country level 20 folds are made and evaluated. The results are shown in 

table 8.1. The a-priori distribution was indistinguishable from the true distribution, 

i.e. with an alpha over .05. Hence, the model has no chance of performing better, 

only worse.   

Table 8.1, results on country level. Showing how often the model’s predictions are 

indistinguishable from the true distribution of trip motives. Post minleaf 300 no changes are 

found and hence the results are omitted. 

 M-ESTIMATION 

MINLEAF 0 10 20 30 40 50 

0 80% 0% 0% 0% 0% 0% 
50 100% 90% 85% 75% 55% 35% 

100 100% 100% 95% 90% 85% 80% 
150 100% 100% 100% 95% 95% 90% 
200 100% 100% 100% 100% 100% 95% 

300 + 100% 100% 100% 100% 100% 100% 
 

In the Netherlands there are a total of 12 provinces. Per combination of 

minleaf and m-estimation settings we created a model on 11 of the 12 provinces to 

test how good predictions are on trips going to the other province. The results are 

shown in table 8.2. For reference, the a-priori distribution, which was 100% accurate 

on country level, is only 50% accurate on province level.  On country level the best 

models predict 8 out of 12 correct versus 6 out of 12 for the baseline, i.e. a-priori, 

model. Although we can already see improvements by applying the model it is not 

significant. The p-value produced by the McNemar-test is .47. 
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Table 8.2, results on province level. Showing how often the model’s predictions are 

indistinguishable from the true distribution of trip motives.  

 M-ESTIMATION 

MINLEAF 0 10 20 30 40 50 

0 50% 25% 33% 42% 50% 58% 

50 67% 58% 67% 67% 67% 67% 

100 67% 67% 67% 67% 58% 67% 

150 67% 67% 67% 67% 67% 67% 

200 58% 58% 67% 67% 67% 67% 

300 67% 67% 67% 67% 67% 67% 

400 67% 67% 67% 67% 67% 67% 
500 58% 67% 67% 67% 67% 67% 
750 50% 58% 58% 58% 67% 67% 

1000 58% 58% 58% 58% 58% 67% 
1250 58% 58% 58% 67% 67% 67% 
1500 50% 50% 50% 58% 58% 58% 
1750 50% 50% 50% 50% 58% 58% 
2000 42% 42% 50% 50% 50% 58% 
 

Although there are many municipalities in the Netherlands, we are unable to 

test how well the model performs on each one. The assumptions of the Chi-square 

distribution are the culprit here. When there are less than 5 observations the test is 

unreliable. We, therefore, chose to only evaluate the 30 most frequent visited 

municipalities in our dataset. The a-priori distribution was correct in 16 of the 30 

cases (53% accurate) while the best model(s) predicted the distribution well in 22 of 

the 30 cases (73%) as is shown in table 8.3. The McNemar-test produces a p-value 

of .04, which is below the .05 criterion we use for significance. On this lowest level 

our model thus predict the underlying trip motives to the top 30 visited municipalities 

significantly better than the a-priori distribution. 
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Table 8.3, results on municipality level. Showing how often the model’s predictions are 

indistinguishable from the true distribution of trip motives.  

 M-ESTIMATION 

MINLEAF 0 10 20 30 40 50 

0 60% 60% 57% 60% 63% 63% 

50 63% 63% 60% 63% 63% 60% 

100 70% 67% 67% 67% 67% 70% 

150 73% 67% 67% 67% 67% 67% 

200 67% 67% 67% 67% 67% 67% 
300 67% 67% 67% 67% 67% 67% 
400 67% 67% 67% 67% 67% 67% 
500 67% 67% 67% 67% 67% 67% 
750 67% 67% 67% 67% 67% 67% 

1000 70% 67% 67% 67% 67% 67% 

1250 67% 67% 67% 67% 67% 67% 

1500 67% 67% 67% 67% 67% 67% 
1750 67% 67% 67% 67% 67% 67% 
2000 60% 60% 57% 60% 63% 63% 

 

8.5.3 Evaluation analysis 

The key finding here is that the model helps to stay accurate when we zoom in to 

specific areas. On country and province level we did not find any significant 

differences in performance though the model is never worse than the a-priori. On 

municipality level we encounter the first significant differences with our model 

providing the better distributions. 

 In terms of settings we find that m-estimation does not provide any benefit 

to training our PET. More specifically, the best models are often created where m-

estimation is not performed. Changes in the minleaf constraint does make a large 

difference in the accuracy of the created models. We observe that a too low value for 

minleaf leads to bad results, which may relate to the model overfitting the data. On 

the other end of the spectrum we see that a large minleaf also leads to bad results 

when drilling down from country to smaller areas. This might be because a large 

minleaf results in a very general model that is unable to capture necessary relations. 

 In terms of finding the best model, in our opinion, there is a clear winner. 

On each level the model with a minleaf of 150 and no m-estimation produces the 

best results. The model that will be used for implementation is will be the one trained 

on the entire dataset using these settings. 
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8.5.4 Model description 

The model used for implementation is a PET trained on the entire dataset 

with minleaf set at 150. The final model should perform at least as good and probably 

better as more data is used for training. In addition to more data, there are also no 

biases in the data, as is the case when leaving out specific provinces and 

municipalities.  

Note that the dataset contains only trips over 10 km in distance, which is the 

distance as the crow flies. The model is, therefore, only applicable for these trips. It 

might be used to classify shorter trips, but for those trips the accuracy of the model 

has not been determined.  

   

 

Figure 8.5, variable importance scaled to 100% for the final tree created.  

 In terms of variable importance we find the first trip start, arrival time and 

weekday (see figure 8.5). Runner ups are departure time and travel distance. 

Together these five attributes make up 81% of the ‘variable importance’. Variable 

importance is a rather vague measure, nonetheless. Variable importance is measured 

by observing how many times a variable is used in to make a split in the tree and 

how often it was a surrogate split, i.e. second or third choice. To calculate the 

variable importance we used the function varImp from the caret package (Kuhn, 

2016). In figure 8.4 the variable importance is scaled to 100%.  

 

  



 

 

 

81 

8.6 Implementation 

Now a good model has been created we will implement the model on the mobile 

phone data. Implementing the model is a non-trivial task. We need to make sure the 

attributes the model is trained on match the ones in the mobile phone data. 

Furthermore, we need to translate the model from R into SQL. The clearest way to 

show the implementation is successful is comparing the acquired distributions to the 

OViN. This we do in table 8.4. From table 8.4 we can see the distributions are very 

similar for trips over the road. Nevertheless, there are some deviations. More 

specifically, we have slightly more business trips and trips in the category other. 

Overall, we do not have any reason to doubt the implementation. The comparison in 

table 8.4 is also comparing five years of OViN with September and October of 2015, 

for which we do not have the OViN. Changes over time, e.g. the economic crisis, 

might also explain why there is a slight decrease in the number of work trips.  

Table 8.4, distributions of trip motives over all trips for the OViN and mobile phone data. 

MOTIVE OVIN MOBILE PHONE DATA 

Other 60.0% 62.5% 

Work 35.6% 31.6% 

Business 4.4% 6.0% 

  

 For a typical workday the distribution is shown in figure 8.6. We see the 

distribution appears logical with large peaks of work during the rush hours and more 

recreational traffic towards the end of the day. Furthermore, business trips occur 

mostly during the middle of the day as is also the case in figure 8.6. Overall, we thus 

find these results encouraging and are confident the model adds value. 

 

 
Figuur 8.6, trip distributions for people traveling by car for an average workday in 

September and October 2015. 
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8.7 Conclusion 

There are a number of key findings in this chapter about trip motive prediction. In 

terms of business understanding we made clear the trip distribution rather than 

individual trips are more important for this research. Furthermore, we find that the 

OViN provides enough resources to build and evaluate a model. Survey data 

provided a clear added value to the mobile phone data by matching characteristics 

found in the survey to similar characteristics found in the mobile phone data. 

 We provided a comprehensive analysis of how to correctly train a PET. 

PETs are the models of choice for this research because the tree structure matches 

closely to the case when statements present in the SQL language. This allowed us to 

implement the model created in R into a SQL environment. 

A number of models were created and tested against the a-priori distribution 

using the Chi-square test for distributions. These models were built on three levels 

of granularity: country level, province level, and municipality level. We show that 

the model gains more value once we start to zoom in to smaller areas. Here the a-

priori distribution increasingly starts to misrepresent the actual trip distributions to 

these areas. When we get to a municipality level the model starts to become 

significantly more accurate in predicting the trip distributions. Furthermore, we 

looked at a variety of settings for minleaf and m-estimation. The latter turned out to 

be of little added value. Tweaking the former, however, had a large impact on the 

model accuracies. When minleaf was too small the model over-fitted, and when it 

was too large it was unable to incorporate fundamental relations. With a minleaf of 

150 the best resulting model was created. 

 In terms of variables that help determine trip motives we find the most 

important once are arrival time of the trip, departure time of the first trip during a 

day and the day of week. When performing similar studies we advise to take at least 

these into account. 

 We also provided indications that the implementation was successful. This 

we did by comparing the outcomes with (1) the OViN on which the model was 

trained and (2) our common sense. In both cases the resulting values from the models 

did not deviate much  
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9 Compare 

In this chapter we will focus on putting the measured values at roadworks into 

context. These values consist of travel time, standard deviation of travel time, and 

people affected. At roadworks we expect these values to be affected, e.g. we expect 

an increase in travel time due to larger traffic hindrance on the road. To quantify how 

much these values are affected we need to (1) create a dataset that measures good 

travel times as well as accurate counts of the affected people and (2) create a proper 

baseline. 

 In section 9.1 we discuss how to construct a dataset from the mobile phone 

data that measures good travel times and accurate counts of the people affected. In 

section 9.2 we go into detail on how a baseline is constructed to compare the 

roadwork situation with the non-roadworks. The findings will be summarized in 

section 9.3. 

9.1 Dataset construction 

9.1.1 Mobile phone data 

Creating a dataset that works well on all fronts is a non-trivial task that requires deep 

understanding of the mobile phone data. We know the counts of people on the roads 

to be accurate in both absolute counts as shown in section 6.3 and over different 

hours of the day as shown in section 6.3. In this section we will thus mainly focus 

on getting accurate travel times from mobile phone data. 

 There are two prime reasons why travel times would be unreliable in the 

mobile phone data. These are: 

 Being in a blind spot, i.e. under a cell tower near the start or end of a trip. 

 Having few events, i.e. a low density of data points from which travel 

times are calculated.  

As discussed in the data quality chapter (chapter 5) the travel times at the start and 

end of a trip are not measured, but estimated based on the number of events a person 

has. We can thus not measure true differences in travel time at the start and end of a 

trip as a result of, for instance, roadworks.  For roadwork analysis the trips ending 

and starting near the roadworks have to be discarded as the delay would not be 

measureable. We decided to exclude all trips with an origin or destination within 

12.5 km of the roadwork’s location to get more accurate travel times. Furthermore, 

the more events a person has the more accurate travel times are measured. On 

average a person has about 140 events a day nowadays (see figure 5.6). To prevent 

losing too much of our sample we stated people needed to have on average at least 

100 events per day, i.e. once every 14.4 minutes. This reduces our margin of error 

while maintaining enough trips to stay above the minimum of 15 rule. With these 

two measures in place we can create a dataset from the mobile phone data with 

accurate travel times. 
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 Now we have two datasets each with their own strengths. One dataset for 

accurate travel times that removes origins and destinations at blind spots and uses 

only people with relatively frequent events. And one dataset that contains everyone 

and is shown in chapter 6 and 7 to provide accurate counts of people on the road. 

Note that both these datasets are again only containing trips over 10 km long, which 

is similar to what we did in the majority of this research. These two distinct datasets 

will be merged into one such to create a ‘best of both worlds’ dataset. 

In table 9.1 all relevant attributes from the mobile phone data are presented 

along with the original data source. The dataset with accurate travel times is dubbed 

the Travel time data and the dataset with accurate count data is named the Count 

data. They are merged on the first three attributes, i.e. the date hour and road id. 

Table 9.1, origins of the attributes to create a ‘best of both worlds’ dataset from the mobile 

phone data. 

ATTRIBUTE DATA SOURCE 

Date Both 

Hour Both 

Road id Both 

Users on the road Travel time data 

Users on the road scaled Count data 

Users on the train scaled Count data 

Urbanity (average) Travel time data 

Travel time for road users (average) Travel time data 

Distance travelled for road users (average) Travel time data 

Travel time for road users (std) Travel time data 

Users on the road scaled with motive Other Count data 

Users on the road scaled with motive Work Count data 

Users on the road scaled with motive Business Count data 

9.1.2 External sources 

The attribute road id in table 9.1 is not naturally in the mobile phone data. This 

attribute originates from the shortest path algorithm. Trips are selected based on 

whether they cross the road based on the shortest path algorithm. In general one 

would know the road id where the roadworks occur. In our case, however, we only 

have descriptive information about the location of the roadworks. We have a road 

name, e.g. A2, a direction, e.g. Right, and a number corresponding to a sign by the 

road, e.g. 110.2. Because we have over a thousand unique roadworks in our sample 

the process of linking a roadwork to a road id had to be automated. This we did by 

first extracting geolocations from shapefiles about road signs and linking these to a 

road directory to extract information about corresponding road names and driving 
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directions (Nationaal register, 2016). Thereafter, we used the information to get the 

road id from the Open Street Map database, which is linked to our mobile phone 

data, by picking the roads closest to the longitude and latitude from the road sign 

where the road names match. Only roads with 15 meters from the road sign were 

taken into considerations. Finally, we linked the descriptive information from our 

roadworks data to the road sign data. A roadworks starting on the A2 in direction R 

at 110.2 km will then, for example, be mapped to the road sign on the A2 in direction 

R with number or close to the number 110.2. 

 The information about roadworks originate from Systeem Planningen en 

Informatie Nederland (SPIN) and cover September and October 2015. SPIN is the 

system that is used by contractors that add data and Rijkswaterstaat who 

communicates the information to the road users (Rijkswaterstaat, n.d). Note that 

when we say unique roadworks we mean uninterrupted work at a specific road under 

fixed circumstances. When people are working on a road and they close one lane the 

first two hours and close a second lane the two hours after that we count two 

roadworks happening. One with the setting on one lane closure and one with two 

lanes closed. 

 As we found in chapter 7, we are unable to correctly measure people 

traveling over a road when the road is located near the Dutch border or shores. 

Hence, we will have to remove the roadworks happening in those locations as we 

know we cannot accurately measure their impact. In figure 9.1 we provide an 

overview of all the roadworks present in our database. In figure 9.1 we, furthermore, 

make a distinction between included roadworks and excluded roadworks, which are 

in an area near the shore. 

 In addition to information about roadworks, we also want information about 

weather at the roadworks. Weather can affect road capacity and influence travel 

behaviour in general (Cools, Moons & Wets, 2010). Hence, knowing what weather 

it is at the roadworks can provide valuable information. We also want to correct for 

the effects of weather variations to establish a purer baseline, which we will do in 

section 9.2. The information is thus crucial. Weather information is acquired from 

the Koninklijk Nederlands Meteorologisch Instituut (KNMI) and consists of hourly 

weather information from a number of weather stations (KNMI, 2015). We have 

selected eight weather stations across the Netherlands to extrapolate local weather 

information near the roadworks. The locations of these weather stations are also 

depicted in figure 9.1. Local weather information near the roadworks is calculated 

using a distance metric. Based on the premise that the closer the roadworks are to a 

weather station the more probable it is the weather is like that at the weather station. 

We calculated the inverse of all weather stations to any roadwork and used this as 

weights to estimate local weather information. For example, if a roadwork is 10 km 

to a weather station where it rained and 20 km to a weather station without rain, we 

state it rained for two thirds of the hour at the roadworks. 
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Figure 9.1, locations of the weather stations and roadworks that are integrated with the 

mobile phone data for further analysis. 
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9.2 Creating the baseline 

9.2.1 Defining the baseline 

The baseline for a situation where a roadwork is present is one at the same location 

at similar moments in time where no roadworks are present. When the roadworks 

occur on road A on a Monday between 6 AM and 7 AM then the baseline will be the 

data from people driving over road A on all other Mondays between 6 AM and 7 

AM. That is the case provided there are no other roadworks on the same road on 

Mondays between 6 AM and 7 AM.  

 Our data spans September and October 2015, but unfortunately there are 

some special cases in this time period. In the Netherlands as it happens to be there 

are holidays in different parts of the country during the last two weeks of October. 

There is reason to belief that travel behaviour could be influenced by the holidays 

we cannot use data from that time period. The roadworks and their respective 

baselines can thus only span from the first of September to the 17th of October.  

As can be seen from figure 9.1 there are many roadworks occurring 

throughout the country, sometimes also on the same road. When creating a baseline 

for roadwork X we do not want delays of roadwork Y to end up in our baseline. 

When roadwork X and roadwork Y are located on the same road in the same 

direction within 15 km of each other we will not include the data when roadworks Y 

are present in the baseline for roadworks X. For example, if roadwork X occurs in 

week 1 and roadwork Y in week 2, then we will only consider data from week 3 up 

to week 7 for our baseline. The threshold of 15 km rather than the entire road is 

specified because some roads are very long. Being on the same road thus does not 

imply they influence each other, e.g. there will be no effect from roadworks on the 

A2 near Maastricht on roadworks on the A2 near Amsterdam (217 km apart). By 

using a threshold of 15 km we inherently assume people on the same road will not 

be affected by roadworks further away, but might be by roadworks within this range. 

For now we assume the 15 km threshold is correct and leave finding a better 

threshold for future research. 

 Furthermore, we want to have at least four data points in our sample. In total 

we can have up to six data points, i.e. one for every seven weeks in our sample minus 

one for when roadworks are present. If we would compare a roadwork against one 

measurement in the baseline this would give an unreliable image. A small baseline 

would allow for large effects of noise, e.g. delays caused by traffic accidents. The 

larger the baseline the better it will become. In table 9.2 we show the average number 

of baseline points per hour for all roadworks in our dataset. With our threshold of 

four points in the baseline we discard 222 roadworks and keep 638. Note when we 

started we had just over a thousand roadworks and thus already lost quite a few. This 

is because those roadworks had no baseline data all together and were discarded 

altogether. 

Table 9.2, average number of data points in our baseline rounded to integers and the 

corresponding number of roadworks for which we have that many baseline points. 

# BASELINE POINTS 1 2 3 4 5 6 

# ROADWORKS 61 50 111 215 292 131 
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9.2.2  Correcting travel time 

The travel time we measure is based on the time it takes a person to go from A to B. 

While trips always have an origin and destination these may change over time 

resulting in changes also in travel time. To get a fair comparison of travel times we 

want to correct for these factors that do affect travel time, but are due to external 

factors rather than variations due to the roadworks. For the corrections we use only 

data with 500 to 1500 vehicles per lane. The bottom limit is to ensure we have a 

proper sample size and the upper limit is to ensure we do not start to model the effects 

of road being congested quicker under certain circumstances. Rain, for example, can 

result in a road capacity reduction of 4 to 30% (Stern, Shah, Goodwin, & Pisano, 

2003; Unrau & Andrey, 2006). For this we do not want to correct because it directly 

relates to the delay experienced at roadworks, which also reduce road capacity 

leading to more congestion. Moreover, we discard all information at roads when 

roadworks are present when building a model to correct for external factors 

influencing the travel times.  

 In total we identify four crucial external factors that may influence travel 

time. These are:  

 Average travel distance, i.e. the distance travelled in km over the road  

(ranging from 21 to 215 km) 

 Rain duration, i.e. ratio of the rain duration to the entire hour  

(ranging from 0 to 1) 

 Wind max, i.e. the maximum wind speed in km/h  

(ranging from 2 km/h to 184 km/h) 

 Night, i.e. whether it is between 7 am and 20 pm  

(0 for day and 1 for night) 

Travel distance is obvious, the further one travels the longer the trip will take. The 

other three are have a less direct impact on travel time. When it rains and when there 

are strong winds people may be more cautious and drive slower. During the night 

time people might be in a hurry and roads are less congested which may result in 

higher velocities. In figure 9.2 we show how these attributes are related. In figure 

9.2 the baseline is the travel time where there is no rain and wind max is below its 

33% quantile. The baseline, but only where it rains, is the blue rain line depicted in 

figure 9.2. Together with the wind line where wind max is at or above its 66% 

quantile the velocities are consistently lower than the baseline. All values are 

obtained by taking the average per 5 km. For example, the average travel time at the 

baseline between 50 km and 55 km is shown at 50 km (x-axis) and 55.8 minutes (y-

axis). 
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Figure 9.2, average travel time during the baseline, rain, wind and night scenario. 

Wind and rain have very similar effects on travel time. Both are consistently 

just above the baseline with some larger effects near the end. During the night time 

scenario, travel times appear to be a few minutes lower. There does not appear to be 

any change in effect with respect to distance travelled.  

