
Utrecht University

Master’s Thesis in

Computing Science

The Descriptive Power of Chords: Music or
Noise?

Submitted by

Dirk van Wijk

ICA-3647196

Supervisors:
Dr. Frans Wiering

Prof. Dr. Remco Veltkamp
Dr. Bas de Haas

May 3, 2016

Abstract

In the field of music information retrieval (MIR), several features can be extracted from audio,
which can then be used for tasks such as query-by-humming or chord extraction. However, chord
extraction can also be applied on non-harmonic (non-musical) audio, although this generally results
in meaningless chord sequences.

We are interested in distinguishing harmonic from non-harmonic audio, based on the extracted
chords only. This may benefit services, such as Chordify, that automatically extract chords from
musical audio, so musicians can play along with a song. As these services would only like to show
meaningful chords to their users, being able to filter out chords for non-harmonic audio is useful
for them. We divide the audio in two groups: H-music, which is music that follows the rules of
western harmony, and non-h-music, which is everything that is not h-music (non-musical audio,
but also atonal and percussive music).

In this thesis, we study three novel tasks that are all applied on chord sequences only: 1) We
classify an extracted chord sequence as either h- or non-h-music, 2) we segment an extracted chord
sequence into parts of h- and non-h-music with a novel segmentation algorithm, and 3) we assign
a quality score to an extracted chord sequence; this score indicates to which degree a Chordify
user finds the chord sequence acceptable. A framework is constructed that is able to perform the
tasks mentioned above, by making use of two different models that can describe (a set of) chord
sequences: a language model, which we use to create a probability distribution over words, and a
chord histogram, which stores the relative distribution of the chords in a song.

With our framework, we are able to accurately distinguish h-music from non-h-music. The
chord extraction algorithm also affects the performance, as the Chordino algorithm appears to
give us better results than Chordify’s own chord extraction algorithm. We are able to predict
relatively well, within a margin of tens of seconds, at which point in time in an audio file there
is a switch from h-music to non-h-music and vice versa (the segmentation task). Predicting the
quality of a chord sequence proves to be more difficult, as our predictor requires more data than
we currently have.

Additionally, we have constructed our own data set that consists of several hundred creative
commons non-h-music audio files and radio podcasts, which we have used for our experiments.
This data set is made publicly available.

C O N T E N T S

1 introduction 5

2 background and state of the art 7

2.1 Musical Terminology . 7

2.2 Chord Extraction . 8

2.2.1 Template Pattern Matching . 8

2.2.2 Hidden Markov Models . 9

2.2.3 Chordify Harmony Model . 11

2.2.4 Performance of Chord Extraction Algorithms 11

2.3 Simulated Annealing . 12

2.4 Methods for Classification . 12

2.4.1 Feature Classification . 13

2.4.2 N-Gram Language Models . 16

2.5 Segmentation Methods . 20

2.6 Regression Analysis . 21

2.7 Evaluation Methods . 22

2.7.1 Classification Evaluation Methods . 22

2.7.2 Segmentation Evaluation Methods . 23

2.7.3 Quality Assessment Evaluation Methods . 24

2.7.4 Testing the Statistical Significance . 24

3 pipelines and algorithms 26

3.1 H- and Non-H-Music Classification Pipeline . 26

3.1.1 Classification on Chord Features . 26

3.1.2 Chord Language Model Classification . 29

2

CONTENTS

3.2 H- and Non-H-Music Segmentation Pipeline . 31

3.2.1 Segmentation Algorithms . 34

3.3 Assigning Quality Scores to Chords . 38

3.3.1 Rating System . 38

3.3.2 Score Prediction Pipeline . 43

4 data 45

5 classification of h-music and non-h-music 49

5.1 Experiments and Results . 49

5.1.1 Feature Classification Experiments . 49

5.1.2 Language Model Experiments . 56

5.2 Discussion . 62

6 segmentation of h-music and non-h-music 63

6.1 Experiments and Results . 63

6.1.1 Variable Length Classification Experiments . 63

6.1.2 Segmentation Experiments . 66

6.2 Discussion . 73

7 assessing the quality of chords 75

7.1 Case Study on Quality Assessment . 75

7.1.1 Experiments . 75

7.2 Discussion . 76

8 conclusions and future work 77

8.1 Conclusions . 77

8.2 Future Work . 78

Appendices 80

a implementations 81

a.1 Feature Classification . 81

3

CONTENTS

a.2 Language Model Classification . 82

a.3 Regression methods . 82

b extra results 83

b.1 Multiple LMs . 84

b.2 Additional Results . 85

4

1

I N T R O D U C T I O N

In the field of music information retrieval (MIR), which is the science of extraction information from
music, there are several tasks, such as query-by-humming or chord extraction. Chord extraction,
which is a very active research topic in (MIR) at the moment, is the task of acquiring a chord
sequence from a piece of audio (music). There are many applications of chord extraction such as
finding similarities between songs, classifying music into genres or allowing players of a musical
instrument to acquire music tablature automatically.

