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1 introduction

We start by giving an introduction to representation theory and then apply it to the
symmetry groups belonging to the 5 platonic solids; the tetrahedron, the cube, the oc-
tahedron, the dodecahedron and the icosahedron. These 5 solids constitute 3 important
symmetry groups, namely the tetrahedral group, octahedral group and the icosahedral
group. Each symmetry group is isomorphic to some permutation group. For these 3
permutation groups we can find the character table, which we shall learn is a matrix
that contains all the important information about a group. A character of a group G
is an important concept in representation theory and is a function from G to C. The
most interesting characters of a group are the irreducible characters. The number of ir-
reducible characters of each group equals the number of conjugacy classes of that group.

The symmetry groups of platonic solids consist of the rotations which leave the solid
invariant and hence are subgroups of SO(3). We shall see that there exist a surjective
grouphomomorphism between SU(2) and SO(3);

φ : SU(2)→ SO(3)

The kernel of this homomorphism is {−1, 1}. When we take the pre-images of subgroups
of SO(3) under this homomorphism φ, we get subgroups of SU(2) which we shall call
binary groups (since they contain twice as many elements as the original subgroup of
SO(3)). Hence to each symmetry group of a platonic solid we can associate a binary
group. For a binary group G∗ of a group G, we have that;

G∗/{−1, 1} ∼= G

Using the known character tables of the symmetry groups of the platonic solids we can
construct the character tables for the corresponding binary groups. Each of the 3 groups
has a special ”natural” character. This character is fully determined by the rotation
angles of the corresponding group elements. Using this character we can construct a
new inproduct on the space of all functions from G to C. We use this new inproduct to
make a Gram-matrix, from which we can construct a so called Dynkin-Coxeter diagram
of a group. These diagrams turn out to be important graphs in the theory of Lie groups.
John McKay (1939) was a mathematician that discovered a link between the Dynkin
graphs belonging to the representations of the binary groups associated with the pla-
tonic solids (representation theory) and geometrical structures of these groups (singu-
larity theory). This link is called the McKay correspondence.
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2 Representation Theory

2.1 Representations

Recall that GL(n,C) is the group of all invertible n×n matrices with entries in C. Now
we define a representation of a group G over C.

Definition 2.1. A representation of a group G over C is a homomorphism ρ from G
to GL(n,C), for some n (which is the degree of the representation).

We recall that a homomorphism between two groups (G, •) and (H, ◦) is a function:
φ : G −→ H which satisfies φ (a • b) = φ (a) ◦ φ (b) for all a, b ∈ G.

For a representation ρ of G then it must hold that:

1. ρ (g • h) = ρ (g) ρ (h) for all g, h ∈ G
2. ρ (e) = In (identity matrix)

3. ρ (g−1) = ρ (g)−1 for all g ∈ G

When we are given a representation of a group we can simply transform this repre-
sentation into another one. Let S be an arbitrary invertible n × n matrix and let ρ
be a representation of a group G of degree n. Now we define φ : G −→ GL(n,C),
g 7→ S−1(ρ (g))S. This clearly is another representation of G of degree n.

Definition 2.2. Let ρ and φ be two representations of G of degree n, then we say that
ρ equivalent to φ if there exist an invertible n× n S such that:

ρ (g) = S−1(φ (g))S, ∀ g ∈ G

Equivalence of representations is easilly seen to be an equivalence relation on the set of
representations of G. Let ρ, φ and θ be representations of a group G:

• Every representation is equivalent to itself (take S = In)

• If ρ is equivalent to φ, then φ is equivalent to ρ (take S−1)

• If ρ is equivalent to φ and φ is equivalent to θ, then ρ is equivalent to θ, (take
S1S2)

Like every other function a representation of a group G has a kernel defined as Ker ρ =
{g ∈ G | ρ (g) = In}. We call a representation faithful when Ker ρ = {e}.
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2.2 The group algebra

Let G be a finite group with elements g1, . . . , gn. Using the elements of G as a basis
we can construct a vectorspace over C. The elements of this vectorspace CG are of the
form λ1g1 + . . .+ λngn with λ1, . . . , λn ∈ C}. Now let

u =
n∑
i=1

λigi

and

v =
n∑
i=1

µigi

be elements of CG and λ ∈ C. We then define addition and scalar multiplication on
the elements of CG as follows:

u+ v =
n∑
i=1

(λi + µi)gi

λu =
n∑
i=1

(λλi)gi

We now easily check that CG is indeed a vectorspace over C with dimension equal to
n (the order of our group G). The basis g1, g2, . . . , gn that we used is called the natural
basis of CG.

Definition 2.3 (The group algebra). Let

a =
∑
g∈G

λgg

b =
∑
h∈G

µhh

be elements of the vectorspace CG, then the vectorspace CG together with the multipli-
cation defined by;

ab =

(∑
g∈G

λgg

)(∑
h∈G

µhh

)
=
∑
g,h∈G

λgµh(gh)

is named the group algebra of G over C.

As one can check the group algebra CG satisfies the following properties, for all r, s, t ∈
CG and λ ∈ C:

1. rs ∈ CG;
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2. r(st) = (rs)t;

3. re = er = r;

4. (λr)s = λ(rs) = r(λs);

5. (r + s)t = rt + st;

6. r(s + t) = rs + rt;

7. r0 = 0r = 0

2.3 CG-modules

One of the most used concepts in representation theory is that of the CG-module.

Definition 2.4. Let V be a vector space over C and let G be a group. We call V a
CG-module if we can multiply vectors of V with group elements of G (gv, v ∈ V and
g ∈ G). Such that the following conditions are satisfied for all u, v ∈ V, λ ∈ C and
g, h ∈ G;

1. gv ∈ V ;

2. (hg)v = h(gv);

3. ev = v;

4. g(λv) = λ(gv);

5. g(u+ v) = gu+ gv.

Now let ρ : G −→ GL(n,C) be a representation of a group G. Then for every g ∈ G
we find an invertible n× n matrix ρ(g). Let V = Cn be the vectorspace that contains
all the vectors (c1, . . . , cn)T , with ci ∈ C for 1 ≤ i ≤ n. Since ρ(g) ∈ GL(n,C) we can
multiply with elements of V using matrix multiplication (ρ(g)v, v inV and g ∈ G).
Now let u, v ∈ V, λ ∈ C and g, h ∈ G, we easily check that this multiplication satisfies
the following properties;

• ρ(g)v lies in V .

• Since ρ is a homomorphism, it holds that ρ(gh)v = ρ(g)ρ(h)v.

• Because ρ(e) = In, we have ρ(e)v = v.

• ρ(g)(λv) = λ(ρ(g)v) (due to the known properties of matrixmultiplication).

• ρ(g)(v + u) = ρ(g)(v) + ρ(g)(u) (again from matrix multiplication).

These are precisely the conditions for Cn to be a CG-module. So representations of a
group G correspond to CG-modules.

Definition 2.5. Let V be a CG-module and let B be a bases of V . For each g ∈ G we
denote [g]B for the matrix of the endomorphism εg : V → V, v 7→ gv of V , relative to
the bases B.
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We can now construct a representation of a group G from a given CG-module.

Theorem 2.6. Let V be a CG-module and let B be a bases of V . Then the function

ρV B : G→ GL(n,C), g 7→ [g]B

is a representation of G over C.

Definition 2.7. The 1-dimensional CG-module V with multiplication defined as:

gv = v for all v ∈ V, g ∈ G

is defined as the trivial CG-module.

Definition 2.8. A CG-module V is faithful if the only element of G which satisfies:

gv = v for all v ∈ V

is the identity element of G (g = e).

2.3.1 CG-submodules

Definition 2.9. A CG-submodule W of a CG-module V is a subspace of V which
satisfies;

gw ∈ W

for all w ∈ W and g ∈ G

Thus a CG-submodule is itself a CG-module. Remark that for any CG-module V the
zero subspace {0} and V itself are CG-submodules of V .

2.3.2 Irreducible CG-modules

Definition 2.10. A CG-module V is called irreducible if it is a non-zero vectorspace
and it doesn’t have CG-submodules different from {0} and V itself. We call V reducible
if there does exist a CG-submodule W unequal to {0} or V .

We call a representation ρ reducible/irreducible if the CG-module Cn defined by gv =
ρ(g)v, where v ∈ Cn and g ∈ G is reducible/irreducible.

2.3.3 The regular CG-module

We can now construct a CG-module using the group algebra CG just defined. Here we
multiply a vector of the group algebra;

v =
n∑
i=1

µigi ∈ CG
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with an element of the group g ∈ (G, ◦). Hence we get;

gv =
n∑
i=1

µi(g ◦ gi)

.
Now let V = CG, then for all u, v ∈ V , λ ∈ C and g, h ∈ G the following properties
hold:

• gv ∈ V ,

• (gh)v = g(hv),

• ev = v,

• g(λv) = λ(gv),

• g(u+ v) = gu + gv

Definition 2.11. The CG-module that we just defined is called the regular CG-module.
Also, the representation of G given by ρ : G → GL(|G| ,C), g 7→ [g]B (with B the
natural basis of CG) is called the regular representation of G over C.

