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PREFACE

This Msc thesis, made by Hidde Veer and supervised by Wolfgang Hürst & Remco Veltkamp is presented in the form
of a scientific paper with appendices. The main paper presents the research in a complete and concise manner, whereas the
appendices provide more context and details about the paper itself, and the decisions made.
The appendices include a full literature study with a list of references (A + B), a summary of technical implementation details
(C), a list of tasks used for the Introduction phase of the experiment (D), a list of queries used for the Retrieval phase of the
experiment (E), a summary and elaboration on the used metrics for evaluation (F), a more extensive presentation and analysis
of the results (G), and the forms used during the experiment in PDF form (H).
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Abstract—Archives of lifelog data are generally difficult to
access and explore due to the large amount of data that they
contain. Especially for visual data, that is, lifelog images, we
suggest that the larger and more immersive screens of virtual
reality headsets may provide a good way for efficient and pleasant
lifelog exploration. Yet, standard interaction designs used for
lifelog data on regular screens may not translate well into virtual
reality. We propose a visualization-based approach where charac-
teristics such as location, time, and type of content are visualized
via maps, calendars, and tags, respectively. We expect that such
a vision-based interface is easy to handle and allows people to
explore the database and find information by filtering out images
that fulfill certain criteria. Different implementations of these
visualizations are evaluated in a comparative study testing both
general exploration tasks and more targeted search tasks. Our
results prove the feasibility of this idea, but also illustrate the
relevance of how certain visualizations are implemented, and
related functionality is provided. For example, while the map-
based visualization was suffering from different shortcomings,
participants were very positive about the tag-based part of the
interface that allowed them to solve the required tasks efficiently.
Our results provide a proof of concept for such a filtering-
and visualization-based approach for lifelog access in virtual
reality. The identified issues offer concrete suggestions for further
development and necessary modifications.

Index Terms—Lifelogging, Lifelog Retrieval, Virtual Reality,
Filtering Interface

I. INTRODUCTION AND RELATED WORK

We evaluate how virtual reality (VR) can be used to provide
efficient access to lifelog data, in particular images captured
at regular time intervals with body-worn cameras. Our work
is motivated by the assumption that the bigger and fully
immersive screen of a head-worn VR display enables a good
and effective interaction experience, but knowledge about good
interaction design for this context, i.e., lifelog access in VR,
is lacking. In the following, we therefore start by introducing
the lifelogging context (Section I-A) and common methods for
interaction with and access to lifelog data (Section I-B), before
introducing VR and its characteristics that are relevant in this
context. We argue that in the relation of lifelog access in VR,
filtering may be superior or at least an important complement
to common querying approaches. Sections I-D to I-F therefore
address related work with respect to our scenario.

A. Lifelogging

A lifelog, in its broadest sense, is a personal record of one’s
daily life. Those who do the process of recording their life are
commonly referred to as lifeloggers and the process of doing
so is lifelogging. Gurrin, Smeaton and Doherty [1] define

lifelogging as "the process of passively gathering, processing,
and reflecting on life experience data collected by a variety
of sensors, and is carried out by an individual, the lifelogger".

A definition that better highlights the large scope of lifelog-
ging was proposed by Dodge and Kitchin, who defined it as
"a form of pervasive computing, consisting of a unified digital
record of the totality of an individual’s experiences, captured
multi-modally through digital sensors and stored permanently
as a personal multimedia archive" [2]. We can extract three
key aspects of lifelogging, namely the recording of the totality
of an individual’s experience (i), capturing it through a wide
variety of digital sensors (ii), and storing it in a personal
multimedia archive (iii). This study focuses on the third aspect,
specifically how to access such an archive and interact with
it.

B. Lifelog Retrieval

Lifelog Retrieval is the process of retrieving specific lifelog
data from an archive. In practice, this data is often in the
form of images that were captured automatically in regular
time intervals, such as every 1-3 minutes, with small, body-
worn cameras. Attributes such as the GPS location and visual
properties of the photo are used as classification tools to
help discern within a large data set. Numerous applications
have been created that allow users easy access to lifelog
data. These systems generally aim to optimize one of the
following aspects: User experience for exploration, or query
efficiency for retrieval. The latter type of systems utilize
various techniques ranging from interface design to backhand
systems that found their origin in multimedia/video retrieval,
and face off each year in the Lifelog Search Challenge(LSC)
[3]. In this challenge, each system is faced with a set of
retrieval tasks they must resolve as quickly and efficiently as
possible. The LSC is therefore a good comparison of state-of-
the-art retrieval systems. Yet, it is focused on search time and
thus efficiency, but less on user experience and, for example,
discovery of unknown data.
In this research, we present and test a system for lifelog re-
trieval in VR through three main filtering dimensions (Geospa-
tial, Temporal & Conceptual), that aims to find a balance
between efficiency and user experience. Thus, while allowing
some typical search tasks of the LSC, our evaluation of the
system does not solely focus on performance but general
usability and user satisfaction as well.
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C. Virtual Reality for Lifelog Access

Head-mounted displays (HMDs) for VR can offer users
an egocentric 360 degree view of a simulated environment.
The larger field of view compared to desktop applications,
combined with 3D visualizations and a more immersive ex-
perience may offer interesting opportunities for lifelog data
exploration and retrieval. Duane [4] created the VRLE (Virtual
Reality Life Explorer), a lifelog retrieval application that is
primarily focused on efficiency. The interface of the VRLE
is primarily inspired by standard desktop interfaces relying
on mouse and keyboard input. While the VRLE has proven
itself in previous LSCs, this approach may not be optimal
for VR and better interaction designs for exploration and
retrieval may exist. Ouwehand [5] and Van Abeelen [6] took
a different approach, where they visualized the geospatial
information contained in lifelog images in order to provide
easy access to them. While their work was mostly motivated
by providing a more exploratory experience, it can also be
used to for retrieval if and only if the query is geospatially
motivated (e.g., all photos from Central Park in NYC). This
approach of visualizing metadata associated with photos and
using it for filtering shows promise, but is restricted to the
geospatial domain only. In the following, we therefore dive
deeper into geospatial filtering before discussion alternative
and complementary filtering approaches.

D. Geospatial Filtering

While Duane did not visually represent geospatial metadata,
Ouwehand and Van Abeelen both used a flat floor-based map
with pins. Images that are taken at approximately the same
location are grouped into a single pin with an image thumbnail.
Though this technique works well for exploratory purposes, it
has limitations when it is used for retrieval. It is not very
efficient to move large distances over the map quickly, for
instance, moving from Ireland to China, and due to the nature
of lifelog data (lifeloggers frequently visit the same place,
e.g. home and work), high-density areas on the map can
cause clutter. Motivated by these results, we decided to realize
geospatial filtering with a 2D map located perpendicular to the
user’s view but use a more intelligent clustering algorithm.

E. Temporal Filtering

Temporal filtering allows images to be selected based on the
date and time they were taken. Van Abeelen visualized tempo-
ral data by adding a third dimension to the previously created
floor-based map, whereas Duane used a simple interface in
which the date and time was selected using a button system.
Our study aims to expand on Duane’s temporal interface,
maintaining its simplicity while better utilizing the possibilities
of VR, for example, by better utilizing the user’s peripheral
view.

F. Conceptual Filtering

Each image is classified with visual concepts that describe
its objects and attributes. These concepts translate raw image
data in keywords and attributes that humans can understand.

The extraction of visual concepts often relies on computer
vision techniques that retrieve shapes and objects from images,
as manual annotation is infeasible for large data sets. The
VRLE allows its users to query for concepts (or "tags")
by querying on their first letter, which can be inefficient as
some letters are likely to contain more tags than others. Our
system extends this by introducing a more detailed tag filtering
interface that grants the user more options to find certain tags.

II. IMPLEMENTATION

We created a novel lifelog retrieval application with the
focus on filtering techniques to find and examine images.
This application consists of three filtering interfaces (Map,
DateTime & Tag) and a separate interface to inspect images
(ImageView). The application can be used in its entirety while
seated. The controls are specified for the HTC Vive®1, but
may be adjusted to support other devices. An overview of the
application can be seen in Figure 1

Fig. 1. An overview of the VR lifelog retrieval system, with the Map located
in the center, with the DateTime and Tag interfaces on the right and left
respectively. In the top half, the ImageView can be seen. The select/blacklist
button is located underneath the Map, with two displays containing the number
of filtered images and Introduction/Retrieval queries used in the experiment.

A. Map Interface

In the center of the screen in front of the user is the Map in-
terface, which is a 2D map located in a frame perpendicular to
the user, on which lifelog images are geospatially represented.
These images are grouped and displayed as clusters on the
map. The DBSCAN algorithm [7] is used for clustering, as it
is able to cluster images in real-time based on their geospatial
proximity to other images. This approach is advantageous as
it is able to bridge small gaps between GPS coordinates. In
addition, no knowledge about the number of clusters needs
to be known beforehand, as is the case with other commonly
used approaches such as k-means [8].
Users can move the map by using the left trackpad of the VR
system’s controllers, with the speed increasing on higher zoom
levels. Clusters can be filtered out by moving them outside the
frame; only images within the frame are active.
Users can also zoom in and out by respectively tapping the
top and bottom parts of the right trackpad. Clusters become
smaller and more detailed when zoomed in, and are updated
dynamically based on the current zoom level. In this study, we

1https://www.vive.com/eu/product/vive/
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implemented and tested two visualization techniques for image
clustering, namely the Markers and Heatmap visualizations.