Although chords have harmonic properties, which can only be found in western tonal music, it
is possible to extract chords from non-harmonic audio such as movies or percussive music. If we
extract chords from this kind of audio, we obtain chord sequences that do not make much sense.
We are interested in filtering out chord sequences of audio that do not contain a harmony, as these
chord sequences are meaningless.

A company that makes use of chord extraction and may benefit from filtering out non-harmonic
audio is Chordify1. In their web application people can submit audio (YouTube, SoundCloud or an
audio file) and Chordify will show the (automatically generated) chords alongside the audio being
played. Users can also browse a large library of songs that have already been ”chordified” by other
users and play along with those songs. Chordify wants that users have a very easy to use method
to play the chords alongside a song. Being able to filter out non-harmonic audio (segments) would
benefit companies such as Chordify, since the user experience will improve when users are given
only meaningful chords.

We will now define the two types of audio more precisely:

h-music This is music that contains a chord sequence that is meaningful in western tonal har-
mony. Harmony is the theory and practice of how chords are used. Even though chords
could be extracted from any kind of audio, that doesn’t necessarily mean that these chords
follow the rules of harmony. So atonal music for instance, is not considered h-music, because
the chords in atonal music do not follow the rules of harmony.

non-h-music This is any kind of audio that is not h-music. So this includes all kinds of sounds
such as people talking, random noise and environmental sounds, but also music without a
harmony such as atonal or percussive music.

Our initial goal of this research is to create a method that can determine whether a chord
sequence corresponds to h-music or to non-h-music. We will take a computational approach to
reach this goal and make use of classification techniques to classify chord sequences as h-music or
non-h-music.

1 https://chordify.net

5

https://chordify.net

1 introduction

We can do such a classification for the entire chord sequence, but we can also look at segments
of the sequence. This could for example be interesting if we have a chord sequence for a movie or
a long radio recording. A person is only interested in the parts that contain music. We could then
determine what segments contain h-music and which do not. With the use of this segmentation we
could choose to only display chord information for the parts that actually contain h-music.

As the chord extraction task is far from being solved, many chord extraction algorithms also
produces chord sequences for h-music that contain errors, meaning that they could still be im-
proved. This leads to another interesting problem, namely, how can we assess or rate the quality
of an h-music chord sequence. When we are given a chord sequence that corresponds to h-music
(assuming classification has already taken place), can we give some quality measure to the chord
sequence? This measure should reflect to which degree the user thinks the chords match the audio.
When, for example, Chordify has two chord sequences of the same song (but one recording could
be a of a poorer quality, resulting in a worse extraction of chords), we can use the chord sequence
that has a better score. If we are able to find recurring chord sequences for low or high quality
chords, we might be able to learn why users prefer certain chord sequences over others.

The main research question is as follows:
For a given chord sequence, can we determine if the sequence corresponds to h-music and if it does, can we
determine to which degree a user finds the chord sequence acceptable? Can we also segment a chord sequence
into parts that contain h-music and parts that do not?

It remains to be determined what exactly a high quality chord sequence is in the eyes of a
Chordify user.

There are some concrete problems that we will be looking at:

1. Classification: Given a chord sequence, can we determine whether the chord sequence corre-
sponds to h-music or non-h-music?

2. Segmentation: Can we make a segmentation of the chord sequence such that we obtain
h-music and non-h-music segments?

3. Quality Assessment: When we deal with a chord sequence that corresponds to h-music, can
we give a score to this sequence that reflects to which degree a Chordify user finds the chord
sequence acceptable?

Apart from presenting a solution for these three novel research problems, we provide another
contribution in the form of a data set. For our research we require a data set with h- and non-h-
music, which we will carefully construct ourselves. Since the non-h-music portion of this data set
only contains creative commons audio, it can be made publicly available. The data set, together
with its download link, is further discussed in Chapter 4 .

This thesis is outlined as follows. Chapter 2 will provide background information that is needed
in order to understand the remaining chapters. We will start with explaining some musical termi-
nology and concepts that are used throughout this thesis and then follow it up with some state of
the art computational approaches that we will use in this research. In Chapter 3 we will introduce
some ideas and algorithms that we have come up with to tackle the research problems, and we
discuss the pipelines that will be used for our experiments. In Chapter 4 we will discuss which
data is needed for our experiments. The experiments and evaluation of the experiments follow in
Chapters 5, 6 and 7 for classification, segmentation and quality assessment respectively. We will
draw our conclusions and discuss potential future work in Chapter 8.

