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Introduction

In this master thesis we will simulate the transmission of sexual transmitted infections along dy-
namic sexual networks. We will focus on the sexual transmitted infection HIV. The Human Im-
munodeficiency Virus (HIV) is a virus that attacks the immune system, which causes that the body
has more difficulty fighting off infections and diseases. Transmission of HIV can take place be-
cause of unprotected sex, sharing needles, pregnancy, childbirth, breastfeeding, blood transfusion,
transplants etc. To better understeand the spread of HIV and the effect of treatment and control
measures, mathematical modeling can be very insightful. The HIV infection, when untreated, is
considered to progress in three stages:

• Acute infection
During the acute infection phase, the amount of virus produced in the body is very high
compared to the other two stages. Therefore this is also the stage with the highest risk of
transmitting HIV.

• Clinical latency
In the clinical latency period the amount of virus in the body is very low, but still active.
This stage lasts an average of 10 years.

• AIDS
Acquired Immune Deficiency Syndrome (AIDS), also called advanced HIV infection, is the
last stage. An individual’s immune system has become too weak to defend its body. This can
result in the development of one or multiple diseases and infections, and eventually death.
This stage lasts an average of 3 years.

There is not yet a cure for HIV infection, however there is a treatment that can help control the
virus. It not only can increase survival, but also reduces the risk of transmission of HIV [1].

HIV has already claimed more than 34 million lives so far [2]. This large impact of HIV has
inspired the development of mathematical modeling to better understand the spread of HIV. Since
the most common mode of transmission of HIV is through unprotected sex, models are mostly
focused on HIV transmission through sexual acts. Sub-Saharan Africa is the most affected region,
accounting for almost 70 percent of the global total of new HIV infections [2]. Many reasons for
this alarming high prevalence of HIV in Sub-Saharan Africa have been discussed, for example the
high migration levels of Sub-Saharan Africa [3].

In the modeling paper [4] it was hypothesized that having concurrent partners, i.e. multiple sexual
partners at the same time, could increase the spread of HIV. When a model does not allow concur-
rent partnerships, it does not take into account the possibility that an initially uninfected partner
of a susceptible individual may become infected over the duration of their partnership [4]. This
paper was followed by the works of Morris and Kretzschmar, who found using simulation models,
that allowing concurrent partnerships increases the speed of the spread of HIV [5],[6],[7].

Simulation models show that concurrent partnerships can increase the speed of the spread of HIV,
but some find the empirical evidence limited that concurrency is actually a main driver of the epi-
demic in Sub-Saharan Africa. Lurie [8] highlights the fact that whether concurrency can drive and
actually is driving the epidemic in Sub-Saharan Africa are two entirely different questions. It is
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reasoned that there is no evidence that levels of concurrency are significantly higher in Sub-Saharan
Africa than elsewhere and that the observed levels of concurrency cannot explain the sub-Saharan
African epidemics.

Many of the modelling studies devoted to the effect of concurrent partnerships on the spread of
HIV have made use of simulations. This has motivated the studies of Leung et al. to formulate a
mathematical model for the spread of an sexually transmitted infection along a dynamic partner-
ship network and derive analytical results [9], [10]. The network is dynamic because individuals
enter and leave the population, but also because partnerships are formed and broken. The model
is a deterministic model, in the sense that it concerns expected values for a population of infinite size.

However, to make the system of equations that describe the model solvable, or in other words
to close the system of equations, an assumption was made called the ‘mean field at distance one’
assumption. This assumption has motivated this masterthesis project, in which the deterministic
model is compared to a simulation model for which the assumption is not needed. By comparing
the results of both model we check the correctness of the assumption. In later work of Leung [11],
this deterministic model has been extended to a more general deterministic model with several
generalizations involving both the network and the infection. It is desired to also implement the
same generalizations in the simulation model.

A property of the simulation model is that the entire network structure is known: we know ex-
actly who has a relationship with whom. This information is not incorporated in the deterministic
model. This property of the simulation model gives us the opportunity to study the network struc-
ture. Thus in this masterthesis we will focus on: comparing the deterministic model and simulation
model and further studying the network structure of the simulation model.

The simulation program is written in the programming language Python. The Python code is
desired to be flexible extensible (for possible more generalizations in the future), have the potential
to ‘switch’ the generalizations on and off and should be well documented and easy to read for others.

This masterthesis has the following structure. In section 1 the deterministic model by Leung
et al. will be explained. In section 2 an individual-based simulation model, based on the determin-
istic model without generalizations, will be introduced. In section 3 the simulation model will be
extended with generalizations. In section 4 we will explain the structure of the simulation program
in Python. Section 5 will be devoted to the results, which will include the comparison of the deter-
ministic model and the simulation model (to check the correctness of the mean field at distance one
assumption) and further investigations of the network (such as its connected components). Finally,
in section 6 we will perform a senstivity analysis.
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1 The deterministic model

Leung et al. have introduced a deterministic model for the spread of an SI sexually transmitted
infection (STI) on a dynamic homosexual network. The deterministic model is introduced in two
articles. First in [9] a network without infection is introduced, in which concurrent partnerships
are allowed, i.e. an individual in the population is allowed to have multiple partners at the same
time. Second in [10] an STI is introduced that spreads along the network. Therefore, from now on
when discussing the deterministic model, we will distinguish ‘the network’ and ‘the infection’.

We begin by giving a short overview of the deterministic model in section 1.1. After that a more
detailed description of the model will be given in two parts. First we will discuss the network in
section 1.2, followed by the introduction of an STI along the network, which is discussed in sec-
tion 1.3. Lastly, in section 1.4, a few generalization of the deterministic model will be discussed [11].

In this section we will use the notations as in the articles of Leung et al. [9], [10], [11].

1.1 Overview

The network

In [9] a model of a network of partnerships for a homosexual population is introduced. This network
is dynamic, because individuals enter and leave the population and formation and dissolution of
partnerships. Individuals in this network are assumed to have a maximum number n of simultaneous
partners, n is called the partnership capacity. An individual with partnership capacity n can
be thought of as having n binding sites which can be either ’free’ or ’occupied’. An important
assumption of the model is that the binding sites of an individual behave independently of each
other, as far as partnership dynamics are concerned. The model involves two specifications only,
one at individual-level and the other at population-level :

• At the individual-level, since binding sites of an individual behave independently from each
other as far as partnership dynamics are concerned, then as long as an individual does not
die it is involved in a continuous-time Markov process. In this Markov process the state of
the individual is described by its number of partners (or ‘occupied’ binding sites). Therefore
there are n+ 1 possible states, corresponding to 0, . . . , n partners.

• At the population-level, a stationary age distribution is assumed with the probability density
function a 7→ µe−µa, i.e. there is a constant population birth rate and the lifetime of an
individual is exponentially distributed with parameter µ.

Changes at these two levels are assumed to be coupled in the sense that the rate at which partnership
formation at individual-level occurs, is proportional to the fraction of free binding sites in the total
pool of binding sites. Note that this fraction of free binding sites is a population-level quantity.

The infection

An SI infection is introduced along the network [10]. Individuals in the network can be in two
possible infection stages: susceptible (S) or infected (I). It is assumed that the infection stage of
an individual has no influence whatsoever on partnership formation, partnership dissolution or the
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age distribution. Therefore the rate at which partnership formation occurs is still proportional to
the fraction of free binding sites in the total pool of binding sites.
Transmission of infection can occur in a partnership between an infectious individual and a suscep-
tible individual. Therefore for a susceptible individual in the network, the probability of becoming
infected depends on its number of infectious partners.

When considering just the network (in section 1.1), the state of an individual was described by
its number of partners. Introducing the infection along the network implies that the state of an
individual is defined by a vector containing its own infection state, its number of susceptible part-
ners and its number of infectious partners. The state of an individual can change due to partner
dynamics and transmission of the infection. A susceptible partner of an individual can get infected
and the rate at which this occurs depends on the number of infectious partners of this susceptible
partner. However, this information about partners of partners is not included in the state of an
individual. Therefore, an assumption is made about the partners of partners. This assumption is
called the mean field at distance one assumption. This assumption is explained in detail in sec-
tion 1.3.

For a more extensive description of the deterministic model, see section 1.2 and section 1.3.

1.2 The network

In this section we will give a more formal description of the dynamic homosexual network as out-
lined in section 1.1. The outline in section 1.1 and the more detailed description in this subsection
can be read separately form each other. Therefore there will be some repetition.

A sexually active population is considered. Therefore ‘birth’ and ‘death’ denotes entering or leaving
the sexually active population, respectively. As explained before, the network allows concurrent
partnerships. There is a maximum number of simultaneous partners an individual can have, which
is called the partnership capacity n. An individual with partnership capacity n can be thought of
as having n binding sites which can be either ‘free’ or ‘occupied’. To keep track of concurrent part-
nerships we say that an individual who has k partners (0 ≤ k ≤ n) is in state k, i.e. an individual
in state k has k occupied binding sites and n− k free binding sites. The assumption is made that
the binding sites of an individual behave independently from each other, as long as the individual
does not die. This means that the binding sites behave independently from one another as far as
formation and dissolution of partnerships is concerned.

The individual-level
Let us first look at individual-level. At the individual-level, as long as an individual does not die the
changes in its number of binding sites are assumed to be modelled according to a continuous-time
Markov process. Therefore the the state of the individual indicates its number of partners. It is
assumed that an individual does not die in the period it is under consideration. The state of an
individual can change by an occupied binding site that becomes free or a free binding site that
becomes occupied, i.e. partnership formation and dissolution:

• Partnership formation:
Let F (t) define the fraction of free binding sites in the total pool of binding sites at time
t. It is assumed that the rate at which a free binding sites becomes occupied at time t is
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proportional to F (t) and this rate is called ρF (t). Note that F is a population-level quantity,
which connects the population-level to the individual-level.

• Partnership dissolution:
An occupied binding site can become free in two ways, either the partner dies with rate µ or
the partners separate with rate σ. Note that it was previously assumed that the individual
itself does not die in the time period it is under consideration, therefore only the death of the
partner is considered.

Therefore an individual with 0 ≤ k ≤ n occupied binding sites and n− k free binding sites at time
t can have the state transitions shown in table 1.

transition rate description

k → k + 1 ρ(n− k)F (t) gaining a partner
k → k − 1 (σ + µ)k losing a partner

Table 1: The rates of the state transitions for the network.

Let A(F (t)) be the (n+1)×(n+1) transition rate matrix belonging to the continuous-time Markov
process, for which Aij (i 6= j) denotes the rate at which a transition from state j to state i is made.
Since A is a transition rate matrix, the diagonal elements are defined as Ajj =

∑
i 6=j −Aij , such

that the each column sums up to zero.

Let pk(tb, a) denote the probability that an individual, born at time tb, is in state k at age a.
Let p be the vector

p(tb, a) =


p0(tb, a)
p1(tb, a)

...
pn(tb, a)


The changes in p(tb, a) are modelled with a continuous-time Markov process

∂p

∂a
(tb, a) = A(F (tb + a))p(tb, a) (1)

Since a newborn individual is assumed to have no partners, when entering the sexually active
population, we have the initial condition

p(tb, 0) =


1
0
...
0

 (2)

The population-level
At the population level it is assumed that there is a constant population birth rate and that the
age of an individual is exponentially distributed with parameter µ (i.e. the age distribution has the
probability density function a 7→ µe−µa). Let Pk(t) denote the fraction of the population that is in
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state k at time t. Then, when assuming a large population size and using the probability density
function a 7→ µe−µa, Pk(t) equals

Pk(t) =

∫ ∞
0

µe−µapk(t− a, a)da (3)

The fraction of free binding sites F (t) was defined as the fraction of free binding sites in the total
pool of binding sites at time t. This can be expressed as,

F (t) =

n∑
k=0

n− k
n

Pk(t) (4)

This population level quantity F (t) causes, as described before, the feedback from population-level
to individual-level.

Due to the assumption of the independence of binding sites with respect to partnership dynamics,
it can be shown that F (t) → F̄ for t → ∞ (details in [9]). This has motivated us to take F (t) to
be constant:

F (t) = F̄ (5)

Which causes a stable network over time: pk(tb, a) = pk(a) and Pk(t) = Pk.

1.3 The infection

In this section we will summarize the results from [10], where an SI infection is introduced on the
network discussed in the previous subsection. With an SI infection individuals in the population
can either be susceptible (S) or infectious (I). A susceptible individual can get infected by an
infectious partner. It is assumed that when an individual gets infected, it is immediately infectious
and stays infectious for the rest of its life.

By introducing the SI infection, the state of an individual is now described by (x, k−, k+), where
x ∈ {+,−} indicates whether the individual is susceptible (-) or infectious (+), k− is its number of
susceptible partners and k+ is its number of infectious partners. Therefore an individual can be in
state l ∈ {(x, k−, k+) | k−, k+ ≥ 0, k = k− + k+ ∈ {0, . . . , n}, x ∈ {+,−}}.

With the more extended state l = (x, k−, k+) of an individual, the following transitions should
be distinguished concerning partnership dynamics:

• Losing a susceptible partner

• Losing an infectious partner

• Acquiring a new susceptible partner

• Acquiring a new infectious partner

For calculating the rates of these transitions, Fx(t) is introduced as the fraction of free binding sites
in the population belonging to individuals in infection stage x ∈ {+,−} in the total pool of free
binding sites at time t. Since the total fraction of free binding sites F̄ is constant (eq. (5)), it must
hold that F̄ = F+(t) + F−(t). For an individual in state (x, k−, k+), assuming the individual does
not die in the time period it is under consideration, the state transitions and their corresponding
rates are shown in table 2.
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transition rate description

(±, k−, k+)→ (±, k− − 1, k+) (σ + µ)k− losing a susceptible partner
(±, k−, k+)→ (±, k−, k+ − 1) (σ + µ)k+ losing an infectious partner
(±, k−, k+)→ (±, k− + 1, k+) ρF−(t)(n− k− − k+) gaining a susceptible partner
(±, k−, k+)→ (±, k−, k+ + 1) ρF+(t)(n− k− − k+) gaining an infectious partner

Table 2: The rates of the state transitions involving partnership formation, separation and death
of a partner.

Besides the transitions caused by losing or acquiring a partner, the transmission events should also
be considered. There are three different transitions describing transmission events:

• The individual itself gets infected

• A susceptible partner gets infected, while the individual itself is susceptible

• A susceptible partner gets infected, while the individual itself is infectious

It is assumed that a susceptible individual, that has a binding site occupied by an infectious part-
ner, gets infected by that partner with a constant rate β. It is assumed that the frequency of sex
acts in a partnership does not depend on other concurrent partnerships. Therefore a susceptible
individual with k+ infectious partners gets infected with rate βk+.

Let us consider an individual u. The rate at which a susceptible partner v, of the individual
u, gets infected depends on the number of infectious partners of v. The only known partner of v is
u, with u either susceptible or infectious. The rest of the partners of v is unknown. Therefore the
assumption is made that the average over all possibilities can be taken, the so called mean field at
distance one assumption:

Definition 1. Mean field at distance one assumption:
Λ±(t) is the expected number of infectious partners of an susceptible individual that has one known
partner in infection state ± at time t.

In section 2 we will introduce an individual-based simulation model for which this assumption is
not needed, and compare both models in section 5.3 to check the correctness of the assumption.

The state transitions describing transmission and their corresponding rates, when assuming the
mean field at distance one assumption, are as shown in table 3.
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transition rate description

(−, k−, k+)→ (+, k−, k+) βk+ individual gets infected
(−, k−, k+)→ (−, k− − 1, k+ + 1) βΛ−(t)k− a partner gets infected,

while the individual is susceptible
(+, k−, k+)→ (+, k− − 1, k+ + 1) βΛ+(t)k− a partner gets infected,

while the individual is infectious

Table 3: The rates of the state transitions involving transmission of infection.