Remark that the regular representation of a group G is faithful.

2.3.4 CG-homomorphisms

For a group homomorphism φ between two groups (G, •) and (H, ◦), we have that
φ(a • b) = φ(a) ◦φ(b). So we get the same thing if we first multiply two elements of G
in G and sent the result to H using φ, as when we send each element separately to H
and then multiply them in H. We say that the group homomorphism φ preserves the
structure of G. A similar thing can be said about linear maps between vector spaces.
We shall now define a map between two CG-modules V andW , called an CG-homomorphism.

Definition 2.12 (CG-homomorphism). Let V and W be two CG-modules. A CG-
homomorphism θ between V and W is a linear transformation that satisfies:

θ(gv) = gθ(v) for all v ∈ V, g ∈ G

If θ is also a bijection we call it a CG-isomorphism and two CG-modules V and W are
isomorphic if there exist a CG-isomorphism between them (we then write V ∼= W ).

So a CG-homomorphism has the property that it does’t matter if we first multiply an
element v ∈ V with a group element g ∈ G and send the result to W using θ or if we
first send v to W and then muliply with g in W . Just as group homomorphisms and
linear maps a CG-homomorphism preserves the structure of CG-modules.

Theorem 2.13. For any CG-homomorphism φ : V → W between two CG-modules V
and W , we have that Ker φ is a CG-submodule of V and that Im φ is a CG-submodule
of W .
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Proposition 2.14. Suppose that two CG-modules V and W are isomorphic, then

1. dim V = dim W

2. V is irreducible if and only if W is irreducible

Proof of 2. Let θ be an CG isomorphism between V and W . Assume that V is re-
ducible, so there exist a CG-submodule X of V unequal to {0} or V . We show that
θ(X) is an CG-submodule of W unequal to {0} or W . Let w ∈ θ(X), so there exist
x ∈ X such that w = θ(x). Now gw = gθ(x) = θ(gx) and since gx ∈ X we have that
gw ∈ θ(X). Let x ∈ X such that x 6= 0 (this is possible because X 6= {0}). Since θ
is injective we have that θ(x) 6= 0 and hence θ(X) 6= {0}. Since X 6= V , we can take
v ∈ V but v 6∈ X. It then follows that θ(v) 6∈ θ(X) (because θ is injective). Hence
θ(X) 6= W . We have now showed that θ(X) is an CG-submodule of W (and hence that
W is reducible).

Theorem 2.15. Let V and W be two CG-modules with basis B, B′ respectively. Then
V and W are isomorpic if and only if the representations

ρ : g 7→ [g]B

and
σ : g 7→ [g]B′

are equivalent.

Proposition 2.16. Let V be a CG-module such that V = U1 ⊕ U2 ⊕ . . .⊕ Un, where
Ui is a CG-submodules of V , for each 1 ≤ i ≤ n. Now for each i ∈
brace1, . . . , n} we let Bi be a basis of Ui. Since V is a direct sum of the Ui’s, it follows
that B1, . . . , Bn together constitute a basis B of V . Now let g ∈ G, we then have that:

[g]B =

[g]B1 0
. . .

0 [g]Bn


Theorem 2.17 (Mashke’s Theorem). Let G be a finite group end let V be a CG-module.
Now if U is a CG-submodule of V , then there exist another CG-submodule W of V such
that:

V = U ⊕W

Now since U and W are both CG-modules, they could be reducible and hence we
can apply Maschke’s theorem again to U and W . Using induction we can write every
CG-module of a finite group G as a direct sum of irreducible CG-submodules.

Theorem 2.18. If G is a finite group and V a non-zero CG-module, then V can be
written as;

V = U1 ⊕ . . . ⊕ Un

where Ui is an irreducible CG-submodule of V for each 1 ≤ i ≤ n.
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Let G be a finite group and V be a CG-module that has a CG-submodule U . By
Maschke’s theorem, there exist another CG-submodule W of V such that V = U ⊕ W .
So for every v ∈ V , we have unique vectors u ∈ U and w ∈ W such that v = u + w.
Now consider the function ρ : V → U, v = u + w 7→ u. It’s eassily checked that
ρ is a linear transformation. Now let g ∈ G, then we have ρ(gv) = ρ(g(u + w)) =
ρ(gu + gw) = gu = gρ(v). So ρ is an CG-homomorphism. We also have that ρ2(v) =
ρ2(u+ w) = ρ(u) = u = ρ(v), hence ρ is a projection of V onto U .

Proposition 2.19. Let G be a finite group and V be a CG-module. Suppose that V
is reducible and that U is an CG-submodule of V . Then there exist a surjective CG-
homomorphism from V onto U .

Theorem 2.20 (Schur’s Lemma). Let V and W be irreducible CG-modules.

1. If θ : V → W is a CG-homomorphism, then either θ = 0 (θ(v) = 0 for all v ∈ V )
or θ is a CG-isomorphism.

2. If θ : V → V is a CG-isomorphism, then θ is a scalar multiple of the identity
endomorphism eV (eV (v) = v for all v ∈ V ).

Theorem 2.21 (The decomposition of the regular CG-module). Let CG be the regular
CG-module, then by Maschke’s Theorem we can write:

CG = U1 ⊕ . . . ⊕ Uk

with Ui irreducible for each 1 ≤ i ≤ k. Now let U be any irreducible CG-module, then
there exist Ui such that U ∼= Ui. The number of Ui’s (in the decomposition of CG) that
are isomorphic to U equals dim(U).

Definition 2.22. We call a set U1, . . . , Uk of non-isomorphic irreducible CG-modules
complete if every arbitrary irreducible CG-module U is isomorphic to Ui for some i ∈
{1, . . . , k}.

Theorem 2.23. Let U1, . . . , Uk be a complete set of non-isomorphic irreducible CG-
modules. Then;

k∑
i=1

(dimUi)
2 = |G|

2.4 Characters

Definition 2.24. Let A = (a)ij be an n× n matrix. The number;

trA =
n∑
i=1

aii

is defined as the trace of the matrix A.
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Let A and B be n× n matrices and T an invertible n× n matrix. Using the definition
of the trace of a matrix, we can derive the following;

• tr(AB) = tr(BA)

• tr(T−1AT ) = tr(A)

Definition 2.25 (Character). Let V be a CG-module with basis B. Let g ∈ G, then
the function χ : G→ C, g 7→ tr[g]B is called the character of the CG-module V .

The character does not depend on the basis we choose for V . To see this, let B0 be
another basis of V . Since B and B0 are both bases of V , there exist an invertible change
of basis matrix T such that [g]B0 = T−1[g]BT . Now using the properties of the trace of
a matrix, we find that tr [g]B0 = tr ((T−1[g]B)T ) = tr[g]B.

Definition 2.26. We call a character χ of a group G irreducible if it is the character
of an irreducible CG-module.

When we have two isomorphic CG-modules V and W we know that for each g ∈ G we
can find a basis B1 of V and a basis B2 of W such that [g]B1 = [g]B2 . From this it
follows that every two isomorphic CG-modules have the same character.

Let χ be a character of a CG-module V and let a and b be two conjugate elements of
G (so there exist an element g ∈ G such that a = g−1bg). Now

χ(a) = tr [a]B = tr ([g]B
−1[b]B[g]B) = tr [b]B = χ(b)

We say that the character of a group G is constant on the conjugacy classes of G.

Definition 2.27 (Degree of a character). Let V be a CG-module with character χ, then
the degree of χ equals the dimension of V .

Theorem 2.28. Let V be a CG-module with character χ. Now let g ∈ G with order
m. We then have that:

1. χ(e) = dim(V );

2. χ(g) is a sum of mth roots of unity;

3. χ(g−1) = χ(g);

4. χ(g) is a real number if g is conjugate to g−1.

Theorem 2.29. Let ρ : G→ GL(n,C) be a representation with character χ. We then
have the following;

1. Let g ∈ G, |χ(g)| = χ(e)⇔ ρ(g) = λIn (for some λ ∈ C);
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2. Kerρ = {g ∈ G : χ(g) = χ(e)}

Definition 2.30. We define the kernel of a character χ as: Kerχ = {g ∈ G : χ(g) =
χ(e)}.

Given a CG-module V of a finite group G we can write it as a direct sum of irreducible
CG-submodules (Maschke’s Theorem). Hence we have,

V = V1 ⊕ . . .⊕ Vn

where Vi is an irreducible CG-module for each 1 ≤ i ≤ n. Now for each i ∈ {1, . . . , n}
let Bi be a basis of the irreducible CG-submodule Vi. We can use the bases B1, . . . , Bn
to form a basis B of V so that for each g ∈ G we have;

[g]B =

[g]B1 0
. . .