6

2

B A C K G R O U N D A N D S TAT E O F T H E A RT

This chapter starts with explaining some musical terminology and concepts that are used through-
out this thesis. After that, we will explain the basics of chord extraction, since we are working with
chord sequences that are obtained from chord extraction. Following that, we will discuss some
promising computational approaches that we will use in this research. We start with feature classi-
fication techniques and language models in Section 2.4. Then discuss the state of the art in musical
segmentation methods in Section 2.5. Following that, in Section 2.6 we will discuss a few methods
that can help us with obtaining quality scores for chord sequences. Lastly, we will discuss how we
can evaluate the performance of the techniques of the previous sections.

2.1 musical terminology

Music at the most basic level consists of notes. A note has a perceived pitch, which is referred to
with a letter ranging from A to G, with possibly a flat ([) or a sharp (#) (called accidental) attached
to it. It has an onset, which is the time at with the note starts, and a duration. Apart from the
perceived pitch of a note, which is the fundamental frequency of the sound that you hear, often
overtones are also produced. These are sounds of a different, but weaker, frequency.

The distance between two notes is called an interval and is measured in semitones. An interval
with a size of 12 semitones is called an octave. Two notes that are an octave apart have the same
perceived pitch, and the higher note has double the frequency of the lower note. An octave contains
the following notes: A, A#/B[, C, C#/D[, D, D#/E[, E, F, F#/G[, G. A sharp raises a note by half a
semitone and a flat lowers the note by half a semitone. So for example, C# and D[have the same
pitch and are sometimes considered to be the same note.

Two or more notes that sound together (either simultaneously or shortly after each other) result
in a chord. The specific intervals that are being used determine what kind of chord is played. For
example, starting with a C note followed by an interval of length four and then an interval of length
seven (from the root note) results in the notes C-E-G and is a C major triad chord (often denoted as
just the C chord or Cmaj chord). On the other hand, starting with C and then an interval of length
three and seven respectively, results in C-E[-G, which is a C minor triad chord (often denoted as
Cm or Cmin).

The number of chords that are used in a single music piece isn’t unlimited and depends on
several factors. A musical scale defines the notes (and chords) that can be used and that fit well
together, which can of course be subjective. In western music, the minor and major scale are most
popular, which consist of seven root notes (per octave). In Asian music the pentatonic scale with
only five root notes is often used.

7

2 background and state of the art

In experiments involving chords, such as chord extraction or genre classification, a specific
vocabulary of chords is used. Harte et al. [1] have proposed a chord grammar in which millions
of chords can be defined, whereas generally only hundreds of chords appear in a data set. It has
become common in the MIR field to use a simple vocabulary that uses the 12 root notes of the
octave (where sharp and flat counterparts are considered to be the same note) of only the major
and minor chord type, resulting in 24 different chords. Often a special N chord is used as well for
silence or an unrecognizable chord.

2.2 chord extraction

Chord extraction is a prerequisite of our research. Even though this research is not about chord
extraction itself, it is important to understand how the chord sequences that we use are obtained.
Since we are trying to classify and assess the quality of chord sequences, it could prove useful
to gain some insight in the extraction process and learn what could affect the quality. We will
first explain two of the most common methods for chord extraction and after that describe how
Chordify extracts its chords.

All chord extraction algorithms have one thing in common: A so-called chromagram or Pitch
Class Profile (PCP), which is introduced by both Fujishima [2] and Wakefield [3]. This is a vector
that represents the relative strength of all 12 semitones (regardless of octave) at a certain time
frame in an audio signal. Often, 12 dimensions are used, where each dimension corresponds to
one semitone. Sometimes more than 12 dimensions are used, to compensate for mistuning. The
amount of frames (and PCPs) depends on the resolution that is worked with. A higher resolution
results in having more frames, thus more PCPs.

A PCP is obtained by first applying the Fast Fourier Transform (FFT) or Constant Q Transform
(CQT) on a time frame of the audio signal. This transformation divides all the frequencies of the
signal over several bins. In the most simple case we have 12 bins; one bin for each pitch. From
these bins we can read the strength of every pitch, resulting in a PCP. When more than 12 bins
are used, we check whether bins that are directly below or above the bin of a pitch contain more
strength. If this is the case, we know there is a small down- or up-tuning.

A problem that often occurs is that the fundamental frequency that we want to capture in a
bin also has several overtones, frequencies that are multiples of the fundamental frequency. These
overtones end up in the bins as well, which is undesired. Section 2.2.4 mentions a solution for this
problem.