In section 1.2, where the network without the SI infection was described, we denoted by pk(tb, a) the
probability that an individual, born at time tb, is in state k ∈ {0, 1, . . . , n} at age a. Let pl(tb, a) de-
note the probability that an individual, born at time tb, is in state l ∈ {(x, k−, k+) | k−, k+ ≥ 0, k =
k−+k+ ∈ {0, . . . , n}, x ∈ {+,−}} at age a. Choosing a way to order the states l, we can again con-
sider the pl(tb, a) as coordinates of a vector p. Let B(t) = B(F+(t), F−(t),Λ+(t),Λ−(t)) be the tran-
sition rate matrix with the transition rates as described in the tables 2 and 3. The number of states
(x, k−, k+) is equal to the number of infection stages multiplied with the number of possible combi-
nations of infectious and susceptible partners, under the condition that no more than n partners is al-

lowed. Therefore the number of states l is equal to 2·
∑n
k=0(k+1) = 2· 1+(n+1)

2 (n+1) = (n+1)(n+2).
Therefore the matrix B will be of size (n + 1)(n + 2) × (n + 1)(n + 2). Note that, since B is a
transition rate matrix, the columns of B sum up to zero.

Then, as long as an individual does not die in the time period it is under consideration, an in-
dividual is involved in the Markov process

∂p

∂a
(tb, a) = B(F+(tb + a), F−(tb + a),Λ+(tb + a),Λ−(tb + a))p(tb, a) (6)

Note that F± and Λ± are yet to be specified. Since a newborn individual is assumed to be susceptible
and without any partners, it is in state (−, 0, 0). This newborn state is chosen as the first state for
the ordering, therefore the initial condition is

p(tb, 0) =


1
0
...
0

 (7)

Let Pl(t) be the fraction of the population that is in state l at time t. Then, in a determinis-
tic description of a large population,

Pl(t) =

∫ ∞
0

µe−µapl(t− a, a)da (8)

Use the chosen ordering of states l and let P denote the vector containing the variables Pl.

We have noted before that F± and Λ± are not yet specified, only the interpretations were given.
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Using these interpretations we can derive the definitions of F± and Λ± in terms of population-level
fractions.

F±(t) was defined as the fraction of free binding sites in the population belonging to individu-
als in infection stage ± at time t. Using this interpretation we can express F±(t) as

F±(t) =

n∑
k+=0

n−k+∑
k−=0

n− k− − k+

n
P(±,k−,k+)(t) (9)

Λ±(t) was introduced as the expected number of infectious partners of a susceptible partner of an
individual in infection state ±. Consider an individual u in infection stage ±, with a susceptible
partner v. Let the susceptible partner v be in the state (−,m−,m+). Then, using the interpretation,
the mean field at distance one rates Λ±(t) can be expressed as

Λ−(t) =

n−1∑
m+=1

m+λ−(m+) (10)

Λ+(t) =

n∑
m+=1

m+λ+(m+) (11)

Where λ±(m+) can be interpreted as the conditional probability that susceptible partner v has
m+ infectious partners, given that individual u is infection stage ±. The terms λ±(m+) can be
expressed as

λ−(m+) :=

∑n−m+

m−=1 m−P(−,m−,m+)(t)∑n−1
l+=0

∑n−l+
l−=1 l−P(−,l−,l+)(t)

(12)

and

λ+(m+) :=

∑n−m+

m−=0 m+P(−,m−,m+)(t)∑n
l+=1

∑n−l+
l−=0 l+P(−,l−,l+)(t)

(13)

We will not give further explanations of the derivation of these expressions. If the derivation is
wanted, we refer to the original paper [10].

In [10] it is also shown, by differentiation of (8) and using (6) and (7), that

dP

dt
= µ1(−,0,0) +B(F±,Λ±)P − µP (14)

where 1(−,0,0) is the indicator function of (−, 0, 0). Therefore the constant population birth rate
(the rate new individuals enter the state (−, 0, 0)) is equal to µ.

1.4 Generalizations of the baseline deterministic model

In [9] it was already mentioned that the network model can be extended by some meaningful
generalizations. Later, in [11], some generalizations were implemented in the model, which will be
discussed briefly in this section. Until now a homosexual population was considered with a fixed
partnership capacity n for the entire population and only one type of partnership. The following
generalizations of the network were introduced in [11]:
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• Partnership capacity as a random variable

• Heterosexual population

• Steady and casual partnerships

And one generalization of the infection was considered:

• Multiple stages of infection

We will give a brief description of each of these generalizations in the sections 1.4.1 - 1.4.4.

1.4.1 Partnership capacity as a random variable

Originally it was assumed that the partnership capacity n was a fixed number, the same value for
all the individuals in the population. This is extended by allowing individuals in the population to
have different partnership capacities. This added heterogeneity between individuals hopefully gives
a better approximation of the reality.

Let N be the random variable that describes the partnership capacity. Let P(N = n) be the
probability that a random individual has partnership capacity n, n = 1, 2, . . ..

1.4.2 Heterosexual population

One of the modifications of the model is to consider a heterosexual population instead of a homo-
sexual population, i.e. male and female individuals are distinguished. Considering a heterosexual
population gives us the opportunity to investigate the effect heterogeneity in sexual behavior be-
tween men and women has on the spread of HIV.

The assumption is made that in a heterosexual population only heterosexual partnerships can
be formed. Let nm and nf be the partnership capacities of males and females respectively. And let
1 : x denote the ratio male : female in the population.

1.4.3 Steady and casual partnerships

Originally no distinction was made between different types of partnerships, only one type was con-
sidered. But in reality partnerships can vary greatly in their duration. Also, the probability of
transmission within a partnership per time unit can differ between partnerships (caused for exam-
ple by the difference in the number of sex acts per time unit). Therefore the model is extended by
considering two types of partnerships: steady and casual partnerships.

Let ns and nc be the number steady and casual binding sites respectively. It is assumed that
binding sites can only bind with a binding site of the same type. Just like in the original model,
the assumption is still made that all binding sites (both casual and steady) of an individual behave
independently of one another where partnership formation and separation is concerned.
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1.4.4 Multiple stages of infection

Lastly, the model is extended by not considering only one infection stage (I), but a finite number
of infection stages I1, I2, . . . , Im. This could be very useful for an infection such as HIV, because
HIV progresses in different phases such as a very infectious acute infection phase and a longer but
less infectious clinical latency phase. Also a treatment phase could be considered, a phase for HIV
in which an individual is less infectious, and therefore investigating the influences of treatment to
spread of HIV in the population. The assumption is made that an individual can only go through
the infection stages in sequential order, so an individual can only go from infection stage I1 to I2,
from I2 to I3, and so on. Each infection stage i ∈ {I1, I2, . . . , Im} has its own infection rate βi.
Also each infection stage, except for the last one, has its own transition rate αi. The transition
rate αi denotes the rate at which an individual in infection stage i enters the next infection stage i+1.

In [11] three stages were considered for the deterministic model: I1, I2, T , an acute phase, a
chronic phase and a treatment phase. We will consider the same infection stages in the simulation
model.

In [11] not only are these generalizations considered separately, but also in combination.

14



2 The individual-based model

In this section we will introduce the stochastic individual-based simulation model based on the
deterministic model discussed in section 1. We will focus on a homosexual population with fixed
partnership capacity, only one type of partnership and one infection stage I, i.e. the model without
generalizations. Later, in section 3, we will introduce generalizations on the individual-based model.
To make this masterthesis easier to read it is divided into two separate sections.

First we will motivate in section 2.1 why we consider an individual-based model. Then we give a
general description of individual-based modeling and event-based modeling in sections 2.2 and 2.3.
Lastly we will introduce the individual-based model in section 2.4.

2.1 Motivation

We want to introduce an individual-based simulation model based on the deterministic model. An
individual-based model keeps track of each individual in the network through time. Considering an
individual-based simulation model has certain advantages compared to the deterministic model.

• For one, by keeping track of each individual in the network, we know for each individual in
the network its partners, and its partners’ partners etc. In the deterministic model this was
not incorporated in the model and instead it was assumed that the average could be taken
over all possibilities (the mean field at distance one assumption, see definition 1). No longer
needing to take the mean field at distance one assumption in the individual-based model, is
one of its greatest advantages. We will compare both models and check the correctness of the
mean field at distance one assumption in section 5.3.

• Another advantage is that there are no longer restrictions on the population size. In the
deterministic model the assumption of a large population was needed, while in the individual-
based model no such assumption is needed and we can vary the population size.

• Thirdly, the individual-based model is easier to extend than the deterministic model. In
section 1.4 a few possible generalizations for the model were given. But the mathematical
tractability will become more and more complicated when adding generalizations, a problem
that does not arise in an individual-based model.

However the individual-based model also has certain disadvantages compared to the deterministic
model. For example the deterministic model gives one solution for a specific parameter set, while
the individual-based model gives different results with every run. This is not a disadvantage in
itself, since the simulation model gives a distribution for the outcome variables instead of just
a number, which makes it more informative. But to obtain statistically relevant statements the
individual-based model will need to be run many times and the results need to be averaged before
being able to make comparisons. This makes the simulation model more costly. It also causes that
the effect of small changes in input parameters can be investigated very easily in the deterministic
model, while in the individual-based model this is much harder because of the stochasticity.

2.2 Individual-based modeling

Before introducing the individual-based model, let us give a short general description of individual-
based modeling. We follow [12] to explain individual-based modeling.
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Individual-based modeling looks at how the properties and behavior of individuals determine the
properties of the population they compose. Each individual is a uniquely identifiable individual
and will have its own characteristics. For the individual’s characteristics think for example of size,
location or history (or in our case for example the infection state of the individual). Sometimes
the interactions of an individual can be limited to a subgroup defined by for example geographical
space, or in our case a network. The behavior of an individual will depend on and change with their
own current state, the current states of the other individuals and maybe even their environment.

2.3 Event-based modeling

For the individual-based model we will use so called event-based modeling. In this section we will
give a short general description of event-based modeling.

Let m be the number of types events that can take place in a population occuring with rates
λ1, λ2, . . . , λm respectively. Every time an event has taken place the rates of all events can change,
i.e. λ1, λ2, . . . , λm are dependent on time. We assume that events occur according to a Poisson
process. We can combine these m independent Poisson processes into one Poisson process with rate
λ =

∑m
i=1 λi [13]. Therefore the total rate with which any event will hapen is λ.

The exponential distribution describes the time between events that occur according to a Poisson
process. Therefore the cumulative distribution function of the exponential distribution, F (t, λ) =
1 − e−λt, describes the waiting time to the next event. To calculate the time till the next event
occurs, let r1 denote a random number that is uniformly distributed between 0 and 1. Let r1 be
equal to the probability F (t, λ) and find the corresponding elapsed time t:

r1 = 1− e−λt

t =
− log (−r1 + 1)

λ

Note that −r1 + 1 is also a random number uniformly distributed between 0 and 1.

When the time till the next event has been calculated, an event has to be chosen. We follow
the Roulette Strategy: Let r2, a random number uniformly distributed between 0 and 1, decide
which event will take place. When r2 <

λ1

λ event 1 will take place, when λ1

λ ≤ r2 <
λ1+λ2

λ event
2 will take place etc. When the chosen event has taken place the rates λ1, . . . , λm need to be
recalculated to determine the new total rate λ and to repeat this process.

2.4 Structure of the individual-based model

As explained before, an individual-based model keeps track of each individual in the population
and its characteristics. For our individual-based model we have the following characteristics of
individuals

• infection state (S or I) at time t
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• identities of an individual’s partners at time t

Each characteristic can change with time: the individual can get infected or it can gain or lose a
partner. Besides that the characteristics of an individual can change, individuals can also enter or
leave the population. Just like in the deterministic model the following events can take place in the
individual-based model:

• Birth of an individual

• Death of an individual

• Formation of a partnership

• Dissolution of a partnership

• Transmission of infection

To chose which events will occur and the time that elapses before the event occurs will be calculated
with event-based modeling, previously explained in section 2.3. To give an idea of the structure of
the individual-based model, using event-based modeling, see table 4.
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(0) t = 0

(1) Calculate λ1, λ2, . . . , λm
λ =

∑m
i=1 λi

(2) ∆t = − log r1
λ

where r1 is a random number between 0 and 1

(3) if 0 ≤ r2 <
λ1

λ then
Event 1

if λ1

λ ≤ r2 <
∑2
i=1 λi
λ then

Event 2
...

if
∑m−1
i=1 λi
λ ≤ r2 ≤ 1 then
Event m

where r2 is a random number between 0 and 1

t = t+ ∆t
Repeat (1), (2) and (3) until t reaches the end time

Table 4: Time steps of simulation for m events.
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2.4.1 The rates

Before we calculate the rates λ1, . . . λ5 at which the events occur, let us introduce a few new
notations that we will use in the individual-based model in table 5.

notation description

N the total population size
[S, S] the number of partnerships between two susceptible individuals
[S, I] the number of partnerships between a susceptible and an infectious individual
[I, I] the number of partnerships between two infectious individuals
X the total number of free binding sites
Y the total number of partnerships

Table 5: A few notations and their descriptions used for the simulation model

Note that we work with numbers in the individual-based model, in stead of the fractions of the
deterministic model. Note that the total number of partnerships Y is equal to

Y = [S, S] + [S, I] + [I, I].

Note that the total number of free binding sites Nn is equal to

Nn = X + 2Y.

The adding of 2Y is caused by the fact that every partnership consists of two binding sites. The
fraction of free binding sites F , used in the deterministic model, can be calculated in the individual-
based model by

F =
X

Nn
.

We will now discuss the rates of all types of events in the deterministic model and how to translate
them to the individual-based model. We want to make sure that the meaning of the parameters
are equivalent in both models, such that we can compare the two models easily.

Death

As mentioned before, in the deterministic model it was assumed that the lifetime of an individual is
exponentially distributed with parameter µ. The same is assumed for the individual-based model.
So every individual dies with rate µ per unit of time. Let there be N individuals in the population,
the total death rate is then µN . In other words, the rate that the event ‘Death’ occurs is µN . Keep
in mind that the population size N changes with time.

Birth

The deterministic model had a constant population birth rate, we assume the same for the individual-
based simulation model. Let B denote the constant population birth rate for the individual-based
model. Let N0 be the initial population size. We want the population size over time to remain
constant at N0, apart from stochastic fluctuations, therefore we take B = µN0. This causes the
population size N to oscillate around the initial population size N0 over time. Thus the rate that
the event ‘Birth’ occurs is µN0, constant over time.
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Forming a partnership

In the deterministic model it was assumed that the probability per unit of time that a free binding
site becomes occupied is ρF̄ . Where F̄ has been defined as the fraction of free binding sites in
the total pool of binding sites, which was assumed to be constant (see eq. (5)). In terms of the
individual-based model this rate is equal to ρF = ρ X

Nn . The fraction of free binding sites in the
individual-based model is, unlike in the deterministic model, not a constant value. However it will
become constant up to stochastic fluctuations when the network has been stabilized. Therefore we
perform the so called spin-up to make sure the network reaches that stochastic equilibrium, which
will be described in section 4.1.

When a binding site becomes occupied, another binding site automatically becomes occupied as
well, since a partnership is formed between two binding sites. Therefore to calculate the total rate
of forming a partnership, we do not multiply ρ X

Nn with the total number of free binding sites X,
but only with half of the total number of free binding sites, to prevent counting double. This leads

to the total rate 1
2ρ

X2

Nn of forming a partnership.

Separation

In the deterministic model the rate per unit of time that a partnership dissolves because of separation
was equal to σ. We again assume the same for the individual-based model. To calculate the total
rate of separation we must multiply σ with the total number of partnerships. Thus the total rate
of separation becomes σY .

Transmission

In the deterministic model three different state transitions were considered that described trans-
mission: the individual itself gets infected, a susceptible partner gets infected while the individual
itself is susceptible or a susceptible partner gets infected while the individual itself is infectious
(see section 1.3). To calculate the rate for the last two transitions, the mean field at distance one
assumption was made. Since the individual-based model keeps track of each individual, we need
not consider the last two transitions and therefore the mean field at distance one assumption is not
needed. As explained before this is one of the greatest advantages of using the individual-based
model.

The rate that a susceptible individual gets infected by an infectious partner was denoted by β.
Since the infection can only be transmitted in a partnership between a susceptible and an infec-
tious individual, the total rate in the entire population of transmission is β · [S, I].