1) Markers: Markers visualization (Figure 2) represents
clusters as blue markers placed on the map. The size of these
markers is based on the number of images in the cluster.
Markers offer high accuracy and visibility, but could become
cluttered in high density areas the DBSCAN algorithm does
not consider as a single cluster.

2) Heatmap: Heatmap visualization (Figure 2) represents
clusters in a heatmap overlay on the map, with size and density
both based on the number of images per cluster. Heatmaps
offer a clear density-based overview of cluster locations, at
the cost of reduced visibility of individual clusters.

Fig. 2. Markers (top) and Heatmap (bottom) visualizations

B. DateTime Interface

On the right of the Map is the DateTime interface. This
interface can be used to select or blacklist month/year combi-
nations, days of the week (e.g. Friday), days and hours (e.g.
19:00-20:00). Selecting a filter will disable all images taken at
a different point in time. Blacklisting does the opposite, only
keeping images that are not taken at the given moment. Users
interact with the interface using a virtual pointer attached
to the right controller. Selecting and blacklisting is done by
"clicking" the trigger button of their right controller on a
date/time, clicking again will undo the action. Users may alter-
nate between selecting and blacklisting by clicking a separate
button right below the Map. In this study, we implemented
two DateTime interfaces, namely the Buttons and the C&C.

1) Buttons: The Buttons interface (Figure 3) consists of
a set of clickable buttons for selection and blacklisting, pre-
senting a simple and straightforward filtering interface. Its
strengths lie in its clarity and easy of use, but it is visually
uninteresting and likely not familiar to users.

2) C&C: The Calendar and Clock, or C&C interface
(Figure 3) uses a traditional calendar layout for the selection or
blacklisting of month/year combinations, days of the week and
days. Two clocks, AM and PM, are used for individual hours.
These components are commonly used for desktop and web
applications and should therefore be more familiar to users,
but likely more complex to operate and interact with.

Fig. 3. Buttons (top) and C&C (bottom) visualizations

C. Tag Interface

On the left of the Map is the Tag interface. This interface is
used to find, select and blacklist tags. Similar to the DateTime
interface, users select, blacklist and deselect tags using the
virtual pointer and trigger button of the right controller. We
present two Tag interfaces, TagList and Hierarchy. The latter is
an extension that builds on the former, which is why, also given
the temporal constraints of this research, we only implemented
and tested the first and suggest an evaluation of the second for
future work pending a positive outcome of our evaluation of
the TagList.

1) TagList: The TagList interface (Figure 4) primarily
consists of a virtual keyboard supporting text based search.
Up to 10 recommended tags are visible to the user based
on the search query, ranking from a high to low number
of occurrences. The TagList is precise and accurate in its
search, and allows users to easily find specific tags. However,
interaction with the virtual keyboard is expected to be less
efficient compared to a physical keyboard.
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Fig. 4. TagList visualization

2) Hierarchy: A second interface, the Hierarchy is pro-
posed but not implemented. Tags are placed in a search tree
where leaf nodes are contained in the subset of the root node.
Nodes can be selected by the user, and selecting a node will
automatically select its subtree. An example of this can be
seen in Figure 5. This root may or may not be a pre-existing
tag with its own set of images. The data set used has no
existing hierarchy, and we deemed manually constructing a
tree containing the 532 existing tags of the Hierarchy interface
too costly in time for this research.

Fig. 5. Example hierarchical structure. Existing tags (leaves) are grouped
under a more general, abstract tag (root).

D. ImageView
Located above the other interfaces, the ImageView becomes

visible once the number of active images drops to 270 or
less. It consists of three panels with a total of 27 images (one
"page"), plus two buttons on the far left and right which can
be clicked to scroll between pages.
Clicking an image enlarges it and hides all other UI elements,
allowing the user to inspect a single image in detail. Hovering
over an enlarged image with the pointer shows the image
related metadata, such as its tag and location.
As the main focal point of this research lies within the filtering
interfaces, the ImageView will not be a part of the main study,
as it is solely used here to represent the filtering results.
For this reason, we use a rather straightforward, standard
approach of a grid-based representation of the images (Figure
1). Alternative representations of filtering results are a separate
but equally interesting and relevant aspect to study in follow-
up future research.

III. STUDY GOAL AND RESEARCH QUESTIONS

Our goal is to verify if filtering is an appropriate means
to access and explore lifelog data in VR. Our study is a

first step in verifying the feasibility and usefulness of this
approach.Therefore, we focus on evaluating the implemen-
tations introduced in the last section as a proof of concept.
If successful, we suggest a comparison to traditional, more
query- instead of filtering-based approaches for future work.
1) Which of the implemented Geospatial filtering interfaces

performs best in querying efficiency and user experience?
2) Which of the implemented Temporal filtering interfaces

performs best in querying efficiency and user experience?
3) Which of the implemented Conceptual filtering interfaces

performs best in querying efficiency and user experience?
To answer these research questions, we will be looking at

retrieval performance and usability using the SUS [9] and
qualitative feedback.

IV. USER STUDY

As mentioned, we implemented two variations for the Map
interface (Markers and Heatmap), two DateTime interfaces
(Buttons and C&C) and one Tag interface (TagList). Each
participant tested a unique combination of these variations
(between-subjects).
In addition to some general filtering tasks used in the Intro-
duction phase (Section IV-B), we used two sets of LSC-esque
queries (Set1 & Set2) that are more focused on accurate and
efficient search in the Retrieval phase (Section IV-C). These
queries have been selected and adjusted to compensate for the
limitations of the system (e.g. no images without geospatial
data) and expected inexperience of the participants with VR
and/or Lifelogging. The filtering tasks, which mostly serve
as a basis for the usability tests, are listed in Appendix D.
The contents of each search query, which will contribute to
the experienced usability, but also provide performance-related
insight, can be seen in Appendix E.
The user study took place in a research lab at our university
that provided a neutral space without interference or distrac-
tion. For this study the HTC Vive®HMD and controllers were
used.

A. Procedure

Each experiment started with the participant filling in a
consent and demographics form (Appendix H). We urged par-
ticipants who actively suffer from motion or cyber sickness to
not partake in the experiment. Participants were then seated in
the center of a room, where they were asked to place the HTC
Vive on their head. The HMD was adjusted to the preference
of the participants and two controllers were handed to them.
The main experiment was split in two phases, Introduction
(Section IV-B) and Retrieval (Section IV-C). Afterwards, the
participant was asked to fill in a usability survey and thanked
for their time.

B. Introduction Phase

The Introduction phase, as the name suggests, served as
an introduction to the system and each individual interface.
Participants were sequentially introduced to the four interfaces
(Map, DateTime, Tag and ImageView), one at a time. They
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were first shown a short guide to the interface in the form of
a text panel, explaining the basic functionality and controls.
Afterwards they were asked to solve a series of tasks related
to the current interface. These tasks were questions that can
be verbally answered with numbers (How many images (...))
or names (In what city (...)), or require participants to select
a specific image. The exact tasks can be found in Appendix
D. Participants had infinite tries for each task, and were al-
lowed to communicate with the researcher when encountering
difficulties using the interface.

C. Retrieval Phase

The Retrieval phase allowed participants to put the system
to the text. Each participant attempted to solve a total of 5
queries, by submitting an image fulfilling the requirements
of said query. Queries were presented in a manner similar to
the LSC: Participants were faced with an initial query, which
was extended every 30 seconds up to a maximum of 180
seconds. After a correct answer, participants moved on to the
next query. Alternatively, not answering correctly in time or
submitting the wrong image three times would also advance
the query. During this game the participants’ performance
and behavior was measured through multiple metrics. The
time and attempts taken per query was recorded, as well
as the selected/blacklisted tags and dates/hours. Finally, the
time spent per interface was recorded and normalized by the
query time, by recording the users’ view in VR. More details
regarding the metrics can be found in Appendix F.

D. Evaluation Phase

After the experiment, the participant is asked to remove the
HMD and answer a final evaluation form. Each interface is
evaluated individually using the System Usability Scale (SUS)
by Brooke [9]. The results are used to compare the individual
interfaces themselves and against their variations. Afterwards,
the participants are thanked for the participation, and sent on
their way.

V. DATA SET

We chose to use the LSC’20 [3] data set, consisting of a
total amount of 191,439 wearable camera images at 1024 x
768 resolution (38.5GB). They were captured using the OMG
Autographer and Narrative Clip wearable cameras, typically at
a rate of 1-3 per minute during waking hours. In an effort to re-
tain privacy, faces and most readible text has been blurred out.
Accompanying the images is a collection of textual metadata,
consisting of timestamps, physical activities, biometrics, and
locations of the individual for every minute. Visual concepts
have also been extracted, including bounding boxes of objects.
Some preprocessing steps were executed to make the data set
suitable for our applications. Physical activities and biometrics
have been removed as they are not used, and entries without
geospatial data (latitude and longitude) have been deleted.

VI. RESULTS

A total of 16 participants took part in the study, with all
but one participant (age 55-64) having an age of 18-24. One
participant (Set2, Heatmap, C&C) was considered an outlier
due to their difficulty handling VR controls and inability to
properly attempt the retrieval tasks. One participant (Set1,
Heatmap, C&C) had their screen recording damaged and thus
has no data on the time spent per interface. Standard deviations
for query performance were calculated by considering the
average over all five queries per participant as a single data
point. This is to avoid high standard deviations due to varying
levels of difficulty per image. Statistical significance was
calculated using the two-sample t-test with α = 0.05 (95%
Confidence Level).