0 [g]Bn


Let χ be the character of V and let χi be the character of the CG-submodule Vi. Now
for g ∈ G we than have that χ(g) = tr[g]B = tr[g]B1 + . . .+ tr[g]Bn = χ1(g) + . . . χn(g).

Theorem 2.31. The character χ of a CG-module V is equal to a sum of irreducible
characters χi of G.

Definition 2.32. The character of the regular CG-module is called the regular character
and is denoted by χreg.

Decomposing the regular CG-module as a direct sum of CG-submodules we get that,

CG = (U1 ⊕ . . .⊕ U1)⊕ . . .⊕ (Un ⊕ . . .⊕ Un)

Where each Ui is an irreducible CG-module and the number of times that Ui appears
in the decomposition of CG equals di = dim(Ui).

Theorem 2.33. The regular character χreg can be written as,

χreg = d1χ1 + . . .+ dnχn

where χi is the character of the irreducible CG-module Ui.

Given a group G, let B ({g1, . . . , gn}) be the natural basis of the regular CG-module.
For the regular character χreg it now holds that,

1. χreg(1) = |G|, since dim(CG) = |G|.

2. χreg(g) = 0 if g 6= e. To see this let g ∈ G and g 6= e, we then have that gig = gj
with j 6= i. Hence if we look at the matrix [g]B all the diagonal elements are zero
(column i only contains a 1 at position j 6= i). Hence the sum of the diagonal
elements, χ(g), equals 0.
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Characters of CG-modules are functions from G to C. The set of all functions from G to
C forms a vector space X over C. We can define an inner product on this vector space
which has to satisfy the following conditions for all θ, φ, θ1, θ2 ∈ X and λ, λ1, λ2 ∈ C;

1. 〈θ, φ〉 = 〈φ, θ〉

2. 〈λ1θ1 + λ2θ2, φ〉 = λ1〈θ1, φ〉+ λ2〈θ2, φ〉

3. 〈θ, θ〉 > 0 if θ 6= 0

One such an inner product on X is;

〈θ, φ〉 =
1

|G|
∑
g∈G

θ(g)φ(g)

For this inner product on X it holds that;

1.

〈θ, φ〉 = 〈φ, θ〉 =
1

|G|
∑
g∈G

θ(g)φ(g−1)

2. Let G have l conjugacy classes with representatives g1, . . . , gl, then

〈θ, φ〉 =
l∑

i=1

θ(gi)φ(gi)

|CG(gi)|

where CG(gi) is the centralizer of gi.

Theorem 2.34. The irreducible characters of a group G form an orthonormal set of
vectors in X. So let U and V be non-isomorphic irreducible CG-modules with characters
χ and φ respectively, then:

〈χ, φ〉 = 0

〈χ, χ〉 = 1

Let G be a group and let U1, . . . , Un be a complete set of non-isomorphic irreducible
CG-modules. Now let V be a CG-module with character χ. We can decompose U as;

U = (U1 ⊕ . . . U1)⊕ . . .⊕ (Un ⊕ . . .⊕ Un)

and the number of Ui that appears in the decomposition of U is some integer ki. Let
χi be the character of the irreducible CG-module Ui. Using the decomposition of V we
can now write the character χ of U as; χ = k1χ1 + . . .+ knχn.

Now using the linearity of the innerproduct and the orthogonality of the irreducible
characters, we have for each irreducible character χi of G;

〈χ, χi〉 = 〈k1χ1 + . . .+ knχn, χi〉 = k1〈χ1, χi〉+ . . .+ ki〈χi, χi〉+ . . .+ kn〈χn, χi〉 = ki
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and ki equals the number of times that the irreducible CG-module Ui appeared in the
decomposition of U . Hence when we are given a CG-module U with character χ, we can
find the number of times that an irreducible CG-module Ui with character χi appears
in the decomposition of U by taking the innerproduct of χ with χi.

When we take the inner product of χ with itself we find that;

〈χ, χ〉 = 〈k1χ1 + . . .+ knχn, k1χ1 + . . .+ knχn〉
= k1

2〈χ1, χ1〉+ . . .+ kn
2〈χn, χn〉

=
n∑
i=1

ki
2

As we have already seen is that when two CG-modules are isomorphic, then their
characters are equal. The following theorem states that the converse of this is also true.

Theorem 2.35. Let V and W be two CG-modules that have characters χ and φ re-
spectively. Then V and W are isomorphic if and only if χ = φ.

Theorem 2.36. Let G be a group, and let χ1, . . . , χk be the irreducible characters of
G. Then χ1, . . . , χk are linearly independent vectors in X (the vectorspace of functions
from G to C).

Proof. Assume, to the contrary, that χ1, . . . , χk are linearly dependent. In that case
there exist a linear relation between χ1, . . . , χk. So there exist complex numbers λi
(where λi 6= 0 for at least one i ∈ {1, . . . , k}) such that;

λiχi + . . .+ λkχk = 0

where 0 is the zero-function (defined by 0 : G→ C, g 7→ 0).
If we now take the innerproduct of this zero-function with χi we have:

0 = 〈0, χi〉 = 〈λiχi + . . . λkχk, χi〉 = λi

since this must hold for all i ∈ {1, . . . , k} we have a contradiction. Hence the irreducible
characters χ1, . . . , χk of G are linearly independent in X.

Functions that are constant on conjugacy classes are called class functions. For instance
we see that characters are class functions. The set of all class functions from G to C is
a vector subspace of the vector space X.

Theorem 2.37. The number of irreducible characters of G equals the number of con-
jugacy classes of G.

We now introduce an important matrix of a group G that can be constructed using the
irreducible characters of G and representatives of its conjugacy classes. This matrix
is called the character table and it contains all of the important information about a
group G.
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Definition 2.38. Let χ1, . . . , χn be the irreducible characters of a group G and let
g1, . . . , gn be the representatives of the conjugacy classes of G. The character table of
G is defined as the n× n matrix whose ij-entry equals χ1(gj).

Because the irreducible characters are linearly independent in X, the rows in the char-
acter table are linealry independent. Since the character table is a square matrix it
follows that it is invertible.

Let G be a group and let N be a normal subgroup of G.

Theorem 2.39. Let χ̃ be a character of the group G/N . Then the function χ : G→ C
defined by

χ(g) = χ̃(Ng) (g ∈ G)

is a character of G and has the same degree as χ̃.

2.5 Conjugacy classes

Let G be a group and let x ∈ G. The conjugacy class of x is denoted by xG.

Theorem 2.40. Let G be a group and let x ∈ G. The size of the conjugacy class xG

satisfies:
|xG| = |G|/|CG(x)|
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3 Unitary matrices

A unitary matrix U is a complex square matrix (let’s say n× n) which satisfies:

UU∗ = U∗U = In

Here U∗ is the complex transpose of U , so U∗ = UT and hence it holds that U−1 = U∗.
The row and column vectors of U ∈ U(n) form an orthonormal set in Cn. We call an
element U ∈ U(n) hermitian if U = U∗.
Let U be a unitary matrix, then the following hold:

1. U is normal (this follows immediately from the definition of a normal matrix
(trivial))

2. U preserves the inner product between two complex vectors u, v ∈ Cn:

〈Uu, Uv〉 = 〈u,v〉

3. U is diagonalizable, so U = V DV ∗, where V is unitary and D is unitary and
diagonal

4. |det(U)| = 1

5. Its eigenspaces are orthogonal

Theorem 3.1. Let Mn(C) denote the set of all n×n matrices with entries in C. Then
the collection of all unitary matrices in Mn(C) is a group and we call this group the
unitary group and denote it by Un.