To summarize, we have the following events and their rates for the baseline model (homosexual
population without generalizations):
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Event rate
Birth λ1 = µN0

Death λ2 = µN

Separation λ3 = σY

Forming a partnership λ4 = 1
2ρ

X2

Nn

Transmission λ5 = β · [S, I]

2.4.2 The events

As previously explained, one of the events will be chosen. In this section we will explain which state
transition will occur if a specific event is chosen. But before we explain each event let us remember
that each individual is characterized by: its infection state and the identities of its partners. Note
that an event can change the characteristics of multiple individuals, for example the dissolution
of a partnership changes the states of both individuals involved, because both individuals lose a
partner.

Birth

In case of the event ‘Birth’ a new individual enters the population. This new individual will be
susceptible, it will have n free binding sites and no partners. Note that the partnership capacity n
is not a characteristic of the individual, since it does not vary between individuals, but is a fixed
constant for the entire population.

Death

In case of the event ‘Death’ a random individual leaves the population. Not only will the individual
itself leave the population, but also all the partnerships in which the individual is involved will
dissolve.

Formation of a partnership

In case of the event ‘Formation of a partnership’ two random free binding sites are chosen from the
pool of all free binding sites. However it is not allowed that these two binding sites both belong to
the same individual or to two individuals which already have a partnership with each other. If the
two chosen binding sites do not meet these criteria, no partnership is formed and a new event is
chosen (see the program structure in appendix C.4 for more detail).

Separation

In case of the event ‘Separation’ a random partnership is chosen from the pool of all partnerships.
This partnership dissolves, i.e. the individuals involved in the partnership both lose the other
individual as their partner.
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Transmission

In case of ‘Transmission’ a random partnership between a susceptible and an infectious individual
is chosen. Transmission occurs and the susceptible individual becomes infectious.
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3 Generalizations of the baseline model

In section 2.4 only a homosexual population was considered with partnership capacity n for the
entire population, no distinction was made between different types of partnerships and only one
infection stage I was considered. Now the generalizations for the deterministic model discussed in
section 1.4 will be introduced in the simulation model. In addition, the model will be extended by
a disease-induced death rate.

First we will consider each generalization separately in sections 3.1 - 3.5 to see what changes
they bring to the individual-based model. So keep in mind that the changes discussed in one
generalization will not yet affect the others. After discussing them separately we will combine all
generalizations in section 3.6 and discuss the changes they will bring together.

3.1 Partnership capacity as a random variable

Till now the partnership capacity n was considered to be the same for all individuals in the pop-
ulation. We now extend the model to incorperate varying partnership capacities by considering
the partnership capacity as a random variable Z. At birth every individual receives a partnership
capacity n = 1, 2, . . . distributed according to Z. The partnership capacity varies between individ-
uals, but the capacity of an individual stays the same during its life.

Because of this varying partner capacity n between individuals, we need to save this informa-
tion for each individual. Therefore we consider the partnership capacity n as another characteristic
for the individuals in the population. Note that by changing the partnership capacity n between
individuals we can no longer say that the total number of binding sites is equal to nN . We however
can still express the total number of binding sites as X + 2Y (see table 5).

3.2 Heterosexual population

Another generalization is to distinguish male and female individuals in the population. The gender
of each individual will be one of its characteristics. It is assumed that only heterosexual partner-
ships can be formed, i.e. only the binding sites of a male and female individual can bind to form a
partnership.

Birth
In the deterministic model it is assumed that the ratio male : females in the population is 1 : x.
We assume the same for the individual-based model, but this will only be an approximate ratio
since randomness is involved. That is to say when an individual enters the population it is a male
individual with probability 1

1+x and a female individual with probability x
1+x .

Forming a partnership
In the deterministic model it is assumed that male and female individuals have partnership capac-
ities nm and nf . The rates at which a free binding site of a certain gender becomes occupied are
ρmF

f and ρfF
m, where F g with g ∈ {m, f} is the fraction of free binding sites of gender g in

the pool of all binding sites of gender g. The parameters ρm and ρf have to fulfill the following
condition:

ρmnm = ρfnfx

23



The influence of sex ratio x, nm and nf on the rate at which free binding sites become occupied are
incorporated in the parameters ρm and ρf , this is explained in [11]. For the individual-based model
we only need one partnership formation rate, instead of the two rates ρmF

f and ρfF
m defined in

the deterministic model. Let us introduce ρ̃ for the individual-based model, and let the relation of
ρ̃ to the deterministic values ρm and ρf be defined as

ρ̃ := ρm
1

nfNf
= ρfx

1

nmNf
= ρf

1

nmNm

where Ng denotes the number of individuals of gender g. Remember that the rate at which a free
binding sites of gender g becomes occupied is equal to ρmF

f and ρfF
m in the deterministic model.

With the use of the previously defined ρ̃ for the individual based model, the total rate of forming
a partnership in the individual based model is equal to

ρ̃XmXf

Where Xg denotes the total number of free binding sites of gender g in the population.

Transmission
We not only assume that male and female individuals may have different partnership capacities nm
and nf , but also different transmission rates βm and βf . This implies that we have to distinguish
two types of transmission events: an infectious male infects a susceptible female (with rate βm·[I, S])
or an infectious female infects a susceptible male (with rate βf · [S, I]). Here [im, if ] defines the
number of partnerships where the male is in infection stage im and the female is in infection stage if .

To summarize we have the following events and rates with a heterosexual population

Event rate
Birth male λ1 = 1

1+xµN0

Birth female λ1̃ = x
1+xµN0

Death λ2 = µN

Separation λ3 = σY

Forming a partnership λ4 = ρ̃XmXf

Transmission from male to female λ5 = βm · [I, S]

Transmission from female to male λ5̃ = βf · [S, I]

3.3 Steady and casual partnerships

The deterministic model can also be extended to consider multiple types of partnerships. We will
do the same for the individual-based model. Two types of partnerships are considered: casual and
steady partnerships. Let an individual have ns binding sites for steady partnerships and nc binding
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sites for casual partnerships. Only partnerships can be formed between two steady or two casual
binding sites.

Separation
It is assumed that the two types of partnerships have different separation rates σs and σc. So we
should separate the events of separation of a steady partnership (with rate σsYs) and the separation
of a casual partnership (with rate σcYc). Here Yh denotes the total number of partnerships of type
h ∈ {c, s}.

Forming a partnership
It is assumed that a binding site can only form a partnership with a binding site of the same type (s
or c). Therefore we should take into account while forming a new partnership, that we choose two
free binding sites of the same type. Another assumption is that the two types of partnerships form
with two different rates. In the deterministic model a steady free binding site becomes occupied
with rate ρsFs and a casual free binding site becomes occupied with rate ρcFc. Where Fs is the
fraction of free steady binding sites in the pool of all steady binding sites, same for Fc for the casual
binding sites.

In the individual-based model we can calculate Fh for the type of partnership h ∈ {c, s} by

Fh =
Xh

Xh + 2Yh

Therefore, when following the same reasoning as before in section 2.4.1, the total rate for the
formation of a partnership of type h is

1

2
ρh

(Xh)2

Xh + 2Yh

Transmission
Let βs denote the transmission rate in a steady partnership and let βc denote the transmission rate
in a casual partnership. Then the total rate of transmission in steady partnerships is βs · [S, I]s and
the total rate of transmission in casual partnerships is βc · [S, I]c. Where [i1, i2]h is the number of
partnerships of type h ∈ {c, s} with the individuals in stages i1, i2 ∈ {S, I}.

This gives us the following events with the total rates:
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Event rate
Birth λ1 = µN0

Death λ2 = µN

Separation steady λ3 = σsYs

Separation casual λ3̃ = σcYc

Forming a steady partnership λ4 = 1
2ρs

(Xs)
2

Xs+2Ys

Forming a casual partnership λ4̃ = 1
2ρc

(Xc)
2

Xc+2Yc

Transmission in steady partnership λ5 = βs[S, I]s

Transmission in casual partnership λ5̃ = βc[S, I]c

3.4 Multiple stages of infection

The deterministic model can also be extended by considering not only the infection stages S and
I, but more infection stages S, I1, I2, . . .. Four different stages were introduced in [11]: S, I1, I2 and
T . It is assumed that individuals can only go through the infection stages with sequential order.
Therefore when an individual gets infected it enters stage I1, from stage I1 the individual can enter
I2, and finally from I2 it can enter the treatment stage T and remain in this stage for the rest of
its life. An individual in the treatment phase T is assumed to be no longer infectious. We assume
the same for the individual-based model.

The rate at which an individual in stage i ∈ {I1, I2} transmits the infection to a susceptible
individual is βi. Given that an individual remains alive for the period under consideration, an
individual in stage i enters stage i+ 1 with rate αi.

Transmission
The assumption that the two infectious stages I1 and I2 have two different transmission rates β1

and β2 causes the distinction between two transmission events. First the transmission between
an infectious individual in stage I1 and a susceptible individual with the total transmission rate
β1 · [S, I1]. Second the transmission between an infectious individual in stage I2 and a susceptible
individual with the total transmission rate β2 · [S, I2].

Stage transitions
The extension of the model also causes two new possible events: moving from stage I1 to stage I2
and moving from stage I2 to stage T . Upon transmission, an individual enters stage I1. Let Ni be
the number of individuals in infection stage i ∈ {S, I1, I2, T}. The total rate of entering stage I2 is
then α1NI1 . The total rate of entering stage T is α2NI2 .
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So we have the following events and their total rates:

Event rate
Birth λ1 = µN0

Death λ2 = µN

Separation λ3 = σY

Forming a partnership λ4 = 1
2ρ

X2

Nn

Transmission caused by I1 λ5 = β1 · [S, I1]

Transmission caused by I2 λ5̃ = β2 · [S, I2]

I1 → I2 λ6 = α1NI1

I2 → T λ7 = α2NI2

3.5 Disease-induced death rate

We consider an additional disease-induced death rate. When considering an infection, such as
HIV, it is reasonable to consider a higher death rate when an individual is infected. Therefore we
will introduce a separate death rate for the infection stages S and I. Let µ(i) be the death rate
for an individual in infection stage i ∈ {S, I}, and let µ(S) ≤ µ(I). Therefore the death of a sus-
ceptible individual and the death of an infected individual will be considered as two separate events.

Event rate
Birth λ1 = µ(S)N0

Death of S λ2 = µ(S)NS

Death of I λ2̃ = µ(I)NI

Separation λ3 = σY

Forming a partnership λ4 = 1
2ρ

X2

Nn

Transmission λ5 = β · [S, I]

Note that by increasing the death rate for infected individuals, we no longer have the stable in- and
outflow of the population as we had before, i.e. the birth rate and average death rate are no longer
equal.
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3.6 Combining the generalizations

We will now combine all the separately discussed generalizations from sections 3.1 - 3.4 and see
how this affect the individual-based model.

Model parameters

Many model parameters, as we have previously seen, depend on certain properties of individuals
(gender, infection stage) or partnerships (casual, steady). Let us consider the gender g ∈ {m, f},
the infection stage i ∈ {S, I1, I2, T} and the type of partnership h ∈ {c, s}. We have the following
parameters and their dependency on g, h and i.

Z(g, h) random variable denoting partnership capacity 4 distributions
ρ(h) parameter partnership formation 2 parameters
σ(h) parameter separation 2 parameters
β(g, h, i) parameter transmission (i ∈ {I1, I2}) 8 parameters
α(i) transition rate stage i+ 1 from stage i
µ(i) rate death for infection stage i

The following parameters do not depend on the properties g, h and i.

x ratio male : female is 1 : x
N0 initial population size

Note that we want the ratio male : female in the initial population of size N0 to be 1 : x. So
the number of male individuals in the initial population is N0(m) = 1

x+1N0 and the number of
female individuals is N0(f) = x

1+xN0.

Characteristics

As explained before each individual in the population has its own characteristics. Combining all
generalizations leads to the following characteristics for an individual

i ∈ {S, I1, I2, T} infection stage
g ∈ {m, f} gender
ns ∈ N number of steady binding sites
nc ∈ N number of casual binding sites

Note that ns and nc are distributed according to the random variables Z(g, c) and Z(g, s), de-
pendent on the gender of the individual. Many other parameters are also dependent on properties
as gender, but do not vary individually. Therefore we do not have to keep these parameters as
individual characteristics.

The events and their corresponding rates

In this section we will list all events and their rates, that occur in a simulation model combing all
above generalizations. But first let us define
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X(g, h) the number of free binding sites of type h of individuals of gender g
Y (h) the number of partnerships of type h
N(i) the number of individuals in infection stage i
[im, if ]h the number of partnerships of type h where the male is in

infection stage im, the female is in infection stage if

We distinguish the events and their corresponding rates shown in table 6.
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Event rate

Birth male 1
1+xµN0

Birth female x
1+xµN0

Death of stage S µ(S)N(S)

Death of stage I1 µ(I1)N(I1)

Death of stage I2 µ(I2)N(I2)

Death of stage T µ(T )N(T )

Separation casual partnerships σ(c)Y (c)

Separation steady partnerships σ(s)Y (s)

Partnership formation casual ρ̃(c)X(m, c)X(f, c)

Partnership formation steady ρ̃(s)X(m, s)X(f, s)

Transmission casual: male I1 - female S β(I1,m, c)[I1, S]c

Transmission casual: male I2 - female S β(I2,m, c)[I2, S]c

Transmission casual: male S - female I1 β(I1, f, c)[S, I1]c

Transmission casual: male S - female I2 β(I2, f, c)[S, I2]c

Transmission steady: male I1 - female S β(I1,m, s)[I1, S]s

Transmission steady: male I2 - female S β(I2,m, s)[I2, S]s

Transmission steady: male S - female I1 β(I1, f, s)[S, I1]s

Transmission steady: male S - female I2 β(I2, f, s)[S, I2]s

I1 → I2 α(I1)N(I1)

I2 → T α(I2)N(I2)

Table 6: Transition rates of events in the simulation model with generalizations.
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4 The program

In this section we will describe how the individual-based model from sections 2 and 3 is converted
to a simulation program in Python (version 3.2). The program will roughly consist of the following
steps:

• (Step 1) The rates of all events are calculated.

• (Step 2) The time till the next event is calculated.

• (Step 3) An event is chosen according to the calculated rates.

• (Step 4) The event takes place.

• The event has changed the rates: return to (Step 1).

The general idea of the program is already clear from the explanations of the individual-based
model. Therefore in this main text we will not go into full detail on the program structure. A full
description of the the code and the process of programming can be found in the appendices A -
C. In appendix A the ‘blue print’ used to program the first version of the program is found. In
appendix B the optimization steps are shown that were taken during programming. In appendix C
the program structure of the final version of the code is shown.

Despite not fully explaining the code in the main text, there are a few aspects of the code we
do want to discuss. In section 4.1 we introduce the ‘spin-up’ and explain why we make use of it.
In section 4.2 we explain what we mean with the terms ‘simulation’ and ‘run’. In section 4.3 we
explain the stopping criteria of the simulation. In section 4.4 we clarify some of the chosen input
parameters of the program and show how to calculate the model parameters used in section 2 and
section 3 from these input parameters. Lastly in section 4.5 we give an explanation of the output
of the program.

4.1 Spin-up

We want to introduce the infection in a population that is stable without the infection, i.e. a stable
network. Therefore we run the program first without infection, following the usage in climate mod-
elling, we call this phase the spin-up of the simulation. This spin-up is stopped when the network
‘stabilizes’:

Let (g, xc, xs) denote the number of individuals in the population with gender g, xc number of
casual partners and xs number of steady partners. For example (male, 0, 0) denotes the number
of single male individuals in the population. The distribution of the individuals over all possible
(g, xc, xs) is called the degree distribution. If each number of individuals (g, xc, xs) stays within
certain bounds for a certain amount of time, we say that the population without infection is stable.
This is parameter dependent, for which the values will be given as input parameters of the program.
An example of a spin-up is given in fig. 1. We can see that for the used parameter set the network
appears to stabilize very quickly, it only takes a few years.
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Figure 1: The spin-up of a heterosexual population of size 10.000, where only one type of partnership
is allowed. Males have 7 binding sites and females only one. The rest of the parameter values are
equal to the values we will use in the next section in table 7.

4.2 Simulation vs. run

We need to keep in mind that every time we perform a simulation, we will get different results. We
will need to run the program many times for the same parameter set to get statistically significant
results. Therefore we say that one simulation consists of a multiple number of runs. We introduce
a new input parameter nr runs that decides how many times the program will be run to form one
simulation, which will be user defined.