Provided the clear linear relations shown in figure 9.2 we opt for a Linear 

Model (LM) to predict travel times.  We want to predict travel time based on the four 

factors identified. The precise formulation of the model we will create is shown in 

equation 9.1. In equation 9.1 t stands for travel time and d for travel distance. W 

stands for a weight that will result from the LM. These weights are why we create a 

linear model as they describe the relation between the attribute, e.g. distance, and 

travel time. The attributes rain wind and night correspond to the other three factors 

above. Note wind speed is measured in km/h, rain duration is always between 0 and 

1 and night is a Boolean with 1 standing for night. Finally, we see an error term in 

equation 9.1. This error term is introduced to allow for errors. Note the error term in 

a linear model assumes the error is normally distributed, which we will have to test 

together with other assumptions to see if the resulting LM produces meaningful 

results. The beta coefficient is there to allow for an intercept. This we do because 

people might be spending some time in the car, e.g. in front of traffic lights, 

independent of rain or distance covered. The beta term, i.e. intercept, will incorporate 

this time spent. We also added an additional term for night as from figure 9.2 we can 

see from extrapolating the line at night that the intercept is much lower than during 

the baseline situation. 

                         𝑡 = 𝑑 ∗ (𝜔1 + 𝜔2 ∗ 𝑟𝑎𝑖𝑛 + 𝜔3 ∗ 𝑤𝑖𝑛𝑑) + 𝑛𝑖𝑔ℎ𝑡 + ϐ + 𝜀     (Eq. 9.1) 

In equation 9.1 we multiplied distance with rain duration and wind. This we 

do because the relation between any of these attributes and the difference in travel 

time from the baseline we belief is dependent on the travel distance. Moreover, when 

we look closer at the above equation we see that the relations seem logical once we 

interpret the meaning of the weights. The first weight, i.e. 𝜔1, for example is 

equivalent to one over the baseline travel velocity (𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) (eq. 9.2). The right side 

of this equation originates directly from the definition of velocity from classic 

physics. The inverse of each weight that our LM will produce thus says something 
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about velocity. The average velocity, for the first weight, and the change in velocity 

in given circumstances for the other three, e.g. rain. 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑤1 ∗ 𝑑 =  𝑑
𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

⁄      (Eq. 9.2) 

For a LM to be meaningful we need to check whether the assumptions on which 

the model is built are met (Field et al., 2009). These are the following assumptions: 

 Normality of the residuals, i.e. the errors around the fitted line have to follow 

a normal distribution (Field et al., 2012).  

 Homoscedasticity of the error variance, i.e. whether the residuals are 

distributed similarly across the spectrum of predicted values (Field et al., 

2012). 

 Independence of the residuals, i.e. there should be no relation between one 

measurement and another (Field et al., 2012). 

 No multicollinearity, i.e. the attributes should have no correlation with 

others in the model (Field et al., 2012). 

We will test whether these assumptions are valid and apply corrections when 

necessary. Because we have great amounts of data most statistical tests will either 

fail or be significant even when only miniscule patterns in the data are observed. 

Hence, we will test these assumptions not with statistical tests, but by visualizing 

and interpreting the underlying data. For the normality of residuals we will provide 

a QQ-plot. To test for homoscedasticity we will plot the residuals over the predicted 

values. Finally, independence of residuals is evaluated by a lag plot. A lag plot shows 

what the next residual will be given the previous one. If there is no relation the plot 

would result in an unstructured cloud of residuals that is normally distributed along 

both axes. The only test that we can easily perform is the VIF test for 

multicollinearity. The VIF tests evaluates multicollinearity. Ideally the values are 1, 

but VIF scores below 10 are generally sufficient to say the no multicollinearity 

assumption is met (Field et al., 2012). 

During the assumption tests we did not find any worrisome outcomes. The 

created linear model met all assumptions implying the results are fully valid and 

interpretable (see Appendix H figure H1, figure H2, and figure H3). We did find a 

slight positive skew in the residuals, but nothing that would have a large influence 

on the created model. The created model is presented in table 9.3.  

Table 9.3 our LM estimation for predicting travel time based on non-roadwork related 

factors. The model has an 𝑅2of 0.85. 

 WEIGHT STD 

ERROR 

T VALUE PR(>|T|)  

Intercept 24.3200 0.0394 617.14 <2e-16 

Night intercept -7.4950 0.0419 -179.06 <2e-16 

Distance 0.5386 0.0006 965.06 <2e-16 

Distance * rain  0.0608 0.0007 87.57 <2e-16 

Distance * wind 0.0001 0.0000 19.81 <2e-16 
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 Note the travel time is denoted in minutes. The intercept of 24 thus denotes 

people spend on average 24 minutes on the road in addition to the time spend 

traveling at a certain velocity. This number drops by 7.4 minutes during the night 

time. Discarding the intercept and night intercept we see that every km travelled 

relates to an increase in travel time of 0.539 minutes. When we convert this into 

velocity we find every km travelled is travelled at about 111 km/h. When it’s raining 

every km travelled is done so in 0.539 plus 0. 061 minutes. The velocity during an 

hour of rain will thus be on average 100 km/h, lower than during the baseline 

situation. During the night the intercept is lower the total average travel time could 

still be lower, even though the velocity while covering distance is lower than the 

baseline. Overall, we are not put off by these results. The average velocity found for 

traveling of 111 km/h is very reasonable as maximum speeds on highways are 

limited at 100, 120 or 130 km/h in the Netherlands. Furthermore, we see decreases 

in average velocities during rain and strong winds, which confirm what we 

hypothesized. Although the effect of wind appears minimal. All relations as shown 

in table 9.3 are significant. P values are found far below the standard .05 used to test 

for significance indicating all relations found are very likely to persist when we 

would measure the entire population rather than just our sample.  

 Finally, to correct for travel time we will subtract the predicted travel time, 

i.e. prediction on our complete dataset using the model we just created, from the 

measured travel time. By doing so we remove the differences in measured travel time 

that can be explained by our model and thus the external factors mentioned above. 

When evaluated over the entire dataset we find an 𝑅2of 0.85 between the predicted 

travel time and the true travel time. The remaining 0.15 or 15% of the variance in 

travel times cannot be explained by the model. This we assume might be explained 

by, for example, congested roads and people having to take detours when roads are 

closed. The corrected travel times are those that will be used in the remainder of this 

research. This includes measuring as well as predicting the impact of roadworks.  

9.2.3 Correcting travel time reliability 

In addition to correcting for travel time in general we also want to correct the travel 

time reliability. Travel time reliability is denoted in the standard deviation of the 

measured travel times. Standard deviation of travel time in our dataset is literally the 

standard deviation of the measured travel times during an hourly period on a specific 

road. When we have a large average travel distance there may also be large variations 

in trip length resulting in greater differences in travel time. To investigate this 

hypothesis we make a similar plot to the one found in the previous section. Here 

again we use the same attributes and create the baseline similarly as for figure 9.2. 

The relations between standard deviation of travel time, distance travelled, rain 

duration, wind, and night are depicted in figure 9.3. 

 From figure 9.3 we observe there is indeed an increase in the standard 

deviation of travel times when distances become larger. Furthermore, travel times 

appear to be much more consistent, i.e. have a lower standard deviation of travel 

time, during the night. Rain and wind have only a minor impact here, but appear to 

introduce more unreliability when the average distance grows. Night time does the 
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opposite, here the travel times become more reliable at larger distances in 

comparison with the baseline. 

 

Figure 9.3, average travel time standard deviation during the baseline, rain, wind and night 

scenario. 

Most importantly, however, we observe the standard deviations start to 

decrease, at least for the baseline, for average distances greater than 150 km. As we 

want to use a LM to correct for travel time reliability the lines should, in reality, be 

straight. If we now try to draw a straight line describing the baseline based on 

distance, we might overestimate the standard deviation distances over 150 km, and 

most likely underestimate those at shorter distances. We thus require some further 

investigation to see whether the observed behaviour is structural or accidental before 

we continue to fit a LM. 

 

Figure 9.4, travel time reliability (standard deviation in minutes) for all observations plotted 

against distance travelled using the hexbin and ggplot2 packages (Car et al., 2015; Wickham, 

2009). 

Further analysis of the data behind the graph in figure 9.3 shows us the dip 

observed post 150 km might be due to outliers (see figure 9.4). In figure 9.4 the 

darker the colour the more observations there are behind each point. We can clearly 

see the majority of our observations, the darker areas, are between 60 and 120 km. 
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At 150 km we have less than 2% of our data left. The few observations all the way 

at the bottom right of the graph are most likely outliers. These are the ones that pull 

down the aggregated mean in figure 9.3. Looking at figure 9.4 we are thus not 

convinced the drop in travel time reliability is anything other than randomness.  Over 

the remainder of the spectrum, i.e. below 150 km, we do find the relation is linear 

and we would not be surprised if the true relation is actually linear. Hence, we will 

continue to fit a LM to our data. Furthermore, we will leave out data with distances 

greater than 160 km. The distance between these points and the fitted line would be 

relatively large as we expect a large standard deviation of travel times while the 

observations at the end of the distance spectrum show low values. Hence, these few 

outliers may have a disproportionate effect on the coefficients estimated by the linear 

model that can deteriorate the accuracy of the model on the majority of the data.  

 From figure 9.3 we infer the following structure (equation 9.3) underlying 

the relation between travel time reliability (r), travel distance (d), night, wind and 

rain. There is a clear relation between distance and reliability. We further see a small 

increase in (un)reliability when it rains, which grows with when the distance 

increases. Although we see a changing impact of night depending on distance, we 

find high VIF scores when this relation is included. We hence, only included night 

as an intercept like variable. The beta coefficient again stands for the intercept. Even 

when people do not travel, or travel below 10 km, we could still imagine some 

differences in travel times. The error term at the end is there to allow for the normally 

distributed error that is assumed in a LM. 

𝑟 = 𝑑 ∗ (𝜔1 + 𝜔2 ∗ 𝑟𝑎𝑖𝑛 +  𝜔3 ∗ 𝑤𝑖𝑛𝑑) + 𝑛𝑖𝑔ℎ𝑡 + ϐ + 𝜀   (Eq. 9.3) 

When we train our model we again find there is autocorrelation between 

residuals, i.e. the previous residual can explain part of the variance in the following 

residual. This finding is confirmed by a Pearson correlation coefficient of 0.41 

between consecutive residuals. Because the created LM might be biased as a result 

of the correlation between consecutive residuals, we resort to the Cochrane-Orcutt 

estimation (Cochrane & Orcutt, 1949). Not satisfying the autocorrelation assumption 

implies the error at the previous moment in time relates to the error observed next. 

This might be the case when, for example, people on one road are consistently faster 

than average. When this is the case the errors measured at t-1 will be related to that 

at t-0 for that measurement site, and hence the errors are related. Cochrane & Orcutt 

(1949) developed a procedure that estimates the error at t-1 and uses it as an added 

dimension to the standard LM. Now the weights in the LM can be set irrespective of 

the error at t-1 as a value, or an estimate to be precise, of the error at t-1 is included. 

Because the next prediction already incorporates the information of the residual at t-

1 the effect of autocorrelation decreases or disappears completely. When the 

information at t-1 is already included it cannot explain why the estimate at t0 would 

be wrong. Overall this would lead to less biased and thus trustworthy outcomes. We 

do lose one observation, however, as there is no observation at t-1 for the first record 

in our dataset, which is trivial provided our 200.009 observations. In theory one can 

continue to apply the Cochrane-Orcutt procedure until independence of residuals is 

achieved (Cochrane & Orcutt, 1949).  
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The resulting model resulting from Cochrane-Orcutt estimation does not 

necessarily find a global optimum, but rather is guaranteed a local optimum (Dufour, 

Gaudry & Liem, 1980). This results from having to model the lagged residuals in 

addition to the normal residuals which adds another dimension to the problem. 

Dufour et al. (1980) do mention, however, that with typical data and a unimodal 

distribution of the residuals, which we have, it is very rare not to find the global 

optimum. Irrespective of finding the best weights, i.e. at a global optimum, we are 

still able to evaluate the model and, for example, calculate how well the model can 

explain variations found standard deviations in travel time. 

After one iteration, Cochrane-Orcutt estimation helped us to find a linear 

model that meets all required assumptions (see Appendix H, figure H4, figure H5, 

figure H6 and table H2). The weight coefficients and tests showing whether the 

relations, either positive or negative, are significant. We use the common .05 criteria 

for alpha to test for significance here. We find that all proposed relations, with p-

values below 2 ∗ 10−16, are significant within our model (table 9.4). The fact that 

adverse weather negatively affects travel times confirms what is found in literature 

(Tu, 2008). The effect of night and distance is to our best knowledge new 

information. Given the extremely low p values we are confident the found relations 

are representative of the effects on travel time reliability in general. 

Table 9.4, our LM post Cochrane-Orcutt estimation for predicting the standard deviation (in 

minutes) of travel times. The model has an 𝑅2of 0.37. 

 WEIGHT STD ERROR T VALUE PR(>|T|)  

Intercept 29.1339 0.0526 554.04 <2e-16 

Intercept night -9.0660 0.0320 -283.13 <2e-16 

Distance 0.1725 0.0007 248.79 <2e-16 

Distance * rain 0.0417 0.0007 62.80 <2e-16 

Distance * wind 0.0003 0.0000 52.04 <2e-16 

 

Although the model can explain a decent amount of variance in the complete 

dataset, i.e. 37%, the majority of the variation still requires some explaining.  

9.2.4 Correcting people on the road 

Finally, we will correct the number of people found traveling for variations in 

weather. In particular, maximum temperature, maximum wind speeds and rain can 

influence traffic intensities (Cools et al., 2010). Cools et al. (2010) found increases 

in traffic intensities for high temperatures and decreases during strong winds and 

rain. Unfortunately, they did not provide clear measures that help us to correct for 

the number of people on the road. We will thus have to construct our own correction 

mechanism. 

The correction is necessary to prevent external effects distorting our image 

about the impact of roadworks. For example, when we find 5% less people on the 

road during roadworks we have to decide whether these people would normally 

make the trip. If they would, then we could assign them with half the impact 

experienced by the people who keep traveling, following the rule of half. If the 
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people would normally not use the road, because they would not when it rains, then 

we should not include them in any further impact analysis. 

As temperature, wind and rain depend on time of day, e.g. temperatures are 

always lower at night, we will compare daily rather than hourly traffic counts. 

Moreover, the weather information will also be aggregated to daily levels. 

Furthermore, we expect weather will influence traffic intensities differently at 

different moments. During workdays people will still go to work, even when it rains. 

During the weekend, however, people might decide not to go to the beach when it 

rains. Hence, we will allow our model to create different correction factors for 

weekend and not weekend. To create our training data we will note per road per day 

the maximum temperatures, maximum wind speeds, and average rain duration. 

Furthermore, we will divide the total vehicle counts per road per day by the average 

vehicle counts on for that road and day of the week. This will ensure we model ratios, 

e.g. on a rainy day there are 5% less people on the road than average, rather than 

absolute counts. Ratios provide more information and are more widely applicable 

than absolute numbers. A decrease in traffic flow of 5% could be explaining 

variation throughout the country whereas a decrease of 500 vehicles on one road, is 

specific only to that one road. This is also the reason why we do not use the models 

developed by Cools et al. (2010) as a decrease of X vehicles on a highway in Belgium 

cannot be applied to any highway in the Netherlands at any moment in time, e.g. day 

and night. 

After constructing our dataset we find a few outliers are present as shown in 

table 9.5. The lowest 1% and top 1% show extreme values compared to the other 

98%. When we dive into the raw data we find these outliers only exist on a few roads 

and they all occur during the weekend. Some large events may attract a lot of people 

causing peaks in traffic intensities on some roads and keeping people away from 

others.  Because we want to model structural rather than occasional changes in travel 

behaviour we remove the top and bottom 1% of relative counts from our data.   

Table 9.5, quantiles of the relative people counts in our sample. 

Quantile 0% 1% 10% 25% 50% 75% 90% 99% 100% 

Rel. counts 0.77 0.90 0.95 0.97 1.00 1.03 1.05 1.14 1.68 

 

When we train the model described above, however, we find high vif scores 

for wind and temperature both in and outside of the weekend. This indicates the 

relations might be independent of whether it is weekend or not. Therefore, we 

decided to not make distinctions for weekend and not weekend for these variables. 

The final model is formulated in equation 9.4 where rc stands for the relative counts.  

𝑟𝑐 = 𝜔1 ∗ 𝑟𝑎𝑖𝑛𝑤𝑒𝑒𝑘𝑒𝑛𝑑 + 𝜔2 ∗ 𝑟𝑎𝑖𝑛𝑛𝑜𝑡 𝑤𝑒𝑒𝑘𝑒𝑛𝑑 + 𝜔2 ∗ 𝑤𝑖𝑛𝑑 + 𝜔4 ∗ 
                                           𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ϐ + 𝜀        (Eq. 9.4) 

 The trained model is shown in table 9.6. We checked and meet all the 

required assumptions for a LM. The plots and VIF scores that show the assumptions 

are met, along with a brief description and analysis of the findings, is presented in 

Appendix H (figure H9, figure H10, figure H11, figure H12 and table H3). We see 

all relations are significant with an alpha of .05. Wind, however, only has a very 
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small impact of relative counts of people on the road. We can also infer from our 

model that rain during the weekend has a much larger effect than rain during 

weekdays.  

Table 9.6, our LM estimation for predicting the change in relative counts of people traveling 

due to weather variations. The model has an 𝑅2of 0.09. 

 WEIGHT STD. ERROR T-VALUE PR(>|T|) 

Intercept 1.0950 0.0014 768.43 <2e-16 

Wind -0.0002 0.0000 -24.36 <2e-16 

Temperature -0.0044 0.0001 -56.52 <2e-16 

Rain weekend -0.2532 0.0082 -30.83 <2e-16 

Rain not weekend -0.0560 0.0023 -24.66 <2e-16 

 

We find, unlike Coots et al. (2010), that temperature also has a relatively 

large effect on vehicle counts. Note our data only covers September and October 

2015 and are not necessarily descriptive of behaviour during the other months of the 

year. During summer, for example, people might be triggered more by weather, and 

specifically by nice summer days, to participate more in outdoor activities and go to 

the beach, for instance. Our findings thus do not dispute those by Coots et al. (2010) 

in general as the data only covers September and October 2015. What it does do, 

however, is indicate travel behaviour will plausibly be affected differently by 

weather in different times of the year. 

Interestingly, we find that the created model is only able to explain a small 

part of the variation (9%) in the relative number of people traveling on the road. 

Although a small group might change travel behaviour due to weather, most people 

appear to be driven by other motives.  

 Although the model only explains a small portion of the variance, it still 

explains some. Hence, we will use this model to correct the number of people 

traveling. This, as stated earlier, helps to get a purer estimation of how many people 

would normally travel during roadworks. 
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9.3 Conclusion 

We first created a dataset from the mobile phone data that provides good vehicle 

counts and is able to measure accurate travel times. The latter we achieved by taking 

quality users, i.e. with at least 100 data points a day, and removing trips with an 

origin or destination near the roadworks. Thereafter, we added information about 

roadworks and weather by linking descriptions about road positions to roads in our 

database and extrapolating weather information using GPS coordinates. 

 From this dataset we created a baseline. The most important characteristics 

of the baseline are that the baseline of a roadwork hour has to be on the same road 

on the same weekday hour combination where no other roadworks are present within 

15 km on the same road. The last two weeks of October are excluded because they 

contain a holiday that could otherwise distort the measurements in the baseline. 

Furthermore, we only include hours of roadworks in future analyses where we have 

at least 4 hours in the baseline to ensure the baseline is stable. 

 Finally, we created models to predict travel time, travel time reliability and 

traffic flow using external factor such as weather fluctuations, nigh and day time, 

weekend, and travel distance. We do this such that we can predict travel times using 

factor unrelated to the impact of roadworks. By looking at the difference between 

what we predict and what we measure we can calculate the unexplained variation in 

travel time, travel time reliability, and traffic flow. This unexplained variation could 

then be used when we compare travel times, for example, during the baseline with 

those during the roadwork. The variation could then be attributed to the roadwork 

rather than, for example, rain.  

 In short we carefully craft our dataset from the mobile phone data and correct 

for variations caused by external factors such that we can accurately evaluate the 

impact of roadworks. 
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10 Report 

In this chapter we will provide a case to discuss in greater detail the steps needed to 

measure the impact of roadworks. We will go over the individual steps for one case 

in section 10.1. In addition, we will present the impact of all roadworks that 

happened on highways in the Netherlands during October and September 2015 in 

section 10.2. One of our main motivations for wanting to measure the impact of 

roadworks is to drastically reduce the time and effort required to get this information. 

A conventional study might take months to complete (Taale et al., 2002). When we 

manage to calculate the impact of 638 roadworks here, we show how and that mobile 

phone data can be used to improve the measurement of the impact of roadworks on 

highways. Note, while we had over a thousand roadworks before, we only have 638 

for which we also have data available. This could be the result of not reaching the 

minimum of 15 rule or having roadworks that are repeated over the entire two 

months, which means we cannot establish a baseline. 

10.1 Case 

The roadwork we selected for our case is on the A2 near Maastricht airport headed 

South. Meta-data about the roadworks is presented in table 10.1. We chose the 

roadwork because of the long duration of the roadworks and because large hinder 

was expected. Rijkswaterstaat estimated 10 to 30 minutes of delay for this particular 

roadwork.  

Table 10.1, meta-data about the roadwork used for the case study. 