For all unitary matrices we have that det(U) = ±1. Now one can easily check that;

SU(n) := {U ∈ U(n) : det(U) = 1}

is a normal subgroup of U(n), called the special unitary group.
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4 Complex numbers

We can represent every complex number by a 2×2 real matrix. Namely let a + bi ∈ C,
then

β : C→M2(R) : a + bi 7→
(
a −b
b a

)
Now it can eassily be shown that the following statements hold for all z1, z2 ∈ C:

• θ(z1 + z2) = θ(z1) + θ(z2)

• θ(z1z2) = θ(z1)θ(z2)

• θ
(
z1
z2

)
= [θ(z2)]

−1 θ(z1), ifz2 6= 0

Let Q =

(
0 −1
1 0

)
, we then have;

β(a+ bi) =

(
a −b
b a

)
= a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)
= aI2 + bQ

In and Q are both orthogonal matrices (QT = Q−1)

4.1 isomorphism SO(2) and U(1)

The group of complex numbers of unit length U(1) = {eiθ : 0 ≤ i < 2π}, is isomorphic
to the group of rotations SO(2). This follows immediately by checking that the map:

φ : U(1)→ SO(2), eiθ 7→
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
is a group isomorphism. The plane R2 and the complex plane C can be identified with
each other if we let z = x + iy ∈ C represent (x, y) ∈ R2. Due to the isomorphism
just discussed, we can represent every plane rotation ρθ (through an angle θ), with
muliplication by the complex number eiθ ∈ U(1).
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5 Quaternions

Just as the complex numbers C are an extension of the real numbers R, the quater-
nions H are an extension of the complex numbers. The quaternions were introduced
by Hamilton in 1843, who used them for rotations in three dimensional space. The
quaternions form a four-dimensional algebra over the real numbers. The basis elements
of H are 1, i, j and k and satisfy

i2 = j2 = k2 = ijk = −1

Furthermore multiplication of these basis elements satisfy;

ij = −ji, ik = −ki, jk = −kj

5.1 H as a unital ring

All quaternions are of the form: a+ bi+ cj + dk, where a, b, c and d are real numbers.
So

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}

Let a, b ∈ H, so a = a0 + a1i+ a2j + a3k and b = b0 + b1i+ b2j + b3k. Now addition in
H is defined as:

a+ b = (a0 + b0) + (a1 + b1)i+ (a2 + b2)j + (a3 + b3)k

We see that addition is well-defined in H.

• From the property that ai + (bi + ci) = (ai + bi) + ci for all ai, bi, ci ∈ R, it
follows that for all a, b, c ∈ H, a+ (b+ c) = (a+ b) + c . Hence addition in H is
associative.

• The quaternion 0 = 0 + 0i+ 0j + 0k is an additive identity in H.

• Let a ∈ H, so a = a0 + a1i + a2j + a3k. Now −a = −a0 − a1i − a2j − a3k ∈ H
and a+ (−a) = 0. Hence every element of H has an additive inverse.

• Let a, b ∈ H, then a+ b = b+ a (since addition in R is commutative we have that
ai + bi = bi + ai, for all 0 ≤ i ≤ 3). So addition in H is commutative.

Hence the quaternions H form an abelian group with respect to addition.

Using the relations between i, j, k, one can verify that for two quaternions a, b ∈ H
(a = a0 + a1i+ a2j + a3k and b = b0 + b1i+ b2j + b3k). it holds that;
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ab = (a0 + a1i+ a2j + a3k)(b0 + b1i+ b2j + b3k)

(a0b0 − a1b1 − a2b2 − a3b3) +

(a0b1 + a1b0 + a2b3 − a3b2)i+

(a0b2 − a1b3 + a2b0 + a3b1)j +

(a0b3 + a1b2 − a2b1 + a3b0)k+

Given a quaternion q = q0 + q1i + q2j + q3k ∈ H, we cal q0 the scalar part and
q = (q1, q2, q3) the vector part. With this notation we can also write the product of two
quaternions a, b as;

ab = a0b0 − (a1b1 + a2b2 + a3b3) +

a0(b1i+ b2j + b3k) + b0(a1i+ a2j + a3k) +

(a2b3 − a3b2)i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k
= a0b0 − a · b + a0b + b0a + a× b

Hence the product of two quaternions has scalar part equal to a0b0 − a · b and vector
part a0b + b0a + a× b.

Multiplication of quaternions is not commutative, as is evident from the cross-product
term of ab. For each pair of quaternions a, b ∈ H there is a unique product ab ∈ H,
hence multiplication is well-defined in H. Regarding multiplication in H the following
properties hold;

• For all a, b, c ∈ H we have that a(bc) = (ab)c (this follows from the associative
and distributive laws that hold in R). Hence multiplication in H is associative.

• The quaternion e = 1+0i+0j+0k has the property that for all q ∈ H, qe = eq = q.
Hence H has a multiplicative identity.

• The left and right distributive laws hold in H.

We have now showed that H is a unital ring (with multiplicative identity).

Definition 5.1 (Pure quaternion). A quaternion q ∈ H of the form q = q1i+ q2j+ q3k
is called a pure quaternion. The collection of all pure quaternions is denoted by Hp.
Hence;

Hp = {q = q0 + q1i+ q2j + q3k ∈ H : q0 = 0}

Definition 5.2. Let q = q0+q1i+q2j+q3k ∈ H, the number N(q) = q0
2+q1

2+q2
2+q3

2

is called the norm of q (the norm of a quaternion is similar to the modulus of a complex
number).
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Definition 5.3. A quaternion q ∈ H for which N(q) = q0
2 + q1

2 + q2
2 + q3

2 = 1 is
called a unit quaternion.

Definition 5.4. Similar as with the complex numbers we can take the conjugate of
a quaternion. Let q = q0 + q1i + q2j + q3k ∈ H, then the conjugate of q is q =
q0 − q1i− q2j − q3k ∈ H.

We can eassily check:

qq = q0
2 + q1

2 + q2
2 + q3

2

= qq

= N(q)

When q 6= 0, then N(q) 6= 0 it follows that q q
N(q)

= q
N(q)

q = 1. Hence for the inverse of
a quaternion q it holds that;

q−1 =
q

N(q)

5.2 Representation of H
Just like there is a bijection from C to R2, there is a bijection from H to R4. This
bijection is given by:

ρ : H→ R4, a+ bi+ cj + dk 7→ (a, b, c, d)T

Now in a similar way as complex numbers can be represented by 2× 2 real matrices, a
quaternion can be represented by a 2× 2 complex matrix. Let a+ bi+ cj + dk ∈ H

α : H→M2(C), a+ bi+ cj + dk 7→
(
a+ bi c+ di
−c+ di a− bi

)
This is a representation of H over C.
Now:

α(a+bi+cj+dk) =

(
a+ bi c+ di
−c+ di a− bi

)
= a

(
1 0
0 1

)
+b

(
i 0
0 −i

)
+c

(
0 1
−1 0

)
+d

(
0 i
i 0

)
Hence we let,

1 =

(
1 0
0 1

)
i =

(
i 0
0 −i

)
j=

(
0 1
−1 0

)
j=

(
0 i
i 0

)
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We now let H′ be the set of all matrices of the form a1 + bi + cj + dk with a, b, c, d ∈ R.
We shall call the matrices of H′ quaternions. From the definitions of the matrices
1, i, j,k we now have that every matrix A ∈ H′ is of the form:

A =

(
x y
−y x

)
where x = a+ bi, y = c+ di ∈ C.

Theorem 5.5. The set of all unit quaternions is a group. The group of all unit quater-
nions is isomorphic to the group of 2× 2 special unitary matices, SU(2).

The conjugate of A = a1 + bi + cj + dk ∈ H′ is A = a1 − bi − cj − dk. For a pure
quaternion A ∈ H′ it holds that A = −A and tr(A) = 0.

5.3 Rotations

A pure quaternion can be seen as a vecor in R3, using the map;

ρ : Hp → R3, ai+ bj + ck 7→ (a, b, c)

Now let us consider an arbitrary unit quaternion q = q0 + q. Since it is unit we have
that q0

2 + ‖q‖2 = 1. We now search for some angle θ such that;

q0
2 = cos2(θ)

‖q‖2 = sin2(θ)

It turns out that there exist a unique θ ∈ [0, π) such that q0 = cos(θ) and ‖q‖ = sin(θ).
We can now write our unit quaternion as q = cos(θ) + usin(θ), where u = q/‖q‖.
Let’s consider the map;

Lq : Hp → Hp,v 7→ qvq∗

where q is a unit quaternion. We will show that this map can be seen as a rotation of R3.
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We have;

Lq(v) = qvq∗ = (qv)q∗

= (−q · v + q0v + q× v)q∗

= −(q · v)q0 − (q0v + q× v) · (−q)− (−q · v)q +

q0(q0v + q× v)− (q0v + q× v)× q

= −(q · v)q0 + (q0v + q× v) · q + (q · v)q +

q0(q0v + q× v)− (q0v + q× v)× q

= −q0(q · v) + q0(v · q) + (q× v) · q + (q · v)q +

q0
2v + q0(q× v)− q0(v× q)− (q× v)× q

= (q · v)q + q0
2v + 2q0(q× v) + (q× (q× v)

= (q · v)q + q0
2v + 2q0(q× v) + q(q · v)− ‖q‖2v

= (q0
2 − ‖q‖2)v + 2(q · v)q + 2q0(q× v)

The map Lq preserves length, since;

‖Lq(v)‖ = ‖qvq∗‖
= |q| · ‖v‖ · |q∗|
= ‖v‖

Now let v be a pure quaternion along the direction of q (the vector part of q), so we
have v = kq for ome k ∈ R. For the image of v under the map Lq it holds that;

Lq(v) = qvq∗

= q(kq)q∗

= (q0
2 − ‖q‖2)(kq) + 2(q · (kq))q + 2q0(q× (kq))

= kq0
2q− k‖q‖2q + 2k‖q‖2q + 2kq0(q× q)

= kq0
2q + k‖q‖2q

= k(q0
2 + ‖q‖2)q

= kq

= v

Hence v is left fixed by Lq.