Fig. 6. Average time spent per query

Figure 6 shows the mean time spent per query per variation. If
we order the queries from Set1 and Set2 by mean query time
from low to high, we see that every query from Set2 performs
better than its counterpart in Set1. The queries from Set1 were
often more difficult than the ones from Set2, with Q1.4 having
only been answered correctly once, and Q1.2 not having been
answered correctly a single time.
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Fig. 7. Average time per interface over all queries, per query set and
Map/DateTime variation.

Figure 7 shows the mean time spent on each interface
per query. Time spent answering a retrieval query has been
segmented in parts where the user actively focuses on one
of the three filtering interfaces (Map, DateTime, Tag), the
ImageView or is not focused on an individual interface (None),
e.g. when reading the search query. On average, the Tag
interface is most often used, followed by the ImageView, Map
interface, None, and finally the DateTime interface.
The primary differences between Set1 and Set2 lie in the Tag
and Map interfaces, with the former more prevalent in Set1,
and the latter in Set2.

Table I shows the mean and standard deviation for the
SUS (0-100) and its individual questions (1-5) per interface
variation.

VII. DISCUSSION

A. Map Interface

With an average SUS score of 61.09, the Map is rated worst
of the three filtering interfaces. While participants praised
the intuitiveness and familiarity of the interface, many also
criticized the controls (Section VII-A2) and filtering methods
(Section VII-A3).

1) Markers vs. Heatmap: With an average SUS score of
64.06 the Heatmap has received more positive reception than
the Markers with a score of 58.13. Users also spent less time
on average per query when using the former variation. No

cause could be identified for this difference, as participants
have made no remarks regarding clustering visualization used,
during and after the experiment. We therefore hypothesize
that the difference between variations is caused by the small
number of participants (8 for Markers, 7 for Heatmap) and
not a conclusive observation.

2) Controls: The control scheme was met with mostly neg-
ative reception from the participants. Panning was considered
cumbersome and unresponsive due to the real-time processing
of filtering parameters. A solution lies in further optimization
of the system, or updating the parameters "on-demand" by
introducing a dedicated button to update the filters.
Participants also requested more zoom levels and a legend to
see the current zoom level. One user additionally requested
the ability to see city names. Increasing the detail of the
map requires improvements in its visibility, either with better
hardware (Section VII-C3) or increasing the size of the map
while in focus.

3) Filtering: Participants occasionally attempted to search
for locations (e.g. Stockholm, Norway) using the Tag interface,
before swapping to the Map once no matches were found.
One participant expressed the wish to search by location name
instead of the map. The current filtering method was also
criticized: Participants felt the need to move the search target
to the edge of the frame to separate it from other, nearby
clusters (e.g. Ireland from the UK). Suggested improvements
include the ability to select clusters with the pointer, and the
ability to select/blacklist individual locations and countries.
Adding location names as tags is another option, but will
blur the line between the functionalities of the Tag and Map
interfaces.

B. DateTime Interface
Users rate the DateTime interface marginally better than the

Map (61.09), giving it an average SUS score of 63.44. Both
variations were praised for their intuitiveness and clarity.

1) Buttons vs. C&C: With an average SUS score of 56.88,
the C&C is the lowest rated interface variation, rated consider-
ably worse than the Buttons (70). The average time per query
of the C&C was also lower than that of its counterpart. It was
mainly criticized for its clocks, which participants considered
difficult to use. Participants occasionally used the wrong clock,
or selected the wrong time when an exact hint was given (e.g.
selecting 9:00-10:00 when the query states "around 8:50"). The
inexperience of using the AM/PM system among the primarily
European user base is the likely cause.

C. Tag Interface
With an average SUS score of 72.5, the TagList variation

of the Tag Interface is the highest rated interface by the
participants. It is praised for its intuitiveness and clarity, as
well as its accuracy and autofill feature.

1) Controls: The primary critique was the difficulty of us-
ing the keyboard. Participants struggled to click on individual
letters, often requiring more than one attempt to get it right.
The causes lie in the small size of the keyboard, and lack of
stability as participants unintentionally move their controllers
due to the shaking of their hands.



10

TABLE I
AVERAGE SUS SCORE AND INDIVIDUAL QUESTION RATINGS FOR EACH FILTERING INTERFACE.

Interface x̄ \ Σ Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score
Markers x̄ 3.25 4.25 3 4.13 2.63 4.13 2.88 2.75 3.25 3 58.13

σ 1.16 0.71 1.2 0.83 0.52 1.13 1.64 0.71 1.04 1.2 12.94
Heatmap x̄ 2.75 3.63 2.75 3.75 2.25 4.13 2.5 3.25 3 4.13 64.06

σ 0.71 1.19 0.89 1.16 0.89 0.35 0.93 1.04 0.76 0.64 10.08
Buttons x̄ 2.25 3.63 2.25 4 2.25 4.25 2.25 3.88 2.63 3.88 70

σ 0.89 1.41 1.28 1.31 1.04 0.71 1.16 0.99 1.3 1.13 20.7
C&C x̄ 2.5 3.38 3.25 3.5 2.5 3.11 2.75 3 2.125 2.88 56.88

σ 1.2 1.06 0.89 1.07 0.93 1.55 0.89 1.07 0.83 1.55 17.31
TagList x̄ 2.13 4.31 2.5 4.5 2.19 4.31 2.25 3.06 2.13 4 72.5

σ 1.36 0.87 1.37 0.89 0.83 1.08 1 1.24 1.02 1.37 18.23

2) Tag Selection: Participants occasionally struggled to find
a specific tag due to it not existing (Q1.2 is taken in a hotel
lobby, but no such tag exists), or there being similar, applicable
tags: Q1.3 shows a front yard, however up to seven garden-
related tags exist (Figure 5), five of which have been selected
at least once. Only one of the seven (vegetable_garden) was
correct, despite not being fully accurate. One participant even
selected the unrelated, similarly named "beer_garden" tag.
These issues are caused by the automatic annotation of images
from the LSC’21 data set, and can thus not easily be resolved.
Manual annotation of the images is infeasible due to the size
of the data set (191,432 images), and a different algorithm will
likely carry its own flaws.

3) Readability: Participants mentioned the lack of readabil-
ity of individual tags. One elderly participant (55-64) reported
major difficulty reading to the point where they could not
identify the tag. This is likely caused by the HMD display
resolution: The HTC Vive ®has a resolution of 1080×1200
per eye, resulting in an often blurry view. Using a more state-
of-the-art HMD like the Valve Index ®(1440×1600), Oculus
Quest 2 ®(1832×1920) or HTC Vive Pro 2 ®(2488×2488)
should circumvent this issue.

VIII. CONCLUSION

As Virtual Reality is becoming its own platform for lifelog
retrieval, it is important to find interface designs that optimize
query efficiency and user experience. This study investigated
how filtering can be used as an alternative or complement to
more traditional query-centered approaches. We argued that
the latter are less suited for exploring data, especially in
situations with vague or non-existing search goals, and that
filtering might be better suited for VR where text and related
standard input methods are often perceived as cumbersome and
difficult. Our results established that the usage of a 2D map as
a geospatial filtering tool, despite its familiarity and thus likely
benefit, requires fine-tuned interaction and extensive function-
ality for it to be deemed functional and enjoyable. Feedback
from the users indicated concrete aspects to address when
making such a filtering tool useful and beneficial. Our major
general observation is that when implementing click-based
interfaces, participants preferred simplicity to familiarity, and
also performed better in retrieval tasks when using a less
complex interface. Usage of a virtual keyboard for conceptual
filtering is well liked by participants, however, as expected,

interaction with the keyboard can be slow and cumbersome at
times.

This research succeeded in providing a framework for
lifelog access in VR, both for retrieval and exploitative pur-
poses. While the proof of concept is solid, most limitations
lie in the concrete implementation of the Map and other
interfaces.

IX. FUTURE WORK

While the TagList was relatively well received by par-
ticipants, usage of a virtual keyboard carries fundamental
issues that could be improved upon using different interface
components. Future work should therefore look at alternative
techniques to a virtual keyboard for conceptual filtering, such
as a click-based hierarchical interface.
While the Map interface was perceived rather negatively, users
made various recommendations on how to improve it and
make it a valuable addition to the whole system. Future work
should thus look at reworking it and adding the requested
functionality. The controls and geospatial filtering technique
were predominantly met with criticism. Optimizing the control
scheme and offering users more accurate tools to select or
blacklist locations could improve both user experience and
query efficiency.
While not new to lifelogging, the application of an event
segmentation algorithm could help flesh out the ImageView
by providing more context to selected images. It will likely
increase user experience as a more chronological display could
be applied, and query efficiency could be improved by the
ability to query by context (e.g. I was eating my lunch after
(...)). Future work should look at the possible applications of
event segmentation, and the ImageView in general.
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J. Lokoč, W. Hurst, M.-T. Tran, and K. Schoeffmann, “An Introduction
to the Third Annual Lifelog Search Challenge, LSC’20,” in ICMR ’20,
The 2020 International Conference on Multimedia Retrieval, (Dublin,
Ireland), ACM, 2020.