QUESTION AWNSER 

Where were the roadworks? A2 near Maastricht airport headed South 

When did the roadworks start? Friday, September 5, 2015, 21h 

When did the roadworks end? Monday, September 8, 2015, 2h 

What happened? Both lanes were closed, traffic was diverted  

 

In terms of data present in our dataset, we have information on all 53 hours 

of when the roadworks are present. Furthermore, we have 256 hours of baseline 

information. We lack to hours during the baseline at 5 o’clock Sunday morning, one 

hour at 3 o’clock on Sunday, and another hour on Saturday at 4 in the morning. This 

is because we do not always have 15 people in our sample, and due to privacy 

regulation we cannot use this data. For all other moments in time, i.e. for each hour 

per weekday, we have 5 hours in our baseline. 

 As stated in chapter 9 we will compare the measurements during roadworks 

with those at similar moments in time. The measurements during the roadworks at 

12 o’clock on Saturday will be compared to those at 12 o’clock during the baseline. 

Travel times, standard deviation in travel times, and people counts are corrected for 

external variables such as weather (see chapter 9). 
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 The first step in our analysis, though the order is trivial, is analysing the 

number of people that decided not to travel (table 10.2). This is the number of people, 

corrected for changes in behaviour due to weather and such (see chapter 9), who 

decide not to take the trip. On average we find 173 people per hour decided not to 

make the trip. Over the entire 53 hours the roadworks are present the number adds 

up to 9.169 people for which the rule of half should be applied.  

Note, this does not include people who decided to take a detour, but does 

include people who change mode of transportation. We cannot make a distinction 

between people making a detour and people who keep using the road where the 

roadworks are present. In our case the answer is straightforward, everyone made a 

detour as the road is closed. The rule of half will not be applied to people taking a 

detour. Although some might argue taking a detour is also finding a ‘more optimal 

solution than keep traveling over the road’, which suggests the rule of half should be 

applied (Appendix C). However, this is not always an option, and our case is a prime 

example.    

Table 10.2, the corrected hourly counts of people on the road during the baseline and 

roadwork. The differences are shown under Delta. 

MOTIVE BASELINE ROADWORK DELTA 

Other 784.09 627.52 -156.57 

Work 75.84 60.64 -15.20 

Business 5.22 4.05 -1.17 

 

 In addition to the people for whom the rule of half should be applied there 

are also 692 people per hour, on average, that continue to travel by car when the 

roadworks are present. In total this accumulates to 36.687 people affected by the 

roadworks. These people who are directly affected by the roadworks will be assigned 

the full impact. 

 During the roadworks we find higher travel times, on average, and greater 

deviation in travel times (see table 10.3). Here, as discussed in section 9.2.2, we have 

corrected for variation due to variations in distance travelled and weather.  

Table 10.3, corrected travel times and travel time standard deviations per person during the 

baseline and roadwork. The differences are shown under Delta. 

 BASELINE ROADWORK DELTA 

Individual travel time  

(in min.)  
-3.41 -0.88 2.53 

Individual travel time std 

(in min.)  
8.52 10.42 1.90 
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 We can clearly see an increase in travel time and decrease in travel time 

reliability. The differences though, are less dramatic than the 10 to 30 minutes 

estimated by Rijkswaterstaat, which we know from our roadwork data. The impact 

presented by them, however, is predicted before measures are taken to help reduce 

the impact. The traffic alleviating measures put in place could explain both the lower 

counts of people on the roads and the small increase in average travel time. We do 

find a few minutes extra delay when we would not correct for weather fluctuations. 

However, this would be due to the added rain and not due to the roadworks. It rained 

about 9.8% of the time during the roadworks while it only rained 1.3% of the time 

during the baseline. By correcting for this we measure the delay caused by the 

roadwork, rather than the rain as discussed in chapter 9. 

 The differences in travel times and those in people found on the road as 

presented in tables 10.2 and 10.3, respectively, are not the numbers we will use to 

estimate the total impact. We showed them to (1) provide insight into the data and 

(2) better explain how we do measure the true impact. The difference between what 

we actually do and what we just discussed is that we look on hour level rather than 

roadwork level. We compare the people counts and travel time information at 11 

o’clock on Sunday when the roadwork is present with those on an average Sunday 

11 o’clock during the baseline. For each hour we then calculate the amount of people 

for whom to apply the rule of half, the number of people affected per motive, the 

increase in travel time in hours, and the increase in travel time reliability in hours.  

 The reason we operate on an hour rather than roadwork level is because the 

impact of roadworks in time dependent. The situation during rush hour can be 

completely different from that during the night, for example. It may be that during 

the night there is hardly any impact while during rush hour there is a lot. During rush 

hour there may also be more business and work related trips, which have a large 

economic impact. Hence, we prefer to look on hour rather than roadwork level. 

Ideally, we would get this information on even lower level, but this is not possible 

due to privacy imposed limitations.    

 In figure 10.1 we show the average costs per hour of the day for the roadwork 

we investigate in this case. Note the values are averaged. The data from Friday 

through Monday are all averaged to get the values shown in figure 10.1, showing 

every hour of every day produced an unreadable graph. 

 

Figure 10.1, average cost for a specific hour of the day during which the roadwork was 

present. The costs due to travel time, travel time reliability and total costs are presented. 
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 What we observe from figure 10.1 are two things. First the impact is mostly 

positive and much larger when there are more people on the road. The nightly hours 

hardly had any effect on travel time or travel time reliability as there is no clear 

positive or negative trend during these hours. During the day, with exception of 1 

PM, travel time and the standard deviation in travel time are mostly positive. This 

implies the roadworks cause most delays during busy periods of the day, which 

confirms our expectations. At 1 PM there is some strange behaviour as travel times 

apparently drop. This might be because there were traffic jams, for example, during 

the baseline which did not exist during the roadworks. There is thus clearly some 

randomness in our data that can obscure the true impact of roadworks. Nevertheless, 

we are able to measure the overall trends. Furthermore, the traffic alleviating 

measures put in place could also be responsible for the lack of delays here. What we 

measure is not only the impact of the roadwork itself, but everything related to the 

roadwork. This includes measures to divert and reduce traffic intensities. 

  The complete impact of the roadwork sums to €18.676, with €4.870 being 

the result of less reliable travel times and €13.806 due to losses in travel time. Note 

the conversion from losses travel time and travel time reliability is performed using 

the VoT and VoR, respectively, that were presented and discussed in section 4.2.1. 
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10.2 Evaluation of all roadworks 

To evaluate the impact of each roadwork we go through the same procedure as 

during the case above. For all 639 roadworks in our dataset we calculated the 

economic impact due to a decrease in travel time reliability and an increase in travel 

time. Together these form the complete economic impact of a roadwork. All relevant 

costs for each roadwork are presented in figure 10.2. 

 

Figure 10.2, economic impact of all roadworks during September and October 2015, for 

which we can establish a baseline. Total costs are presented together with the costs due to 

increasing travel time and decreasing travel time reliability. 

 From figure 10.2 we observe the majority of roadworks have no net impact 

whatsoever. There are even a few roadworks during which travel times actually 

decreased and travel times became more reliable. This would be possible, for 

example, when there are traffic jams during the baseline and none during the 

roadworks. The roadworks that showed large negative costs occurred during the 

Tuesday and Wednesday morning rush hours. Plausibly there would thus be 

roadworks during the baseline and traffic alleviating initiatives could have prevented 

traffic jams from occurring. When we only look at the delays and decreases in travel 

time reliability this results in a completely different image (figure 10.3).  

 

Figure 10.3, the overall costs (Costs net) measured during the roadworks and those 

discarding people traveling faster and more reliably during roadworks (Costs positive). 
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 In figure 10.3 we see that the roadworks that have a negative net impact can 

still also cause delays. Similar to in our case we saw some hours might differ from 

the trend. In the case we found a negative impact at 1 o’clock in the afternoon while 

the remainder of the day travel times increased. For the roadworks with a net 

negative impact the same might be the case. There are apparently some hours which 

do negatively affect the population, but also some hours that were better than the 

baseline. Some randomness thus always exists. What we also observe from figure 

10.3 is that the roadworks that appeared irrelevant in figure 10.2, i.e. in the middle 

of the graph, remain irrelevant. There is no apparent countering effect where some 

roadworks have both a large negative and positive effect on the people on the road.  

 When we aim to predict the impact of roadworks, starting in the next chapter, 

it will be fruitful to first detect what roadworks are interesting and what roadworks 

are not. As we just found, the majority of the roadworks are uninteresting from a 

societal perspective as they have very little impact on people. Nevertheless, knowing 

when a roadwork has little impact is important. When we can make a distinction 

between what roadworks are likely to have an impact and what roadworks do not 

this could be extremely valuable information. When roadworks are unlikely to have 

any impact we do not have to put a lot of effort in minimizing the little impact that 

is left and can focus on the bigger ones. 

 When we look at roadworks, especially the larger ones, it would be unfair to 

look only at the total impact. The total impact depends on the impact experienced 

over all hours during the roadwork. While some hours might have a profound impact 

some other might not. Determining whether a roadwork might have an impact thus 

has to be viewed within time frames. When we look at the impact of each hour where 

roadworks are present, neglecting the times where roadworks were better than the 

baseline, we get to figure 10.4. Here we see that 82% of the hours we measure an 

impact below a thousand Euros, over half of which are even less than 100 Euros. The 

other 18% ranges from 100 to 25.000 euro an hour. These are the hours we should 

focus on. The biggest benefit from a road user perspective would be achieved when 

we can create a shift towards fewer roadworks in expensive hours and more in 

expensive hours. 

 

Figure 10.4, cost of roadworks per hour. In total there are 7.552 hours that haven been 

evaluated.  
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 As promised we also calculated the total impact of all roadworks during 

September and October 2015. We found the net impact to be €1.109.548. The impact 

where we discarded any positive effects the roadworks came to a total of €3.543.513. 

This is the impact calculated for 638 of the 1.448 roadworks that actually happened 

during September and October 2015. Over half of the roadworks failed to be in the 

criteria we established to ensure we get a proper baseline. Furthermore, some 

roadworks were also in the last two weeks of October, which we discarded all 

together as these weeks were during holidays. The impact of recurring roadworks 

requires a larger baseline than was available for this study, but could, nonetheless, 

be calculated in exactly the same fashion. 

The values we found are relatively low compared what experts expect. When 

we read a tender got a fictive discounts of up to €30.8 million because of a good 

traffic hindrance plan this appears out of proportion (Duijnisveld et al., 2011). Why 

would we somehow prefer a roadwork with a good traffic hindrance plan over one 

that is €30.8 million cheaper given the total impact of 638 roadworks, consisting of 

a total of 7.552 hours, is just over a thirtieth of this? It may be that the impact we 

measure is low because of the good traffic management we have in the Netherlands. 

However, there comes a point when the means surpass the goal and we start to spend 

more than we could initially save.  We cannot provide a definite answer whether we 

overvalue traffic hindrance alleviating measures, but we at least find evidence 

suggesting it is worth investigating. 
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10.3 Conclusion 

In this chapter we presented a case to show have the impact of a roadwork can be 

calculated. We also calculated and evaluated the impact of all roadworks on 

highways in the Netherlands during September and October 2015, provided we could 

establish a good baseline for the roadwork. Doing the same using conventional 

surveys and road side measurement devices would have taken an enormous amount 

of time and effort. Mobile phone data can thus much faster and with a lot less effort 

measure the impact of future roadworks. Knowing this we can start to also evaluate 

whether certain traffic alleviating measures help to reduce the impact of roadworks 

and how much. The latter will be important because we do not want to spend more 

on alleviating traffic hindrance than the impact we would otherwise experience.  

Furthermore, we find there is a large difference between the net impact and 

positive impact, i.e. with only hours where the roadwork resulted in delays or less 

reliable travel times. The 638 roadworks evaluated had a €1.109.548 net impact and 

€3.543.513 positive impact. We, furthermore, find this number, despite it includes 

only part of all roadworks, to be low in comparison to the value assigned to traffic 

hindrance alleviating plans ranging into the tens of millions (Duijnisveld et al., 

2011). We will note this under potential future research. We cannot state definitively 

the valuations are too high as our measurements are about the impact including the 

measures to reduce the impact. Hence, what we measure is not purely the impact due 

to a lane being closed, for example, but the roadwork in total, including the traffic 

alleviating measures taken. 
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11 Predicting the impact of roadworks 

In this chapter we will predict the impact of roadworks. Roadworks are a complex 

phenomenon with many different moving parts. In order to better understand the 

parts involved and the fundamental relations behind the impact of roadworks we start 

with a literature study. In this literature study we will focus on (1) how people and 

related traffic intensities change in the presence of roadworks and (2) why roadworks 

cause delays. The important concepts and relations are discussed in section 11.1 

finishing with a list of key attributes to take into consideration. In section 11.2 we 

will describe the data available for his study regarding roadworks, e.g. number of 

lanes closed, and briefly cover how some attributes are constructed. In section 11.3 

we create our model to predict the impact of a roadwork. Note we will do this on 

hour level rather than roadwork level as the impact of roadworks can differ over 

time, e.g. rush hour versus night time (see chapter 10). Thereafter, we will evaluate 

the results from our model in section 11.4, also in comparison with the current ‘state 

of the art’. In section 11.5 we discuss whether or not we would implement our models 

or not. In section 11.6 we will provide a concise summary of the main results of this 

chapter.  

 The overall structure of this chapter represents the steps in the CRISP-DM. 

We start with business understanding in section 11.1 followed by data understanding 

and preparation in 11.2. Then we create and evaluate our model in sections 11.3 and 

11.4, respectively, and discuss the usefulness of implementing our model in section 

11.5. Subchapter headings are also related to the names of the corresponding steps 

in CRISP-DM wherever possible. 
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11.1 Business understanding 

11.1.1 Changing behaviour 

We find the following variables can influence how people change behaviour due to 

roadworks. For each variable we will provide a brief overview of the relevant 

literature and how the variable can influence travel behaviour. The variables are: 

 Transport demand management 

 Accessibility to public transport 

 Availability of alternative routes 

Transport demand management 

Transport demand management refers to initiatives that adjust traffic demand to 

reduce travel times and improve travel time reliability. Transport demand 

management can range from telling people to take a detour via matrix signs above 

the roads to paying people to stay out of rush hour traffic or charging a congestion 

tax (Knockaert, Tseng, Verhoef, & Rouwendal, 2012; Parry, 2002). 

Transport demand management can have a strong impact on how people 

travel (Rijkswaterstaat, 2007). Rijkswaterstaat (2007) indicate that in extreme cases 

a reduction of 40% in traffic demand can be observed. Taale et al. (2002) reported 

similar, though slightly less optimistic, findings. Charging a congestion tax that 

varies, for example, by hour would be an efficient mechanism to reduce peak loads 

on the road network (Parry, 2002). Charging a tax specifically when roadworks are 

occurring, however, would be very harsh on the people affected. This would imply 

the people who are negatively affected by the roadworks would get an additional 

burden. The opposite of charging people more to drive in the rush hour traffic is to 

subsidize people to avoid driving in the rush hour traffic. In the Netherlands there 

have been trails to test the successfulness of this approach called Spitsmijden. The 

effects of Spitsmijden in the Netherlands appear promising with up to half of the 

participants deciding to take the monetary reward and only travel outside the rush 

hour period (Spitsmijden, 2009).  The subsidy needed to have people travel at later 

times is also less than the VoT (Spitsmijden, 2009). People traveling outside rush 

hour will have more reliable travel times and will spend less time on the road. 

Avoiding rush hour thus has a benefit besides the added subsidy. Initiatives to better 

spread the load on the road can help to reduce the impact of roadworks by decreasing 

traffic demand at the work zone and by doing so help traffic to flow smoothly.  

Accessibility to public transport 

When people have better access to public transport this can serve as an alternative to 

experience the hinder at roadworks. When people live in a city with good public 

transportation the switch from car to train might be easy. Without good access to 

public transport this switch will be harder. When there are large roadworks we thus 

expect to see less people on the road when there is a good alternative, e.g. public 

transport. Accessibility of public transport could thus influence how many people 

will switch to alternative modes of transportation. 
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 As a measure for accessibility to public transportation we will use urbanity. 

Urbanity has a large influence on the percentage of people taking the train as we can 

infer from OViN (figure 11.1). Urbanity in the Netherlands is defined in five 

categories from not urban to very urban which relates to the number of addresses per 

square kilometre (CBS, n.d.). Assuming the percentage of trips taken by train relates 

to the accessibility of public transport, we can link urbanity to accessibility of public 

transport. Hence, urbanity will also be incorporated in our model to predict the 

number of users found on the road during roadworks. 

 

Figure 11.1, percentage of trips by train based for each of the 5 levels of urbanity, calculated 

using our OViN dataset from chapter 8. 

Availability of alternative routes 

The availability of alternative routes could also be an important variable. When 

people have no alternatives they are forced to continue to travel over the road where 

the roadworks are occurring. Hence there are less possibilities to better spread the 

load on the road network leading to more severe congestion and delays. A lack of 

alternatives imply people will have to travel of a specific route possibly where 

roadworks are present. The smaller the road network, i.e. the fewer the alternatives, 

the less the road network is capable of spreading the load of traffic. Although we do 

not make a distinction between people on the road and those taking an alternative 

route this information is still valuable. When people can take detours to avoid 

congestion this might reduce the overall travel time. 

In general, we think, the greater the distance travelled the more alternative 

routes are possible. For example, there are less roads leading from Amsterdam to 

Utrecht than there are leading from Amsterdam to Paris. While people going to 

Utrecht might have to go over the road with roadworks, the people going to Paris 

might pick an alternative route. Distance can thus be seen as an indirect measure for 

the availability of alternative routes. 
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11.1.2 Causing delays 

In this section we focus on literature that aims to explain causes for traffic delays. 

The simple answer is that a road user can never be faster than the road allows. This 

implies when all lanes are covered with vehicles you can at most travel as fast as the 

fastest person in front. When there are many people this can hinder average travel 

velocities as the fastest people are slowed down, thus resulting in delays. Moreover, 

the road can only allow a certain amount of traffic before a critical point is reached 

where traffic jams start to occur. This critical point is the road’s capacity. Road 

capacity is also where the majority of literature focusses. Traffic jams are widely 

regarded as a major concern because this is where the largest delays are being 

experienced. The literature presented in this section will thus mainly focus on 

variables that are found to influence road capacity. The variables that will be 

discussed are: 

 Lanes open / closed 

 Changing road cross section 

 Speed restrictions 

 Lane width reduction 

 Use of hard shoulder 

 Ramps 

 Driver familiarity 

 Heavy Goods Vehicles (HGV) 

 Day and night fluctuations 

 Weather fluctuations 

Lanes open / closed 

Road capacity depends heavily on the amount of open lanes. General figures about 

road capacity are, therefore, often expressed in terms of vehicles per hour per lane 

(HCM, 2000; Goemans, Daamen, & Heikoop, 2011). Nevertheless, lower road 

capacity in itself does not result in delays. When road capacity is reduced the chance 

to exceed this threshold increases making traffic jams more probable. The number 

of lanes open is thus a vital variable in terms of estimating road capacity and resulting 

delays. 

Changing road cross section 

When a road is closed this will result in a change in the road’s cross section. People 

will have to shift lanes causing additional chaos on the road. Research has shown 

that the weaving of traffic can lead to a reduction in capacity (Lertworawanich & 

Elefteriadou, 2003). Two separate studies found lane closure on average reduces the 

capacity of the remaining open lanes by approximately 5% (Heaslip et al., 2008; 

Ober-Sudermeier & Zackor, 2001). What lanes are closed appears to be relevant 

information as well. Rijkswaterstaat, for one, uses different reference values for road 

capacity depending on the cross section of the road (Goemans et al., 2011). The more 

traffic has to deviate its normal route the more the capacity appears to decrease 

(Goemans et al., 2011). Closing the right most lane, for example, is found to have a 

greater negative effect as there are more people who travel on the right lane than 

there are on the other lanes (Goemans et al., 2011). The study by Ober-Sudermeier 
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and Zackor (2001), for example, found that crossing over all the way to the opposite 

carriageway results in a further reduction in capacity ranging from 5% to 10% for 

long term roadworks. In our model it would thus be fruitful to keep in mind the 

position of the lane that is closed. 

Speed restrictions 

Speed restrictions will also affect travel time. Lower travel speed will implicitly 

result in longer travel times as the same distance is still to be travelled. Speed is also 

found to be an important factor when estimating road capacity. According to the 

well-known Highway Capacity Manual (HCM) (2000) a reduction of 10 km/h will 

typically also reduce road capacity by 50 to 150 vehicles per hour per lane. 

Benekohal et al. (2003) go one step further and created an equation stating the 

relation between speed (U) in miles per hour and vehicles per lane per hour (q). 

Equation 11.1 shows the found relation (Benekohal et al., 2003).  

               𝑞 = 145.68 ∗  𝑈0.6875    (Eq. 11.1) 

 Speed restriction can thus decrease travel times because (1) people will have 

to drive slower and (2) lower speeds results lower road capacity and thus an 

increased chance of congestion.  