One can check that for v,w ∈ Hp and λ1, λ2 ∈ R we have that Lq(λ1v + λ2w) =
λ1Lq(v) + λ2Lq(w). So Lq is a linear map.

Theorem 5.6. For every unit quaternion q = q0 + q = cos(θ/2) + usin(θ/2) (with
u = q/‖q‖), the linear map Lq corresponds to rotation about u through an angle θ. So
for every v ∈ Hp, Lq(v) is the vector we get when we rotate v through an angle θ around
the vector u.

22



Proof. Write v as v = v⊥+v‖, where v⊥ is the component of v perpendicular to q and
v‖ is the component of v parallel to q (so v‖ = λq for some λ ∈ R). Now applying the
operator Lq to v we get;

Lq(v) = Lq(v⊥ + v‖) = Lq(v⊥) + Lq(λq) = Lq(v⊥) + λq

and;

Lq(v⊥) = (q0
2 − ‖q‖2)v⊥ + 2(q · v⊥)q + 2q0(q× v⊥)

= (q0
2 − ‖q‖2)v⊥ + 2q0(q× v⊥)

= (q0
2 − ‖q‖2)v⊥ + 2q0‖q‖(u× v⊥)

where u = q/‖q‖. Now let a = u× v⊥. We then get;

Lq(v⊥) = (q0
2 − ‖q‖2)v⊥ + 2q0‖q‖a

Since ‖a‖ = ‖u × v⊥‖ = ‖u‖‖v⊥‖sin(π/2) = ‖v⊥‖, a and v⊥ have the same length.
Now using q0 = cos(θ/2) and ‖q‖ = sin(θ/2) we have that;

Lq(v⊥) =

(
cos

(
θ

2

)2

− sin
(
θ

2

)2
)

v⊥ + 2cos

(
θ

2

)
sin

(
θ

2

)
a

= cos(θ)v⊥ + sin(θ)a

Let α be the angle between Lq(v⊥) and v⊥. Taking the inner product between them
we get;

Lq(v⊥) · v⊥ = ‖Lq(v⊥)‖‖v⊥‖cos(α) = ‖v⊥‖2cos(α)

So;

cos(α) =
Lq(v⊥) · v⊥
‖v⊥‖2

=
(cos(θ)v⊥ + sin(θ)a) · v⊥

‖v⊥‖2
= cos(θ)

So the angle between Lq(v⊥) and v⊥ is θ. Now taking the inner product of the vector
Lq(v⊥) with q we get;

Lq(v⊥) · q = cos(θ)(v⊥ · q) + sin(θ)(a · q) = 0

Hence Lq(v⊥) is orthogonal to q.
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For a unit quaternion q of the form q = q0 + q = cos

(
θ

2

)
+ usin

(
θ

2

)
., we can write;

Lq(v) =

(
cos2

(
θ

2

)
− sin2

(
θ

2

))
v + 2

(
sin

(
θ

2

)
u · v

)
sin

(
θ

2

)
u

+ 2cos

(
θ

2

)(
sin

(
θ

2

)
u× v

)
= cos(θ)v + (1− cos(θ))(u · v)u + sin(θ)(u× v)

5.4 Composition of rotations

Assume we have two unit quaternions p, q. As we have just seen Lp and Lq are rotations.
Let u ∈ Hp. As pq is also a unit quaternion, we now apply the rotation Lpq to u. We
then get.

Lqp(u) = (qp)u(qp) ∗
= q(pup∗)q ∗
= q(Lp(u))q ∗
= Lq ◦ Lp(u)

So the rotation corresponding to the unit quaternion pq equals the composite of the
rotations corresponding to p and q.
We shall now prove the following lemma.

Lemma 5.7. For any two non zero quaternions a, b ∈ H we have that; ab = −ba if and
only if a and b are pure quaternions and are perpendicular to each other (with respect
to the dot product in R3).

Proof. First let a and b be non zero quaternions and assume that ab = −ba. We have;

ab = a0b0 − a1b1 − a2b2 − a3b3 +

= (a0b1 + a1b0 + a2b3 − a3b2)i+

= (a0b2 − a1b3 + a2b0 + a3b1)j +

= (a0b3 + a1b2 − a2b1 + a3b0)k

and;

−ba = −a0b0 + a1b1 + a2b2 + a3b3 +

= (−a1b0 − a0b1 − a3b2 + a2b3)i+

= (−a2b0 + a3b1 − a0b2 − a1b3)j +

= (−a3b0 − a2b1 + a1b2 − a0b3)k
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Since ab = −ba we find the following array of equations:

a0b0 = a1b1 + a2b2 + a3b3

a1b0 + a0b1 = 0

a0b2 + a2b0 = 0

a0b3 + a3b0 = 0

Assume that a0 6= 0, we then have that;

b1 = − b0
a0
a1 = −ca1

b2 = − b0
a0
a2 = −ca2

b3 = − b0
a0
a3 = −ca3

b0 =
b0
a0
a0 = ca0

If we now substitute these values in the equation a0b0 = a1b1 + a2b2 + a3b3 we get,

a0b0 = − b0
a0

(a1
2+a2

2+a3
2) or equivalently: a0

2+a1
2+a2

2+a3
2 = 0. This is only possible

when a is the zero quaternion. Hence a0 = 0. The same argument for b shows that
b0 = 0 and hence that a and b are pure quaternions. Since a1b1 +a2b2 +a3b3 = a0b0 = 0,
a and b are perpendicular.
Now assume that a and b are pure quaternions that are perpendicular to each other; so
a = a1i+ a2j + a3k and b = b1i+ b2j + b3k; and a1b1 + a2b2 + a3b3 = 0. In this case;

ab = (a2b3 − a3b2)i+

= (−a1b3 + a3b1)j +

= (a1b2 − a2b1)k
= −ba
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6 The Platonic Solids

Definition 6.1 (Platonic Solid). A platonic solid is a solid in three-dimensions with
flat faces, straight edges and sharp vertices (in other words a polyhedron) which is convex
and satisfies the following properties;

• Each face is the same regular polygon

• The same number of polygons meet at each vertex

In total there are five platonic solids, namely the tetrahedron, cube (hexahedron), oc-
tahedron, dodecahedron, icosahedron and are named after the number of faces they
possess. For instance take the icosahedron that has 20 triangular faces (icosa is Greek
for twenty). The 5 platonic solids are depicted in figure 1.

Figure 1: The five platonic solids [8]

The platonic solids were named after The Greek philosopher Plato. He described each
of the classical elements with one of these solids based on the physical properties they
possess. He associated air with the octahedron, water with the icosahedron, fire with
the tetrahedron and earth with the cube. Plato thaught that the fifth platonic solid,
the dodecahedron, was used by god for arranging the constellations of heaven (see again
figure 1).

6.1 Symmetry groups of the solids

Each of the five platonic solids has an associated symmetry group. This is the group
of transformations which leave the solid invariant. These rotations form a subgroup of
SO(3), which is the group of all rotations about the origin of R3 under the operation
of composition.
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6.2 Dual solids

For each polyhedron there exist a dual polyhedron. The dual polyhedron is the polyhe-
dron we get from the original polyhedron when we interchange the faces and vertices.
To show what is meant by this we refer to figure 2. When we are given a polyhedron
and we take the dual of its dual, we get the original polyhedron back again. When the
dual of a polyhedron is the polyhedron itself, we call it a self-dual polyhedron.

Figure 2: Dual polyhedra [9]

6.3 Tetrahedron

We shall now descibe the symmetry group of the tetrahedron. There are two main
cathegories of rotation of the tetrahedron. We can rotate through 2π

3
and 4π

3
around an

axis that runs from a vertex of the solid to the centroid of the opposing face, see figure 3.

Figure 3: vertex-face axis [10]

Another possible rotation is through π around an axis that runs from midpoint to mid-
point of opposing edges, see figure 4.

There are 4 possible vertex-face axex and 3 different edge-edge axes. In total they give
11 possible rotations of the tetrahedron and as one can check all of these rotations are
unique. Together with the identity rotation we count 12 rotations of the tetrahedron.
The symmetry group of the tetrahedron is called the tetrahedral group and is denoted
by T .
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Figure 4: edge-edge axis [10]

We denote Sn for the set of all permutations of the numbers 1, 2, . . . , n. The order of Sn
is n!. The subset of all even permutations within Sn is called the alternating group and
is denoted by An. In Sn there as many odd elements as even elements and from this it
follows that the order of An is n!