4.3 Stopping criteria

After the spin-up, in other words when the network has stabilized, we introduce the infection on
the stable network. Since we make use of a simulation program we want to perform multiple runs
with the same input-parameter set. Since each time the same input-parameter set is used, the
population after the spin-up can be re-used for all the runs. In each run we introduce the infection
and want to run the program until the infection is ‘stabilized’. Let us clarify the meaning of a
stable infection. Let N(g, i) denote the number of individuals of gender g in infection stage i. If
each number of individuals (g, i) stay within certain bounds for a certain amount of time, we say
that the infection is stable. This is parameter dependent, for which the values will be given as input
parameters of the program.

However having multiple runs stop at different times (because the time until the infection is stabi-
lized will vary between the runs) is not the most convenient way. It is much easier to simply give a
maximum time and have all runs stop at that time. However we do need to know what approximate
time the infection needs to stabilize for that input-parameter set. Therefore we give two options
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in the code: either give a maximum time (useful when doing a simulation with multiple runs) or
perform the run until the infection stabilizes (useful for only one run, to find the approximate time
needed for stabilization of infection).

4.4 From input parameters to model parameters

Not all model parameters in section 3.6 will be used as input parameters. Some of the model pa-
rameters, such as ‘the rate of separation’ are hard to estimate or find in literature. Therefore we will
not use these model parameters as input parameters, but express them in new input parameters,
such as ‘the mean partnership duration’ [14]. The following model parameters will not be used as
input parameters:

Model parameters

µ(i) death rate
ρ(h) parameter formation of partnership
σ(h) separation rate
α(i) rate of transition fom the infection stage i to i+ 1 (i ∈ {I1, I2})

We would like to express these model parameters in the following new input parameters:

Input parameters

L(i) the mean sexually active lifetime of individuals after entering infection stage i
dI(i) the mean duration of the infection stage i (for i ∈ {I1, I2})
dP (h) the mean duration of a partnership of type h (without infection)
θ(m,h) the mean lifetime number of partners of type h (for male individuals, without infection)

Note that dP (h) and θ(h) are defined for the network without infection! Since this gives us enough
information to calculate all the model parameters from the input parameters.

4.4.1 Calculations heterosexual population

In this section we will show how to calculate the model parameters from the input parameters in a
heterosexual population.

Calculating the death rate µ(i) from the mean sexual active lifetime after entering stage i is simply

µ(i) =
1

L(i)
(15)

The expected duration of a partnership, without infection, can be expressed as

dP (h) =
1

σ(h) + 2µ(S)

Therefore,

σ(h) =
1

dP (h)
− 2µ(S) (16)
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and since σ(h) ≥ 0 for all h, it must hold that

dP (h) ≤ 1

2µ(S)
=

1

2
· L(S) (17)

Which means that the mean partnership duration can not be more than half the mean sexual active
lifetime of a susceptible individual. The mean duration of the infection phase i is

dI(i) =
1

µ(i) + α(i)

Therefore,

α(i) =
1

dI(i)
− µ(i) (18)

and since α(i) ≥ 0 for all i, it must hold that

dI(i) ≤
1

µ(i)
= L(i) (19)

The last model parameter, ρ(h), is much harder to express in the input parameters. Let θ(g, h) be
the mean lifetime number of partnerships of type h of an individual of gender g, without infection.
To express θ(g, h) in the model-parameters, let us first look at the transitions of the two possible
states of a binding site of type h belonging to an individual of gender g. A binding site can be in
two states: it can be either ‘free’ or ‘occupied’. In figure 2 an overview of the transitions of these
two states are illustrated. Note that the rates of the transitions are expressed in the deterministic
model parameters. We will convert them later to the simulation parameters.

However we have to keep in mind that in the deterministic model it was assumed that the fraction
of free binding sites F (t) = F̄ is constant (eq. (5)). We assume the same for the simulation model,
or at least that F (t) stabilizes around a mean value F̄ . We will later check the correctness of this
assumption in section 5.
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Figure 2: Overview of the transitions of the two possible states of a binding site of type t belonging
to an individual of gender g, without infection. The binding site can either be in the state ‘Free’
or ‘Occupied’.

Let Occ(g, h) be the expected future number of times that a free binding site (of type h belonging
to an individual of gender g) becomes occupied. The probability that the free binding site becomes

occupied is ρ(g,h)F (g′,h)
ρ(g,h)F (g′,h)+µ(S) . When the free binding site becomes occupied we have to add one to

Occ(g, h). The probability that the occupied binding site becomes free again is σ(h)+µ(S)
σ(h)+2µ(S) . When

the occupied binding site becomes free again, we are back at the beginning, and the expected future
number of times the free binding site becomes occupied is again Occ(g, h).

Therefore, to summarize in one equation, we have that

Occ(g, h) =
ρ(g, h)F (g′, h)

ρ(g, h)F (g′, h) + µ(S)

(
1 +

σ(h) + µ(S)

σ(h) + 2µ(S)
Occ(g, h)

)
Which gives us

Occ(g, h) =

ρ(g, h)F (g′, h)

(
σ(h) + 2µ(S)

)
µ(S)

(
ρ(g, h)F (g′, h)σ(h) + 2µ(S)

) (20)

Since individuals of gender g have an expected number of E[n(g, h)] binding sites of type h, the
mean lifetime number of partnerships of type h of an individual of gender g can be expressed as

θ(g, h) = Occ(g, h) · E[n(g, h)] =

ρ(g, h)F (g′, h)

(
σ(h) + 2µ(S)

)
E[n(g, h)]

µ(S)

(
ρ(g, h)F (g′, h)σ(h) + 2µ(S)

) (21)
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Note that consistency requires that

θ(m,h) =

ρ(m,h)F (f, h)

(
σ(h) + 2µ(S)

)
E[n(m,h)]

µ(S)

(
ρ(m,h)F (f, h)σ(h) + 2µ(S)

)

= x ·
ρ(f, h)F (m,h)

(
σ(h) + 2µ(S)

)
E[n(f, h)]

µ(S)

(
ρ(f, h)F (m,h)σ(h) + 2µ(S)

)
= x · θ(f, h)

If we know the mean number of lifetime partners of one gender, we also know the mean number of
lifetime partners for the opposite gender. Therefore we only have the input parameter θ(m,h) as
the mean number of lifetime partners for male individuals.

Let us not forget that the reason for these calculations is to express ρ(g, h) in the input parameters.
Therefore let us express the fraction of free binding sites (of type h belonging to an individual of
gender g′) in the input parameters as

F (g′, h) = 1− dP (h)θ(g′, h)

1/µ(S) · E[n(g′, h)]
(22)

Since 0 ≤ F (g′, h) ≤ 1 for all g and h, it must hold that

0 ≤ dP (h)θ(g′, h) ≤ E[n(g′, h)]

µ(S)
= E[n(g′, h)] · L(S) (23)

Insert equation 16 and equation 22 into the equation 21. This allows us to express ρ(g, h) in the
input parameters

ρ(g, h) =
E[n(g′, h)]θ(g, h)µ(S)(

E[n(g′, h)]− dP (h)θ(g′, h)µ(S)

)(
E[n(g, h)]− dP (h)θ(g, h)µ(S)

) (24)
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We see that

ρ(m,h) =
E[n(f, h)]θ(m,h)µ(S)(

E[n(f, h)]− dP (h)θ(f, h)µ(S)

)(
E[n(m,h)]− dP (h)θ(m,h)µ(S)

)
=
E[n(m,h)]

E[n(m,h)]
· E[n(f, h)]xθ(f, h)µ(S)(

E[n(f, h)]− dP (h)θ(f, h)µ(S)

)(
E[n(m,h)]− dP (h)θ(m,h)µ(S)

)
= x · E[n(f, h)]

E[n(m,h)]
· E[n(m,h)]θ(f, h)µ(S)(

E[n(f, h)]− dP (h)θ(f, h)µ(S)

)(
E[n(m,h)]− dP (h)θ(m,h)µ(S)

)
= x · E[n(f, h)]

E[n(m,h)]
· ρ(f, h)

Therefore it must hold that

E[n(m,h)]ρ(m,h) = x · E[n(f, h)] · ρ(f, h) (25)

We calculate the simulation parameters ρ̃(h) (see section 3.2) from the deterministic model param-
eters ρ(g, h),

ρ̃(h) =
1

NmE[n(m,h)]
ρ(f, h)

=
1

NmE[n(m,h)]
ρ(m,h)

E[n(m,h)]

E[n(f, h)]x

=
1

NmE[n(f, h)]x
ρ(m,h)

=
1

Nf
1
xE[n(f, h)]x

ρ(m,h)

=
1

NfE[n(f, h)]
ρ(m,h)

where we have used the equations 25 and

Nm =
1

x
Nf .

Therefore we can express ρ̃(h) as

ρ̃(h) =
1

Ng′

θ(g, h)µ(S)(
E[n(g′, h)]− dP (h)θ(g′, h)µ(S)

)(
E[n(g, h)]− dP (h)θ(g, h)µ(S)

) (26)
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4.4.2 Overview Calculations

To calculate the model parameters from the input parameters for a homosexual population, we
follow the same steps as in section 4.4.1. An overview of the model parameters expressed in the
new input-parameters is shown below:

Model parameters expressed in input parameters

heterosexual homosexual

µ(i) 1
L(i)

1
L(i)

ρ(h) 1
Nf

θ(m,h)µ(S)(
E[n(f,h)]−dP (h) 1

x θ(m,h)µ(S)

)(
E[n(m,h)]−dP (h)θ(m,h)µ(S)

) 1
N

θ(h)µ(S)(
E[n(h)]−dP (h)θ(h)µ(S)

)2

σ(h) 1
dP (h) − 2µ(S) 1

dP (h) − 2µ(S)

α(i) 1
dI(i) − µ(i) 1

dI(i) − µ(i)

4.5 Output

Another imporant aspect of the simulatiom program we have not yet discussed is the output. Think
for example of:

• N(g, i): the number of individuals of gender g in infection stage i.

• N(g, xc, xs): the number of individuals of gender g with xc number of casual partners and xs
number of steady partners, i.e. the degree distribution.

But of course it would be even more interesting to save the entire network structure: to save for
each individual in the population its name, gender, infection stage, partners, partnership capacity
etc. Saving the entire network structure is however a lot of output, especially for large populations.
Therefore saving the entire network structure is not something we want to do too often in a simu-
lation run. However saving output such as N(g, i) and N(g, xc, xs) very often is hardly any problem.

Therefore we implemented to have two different input parameters: nr save and nr save pop. Where
nr save pop denotes the number of times to save the entire network structure in one run and nr save
denotes the number of times to save other, ‘smaller’ output in one run.
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5 Results

This section will be devoted to the results of the simulation model for a certain set of baseline
parameter values. In the next section (section 6) we will study the variation around some of these
baseline values in a sensitivity analysis.

First we will discuss the chosen parameter values in section 5.1. Next, in section 5.2, we will
give a short explanation of confidence intervals, which we will use to illustrate the results of the
simulation model. In section 5.3 we will compare the results of the deterministic model with the
results of the simulations. Finally, in section 5.4, we will further investigate the network structures
of the simulation model, since in the simulations it is known exactly who has a relationship whit
whom.

5.1 Parametrization

We have chosen a set of input parameter values used in [14] so that we can compare the results of
the simulations to the results of the deterministic model found in this paper, to check the agreement
between the two models and the correctness of the mean field at distance one assumption

We consider at a heterosexual population with only one type of partnership and an one to one
sex ratio. A simulation will consist of a 100 runs, and we will look at a population of either mean
size 1.000 or 10.000. In this population we will follow the spread of a SI1I2 infection and we will
introduce this infection in the population by putting 100 randomly chosen individuals of the initial
population in infection stage I1. Note that this means that in the case of a population of 1.000
we start with 10% intially infected and in the case of a population size of 10.000 we start with 1%
intially infected.

It would be desired to begin with less than 100 initially infected individuals, because then we
include the early beginning of the spread of the infection in our simulations. But then the chances
of the infection dying out in the early stages of the infection are higher, and since we are interested
in the endemic prevalence of the infection, this is a situation we would like to prevent. Starting with
100 initially infected has no influence on the endemic state, only on the beginning of the spread of
the infection. Therefore please note that the ‘endemic state’ and the ‘beginning of the epidemic’ are
considered to be two separate phases of the epidemic. In this section we will focus on the infection
when it has reached its endemic state, since we start the simulations with 100 initially infected
individuals.

An overview of the input parameters is shown in table 7. We will from now on refer to these
input parameter values as the baseline parameter values.
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Parameter Description Value

N
e
tw

o
rk

N0 mean population size
{

1.000
10.000

x the ratio male : female (1 : x) 1
homo heterosexual (0) or homosexual (1)

population 0
L mean life expectancy 35 years
dP mean partnership duration 3.92 years
θ mean lifetime number of partners 3.5
Z(g) partnership capacity distributions


(nf , nm) = (1, 7)
(nf , nm) = (2, 6)
(nf , nm) = (3, 5)
(nf , nm) = (4, 4)

In
fe

c
ti

o
n

β1 transmission rate of infection stage I1 2.76/year
β2 transmission rate of infection stage I2 0.106/year
dI1 mean duration infection stage I1 2.9/12 years
nr infected(I1) the number of initial individuals in

infection stage I1 100
nr infected(I2) the number of initial individuals in

infection stage I2 0

R
e
st nr runs the number of simulation runs 100

max time the maximum time per simulation run 2000 years

Table 7: Baseline parameter values used in the simulations. The time unit is one year. The
parameter values are based one the input parameter set used in [14].

In table 7 we see that we consider multiple values for the following two parameters:

• The population size N0

We run the simulations for both N0 = 1.000 and N0 = 10.000, to see the effect of the
population size on the simulation results. For example it will be interesting to see the influence
of the population size to the level of agreement with the deterministic model.

• The partnership capacity distribution Z(g)
These distributions will, just like N0, vary between simulations. Let the males in the pop-
ulation have partnership capacity nm and the females partnership capacity nf . Note that
the partnership capacity can vary between individuals of different genders, but can not vary
between individuals of the same gender. Therefore the ‘distributions’ are simply constant val-
ues. We will use the partnership capacity values (nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4) and
refer to them from now on as scenarios. These four scenarios were used for the deterministic
model in [14]. These scenarios have been chosen in such a way that the mean partnership
capacity is always equal to 4.
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5.2 Confidence Interval

To illustrate the results from the simulations, we will calculate the mean of certain results of the
100 runs. We also derive a confidence interval for the mean. A confidence interval for the mean is
an interval, calculated from the simulation results, that contains the true mean with some specified
probability. If the coverage probability is 1 − α, the interval is called a 100 · (1 − α)% confidence
interval. In this masterthesis we make use of 95% confidence intervals, which is one of the most
common choices in literature. Therefore the confidence intervals calculated in this masterthesis are
intervals that contain the true mean with probability 0.95.

To explain the theory behind the confidence interval we follow [15]. Before explaining how to
calculate the confidence interval from the simulation results, let us introduce the Central Limit
Theorem. Let us consider a random sample {X1, X2, . . . , Xn} of size n, where X1, X2, . . . , Xn is a
sequence of independent and identically distributed random variables with population mean µ and
population variance σ2. Let us define the sample mean as

Xn :=

∑n
i=1Xi

n
.

The probability distribution of the sample mean Xn is called its sampling distribution of the sample
mean, with mean µX and variance σ2

X
. The sampling distribution of the sample mean describes

how accurate the sample mean Xn estimates the population mean µ.

We know from the Law of Large Numbers that the sample mean Xn converges to µ in probability
as n→∞. The central limit theorem tells us that, as n becomes large, the sampling distribution of

Xn approaches a normal distribution with mean µX = µ and variance σ2
X

= σ2

n . Let us standardize:

Zn =
Xn − µ

σ√
n

Then Zn converges to the standard normal distribution N(0, 1) as n→∞.