Lane width reduction 

Fitzpatrick, Carlson, Brewer and Wooldridge (2001) found lane width can explain 

up to 25% of the variability in average traffic speed. When lane width increases so 

does traffic speed (Firzpatrick et al., 2001). Plausibly, lane width affects the 

perception of safety of road users. When the lanes are smaller people will become 

more cautious and as a result drive slower. Aarts and Schaagen (2006) indicate 

narrow lanes do increase the change of being in an accident. This result is found even 

when taking into account lower speeds typically imply fewer accidents (Aarts & 

Schaagen, 2006). 

 The negative effects of lane width reduction, however, appear to be more 

profound when the lane width becomes smaller than 12 ft., i.e. approximately 3.6 

meter (Benekohal et al., 2003). Below 12 ft. the reduction in speed due to lane width 

reduction is also nonlinear (idem). Benekohal et al. (2003) measured a reduction in 

speed of 1.9 mph at 11 ft. and 6.6 mph at 10 ft. compared to the baseline speed at 12 

ft. Thus, the tighter the road the greater the reduction of speed resulting from a 

decrease in lane width. 

Use of hard shoulder 

A hard shoulder implies there is little room for error for the drivers. A hard shoulder 

is, for example, the presence of a concrete wall on the road used to separate the 

closed from the open lanes. Similarly to lane width reduction, the use of a hard 

shoulder may impose caution on the drivers resulting in a decrease in traffic speed. 

Although there are good indications the hard shoulder may affect road capacity there 

is hardly any conclusive research on whether the impact is significant and how large 

the impact is (Benekohal et al., 2003; Calvert, 2010). 
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Ramps 

A ramp is a where a vehicle can enter or leave, for example, a highway. When people 

enter or leave the highway via a ramp they have to change lanes. This has a negative 

effect on the capacity of a carriageway (HCM, 2000). Heaslip et al. (2008) finds the 

incoming traffic can greatly reduce lane capacity. The impact of an onramp, i.e. 

where traffic enters the carriageway, depends on the amount of incoming traffic 

(Heaslip et al., 2008). The more traffic enters the road via the ramp the greater the 

impact (Heaslip et al., 2008). When a ramp is closed this can also affect people who 

would normally leave there. These people will now have to take a detour resulting 

in greater travel times. Ramps thus have a double effect, although we expect the 

impact to be small. 

Driver familiarity 

To date a number of studies have suggested that driver familiarity affects how 

effectively the road and local detour roads are used (Berkum & Huerne, 2014; 

Heaslip et al., 2007; HCM, 2000). Berkum and Huerne (2014) argue that road users 

that are familiar with the area might find it easier to find detours and circumvent the 

roadwork. They are people who are unfamiliar with the road are more likely to stay 

to the assigned route and major roads (Berkum & Huerne, 2014). The HCM (2000) 

states driver familiarity is a known influence. Plausibly due to a good way to measure 

driver familiarity, only a distinction between weekday and weekend days is made. 

The HCM (2000) suggests a 15% reduced capacity should be used for weekend days 

as in the weekend people are more likely to travel over unfamiliar roads. 

 Heaslip et al. (2007) performed a study where roadside measurements are 

combined with video footage to identify how driver characteristics relate to road 

capacity. In total four driver characteristics are identified and estimated in their 

study. There are driver familiarity, adaptability, aggressiveness, and 

accommodation. They found the four factors could result in a 37.5% increase or 26% 

decrease in road capacity in the most optimal and least optimal configuration, 

respectively (Heaslip et al., 2007). To get to these estimates they monitored video 

footage of two highways in the USA over a one day period. Although the results hint 

there is a difference it is hard to use aspects such as adaptability, aggressiveness and 

accommodation in a model as these are hard to estimate and for that reason will not 

be incorporated in this study. Familiarity is easier as it can be linked to, for example, 

the percentage of work traffic. People going to work often do so regularly and are 

most likely familiar with the road. Hence, percentage work traffic will be used as a 

measure for familiarity in this study.  

Heavy Goods Vehicles (HGV) 

The effect HGVs have on road capacity are significant and well documented (HCM, 

2000; Calvert, 2010). In particular, the percentage of HGVs to the total of vehicles 

on a road is often taken into account when predicting road capacity and or the impact 

of roadworks (HCM, 2000; Calvert, 2010; In de Vegte & Van Toorenburg, 2014; 

Benekohal et al., 2003). There are a number of logical explanations that would 

explain why HGV result in a decrease of capacity. Research shows traffic jams are 

the result of people driving at different speeds resulting in fluctuations that can create 

instability and result in a traffic jam (Sugiyama et al., 2008). HGVs typically drive 
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at a slower speed and when they have to change lanes this requires others vehicles 

to either brake or speed up. Because HGVs cause additional fluctuations they 

logically increase the chance of having a traffic jam, which is equivalent to stating 

the capacity of the road decreases when more HGVs are present. 

 Heaslip et al. (2008) used simulations to test a total of 243 unique scenarios. 

One of the key variables they investigated was the effect of HGVs on road capacity. 

Their results show the amount of HGVs have little impact when they are less than 

10% of the total traffic. Between 10% and 20% a significant drop in capacity is 

observed of approximately 6% (Heaslip et al., 2008). 

Day and night fluctuations 

Day and night fluctuations have a double effect on the road capacity. The absence of 

natural light can harm visibility in general. On the one hand, a decrease in visibility 

people can result in drivers being more cautious and drive slower. On the other hand, 

less visibility gives people less time to react, which increases the chance on accidents 

and thus also reduces road capacity. 

Research finds the poorer light conditions in the night can reduce capacity 

by 4% (Heaslip, 2008). Other research further confirms the significance of the 

impact of light fluctuations (Al-Kaisy & Hall, 2000). Al-Kaisy and Hall (2000) did 

a study to quantify the capacity reduction due to darkness. They found the impact of 

darkness on capacity ranged from a reduction of 3.25% to a reduction of 7.5% in 

capacity depending on the work site (Al-Kaisy & Hall, 2000). The lack of visibility 

due to increased darkness as is present during the night time can thus have 

detrimental effects on road capacity. 

 The effect of day night fluctuations, however, do not end here. Wanvik 

(2009) analysed data on traffic accidents on Dutch roads from 1987 to 2006 and 

found the chance of accidents on unlit roads to be approximately twice as high as on 

well-lit roads (Wanvik, 2009). Effects are less severe in bad weather conditions, e.g. 

fog or snow, as the chance on having an accident is already increased due to bad 

visibility (Wanvik, 2009). Although Wanvik (2009) did not make a direct relation 

with the effect of daytime versus night time it seems highly probable from his results 

that night time induced darkness can also have an effect on the number of road 

accidents. Accidents by themselves have a large negative effect on road capacity. 

This is because lanes might be unusable till the vehicle is removed and a further 

reduction of speed might be required for safety reasons.   

Weather fluctuations 

Weather can have a significant impact on both traffic demand and road capacity 

(Cools et al., 2010). Precipitation, for example, is found to decrease road capacity, 

with capacity reductions ranging from 4% to 30% (Stern, Shah, Goodwin, & Pisano, 

2003; Unrau & Andrey, 2006). In chapter 9 where we used weather to correct for 

travel time and travel time reliability we only used data where vehicle counts are far 

below road capacity. We thus did adjust for people driving slower and having less 

reliable travel times during rains and strong winds, but did not for the reduction in 

road capacity. For road capacity weather fluctuations are thus still interesting to keep 

in mind. 
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11.1.3 Overview 

Here we present a quick overview of all variables discussed in the previous two 

sections. We find some are related specifically to how many people we will find on 

the road while others are more related to the road capacity (table 11.1). Weather 

fluctuations are the exception as they both directly affect road capacity as well as 

traffic demand, as we found in chapter 9 (Cools et al., 2010). 

Table 11.1, of roadwork characteristics and their subcategories. 

KEY CHARACTERISTIC VARIABLE 

Traffic demand Transport demand management 

Accessibility to public transport 

Availability of alternative routes 

Road capacity Lanes open / closed 

Changing road cross section 

Speed restrictions 

Lane width reduction 

Use of hard shoulder 

Ramps 

Driver familiarity 

Heavy Goods Vehicles (HGV) 

Day and night fluctuations 

Both Weather fluctuations 
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11.2 Data understanding & preparation 

11.2.1 Data understanding 

When we create our model we have to keep in mind that more vehicles on the road 

generally lead to more delay and especially when road capacity is exceeded.  

There is a whole range of variables that influence how many people per lane 

a road can handle before traffic jams occur. All of them have distinct reasons for the 

capacity to decrease, e.g. fear of getting into an accident. Most of them, however, 

have a very similar structure in terms of their effect. They all tend to decrease road 

capacity by a certain percentage. The variables and their effects, both quantitatively 

and in word, are summarized in table 11.2.  

Table 11.2, description of the variables used for modelling and their effect on road capacity 

VARIABLE EFFECT ON ROAD CAPACITY SOURCE  

Lanes open / 

closed 

Multiplier Capacity is measured 

per lane 

Changing road 

cross sect. 

-5% to -10% closing right versus left 

lane 

(Goemans et al., 

2011) 

Lane width 

reduction 

non-linear decreasing (approx. 

quadratic) with smaller lanes 

(Benekohal et al., 

2003) 

Speed 

restrictions 

non-linear decreasing (approx. 

quadratic) with greater restrictions 

(Benekohal et al., 

2003) 

Driver 

familiarity 

Increases with more familiar drivers (Heaslip et al., 2007) 

Day and night Decrease at night (Wanvik, 2009) 

Weather 

fluctuations 

-4% to -30% during bad weather (Stern, Shah, 

Goodwin, & Pisano, 

2003; Unrau & 

Andrey, 2006) 

 In terms of people on the road we find fewer effects. The main effects being 

access to public transport and availability of alternative routes, both of which we 

hypothesized, and transport demand management. The latter is a proven method that 

consists of putting measures in place to reduce or better direct traffic (Knockaert, 

Tseng, Verhoef, & Rouwendal, 2012; Parry, 2002; Rijkswaterstaat 2007). 

For modelling we have to look at both traffic demand and road capacity as 

these are the key components leading to delays on the road. Traffic demand is needed 

to see if it is (1) busy on the road, which leads to slower speeds, and (2) whether the 

road’s capacity is exceeded, which leads to traffic jams and thus delays. 

11.2.2 Data preparation 

In chapter 9 and 10 we already provided an extensive explanation of the data that 

will be used. A few things, however, we did not yet discuss. This relates solely to 

the data available about roadworks and in specific about the information we have on 

roadwork level.  
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 In table 11.3 we present all attributes also present in table 11.1 including 

whether we have the necessary information present in our data. Note the information 

originates from the SPIN system that is used by many large organizations and is both 

up to date and extensive. The majority of the variables we found relevant for the 

study is available in this system. Nevertheless, we still needed to add some from 

external sources or create them from other data. In table 11.3 we also indicate the 

source of the data and whether they had to be constructed from other data. In case of 

the latter we also provide a brief description of how we accomplished this. 

Table 11.3, roadwork related variables and their sources used in the model to predict the 

impact of roadworks. 

VARIABLE SOURCE CONSTRUCTED 

Transport demand management SPIN Yes 

Accessibility to public transport CBS Yes 

Availability of alternative routes Mobile phone data Yes 

Lanes open / closed SPIN Yes 

Changing road cross section SPIN Yes 

Speed restrictions SPIN  

Lane width reduction   

Use of hard shoulder   

Ramps   

Driver familiarity Mobile phone data Yes 

Heavy Goods Vehicles (HGV)   

Day and night fluctuations  Yes 

Weather fluctuations KNMI  

  

We lack information about HGV, hard shoulders, and ramps. This data we 

do not have available at the moment. Their effect on the impact of roadworks can 

thus not be established here. We will suggest this would be done in future research. 

 Transport demand management is indirectly present in the SPIN data. In the 

SPIN data there is an attribute called traffic hindrance category, which relates to how 

much impact is expected for the roadwork. When roadworks are expected to have a 

large impact, measures to reduce traffic intensities are often in place. This we will 

use to determine, though indirectly, whether transport demand management is used 

for the roadwork. In SPIN the hindrance classes are E, D, C, and B. In theory A 

represents the highest impact, but this is not present in our data. E is the lowest. 

Definitions can be found in the document by Taskforce Doorstroming (2009).  

Accessibility of public transport is inferred from the level of urbanity as 

discussed in section 11.1.1. We link the urbanity level of each destination to each 
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trip in the mobile phone data where 1 stands for low urbanity and 5 for high urbanity. 

Urbanity is used as a measure for accessibility to public transport. 

 Availability of alternative routes is expressed in average distance travelled 

over the road. The further a person travels, the larger the greater the chance on 

alternative routes (see section 11.1.1). 

 In SPIN there is information about what the signs above the highway 

indicate. For example, lane 1, lane 2 and lane 3 are open and lane 4 is closed. Based 

on this we can infer the number of lanes and the number of lanes closed. Moreover, 

on some occasions there are no signs above the road. As we then lack vital 

information we cannot use these roadworks when creating and evaluating our model. 

In addition to the number of lanes closed we also note whether the right most lane is 

closed (0) or the left most lane is closed (1).  

 Driver familiarity we relate to the percentage of work travel. Home to work 

travel is consistent and often repetitive. The greater the percentage of work travel in 

amongst all trips we reckon the greater the chance of drivers being familiar with the 

road. We find, as we will later discuss, that the square root of the percentage of work 

travel is most valuable in the modelling stages. Driver familiarity we will therefore 

measure as the square root of the ratio work trips over all trips. 

 Day and night fluctuations are fixed with night being before 7 AM and post 

8 PM.   
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11.3 Modelling 

There are two main aspects of importance here, i.e. traffic flow and road capacity. 

The interplay between these two will help us to determine the impact of roadworks. 

For our model to predict the impact of roadworks these two distinct factors and there 

interplay has to be described.  

 We will start out by investigating how traffic flow changes during roadworks 

and will, thereafter, focus on how travel times and travel times reliability are affected 

by changes in road capacity. We will make a special case out of roadworks where 

the entire road is closed. There the number of people still driving remains relevant, 

although the road capacity does not. Hence, we choose to start by investigating 

changes in traffic intensities as this will be input for all models to come. 

 The model to predict traffic flow will be presented in section 11.3.1. Then 

we continue with roadworks where the complete road is closed in section 11.3.2 and 

we will finish off with a model to predict the impact during roadworks where lanes 

are still open. 

 Note we will not create a model to measure the impact of roadworks where 

no roads are closed. We would expect and find no large influences at these 

roadworks. On average we see an increase in travel time of 0.9 minutes with a 

standard deviation of 3.7 minutes. With travel time reliability we measure increases 

of 0.2 minutes with a standard deviation of 5.5 minutes. These values, as we will 

shortly seem are trivial compared to the impact of the other roadworks. In total we 

discard investigating the impact of 7% of roadworks by not including the ones 

without lane closures.  

11.3.1 Traffic flow model 

As stated in 11.2.1 the key attributes to focus on are accessibility to public transport, 

availability of alternative routes, and transport demand management.  

To test the impact we first need to establish a baseline to which we will 

compare the vehicle counts during roadworks. To do so we apply the same 

procedures as with establishing the baseline when measuring the impact of 

roadworks, i.e. pick similar moments in time where no roadworks are present. We 

also only use the corrected vehicle count information here, just like we did when 

measuring the impact of roadworks. Once we got vehicle counts during the roadwork 

hours and their corresponding baselines we divided the vehicle counts during each 

roadwork by the average count in its baseline. Due to the randomness in data with 

small sample sizes we focus only on hours where there are at least 1.000 people 

(scaled) crossing the road during that hour. By doings so we hope to reduce outliers 

without losing too much valuable information. Roadworks with only a few people 

can never have a very large impact and thus is the information at those moments not 

that crucial. Vice versa, when there are many people it will become more important 

to provide accurate measurements. 

 After selecting and preparing our data we visualized the relation between the 

ratio vehicles roadworks over vehicles baseline with respect to availability of 

alternative routes and accessibility to public transport. For neither of these two 
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relations we could observe any trend. The data points are all very close to one with 

a few outliers that did not seem to be related to the number of people left on the road 

during roadworks. The two created graphs are shown in figure 11.2. 

 

Figure 11.2, ratio people roadworks / people baseline compared to access to public transport 

and availability of alternative routes. 

Transport demand management, however, showed a clear trend. We can 

clearly see there are fewer people on the road when the roadworks are classified as 

a B or C, i.e. roadworks with a large predicted impact. The average values per group 

and the group sizes are displayed in table 11.4. While during the majority of the 

roadworks we see no noteworthy change, we do at the roadworks of classes B and 

C. At these large roadworks, which is what B and C stands for, we see average 

numbers of people on the road drop by an average of 12%. Most likely there were 

some measures put in place to reduce traffic intensities at these moments, as we 

would expect from literature.  

Table 11.4, mean ratio people roadworks / people baseline and the number of times a 

roadwork hour with a specific class is in our sample. 

CLASS B C D E BLANK 

Mean 0.870 0.898 1.024 1.009 0.992 

N 26 28 330 113 2847 

 

 To test whether these findings are significant we performed two two-

sampled t-tests. Once to see whether the roadworks in groups B and C significantly 

differed from the rest and once to see whether roadworks in group B differed from 

those in group C. For the first test we found a significant difference in the change in 

average vehicle counts between roadworks in class B and C (Mean = 0.884, SD = 

0.128) and the rest (Mean = 0.996, SD = 0.137) with a p-value of 4.4 ∗ 10−8, which 

is way below .05 used for significance. Our second test showed there is no difference 

between roadworks in class B (Mean = 0.870, SD = 0.095) and those in class C 

(Mean = 0.898, SD = 0. 154). We found a p-value of .43, which is over our alpha of 

.05, and generally quite high. 
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We will use our new found information when predicting the impact of 

roadworks. We now know there is unlikely any change in travel behaviour, in terms 

of people switching to the train or staying at home, unless the roadworks are marked 

with a B or C. When roadworks belong to classes B or C we now estimate 12% are 

staying away from the road while 88% keep on driving.  

11.3.2 Road closure model 

Here we will create a model to predict the impact of a roadwork during an hour when 

the roads are completely closed. 

 As the road is completely closed we do not directly have to investigate the 

effect of road capacity changing variables. Instead we will focus on: 

 Availability of alternative routes, 

 Familiarity, and 

 People affected. 

These are all variables that could influence how well people can still get from A to 

B without the road they normally travel on. With many alternatives available it might 

be less worrisome when a road is closed. Furthermore, when people are familiar with 

the surrounding they might be more capable of finding alternative routes. Finally, 

when there are many people being affected, the surrounding road network could be 

over flooded with the extra demand resulting in delays. When only few people are 

on the road this should be less of an issue. Hence, we hypothesize these three 

relations might influence the impact of road closure.  

The total impact results from the costs due to increasing travel times and part 

from the cost of decreasing travel time reliability. As the above described relations 

might differ for each subpart of the total impact we will create a model and 

investigate the relations for both.  

We will first discuss the relations with respect to increasing travel times and, 

thereafter, do the same for decreasing travel time reliability. Combining both to 

predict the impact of roadworks with road closures and evaluating the results will be 

done in 11.4.1 in the section about evaluation. 

Travel times at road closures 

We will start by visualizing the relation between travel time and the three variables 

mentioned above. When we visualize the relations, later model them, we use the 

information from the baseline unless otherwise specified. This we do because the 

future is unpredictable and we want our final model(s) to be able to predict the impact 

with values that can be gathered beforehand. We do know some aspects might 

change, e.g. number of people on the road, and we try to correct for this whenever 

we think it is fruitful, hence our traffic flow model. 
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Figure 11.3, travel time increase plotted against the average travel distance during the 

baseline, which we use as a measure for the number of alternative routes. 

In terms of alternative routes or, conversely, travel distance we see no apparent 

relation with increases in travel time (see figure 11.3). We also find a correlation of 

-0.16 between the two variables indicating there may be a small decrease in travel 

time at greater distances, although the effect appears to be marginal. 

 

Figure 11.4, travel time increase plotted driver familiarity, which we measure as the 

percentage of work traffic. 

 When we look at figure 11.4 we can see a clear downward trend in the 

increase of travel time when the percentage of people with work motives increases. 

We used the square root of the work percentage here as the non-adjusted relation did 

not appear linear. When driver familiarity is low the increase in travel times appear 

substantial. Travel time increases of between 4 to 8 minutes are common. When we 

look at the other end of the spectrum we see little to no increase in travel times.  
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Work percentage also relates to the week versus weekend differences. As 

large roadworks often occur during the weekend we though this might explain the 

above found relation. We, therefore, also investigated whether weekend rather than 

work percentage can explain the increase in travel times. What we found was that 

the square root of work percentage can better explain the variation in travel times. 

While the square root of work percentage can explain 17% (Pearson correlation of  

-0.41) the attribute weekend could only explain 5% (Pearson correlation of 0.22). As 

weekend and the square root of work percentage are correlated (Pearson correlation 

of -0.36) we chose to leave weekend out of the equation. We did not include weekend 

in our model as it might result in multicollinearity. 

 

Figure 11.5, travel time increase plotted against the corrected number of people affected. 

The number of people affected (during the baseline) are reduced by 12% in accordance with 

our findings in 11.3.1. 