11

[4] A. Duane, “Visual access to lifelog data in a virtual environment,” Dublin
City University, 2019.

[5] K. Ouwehand, “Geospatial access to lifelogging images in vr,” Utrecht
University, 2019.

[6] J. van Abeelen, “Visualising lifelogging data in temporal virtual reality
environments,” Utrecht University, 2019.

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.,”
in kdd, vol. 96, pp. 226–231, 1996.

[8] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, vol. 1, pp. 281–297, Oakland,
CA, USA, 1967.

[9] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.



12

APPENDIX A
LITERATURE STUDY

Abstract—This literature study accompanies the "Lifelog Re-
trieval in VR" research paper, serving as a background analysis
and elaboration on the decisions made in the paper. We give a brief
explanation of the concept of lifelogging at the start, followed by a
review of the state of the art. From that point the study will focus
on specific topics that are addressed in the main research.

A. Introduction

A lifelog, in its broadest sense, can be considered as
a personal record of one’s daily life. Those who do the
process of recording their life are considered lifeloggers.
Attempting a more specific definition proves troublesome, as
many researchers disagree on the details regarding a lifelog.
Gurrin, Smeaton and Doherty [10] define lifelogging as "the
process of passively gathering, processing, and reflecting on
life experience data collected by a variety of sensors, and
is carried out by an individual, the lifelogger". Several key
aspects of lifelogging are addressed here, such as the uti-
lization of various sensors to obtain the lifelog data, and it
being processed to allow the lifelogger to reflect on their
previous life experiences. This concept can be traced back
to 1945, when Bush envisioned the Memex [11], which was
"a portmanteau of memory and index". This device was a type
of desk with pulleys and levers that allowed fast retrieval of
personal information in the form of archived documents.
It was not until the ’90s when Steve Mann, the "father of
wearable computing" started the creation of many small, wear-
able sensors that could be used for the purpose of lifelogging.
Devices such as the EyeTap [12] allowed users to record their
life as if "the eye were the camera and display". Mann has
created these devices for many purposes, such as lifeglogging2,
sousveillance [13]3 and Mediated Reality4.
The first major research project in the field of lifelogging
was the MyLifeBits project, which was created in 2002 [14]
and expanded upon in 2006 [15]. This project is further
explained in Section A-B. Since then, research in lifelogging
has accelerated is multiple directions, the scope of which is
well represented in the definition of lifelogging by Dodge and
Kitchin [16]: "(lifelogging is) a form of pervasive computing,
consisting of a unified digital record of the totality of an
individual’s experiences, captured multi-modally through dig-
ital sensors and stored permanently as a personal multimedia
archive". This definition can be split up in three different
segments, namely (1) it containing the totality of an individ-
ual’s experiences, (2) it being captured multi-modally through
various different sensors and (3) it being permanently stored
in a multimedia archive. These concepts are further explained
in the following three sections.
This literature study serves to complement the VR (Virtual
Reality) lifelog retrieval application introduces in the attached
paper. Section A-E will therefore contain a background study

2lifelong cyborglogging, an older term for lifelogging
3Inverse surveillance, in which those with authority are observed by

individuals.
4A variation of Augmented Reality in which images from the real world

can be filtered out.

on existing state-of-the-art lifelog retrieval applications, in
which parallels are drawn to our own implementation. The
remainder of the literature study will be used to provide a
background study on the main components of our system, and
motivate the decisions made.

B. The totality of a user’s experience

"The totality of a user’s experience" is a key aspect in
many lifelogging applications. Many have made it a purpose
in itself to obtain as much lifelogging data as possible, while
others advocate for only gathering and processing specific
data required for certain applications. This has caused a
divide between two types of lifelogging [17]: Total Capture
focuses on capturing as much data as possible. Resulting data
sets often include a wide range of different data ranging from
biometric data to large streams of images.
Situation-specific capture has a more narrow scope where
it focuses on rich data in specific domains. One example
of the latter is the Quantified Self Movement, that seeks to
capture specific data sets most often aimed to assist users
with disease prevention and health [?], [18]. This concept is
also utilized in the fields of gamification [19] and reflective
learning [20]. Nowadays, mobile apps like Google Fit®5 and
Apple Health®6 allow the user to track their health from
their smartphones, and Fitbit®7 provides smartwatches and
trackers that focus on exercise related data.
One of the front-runners of the Total Capture movement
is the MyLifeBits project [14] [15]. The initial goal of the
project was to create a lifelong archive in the form of a SQL
database on Gordon Bell, one its of the co-creators. Initially,
this included audio, email, documents and hyperlinks among
others, but it was later expanded to include more such as
images, videos, phone calls and even mouse clicks. This
data could then be accessed using a Project Interface [15] in
which users could observe and query the data. Over time, the
project evolved in an attempt to capture everything that could
be captured, and since then many more have contributed
to this vision. More and more data types were added, and
the project required an increasing amount of alterations to
support these new advances. Eventually, the Project Interface
could no longer support all the adjustments from the large
amount of different authors, and became unusable without the
utilization of third-party modifications and plugins that often
did not go well together. The project became swallowed in its
quest to capture and store everything, and its purpose became
more and more questioned over time. Sellen and Whittaker
have criticized this moment, and the idea of Total Capture
in general, blaming it as "nothing more than an excuse to
show off technological advancements in their fields [17]."
This was complemented by their observation that lifelogging
applications lacked in widespread use and knowledge, as they
are often only utilized by those who are directly invested in
the movement. In order to provide perspective, they propose
the "five Rs", which are five core aspects of memory that

5https://www.google.com/intl/enus/fit/
6https://www.apple.com/ios/health/
7https://www.fitbit.com
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could benefit from lifelogging:

Recollection: The first benefit from lifelogging is that it
could help users "re-live" certain life experiences, which is
often referred to as episodic memory [21] [22]. Examples
of practical purposes are recollecting faces and people, or
remembering the details of a meeting.

Reminiscence: Reminiscence is a specialized form of
recollection as it is a form of "re-living" past experiences,
this time for sentimental and emotional reasons rather than
practicality. There is more emphasis on sharing with others,
as examples include watching a home movie or flipping
through a photo book.

Retrieval: Retrieval is one of the main purposes of most
lifelogging applications and is the process of retrieving
specific digital information of a lifelog. Retrieval is closely
related to the previous two "Rs", as the retrieval of a document
helps recollect its contents, and the retrieval of a specific
image might support reminiscence. Lifelog applications
seeking to optimize retrieval should look for ways to
efficiently find specific data through large heterogeneous data
sets through various querying and visualization techniques,
some of which are explained in Section A-H. Retrieval in
itself is the most commonly investigated aspect in the field of
lifelogging, and also the main focus of this research.

Reflection: Looking back on past experiences through
lifelog data can assist the user in creating a more abstract
view of past events. Reflection is the process of looking at
the past with a new perspective, and utilizing this information
for the benefit of health, self-identity and learning. This is in
contrast to recollection, which is more oriented on memory
in itself.

Remembering Intentions: Rather than relating to
retrospective memories, these aspects focuses on prospective
memories. Through lifelogging data, it is possible to
remember activities that have to be done in the future, such
as taking medicine or showing up at an appointment.

C. Multimodal Data Capturing

Capturing multimodal data using a wide array of sensors
is one of the key aspects of lifelogging. Life itself cannot
be captured using photographs, audio and video exclusively,
as life itself is a multimodal experience. In practice, this
multimodality executed on different levels, as using a wide
array of devices can result in practical issues. In the past,
capturing large amounts of different data required large and
bulky setups to be carried around by the lifelogger (Figure
A.1). Over time, these devices became smaller and smaller,
and new devices were created to better suit the needs of
lifelogging.
One of the first devices for the purpose of lifelogging was the

Microsoft SenseCam®8, which was a portable camera capable
of automatically capturing large numbers of photographs per
day. It was complemented by a PC-based application called
the SenseCam Photo Viewer to manage and view the cap-
tured images. The original purpose of this device was to be
a retrospective memory aid that helps the wearer recollect
experiences that have subsequently been forgotten [23]. At
the time of its creation, the concept of lifelogging was still
in its early days, and thus the device and software were
relatively simple. A more recent device is the Google Glass®9,
which was first released in 2014, discontinued in 2015, with
newer versions being released in 2017 and 2019 for industry
only. Research [10] anticipated that the Google Glass would
revolutionize lifelogging by appealing to a broad audience,
despite lifelogging not being one of the main focus points of
the Glass. When looking at the current state of affairs, that
does not seem to be the case. Nowadays, most of the lifelog
capture functionality has been built into the smartphone. With
the ability to record audio, video, GPS positions and much
more, this device replaces a large range of individual sensors,
making lifelogging a lot more accessible to a public audience.
Numerous apps are available that utilize these functions for the
purpose of lifelogging, most often in the context of Quantified
Self.

Fig. A.1. The evolution of data capturing in the early days of lifelogging
[12].

D. Multimedia Archives

In recent times, lifelogging research has moved away from
the technical aspect of gathering and storing data, towards cre-
ating interfaces that are capable of visualizing and retrieving
it efficiently. One obstacle that quickly comes to light is the
sheer amount of data storage required for a lifelogging archive.
Gurrin, Smeaton and Doherty [10] have created an illustration
of the data sizes of several types of lifelog data, which can be
seen in Table A.1.