We can now calculate a size of 100 · (1 − α)% confidence interval for the population mean µ.
Let z(α) be the value such that the area under the standard normal density function to the right of
z(α) is equal to α, for 0 ≤ α ≤ 1. Note that, because of the symmetry of the standard normal den-
sity function around zero, it must holds that z(1− α) = −z(α). Therefore it holds for Z ∼ N(0, 1)
that

P (−z(α/2) ≤ Z ≤ z(α/2)) = 1− α

Since Xn−µ
σ√
n

approximates a standard normal distribution,

P (−z(α/2) ≤ Xn − µ
σ√
n

≤ z(α/2)) ≈ 1− α
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As mentioned before, we will make use of a 95% confidence interval. Therefore

0.95 ≈ P

(
−1.96 ≤ Xn − µ

σ√
n

≤ 1.96

)

= P

(
Xn − 1.96

σ√
n
≤ µ ≤ Xn + 1.96

σ√
n

)

So the 95% confidence interval is [Xn − 1.96 σ√
n
, Xn + 1.96 σ√

n
].

However the population standard deviation σ is not known. But it can be estimated by calcu-
lating the unbiased sample standard deviation of the sample, also called its standard error s. Using
n−1 in stead of n in the calculation of the sample standard deviation, gives us an unbiased estimator
of the population standard deviation. Therefore,

σ ≈ s :=

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2
n

Let the sample have mean x and standard deviation s. Then the 95% confidence intervals that we
will calculate for the simulation results, can be expressed as

[x− 1.96
s√
n
, x+ 1.96

s√
n

]

Please keep in mind that the assumption was made that the sample size n→∞ (see central limit
theorem). Therefore the sample size needs to be large for the confidence interval to be meaningful.

Population Sample Sample distribution

mean µ x µX
standard deviation σ s σX

Table 8: The different symbols used for population parameters and sample statistics.
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5.3 Comparison with deterministic model

We will now compare the results of the deterministic model with the results of the simulation model
for the baseline parameter values explained in section 5.1. We will compare the following results
for both models:

• The network

– The degree distribution:
The degree distribution Pg(k) of the network is defined as the fraction of individuals of
gender g ∈ {male, female} with k ≤ ng partners in the total pool of individuals of gender
g.

– The concurrency index:
The partnership-based concurrency index κP was introduced in [9] for the homosexual
deterministic model with the following operational definition: choose a partnership at
random from the pool of all partnerships, focus on one of the two partners and count
how many partners it has besides the ‘known’ partner.

In the simulation model we will use this interpretation to calculate the concurrency
index. We go through all the partnerships in the network at a certain time, and for
each partner in the partnership we calculate its number of partners, besides the ‘known’
partner. We take the mean of all these values to calculate the expected number κP .

But since we are dealing with a heterosexual population in stead of a homosexual pop-
ulation we will calculate a seperate concurrency index for both men and women. Let
κP (g) have the following operational definition: choose a partnership at random from
the pool of all partnerships, focus on the partner of gender g of the two partners and
count how many partners it has besides the ‘known’ partner.

• The infection

– The endemic prevalence
The endemic prevalence means the proportion of infected individuals in the population,
when the infection has reached endemic stability. We will calculate a seperate endemic
prevalence for both male and female individuals and for each infection stage, meaning
we calculate the proportion of infected individuals of gender g in infection stage i in the
total pool of individuals of gender g for g ∈ {male, female} and i ∈ {S, I1, I2, T}.

– The mean field at distance one
The mean field at distance one assumption, used in the deterministic model, has already
been discussed in section 1.3 (eq. (10) and eq. (11)). Λ± was introduced as the expected
number of infectious partners of a susceptible partner of an individual in infection state
±. With the mean field at distance one assumption it is assumed that in the determinis-
tic model these properties concerning partners of partners can be obtained by averaging
over the population.

One of the main reasons that has motivated this thesis is to check the correctness of
this assumption, by comparing the values of Λ of the deterministic model (calculated
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with the mean field at distance one assumption) with the values of Λ of the simulation
model (in which no such assumption is made).

Since we now look at a heterosexual population with an SI1I2 infection, let us introduce
Λ(i, ip, g) as the expected number of partners in infection stage ip ∈ {I1, I2} of a suscep-
tible partner of an individual of gender g in infection stage i ∈ {S, I1, I2}. An illustration
to clarify the meaning of Λ(i, ip, g) is shown in fig. 3.

Figure 3: Illustration of the meaning of the mean field at distance one value Λ(i, ip, g).

Network

In this subsection we will compare the network of the deterministic model and the network of the
simulations by studying the degree distribution and the concurrency index. As explained in sec-
tion 4.1 before starting the simulations, we start the program without infection, and introduce the
infection after the network has stabilized. With the chosen baseline parameter values (table 7), the
infection has no influence on the partnership dynamics. Therefore during the entire simulation we
will expect to be dealing with a stable network. Thus concerning the network properties, it should
not differ when the means and confidence intervals are calculated, whether it be at the beginning,
middle or end of the simulations. To check this, we have calculated the means and confidence
intervals on different times in the simulations, and have seen that network properties indeed do not
differ significantly. For all future results we have calculated the network properties at the end of
the simulation, 2.000 year after introducing the infection.

As explained is section 5.2 we will illustrate the simulation results of the 100 runs by calculat-
ing the mean and the 95% confidence interval. We will put the results of the deterministic model
with the mean and confidence interval of the simulations together in tables for easy comparison.
We have also illustrated the results in plots, which can be found in appendix D.

44



Degree Distribution (nf , nm) = (1, 7)

Deterministic Simulations
mean [95% CI]

gender, N = 1.000 N = 10.000
nr partners
male, 0 0.671 0.673 [0.670, 0.677] 0.672 [0.671, 0.674]
male, 1 0.272 0.269 [0.266, 0.273] 0.271 [0.270, 0.272]
male, 2 0.0510 0.0518 [0.0499, 0.0538] 0.0511 [0.0506, 0.0517]
male, 3 0.00543 0.00508 [0.00445, 0.00570] 0.00541 [0.00523, 0.00560]
male, 4 0.000351 0.000217 [7.25 ·10−5, 0.000362] 0.000371 [0.000323, 0.000418]
male, 5 1.37 ·10−5 0.0 [0.0, 0.0] 6.05 ·10−6 [-7.26 ·10−7, 1.28 ·10−5]
male, 6 2.99 ·10−7 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
male, 7 2.81 ·10−9 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
female, 0 0.608 0.610 [0.606, 0.614] 0.610 [0.608, 0.611]
female, 1 0.392 0.390 [0.386, 0.394] 0.390 [0.389, 0.392]

Table 9: The degree distribution for (nf , nm) = (1, 7) with N0 = 1.000 or 10.000 at t = 2.000 years.
The degree distribution is the fraction of individuals of gender g with k ≤ ng partners in the total
pool of individuals of gender g.

Degree Distribution (nf , nm) = (2, 6)

Deterministic Simulations
mean [95% CI]

gender, N = 1.000 N = 10.000
nr partners
male, 0 0.670 0.668 [0.664, 0.673] 0.670 [0.669, 0.671]
male, 1 0.275 0.276 [0.272, 0.280] 0.274 [0.273, 0.275]
male, 2 0.0505 0.0501 [0.0480, 0.0522] 0.0505 [0.0498, 0.0511]
male, 3 0.00507 0.00505 [0.00436, 0.00575] 0.00525 [0.00505, 0.00545]
male, 4 0.000290 0.000321 [0.000166, 0.000475] 0.000276 [0.000233, 0.000318]
male, 5 8.91 ·10−6 3.88 ·10−5 [-1.48 ·10−5, 9.24 ·10−5] 1.21 ·10−5 [1.08 ·10−6, 2.32 ·10−5]
male, 6 1.14 ·10−7 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
female, 0 0.648 0.648 [0.643, 0.653] 0.648 [0.647, 0.650]
female, 1 0.312 0.312 [0.307, 0.316] 0.311 [0.310, 0.313]
female, 2 0.0402 0.0403 [0.0384, 0.0422] 0.0406 [0.0400, 0.0412]

Table 10: The degree distribution for (nf , nm) = (2, 6) with N0 = 1.000 or 10.000 at t = 2.000
years. The degree distribution is the fraction of individuals of gender g with k ≤ ng partners in the
total pool of individuals of gender g.
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Degree Distribution (nf , nm) = (3, 5)

Deterministic Simulations
mean [95% CI]

gender, N = 1.000 N = 10.000
nr partners
male, 0 0.668 0.669 [0.664, 0.673] 0.667 [0.666, 0.668]
male, 1 0.278 0.278 [0.274, 0.282] 0.279 [0.277, 0.280]
male, 2 0.0498 0.0497 [0.0479, 0.0515] 0.0495 [0.0489, 0.0500]
male, 3 0.00457 0.00393 [0.00337, 0.00449] 0.00458 [0.00438, 0.00478]
male, 4 0.000212 0.000204 [7.07 ·10−5, 0.000337] 0.000200 [0.000160, 0.000240]
male, 5 3.96 ·10−6 0.0 [0.0, 0.0] 6.00 ·10−6 [-7.22 ·10−7, 1.27 ·10−5]
female, 0 0.659 0.662 [0.658, 0.667] 0.659 [0.658, 0.660]
female, 1 0.292 0.288 [0.284, 0.292] 0.292 [0.291, 0.293]
female, 2 0.0463 0.0473 [0.0452, 0.0493] 0.0466 [0.0460, 0.0472]
female, 3 0.00251 0.00239 [0.00195, 0.00282] 0.00251 [0.00236, 0.00266]

Table 11: The degree distribution for (nf , nm) = (3, 5) with N0 = 1.000 or 10.000 at t = 2.000
years. The degree distribution is the fraction of individuals of gender g with k ≤ ng partners in the
total pool of individuals of gender g.

Degree Distribution (nf , nm) = (4, 4)

Deterministic Simulations
mean [95% CI]

gender, N = 1.000 N = 10.000
nr partners
male, 0 0.665 0.664 [0.660, 0.669] 0.664 [0.663, 0.666]
male, 1 0.283 0.282 [0.279, 0.286] 0.284 [0.282, 0.285]
male, 2 0.0486 0.0495 [0.0477, 0.0513] 0.0484 [0.0478, 0.0490]
male, 3 0.00380 0.00385 [0.00329, 0.00441] 0.00373 [0.00356, 0.00389]
male, 4 0.000113 6.00 ·10−5 [-7.22 ·10−6, 0.000127] 0.000132 [9.61 ·10−5, 0.000169]
female, 0 0.665 0.668 [0.664, 0.672] 0.665 [0.663, 0.666]
female, 1 0.283 0.278 [0.274, 0.283] 0.283 [0.281, 0.284]
female, 2 0.0486 0.0492 [0.0472, 0.0513] 0.0487 [0.0481, 0.0493]
female, 3 0.00380 0.00421 [0.00364, 0.00479] 0.00376 [0.00361, 0.00392]
female 4 0.000113 6.09 ·10−5 [-7.42 ·10−6, 0.000129] 0.0001113 [8.06 ·10−5, 0.000141]

Table 12: The degree distribution for (nf , nm) = (4, 4) with N0 = 1.000 or 10.000 at t = 2.000
years. The degree distribution is the fraction of individuals of gender g with k ≤ ng partners in the
total pool of individuals of gender g.
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Degree variance and mean

Deterministic Simulations
mean [95% CI]
N0 = 1.000 N0 = 10.000

(4,4)
mean population 0.392 0.391 [0.386, 0.3968] 0.392 [0.390, 0.394]
male variance 0.360 0.360 [0.355, 0.366] 0.359 [0.357, 0.361]
female variance 0.360 0.362 [0.355, 0.369] 0.360 [0.358, 0.362]
(3,5)
mean population 0.392 0.389 [0.384, 0.395] 0.392 [0.391, 0.394]
male variance 0.368 0.362 [0.356, 0.369] 0.367 [0.366, 0.369]
female variance 0.346 0.346 [0.340, 0.352] 0.347 [0.345, 0.349]
(2,6)
mean population 0.392 0.392 [0.387, 0.398] 0.392 [0.390, 0.394]
male variance 0.373 0.373 [0.365, 0.381] 0.374 [0.372, 0.376]
female variance 0.319 0.318 [0.313, 0.323] 0.320 [0.318, 0.321]
(1,7)
mean population 0.392 0.389 [0.385, 0.393] 0.391 [0.389, 0.392]
male variance 0.377 0.374 [0.367, 0.380] 0.377 [0.376, 0.379]
female variance 0.238 0.237 [0.236, 0.238] 0.238 [0.238, 0.238]

Table 13: Degree Variance and Mean for (nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4) with N0 = 1.000
or 10.000 at t = 2.000 years. In this table we show the mean of the degree distribution of the
population, and the variance of the degree distribution of both male and female individuals.
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Concurrency index

Deterministic Simulations
mean [95% CI]
N = 1.000 N = 10.000

(4,4)
male 0.310 0.311 [0.301, 0.321] 0.308 [0.305, 0.311]
female 0.310 0.317 [0.304, 0.330] 0.309 [0.306, 0.313]
(3,5)
male 0.331 0.320 [0.308, 0.332] 0.329 [0.325, 0.332]
female 0.275 0.277 [0.267, 0.287] 0.276 [0.272, 0.279]
(2,6)
male 0.345 0.341 [0.326, 0.355] 0.347 [0.343, 0.351]
female 0.205 0.204 [0.197, 0.212] 0.207 [0.204, 0.209]
(1,7)
male 0.355 0.349 [0.337, 0.361] 0.356 [0.353, 0.359]
female 0.0 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Table 14: Concurrency Index for (nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4) with N0 = 1.000 or 10.000
at t = 2.000 years.
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The results of the degree distribution are shown in Tables 9 - 12, the degree variance and mean
in Table 13 and the concurrency index in Table 14. We can see from the results that the network
structure of the simulations seems to agree very well with the network structure of the deterministic
model. The deterministic value almost always falls within the confidence interval of the simulation
model. There are some exceptions for very small values, such as the fraction of male individuals
with 5 or more partners in Table 9. This could be caused by the fact that these cases appear very
little, or not at all, in the 100 simulation runs. It is not unreasonable for the deterministic results
and the simulation results to no longer coincide for such very small values.

This effect can also be seen in the difference in the means and confidence intervals between men
and women for the scenario (4,4). In the symmetric scenario (4,4) the results should be the same
for men and women. But we can see in the results that this is not the case, simply caused by the
variablity between the runs, even when taking a 100 runs.

The mean values of the simulations with N0 = 10.000 do improve slightly compared to the mean
values of the simulations with N0 = 1.000. Although the mean values of N0 = 1.000 already
seem to be a good approximation of the deterministic model. However the most effect of increas-
ing the population size seems to be on the confidence interval, which becomes much smaller for
a larger population size. The variability between the runs is much greater with N0 = 1.000 than
N0 = 10.000.
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Infection

In this subsection we will compare the infection of the deterministic model and the simulation
by looking at the endemic level and the mean field at distance one assumption. We look at the
infection when it has reached endemic stability. Therefore all results are calculated at the end of the
simulations. Just like the comparison of the network, we will show the deterministic results with
the means and confidence intervals of the simulations together in one table. The results illustrated
as plots can be found in appendix D.

Figure 4: The fraction of infected (I1 + I2) (mean and 95% confidence interval) over time for
(nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4), with N0 = 10.000. Over a period of 2.000 years for
(nf , nm) = (2, 6), (3, 5), (4, 4) and for a period of 4.000 years for (nf , nm) = (1, 7).

As explained before we calculate the endemic level at the end of the simulation, 2.000 years after
introducing the infection. We have chosen a maximum time of 2.000 years for the parameter base-
line values in table 7, based on the stabilization of the infection in the scenario (nf , nm) = (4, 4)
and N0 = 10.000. But when we plot the fraction infected individuals over time for all 4 scenarios
(see Figure 4), we see that the time needed for the infection to reach endemic stability differs for the
scenarios. Especially for the case (nf , nm) = (1, 7) it takes much longer to reach endemic stability,
and we can see that it has not yet been reached after 2.000 years. This slow spread of the infection
for scenario (1,7) will be later explained in section 5.4.