 There appears to be no apparent relation between the travel time increase 

and the number of people on the road during road closures (figure 11.5). We do see 

that the average travel time increase is quite substantial, e.g. about 4 minutes. 

Nevertheless, this average does not appear to be affected by the number of people. 

 The only variable that shows a clear relation with travel time increase is the 

square root of the percentage of work trips, i.e. driver familiarity. Because we found 

high correlation between consecutive residuals with the standard LM we applied 

Cochrane-Orcutt estimation (Cochrane & Orcutt, 1949). After one iteration we find 

the model presented in table 11.5. The final model met all necessary assumptions 

(Appendix I, figures I1, I2, and I3). Note we did not have to calculate VIF scores as 

we only have one variable. As it turns out we meet all assumptions and the model 

shown in table 11.5 is fully interpretable and trustworthy. 

Table 11.5, model for predicting the increase in travel time during road closures. The model 

can explain 6% of the variance in our data. 

 WEIGHT STD ERROR T VALUE PR(>|T|)  

Intercept 2.454 0.222 20.76 <2E-16 

Driver familiarity -2.257 0.416 -12.61 6.03E-08 
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As expected we a significant effect for driver familiarity. When drivers are 

more familiar with the road, the lower the increase in travel time during road 

closures. When a road is closed we expect delays of 2.5 to 0.2 minutes depending on 

driver familiarity, which theoretically ranges from 0 to 1. The created model can 

explain a total of 6% of the variations in travel time increase during road closures. 

Our model can thus only explain a minor part of the variation in the data.  

Travel time reliability at road closures 

For travel time reliability we will investigate the relations like we did for travel time.  

 

Figure 11.6, increase in the standard deviation of travel time plotted against the average 

travel distance during the baseline, which we use as a measure for the number of alternative 

routes. 

 It is hard to see a clear upward or downward pattern in figure 11.6. On 

visuals alone, we do not expect any noteworthy relation. We do find there is a 

correlation of 0.21 between travel distance and the increase in the standard deviation 

of travel times, but this is still only a very weak correlation. Moreover, when we look 

at figure 11.6 the points on the left appear higher than those on the right, which does 

not match the found positive correlation. We are, therefore, not confident that travel 

distance truly has an effect on the increase in travel time standard deviation during 

roadworks.  
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Figure 11.7, increase in the standard deviation of travel time plotted against square root of 

driver familiarity, which we measure as the percentage of work traffic. 

 Unlike the clear relation we saw when comparing familiarity with travel 

time, there appears to be no relation here (figure 11.7). A Pearson correlation of  

-0.12 confirms what we see. 

 

Figure 11.8, increase in the standard deviation of travel time plotted against the corrected 

number of people affected.  

 The number of people affected also has no clear effect on the decrease of 

travel time reliability (Pearson correlation of -0.09). From figure 11.8 we do see the 

largest deviations are found when there are few people on the road. Furthermore, we 

observe a large deviation around the mean increase in travel time standard deviation 

that we cannot explain. 

 As we find none of our variables can explain any meaningful amount of the 

variation in the data we choose to simply take the mean travel time deviation as our 

best guess. The mean increase in travel time standard deviation of 0.9 minutes will 

be used as the only measure to estimate the increase in travel time reliability. 
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11.3.3 Lane closure model 

Here we will evaluate the impact of roadworks where at least one lane is closed. In 

total 4.204 of the 8.039 hours in our dataset belong to type of roadwork. Similarly to 

section 11.3.2, we will first discuss the effect of roadworks with lane closure on 

travel time and, thereafter, their effect on travel time reliability. 

 For both the analyses we will perform we investigate the impact in 

combination with a series of attributes. Unlike roadworks where the road is 

completely closed, however, here the attributes related to road capacity and travel 

velocities over the road are also important. In particular, the number of vehicles per 

lane we expect to be a crucial indicator of both travel time loss and loss in travel time 

reliability. This we expect because the number of vehicles per lane relates to whether 

road capacity is exceeded and traffic jams, i.e. large delays, are a given.  

Note when we refer to vehicles per lane we use the vehicle counts during the 

baseline, adjust using our traffic flow model (see 11.3.1), and divide by the number 

of open lanes during the roadwork. 

 In the following model both the attributes relating to lane closures and those 

relating to traffic demand are all taken into consideration. Traffic demand 

management and familiarity with the road can also help people find alternatives and 

spread the load on the road. The vehicles per lane we measure might be an 

overestimation of what is actually on the road provided the increase in people taking 

detours. Finding out whether a road reached its capacity is thus not as straightforward 

as with conventional road side measurement devices that can measure traffic flow 

directly where a roadwork occurs. Traffic demand related attributes can perhaps help 

explain some variation in what we expect versus what we measure. Attributes related 

to road capacity will also be used to help explain why sometimes road capacity is 

exceeded and delays are measured and why no delays are measured during other 

times. 

 The data used to create the following models is equivalent to the data used 

through section 11.3 with a few additions. It consists of data on hours during which 

roadworks are present, with at least one lane closed and no full closure. Each row of 

data also contains information from the baseline situation that will be used for 

prediction. A special case here is the number of vehicles during the baseline that 

corrected using our traffic flow model (see 11.3.1). Using this predicted number of 

vehicles we also calculate the vehicles per lane by dividing the number of vehicles 

by the number of lanes open. We, furthermore, included an attributed to quantify 

how many more vehicles per lane are present during the roadworks that during the 

baseline. Other attributes that have been constructed are percentage of roads open / 

closed. With this data we will try to explain changes in travel time and travel time 

reliability during roadworks with lane closures. 

Travel times at lane closures 

The first thing we want to investigate is the fundamental relation between travel time 

increase and vehicles per lane. Near and beyond 2000 vehicles per lane we would 

expect significant increases in travel (HCM, 2000). The data regarding the relation 

between travel time increase and vehicles per lane is shown in figure 11.9. 
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Figure 11.9, the increase of travel time plotted against the vehicles per lane. The red, yellow, 

and green boxes indicate three areas we are particularly interested in.  

 First of all, we have to explain why we have such high numbers on the 

vehicles per lane axis. Typically it is not possible to exceed road capacity when using 

road side measurement devices. However, we can exceed road capacity as our way 

of measuring and hence what we measure slightly differs from the definition of 

vehicles per lane per hour. We are able to go beyond road capacity as we do not take 

into account detours and due to the procedure with which we timestamp people 

crossing a road. When people queue in traffic they might not cross the road section 

in reality, but the middle of their trip might still ‘cross’ the road. Imagine, for 

example, a person leaves at 7 o’clock and arrives at 9 o’clock while another leaves 

and arrives at 8 o’clock. When both travel over the same road we say both went over 

that road between 8 and 9 o’clock. We thus do not take into account whether the first 

person was stuck in traffic before or after crossing the road which can also slightly 

distort what we see in the data. 

 Second of all, we have to explain why we are interested in the three 

highlighted regions. When we look at the left part of figure 11.9 we see an 

approximately normally distribution of increase in travel time over the vehicles per 

lane dimension. This would imply the deviations from the mean could be noise and 

does not imply a structural relation. That said, there are some points at around 1.000 

vehicles per lane that look as if there might be something going on that resulted in 

the increasing travel time. At 1.000 vehicles per lane most points are between -5 and 

5 minutes of travel time increase and a small cloud of observations has a much 

greater increase in travel time that might indicate they might differ from the group 

in some aspects. Nevertheless, we want to focus on the group with slightly higher 

vehicle per lane counts. From about 1.500 vehicles per lane to 4.000 vehicles per 

lane the distribution appears to be non-normal. The group of observations with no 

increase (yellow region) is relatively small compared to the number of times large 

travel time increases are measured (red region). Occasionally, we even find some 

points where travel times decrease (green region). This area of the graph we, 

therefore, find worthwhile to further investigate. Our data also focusses mostly on 
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what influences road capacity and is thus most suited to investigate behaviour where 

vehicle per lane values are higher.  

The group over 4.000 vehicles per lane is excluded because we find the 

values to be out of the ordinary. After further investigation we find three of the four 

roadworks where this is the case are located near large roads that could have coped 

with the added traffic demand (see figure 11.10). For the other roadwork we could 

not explain the high vehicle per lane value, but suspect someone wrongly inputted 

the information about the roadwork as it says one lane is open and the maximum 

road width is 0 meters. We, therefore, removed all other measurements regarding 

this roadwork as well. 

 

Figure 11.10, three roadworks with high vehicle per lane values that did not saw an increase 

in travel time, probably due to potential alternative roads nearby that could cope with the 

traffic flow. 

As we saw in our outlier analysis, the presence of alternative routes ensured 

travel times did not increase even when vehicles per lane values were extraordinarily 

high. To see if the presence of alternative routes could explain why sometimes 

roadworks at high vehicle per lane counts resulted in increases in travel we created 

figure 11.11. In figure 11.11 the increase in travel time is plotted against the average 

travel distance, which we use as a measure for the number of alternative routes. 

 

Figure 11.11, the increase in travel time is plotted against the average travel distance. 
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 Figure 11.11 shows us the hours where roadworks caused delays are located 

mainly when average distances are relatively short. Nevertheless, even at shorter 

distances some roadworks do cause delays and others do not. This could be because 

the effect is only present when more people are having to be rerouted, for example. 

The effect of a single variable could also differ depending on others. To gain insight 

in the interplay between variables that could explain why sometimes delays are 

measured while at other times they are not, we will construct a decision tree. A 

decision tree is valuable because it can look at combinations of factors to elicit the 

complex structures underlying the reason why some roadworks do and some 

roadworks do not result in longer travel times. Furthermore, decision trees have a 

clear structure that is both easy to interpret and easy to depict. 

 The decision tree will be built using the rpart package in R that 

builds a decision tree using an algorithm mostly similar to the one described by 

Breiman et al. (1984; Therneau, Atkinson & Ripley, 2014). Post pruning will be 

performed to remove the splits from the tree that model noise rather than the true 

underlying structure. In our case cost complexity pruning is applied. The idea of cost 

complexity pruning is that splits that add little value at the cost of relatively large 

complexity, i.e. size, should be removed. Cost complexity pruning asks “What would 

be the increase in error per leaf if we remove this split?” The tree with the lowest 

error per leaf is the one chosen. 

 To create our decision tree we first divided the relevant data in three classes. 

These are Increase, Neutral, and Decrease, and correspond to the data beneath the 

red, yellow, and green areas in figure 11.9. Increase stands for an increase in travel 

time of at least 5 minutes. Decrease implies a decrease in travel time of at least 5 

minutes, and Neutral is everything in between. We allowed the tree to choose from 

all the attributes available in our data, including traffic hindrance class, weather 

information, day of the week, weekend, and night. The resulting pruned tree is shown 

below in figure 11.12. 

 

Figure 11.12, decision tree showing when travel times increased (Red), decreased (Green) 

or stayed neutral (Yellow) when we expect between 1.500 and 4.000 vehicles on the road.  
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 The relations found in figure 11.12 give us several useful, though sometimes 

predictable, insights in the data. The percentage of lanes closed appears to have most 

explanatory power in terms of why some roadworks have a large impact. With over 

71% of lanes closed we see the impact is often large. In particular, when there are 

over 3454 people on the road, i.e. when it is busy, there is a large increase in travel 

times. Otherwise the increase in travel time occurs only occasionally (14% of the 

measurements). When we have less than 71% of the lanes closed we see the majority 

of the measurements have little or no impact. In particular, when drivers are familiar 

with the road we almost never encounter any large increases or decreases in the data. 

Note driver familiarity is measured here as the square root of the percentage of 

people with the motive ‘work’ and ranges from 0 to 1, i.e. 0% to 100%. When drivers 

are unfamiliar with the road (under 21%) we get some strange findings, though this 

can also be due to the limited number of observations left. We see decreases in travel 

times when there are over 2130 vehicles per lane, which goes against all the literature 

we previously discussed. We, therefore, think this is the result of a tree overfitting 

the data. The final split relates to distance. As we already saw in figure 11.9, at 

shorter distances we see large increases in travel times. 

 At the evaluation we will use a slightly modified version of the model above 

to predict how much travel times will increase. We remove the split “Over 2130 

vehicles per lane” and replace it with the split below about distance. When distances 

are below 78 km we will predict a large increase in travel times and else we will 

assign them to the class Neutral. The observations in the Decrease class all fall into 

the leaf currently at the bottom right (Neutral). The change we make to the tree here 

is made because we know the relation is highly unlikely to be structural and expect 

overfitting. When predicting travel time increase we need to do so in minutes rather 

than classes. We will use a conversion factor for each class to do so based on the 

class averages. Observations are given an expected increase in travel time of -0.1 

minutes and 9.7 minutes for the classes Neutral and Increase, respectively. These are 

the average travel time increases for the respective classes. Note we will never 

predict a Decrease and hence also do not require a conversion for this class. All data 

that is not included in our model, i.e. below 1.500 and above 4.000 vehicles per lane, 

are assigned an expected increase in travel time of 0.9 minutes.  

Travel time reliability 

Besides travel time, lane closure can also affect travel time reliability. Similarly to 

what we did before we start by looking at the fundamental relation between vehicles 

per lane and the increase in the standard deviation of travel times, i.e. travel time 

reliability (see figure 11.13). 

 In figure 11.13 there is no useful relation visible between vehicles per lane 

and the increase in travel time reliability. The only relation present is the decrease of 

the bandwidth on which standard deviations are found. The fewer vehicles per lane 

the larger the variation in the measured increase in travel time reliability is. This 

relation, however, can be explained by the fact that a lower sample size often results 

in a higher standard deviation. Moreover, there are more measurements at the low 

end of the vehicles per lane spectrum making extreme values more likely. The 

relations found thus appear to be random and not related to vehicles per lane.    
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Figure 11.13, increase in travel time standard deviation (std) plotted against the expected 

number of vehicles per lane, which is corrected for transport demand management and lane 

closures. 

 To find out if there is a hidden pattern in the data that might explain why 

travel time standard deviations are high, neutral, or low, we again made a decision 

tree. Standard deviations over 5 minutes we label ‘high’, those below 5 minutes 

‘low’, and the rest we labelled ‘neutral’. Pruning on this occasion was not necessary. 

Of all the attributes we allowed the model to split on none could provide any 

information. Travel time reliability at lane closures is something we cannot predict. 

Our best guess is thus the average increase in travel time standard deviation, which 

is 0.2 minutes.   
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11.4 Evaluation 

Here we will test how well our models perform in terms of measuring the impact of 

a roadwork. There are two scenarios that we have investigated. The first could be 

applied to predict the impact of road closure, and the second to predict the impact of 

a roadwork with only part of the road closed.  

 From our traffic flow model (11.3.1) we learned a decrease of 12% in people 

found traveling, most probably, due to transport demand management when 

roadworks are of classes B and C (see 11.3.1). For roadworks labelled as one of those 

classes we will apply the rule of half for the missing 12%, which is 13.6% of the 

people we expect on the road. We do not make a distinction between different 

motives as we did not find any reason to investigate this. We did not see any change 

greater than 0.5% in the percentage of work trips when comparing the baseline 

versus the roadwork values for any of the roadwork classes. Hence, we will leave 

investigating the relation with respect to different motives for future research and 

assume the 12% decrease is the same amongst all classes. 

 In section 11.4.1 we will evaluate our model regarding road closure and in 

section 11.4.2 our model regarding roadworks with lane closure. 

11.4.1 Road closure model 

We will evaluate the road closure model with respect to hourly vehicle counts and 

with respect to entire roadworks. On both occasions the data used during training is 

also the data used for evaluation. The results might thus be overly positive provided 

we do not correct for overfitting here. We do, however, belief overfitting will not 

have a large influence here given the simplicity of our road closure model. The road 

closure model is the sum of both the model that predicts traffic flow, the model for 

travel time increase during road closure and the model for travel time reliability 

during road closure. Each of the models is very basic with at most one variable to 

split on or use in a linear model. The model regarding travel time reliability is even 

a simple average over all observations. Hence, overfitting would hardly be possible. 

 We will evaluate the model in two parts. First we discuss how well it can 

predict costs in time frames of an hour, and, thereafter, we will discuss how well it 

can predict the total costs of a roadwork. 

 Hour level 

What we already learned from the R2 of 0.04 is that our model regarding the increase 

of travel time can hardly explain any variation in the increase in travel times during 

road closures. Furthermore we are unable to find a significant relation between the 

chosen variables and travel time reliability. Hence, we will use the mean increase in 

travel time reliability as our best guess. On hourly basis we thus know our road 

closure model is unable to successfully explain much of either travel time increase 

or decrease in travel time reliability. In figure 11.14 we show a scatter plot displaying 

the relation between the predicted costs and expected costs. 

 To get to the predicted costs we calculated the expected number of work, 

business, and other trips by multiplying the predicted number of people on the road 

(traffic flow model) with the percentage of trips per motive during the baseline. Then 
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we multiplied these values with the respected costs for travel time increase (in hours) 

and the increase in the standard deviation in travel time (in hours) and the predicted 

values for both accordingly. The predicted values for both are calculated with our 

models relating to travel time increase and decrease in travel time reliability. 

Whenever we found the rule of half should be applied, i.e. for roadworks of class B 

or C, we added an additional 6.8% to the total costs. 

 
Figure 11.14, measured versus predicted cost per hour for our road closure model. 

 In figure 11.14 we can see there is only a slight relation between what we 

predict and what is measured. A correlation of 0.29 does suggest there is somewhat 

of a correlation. Furthermore, the predicted values appear to be conservative in 

comparison with the measured values. The range of predicted values goes from 0 to 

just over 3.000 while the measured cost range from below -10.000 to nearly 20.000 

euro. The fact that our model can only explain 8% of the costs of a roadwork does 

not necessarily imply it is bad.  

We will have to put it into context with other prediction models to determine 

this. Unfortunately, we do not have the information available to do so. The only 

information available is about the hindrance class and expected delay already in the 

data. These predictions, however, are generally a gross overestimation of the 

increase in travel times. Heavy roadworks are often assigned delays of 10 to 30 

minutes and occasionally even greater than 30 minutes. These are values we almost 

never encounter in our measurements. Nevertheless, as it is our only benchmark we 

will try to get some insight into how well their predictions are when with respect to 

road closures. To do so, we first convert the classes “below 10 minutes delay”, “10 

to 30 minutes delay”, and “over 30 minutes delay” to 0, 1, and 2. We then performed 

a Spearman correlation to see if higher delay classes also result in higher costs. The 

answer is rather surprising. We found a Spearman correlation of 0.29, which is 

equivalent to the correlation of 0.29 we found with our model. These classes, 

however, are predicted on roadwork rather than hour level so perhaps they will 

perform better when we evaluate them on that level.  

In addition travel delays the roadwork data also has a prediction about the total 

hindrance. These are the classes E through B that we discussed earlier. The largest 

hindrance is expected at class A, but roadworks with this class are not present in our 
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data. We perform the same procedure as with expected delay, i.e. E is converted 0, 

C is 1 and B gets a 2, to again perform a Spearman correlation. The correlation 

indicated a negative relation (-0.13). We must note, however, only 254 of the 1236 

hours with complete road closure have a traffic hindrance class and the comparison 

is thus not completely fair. Furthermore, based on the traffic hindrance class traffic 

hindrance alleviating measures will be employed. The prediction is made prior to 

this. The situation for which the prediction is made thus differs from the measured 

situation. The actions to prevent the traffic hindrance might cause this result. 

Overall, the created model for predicting the impact during hours at which a road 

is closed perform OK. The model is often wrong, but so is the current state of the 

art. There is simply a lot of variation that is hard to explain. Future research will have 

to dive deeper into the problem to improve these predictions.  

Roadwork level 

Here we will do the same as what we just did, but aggregated to the level of unique 

roadworks rather than loose hours. 

 On roadwork level we immediately find much better results. We find our 

model can explain 46% of the variation in measured costs between roadworks. In 

figure 11.15 the relation between predicted and measured costs is depicted. We see 

that we can successfully determine most roadworks have no impact and can also 

predict when roadworks do. There are some wrong predictions, nonetheless, where 

we expected an impact and found a negative impact.  

 
Figure 11.15, measured versus predicted cost for all roadworks where the entire road was 

closed. 

 That we find much better results on this level indicates our models do 

embody the underlying relations resulting the impact of roadworks with road 

closures. The variation we could not explain on hour level appears to level out when 

we aggregate over multiple hours to get to roadwork level. This suggests the previous 

found variation is most likely noise. Moreover, it shows our model is not much 

influenced by the noise. 

 We again compare the model with the expected delay and traffic hindrance 

classes in our roadwork data as we did in the previous section. On roadwork level 
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we get Spearman correlations of 0.35 and -0.03, respectively. If we would apply a 

Pearson correlation over the expected delay classes, ranging from 0 to 2 for less than 

10 minutes delay up to greater than 30 minutes delay, we get to a correlation of 0.53 

(R2 of 0.29). On roadwork level our model appears to strongly outperform the current 

‘state of the art’ though we have to take these results with a grain of salt. We did use 

the same data for training and evaluation, and the traffic hindrance classes are 

calculated prior to the traffic alleviating measures, which skews results. 

Nevertheless, these findings do suggest our model is better than we expected after 

the relatively poor explanatory power on hour level.  