Next, we will explain two paradigms of chord extraction; one that uses a template matching
method and one that makes use of statistical learning with Hidden Markov Models (HMMs).

2.2.1 Template Pattern Matching

In template pattern matching the previously mentioned PCP is compared with a set of predefined
chord templates (CTs), which are represented as a binary mask. This mask uses the template of T
= [ZC, ZC#, ZD, ZD#, ..., ZA#, ZB]. This is a vector of zeros and ones that represents which notes are
present in the chord and which are not.

We can define such a mask for every chord. For example, the masks of C-major and D-minor
are:

8

2.2 chord extraction

TC:maj = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] and TD:min = [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0]

The next step is to calculate the distance between the PCP and the CTs of every chord. The CT
that has the shortest distance (thus highest similarity) with the PCP will be the chord that the PCP
represents. The most often used distance measures as proposed by Fujishima [2] are the nearest
neighbor and weighted sum measures:

nearest neighbor This calculates the euclidean distance between the PCP and the CT. As more
pitch values of the PCP match the binary mask, the result of the sum becomes smaller. Chord
c with the smallest score will be the chord that the PCP represents.

Scorenearest,c =

√√√√ 11

∑
p=0

(Tc(p)− PCP(p))2 (1)

weighted sum The dot product is calculated between the PCP and a weighted variant of the CT,
which is not binary anymore. The weights are user defined and result in some pitches having
a bigger impact in the CT than others. The higher the resulting dot product, the more the
PCP matches the (weighted) CT.

Scoreweighted,c =
11

∑
p=0

Wc(p)PCP(p) (2)

Apart from these simple measures, some other measures have been proposed such as the
Kullback-Leibler and Itakura-Saito divergences [4]. These measures react more strongly towards
missing or extra notes in the PCP.

After the chords have been obtained from the signal, a smoothing step can also be applied.
Generally, chords don’t change very often (i.e. less than every second), therefore chords that appear
in only one or two frames can be smoothed out with a median filter, for example.

2.2.2 Hidden Markov Models

HMMs have their origins in speech recognition, but have been introduced for chord extraction
by Sheh and Ellis [5]. We will first explain how a regular Markov model works by means of an
example and then extend the example to an HMM.

This example will be about the weather forecast. Once a day at a specific time, the weather
is observed. There are four different weather conditions: Rain, snow, sun, clouds. These are the
different states of the Markov model. When we have certain weather i on day t (st = i), we know
what the probability is of every weather state for the next day. This is the transition probability aij
that tells us what the odds are of going from state i to state j. Formally aij = P(st = j|st−1 = i) (the
probability of being in state j on day t given that on day t− 1 we were in state i).

Note that we only know the transition probability between two subsequent days. This is because
of the so-called Markov property that tells us that the future (day t + 1) is independent of the past
(day t− 1) given the present (day t).

In this model we can always observe in which state we are (we can always observe the weather).
So it is easy to predict the probability of the weather of four consecutive days to be rain-rain-snow-

9

2 background and state of the art

sun given that the current day has sun, for example. We can just multiple the state transition
probabilities with each other: a31a11a12a23.

Next, assume we live in a world where the seasons do not follow a natural cycle but follow
a random sequence (e.g. spring-autumn-spring-summer would be completely viable) and have
a random length (e.g. ranging from one day to one year). Now we do not want to predict the
weather, but determine for a sequence of days which season it is every day. We can still observe
what weather it is; an observation on day t is denoted as Ot = ot (Ot being the variable and ot being
the specific value). The seasons cannot be observed and are the hidden states. We are now dealing
with a Hidden Markov model.

The HMM consist of three parameters:

π = P(s i) The initial (a priori) state distributions. In other words, the probability that we are in a
certain season, given that we have no other knowledge.

A = a i j = P(s t = j |s t−1 = i) The state transition probabilities of the hidden states (i.e. the prob-
ability of going from one season to another).

B = b i (o t) = P(O t = o t |s t = i) The emission probabilities. This is the probability of observing
weather o t on day t given that the season on that day is i.

When we have training data, we can estimate the aforementioned parameters with the expecta-
tion maximization (EM) algorithm [6] (called Baum-Welch, for HMMs). The algorithm only needs
a set of observations (the training data) and will adjust the parameters (π , A and B) in such a way
that these observations have the highest likelihood of occurring. This is also known as finding the
maximum likelihood estimates.