TABLE A.1
AN ILLUSTRATION OF THE DATA QUANTITIES AND DATA SIZES FOR A

SELECTION OF LIFELOG DATA OVER A DAY, YEAR AND A LIFETIME
(TYPICAL 85 YEAR JAPANESE LIFESPAN) [10]

8https://www.microsoft.com/en-us/research/project/sensecam
9https://www.google.com/glass/start/
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Content Type Volume/day Volume/year Volume/lifetime
HD Video 5,840 hours 32.8TB 2.65PB
Autographer Camera 1.1 million images 479.6GB 40.8TB
Audio (mono - 22KHz) 5,840 hours audio 227.8GB 19.4TB
Microsoft SenseCam 1.65 million images 30.2GB 2.6TB
Accelerometer (1 Hz) 21 million readings 0.05GB 4.25GB
Locations (0.2 Hz) 3.9 million GPS points 0.01GB 1TB
Bluetooth Interactions ± 150,000 encounters 2GB+ 150GB
Reading Log User dependent 1GB+ 80GB

Although intimidating at first, recent developments and
future prospects in the field of storage technologies show that
the size of lifelogging data does not form a major obstacle. The
main challenges remaining in this field are processing of such a
large and diverse data set, obtaining relevant information from
it and visualizing this in a way that allows for easy interfacing
by the lifelogger. This has led to the development of multiple
lifelog retrieval applications in recent times, some of which
will be discussed in the following section.

E. Lifelogging Applications

Over the years, multiple lifelog retrieval applications have
been created for the purpose of querying large datasets with
optimal speed and efficiency. These systems face off in the
annual Lifelog Search Challenge (LSC) [24], in which each
system is tasked with the retrieval of an image based on
a textual description. In this contest, state-of-the-art lifelog
retrieval systems compete against each other to evaluate their
systems. Most of the retrieval systems discussed below have
performed well in previous LSC challenges:

lifeXplore: The lifeXplore system created by Leibetseder et
al. [25] is based on the diveXplore system for video retrieval
[26]. Because of this, the lifeXplore system borrowed many
of it features from video retrieval. It preprocesses its image
data by grouping sequential frames together, creating one
video per day. These videos are then partitioned in a sequence
of scenes. Querying techniques include similarity search, drag
drop filters and geolocation filtering.

VIRET: The VIRET tool by Kovalčík et al. [27] works
similarly to the lifeXplore system, as both found their origins
in the domain of video retrieval. Both systems also treat their
image data as frames of a video. It has obtained a third place
at the LSC’18 by using exclusively visual data, after which
is has been improved and tailored to more lifelog specific
requirements.

vitrivr: The vitrivr stack is a multimedia retrieval stack that
once again has been originally designed for video retrieval
[28], but has since expanded to multiple other domains [29],
including lifelogging [30]. The vitrivr system is split in three
mayor components:

1) Vitrivr NG, the user interface used for query formulation
and result presentation.

2) Cineast, the retrieval engine that handles query processing
and feature extraction.

3) Cottontail DB, the database that stores all information.

VRLE: The Virtual Reality Lifelog Explorer by Duane
et al. [31] [32] [33] is the first system examining the
feasibility and potential of lifelog retrieval in VR. The user
interfaces with the application through two controllers and a
Head-Mounted Display (HMD). The system has proven itself
at LSC’1810, where it was the top performer. Since then,
the system has been improved and new features have been
added. The field of lifelog retrieval in VR remains mostly
unexplored, and is the main focal point of the current research.

Ouwehand & Van Abeelen: The thesis project by
Ouwehand [34], which has been expanded upon by Van
Abeelen [35], also presents a system that brings lifelogging
to a VR environment. Their focus however, was more on user
experience and casual browsing as opposed to efficiency like
the aforementioned systems. Neither system has therefore
participated in a Lifelog Search Challenge. Ouwehand
projected a floor map on which pins were placed, each of
them representing one or more photos (Figure A.2). Van
Abeelen expanded on this by adding a spacial dimension that
displays the time of each photo in the same view, as opposed
to geospatial data exclusively.

Observations: Except for the VR retrieval applications,
most lifelog retrieval systems have the common theme
that they are adaptations of existing systems, primarily in
the domain of video retrieval. These applications have the
advantage that existing and proven concepts can easily be
transferred to the domain of lifelogging. At the same time,
these systems are bound to an existing framework, making it
more difficult to implement more drastic improvements and
innovations. Designing a lifelog retrieval application from
scratch will open up more windows for the exploration of
new features. Therefore, in this research the choice has been
made to not use any existing lifelog or multimedia retrieval
applications.

Fig. A.2. Screenshot of the lifelogging application made by Ouwehand [34].
Each pin represents a photo, which on larger zoom levels are clustered based
on location.

F. Data Set

In order to evaluate and test our implementation, the LSC’20
Data Set [24] is used. This multimodal data set consists of
six months of life experience from a single lifelogger. The
main focal point of this set is the image data, as roughly one
photo is taken for every minute using a wearable camera. Each

10http://lsc.dcu.ie/2018/
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photo is timestamped and provided with GPS coordinates.
Visual concepts and attributes have been extracted and are
attached to each photo. Additional information in the form
of biometrics is also provided, such as heart rate and calories
burnt. This data will not be used in this research. This data set
is chosen as it is the state-of-the-art at the moment of writing.
It is also used in the upcoming LSC’21 session, in which the
best lifelog systems will compete against each other based
on their querying efficiency. Participation in this event could
provide valuable insights about the application, however, due
to the limitations of the system and schedule of the challenge,
participation is not an option.

G. Event Segmentation

As mentioned in Section A-D, the size and diversity of
lifelog data can prove difficult when attempting to access
it. A continuous stream of raw lifelog data in itself is not
suitable for information retrieval due to various reasons. The
existence of a semantic gap11 [36] combined with the fact
that certain types of sensory data is not searchable using
standard types of information retrieval (e.g. speed, heart rate)
makes it near impossible to formulate suitable queries for
lifelog data retrieval. One way to overcome these barricades
is by enhancing lifelogging data though event segmentation
and annotation. Event segmentation can be defined as "the
process by which people parse a continuous stream of activity
into meaningful events" [37], and is a widely explored field
extending far beyond the context of lifelogging. Research has
shown that individuals that are better able to mentally segment
an activity into events, are better able to remember it later
[38]. Replicating the psychological event segmentation of the
lifelogger in the archive therefore allows for more effective
and efficient querying.

Event Segmentation in Lifelogging: Event Segmentation has
been a recurring theme in multiple lifelogging applications.
Doherty et al. [39] have segmented lifelogs using visual data,
temperature and light sensors, and an accelerometer. Gupta and
Gurrin implemented a system that uses visual data exclusively
[40], utilizing the Caffe framework [41]. In this research,
we considered the Contextual Event Segmentation (CES) by
del Molino et al [42]. Their implementation utilizes a Visual
Context Predictor (VCP), consisting of a type of Recurring
Neural Network that is trained to predict the visual feature
of either the previous or next image frame. A boundary
detector then uses the VCP to detect boundaries of events
by finding local maxima in visual context changes. Therefore,
smaller changes in visual context such as looking in a different
direction can still be considered belonging to the same event.
At the end, noise frames are removed as short interruptions in
the middle of events should be ignored. An example of CES
in action can be seen in Figure A.3.
Due to time restrictions, event segmentation was ultimately
not implemented in the application.

11The semantic gap is the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data
have for a user in a given situation.

H. Image Classification

The key component of any lifelog retrieval system is the
querying architecture lying behind it. One of the goals of our
implementation includes the ability for the user to formulate
queries as precise, accurate and complete as possible. To
facilitate this, we classify our lifelog data in three different
dimensions: Geospatial, Temporal and Conceptual, each of
which can be filtered on separately.

Geospatial Classification: Geospatial Classification allows
the user to select or deselect images based on their GPS
location. Querying by location allows the user to find images
using the recollection of its (approximate) location. In this
research, images are represented in clusters on a 2D map
placed perpendicular to the user. Similar approaches have been
done by Ouwehand [34] and Van Abeelen [35], though they
have opted for a floor-based map instead.

Temporal Classification: Each image in the LSC’20 [24]
data set is labeled with a date and time. Roughly one image
is taken per minute of every hour the lifelogger was awake,
over an extended period of time. A timeline was considered
to allow the user to filter by time. Outside the domain of
lifelogging, Karlsson et al. [43] introduced the concept of
a multiscale timeline for mobile photo albums. Photos are
clustered and placed on a single timeline, which the user can
scale by pinching their fingers. The user can select clusters
by tapping their thumbnail which either decreases the scale
of the timeline, or displays a cluster if the number of photos
are below a given threshold (Figure A.4). We decided to use
a button-based filtering interface instead.

Fig. A.4. The multiscale timeline by Karlsson et al. [43]

Conceptual Classification: The ability to filter by concept
requires an intermediate step, that bridges the semantic gap
that exists between a raw image and the interpretation of
the user. Images can be remembered by the presence of
certain objects or people, or more abstract attributes such as
the weather or the color of a building. Visual concepts and
attributes are to be extracted from images and represented as
tags that the user can understand. The automated annotation of
lifelog data (primarily images) is an important step as manual
annotation is not feasible due to the amount of data. Computer
Vision techniques are utilized to provide quick and efficient
image annotations, right after the image was taken [44].
These annotations can then be used for filtering by concept,
obscuring objects to promote privacy [45], localization [46]
and more. The LSC’20 [24] data set is already annotated with
concepts, categories and attributes, which in this research are
all combined as "tags".
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Fig. A.3. Examples of the capabilities of the Contextual Event Segmentation (CES) [42]. Detected events are framed in seperate boxes.