11.4.2 Lane closure model 

Similarly to the evaluation of our model on road closure we will evaluate the model 

for roadworks with lane closure in two parts. First we discuss how well it can predict 

costs in time frames of an hour, and, thereafter, we will discuss how well it can 

predict the total costs of a roadwork. 

Hour level 

On hour level we find our model performs worse than on roadworks with road 

closures. There is much more variation visible (figure 11.16) and we can only explain 

2% of the measured cost. The indications about expected delay and traffic hindrance, 

however, do not perform any better with Spearman correlations of 0.04 and 0.05, 

respectively. There is simply a lot of unexplained variance that no-one yet appears 

to be able to explain.  

 
Figure 11.16, measured versus predicted cost for all hours where a lane was closed. 

Roadwork level 

On roadwork level we see the same pattern as with the road closure model. The noise 

appears to level out and the variation in the data becomes easier to explain, although 

the problem maintains non trivial (figure 11.16). Our model can explain 8% of the 

variation on roadwork level. 
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Figure 11.17, measured versus predicted cost for all roadworks where a lane was closed. 

 On roadwork level also the predictions in the roadwork data about estimated 

delay and total traffic hindrance start to correlate better with the measured costs. We 

find Spearman correlations of 0.08 and 0.11, respectively. Our model also performs 

better than the predictions in the SPIN system, from which we got our roadwork 

data. Although we again must state the comparison is unfair as we (1) trained our 

models on the evaluation data, which leads to more optimistic results, and (2) the 

predictions in the SPIN system do not necessarily anticipate traffic alleviating 

measures. Furthermore, the predictions in the SPIN system have to look further 

ahead in the future while our baseline consists of weeks directly surrounding the 

roadwork.  
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11.5 Implementation 

Here we will discuss what mobile phone data can offer with respect to predicting the 

impact of roadworks in terms of added benefit over conventional data. 

 The main advantage, in our opinion, is that we measure travel time 

regardless of whether people continue to driver over the road affected or take 

detours. By doing so mobile phone data can provide a much more realistic estimation 

of the expected travel times. We see travel times increase at heavy roadworks by 

approximately 10 minutes at the high end of the spectrum whereas the predictions in 

SPIN are often much higher. This probably results from them focusing primarily on 

what happens exactly at the roadworks whereas mobile phone data can also provide 

information about people taking detours whether over larger roads or local roads. 

 Another benefit of using mobile phone data is the scale and ease at which 

the data can be gathered. Although this relates more to measuring the impact of 

roadworks, it also helps when predicting. The more data available the higher the 

chance you will find the underlying patterns beneath the noise. We found our models 

for road closures and lane closures to work well, particularly, when we aggregate the 

predictions to roadwork level, which removes the noise. This is a level the models 

have not been trained on, and still they are able to find structure in the noise.  

We should not, however, overstate the value of the models as there is still a 

lot of variation left unexplained. In particular, the impact for roadworks with lane 

closures is very hard to predict.  

The model that added most value was the one regarding complete road 

closure. Here the final model, though perhaps over-fitted despite its simplicity, could 

explain 45% of the measured costs. This is nearly twice as much as the classifications 

about expected delay currently in the SPIN, i.e. the system where information about 

roadworks in the Netherlands is stored. We think the situation with complete road 

closures is particularly interesting in combination with mobile phone data. Unlike 

traditional techniques, e.g. using roadside measurements, it is easy to track whoever 

usually uses the road and keep track of travel times using mobile phone data. Mobile 

phone data can also provide more insight in the origins and destinations of the people 

affected which helps when you want to predict the availability of detour roads. We 

did not take this into account, but future research might. There is still a lot to explain 

regarding what causes the impact of roadworks. 

The model regarding road closure we advise people to start using as we 

found strong indications the model provides better estimations than the current ‘state 

of the art’. The model regarding lane closure we do not recommend. Here it would 

be valuable to have more details about the roads and what specifically is going on 

there to improve predictions. Predictions results were bad and we reckon an expert 

might do better here.   
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11.6 Conclusion 

The main thing we learned in this chapter is that predicting the impact of roadworks 

is non-trivial. There is a lot of variation in the data and even when we look at the 

impact from many angles. 

 We started with a literature study where we found a number of key attributes 

relating to the impact of roadworks. Most of the literature focussed on what reduces 

the road capacity and hence increases the chance on traffic jams. Many of the 

attributes, such as lane width reduction and rain, were never highlighted as important 

in relation to the impact of roadworks. These effects relate mostly to when road 

capacity limits are reached, which we found is not very common. The relations that 

are found to reduce capacity by a few percent have only a minor influence. This 

influence was too small to be noticed by any model that we created. What we did 

find to be of greater importance are (1) transport demand management, (2) distance 

travelled which relates to the number of alternative routes available, and (3) driver 

familiarity which relates to being able to find alternative routes as well as increase 

capacity (Berkum & Huerne, 2014; Heaslip et al., 2007). A number of key attributes 

such as the percentage of HGV are missing in our dataset. Future research could 

include these to find out if they can explain the unexplained variance in the measured 

costs of roadworks. 

 On hour level the costs are extremely difficult to predict. On this level one 

accident during the baseline or any event really that influences travel behaviour or 

road characteristics can induce variation. If there is enough data, however, it is 

possible to look through the noise and find underlying structures when enough data 

is available. On hour level neither of our models, i.e. the one for complete road 

closures and the one for roadworks with lane closures, could explain much if any of 

the variation in the measured costs. When we aggregated the hours per roadwork we 

found we could predict up to 45% of the variation in the measured costs for our road 

closure model. 

 In total we created three model: a traffic flow model, a road closure model, 

and a lane closure model. The first predicts the decrease of people on the road. Note 

we already corrected for external factors such as weather (see chapter 9). The effects 

that are left we are trying to estimate here. In our traffic flow model we found 

roadworks with classes B and C, which stand for high impact roadworks, saw a 

decrease in vehicles on the road by an average of 12% (Taskforce Doorstroming, 

2009). This is most likely the result of traffic alleviating measures being applied. 

Other factors were unimportant in comparison. When roadworks were of lower 

classes we did not find a decrease in traffic flow. With respect to the other models 

we only found relations explaining increases in travel time. Travel time reliability 

could not be explained by any of the many variables in our data. Driver familiarity, 

percentage of lanes closed and vehicles per lane were crucial in the lane closure 

model while the road closure model only looked at driver familiarity and a standard 

average delay. 

 The mobile phone data shows it is a valuable source of. The main advantages 

are being able to track people no matter how they travel and the size that helps to 

look through the noise. 
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12 Conclusion 

In this research we set out to find a new rich and scalable source of information to 

find out how roadworks affect mobility. Traditional techniques such as surveys and 

roadside measurements are both non-scalable small in sample and require a lot of 

effort to elicit mobility patterns. We suggest mobile phone data as a rich and scalable 

source of information to do the same. Where traditional techniques would require 

months of research to measure the impact of one roadwork; we showed that mobile 

phone data can measure hundreds with a fraction of the time and effort.  

 Mobile phone data is a rich and scalable source of information that can be 

used to measure patterns in mobility. This we showed by correctly scaling our 

sample to the traveling population and assigning trips to the road. Comparisons with 

a hundred road side measurement devices on various highways across the country 

have been made. The results clearly show mobile phone data can be used to get 

accurate vehicle counts on an hourly basis. Pearson correlations of 0.9 and upwards 

are found for 90% of the comparison sites. In addition to measuring traffic counts, 

mobile phone data can also be enriched. For example, as the impact of roadworks 

differs per motive this is crucial information to have when evaluating their impact. 

We, therefore, created a probability estimation tree using trip characteristics such as 

departure time and home location that help explain why a person travels. By 

carefully selecting and constructing attributes that are available in both the mobile 

phone data and the survey data we could transpose our model to the mobile phone 

data. The created model helps us to better predict the composition of vehicles 

traveling over a road by motive and thus get a better image of the impact of 

roadworks. 

 To measure the impact of roadworks we carefully craft our dataset from the 

mobile phone data. We, furthermore, correct for variations caused by external factors 

such as weather to ensure we can accurately evaluate the impact of roadworks. After 

selecting a proper baseline free of externalities we calculated the impact of 638 

roadworks on Dutch highways in October and September 2015. We found a net 

impact of €1.109.548. This is excluding the roadworks that happened week after 

week on the same road for which we could not establish a baseline, which was just 

over half of all roadworks.  

 Knowing what the impact was is one aspect of this study; predicting the 

impact is the other. After constructing a list from literature of key roadwork 

characteristics that might influence roadworks we created three models. One to 

predict how traffic flow in absolute counts changes due to roadworks. Here transport 

demand management turns out to be key. One model is created for predicting the 

increases in travel times and decrease in travel time reliability due to road closure. 

Here we find driver familiarity is most important. Compared to the current state of 

the art we find strong indications our basic model could outperform the current ‘state 

of the art’. Our final model regards roadworks with lane closures. After extensive 

modelling we found the well-known structures underlying the impact of these 

roadworks: high percentage of lanes closed, busy roads, and unfamiliar drivers. 
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We will round of this conclusion with a clear answer to our main research question:  

How can mobile phone data be used to improve the measurement and 

prediction of the impact of roadworks on highways? 

To improve how we measure the impact of roadworks we should use mobile 

phone data. In this research we devised and validated our proposed method 

describing how to use mobile phone data specifically for this task (see 4.2.2). The 

method consists of the following five steps: (1) accurately scale to the traveling 

population, (2) select the people who are affected by the roadwork, (3) determine 

their motive, (4) compare the roadworks with a proper baseline corrected for external 

factors, and (5) report the findings in a meaningful way. Using this method mobile 

phone data can measure the impact of roadworks fast, at high quality and low costs. 

The information is far richer than that from road side measurement of which the only 

advantage is that they provide basic information quickly. The information is quicker 

available than with surveys, and at much larger scale. Next to this the information 

can be produced at low cost with the infrastructure already in place and nearly no 

difference in effort between measuring the impact of ten versus a hundred roadworks 

(see figure 12.1). Mobile phone data can improve the measurement of the impact of 

roadworks on highways on every meaningful front. 

 

Figure 12.1, mobile phone data is able to combine high quality, quick results, at low costs. 

Surveys and road side measurements can only do one each. 

In terms of predicting the impact of roadworks the main strength of the 

mobile phone data is in the abundance of information. The abundance of information 

helps to see through the noise and discover the hidden underlying structures. 

Predicting the impact of roadworks remains a nontrivial task. Nevertheless, we are 

confident this new source of information will allow others to discover more about 

the hidden effects resulting in the impact of roadworks. 
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13 Discussion 

In this chapter we will reflect on the limitations, provide a brief overview of how the 

research can advance the work of others in the field and provide input for future 

research. 

13.1 Limitations 

Most of the limitations and side notes to our findings have been elaborately discussed 

throughout the research. There are two, however, we find deserve special attention 

as they are in the foundations of this research. 

Semantics 

When we measure the impact of a roadwork we measure, foremost, the increase in 

travel times and travel time reliability of the people logically traveling over the road 

where the roadwork occurs. 

 Good traffic management can successfully reduce the impact of roadwork. 

When traffic management is properly applied we measure the impact of closing, for 

example, a lane in addition to the effect of traffic management. We cannot 

distinguish between the two. The impact of roadworks in this research is the impact 

that results from both. 

 Because we measure both effects it is difficult to distinguish the effect of 

each, e.g. what would the impact be without the traffic alleviating measures. To 

research this actual experiments should be set up with some roadworks having these 

measures and some roadworks without these measures.  

Detours 

Traditionally the rule of half is applied to everyone who decides to change travel 

behaviour (Eigenraam et al., 2000). Taking a detour is changing travel behaviour as 

well. The motivation for this argument in line with the rule of half is that these people 

also found something more optimal than traveling over the road where the roadworks 

are occurring (expert interview, Appendix C). 

 We are currently unable to distinguish between travellers that stay on the 

logical route and those taking detours.  Hence, we also do not apply the rule of half 

to the group taking a detour. In part that is because we simply cannot make the 

distinction. Mostly though, we think the rule of half should not be applied to people 

taking a detour. Take, for example, the case where a road is completely closed during 

roadworks. Everyone will have to take a detour. With the rule of half the impact 

would thus be half as well. Furthermore, from a personal stand point I do not see the 

difference between a 5 minute delay stuck in traffic or a 5 minute delay because I try 

to avoid a roadwork, both are a direct effect of the roadwork and both cost me just 

as much delay. If anything taking a detour should be weight more heavily 

considering the potential extra mileage to the vehicle. 

 Not being able to notice who takes a detour is a current limitation. With 

respect to the impact of roadworks, as we just argued, we do not see this as an issue. 
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13.2 Scientific relevance 

This research can provide input for research in the field of human mobility research 

using mobile phone data and traffic management. 

Human mobility research 

The body of literature regarding mobility research using mobile phone data. 

Numerous researchers have found the benefit of measuring mobility with mobile 

phones, e.g. unobtrusive and large scale (Daas et al., 2009; Snijkers, 2009; Ahas et 

al., 2008; Eagle et al., 2009; Becker et al., 2011; Palchykovet al., 2012; Wang et al., 

2012). 

 In this research we have showed how to increase the accuracy by, for one, 

reducing the maximum allowed cell sizes (chapter 5). We, furthermore, validated we 

can elicit more accurate results when we apply the threshold in combination with the 

described method to elicit origins and destinations from Call Detail Records (CDRs). 

In addition, we proposed a new scaling method that scales to the traveling rather than 

general population (chapter 6) in collaboration with Van Langen (2016). To our 

knowledge this research also contains the first evidence we can correctly scale to the 

population and use mobile phone data to infer accurate vehicle counts on major 

highways. We also provided a prime example of how surveys can enrich mobile 

phone data (chapter 8). 

 The results from this research such as the proposed and validated scaling 

factor could directly be implemented in other research to get, for example, a good 

representation of the traveling population rather than just the sample.  

Traffic management 

The largest gains are for the field of traffic management. We proposed a new source 

of rich and plentiful information that can drive research for years to come. More 

importantly though, we showed throughout this research that mobile phone data can 

be used to measure travel behaviour and thus changes in travel behaviour on major 

roads.  

Similar to what we did with roadworks could be done with any type of event 

in the road network. One could measure, for example, the effects of traffic alleviating 

measures, e.g. a congestion tax, on country level with relatively little effort. 

Conventional techniques, e.g. road side measurements, can also provide some 

information. The advantage of mobile phone data is the additional information that 

can be linked to the traffic counts, e.g. where people come from, where they go, and 

now also their motive of traveling. This additional information could prove valuable 

in explaining the observed travel behaviour.  

The main benefit to traffic management has been showing and further 

validating that mobile phone data can be used to measure travel behaviour on the 

roads. We are not the first to show this, but we did provide more confirmation that 

mobile phone data can be used for research in this field (Wang et al., 2012; Toole et 

al., 2015).  
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13.3 Future research 

Over the course of this research we encountered a number of points that we regard 

as worthy for future research. 

Benefit of a more advanced route assignment method 

In chapter 7 we already extensively discussed the advantage and disadvantages of 

different route assignment methods. We applied a fairly basic one, i.e. shortest time 

path algorithm, and got more than decent results. Nevertheless, more advanced 

methods are available that have been shown to produce even better results (Prato, 

2009). Hence, it may be worthwhile to implement one of these more advanced 

methods and compare the results with the baseline we established. The better we can 

detect what roads people are using, the better we can focus on the people influenced 

by events on a specific road. 

Predicting the impact of roadworks with more information 

Key information could still be added to the roadwork information to improve the 

predictions regarding the impact of roadworks. Information about Heavy Goods 

Vehicles (HGVs), for example, was lacking, but is found to be an important factor 

according to literature (Heaslip et al., 2008). In our brief outlier analysis in chapter 

11 we also saw the supporting infrastructure in close proximity around roadworks 

might explain why some large roadworks have almost no impact.  

 With more information, more can hopefully be explained regarding how 

roadworks impact society.  

Overestimating the value of traffic management 

Tenders are won with discounts for good traffic hindrance plans of about €30.8 

million, on tenders of €100 million (Duijnisveld et al., 2011).  This is a significant 

sum of money to reduce the impact of roadwork. Although we cannot say how much 

the impact would be without traffic alleviating measures; we do know the net impact 

of 7.552 hours of roadworks during September and October 2015 is just over a 

thirtieth of the fictive discount. 

 As discussed, we cannot say with certainty traffic hindrance plans are 

overvalued. Nevertheless, given the large divide between the €30.8 million discount 

and the €1.1 million impact over 7.552 hours we guess it is worth an investigation. 
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Appendix A: Interview with Mark van Dord 

Table 0.1, meta-data about the interview with Mark van Dord 

INTERVIEWEE MARK VAN DORD 

POSITION Tender manager at BAM Infra Project 

Management 

DATE 7th of November, 2015 

LOCATION NA 

 

ME 

Before we start I would like to thank you for your time. On your LinkedIn I 

see that you are a Tendermanager at BAM Infra Project Management. Is it 

correct if I say that you have a lot of knowledge about how new projects are 

acquired regarding, for example, roadworks? 

INTERVIEWEE 

Yes that is correct. At BAM Infra we have roadwork projects. However, 

there are also a lot of other large infrastructure projects that we and I are 

involved in. Performing road maintenance and extending the current road 

network is only part of what BAM Infra does. 

ME 

You have told me before that the EMVI is one of the procedures being used 

to judge tenders and determine who gets to do the job. Is it only the EMVI 

that is being used?   

INTERVIEWEE 

What I now often encounter is the Best Value Procurement, which we often 

refer to as best value. Different from the EMVI is that the company rather 

than Rijkswaterstaat for example take the lead. With best value there is 

always an expert from the company involved in the meetings and 

conversations with the client. We have to show that we have good 

knowledge about the project and that we know how to complete the project 

successfully. Similarly to the EMVI we will also be judged on the quality of 

our approach. We have to present documents to show that past results and 

or current calculations show we will meet or surpass the criteria. These 

criterias are goals such as minimizing the impact on traffic flow, hindrance 

to the direct environment, social acceptance and costs. The more confident 

the contractor is that we will meet the set criteria the higher the fictive 

discount will be. When you score well on these aspects this can reduce your 

fictive price by up to 75%.  

ME 

What do you mean by a reduction of the fictive price? 

INTERVIEWEE 

We have to say how much money we need to do the project. However, in 
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the past people might have gone for the cheapest option that is not always 

the best option. Because quality aspects are also important we have the best 

value. If you can show you deliver good quality, meaning that traffic 

hindrance et cetera is reduced to a minimum they are willing to choose you 

over a cheaper competitor. The more they value your approach the lower is 

the fictive price that they will use to compare companies. The one with the 

best value gets picked. 

ME 

Thank you. For my research I am mostly interested in what the economic 

impact of roadworks is. I use mobile phone data to see what the travel time 

is and also what the added uncertainty in travel time is for people traveling 

along a road where roadworks are occurring. How do you typically assess 

what the impact is on people? 

INTERVIEWEE  

For this we have our own models. When we have to show that our approach 

is the best, models are typically used to calculate the impact of the design 

choices. By using models we can more easily communicate that we tried 

different options and prove that the choices made lead to the best results. On 

a side note, when you want to reduce the impact on travellers it would be 

ideal if you can tell them where to go. By telling travellers where to go and 

what roads to use and avoid you can optimally spread the traffic loads and 

minimize the chance of traffic jams and delays in general. Alternatively, you 

can try to make sure the impact on site is as little as possible, but this can be 

costly and is not always feasible. A colleague of mine might also be 

interested to do an interview once if you want? 

ME 

Great! I would first like to have some more results such that I can more 

confidently say what I can and cannot do, but it would be nice to also talk to 

someone else. Thank you again for your time and input! We will be in touch. 
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Appendix B: Interview with Henk Taale [Dutch] 

Table A1, meta-data about the interview with Henk Taale 

INTERVIEWEE DR. IR. HENK TAALE 

POSITION Assistant Professor at TU Delft, 

Coordinator at Traffic Quest 

DATE 28th of July, 2015 

LOCATION Rijkswaterstaat 

Lange kleiweg 34 

Rijswijk, The Netherlands 

ME 

Hoi, bedankt dat u vandaag wat tijd heeft voor een gesprek. Mijn naam is 

Johan Meppelink. Ik ben student aan de Universiteit Utrecht, en doe mijn 

afstudeeronderzoek bij Mezuro, een bedrijf die verplaatsingsdata heeft van 

Vodafone klanten, en Decisio, een consultancy die veel doet met kosten 

baten analyses voor onder andere mobiliteitsvraagstukken. Voor mijn 

afstuderen ben ik aan het onderzoeken hoe verplaatsingsdata van telefoons 

gebruikt kan worden om de impact van wegwerkzaamheden te evalueren en 

te voorspellen. Heeft dit ook aansluiting bij wat u hier doet bij 

Rijkswaterstaat? 