But because of this slow spread of infection, to calculate the endemic level and other properties
of the infection in its endemic state, we will take a maximum time of 4.000 years for the scenario
(nf , nm) = (1, 7).
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Endemic Level

Deterministic Simulations
mean [95% CI]
N = 1.000 N = 10.000

(4,4)
male I1 0.000956 0.00106 [0.000791, 0.00133] 0.000870 [0.000787 0.000953]
male I2 0.137 0.130 [0.124, 0.136] 0.137 [0.134, 0.139]
female I1 0.000956 0.000845 [0.000567, 0.00112] 0.000964 [0.000879, 0.00105]
female I2 0.137 0.132 [0.125, 0.138] 0.136 [0.134, 0.138]
(3,5)
male I1 0.000919 0.000645 [0.000422, 0.000868] 0.000987 [0.000902, 0.00107]
male I2 0.132 0.126 [0.120, 0.133] 0.132 [0.131, 0.134]
female I1 0.000939 0.000945 [0.000679, 0.00121] 0.000945 [0.000867, 0.00102]
female I2 0.135 0.128 [0.121, 0.135] 0.136 [0.133, 0.138]
(2,6)
male I1 0.000793 0.000814 [0.000489, 0.00114] 0.000815 [0.000729, 0.000900]
male I2 0.114 0.100 [0.0944, 0.106] 0.114 [0.112, 0.117]
female I1 0.000838 0.000637 [0.000439, 0.000835] 0.000809 [0.000732, 0.000887]
female I2 0.120 0.105 [0.0990, 0.112] 0.120 [0.118, 0.122]
(1,7)
male I1 0.000328 0.000321 [0.000154, 0.000487] 0.000328 [0.000275, 0.000380]
male I2 0.0471 0.0318 [0.0262, 0.0374] 0.0426 [0.0405, 0.0447]
female I1 0.000377 0.000222 [6.333 ·10−5, 0.000381] 0.000326 [0.000272, 0.000381]
female I2 0.0542 0.0365 [0.0300, 0.0431] 0.0495 [0.0471, 0.0519]

Table 15: Endemic level for (nf , nm) = (1, 7), (2, 6), (3, 5) (at t = 2.000 years) and (4, 4) (at
t = 4.000 years) with N0 = 1.000 or 10.000.

Let us first compare the endemic level (see Table 15). We see that the endemic levels of the
deterministic model often do not lie within the confidence interval of the simulation model for
N0 = 1.000. But since in the deterministic model a large population is assumed, it is not strange
that the simulation results for a population of size 1.000 do not completely coincide with the results
of the deterministic model. The means and confidence intervals of N0 = 10.000 are already a much
better approximation and the deterministic values almost always fall within the confidence intervals.

It is notable that from the three cases that the deterministic values do not fall within the con-
fidence interval for N0 = 10.000, two of them are for the scenario (1,7). And that for both the
confidence intervals are lower than the endemic levels of the deterministic model. Although we have
increased the maximum time for the scenario (1,7), apparently the infection still not has reached
endemic stability, even after 4.000 years (see fig. 4). Which have caused the deviating values for
(1,7).
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Mean field at distance one (nf , nm) = (4, 4)

Deterministic Simulations
mean [95% CI]
N = 1.000 N = 10.000

Λ(S, I1,m) 0.000143 0.000556 [0.000145, 0.000968] 0.000158 [9.23 ·10−5, 0.000224]
Λ(S, I2,m) 0.0305 0.0293 [0.0258, 0.0327] 0.0299 [0.0288, 0.0310]
Λ(I1, I1,m) 1.00 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2,m) 0.0305 0.0 [0.0, 0.0] 0.00463 [-0.00444, 0.0137]
Λ(I2, I1,m) 0.000142 0.0 [0.0, 0.0] 6.76 ·10−5 [0.0, 0.000200]
Λ(I2, I2,m) 1.03 1.03 [1.02, 1.05] 1.03 [1.03, 1.03]
Λ(S, I1, f) 0.000143 6.94 ·10−5 [-6.67 ·1−−5, 0.000206] 0.000140 [7.22 ·10−5, 0.000209]
Λ(S, I2, f) 0.0305 0.0298 [0.0263, 0.0333] 0.0302 [0.0291, 0.0312]
Λ(I1, I1, f) 1.00 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2, f) 0.0305 0.200 [-0.192, 0.592] 0.0213 [-0.0204, 0.0630]
Λ(I2, I1, f) 0.000142 0.000625 [-0.000600, 0.00185] 7.94 ·10−5 [0.0, 0.000235]
Λ(I2, I2, f) 1.03 1.02 [1.01, 1.03] 1.03 [1.03, 1.03]

Table 16: Mean field at distance one for (nf , nm) = (4, 4) with N0 = 1.000 or 10.000 at t = 2.000
years.

Mean field at distance one (nf , nm) = (3, 5)

Deterministic Simulations
mean [95% CI]
N = 1.000 N = 10.000

Λ(S, I1,m) 0.000133 0.000258 [-4.64e ·10−5, 0.000562] 0.000118 [6.28 ·10−5, 0.000172]
Λ(S, I2,m) 0.0315 0.0279 [0.0247, 0.0311] 0.0313 [0.0301, 0.0325]
Λ(I1, I1,m) 1.000 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2,m) 0.0314 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(I2, I1,m) 0.000132 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(I2, I2,m) 1.03 1.02 [1.01, 1.04] 1.03 [1.03, 1.04]
Λ(S, I1, f) 0.000130 0.000192 [-8.54 ·10−5, 0.000469] 9.83 ·10−5 [5.03 ·10−5, 0.000146]
Λ(S, I2, f) 0.0264 0.0237 [0.0205, 0.0269] 0.0262 [0.0252, 0.0273]
Λ(I1, I1, f) 1.000 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2, f) 0.0263 0.0 [0.0, 0.0] 0.0409 [-0.00177, 0.0836]
Λ(I2, I1, f) 0.000129 0.0 [0.0, 0.0] 0.000249 [8.02 ·10−6, 0.000489]
Λ(I2, I2, f) 1.03 1.02 [1.01, 1.03] 1.03 [1.02, 1.03]

Table 17: Mean field at distance one for (nf , nm) = (3, 5) with N0 = 1.000 or 10.000 at t = 2.000
years.
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Mean field at distance one (nf , nm) = (2, 6)

Deterministic Simulations
mean [95% CI]
N = 1.000 N = 10.000

Λ(S, I1,m) 9.31 ·10−5 0.0 [0.0, 0.0] 0.000126 [5.98 ·10−5, 0.000192]
Λ(S, I2,m) 0.0283 0.0239 [0.0208, 0.0271] 0.0282 [0.0270, 0.0294]
Λ(I1, I1,m) 1.000 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2,m) 0.0283 0.0 [0.0, 0.0] 0.0714 [-0.0103, 0.153]
Λ(I2, I1,m) 9.22 ·10−5 0.0 [0.0, 0.0] 0.000204 [-2.48 ·10−5, 0.000434]
Λ(I2, I2,m) 1.03 1.03 [1.01, 1.04] 1.03 [1.02, 1.03]
Λ(S, I1, f) 8.78 ·10−5 0.000138 [-5.23 ·10−5, 0.000328] 2.68 ·10−5 [9.19 ·10−7, 5.26 ·10−5]
Λ(S, I2, f) 0.0172 0.0166 [0.0143, 0.0190] 0.0178 [0.0171, 0.0185]
Λ(I1, I1, f) 1.00 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2, f) 0.0172 0.0 [0.0, 0.0] 0.0160 [-0.00642, 0.0385]
Λ(I2, I1, f) 8.71 ·10−5 0.0 [0.0, 0.0] 0.000134 [-5.07 ·10−5, 0.000318]
Λ(I2, I2, f) 1.02 1.02 [1.01, 1.03] 1.02 [1.01, 1.02]

Table 18: Mean field at distance one for (nf , nm) = (2, 6) with N0 = 1.000 or 10.000 at t = 2.000
years.

Mean field at distance one (nf , nm) = (1, 7)

Deterministic Simulations
mean [95% CI]
N = 1.000 N = 10.000

Λ(S, I1,m) 3.75 ·10−7 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(S, I2,m) 0.0121 0.00722 [0.00526, 0.00917] 0.0107 [0.0101, 0.0114]
Λ(I1, I1,m) 1.000 - -
Λ(I1, I2,m) 0.0115 - -
Λ(I2, I1,m) 3.76 ·10−7 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(I2, I2,m) 1.01 1.02 [0.995, 1.05] 1.01 [1.00, 1.01]
Λ(S, I1, f) 0 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(S, I2, f) 0 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(I1, I1, f) 1 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Λ(I1, I2, f) 0 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(I2, I1, f) 0 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
Λ(I2, I2, f) 1 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]

Table 19: Mean field at distance one for (nf , nm) = (1, 7) with N0 = 1.000 or 10.000 at t = 4.000
years.

Let us now take a look at the mean field at distance one assumption in tables 19 - 16. Remember
that we have defined Λ(i, ip, g) as the expected number of infectious partners in infection stage
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ip ∈ {I1, I2} of a susceptible partner of an individual of gender g in infection stage i (see fig. 3). To
calculate Λ(i, ip, g) in the simulations we will go through all the individuals of gender g in infection
stage i in the population, and for each susceptible partner we will count its number of partners in
infection stage ip and average these values.

Let us look at the scenario (nm, nf ) = (4, 4). The mean field at distance one Λ(i, ip, g) should
be equal between men and women, but in the case of Λ(I1, I2, g) the values differ greatly be-
tween the two genders. Also the confidence interval of Λ(I1, I2,m) does not even coincide with the
deterministic results. All the other results of Λ(i, ip, g) for the scenario (nm, nf ) = (4, 4) are ap-
proximately equal between men and women and coincide with the deterministic results. Therefore
we must wonder what differs in the case of Λ(I1, I2, g).

Figure 5: Illustration of the meaning of the mean field at distance one value Λ(I1, I2, g).

The meaning of Λ(I1, I2, g) is the expected number of partners in infection stage I2 of a suscepti-
ble partner v of an individual u of gender g in infection stage I1 (see illustration in fig. 5). The
fraction of the population in infection stage I1 is very small, approximately 0.000956 (see Table
15), which means approximately 1 individual in stage I1 in case of N = 1.000 and approximately
10 individuals in stage I1 in case of N = 10.000. So the number of individuals in infection stage
I1 with a susceptible partner will most likely be very small. Therefore the mean and confidence
interval for Λ(I1, I2, g) is probably calculated with use of a very small ‘sample’. Even though dur-
ing the calculation of the confidence interval the sample size is taken into account (a small sample
size causes a large confidence interval), during the calculations a large sample size is assumed (an
assumption needed for the Central Limit Theorem). This can cause unprecise confidence intervals,
when working with small samples.

These small sample sizes can also be seen in the other four scenarios. Especially in the situa-
tion of (nm, nf ) = (1, 7), where Λ(I1, I1,m) and Λ(I1, I2,m) have no value. Apparently no male
individual in infection stage I1 with a susceptible partner has been encountered, therefore no aver-
age could be calculated and no value is given for Λ.

Besides the difference between the deterministic results and the simulation results concerning
Λ(I1, I2, g) for all the four scenarios, the mean field at distance one values seem to coincide quite
well. In most cases the deterministic value falls within the confidence interval of the simulations.

Conclusion

We have now compared the results of the deterministic model with the results of the simulations
for the baseline parameter values, in which we varied the population size N0 and the partnership
capacities (nf , nm), all other parameters were held constant. We looked at different aspects of the
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network (degree distribution, concurrency index) and infection (endemic prevalence, mean field at
distance one assumption).

The network results of both models agree very well (the deterministic values fall within the con-
fidence intervals of the simulations), except for the very small values. But we cannot expect such
precision, since we are dealing with a simulation model, even with a larger number of runs. When
looking at the infection, we saw a few discrepancies in the endemic prevalence for scenario (1,7).
This could be caused by the fact that endemic stability has not yet been reached at the end of each
run. But, altogether, the models seem to agree very well.

Next, we have compared the values of Λ(i, ip, g) for both models, to check the correctness of the
mean field at distance one assumption made in the deterministic model. A few inconsistencies were
encountered, but these could be explained by the very small sample sizes that causes inaccurate
results. Any conclusion from these results about the correctness of the mean field at distance one
assumption we do not dare to make, but the results are promising.

It would be very interesting to run the simulations for larger population sizes, and see how this af-
fects the mean field at distance one results. This is however not advisable with the code in Python,
because of the large running time of the program (see appendix B.9), but could be possible if the
code was rewritten in a compiled programming language (see appendix B.8).

Please note that we only compared both models for the baseline parameter values, so no conclusions
can be made for other parameter sets.

5.4 Further network structure results

In this subsection we will explore the network and infection further, using the same baseline pa-
rameter values that were used for the comparison of the deterministic and simulation model. But
we will no longer compare the simulation results to the deterministic model. We will now focus on
the study of the network structures and exploit the fact that, compared to the deterministic model,
more information about the network is available in the simulations.

Network

Let us first take a closer look at the network structure. A great advantage of the simulation model
is that we know the exact network structure, or in other words we know exactly who has a part-
nership with whom. An important quality of a network is its connected components. A connected
component, often simpy refered to as a component, is a subnetwork in which any two individuals
are connected to each other by partnerships.

In fig. 6 the distribution of the size of connected components in the network is shown. For each run
we count the frequency of each component size in the network and divide it by the total number of
connected components. We calculate the mean and confidence interval over all the 100 runs, which
has led to the distributions shown in fig. 6.

Since connected components of size 1 (single individuals) are most frequent, we do not show these
in the plot to better illustrate the rest of the occurring sizes. The maximum occurring size is also
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the maximum value on the x-axis.

The figure shows that the distribution of the size of the connected components is very similar for
the scenarios (nf , nm) = (2, 6), (3, 5) and (4, 4). For the scenario (nf , nm) = (1, 7) the maximum
size of a connected component is of course 8, but the occurring maximum size in the simulation
is only 6. And we can see that connected components of size 6 occur very rarely. The other
scenarios have no such limitations on the maximum size, since females are allowed to have more
than one partner, which allows larger connected components. Although larger connected compo-
nents are indeed present for these three scenarios, the frequency with which they occur is very small.

This difference of the component size distribution between scenario (1,7) and the other three,
may explain why the infection takes so much longer to reach endemic stability for (1,7) compared
to the other scenarios (see fig. 4).

Figure 6: The connected component size distribution of the network (mean and 95% confi-
dence interval) at the end of the simulations with N0 = 10.000, for the scenarios (nf , nm) =
(1, 7), (2, 6), (3, 5) and (4, 4)

In fig. 7 we illustrate the mean and variance of the connected component size distributions that are
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shown in fig. 6. We can see that the mean size of the connected components is approximatly the
same for all scenarios. Even though there do exist large components for the scenarios (2,6), (3,5)
and (4,4) it seems that, because they occur so rarely, they have little effect on the mean size.
The variances of the distributions do differ, especially between the scenario (1, 7) and the rest
of the scenarios. This could be caused by the previously explained limitation on the maximum
size of the connected components when (nf , nm) = (1, 7), while the other scenarios have no such
limitations. Since for calculating the variance, the difference between the component size and the
mean component size is squared, the larger components have more influence on the variance than
on the mean.

Figure 7: The mean and variance of the connected component size distribution for (nf , nm) =
(1, 7), (2, 6), (3, 5) and (4, 4).

The distributions of the size of the connected components (fig. 6) and its mean and variance (fig. 7)
are both calculated at one point in time. However we are also interested in the change of the
network structure over time. It is difficult to investigate a dynamic network, when we only take
snapshots of the network at certain times. We will try to explore the network changes over time by
following a population with a stable network structure for 100 years and look at the distribution of
the size of the components every year. We have illustrated the frequency of the size of the connected
components as a pixel plot over time in fig. 8 for each scenario. Note that we follow one run for
100 years, therefore the figure does not show means or confidence intervals.

We can see that there is again a large difference between the scenario (1,7) and the other three
scenarios, because of the limitation on the maximum component size for (1,7). The other three sce-
narios are very similar, but we do see that the less variance in the partnership capacities (nf , nm),
the higher the occurring ‘peaks’ in existing component sizes.
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Figure 8: The frequency of the sizes of the connected components over 100 years with time steps
of 1 year. With N0 = 10.000, for (nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4).