Interaction
Over the years, research has focused on new interaction

devices and techniques in relation to VR, with most focus
being put on haptic design [47] and body-based interaction
[48]. Most of these devices and techniques are not available
to consumers, and are often not proven outside the scope of
their research. Existing lifelogging applications in VR have
therefore opted for commercially available devices like the
HTC Vive® controllers [32] [34] [35]. When looking at our
Query Interface, which in large part consists of a geospatial
map, this type of device-based interaction proves itself as a
good option. Research has shown that device-based interaction
through controllers has an increased performance in terms
of time and error rate compared to body-based interaction,
when used in the context of Geographical Information Systems
(GIS) [49]. In addition, map interfacing in VR through con-
trollers has also proven to hold great benefits over interaction
with desktop-based maps [50], showing that a potential loss
of performance due to a different type of interaction device is
not a large concern.

I. Filtering Interface
Our filtering interface is used to view and apply filters to

the lifelogging data. This interface is split in three smaller
interfaces, one for each classification type

Geospatial Filtering: The central component of our appli-
cation is the 2D map through which images can be filtered
geospatially. Ouwehand [34] and Van Abeelen [35] have
chosen for a flat, floor-based map (Figure A.2), due to the
familiarity most people have with flat maps (e.g. Google
Maps12). We have chosen to place our map perpendicular to

12https://www.google.com/maps

the user instead, as the amount of vertical head movement
required to use a floor-based map might strain the neck. Re-
search has shown that both an exocentric globe (Figure A.5.a)
and curved map (Figure A.5.c) have significant advantages
over a flat map when estimating geographical properties such
as size and distance [51]. Virtual globes have been a well-
studied subject both in- and outside the domain of VR [52],
and curved (panorama) maps have been utilized in several
domains unrelated to lifelogging [53] [54], showing promising
results. Ultimately, we decided to not further explore this
domain, as focus shifted to data clustering and visualization
instead. Investigating various map types for the purpose of
lifelog retrieval may nonetheless provide an interesting topic
for future work.

Fig. A.5. Four types of geographical map visualization as proposed by Yang
et al. [51]

Geospatial Clustering

A lifelog is characterized by its sheer amount of data, as can
be seen in Table A.1. Representing each image on a map will
result in large amounts of clutter. Utilizing event segmentation
partially remedies this issue, but the remaining amount of
events could still render the map unusable. Therefore, some
level of clustering is required to group images based on
their location, in order to aid in the clarity of the map.
Previous applications in VR lifelogging that used a map
representation [34] [35] have clustered based exclusively on
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the geographical location of individual photos. This approach
has its disadvantages as high density areas are at risk of
becoming cluttered, and two geospatially adjacent images
could end up in different clusters based on the rounding of
their respective GPS coordinates

In our research, we present and compare two existing tech-
niques for the visualization of clusters, namely Markers and
Heatmap visualization, and apply the same clustering algo-
rithm to the two of them

Clustering: For our application, we require an algorithm
that is able to cluster images based on their geographical
distance and adapt in real time to changes to the filtering
parameters and zoom level of the map. Generalized clustering
algorithms exist that may be suited to the clustering of
lifelogging data specifically [55] [56]. These algorithms can
be subdivided into multiple categories such as hierarchical
clustering [57], partitional clustering such as k-means [58],
density based clustering [59] and more. For this research the
initial choice was made to use Agglomerative Complete-Link
Clustering [60], which is a hierarchical clustering algorithm
that works as follows:

1) Place each pattern in its own cluster. Construct a list of
interpattern distances for all distinct unordered pairs of
patterns, and sort this list in ascending order.

2) Step through the sorted list of distances, forming for each
distinct dissimilarity value dk a graph of the patterns where
pairs of patterns closer than dk are connected by a graph
edge. If all the patterns are members of a completely
connected graph, stop.

3) The output of the algorithm is a nested hierarchy of graphs
which can be cut at a desired dissimilarity level forming
a partition (clustering) identified by completely connected
components in the corresponding graph.

Each pattern consist of an image, and the distance function
is the Euclidean distance between the location centers of two
clusters p and q:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 (1)

The result is a dendrogram, which is a tree-like diagram that
displays each pattern on top of the tree, with the remaining
nodes representing clusters to which the data belongs, with
arrows displaying the distance (Figure A.8). This distance is
0 on top of the tree, and increases to the point where every
pattern is contained in a single cluster. This property makes
a dendrogram suitable for supporting a zooming feature, as
no further calculations need to be done, thus restricting calls
to the algorithm to querying exclusively. The time complexity
of the algorithm equals O(n2 log n), with a space complexity
of O(n2), with n equal to the number of segmented events.
However, due to the algorithm being entirely sequential, it
was ultimately too slow to provide real-time clustering and a
different algorithm was chosen.

Fig. A.6. An example dendrogram.

The choice fell on the density-based DBSCAN [61] algo-
rithm instead:

void CreateBins(){
foreach(Image i in images){
if (bins.Contains(i.coordinates)

bins[i.coordinates].Add(i)
else { Bin b = new Bin();
b.Add(i)
bins.Add(i.coordinates, b) }
}}

void CreateDistances(){
foreach(Image i in images){
foreach(Image j in images){
if (j == i) continue
distanceMatrix[i,j].Add(

EuclideanDistance(i,j)
}}}

void CreateNeighbourSets(){
foreach(Bin b1 in bins){
foreach(Bin b2 in bins){
if (b1 == b2) continue
if (distanceMatrix[b1,b2] < epsilon)

b1.neighbours.add[b2]
}

void CreateDBSCAN(){
foreach(bin b in bins)
if (b.inCluster) continue
Cluster c = new Cluster
c.Add(b)
b.inCluster = true
AddNeighbours(c,b)
}}}

void AddNeighbours(Cluster c, Bin b){
foreach(Bin d in b.neighbours){
d.inCluster = true
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c.Add(d)
addNeighbours(c,d)
}}

DBSCAN clusters images based on the distance to their
neighbors. Epsilon (ε) is a predetermined variable that indi-
cates the minimum distance for two bins to be considered
neighbors. In our application, ε is based on the current zoom
level, high when zoomed out, and low when zoomed in. A
second DBSCAN variable, minPoints, which indicates the
minimum size of clusters to not be considered an outlier, is set
to zero and is thus not used. The algorithm is O(n3) (n equals
the number of bins) in the CreateNeighborSets() function if the
maximum value in the distance matrix is smaller than ε. This
and the CreateDistances() function are further optimized by
using an Unity ComputeShader. The distanceMatrix is O(n2)
in size. The CreateDBSCAN() and AddNeighbors() functions
are the only two that can not be preprocessed, taking Θ(n) in
total.

Marker Visualization: Markers are often used as a repre-
sentation of points on interest in applications as Google Maps
and third-party libraries like marker clustering [62], offering a
clear overview of the locations of individual clusters. Markers
are sensitive to high-density areas, either causing clutter or a
loss of information based on the amount of markers.

Heatmap Visualization: Heatmaps visualizes clusters on a
square 2D overlay placed over the geospatial map. Heatmaps
can be continuous or discrete, with the latter using a 2D
grid to indicate density. The former approach shows large
similarities to the isopleth map visualization by Toyama et al.
[63]. Heatmaps are sensitive to zoom levels as high-density
areas could become a big blur when zoomed out. Unlike
Markers, the Heatmap is better able to display high density
areas, and is better in visualizing them when exact locations
are not needed.. A similar clustering approach Toyama, known
as Media Dots is not considered due to the large similarities
to the discrete version of this approach. Our research will use
a continuous heatmap in the form of a shader.

J. Temporal Filtering

Users can filter on date or time using an interface panel on
the right of the map. Van Abeelen added a third dimension to
his floor-based map to represent the temporal information of
images [35], and Duane created a button-based system for date
and time selection in his application [32]. While using simple
buttons has its merits, there are other methods of filtering by
date and time. The Flickr Cities project13 uses a timeline to
query by month, and two circular interfaces to filter by hour
and weekday. Our implementation presents two interfaces,
one inspired by the simple button system (Buttons), and one
comprised of a calendar and two circular clocks for date/time
selection (C&C).

K. Conceptual Filtering

Users can filter by concept or tag by using a panel on the
left of the map. Using a virtual keyboard, they can type out

13http://www.datainterfaces.org/projects

(partial) tag names which are auto-completed by our system
for easier use. Speicher et al. [64] have tested several forms
of textual input in VR, both body-based and device-based.
Results show that pointing on a keyboard with a controller
outperforms the other methods that they tested, which has been
implemented in our TagList interface. Boletsis and Kongsvik
present a drum-like VR keyboard [65] which can be seen in
Figure A.7. In this input method, controllers are used as sticks
which through downward movements, “press” the keys of the
virtual keyboard, thus providing an alternative method of text
input. This method is not implemented in our research.

Fig. A.7. The drum-like VR Keyboard by Boletsis and Kongsvik [65]

L. Image Visualization

A separate interface is required to inspect individual images
once filtered out. Duane created a so-called memory wall in
his VR lifelogging application [32], which displays images in
a grid perpendicular to the user. However, previous research
has shown benefit to the use of peripheral vision in different
contexts [51] [53] in VR. Our research will therefore use an
interface that is partially curved around the user, allowing a
large amount of images to be displayed with equal quality.