INTERVIEWEE 

Ja. Zelf werk ik bij zowel de TU Delft als hier bij Rijkswaterstaat. Ik richt 

me vooral op verkeersmanagement en de effecten daarvan. Daar hoort ook 

verkeersmanagement bij WIU bij. Vanuit Rijkswaterstaat maak ik ook deel 

uit van TrafficQuest een samenwerkingsverband tussen RWS, TNO en de 

TU Delft op het gebied van verkeersmanagement. Hier werken we aan heel 

veel vraagstukken. Bijvoorbeeld wat er gebeurd met de verkeersinformatie 

op de matrix borden, weguitbreidingen, en ook wat er gebeurt bij 

wegwerkzaamheden. Maar wat is het nou precies dat jij aan het onderzoeken 

bent? 

ME 

Voor vandaag had ik nog een korte presentatie gemaakt. Zou ik die er even 

kort bij kunnen pakken? Dan kan ik beter uitleggen waar mijn onderzoek 

over gaat. Met de telefoondata wil ik onderzoeken hoe de reizen van mensen 

veranderen wanneer er wegwerkzaamheden zijn. Met de tellussen en andere 

tel systemen in de weg kun je een goed beeld krijgen van de impact op een 

specifiek punt, maar blijft het lastig om een totaal beeld te krijgen. Sommige 

mensen zullen thuisblijven, omrijden, of een ander vervoersmiddel kiezen 

omdat er wegwerkzaamheden zijn. Ik wil kijken of de telefoondata hier 

inzichten in kan geven en zo een beeld krijgen van de maatschappelijke 

kosten van wegwerkzaamheden. Hiervoor heb ik eerst gekeken of de 

telefoondata overeenkomt met de data op de wegen. De lussen op de weg, 
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ook al zijn deze niet perfect, gebruik ik als een gold standard. Volgens het 

NDW hebben de lussen een zeer hoge accuracy (99% showing on the slide). 

Ondanks dat niet alle lussen altijd informatie geven lijken ze inderdaad vrij 

accuraat. 

INTERVIEWEE 

Wat wordt er bedoeld met 99% accuracy? Er is een verschil tussen 

betrouwbaarheid, dat de lus technisch goed werkt, en nauwkeurigheid, dat 

de lus de voertuigen goed telt. Voor beide worden bepaalde normen 

vastgehouden aan welke de apparaten moeten voldoen. De lussen zijn 

uiteraard niet 100% nauwkeurig. Je kunt hebben dat mensen lussen op de 

weg bijvoorbeeld missen wanneer een auto tussen de lussen door rijdt of in 

de bocht een stukje afsnijdt.  

ME 

Voor mijn onderzoek wil ik ook graag een beeld krijgen van wat er op het 

moment gebeurt om de impact van wegwerkzaamheden te voorspellen en 

evalueren. Op vanAnaarBeter staan wel aangegeven extra reistijden, maar 

deze lijken heel grof. Weet u hoe dit in de praktijk nu ongeveer in z’n werk 

gaat? 

INTERVIEWEE 

Ja. Meestal wordt er bij een aanbesteding een inschatting gedaan van de 

hinder die wordt veroorzaakt door de wegwerkzaamheden. Verschillende 

inzending/offertes worden vergeleken aan de hand van een model. Op deze 

manier worden alle inzending gelijk beoordeeld. Evaluatie oftewel controle 

op de daadwerkelijke impact van de wegwerkzaamheden tijdens of na de 

werkzaamheden gebeurt niet of sporadisch. Er zijn wel onderzoeken 

geweest vanuit onder andere Rijkswaterstaat. Zelf heb ik aan een onderzoek 

meegewerkt. Dit onderzoek was ongeveer een jaar of tien geleden 

uitgevoerd, deze zal ik je doorsturen. Er zijn hiernaast ook nog enkele 

kleinere maar vergelijkbare onderzoeken geweest naar de impact van 

wegwerkzaamheden. 

INTERVIEWEE 

Hoe ga jij de impact van de wegwerkzaamheden berekenen? Hoe is die 

vertaalslag naar euro’s? 

ME 

Hiervoor hoop ik onder andere wat expertise bij Decisio te kunnen lenen, dit 

is een van de twee bedrijven waar ik mijn afstudeerstage doe. Zij doen veel 

op het gebied van kosten baten analyses, ook voor mobiliteit vraagstukken. 

Hoe ik de kosten van thuisblijven en het kiezen voor de trein in plaats van 

de auto ga berekenen weet ik nog niet zeker. Voor vervoer met de auto denk 

ik dat de vertaalslag te maken is door te kijken naar de extra reistijd ten 

gevolge van wegwerkzaamheden en deze te vermenigvuldigen met een 

standaard waarde. Volgens mij had ik ergens getallen gezien waarin de 

kosten van files op vergelijkbare manier waren berekend.  

INTERVIEWEE 

Er zijn online ook documenten hiervoor van Rijkswaterstaat of het 
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Kennisinstituut voor Mobiliteitsbeleid. Hierin staat ook aangegeven welke 

kosten worden aangehouden voor reistijdverlies. Dit is ook onderverdeeld 

in woon-werk verkeer, zakelijk, vrachtvervoer, et cetera. Deze kun jij 

wellicht ook aanhouden. 

ME 

Wie of waarvoor zou het onderzoek dat ik nu uitvoer waarde kunnen 

hebben? 

INTERVIEWEE 

Wellicht dat het voor Rijkswaterstaat of kennis instellingen interessant is. 

Ook met betrekking tot optimalisatie van werken, dus wanneer moeten 

welke werken gepland worden et cetera. Voor Rijkswaterstaat is dit 

interessant voor de volgende zaken: 

 Optimalisatie van de planning van WIU. Meer inzicht in de herkomsten, 

bestemmingen en gedrag van reizigers kan helpen om de planning beter 

te maken. 

 Evaluatie van maatregelen in het algemeen. Net als bij WIU kan inzicht 

in reispatronen en de veranderingen daarin helpen bij de evaluatie van 

maatregelen 

 Verkeersmodellen. Deze data kan waardevol zijn om invoer van 

verkeersmodellen beter te maken, in het bijzonder de herkomst-

bestemmingsmatrix. 

Appendix C: Interview with Niels Hoefsloot [Dutch] 

Table 0.1, meta-data about the interview with drs. Niels Hoefsloot 

Interviewee Drs. Niels C. hoefsloot 

POSITION Partner at Decisio 

Date 27th of October, 2015 

Location Decisio BV 

Valkenburgerstraat 212 

Amsterdam, The Netherlands 

[INTRO skipped] 

 

ME 

Van je collega Menno de Pater, mijn tweede begeleider, begreep ik dat jij 

veel weet over Maatschappelijke Kosten Baten Analyses. Hij gaf aan dat jij 

op het moment cursusleider van de cursus MKBA’s bent bij Decisio. Voor 

mijn onderzoek bekijk ik naar de impact van wegwerkzaamheden aan de 

hand van de telefoon data van Mezuro. Volgens mij zijn jullie daar mee 

bekent. Hierin kan ik zien wat de reistijd is van mensen die van A naar B 
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gaan en die heb ik toegekend aan een bepaalde weg. Wat ik wil doen is de 

economische kosten berekenen van wegwerkzaamheden. Deze hangen af 

van verlies in reistijd voor verschillende reismotieven en ook van mensen 

die opeens met de trein gaan reizen om de wegwerkzaamheden te mijden of 

thuisblijven. Van de mensen die blijven rijden kan ik de reistijden overzetten 

naar kosten met standaard waardes hiervoor. Voor thuisblijvers et cetera heb 

ik geen idee hoe ik de kosten zou moeten toekennen. De vraag is hoe kan ik 

de economische kosten het beste berekenen? 

INTERVIEWEE 

Als je de motieven hebt dan kun je de standard waardes hiervoor inderdaad 

makkelijk toepassen. Dit moet je gewoon doen. Vertraging heeft een 

negatieve economische impact en dit kun je op de koop toenemen. Omrijders 

leggen wel meer kilometers af. Dit levert ook slijtage op en daarmee kosten. 

Deze variabele autokosten zou je eigenlijk moeten meenemen. Naast verlies 

in reistijd worden de kosten hierdoor hoger voor deze reizigers. 

ME 

Omrijders kan ik heel moeilijk meenemen. In de data zie ik alleen wie er van 

A naar B gaan. Deze ken ik dan toe aan de weg aan de hand van de kortste 

route qua tijd.  

INTERVIEWEE 

Dus je hebt mensen die blijven rijden en je hebt mensen die omrijden. 

Daarvan weet ik niet of je daar iets mee kan, met die extra kilometers. Hier 

heb je wel de tijd van dus eigenlijk. Mensen gaan nog steeds van A naar B. 

Dan heb je mensen die de trein nemen. Weet je dat ook? 

ME 

Ja, ik weet hoeveel mensen er met de auto gaan en hoeveel mensen er met 

de trein gaan. En dus ook de verschillen daartussen. Ik kan ook zien of 

iemand normaal met de auto gaat en overstapt naar de trein en vice versa. Ik 

heb de hoeveelheid treinreizigers en de hoeveelheid treinreizigers. 

INTERVIEWEE 

Ja, wat dan eigenlijk een soort slimmigheid is om de zeggen van hoe 

waardeert men dan. Mensen die iets anders gaan doen dan dat ze eerst deden 

die zouden ook gewoon kunnen blijven verplaatsing kunnen maken. Alleen 

dan hebben ze die vertraging. Kiezen ze ervoor iets anders te gaan doen dan 

doen ze dat om hun eigen schaden te minimaliseren. Eigenlijk vaak bij dit 

soort dingen als je het niet precies weet zeggen we dan daar hebben wij daar 

de rule of half voor. Zeggen we van ja de mensen maken al de verplaatsing 

dus dat zouden ze ook gewoon doen als we de gewone reistijd hebben. Nu 

is er die vertraging en doen ze het niet meer dus hoe erg vinden ze dat nou. 

Ze weten wel iets anders te vinden. Hoe erg vinden ze dat dan is eigenlijk 

de vertraging keer de helft. Dat is eigenlijk heel simpel van als ze het nut 

van de vertraging nog steeds groter zou zijn dan de vertraging zelf dan 

zouden ze de vertraging blijven maken. Op het moment dat ze dat niet meer 

doen, dus ook het moment dat ze iets anders doen, dan doen ze iets wat dus 

blijkbaar voor hun een betere uitkomst is dan die vertraging meemaken. 
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ME 

Dus dan krijgen ze een halve vertraging. 

INTERVIEWEE 

Dan reken je gewoon de halve vertraging toe ja. Dat is de rule of half. En 

dan ja en je kan ook nog als je iets over die omrijkosten zou weten zou je 

dat ook nog mee kunnen nemen, maar ik denk dat dat heel lastig wordt. Dus 

dan heb je eigenlijk alle reizen, de mensen die blijven, en die iets anders 

gaan doen. Of dat nou omrijden of de trein pakken of thuisblijven is. Dat is 

je rule of half. Rule of half is een benadering voor allemaal. Dus dat kan je 

op die manier gewoon waarderen. Dat is een geaccepteerde methode in 

kosten baten analyses. 

ME 

Dat is een goede om te weten. 

INTERVIEWEE 

Dan kun je dezelfde value of time toepassen en de vertragingsfactor die je 

uit de telefoon data haalt.  

ME 

Dat is dan de vertraging die de autoreizigers oplopen. Ik weet wel eventueel 

wat voor vertraging de treinreizigers oplopen. Kan ik die niet gebruiken? 

INTERVIEWEE 

Het lastige is dat het sterk afhangt van persoonlijke voorkeur en ook hoe ver 

iemand van het station af woont. Voor de ene persoon is de trein wel een 

goed alternatief en voor de andere niet. De ene persoon zal misschien bij een 

vertraging van een minuut al de trein pakken en de ander pas bij tien. 

Daarom hebben we de rule of half omdat het gemiddeld dan allemaal wel 

goed zou komen. Als iemand kiest voor het comfort van de trein omdat hij 

dan ook een kopje koffie kan drinken en de krant kan lezen dan neemt hij 

misschien de extra reistijd op de koop toe. De rule of half gaat niet zo zeer 

over tijd maar meer over voorkeuren van mensen. De feitelijke kosten en 

reistijd in de trein is dus eigenlijk niet zo relevant. Het gaat erom dat je 

eigenlijk normaal gesproken de voorkeur hebt om met de auto de 

verplaatsing te maken en het daarom ook doet. Op het moment dat de 

verplaatsing langer duurt doe je het niet, maar de enige reden dat je een 

andere verplaatsing maakt is omdat die langer duurt. Het kan zelfs zijn dat 

mensen zeggen dat ze normaalgesproken het tijdsvoordeel van de auto 

sterker wegen dan het comfort van de trein. Op het moment dat die 

vertraging er is vind ik dat misschien niet meer zo. Misschien zou hij met de 

auto alsnog sneller zijn, maar geeft dus nu niet meer de voorkeur aan de weg. 

Dus het is een negatief effect. Uiteindelijk heeft het meer voorkeuren te 

maken. Met de rule of half gaat dit dus wel goed. Het is volgens mij ook de 

enige manier om dit goed te benaderen. 

ME 

Super. Bedankt voor de uitleg. Geldt dit dan ook voor mensen die 

thuisblijven? 
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INTERVIEWEE 

Ja. Die mensen zouden anders ook gewoon de reis hebben gemaakt. Ze 

zouden waarschijnlijk wel vaker thuis kunnen blijven, maar dan doen ze dat 

niet. Het feit dat ze op werk collega’s en andere kunnen spreken dan vinden 

ze dat zo goed dat ze de reistijd en kosten op de koop toe nemen. Op het 

moment dat die reistijd langer wordt dan is dit dus niet meer zo. Dan heeft 

thuisblijven de voorkeur. Rule of half geldt voor alle reizigers die er normaal 

wel zijn en door de werkzaamheden er niet meer zijn. 

ME 

Het gaat om wat mensen willen. 

INTERVIEWEE 

Het gaat om die voorkeuren. De individuele voorkeuren. 

ME 

En dan blijft de zakelijke rijder een andere waardering krijgen? 

INTERVIEWEE 

Ja, je past dus wel per motief de value of time toe. Voor de mensen die 

blijven rijden is dat economische schade. Voor de mensen die er niet meer 

zijn doe je dat door de helft. 

ME 

Dat is mooi. Moet ik alleen nog bepalen wanneer iemand normaal een trip 

zou hebben gemaakt. Die zie ik nu nog niet. Maar dit is iets wat ik zelf moet 

gaan bepalen.  

[netwerk effecten overgeslagen - vanaf 12:30] 

ME 

Is er nog iets dat ik moet meenemen? Iets wat standaard voorkomt bij een 

kosten baten analyse of kanttekeningen die genoemd moeten worden? 

INTERVIEWEE 

Sowieso zitten er hier een hoop kanttekeningen bij. Ook die standaard 

kerngetallen voor de value of time. Dat is op basis van echt grootschalig 

onderzoek van wat mensen het waardvinden om reistijd te besparen of als 

dingen wat kosten. Dat kan per individu en rit anders zijn. Mensen met hoge 

inkomens bijvoorbeeld zullen waarschijnlijk meer geld overhebben om tijd 

te verminderen. Dit is iets wat nog mee kan spelen. Ook als je naar 

verschillende gebieden kijkt. En er zitten altijd bandbreedtes omheen bij dit 

soort inschattingen die je uiteindelijk uitrekent.  

ME 

Mijn berekeningen over motieven en dergelijke zijn ook niet 100% accuraat. 

Die bandbreedtes krijg ik inderdaad sowieso. 

INTERVIEWEE  

Precies. Wat hier nog wel speelt is dat niet alleen tijd maar juist ook 

betrouwbaarheid van reistijden voor mensen heel belangrijk is voor hun om 

keuzes te maken. Dat wordt wel beter met de realtime informatie maar 

normaal gesproken weet je niet exact hoe lang jou rit duurt als je in de auto 
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stapt, en zeker in de spits want dan is er altijd kans op file. Je gaat er buiten 

de spits waarschijnlijk vanuit dat er geen file is. Dus dan is dat redelijk 

betrouwbaar, maar bijvoorbeeld bij wegwerkzaamheden is die zekerheid er 

niet. Die betrouwbaarheid is ook wel wat waard. Daarvoor is ook die KiM 

publicatie over value of time. Daarin staan ook gegevens over de waarde van 

betrouwbaarheid van de reistijd. Volgens mij kun jij dat ook uit je data halen. 

De variatie van reistijd. Die zegt iets over de betrouwbaarheid van reistijden. 

Misschien kun je variatie wat moeilijker voorspellen, maar van gedane 

wegwerkzaamheden is dit prima te berekenen.  

ME 

Dat is goede! Ik wist dat de reistijdbetrouwbaarheid van belang is, maar had 

er nog niet bij stil gestaan dat ik die misschien kon halen uit de variatie van 

reistijden. Variatie lijkt mij inderdaad een goede maatstaaf voor de 

betrouwbaarheid. 

INTERVIEWEE  

Zeker. Mensen is dat ook gevraagd hoeveel heeft u ervoor over als de rit de 

ene keer 20 minuten en de andere keer 40 minuten ten opzichte van 25 en 

35 minuten. Hoe minder variatie hoe beter. Daar kun je zeker nog naar 

kijken. Er zijn ook studies die aantonen dat betrouwbaarheid soms net zo 

belangrijk of zelfs zwaarder kan wegen dan reistijd verlies.  

ME 

Dat kan ik me voorstellen. Als je ergens op tijd moet zijn dan neem je 

rekening met de betrouwbaarheid. Wanneer je denkt dat je een half uur in 

de file kan staan dan ga je een half uur eerder weg. Wat er soms voor zorgt 

dat je een half uur te vroeg ergens aankomt. Dit is dan geen vertraging, maar 

wel hinderlijk.  

INTERVIEWEE  

Ja inderdaad. Te laat komen vinden mensen vaak erger dan te vroeg komen. 

Hier kun je zeker naar gaan kijken. Met de data die je hebt kun je die volgens 

mij gewoon berekenen. Dit kan een hele goede aanvulling zijn. 

ME 

Dat denk ik ook. Dit kan nog wel wat toevoegen. 

INTERVIEWEE  

Dan heb je eigenlijk alle economische kosten. Nou ja. Dat omrijden, dat 

blijft een lastige.   

ME 

Of mensen omrijden. Dat kan ik eigenlijk niet zien met de telefoon data. Ik 

heb wel de data van de tellussen in de weg. Wellicht dat ik daar wel iets uit 

kan halen. 

INTERVIEWEE  

Op het moment dat mensen gaan omrijden heb je altijd een onderschatting 

van mijn inschatting voor de impact van wegwerkzaamheden. Dit omdat 

omrijden extra kost en dit niet wordt meegenomen. Verder over kosten baten 

analyses kun je zeggen dat het meestal geen exacte wetenschap is. Met de 
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data die je hebt heb je wel je wel meer detail dan wij meestal vooraf hebben. 

Wat wij dan vaak missen is die variatie van reistijd. Vaak wordt er met een 

verkeersmodel iets berekent en die geeft een gemiddelde reistijd op een 

werkdag in de toekomst. Misschien berekent het model die wel, maar geeft 

deze niet. Vaak hebben wij dus alleen een gemiddelde en dan werken wij 

met een opslag. Hier kun jij hem gewoon berekenen, dus dat zou ik dan ook 

doen.  

ME 

Top! Ik denk dat ik heel veel informatie heb nu. Bedankt. 
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Appendix D: The current (old) scaling method 

In order to go from users to the population the data should adequately represent the 

population. In other words, to go from the sample to the entire population a 

multiplication factor should be calculated and applied. Within the context of this 

research the entire population is equal to all trips over 10 km within the Netherlands. 

To do this the following three steps are taken. 

 First, a baseline population is determined to compensate for people being 

abroad, on a holiday or on a business trip. The procedure they use is to select the 

week where the maximum number of unique devices are detected in March or 

November. During these two months the least number of people are away from 

home, according to tourism statistics, making it the best option available to set a 

baseline (Geerts, 2014). 

 Second, a correction is applied for local inconsistencies in the use and 

possession of mobile phones. To do this Mezuro calculates a multiplication factor 

based only on the geographic dimension of the data. This means a multiplication 

factor is calculated by determining the penetration of mobile phone subscribers for 

each Mezuro area. To put it more simply, they calculate the number of active users 

per Mezuro area and divide that by the number of inhabitants per Mezuro area. 

Arguably, this ratio provides a good indication to correct for some inconsistencies in 

the use and possession of mobile phones. 

 Finally, a correction is applied for people who are on holiday within their 

country of origin. This is based on their determined place of residence and activities 

during a month. The scaling factor per area is the result of the number of inhabitants 

per area divided by the number of active users. 

 With a view on using this method to go from the sample to the population 

within the context of this research, we will continue our analysis by looking at the 

geographic and demographic dimensions of the data in the following two 

subsections. 

Geographic Representativeness 

Here we analyse what the size is of the inconsistencies within the geographical 

dimension of the Mezuro data are present. To determine how well the Mezuro data 

is represented spatially, the first thing we do is analyse the multiplication factor as it 

is currently being used. The multiplication factor is applied to correct for the 

variation in geographical spread of the number of subscribers per Mezuro area and 

is calculated each day. The multiplication factor is defined as the ratio of the active 

users compared to the traveling population in that area, which basically represents 

the penetration of subscribers within a certain area. 