Infection

In Figure 6 we have seen that for the scenarios (nf , nm) = (2, 6), (3, 5) and (4, 4) large connected
components exists, but not very often. But maybe, even though large connected components do
not occur often, they could give the transmission of infection an extra ‘boost’. Therefore we would
like to investigate if the probability that an individual gets infected is higher when it resides in a
large component.

We cannot simply compare the fraction of transmission that occur in a certain component size
with the fraction of individuals that reside in a component of that size. Because we also need to
take into account that the probability of transmission strongly depends on the individuals’ number
of partners. And the component size in which the individual resides has some influence on its num-
ber of partners. For example if an individual resides in a component of size 2 we already know that
it only has one partner. But if an individual resides in a large component size, it could have a large
number of partners, making the probablity of getting infected higher. Therefore we will compare
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the fraction of transmissions to an individual with k partners in a component of size s with the
fraction individuals with k partners residing in a component of size s at the moment of transmission.

We follow a population in endemic state for 100 years. Everytime transmission occurs, we save
the entire network structure. Thus we do not only have the information in which component size
the transmission has occured, but also the newly infected individuals’ number of partners and the
component size distribution. This gives us all the information needed to construct the wanted
figures. We will only illustrate the results in the figure if transmission (to an individual of a certain
number of partners in a component of certain size) has occured more than 10 times during the 100
years of following the population.

Figure 9: The fraction of transmissions to an individual with one partner in a component of size
s vs the fraction of individuals with one partner residing in a component of size s. We look at a
population size N0 = 10.000, for the scenarios (nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4).

In this paper we only show the fraction of transmissions in component size s versus the probabillity
of an individual residing in a component of size s, given that the (newly infected) individual has
only one partner, which is illustrated in fig. 9. The results for multiple partners are not shown, but
the same conclusion could be drawn from those results. We see for all scenarios that the probability
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of transmission in a component of size two is smaller than the probablity of an individual residing
there. For component size three or more, the probability of transmission is larger. But in fig. 9 it
is hard to see if it is true that the larger the connected component, the higher the probablility for
an individual to get infected. Therefore we want to take a closer look at the ratio between the two
probabilities:

ratio =
fraction transmissions to individual with k partners in component of size s

fraction of individuals with k partners residing in component of size s

Figure 10: The ratio: (the fraction of transmissions that occur in a component of size s, given
that the newly infected has 1 partner) : (the fraction of individuals with 1 partner residing in a
component of size s). We follow a population of size N0 = 10.000 for 100 years, for the scenarios
(nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4). The numbers on the bars indicate the number of times
transmission has occured in the 100 years, to an individual with 1 partner in a certain component
size.

We have illustrated the ratios in fig. 10. We see that for all scenarios the ratios indeed do increase
in value, when the connected component increases in size. Telling us that the probablity for an
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individual to get infected is more likely in a larger component. But we also see that with compo-
nent size 6, the ratio seems to decrease again for all scenarios. These irregularities after component
size 6 may be caused by the fact that these larger components are not stable in time, causing the
calculations of the ratio to be based on little data.

As we have said before, we only illustrate the results if transmission has occured more than 10
times. But this is still very little data to draw conclusions from. Since the frequency of occurence
has a large impact on the reliability of the ratio, we show on every ratio bar the frequency of the
transmission that has occured in that component size.

Figure 11: The fraction of the total number of infected individual that are infected by an individual
in infection stage I1.

Next we will look at the contribution of the infection stage I1 to the transmission of the infection,
illustrated in fig. 11. We have plotted the fraction of infected individuals that are infected by an
individual of gender g in infection stage I1, out of the total pool of infections caused by an individual
of gender g.

We see that decreasing the variance of the partnership capacities, causes an increase in the contribu-
tion of the infections caused by I1. The acute phase I1 is a relative short period (2.9/12 years), but
during this period the individual is very infectious. Therefore it advantegeous for the transmission
of infection if there are larger components in the network, which allows the infection during the
acute phase to spread quickly through the component. And as we have seen in fig. 6 the scenarios
with less variance between the partnership capacities, allow larger components in the network.

We also see that changing the partnership capacities has very little effect on the contribution
of I1 of men. We can see in the tables 9 - 12 that the degree distribution of men changes a lot
less compared to the degree distribution of women, when altering the partnership capacities. Even
though the difference in the number of binding sites for the scenarios (1,7) and (4,4) is the same
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for men (7 − 4 = 3) and women (4 − 1 = 3). But since there are approximately the same number
of men as there are women in the population, for the scenario (1,7) there are simply not enough
female binding sites for the number of male binding sites. Therefore the binding sites of the men do
not reach their full ‘potential’ in scenario (1,7), while the female binding sites do not have that lim-
itation since there are many more male binding sites. All in all, changing the partnership capacities
has more effect on women than on men.
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6 Sensitivity analysis

In section 5 we have only looked at the baseline parameter values given in table 7. All input pa-
rameters were held constant, except for (nf , nm) and N0 for which a few different scenario’s were
considered. The used parameter values are estimates, and are bound to be uncertain. Therefore we
will perform a so called Sensitivity Analysis, the study of how uncertainty in the output of a model
can be attributed to different sources of uncertainty in the model input [16]. In this section we are
going to investigate the influence of variation around these baseline values on the model results.

In section 6.1 we will use the so called univariate one-at-a-time (OAT) approach. OAT analy-
sis looks at the impact of a parameter on the model output one parameter at a time, keeping the
others constant. OAT is a simple approach and does not explore the interaction between input
parameters.

6.1 One-at-a-time sensitivity analysis

In this section we will investigate the influence of some of the input parameters on the model out-
put with the one-at-a-time (OAT) approach. We will vary one parameter at a time, while we keep
the rest of the parameters constant to the previously used values in table 7. We will not perform
sensitivity analysis for all the model parameters, but we will look at the following three parameters:
the mean partnership duration dP , the mean lifetime number of partners θ and the mean duration
of the acute phase dI1 . By varying the parameters dP and θ we change network parameters and
investigate how this influences not only the network structure but the spread of the infection. By
changing dI1 we change characteristics of the infection itself and will only investigate how this in-
fluences the spread of the infection.

We will perform the sensitivity analysis for a population of size N0 = 10.000 and for the sce-
narios (nf , nm) = (1, 7) and (4, 4). We have to keep in mind that not all combinations of parameter
values are allowed. Taking the restrictions 17, 19 and 23 (see section 4.4) into account, we will
consider the allowed intervals for the OAT approach shown in table 20. These intervals are chosen
to surround the baseline parameter values. Note that because of the restrictions, we consider two
different intervals of dP for the scenarios (1,7) and (4,4).

parameter description constant interval OAT

dP the mean duration of a partnership 3.92 [1,10], if (nf , nm) = (1, 7)
[1,17.5], if (nf , nm) = (4, 4)

θ the mean lifetime number of partners 3.5 [1.5, 5.5]
dI1 the mean duration of the infection stage I1 2.9/12 [1/12, 6/12]

Table 20: The input-parameters and their values that will be used for one-at-a-time (OAT) sensi-
tivity analysis.

Out of the OAT-interval 200 random samples will be chosen for each scenario. Unlike in section 5.3,
we will not perform 100 runs for each parameter set, but we will perform one run per parameter
set. Despite performing only one run for each chosen sample, the relations between the varying
parameter and the results are clear as we will see in sections 6.1.1 - 6.1.3.
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We will investigate what effect varying each of these parameters will have on the following model
output:

• The network

– The degree distribution

– The concurrency index

– The distribution of the size of the connected components

• The infection

– The endemic prevalence

– The fraction of transmissions caused by individuals in I1

For each of these results we will plot the output of the 200 samples against the varying parameter.
We will fit these data points to a mathematical function, with the use of non-linear least squares.
Some of these fitted mathematical function could be compared to the functions in the deterministic
model. Altough we will not compare them in this paper, it would be interesting to keep in mind
for future studies.

To measure the sensitivity of the output to the input parameters, we calculate the Sensitivity
Index (SI). This sensitivity measurement SI analysis the local sensitivity in the sense that it mea-
sures the sensitivity in one point, in our case, the baseline values that we have used in all previous
results (see table 20). Let x1, . . . , xp be the input parameters. We calculate the sensitivity index
for a small change ∆xi from the constant value xi for the ith parameter. The rest of the input
parameters will be held constant. Then SI can be calculated as

SI =

M(x1,...,xi+∆xi,...,xp)−M(x1,...,xi,...,xp)
M(x1,...,xi,...,xp)

∆xi
xi

(27)

where M is the model output variable [17], for example the endemic level. We will calculate the
model output M with the use of the fitted function. As you can see, for small ∆xi, eq. (27) ap-
proximates the first-order partial derivative of M with respect to the ith parameter, multiplied by
the factor xi

M(x1,...,xi,...,xp) . This factor causes the scaling of the effects: SI represents the relative

importance of the ith parameter on the model output M .

To summarize, we: vary one parameter, calculate the model output for the different parameter
values, fit the model output to a function and calculate the sensitivity index in the baseline value
with the use of the fitted function.

6.1.1 dP : the mean partnership duration

We will start with the OAT sensitivity analysis on the parameter dP : the mean duration of a
partnership. Let us investigate what kind of influence this parameter has on the network structure
and the spread of the infection.
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Network - degree distribution
In fig. 12 we have illustrated the relation between the degree distribution and the mean partnership
duration. Not only have we plotted the mean and the variance of the degree distribution of the
runs, we have also plotted the functions fitted to this data. We will use these fitted functions to
calculate the sensitivity index from eq. (27) for the baseline value dP = 3.92. An overview of all
the calculated SI for dP = 3.92 will later be shown in table 21.

Please remember that for (1,7) we look at dP ∈ [1, 10] and for (4,4) we look at dP ∈ [1, 17.5],
therefore the x-axis in fig. 12 are of different scale.

Figure 12: The mean and variance of the degree distribution dependent on the mean partnership
duration dP for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

We see a linear relation between the mean of the degree distribution and the mean partnership
duration. This linear relation seems to be very similar for both the scenarios (1,7) and (4,4).
However the relation between the variance of the degree distribution and the mean partnership
duration differs between the two scenarios. The variance increases slower in the case of (1,7) than
(4,4). This causes a lower variance of the degree distribution for (1,7) compared to (4,4), especially
for the higher values of dP .
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Figure 13: The degree distribution for dP ≈ 10 for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4)
(right).

Let us look closer to the degree distributions of both scenarios. In fig. 13 the degree distributions
are plotted for both scenarios, of the run with the dP value nearest 10. We see that in case of
(1,7) all females have one partner. Since the mean is very close to one, the variance of the females
(approximately half the population) is very small. When plotting the degree distribution for other
values of dP for scenario (1,7), we see the same situation. Although for lower values of dP there
are more single females, the degree variance of females is much lower than in the male population.
This causes the much smaller variance for scenario (1,7).

When we compare the degree distributions for males for scenarios (1,7) and (4,4) in fig. 13, we
see little difference. Even though males in scenario (1,7) are allowed to have seven partners at the
same time, we see that such high number of partners is rarely reached. We have seen this phe-
nomenon before in section 5.4. It was caused by the fact that there are simply not enough female
binding sites compared to the number of male binding sites. Increasing the partnership duration
has no influence on this phenomenon.

Network - concurrency index
Next, we will discuss the relation between the partnership-based concurrency index (explained in
section 5.3) and the mean partnership duration, illustrated in fig. 14. There seems to be a linear re-
lation between the mean partnership duration dP and the concurrency index κP for both scenario’s.
However, the slope for (4,4) is higher than in the case of (1,7). In scenario (1,7) all females will
have a concurrency index equal to zero, regardless of the mean partnership duration. The males
are allowed to have a maximum of seven partnerships at the same time, and therefore could have
a very high concurrency index. But as we have seen in fig. 13 even for a high mean partnership
duration, males rarely have such a high number of partners. Unlike in scenario (1,7), where only
males contribute to a higher concurrency index, in scenario (4,4) both males and females contribute
to the concurrency index. This causes the higher slope for (4,4).
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Figure 14: The concurrency index dependent on the mean duration of a partnership dP for
(nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

Network - connected components
In fig. 15 the mean and standard deviation of the distribution of the random variable Q is illus-
trated, in which Q represents the size of the connected components in which the individual resides
at the end of each run. We calculate for that moment in time P (Q = q), the fraction of individuals
that resides in a connected component of size q, for all occuring q. Note that we do not calculate the
probability that a connected component of size q occurs, but the probability that an individual re-
sides in a connected component of size q. Therefore a connected component of size q ‘counts’ q times.

We have chosen to illustrate the standard deviation instead of the variance, because the variance
reaches very high values. Chosing to plot the standard deviation gives us the advantage that the
mean and standard deviation are of the same order of magnitude and therefore can be illustrated
very well in one figure.
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Figure 15: The mean and standard deviation of the distribution of the size of the connected
components, dependent on the mean partnership duration dP for (nf , nm) = (1, 7) (left) and
(nf , nm) = (4, 4) (right). Note the difference in x-scale (for (1,7) we look at the interval dP ∈ [1, 10]
and for (4,4) we look at the interval dP ∈ [1, 17.5]) and y-scale!

Note that in fig. 15 both the x and y axis have very different values for the scenario’s (1, 7) (left)
and (4, 4) (right). We were able to fit the results of scenario (1, 7) to quadratic functions, but were
unable to find a well fitting function for scenario (4, 4) due to its strange structure. We can see
that for scenario (4, 4) there seems to be a threshold dP ≈ 12 after which there is a sudden increase
in both the mean and the standard deviation. The mean increases to values around 5000 for a
population of approximate 10000 individuals. This means one very large component is formed in
which many individuals of the population reside. We speculate that the sudden increase around
dP ≈ 12 is caused by the appearence of only one very large component. We will later check this
statement in fig. 17, where we investigate the relation between the largest occuring component and
the mean partnership duration.

Since for scenario (4, 4) the mean and the standard deviation reach such high values for dP > 12 it
is difficult to see the graph for the lower values of dP . The difference in axis-values makes it difficult
to compare the two scenario’s from fig. 15. Therefore we zoom in for the values dP ∈ [1, 6], such
that the axis can have similar ranges for both scenario’s. The resulting graphs are shown in fig. 16.
Previously, for the scenario (4, 4), we were unable to fit the results to functions for the entire inteval
dP ∈ [1, 17.5]. But now we are able to fit the results for just the interval dP ∈ [1, 6]. We will use
the fitted functions shown in fig. 16 to calculate the sensitivity index for dP = 3.92.
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Figure 16: The mean and standard deviation of the distribution of the size of the connected
components, dependent on the mean partnership duration dP for (nf , nm) = (1, 7) (left) and
(nf , nm) = (4, 4) (right) for dP ∈ [1, 6] .

We can see in fig. 16 that the standard deviation increases much faster for scenario (4, 4) than (1, 7).
This can again be explained by the fact that there is a limit on the maximum size of the connected
components that can occur for scenario (1, 7), and no such limit exists for scenario (4, 4), giving
the possibility of a larger variance between the sizes of the components.

Figure 17: Size of largest connected component dependent on the mean partnership duration dP ∈
[0, 10] for (nf , nm) = (1, 7) (left). The largest and second largest component size dependent on the
mean partnership duration dP ∈ [0, 17.5] for (nf , nm) = (4, 4) (right). For scenario (4, 4) a zoom is
included on dP ∈ [0, 10].

We have seen in fig. 15 that in case of (4, 4) the mean component size grows very large from dP ≈ 12,
we speculated that this is caused by the appearance of one very large component. Since for dP ≈ 17
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the mean is approximately 5000 in a population of around 10000 individuals, this must indeed be
the case. But for smaller values of dP this is not necessarily true. Therefore for scenario (4, 4)
we plotted in fig. 17 not only the largest, but also of the second largest component size, to check
whether only one very large component is formed. We can see from the results that this is indeed
true. There is a very large gap between the largest and second largest connected component for
dP > 12. However for dP ≈ 12 there is a peak of the second largest component size. There seem to
be two large components coexisting in the network, maybe even more. But when dP grows larger
and the largest component grows in size, the size of the second largest component decreases. This
is an interesting phenomenon. Therefore we will investigate the network structures in more detail.
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Figure 18: The frequency distribution that an individual resides in a connected component of
certain size. For the scenario (nf , nm) = (4, 4) for dP ≈ 12 (left) and dP ≈ 17.5 (right).
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We will take a closer look at the propertions of individuals residing in a component of certain size.
In fig. 18 we have illustrated these results for scenario (4, 4) from the two runs with the values dP
nearest 12 and 17.5. We see for dP ≈ 17.5 there is one very large component (of size 7273) and a
very large gap to the second largest component (of size 17). We see that 73% of the population
resides in the largest component and that 18% of the population is single. This leaves a very small
percentage of individuals in components of other sizes.