Fig. A.8. The memory wall from Duane’s lifelogging application, which is
displayed as a grid perpendicular to the user [32].

M. Conclusion

In this literature study, we have looked at the topic of
lifelogging: its history, benefits and limitations. After that, we
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put our focus on existing lifelog retrieval applications, multiple
of which have been discussed, including existing applications
in Virtual Reality. The concept of event segmentation is
discussed, including its uses for lifelog retrieval. To allow
for complete and accurate retrieval queries, our application
allows the filtering of images in three dimensions: Geospatial,
Temporal and Conceptual. This research focused on the design
of filtering interfaces related to the three dimensions. Finally,
techniques for visualizing images were briefly discussed,
which participants used to inspect individual images.
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APPENDIX C
IMPLEMENTATION DETAILS

Hardware

Target hardware is the HTC Vive®:

TABLE C.1
TECHNICAL SPECIFICATIONS FOR THE HTC VIVE®

Display OLED
Resolution 1080×1200pxpereye

Refresh rate 90hz
Field of View 110°

Lens Type Fresnel
IPD 60.8-74.6mm

Tracking Area 15×15ft

Software

The system was made in Unity 2020.1.6f1.

External Libraries

• OpenVR XR Plugin: 1.1.4

• SteamVR 2.7.3

• Unity UI 1.0.0

• TextMexhPro 3.0.1
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APPENDIX D
TASKS

A. Map Interface

1) How many images can you see on the map in total?
(Answer: 174018)

2) Which country contains the most images? (Answer: Ire-
land)

3) How many images have been taken in Turkey? (Answer:
178)

4) The lifelogger once took a flight to Russia from Germany.
Which countries did he cross? (Answer: Czech Republic,
Poland, Belarus)

5) How many images have been taken in China? (Answer:
5331)

B. Temporal Interface

All images not taken in China are filtered out.

1) During which months and years was the Lifelogger in
China? (Answer: March 2015 May 2018)

2) How many days did he spend in China? (Answer: 5)
3) In March he spent a only a single day in China, what day

was that? (Answer: Friday the 20th)
4) What was the last day the Lifelogger spent in China?

(Answer: May 25th 2018)
5) How many images were not taken before 6:00? (Answer:

5055)

C. Tag Interface

All images not taken in China during May 2018 are filtered
out.

1) What tag is the most common for images in China?
(Answer: no horizon)

2) How many images contain the tag research? (Answer: 39)
3) How many images do not contain the tag airplane_cabin?

(Answer: 1930)
4) How many of those images were taken from inside a car?

(Answer: 110)
5) How many images were taken inside a fastfood restaurant?

(Answer: 238)

D. Image List

All images not taken in China during May 2018 without
the fastfood_restaurant tag are filtered out.

1) In which fastfood restaurant is the Lifelogger eating?
(Answer: McDonalds)

2) Name three items he is having at McDonalds (Answer:
Fries, Burger, Drink)

3) Find an image in which the burger is visible. (Answer: ...)
4) In what coffee chain does the lifelogger order his coffee

(after the second restaurant) (Answer: Starbucks)
5) What is the name of the street where this is located?

(Answer: Hanjie Street)

APPENDIX E
QUERIES

A. Set 1

1) Q1.1:
• A red car on a driveway. ...
• ... It was beside a white house. ...
• ... on a cloudy day. ...
• ... There was a man standing on the driveway, ...
• ... along with some potted plants. ...
• ... I could also see a tree in the background.
2) Q1.2:
• Checking out of a hotel in Norway...
• ... in the early morning. ...
• ... There was a weather report on a TV on the right. ...
• ... There was a man behind the counter ...
• ... in front of a wooden wall. ...
• ... It was the 5th of September.
3) Q1.3:
• Pulling up grass or weeds ...
• ... in my garden in Ireland. ...
• ... I can see trees on the other side of the road, ...
• ... and several types of plants on my right. ...
• ... It was on a Saturday ...
• ... in September.
4) Q1.4:
• Walking on the tarmac of the airport at Dublin. ...
• ... I can see a person in an orange safety jacket ...
• ... while I was walking towards an airplane. ...
• ... I also saw the back of a bus with the number "105"

on its back. ...
• ... It was March 2015 ...
• ... around 15:30 in the afternoon.
5) Q1.5:
• I was looking at an old clock, with flowers visible. ...
• ... It was on a table next to my bed. ...
• ... There was a blue rabbit-like creature inside of the bed.

...
• ... It was on a Monday ...
• ... in September ...
• ... at my home in Dublin.

B. Set 2

1) Q2.1:
• Getting some coffee at the airport in Stockholm. ...
• ... I was sitting at a small table in a lounge. ...
• ... There were other people as well, ...
• ... but most chairs were empty. ...
• ... It was August 2016 ...
• ... around 14:10 in the afternoon.
2) Q2.2:
• I was in my office in Ireland taking a skype call on my

laptop. ...
• ... It was on a Friday in September, ...
• ... just before 9:00. ...
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• ... I can clearly see a large image of a man’s face on the
screen. ...

• ... My hand may have been covering part of the keyboard.
...

• ... It was the 9th of September.
3) Q2.3:
• Walking in the cabin of an airplane in Shanghai. ...
• ... There was a man with an orange shirt in front of me.

...
• ... He also wore a backpack.
• ... People started taking their seats. ...
• ... It was May 2018 ...
• ... around 15:15. ...
4) Q2.4:
• Waiting at the reception of the Yeats Country Hotel in

Ireland. ...
• ... The wall behind the counter was full of clocks. ...
• ... There was a man with a gray sweater in front of me.

...
• ... I remember it being a wooden wall. ...
• ... It was September 2016, ...
• ... around 10:15 in the morning.
5) Q2.5:
• Sitting at a wooden table in an antiques store in the UK.

...
• ... I was having some cake ...
• ... with a cup of tea ...
• ... and a small bottle of milk. ...
• ... It was a Saturday ...
• ... in March 2015.

APPENDIX F
EVALUATION

A. Demographics

The following questionnaire is given to the participants
at the start of the experiment. It is used to gather basic
demographic information about the participants.

Age:

• Below 18
• 18 - 24
• 25 - 34
• 35 - 44
• 45 - 54
• 55 - 64
• Above 65

Due to the experiment taking place at Utrecht University, it is
expected that the majority of will be students, and fall within
the 18 - 24 age group. Other participants, such as university
staff, are expected to be distributed evenly among the older
age groups.

Gender:

• Male
• Female
• Other/do not want to disclose

A 50/50 gender distribution between male and female would
be ideal to both identify differences between the two genders,
and nullify any gender related effect on the results of the
study. The expectation is however that the dominant gender
will be male due to the background of most participants, and
the difficulty of recruiting a diverse set of participants due to
the Covid-19 pandemic.

Primary Language:

• Dutch
• English
• Other

It is expected that most participants will have Dutch as
a primary language, even though the implementation and
experiment itself are both in English. It is unlikely that a
language barrier will affect performance.

Experience with Virtual Reality (VR):

• None
• I have used VR before, but not often
• I use VR regularly (1+ times per month)
• I use VR often (1+ times per week)

It is expected that most participant have some, if limited
experience with VR. Those with little to no experience
with VR are expected to perform worse on average due to
inexperience with the hardware, and require a longer time to
become familiar with the system.
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Experience with Lifelogging:
• None
• I am aware of the concept of Lifelogging
• I actively work with the processing of Lifelog data
• I actively generate, store and process Lifelog data

It is expected that the majority of participants have never
heard of Lifelogging. Those who do have experience are
expected to perform better on average, due to their experience
with the data used.

Motion Sickness:
• I do not suffer from motion sickness
• I occasionally suffer from (mild) motion sickness
• I often suffer from motion sickness, and the symptoms

can be severe.
It is expected that the majority of participants do not suffer
from motion sickness, or only experience mild symptoms.
Those that have selected the bottom option are prohibited
from partaking in the experiment due to the potential risks of
cyber sickness, whereas those who have filled in the second
option are made extra aware of the concept of cyber sickness,
and are stressed upon that they must stop the experiment
as soon as they experience any symptoms. This, however, is
not expected to occur often due to the participants remaining
seated throughout the experiment.

B. Performance

The following performance metrics are used:
Time per query & Attempts made: As mentioned, partici-

pants have up to 180 seconds of time, or 3 attempts per query.
Submitting 3 incorrect images will result in the time being set
to 180 seconds to preserve result accuracy, regardless of the
actual duration.
Performance differences between two interface variations
could be indicative of one interface being more cumbersome
or easy to handle. It is expected that performance varies greatly
per query and query set, therefore sets are not considered
individually.

Time per interface: During each search query, the partic-
ipant’s view is recorded through a screen recording, to later
determine the relative time spent in each interface. These times
are then normalized by the query time, and compared to other
variations of the interface. As individual search queries already
lean towards using one type of interface over the over, they
are not indicative on their own.
The reason why screen recording is chosen as the method
for measurement is that participants tend not to completely
move their head over to use other interfaces (DateTime and
Tag most notably), causing a gaze tracker to not be reliable.
Eye tracking technology was not available for this study. While
a screen recording is not as exact as using a gaze tracker, it is
easier to determine where the focus of the user lies and should
therefore provide more accurate results.