2
. Another fact (which will not be proven here) is that

the 3-cycles generate An, so given an even permutation we can write it as a product of
3-cycles.
We now number the four vertices of the terahedron. Each of the rotations just dis-
cussed, then gives an unique permutation of the numbers 1, 2, 3, 4. A rotation r of the
terahedron will swap the location of 3 vertices and a rotation q will swap 4 vertices in
pairs. Every possible rotation of the tetrahedron is now contained in the following set:

e (12)(34) (13)(24) (14)(23)
(123) (124) (134) (234)
(132) (142) (143) (243)

But these are exactly the elements of A4. It turns out that the rotational symmetry
group of the tetrahedron and the alternating group of degree 4 are isomorphic. The
tetrahedron is a self-dual polyhedron.

6.4 The Cube and the Octahedron

The octahedron and the cube are dual solids, hence they have the same rotational
symmetry group. So any rotation of the cube is a rotation of the octahedron and any
rotation of the octahedron is a rotation of the cube. The symmetry group of the octa-
hedron and the cube is called the octahedral group and is denoted with O.

We shall discuss the octahedral group O using the rotations of the cube. The cube has
two more faces and twice as many vertices and edges as the tetrahedron. The rotations
of the cube are;

• r: a rotation of π
2
, π and 3π

2
around an axis through the centroid of opposing faces

(a face-face axis, see figure 5)

• q: a rotation through π around an axis through the midpoints of diagonally
opposing edges (an edge-edge axis, see figure 6)
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• s: a rotation of 2π
3

and 4π
3

around an axis through diagonally opposite vertices (a
vertex-vertex axis, see figure 7)

Figure 5: face-face axis [10]

Figure 6: edge-edge axis [10]

Figure 7: vertex-vertex axis [10]

In total there are 3 face-face axes, 6 edge-edge axes and 4 vertex-vertex axes. When
we include the identity rotation, the total number of possible rotations of the cube is 24.

We now number the four main diagonals of the cube 1, 2, 3, 4 (the diagonal is the same as
a vertex-vertex axis just discussed). A rotation r will cyclicly permute these diagonals
and hence result in a 4-cycle. A rotation s will give us a 3-cycle (it will fix the axis
of rotation, which is a diagonal in this case). A rotation q will permute two diagonals
and hence gives us a 2 cycle. Each of the elements of the symmetry group of the
cube (octahedron group O) corresponds to an element of S4, so whe have a mapping
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φ : O → S4. We know that O contains 24 elements, just like S4. If we can now proof
that φ is surjective, we know that O and S4 are isomorphic. A result states that (12)
and (1234) generate S4 and we know that both these elements lie in the image of φ.
The image of φ is a subgroup of S4 and hence must equal S4.

6.5 The Dodecahedron and the Icosahedron

The dodecahedron and the icosahedron are also dual solids, so their symmetry groups
are identical. The symmetry group of the dodecahedron and the icosahedron is called
the icosahedral group and is denoted by I. We shall discuss the icosahedral group
using the rotations of the dodecahedron. There are three categories of rotations of the
dodecahedron;

• r: a rotation of 2π
5

, 4π
5

, 6π
5

and 8π
5

around an axis through the centroid of opposing
faces (a face-face axis)

• q: a rotation through π around an axis through the midpoints of diagonally
opposing edges (an edge-edge axis)

• s: a rotation of 2π
3

or 4π
3

around an axis through diagonally opposite vertices (an
vertex-vertex axis)

In total there are 6 different face-face axes, 15 edge-edge axes and 10 vertex-vertex
axes. Including the identity rotation we count for 60 different rotations (which leave
the dodecahedron and the icosahedron fixed).
The icosahedral group I is isomorphic to A5. To see this we take the dodecahedron and
look at the inscribed cubes whose volume is maximized inside the dodecahedron. There
are 5 of these cubes and each edge of such a cube aligns with a diagonal of a pentagonal
face of the dodecahedron (see figure 8). We will number these 5 cubes 1, 2, 3, 4 and 5.
Every rotation of the dodecahedron now corresponds to a permutation of the 5 cubes.
One can show that the permutations of these cubes caused by rotations are generated
by 3-cycles (which generate A5) and that I is isomorphic to A5.

6.6 Groups

The rotational symmetry groups of the platonic solids are all isomorphic to some per-
mutation group. We have listed them in table 1.
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Figure 8: An inscribed cube of the dodecahedron [11]

group: Symbol solids: permutation group:
tetrahedral T tetrahedron A4

octahedral O cube & octahedron S4

icosahedral I dodecahedron & icosahedron A5

Table 1: Isomorphic rotational symmetry groups and permutation groups
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7 Binary groups

The symmetry groups of the platonic solids are subgroups of SO(3). Every element
of SO(3) can be represented by a unit quaternion q = q0 + q = cos(θ/2) + usin(θ/2)
(with u = q/‖q‖), corresponding to a rotation about u through an angle θ. We can
represent every unit quaternion as a 2 special unitary matrix. using the map;

a+ bi+ cj + dk 7→
(
a+ bi c+ di
−c+ di a− bi

)
The trace, in other words the character of this representation, for a unit quaternion is
then easily checked to be (a + bi) + (a− bi) = 2a. Which is just 2 times the real part
of a unit quaternion.

So given a rotation, we search for a rotation axis (and write is a a unit pure quater-
nion u = uii + ujj + ukk) and a rotation angle θ and write it as the unit quaternion
q = q0 + q = cos(θ/2) + usin(θ/2). The character of a rotation is then 2 times its real
part, which is just 2cos

(
θ
2

)
. We shall call this character χ0. Since characters of rep-

resentations contain all the important information we don’t need to look at the actual
rotation axes, only the rotation angle is of importance when calculating the character.

We now consider the map:

φ : SU(2)→ SO(3), q 7→ Lq(: Hp → Hp,v 7→ qvq∗)

This is a surjective group homomorphism (with composition of rotations Lpq = Lp◦Lq).
The kernel of φ consist of all unit quaternions that are send to the identity rota-
tion (e : Hp → Hp,v 7→ v) of R3. This kernel is equal to {1, −1}. We also
have that for a unit quaternion q, φ(q) = φ(−q) (since for every v ∈ Hp we have
L−q(v) = (−q)v(−q)∗ = −qv(−q∗) = qvq∗ = Lq(v)). So each rotation can be repre-
sented by 2 different unit quaternions q and −q. However the character of these two
quaternions are not the same but we have that χ0(q) = −χ0(−q).

The pre-images of subgroups subgroup of SO(3) under φ are subgroups of SU(2). These
groups are called binary groups. For a subgroup G of SO(3) we denote G∗ for the
corresponding subgroup of SU(2) and call it the binary G group. With these notations
for a group G we have the exact sequence:

1→ {±1} → G∗ → G→ 1

The group {±1} is a normal subgroup of the binary group G∗ and we have that:

G∗/{±1} ∼= G

We say that G∗ is a group extension of G by {±1}.
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Group Symbol Binary Group Symbol
tetrahedal T binary tetrahedal 2T
octahedral O binary octahedral 2O
icosahedral I binary icosahedral 2I

The corresponding binary groups of the symmetry groups of the platonic solids are
given in figure 7.
The map:

φ : G∗ → G, g∗ 7→ g

is a group homomorphism. When two elements are conjugated in G∗ they don’t need to
be conjugated in G. We know which elements are conjugated in the symmetry groups
of the platonic solids, we know search for the conjugated elements of G∗.
Let a, b ∈ G and assume that a and b are conjugated. So there exist c ∈ G such that
a = cbc−1. Since the map φ is surjective, there exist p, q, r ∈ G∗ such that φ(p) = a, φ(q)
and φ(r) = c. Now we have that;

φ(p) = φ(r)φ(q)φ(r−1) = φ(rqr−1)

So either we have that rqr−1 = p or rqr−1 = −p.
When p and −p are conjugated there is nothing to worry about (then q is conjugated to
p and to −p). In that case we have that χ(p) = −χ(−p) = 0. And since χ(p) = 2cos

(
θ
2

)
(p = cos

(
θ
2

)
+ usin

(
θ
2

)
). We must have that θ = π (or 180 degrees). When p and −p

are not conjugated, a conjugacy class of G can split in different conjugacy classes of
G∗.

Let p and q be two unit quaternions that are conjugated (in H′), so there exist a ∈ H′
such that p = aqa−1 = aqa∗. We can write p, q and a as:

p = cos
(α

2

)
+ usin

(α
2

)
q = cos

(
β

2

)
+ vsin

(
β

2

)
a = cos

(γ
2

)
+ wsin

(γ
2

)
so we have;

p = aqa∗ = cos
(α

2

)
+ usin

(α
2

)
= cos

(
β

2

)
+ ava∗sin

(
β

2

)
Hence we must have that α = β and that there is a rotation (corresponding to a ∈ H′)
that turns v to u.
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Theorem 7.1. The conjugacy class of an element g ∈ G∗ does not split if q is a rotation
of π rad and there exist another rotation p of π rad that is perpendicular to q.