In the network for dP ≈ 12 there is not one large component, but a lot of ‘medium’ sized compo-
nents. Unlike in the network of dP ≈ 12, there is no sudden large gap between occuring sizes.

Infection - Endemic level
In fig. 19 we have illustrated the relationship between the endemic level, when the infection has
reached stability, and the mean partnership duration. For small values of dP the infection dies
out. Note that the baseline value dP = 3.92 lies very close to the transition of whether or not the
infection survives. Therefore, according to the results of the simulation model, a small decrease of
the baseline value of dP can cause the infection to die out.

Figure 19: The endemic level dependent on the mean duration of a partnership dP for (nf , nm) =
(1, 7) (left) and (nf , nm) = (4, 4) (right).

For the scenario (4,4) the infection can establish itself for smaller values of dP (dP ≈ 3.3) than
for scenario (1,7) (dP ≈ 3.7). Another observation is that for all values dP ∈ [3.3, 10] the endemic
level is higher for the scenario (4,4) than for the scenario (1,7). However the difference between the
endemic levels of the two scenarios in that interval decreases, when the mean partnership duration
increases.

Infection - Contribution of infection stage I1
In fig. 20 we have illustrated the relation between the contribution of the infection stage I1 to the
transmissions and the mean partnerhsip duration. With the contribution of the infection stage
I1 we mean the fraction of infected individuals, that were infected by an individual which was in
infection stage I1 when the transmission occured, out of the total pool of infected individuals. This
contribution is calculated at the end of each run, when the infection has reached endemic stability.
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Figure 20: The fraction of transmissions caused by an individual in infection stage I1 dependent
on the mean duration of a partnership dP for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

When the infection survives, the relation between the contribution of I1 and the mean partnership
duration can be best described as linear. The slope of the linear relation is very similar for both
scenarios, but the values are higher for scenario (4,4) than (1,7).

The number of individuals that a newly infected indvididual in infection stage I1 will infect will
be influenced by its current number of partners. However we can also think of an individual ac-
quiring a new partner and infecting this new partner, while being in infection stage I1. But since
the infection survives only when the mean of the exponentially distributed partnership duration is
more than 3 years and the acute phase I1 has a mean of only 2.9/12 years, the probability of this
occuring is negligible. Therefore we take only its current partners into account. In fig. 14 we have
calculated a measure of concurrency and have seen that the concurrency index is higher for scenario
(4,4) than (1,7), which may have caused the higher values of the contribution of I1 for scenario
(4,4) compared to the values of (1,7).

Sensitivity indices
In table 21 the calculated senstivity indices (SI s) for several model results for dP = 3.92 are shown.
We see that for both scenarios the mean partnership duration has the most effect on the endemic
level. The SI s for the endemic level are very high compared to the other indices, especially for sce-
nario (1,7). In fig. 19 the fitted functions increase indeed very fast around 3.92. Since the endemic
levels for (1,7) are so small and the SI is a relative measure, this explains why the sensitivity index
for the endemic level has such a high value for (1,7).

This high SI for the endemic level tells us that a small error in the estimation of the baseline
value dP = 3.92 can cause great changes in the calculated endemic level.
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Sensitivity Index for dP = 3.92

Scenarios
(1, 7) (4, 4)

mean degree 1.0039 1.0002
variance degree 0.7480 0.9256
concurrency index 1.1098 1.1460
mean size components 0.3671 0.5464
SD size components 0.5805 1.2290

endemic level 16.1796 3.7627
contribution I1 0.2690 0.1733

Table 21: The sensitivity index values for the different model results for dP = 3.92.

Changing the mean partnership duration around dP = 3.92 seems to have the most effect on
scenario (4, 4) concerning the network, and the most effect on scenario (1, 7) concerning the infection.
Scenario (4, 4) simply allows the most changes to the network, having none of the limitations of
(1, 7). Why varying the mean partnership duration has such great effect on the infection for scenario
(1, 7), could be explained by the fact that the basic reproduction number R0 is close to 1 (near a
bifurcation point).

6.1.2 θ: the mean lifetime number of partners

In this subsection we will perform the OAT sensitivity analysis on the parameter θ: the mean
lifetime number of partners. Let us investigate what kind of influence this parameter has on the
network structure and the spread of the infection. We will vary the parameter in the interval
θ ∈ [1.5, 5.5].

Network - degree distribution
In fig. 21 we have plotted the relation between the degree distribution and the mean lifetime num-
ber of partners. We see, just like the senstivity analysis of dP in fig. 12, that there exists a linear
relation for the mean of the degree distribution and a quadratic relation for the variance of the
degree distribution.

74



Figure 21: The mean and variance of the degree distribution dependent on the mean lifetime number
of partners θ for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

The linear relation for the mean of the degree distribution are again very similar for both scenarios
and the variance for (4,4) grows much higher than the variance for (1,7). Let us take a closer look
at the degree distribution of the run closest to the lowest value θ = 1.5 (fig. 22) and closest to the
highest value θ = 5.5 (fig. 23). We see that the degree distribution for a very low mean lifetime
number of partners θ = 1.5, is very similar for both scenarios. The network consists mostly of
single individuals, some have one partner, but individuals having two partners or more are almost
non-existent. Therefore the difference in partnership capacities has little influence on the degree
distribution for such low value of θ.

But when looking at a high mean lifetime number of partners θ = 5.5, we see that it causes
very different degree distributions for the two scenarios. The same effect was seen and explained in
the senstivity analysis of dP (section 6.1.1).
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Figure 22: The degree distribution for θ ≈ 1.5 for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4)
(right).

Figure 23: The degree distribution for θ ≈ 5.5 for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4)
(right).

Network - concurrency index
In fig. 24 we have plotted the relation between the concurrency index and the mean lifetime number
of partners. We can see that the fitted functions for both scenarios are almost the same as the fitted
functions in the senstivity analysis of dP in fig. 14. It seems that whether you vary the network
parameter dP or θ, the changes to the network are very similar.
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Figure 24: The concurrency index dependent on the mean lifetime number of partners θ for
(nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

Network - connected components
In fig. 25 we have illustrated the relation between distribution of the size of the connected com-
ponents in which the individuals reside and the mean lifetime number of partners. Again, the
functions are very similar to the functions in the senstivity analysis of dP in fig. 16.

Figure 25: The mean and standard deviation of the distribution of the size of the connected
components, dependent on the mean lifetime number of partners θ for (nf , nm) = (1, 7) (left) and
(nf , nm) = (4, 4) (right).

All in all, it seems that changing mean partnership duration dP or the mean lifetime number of
partners θ have very similar results on the network. This can also later be seen in table 22, where
we will see that the sentivity indices are also very similar.

For the mean lifetime numer of partners we have looked at a smaller interval (θ ∈ [1.5, 5.5]) than the
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mean partnership duration (dP ∈ [1, 17.5]). This larger interval for dP allowed us to see something
very interesting: a certain threshold after which the network allows the existence of a very large
component. We have not seen such an occurence in the senstivity analysis of θ. Therefore it would
be very interesting for future research to check if increasing θ further would also allow us to observe
such a threshold.

Infection - endemic level
Let us now look whether varying the lifetime number of partners also has similar effects on the
endemic prevalence, compared to varying the mean partnership duration. The infection can es-
tablish itself in the population in scenario (1,7) for θ ≥ 3.3 and in scenario (4,4) for θ ≥ 3.0. In
both the senstivity analysis of dP and θ, it is the scenario (1,7) that needs the highest value for the
parameter in question, to cause the infection to survive.

The baseline value of θ is, just like the baseline value of dP , very close to the threshold of the
survival of the infection, especially for the scenario (1,7). Only a small decrease in the mean
lifetime number of partners will cause the infection to die out in the model population.

Figure 26: The endemic level dependent on the mean lifetime number of partners θ for (nf , nm) =
(1, 7) (left) and (nf , nm) = (4, 4) (right).

Infection - contribution I1
In fig. 27 we have illustrated the relation between the contribution of the acute phase I1 and
the mean lifetime number of partners. We see that varying θ has hardly any influences on the
contribution of I1. This is surprising, since increasing θ does increase the concurrency index (fig. 24).
And because of a higher measure of concurrency, we would expect a higher number of transmission
during the acute phase. Although the contribution is measured in the fraction of total transmissions,
and the concurrency index influences all transmissions. Therefore the fraction may indeed change
little.
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Figure 27: The fraction of transmissions caused by an individual in infection stage I1 dependent
on the mean number of lifetime partners θ for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

Sensitivity indices for θ = 3.5
In table 22 we have shown the sensitivity indices for the results for θ = 3.5. When comparing
the sensitivity indices of θ with the indices of dP (in table 21), we see that the sensitivity indices
concerning the network are very similar. This coincides with all the results found in this subsection:
θ and dP seem to have approximately the same effect on the network. When looking at the infection
we see that varying the parameter has again the largest effect on the endemic level. However θ
seems to be hardly any effect on the contribution of I1.

Sensitivity Index for θ = 3.5

Scenarios
(1, 7) (4, 4)

mean degree 0.9883 1.0055
variance degree 0.7173 0.9115
concurrency index 0.9999 0.9887
mean size components 0.3614 0.5432
SD size components 0.5462 1.1905

endemic level 23.5030 5.8698
contribution I1 0.0992 0.0396

Table 22: The Sensitivity Index values for different model results for θ = 3.5.
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6.1.3 dI1 : the mean duration of the acute infection stage

Lastly we will perform the OAT sensitivity analysis on the parameter dI1 : the mean duration of
the acute infection stage I1. Since we hold the other parameters constant the infection will not
influence the network dynamics, and the network will remain stable when varying dI1 . Therefore
we will only investigate the effects this parameter has on the infection. We will look at the values
dI1 ∈ [1/12, 6/12].

Infection - Endemic level
Let us take a look at the relation between the endemic level and the mean duration of the acute
phase, shown in fig. 28. Increasing or decreasing the length of the very infectious acute phase
seems to have hardly any influence on the endemic level. Even though increasing the duration of
the acute phase causes a higher endemic level, its effect is much smaller than the increase of the
network parameters dP and θ.

Figure 28: The endemic level dependent on the mean duration of the acute phase dI1 for (nf , nm) =
(1, 7) (left) and (nf , nm) = (4, 4) (right).

Infection - Contribution I1
In fig. 29 we illustrate the effect changing the mean duration of the acute phase has on the con-
tribution of that phase. Increasing the duration of the acute phase seems to have the most effect
in scenario (4, 4). This is however hardly surprising when looking at the network: scenario (4, 4)
has a much higher concurrency index than scenario (1, 7). Therefore scenario (4, 4) can take more
‘advantage’ of the longer acute phase than scenario (1, 7).
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Figure 29: The fraction of transmissions caused by an individual in infection stage I1 dependent on
the mean duration of the acute phase dI1 for (nf , nm) = (1, 7) (left) and (nf , nm) = (4, 4) (right).

Sensitivity indices for dI1 = 2.9/12
In table 23 we have shown the calculated senstivity indices for dI1 . As we have seen in this
subsection, varying the mean duration of the acute phase has very little effect. Resulting in the
very low SIs in table 23. Comparing these SIs to the indices calculated for dP and θ we see that
especially the effect on the endemic level is surprisingly small. It seems that changing parameters
concerning the network, in stead of the infection itself, can have very large influences on the infection.

Sensitivity Index for dI1 = 2.9/12

Scenarios
(1, 7) (4, 4)

Endemic Level 0.5671 0.2802
Contribution I1 0.5901 0.5714

Table 23: The sensitivity index values for different model results for dI1 = 2.9/12.
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7 Conclusion and Discussion

In this thesis we have investigated how good of an approximation the ‘mean field at distance one’
assumption is that was made in the deterministic model of Leung et al. [9], [10]. We have used
an individual-based simulation model to verify this assumption. First we compared the network
(the degree distribution, concurrency index) and the infection (endemic level) for the deterministic
model for a set of baseline parameter values with results of the simulation model for these param-
eter values, to check agreement of the two models. In the set of baseline parameters most values
were held constant, but four different scenarios were considered for the partnership capacities for
men and women: (nf , nm) = (1, 7), (2, 6), (3, 5) and (4, 4), and two different population sizes were
considered: N0 = 1.000 and 10.000. We found that the network structure (degree distribution,
concurrency index) and the infection (endemic level) agree well between the two models.

Next we compared results concerning the mean field at distance one assumption. Mainly the
results concur with each other, but there were a few discrepancies. These however could be ex-
plained by the very small sample sizes that can cause inaccurate results. All in all, the results are
very promissing and the mean field at distance one assumption seems to be a good approximation.
Also, please note that we have only compared the two models for the baseline value parameters, so
no conclusions can be drawn for other parameter sets.

Besides checking the mean field at distance one assumption, we have also further investigated
the network structure of the simulation model. A great advantage of the simulation model is that
the entire network structure is known: we know exactly who has a relationship with whom. This
knowledge is not incorporated in the deterministic model. Therefore we were able to investigate for
example the connected component size distribution.

We found that for the baseline parameter values, the connected component size distributions for
the four scenarios were not that different. For the scenarios (nf , nm) = (2, 6), (3, 5) and (4, 4) the
distributions were even very similar. Components of size six and larger, hardly ever existed in the
networks. In the 100 runs we performed, no greater component was found than of size 15. The dis-
tribution of scenario (nf , nm) = (1, 7) did differ from the others. This scenario has a limitation on
the maximum size of the components, because of the monogamous women. Therefore the variance
of the distribution is smaller than the variance for the other three scenarios.

We have also investigated if the probability of getting infected is higher when an individual resides
in a large component. We found that this is indeed true, to a certain extent. Since components of
size six and larger hardly ever occur in the network, the conclusion is not reliable for these compo-
nent sizes.

We have performed a senstivity analysis with the one-at-a-time (OAT) approach. We have investi-
gated the effects of varying the mean partnership duration, the mean lifetime number of partners
and the mean duration of the acute phase. We have found that both the network parameters (the
mean partnership duration and the mean lifetime number of partners) have similar effects on the
results, and both have a very large influence on the endemic level around their baseline values. An
interesting observation was made during the sensitivity analysis of the mean partnership duration:
above a mean partnership duration of 12 years, the network allows the existence of a very large

82



component. We also found that the variation of the mean duration of the acute phase had very
little effect on the results.

There are a lot of possible investigations with the simulation model we have not yet performed
in this thesis. Therefore we will now give a few possible future plans. First we have seen that the
infection takes a long time to reach endemic stability in the population, especially in the scenario
(1,7). It would be very interesting to see if this coincides with the deterministic model.

Secondly, we have not yet investigated the beginning of the epidemic. We have started our simula-
tions with 100 initially infected, to prevent the infection from dying out in the beginning. Therefore
we have skipped the early stages of the infection. It would be intriguing to see how the infection
spreads if the simulation is started with only one, or at least very few, initially infected.

Thirdly, we have not yet fully exploited all the generalizations we have implemented in the simula-
tion program. For example we could consider two types of partnerships, introducing an infection-
induced death rate or not taking the partnership capacities nf and nm constant.

Fourthly, we have not yet investigated the entire sample space during the senstivity analysis. We
have used the one-at-a-time (OAT) approach, it is a simple approach that does not explore the
interaction between input parameters. Therefore varying multiple parameter at the same time,
would be an interesting next step.

We have seen during the sensitivity analysis of the mean partnership duration that from a cer-
tain value there arises one very large component in the network. The results of the sensitivity
analysis for the mean lifetime number of partners were very similar to the analysis of the mean
partnership duration, but such an occurence was not observed. However for the senstivity analysis
of the mean lifetime number of partners, we looked at a smaller interval. Therefore we could inves-
tigate if such existence of a very large component also happens if we extend the OAT interval for
the mean lifetime number of partners.
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