Selected tags, dates & times: While not directly indicative
of the usability of the interface, measuring the selected (or
blacklisted) tags, dates and times gives insight on the par-
ticipant’s interpretation of the search query and their path to

problem-solving. With hints ranging from specific (... on Mon-
day ...) to nonspecific (... in the Morning ...), it is interesting
to see participant’s approach on resolving the search queries.
Irrelevant tags, misclicks or other errors in the tags, dates or
times could be indicative of underlying issues with either the
interfaces or the data set. Only selected and blacklisted tags
are logged, no keylogger is used. In addition, interaction with
the Map interface is not directly logged due to the vast amount
of possible interactions with the map.

Inspected & submitted images: The system will keep track
of all images that the participant chooses to inspect indi-
vidually, as well as those that are ultimately submitted. It
is expected that the participant will only choose to closely
inspect images that they think could be the correct answer.
A large amount of inspections in contrast to few submissions
could be indicative of the participant’s inability to narrow the
possibilities, having applied the wrong filters or simply the
inability to see the images on the ImageView clear enough.
In addition, incorrect submissions are inspected and rated
on their likeliness to their correct counterparts, to identify
what differences have led to the participant’s choice of said
submission.

User Evaluation (SUS): After the study, participants are
asked to evaluate each of the filtering interfaces (Map, Date-
Time, Tag) individually using the System Usability Scale
(SUS). The scale has been slightly adjusted to support in-
dividual interfaces instead of an entire system.

Qualitative Feedback: After the study, participants are
asked to give at least one positive, and one negative on each
of the filtering interfaces. In addition, special remarks made
by the participants during the study are noted down.

APPENDIX G
RESULTS

A. Demographics

Fig. G.1. Age distribution of participants
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Fig. G.2. Gender distribution of participants

Fig. G.3. Previous VR experience of participants

Fig. G.4. Previous Lifelog experience of participants

Fig. G.5. Motion sickness distribution of participants

The demographics distribution is not as even as was desired.
Only one participant was not of an age between 18-24 (55-
64), and only two participants were female (against 14 male).
While this is to be expected due to most of the participants
being students from Utrecht University (and computer science
related studies), ideally a more even gender distribution is
required.
Most participants have none to very limited VR experience,
with only two participants being somewhat regular users.
This has lead to a lot of participants, especially early in the
experiment, struggling with the VR controls due to their lack
of experience.
Slightly less than half of the participants has heard of the
concept of lifelogging, though none mentioned the same form
being used as in this study. One participant mentioned a person
taking daily photos of his beard growing as lifelogging. None
of the participants is actively involved in lifelogging, which is
to be expected given the group of participants.
Of all participants, three mentioned suffering from mild mo-
tion sickness from time to time. None of the participants
experienced any symptoms during the experiment.

B. Time per query & Attempts made

TABLE G.1
MEAN VALUES AND STDS FOR QUERY TIME AND (IN)CORRECT

ATTEMPTS PER VARIATION

Variation x̄ \ Σ Query Time Correct attempts Incorrect attempts
Set1 x̄ 162.41 0.40 0.53

σ 13.97 0.15 0.44
Set2 x̄ 124.45 0.57 0.34

σ 20.87 0.34 0.22
Markers x̄ 158.56 0.38 0.48

σ 16.52 0.27 0.44
Heatmap x̄ 143.43 0.60 0.40

σ 23.29 0.20 0.26
Buttons x̄ 148.40 0.53 0.45

σ 25.21 0.34 0.46
C&C x̄ 155.04 0.43 0.43

σ 15.32 0.14 0.21
Total x̄ 151.50 0.48 0.48

σ 21.26 0.28 0.36
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Fig. G.6. Average (in)correct query attempts per variation

The mean values and STDs for time per query and attempts
made can be seen in Table G.1. A graph visualizing query
attempts can be seen in Figure G.6. In an ideal world, the

average amount of (correct) answers is one, which will
happen if every query is correctly answered in the first

attempt. A higher average of answers indicates that
participants often make (incorrect) guesses, a lower average
means that not every query is answered, correct or incorrect.
This graph is ultimately not used in the paper as the standard

deviations for attempts made are too high to produce
statistically significant results.

C. Time per interface
TABLE G.2

MEAN VALUES AND STD’S FOR TIME PER INTERFACE, PER VARIATION

Variation x̄ \ Σ Map DateTime Tag ImageView None
Set1 x̄ 12.62 5.65 48.96 23.66 9.11

σ 4.33 3.30 3.7 4.02 4.01
Set2 x̄ 21.18 7.33 38.34 22.59 10.57

σ 5.26 3.60 5.14 7.58 4.02
Markers x̄ 18.86 8.31 42.09 21.02 8.99

σ 6.12 3.64 7.55 5.78 4.00
Heatmap x̄ 14.29 4.27 44.54 25.93 10.98

σ 6.34 1.82 8.66 5.08 3.87
Buttons x̄ 17.66 5.85 43.51 24.40 8.58

σ 5.36 3.82 7.99 4.05 7.40
C&C x̄ 15.88 7.34 43.83 21.43 13.08

σ 8.04 2.95 6.18 7.75 5.05
Total x̄ 16.90 6.49 42.93 23.12 9.84

σ 6.42 3.43 7.01 5.85 3.93

The mean values and STDs for time per interface (%) can be
seen in Table G.2.

D. SUS Average

(See Table 1 in the paper for results)

APPENDIX H
FORMS

(see next page)



 

 

 

 

 

 
 

 

Participant ID      

 

This consent form will inform you (the participant) about your rights in the upcoming experiment. I (the 

researcher) have explained the purpose and structure of this experiment, which is part of the Master Thesis 

of Hidde Veer, supervised by Wolfgang Hürst. 

You are aware that during the experiment, data will be gathered about the interaction between you and the 

software. This includes basic demographics (gender, age, etc.), interview responses, performance data and 

screen captures. All data gathered at the experiment may only be for the purpose of this research, including 

publishment in the form of a master thesis and scientific paper. All data gathered in the experiment will be 

anonymized and treated confidentially. 

You understand that participation in the experiment is voluntary: You may abort the experiment at any 

moment when you desire, and you do not have to provide a reason to us. you am aware that you will suffer 

no negative consequences from aborting, and that all data gathered during the experiment will be destroyed 

immediately, and therefore not be used in the research. 

You are aware that if you decide to partake in this experiment, it is your responsibility to stop it immediately 

and inform us in case you experience any discomfort or unwellness, such as dizziness or motion sickness. 

You may send further questions about the research to Hidde Veer (h.s.veer@students.uu.nl) or Wolfgang 

Hürst (huest@uu.nl).If you suspect that your rights as participant are violated, you may contact the Research 

Integrity Committee (vertrouwenspersoon-wi@uu.nl).  

 

□ I (the participant) have read the and understood the above test, and I consent that data collected 

from my participation may be used and published in this research. 

□ I confirm that the researcher has given me a copy of this form for my own use and safekeeping. 

□ (Optional) I consent that the researcher may obtain pictures or videos of me using the software, to 

be used in promotional material.  
 

Signature      Date (dd/mm/yy) 

     

_____________________  _____/_____/_________ 

Consent Form 



 

 

 

 

 

 
 

 

 

Participant ID      

 
 
Please fill in exactly one box per question 

Age          
□ 18 - 24 
□ 25 - 34 
□ 35 - 44 
□ 45 - 54 
□ 55 - 64 
□ Above 65 
 

Gender 
□ Male 
□ Female 
□ Other / Would not disclose 
 

Primary Language 
□ Dutch 
□ English 
□ Other 
 

Experience with Virtual Reality (VR) 
□ None 
□ I have used VR before, but not often 
□ I use VR regularly (1+ times per month) 
□ I use VR often (1+ times per week) 
 

Experience with Lifelogging 
□ None 
□ I am aware of the concept of Lifelogging 
□ I actively work with the processing of Lifelog data. 
□ I actively generate, store and process Lifelog data. 
 

Motion Sickness 
□ I do not suffer from motion sickness 
□ I occasionally suffer from (mild) motion sickness 
□ I often suffer from motion sickness, and the symptoms can be severe. 
If you have selected the third option, you may not partake in this experiment. 

Demographics 



 

 

 

 

 

 

 

 

 

Participant ID      

 
Select 1 option 
 
Map Interface / DateTime Interface / Tag Interface 

Please tick one box per question. 
Give each question a score between one and five based on how much you agree with the question, 
with 1 being “Strongly Agree” and 5 being “Strongly Disagree” 
 

I think that I would like to use this interface frequently. 1 2 3 4 5 

I found the interface unnecessarily complex. 1 2 3 4 5 

I thought the interface was easy to use. 1 2 3 4 5 

I think that I would need the support of a technical person to be able to use this 
interface. 

1 2 3 4 5 

I found the various functions in this interface were well integrated. 1 2 3 4 5 

I thought there was too much inconsistency in this interface. 1 2 3 4 5 

I would imagine that most people would learn to use this interface very quickly. 1 2 3 4 5 

I found the interface very cumbersome to use. 1 2 3 4 5 

I felt very confident using the interface. 1 2 3 4 5 

I needed to learn a lot of things before I could get going with this interface. 1 2 3 4 5 

 

Name one or more things you liked about the interface 

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________ 

Name one or more things you would like to see improved 

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________ 

 

Evaluation 