 Figure D1 (see next page) depicts the average multiplication factor per area. 

What can be noticed is that the multiplication factor varies a lot nationally. The 

categories are chosen in such a way that they each contain 1/6th of the total number 

of Mezuro areas. Therefore, we conclude that two third of the Mezuro areas have an 

average multiplication factor between 4.29 and 7.43, during the course of the first 

nine months of 2015. Meaning the penetration of subscribers within two third of the 
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Mezuro areas lies between 13,3% (100% / 7.43) and 23,8% (100% / 4.29) of the 

traveling population. Note that this differs from the market share of the provider 

because we divide by the number of inhabitants and not the number of mobile phones 

in the area. 

 Because the multiplication factor is calculated per day it is possible to see 

how it changes over time. We express this by calculating the standard deviation of 

the multiplication factor. However, when we look at the standard deviation on its 

own it does not tell how many people are affected. To take that into account we 

correct for the number of active users in that area by dividing the standard deviation 

by the average multiplication factor. These results are depicted in figure D2. The 

classes here are also chosen in such a way that they an equal number of Mezuro areas 

are contained within each class. Most interestingly, the highest standard deviations 

form a characteristic pattern that highly resembles the “Bible belt”. The Bible belt is 

a nickname for a collection of highly religious areas within The Netherlands. Further 

research confirms that when isolating this effect, by just looking at the standard 

deviations of the multiplication factor on Sundays, the effects are even more 

prevalent. This behaviour is most likely explained by religious people turning off 

their mobile phones on Sunday and go to church. 
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Figure D1, Average scaling factor per Mezuro area over the first nine months of 2015. 
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Figure D2, Geographical variation of the scaling factor corrected for the traveling 

population. 
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Demographic Representativeness 

The dataset of Mezuro should be an unbiased representation of the mobility patterns 

of the entire traveling population of the Netherlands.  

Offermans et al. (2013) did a study to evaluate, for one, the demographic 

representativeness of the user in the mobile phone data in this study. Offermans et 

al. (2013) compared the demographic details of subscribers such as age and gender, 

with demographic details from the municipal population register (in Dutch: 

Gemeentelijk Basis Administratie). Figure D3 shows the penetration of the sample 

in the Dutch population. They did, however, only have the part of users that do not 

have a pre-paid or business contract so the exact distribution might differ. 

Furthermore, they note that young people might be underrepresented in the data they 

evaluated because these young people might use phones that are contracted on their 

parent’s name. The overall demographic representativeness over the Dutch 

population appears to be good (Offermans et al., 2013). 

 

Figure D3, the penetration of subscribers per age group per gender (Offermans et al., 2013). 

 We, however, are less interested in how the data relates to the population in 

general and are more interested in how the data relates to the traveling population. 

Children might be less likely to be affected by roadworks, for example, as they are 

usually not on the road. We want the scaling factor to take into account not only the 

chance the relation between users in the sample to the population, but also the 

relation between users of different age groups in relation to the people found 

traveling.  
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Appendix E: PDD tables for the new scaling factor 

The activity table and concept table describe the activities and deliverables, 

respectively, of the new scaling method presented in the PDD in figure 6.5. 

Table D1, activity table belonging to the PDD shown in figure 6.5. 

ACTIVITY SUB-

ACTIVITY 

DESCRIPTION 

DETERMINE THE 

CHANCE TO OBSERVE A 

PERSON BY AGE GROUP 

 Divide the number of people 

per age group by the total 

number of inhabitants in that 

area. 

DETERMINE THE 

MOBILE PHONE 

PENETRATION PER AGE 

GROUP 

 Retrieve data concerning the 

mobile phone penetration per 

age group from (a) trusted 

source(s). 

ESTIMATE THE 

PROVIDER MARKET 

SHARE 

Calculate the 

inhabitants per 

age group 

Multiply the total number of 

inhabitants by the 

POPULATION 

DISTRIBUTION. Note, the 

total number of inhabitants 

used here is adjusted for 

people being abroad, on a 

holiday or on a business trip 

(Geerts, 2014). 

Multiply by 

mobile phone 

penetration per 

age group 

Multiply the INHABITANTS 

PER AGE GROUP by the 

MOBILE PHONE 

PENETRATION PER AGE 

GROUP. 

Divide users in 

sample by the 

number of 

phone users 

Divide the number of users in 

the area by the number of 

phone users in the area, i.e. 

the sum of the PHONE 

USERS PER AGE GROUP.  

DISTRIBUTE USERS 

ACROSS AGE GROUPS 

Calculate the 

chance a user 

is in an age 

group 

Multiply the POPULATION 

DISTRIBUTION by the 

MOBILE PHONE 

PENETRATION PER AGE 

GROUP and by the 

PROVIDER MARKET 

SHARE. 
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Normalize the 

calculated 

probabilities 

Divide the PROBABILITY 

INHABITANT IN SAMPLE 

PER AGE GROUP by the 

sum of the PROBABILITY 

INHABITANT IN SAMPLE 

PER AGE GROUP. 

Multiply the 

users by the 

normalized 

probabilities 

Multiply the users in the area 

by the chance of observing a 

user in a certain age group, 

i.e. the PROBABILITY 

USER IN AGE GROUP. 

DETERMINE THE 

LIKELIHOOD OF A 

PERSON MAKING A TRIP 

OVER X KM DURING 

WORKDAYS, WORKDAYS 

DURING THE HOLIDAY, 

SATURDAYS, AND 

SUNDAYS PER AGE 

GROUP 

 Gather information about the 

chance that a person of a 

certain age groups makes a 

trip longer than X kilometres 

on a day. We use OViN to 

determine this and take the 

differences in weekday, 

weekend and holiday 

separately into account. 

CALCULATE THE 

SCALING FACTOR 

Estimate 

inhabitants 

traveling 

Multiply the INHABITANTS 

PER AGE GROUP by the 

LIKELIHOOD OF 

TRAVELING PER AGE 

GROUP. 

Estimate the 

users traveling  

Multiply the USERS PER 

AGE GROUP by the 

LIKELIHOOD OF 

TRAVELING PER AGE 

GROUP. 

Divide 

inhabitants 

traveling by 

users traveling 

Divide the sum of the 

INHABITANTS 

TRAVELING by the sum of 

the USERS TRAVELING. 

 

 

Table D2, concept table belonging to the PDD shown in figure 6.5. 

CONCEPT DESCRIPTION 

POPULATION 

DISTRIBUTION 

The probability that an inhabitant belongs to a 

certain age group. 
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MOBILE PHONE 

PENETRATION PER AGE 

GROUP 

The probability that a Dutch citizen of a 

certain age group possesses a mobile phone. 

INHABITANTS PER AGE 

GROUP 

The absolute number of inhabitants per age 

group. 

PHONE USERS PER AGE 

GROUP 

The absolute number of inhabitants that 

possess a mobile phone per age group. 

PROVIDER MARKET 

SHARE 

The market share of the network provider. 

Hence, in this case the market share is equal 

for all age groups. 

PROBABILITY 

INHABITANT IN SAMPLE 

PER AGE GROUP 

The probability that an inhabitant is in our 

sample per age group. 

PROBABILITY USER IN 

AGE GROUP 

The probability that a user in our sample is in 

a certain age group. 

USERS PER AGE GROUP The absolute number of users per age group. 

LIKELIHOOD OF 

TRAVELING PER AGE 

GROUP 

The probabilities that a person of a certain age 

group makes a trip that is longer than X 

kilometre on a specific day of the week. 

INHABITANTS 

TRAVELING 

The number of INHABITANTS PER AGE 

GROUP that is expected to make a trip over X 

kilometres on a specific day of the week. 

USERS TRAVELING The number of USERS PER AGE GROUP 

that is expected to make a trip over X 

kilometres on a specific day of the week. 

SCALING FACTOR The ratio between the number of 

INHABITANTS TRAVELING the number of 

USERS TRAVELING. The scaling factors 

applies to traveling people, because these are 

the people that are relevant for the OD matrix. 
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Appendix F: Applying the new scaling factor 

The calculation of the scaling factor in the example is performed in the same 

sequence as the method presented in the PDD. Additionally, the colour coding can 

also be used to cross reference the example to the method. The scaling factor is 

calculated for each area, each day. Note in the example we use less age groups than 

specified above, but this is only for illustrative purposes. The real scaling factor will 

include all the age groups, i.e. starting at 0 with group sizes of 5 years and everything 

age 80 and over grouped together. 

Table F1 a simplified and fictional example of the calculation of the OD scaling factor for a 

single Mezuro area for a single day. This example only includes the dimension age group 

(grouped by 20 years). The full method also includes the distinction between holidays, 

weekdays and weekends but these are omitted in this example to the improve readability. 

  Age groups   

  1 2 3 4 5 Total Calculation 

  Constants               

A Active users 4000             

B Present inhabitants 15000             

C Age groups 0-19 20-39 40-59 60-79 80+     

  Market share               

D % Age group in area 15% 40% 15% 20% 10% 100%   

E % With mobile phone 50% 90% 84% 62% 19% -   

F Inhabitants in area 2250 6000 2250 3000 1500 15000 B*D 

G Inhabitants with phone 
1125 5400 1890 1860 285 10560 E*F 

H % Market share 38% 38% 38% 38% 38% - A/SUM(G) 

  Users traveling               

I Multiplier 2.8% 13.6% 4.8% 4.7% 0.7% - D*E*H 

J Normalized multiplier 10.7% 51.1% 17.9% 17.6% 2.7% 100% I/SUM(I) 

K Users 426 2045 716 705 108 4000 A*J 

L Chance of trip >10 km 5% 50% 40% 30% 10% -   

  Scaling factor               

M Inhabitants traveling 112.5 3000 900 900 150 5062.5 F*L 

N Users traveling 21.3 1022.7 286.4 211.4 10.8 1552.6 K*L 

O Scaling factor OD 3.26           

SUM(M)/ 

SUM(N) 

 

 

We now elaborate the calculation of the scaling factor in table F1. First, the 

distribution of the population in the Mezuro area over the age groups is determined 
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(row D). Second, the mobile phone penetration per age group is determined (row E). 

Third, the market share is calculated in three sub steps. The inhabitants in the Mezuro 

area are distributed according to the population distribution (row F). Then the 

number of inhabitants with a mobile phone is determined (row G). Subsequently, the 

market share of the telecom provider in the selected Mezuro area is calculated by 

dividing the number of active users by the sum of all present inhabitants with a 

mobile phone (row H). 

The next step is to distribute the active users across the age groups. We obtain the 

multiplier by multiplying the chance per age group (row I). The multiplier represents 

the chance that a random person from the present population of the Mezuro area is 

in our sample, i.e., an active user. We normalise this multiplier in row J. The 

normalised multiplier represents the chance that a random person from our sample 

belongs to that age group. The next step is to multiply the normalised multiplier by 

the number of users. This results in the distribution of active users over the age 

groups (row K). The next is to determine the likelihood that someone of a certain 

age group makes a trip greater than 10 kilometres (row L), which is depicted in figure 

4.10. 

The last three steps are used to determine the travelling users, the travelling 

population and the ratio between them, i.e., the scaling factor. The travelling 

population is determined by multiplying the inhabitants per age group by the 

likelihood that someone of a certain age group makes a trip greater than 10 

kilometres (row M). The users travelling per age group is calculated by multiplying 

the active users per age group by the likelihood that someone of a certain age group 

makes a trip greater than 10 kilometres (row N). Finally, the scaling factor is 

calculated by dividing the number of inhabitants travelling by the number of users 

travelling (row O). Note that this example given does not include the dimensions 

weekend, week and holiday in order to improve the readability of the example. 

However, the method as formalised in our PDD (see figure 6.5) does include these 

dimensions.  

Due to limited availability and reliability of data from market research on the market 

share of the provider per age group we had to take another approach. This made us 

choose to calculate the market share based on the ratio between the active users and 

the total population with a mobile phone. The underlying assumption here is that 

everyone with a mobile phone has a provider. By calculating the market share this 

way, regional differences in the provider market share are compensated for. 

However, this means that from a mathematical point of view the inclusion of the 

market share in the calculation of the scaling factor has merely become irrelevant. 

That is because the resulting scaling factor only reflects differences in proportions 

between age groups and by including the market share as an equal value for all age 

groups there are no differences between age groups. Hence, fluctuations in the 

market share no longer affect the resulting scaling factor. Although differences in 

the market share per area are not reflected in a change of the scaling factor, we like 

to keep it in the method for the purpose of completeness. Moreover, when in the 

future more data becomes available on the market share per age group this can easily 

be added to the method. 
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Appendix G: Attributes in the mobile phone data 

Table G1, attributes of the mobile phone dataset relevant for trip motive prediction. 

ATTRIBUTE DESCRIPTION 

ORIGIN Area of origin / destination of a trip. The area may 

be a municipality or subpart of a municipality. 

For densely populated areas, e.g. Amsterdam, 

there are several areas in one municipality.   DESTINATION 

TIME OF DEPARTURE The last CDR inside the range of the cell tower at 

the origin. 

TIME OF ARRIVAL The first CDR inside the range of the cell tower a 

person at the destination. 

TIME AT DESTINATION The total time after a trip before the next trip 

starts. 

HOME BASED This attribute states if the person is either 

departing home, leaving home, or traveling 

between non homebased places. Home is where a 

person spends most evenings (between 20h and 

7h) during weekdays and weekends (Geerts, 

2014). This is calculated per person on a monthly 

basis and is specified to a level of detail of a four 

digit postal code, which is smaller than a 

municipality or an area. 
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Table G2, descriptions of the attributes used in modelling and evaluating trip motive 

prediction. 

ATTRIBUTE DESCRIPTION 

TRIP MOTIVE The motive of a trip. In this research we use “zakelijk 

bezoek in werksfeer” for business trips, “van en naar het 

werk” for home-work trips, and merge all other motives 

in OVIN and call it “other”. 

ARRIVAL / 

DEPARTURE TIME 

This is the start and end time of a trip. Trip start and end 

are both expressed in minutes from 0:00.  

FIRST TRIP START 

/ END 

Start and end of the first trip for a person. This attribute 

is included because, for example, people starting the day 

early might be more likely to have business trips later in 

the day. 

LAST TRIP START / 

END 

Same as the previous. When a person ends a day of 

travelling might indicate what type of traveller a person 

is and so help predict trip motives of other trips during 

the day. 

HOMEBASED This attribute states if a person is leaving home, arriving 

home, or has a trip not involving his/her home location. 

HOLIDAY Whether or not it is a holiday at the persons home 

location. 
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Appendix H: Correcting for travel time 

We have a total of three assumptions to check. These are that the residuals are 

normally distributed, that there is no correlation between consecutive residuals, that 

the residuals should have the same distribution over the range of predicted values, 

and there is no correlation between parameters (Field et al., 2009). We test this each 

time with a QQ-plot, a plot where the lagged residuals (t-1) are plotted against the 

residuals (t0), and a plot with on the x-axis the predicted values and on the y-axis the 

corresponding residuals. The correlation between parameters is evaluated with VIF-

scores and will be presented in a table (Field et al., 2009). In the three sections below 

we will present the assumption checks for correcting travel time (H.1), correcting 

travel time std (H.2), and correcting people on the road (H.3) corresponding to 

sections 9.2.2 through 9.2.4, respectively.  
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H1. Assumptions: Correcting travel time  

Normality of the residuals  

 

Figure H.1, QQ-plot showing the theoretical residuals plotted against the residuals in the 

sample. 

From figure H.1 we see an approximately straight line, which would indicate the 

presence of a normal distribution. When we look closer, however, we see an 

unnatural dip around 2.5 for the theoretical residuals. This implies the distribution of 

residuals, though close, is no perfectly normally distributed. 

Independence of the residuals 

 

Figure H.2, residuals plotted against the lagged residuals. 

In figure H.2 we see there is no apparent relation between the current and lagged 

residuals. A Pearson correlation coefficient between the two axis returned a value of 

0.25 indicating there is only perhaps a minor relation between consecutive residuals. 
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Despite the slight correlation we do not see any effects that would strongly bias our 

model. We, therefore, state the assumption of independence of the residuals is met. 

Homoscedasticity of the error variance 

 

Figure H.3, residuals around the predicted travel time in minutes. 

In figure H.3 we observe there is no strange behaviour regarding the residuals over 

the spectrum of predicted values. Within the range of 50 to 80 minutes the residuals 

appear to be more stretched out. However, this is also what one would expect as 

there are simply far more observations there. Hence, the chance of having more 

extreme outliers is also greater. 

No multicollinearity 

Table H.1, VIF scores relating to our LM that predicts travel time based on external factors. 

VARIABLE VIF-SCORE 

Distance 1.54 

Night 1.03 

Rain * distance 1.04 

Wind * distance 1.62 

 

 As shown in table H.1 all VIF scores are good, i.e. they are close to 1 and 

way below the threshold of 10 after which the model becomes unreliable (Field et 

al., 2012).  
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H.2 Assumptions: Correcting travel time reliability 

Normality of the residuals  

 

Figure H.4, QQ-plot showing the theoretical residuals plotted against the residuals in the 

sample. 

From figure H.4 we infer the residuals are normally distributes. We thus have 

normality of the residuals as required by a LM (Field et al., 2012).  

Independence of the residuals 

 

Figure H.5, residuals plotted against the lagged residuals. 

In figure H.5 we see there is no relation between the current and lagged residuals. 

We see a nice centre of all observations that spread out evenly in all directions 

indicating there is no autocorrelation. Note we did apply Cochrane-Orcutt estimation 

prior to creating our final model, of which the residuals are shown in figure H.5. In 

the classic LM we did found a relation, hence the Cochrane-Orcutt estimation.  
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Homoscedasticity of the error variance 

 

Figure H.6, residuals around the predicted travel time standard deviation in minutes. 

In figure H.6 we observe there is no strange behaviour regarding the residuals over 

the spectrum of predicted values. Perhaps the outliers are more common towards the 

left and right end of the predicted values where there are less observations, but 

nothing too worrisome is found here. 

No multicollinearity 

Table H.22, VIF scores relating to our LM that predicts travel time standard deviation based 

on external factors. 

VARIABLE VIF-SCORE 

Distance 1.54 

Night 1.03 

Rain * distance 1.04 

Wind * distance 1.62 

 

As shown in table H.2 all VIF scores are good, i.e. they are close to 1 and 

way below the threshold of 10 after which the model becomes unreliable (Field et 

al., 2012).  

 



 

 

 

179 

H.3 Assumptions: Correcting people on the road 

Normality of the residuals  

 

Figure H.7, QQ-plot showing the theoretical residuals plotted against the residuals in the 

sample. 

From figure H.7 we can infer the residuals are normally distributes as all points are 

on a straight line. We thus have normality of the residuals as required by a LM (Field 

et al., 2012).  

Independence of the residuals 

 

Figure H.8, residuals plotted against the lagged residuals. 

In figure H.8 we see there is no apparent relation between the current and lagged 

residuals. A Pearson correlation coefficient between the two axis returned a value of 

-0.12 indicating there is only perhaps a minor relation between consecutive residuals. 

Despite the slight correlation we do not see any effects that would strongly bias our 

model. We, therefore, state the assumption of independence of the residuals is met. 
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Homoscedasticity of the error variance 

 

Figure H.9, residuals around the predicted ratio of people on the road during roadwork as 

compared to the baseline. 

In figure H.9 we observe there is no strange behaviour regarding the residuals over 

the spectrum of predicted values. On the lower end of the predicted values we see 

the residuals tend to increase while they centred near zero from 0.975 onwards. This 

might indicate a slight relation between the residuals, though it may also be outliers. 

Where the majority of the observations are found, i.e. between 0.975 and 1.025, no 

strange behaviour is detected. We also found there is no correlation between the 

predicted values and the residuals (Pearson correlation coefficient of 0.0). We, 

therefore, do not expect the residuals to depend on the predicted values. 

No multicollinearity 

As shown in table H.3 all VIF scores are good, i.e. they are close to 1 and way below 

the threshold of 10 after which the model becomes unreliable (Field et al., 2012).  

Table H.3, VIF scores of our LM to correct the number of people on the road for external 

factors.  

ATTRIBUTE VIF SCORE 

Wind 1.12 

Temperature 1.16 

Rain, weekend 1.09 

Rain, not weekend 1.26 

 

  



 

 

 

181 

Appendix I: Assumptions road closure model  

Normality of the residuals  

 

Figure I.1, QQ-plot showing the theoretical residuals plotted against the residuals in the 

sample. 

From figure I.1 we see an approximately straight line, which would indicate the 

presence of a normal distribution. There are a few outliers at either end. However, 

even these outlier do not deviate much from the line in figure I.1. The residuals are 

thus normally distributed. 

Independence of the residuals 

 

Figure I2, residuals plotted against the lagged residuals. 

In figure I.2 we see there is no relation between the current and lagged residuals. We 

thus have independence of the residuals. 
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Homoscedasticity of the error variance 

 

Figure I.2, residuals around the predicted increase in travel time in minutes. 

In figure I.3 we observe there is no strange behaviour regarding the residuals over 

the spectrum of predicted values. We thus meet the assumption of homoscedasticity 

of the error variance. 

 Note we did not have to calculate VIF-scores as there is only one variable is 

our model. 

 

 