Proof. If q and −q are conjugated there exist a p ∈ G∗ such that −q = pqp−1 or
equivalently pq = −qp. But since p and q are quaternions they then have to be pure
and perpendicular to each other. We must also have that χ(p) = χ(−p) = 2cos

(
θ
2

)
= 0.

Thus θ = π rad. As we have already seen the angles of two conjugated elements in G∗

must be equal and hence both are rotations of pi rad.

In G∗ −1 and 1 are not conjugated, since for any g ∈ G∗ we have that g1g−1 = 1.
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8 The character tables of A4, S4 and A5

The charactertables of A4, S4 and A5 are listed in tables 2, 3 and 4 respectively ([1],
chapter 18).

gi 1 (12)(34) (123) (132)
|CG(gi)| 12 4 3 3

χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

Table 2: The character table of A4 (ω = ei
2π
3 )

gi 1 (12) (123) (12)(34) (1234)
|CG(gi)| 24 4 3 8 4

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 −1 2 0
χ4 3 1 0 −1 −1
χ5 3 −1 0 −1 1

Table 3: The character table of S4

gi 1 (12)(34) (123) (12345) (12354)
|CG(gi)| 60 4 3 5 5

χ1 1 1 1 1 1
χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0
χ4 3 −1 0 (

√
5 + 1)/2 (−

√
5 + 1)/2

χ5 3 −1 0 (−
√

5 + 1)/2 (
√

5 + 1)/2

Table 4: The character table of A5
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9 The symmetry groups

In the upcoming tables we use the following abbreviations.

• cc : conjugacy class

• xG : representative element of a conjugacy class

• |xG| : the order of a conjugacy class

9.1 Octahedral group

The octahedral group has 5 conjugacy classes. Since every rotation permutes the 4
diagonals of the cube, we can label each rotation as a permutation of 1, 2, 3, 4. For each
of the conjugacy classes we shall give a representative permutation. The conjugacy
classes of the octahedral group are given in table 5.

cc xO description |xO|
1 e identity 1
2 (12) 180◦ through the midpoints of opposite edges 6
3 (123) ± 120◦ vertex rotations through diagonals 8
4 (1234) ± 90◦ through centers of opposite faces 6
5 (12)(34) 180◦ through centers of opposite faces 3

Table 5: The 5 conjugacy classes of the octahedral group

The binary symmetry group of the cube has 8 conjugacy classes. To find the number
of elements in each of the conjugacy classes in the binary octahedral group, we simply
look at the number of elements in the corresponding conjugacy classes of the octahedral
group. If a conjugacy class in 2O doesn’t split it contains twice as many elements as the
corresponding conjugacy class in O and if it splits the two resulting conjugacy classes
both contain the same number of elements as the corresponding conjugacy class in O.
We now the order ot the group and the size of the conjugacy classes, hence we can
calculate the size of the stabilizer of the representative elements. For this we use the
formula;

|CG(x)| = |G|/|xG|

The conjugacy classes of the binary octahedral group (2O) are given in table 6.
The natural character χ0 of the binary octahedral group is given in table 7;
As expected χ0(e) = 2 = dimC(C2).
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cc x2O |x2O| |C2O(x)|
1 e+ 1 48
2 e− 1 48
3 (12) 12 4
4 (123)+ 8 6
5 (123)− 8 6
6 (1234)+ 6 8
7 (1234)− 6 8
8 (12)(34) 6 8

Table 6: The 8 conjugacy classes of the binary octahedral group

cc e+ e− (12) (123)+ (123)− (1234)+ (1234)− (12)(34)
|C2O(x)| 48 48 4 6 6 8 8 8
χ0 2 −2 0 −1 1

√
2 −

√
2 0

Table 7: The natural character of 2O

If we take the inner product of the natural character with itself we find that:

〈χ0, χ0〉 =
l∑

i=1

χ0(gi)χ0(gi)

|CG(gi)|

=
2 · 2
48

+
−2 · −2

48
+

0 · 0
4

+
−1 · −1

6
+

1 · 1
6

+

√
2 ·
√

2

8
+
−
√

2 · −
√

2

8
+

0 · 0
8

= 1

and we conclude that the natural character is an irreducible character.

Now {±1} is a normal subgroup of the binary octahedral group 2O and we have that:

2O/{±1} ∼= O

We already know the 5 irreducible characters of O and we can lift these characters to
find 5 irreducible characters of 2O. These characters are different from the irreducible
natural character χ0 and we shall call them χ1, χ2, χ3, χ4 and χ5. The binary octahedral
group had 8 conjugacy classes, so we want to find 8 irreducible characters. Hence 2 more
irreducible characters are required. Since the product of 2 characters is a character, we
hope to get 2 more irreducible character by taking the product of the lifted characters χi
(where i ∈ {1, 2, 3, 4, 5}) with the natural character χ0. After taking the inner products
of these resulting characters with themselves we find that χ2χ0 and χ3χ0 are irreducible
and different from the ones we already had. We will call them χ6 and χ7 respectively.
All of the irreducible characters just discussed are given in the charactertable of 2O 8.
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cc e+ e− (12) (123)+ (123)− (1234)+ (1234)− (12)(34)
|C2O(g)| 48 48 4 6 6 8 8 8

χ0 2 −2 0 −1 1
√

2 −
√

2 0
χ1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 1 −1 −1 1
χ3 2 2 0 −1 −1 0 0 2
χ4 3 3 1 0 0 −1 −1 −1
χ5 3 3 −1 0 0 1 1 −1
χ6 2 −2 0 −1 1 −

√
2

√
2 0

χ7 4 −4 0 1 −1 0 0 0

Table 8: The irreducible characters of 2O

As one eassily checks we find that

〈〈θ, φ〉〉 = 〈θ, χ0φ〉 =
1

|G|
∑
g∈G

θ(g)χ0(g)φ(g)

is another inner product between characters.

We use this inner product to calculate the Gram-matrix L2O. This is the matrix who’s
ij-th entry is 〈〈χi, χj〉〉. It is a diagonal matrix since for the ij-th mij entry it holds
that:

mij = 〈χi, χ0χj〉 =
1

|G|
∑
g∈G

χi(g)χ0(g)χj(g) =
1

|G|
∑
g∈G

χj(g)χ0(g)χi(g) = 〈χj, χ0χi〉 = mji

where we used the fact that all of our irreducible characters are real.
We have;

L2O =

〈〈χ0, χ0〉〉 · · · 〈〈χ0, χ7〉〉
...

. . .
...

〈〈χ7, χ0〉〉 · · · 〈〈χ7, χ7〉〉

 =



0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0


We shall now make a graph where the numbers i and j are connected if 〈〈χi, χj〉〉 = 1.
This graph is called the Coxeter-Dynkin diagram. We can construct the Coxeter-Dynkin
diagram for 2O by looking at the Gram-matrix L2O. For the binary octahedral group
the Coxeter-Dynkin diagram is given in figure 9.

38



Figure 9: The Coxeter-Dynkin diagram for the binary octahedral group

9.2 Tetrahedral group

The tetrahedral group has 4 conjugacy classes. Since every rotation permutes the 4
vertices of the tetrahedron, we can label each rotation as a permutation of 1, 2, 3, 4.
For each of the conjugacy classes we shall denote a representative permutation. The
conjugacy classes of the tetrahedral group are listed in table 9.

cc xT description |xT |
1 e identity 1
2 (123) +120◦ through vertex and center of opposite face 4
3 (132) −120◦ through vertex and center of opposite face 4
4 (12)(34) 180◦ through midpoints of opposite edges 3

Table 9: The 4 conjugacy classes of the tetrahedral group

The binary tetrahedral group has 7 conjugacy classes. To find the number of elements
in each of the conjugacy classes in the binary tetrahedral group, we again look at the
number of elements in the corresponding conjugacy classe of the tetrahedral group. The
conjugacy classes of the binary tetrahedral group 2O are given in table 10.

cc x2T |x2T | |C2T (x)|
1 e+ 1 24
2 e− 1 24
3 (123)+ 4 6
4 (123)− 4 6
5 (132)+ 4 6
6 (132)− 4 6
7 (12)(34) 6 4

Table 10: The 7 conjugacy classes of the binary tetrahedral group (2T )

The natural character χ0 for the binary tetrahedral group is given in table 11.
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cc e+ e− (123)+ (123)− (132)+ (132)− (12)(34)
|C2O(x)| 24 24 6 6 6 6 4
χ0 2 −2 1 −1 1 −1 0

Table 11: The natural character of 2T

The inner product of the natural character with itself gives:

〈χ0, χ0〉 =
l∑

i=1

χ0(gi)χ0(gi)

|CG(gi)|

=
2 · 2
24

+
−2 · −2

24
+

1 · 1
6

+
−1 · −1

6
+

1 · 1
6

+
−1 · −1

6
+

0 · 0
4

= 1

and we conclude that the natural character is an irreducible character.
We already know the 4 irreducible characters of T and we can lift these characters to
find 4 irreducible characters of 2T . These characters are different than the irreducible
natural character χ0 and we shall call them χ1, χ2, χ3 and χ4. The binary tetrahedral
group had 7 conjugacy classes, so we want to find 7 irreducible characters. Hence 2 more
irreducible characters are required. Since the product of 2 characters is a character, we
hope to get 2 more irreducible character by taking the product of the lifted characters
χi (where i ∈ {1, 2, 3, 4}) with the natural character χ0. After taking the inner products
of these resulting product characters with themselves we find that χ2χ0 and χ3χ0 are
irreducible and different from the already known irreducible characters. We will call
them χ5 and χ6 respectively. All of the irreducible characters of the binary tetrahedral
group are now given in the charactertable of 2T 12.

cc e+ e− (123)+ (123)− (132)+ (132)− (12)(34)
|C2T (x)| 24 24 6 6 6 6 4

χ0 2 −2 1 −1 1 −1 0
χ1 1 1 1 1 1 1 1
χ2 1 1 ω ω ω2 ω2 1
χ3 1 1 ω2 ω2 ω ω 1
χ4 3 3 0 0 0 0 −1
χ5 2 −2 ω −ω ω2 −ω2 0
χ6 2 −2 ω2 −ω2 ω −ω 0

Table 12: The irreducible characters of 2T

We now use the inner product 〈〈θ, φ〉〉 = 〈θ, χ0φ〉 again to calculate the gram matrix
L2T .
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L2T =

〈〈χ0, χ0〉〉 · · · 〈〈χ0, χ6〉〉
...

. . .
...

〈〈χ6, χ0〉〉 · · · 〈〈χ6, χ6〉〉

 =



0 1 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 1 1
0 0 1 0 1 0 0
0 0 0 1 1 0 0


Once again we can construct the Coxeter-Dynkin diagram for the binary tetrahedral
group, given in figure 10.

Figure 10: The Coxeter-Dynkin diagram for the binary tetrahedral group

9.3 Icosahedral group

The icosahedral group I has 5 conjugacy classes and order 60. Since every rotation
permutes the 5 inscribed cubes of the dodecahedron, we can label each rotation as a
permutation of 1, 2, 3, 4, 5. For each of the conjugacy classes we shall give a represen-
tative permutation. The conjugacy classes of the icosahedral group are listed in table
13.

cc xI description |xI |
1 e identity 1
2 (12) π rad through midpoints of opposite edges 15
3 (123) ±π

3
rad through opposite vertices 20

4 (12345) 2π
5

& 8π
5

rad through centers of opposite faces 12
5 (12354) 4π

5
& 6π

5
rad through centers of opposite faces 12

Table 13: The 5 conjugacy classes of the icosahedral group I

The binary icosahedral group 2I has 9 conjugacy classes. To find the number of elements
in each of the conjugacy classes of the binary icosahedral group, we simply look at the
number of elements in the corresponding conjugacy classes of the icosahedral group.
Knowing the size of the conjugacy classes, we can calculate the size of the stabilizer
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cc x2I |x2i| |C2I(x)|
1 e+ 1 120
2 e− 1 120
3 (12) 30 4
4 (123)+ 20 6
5 (123)− 20 6
6 (12345)+ 12 10
7 (12345)− 12 10
8 (12354)+ 12 10
9 (12354)− 12 10

Table 14: The 9 conjugacy classes of the binary icosahedral group (2I)

of the representative elements of the conjugacy classes. The conjugacy classes of the
binary icosahedral group 2I are given in table 14.
The natural character χ0 of the binary icosahedral group is given in table 15.

cc e+ e− (12) (123)+ (123)− (12345)+ (12345)− (12354)+ (12354)−

|C2I(x)| 120 120 4 6 6 10 10 10 10
χ0 2 −2 0 1 −1 a −a a−1 −a−1

Table 15: The natural character of 2I (a = 2cos
(
π
5

)
= (
√

5 + 1)/2 and a−1 =
2cos

(
2π
5

)
= (
√

5− 1)/2 )

The inner product of the natural character with itself gives:

〈χ0, χ0〉 =
9∑
i=1

χ0(gi)χ0(gi)

|CG(gi)|

=
2 · 2
120

+
−2 · −2

120
+

0 · 0
4

+
1 · 1

6
+
−1 · −1

6
+
a · a
10

+
−a · −a

10

+
b · b
10

+
−b · −b

10
= 1

and we conclude that the natural character is an irreducible character.

We know the 5 irreducible characters of I and we can lift these characters to find 5
more irreducible characters of 2I. These characters are different from the irreducible
natural character χ0 and we shall call them χ1, χ2, χ3, χ4 and χ5. The binary icosa-
hedral group 2I had 9 conjugacy classes, so we want to find 9 irreducible characters.
Hence 3 more irreducible characters are required. Since the product of 2 characters is a
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character, we hope to find more irreducible character by taking the product of the lifted
characters χi (where i ∈ {1, 2, 3, 4, 5}) with the natural character χ0. After taking the
inner products of these resulting characters with themselves we find that χ5χ0 is an
irreducible character and different from the already known irreducible characters of 2I.
We will call this character χ6.

When we took the product of the lifted characters χi (where i ∈ {1, 2, 3, 4, 5}) with the
natural character χ0 we noticed that 〈χ2χ0, χ2χ0〉 = 2 and 〈χ3χ0, χ3χ0〉 = 2. From the
theory of characters we know that for any character φ of the binary icosahedral group
2I we must have integers d0, d1, d2, d3, d4, d5, d6, d8 such that;

φ = d0χ0 + . . .+ d8χ8

where χ0, . . . , χ8 are the 9 irreducible characters. It follows that:

di = 〈φ, χi〉, for 0 ≤ i ≤ 8

and

〈φ, φ〉 =
8∑
i=0

di
2

For φ ∈ χ2χ0, χ3χ0 we have;

〈φ, φ〉 =
8∑
i=0

di
2 = 2

Hence φ must be the sum of two irreducible characters (since the only way when
〈φ, φ〉 = 2 is when di = 1 for just two i in 1, . . . , 8). Since we already know 7 irre-
ducible characters of 2I we hope that some of them are contained in χ2χ0 and χ3χ0.
For the case of χ2χ0 we find that 〈χ2χ0, χi〉 = 1 only for i = 6 and 〈χ2χ0, χi〉 = 0 for the
rest. Since χ2χ0 is the sum of two irreducible characters this means that χ2χ0 = χ6+χ7,
where χ7 is an irreducible character of 2I different from χ0, . . . , χ6. Hence we have found
another irreducible character χ7 = χ2χ0 − χ6 of 2I.
In the same way we find that for χ3χ0, 〈χ3χ0, χi〉 = 1 only for i = 6 and 〈χ2χ0, χi〉 = 0
for the rest. Hence χ8 = χ4χ0 − χ6 is another irreducible character different from
χ0, . . . , χ7. We have now found the 9 irreducible characters of 2I and we can construct
the character table, which is given in table 16.

Again we use the inner product defined by 〈〈θ, φ〉〉 = 〈θ, χ0φ〉 to calculate the gram
matrix L2I .
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cc e+ e− (12) (123)+ (123)− (12345)+ (12345)− (12354)+ (12354)−

|C2I(x)| 120 120 4 6 6 10 10 10 10

χ0 2 −2 0 1 −1 a −a a−1 −a−1
χ1 1 1 1 1 1 1 1 1 1
χ2 4 4 0 1 1 −1 −1 −1 −1
χ3 5 5 1 −1 −1 0 0 0 0
χ4 3 3 −1 0 0 a a −a−1 −a−1
χ5 3 3 −1 0 0 −a−1 −a−1 a a
χ6 6 −6 0 0 0 −1 1 1 −1
χ7 2 −2 0 1 −1 −a−1 a−1 −a a
χ8 4 −4 0 −1 1 1 −1 −1 1

Table 16: The irreducible characters of 2I

L2I =

〈〈χ0, χ0〉〉 · · · 〈〈χ0, χ8〉〉
...

. . .
...

〈〈χ8, χ0〉〉 · · · 〈〈χ8, χ8〉〉

 =



0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0


Once again we can construct the Coxeter-Dynkin diagram for the binary icosahedral
group, given in figure 11.

Figure 11: The Coxeter-Dynkin diagram for the binary icosahedral group

9.4 Note on the Coxeter-Dynkin diagrams

We have constructed the Coxeter-Dynkin diagrams for the groups 2T , 2O and 2I (figures
10, 9, 11 respectively). These turn out to be famous graphs in the theory of Lie-groups
and are named the affine (extended) Dynkin diagrams Ẽ6, Ẽ7 and Ẽ8 respectively (they
can be found in Bourbaki’s book [3]).
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