Now, when we are given a set of n new observations of the weather for each day {O1 =
o1 , . . . , On = on} together with our HMM {π , A , B} we are able to determine the most likely
sequence of seasons. We could look at each day separately and maximize the probability of being
in a certain season by just looking at the weather. In this case we only use the emission probabilities
from B and we are maximizing P(s t = i |O t = o t) (the probability it is season i given the weather
o t on day t). But this could result in infeasible sequences; the state transition matrix may contain
zero probabilities between certain states, which are not taken into account when we only use the
emission probability matrix.

To solve this, we use our transition probabilities from A as well; P(s t = i |O t = o t) (emission
probability from B) is multiplied with P(s t = j |s t−1 = i) (transition probability from A). For
calculating the probability of the first state of the entire sequence we use π instead of A, because
the first season has not undergone a state transition. Maximizing this probability product for a long
sequence of days is not that straightforward, because for a sequence of n days, n |S | combinations
must be checked, |S | being the number of seasons. Fortunately, finding the optimal sequence can
be done efficiently with the Viterbi algorithm [7] by making use of dynamic programming.

We will now return to the problem of chord extraction. When the HMM is used for chord
extraction the chord labels are the hidden states (each chord being a separate state), and the PCPs
are the observations. We first train the model with observed sequences of PCPs (without chord
labels) to learn the parameters {π , A , B}. After the model is trained, we can use the HMM to
predict a chord sequence out of a sequence of PCPs.

For a more thorough explanation of HMMs we refer the reader to the work of Rabiner [8].

10

2.2 chord extraction

2.2.3 Chordify Harmony Model

This section will explain how Chordify extracts chords with their system called mptree as explained
by the paper of De Haas et al. [9]. As with most chord extraction systems, mptree also starts with
acquiring a PCP. A small difference is that mptree obtains two PCPs: Bass, which emphasizes the
lower frequencies and treble, which emphasizes the higher frequencies. The bass PCP could then
be used to find the root note of the chord and the treble PCP for the specific chord type).

After the PCPs are obtained, they are aligned to the beat of the song, which is done with a beat
extraction algorithm. This is done by averaging all the PCPs that are between two beats. Next, the
template pattern matching method (as explained in Section 2.2.1) with euclidean distance measure
is used to assess the probability that a certain chord belongs to a PCP. If there is only one chord
that has a clearly higher probability than the rest, then this chord is chosen to be the only candidate.
Else, a larger candidate list is used for that beat.

The next step consists of using a harmony model, called HarmTrace to create the optimal
chord sequence. For a thorough explanation of this model we refer the reader to [10]. The input is
a sequence of candidate list, and the output is a chord sequence. The steps of the algorithm are as
follows:

1. Find the local keys of the song, as the song does not always stay in the same key for its entire
duration.

2. Merge some adjacent candidate lists that contain similar chords together, as a chord change
does not occur on every beat.

3. Create smaller segments based on the key. The segment borders are located at places where
the key of the song changes.

4. Per segment, parse every possible chord sequence by making use of the rules of the harmony
model. Select the sequence that contains the least amount of parsing errors.

2.2.4 Performance of Chord Extraction Algorithms

One of the obvious reasons why chord extraction may perform poorly is the audio signal itself. If
the signal is very noisy or when there are multiple melody lines sounding simultaneously then
the obtained PCP is not very helpful. Since almost all algorithms rely on the PCP, every algorithm
suffers from this problem. This problem is more occurrent in the template matching method,
because that method solely relies on the PCP.

A serious problem that arises with template matching is that some chords share multiple notes.
For example, a C major and A minor share two out of three notes in their chord template. Thus it
is easy to confuse these chords with each other. In some cases there are overtones in the signal as
well which could have a higher amplitude than the fundamental frequency. Lee [11] proposed an
Enhanced Pitch Class Profile (EPCP), which is a PCP that does not contain these overtones. This
is done by computing a Harmonic Product Spectrum (HPS) from the Discrete Fourier Transform
(DFT) and then computing the PCP from the HPS instead of the DFT. In the HPS, only the funda-
mental frequencies are left intact. Gomez [12] also proposes a similar modified PCP, one that does
not contain any overtones, called a Harmonic Pitch Class Profile (HPCP).

11

2 background and state of the art

For the HMMs we have our training data to rely on as well. As much as it is a strength, it is also
a weakness. If the chord labels used for training contain mistakes, the chord extraction will also
contain mistakes. A large amount of different training data is needed in order for the model to deal
with all kinds of music. If the model is only trained on perfectly clear MIDI data, it may perform
badly on real orchestra music, because it hasn’t encountered that kind of audio signal before.

Every year, MIREX (Music Information Retrieval Evaluation eXchange) hold several tasks, of
which chord extraction is one of them. The latest results of the chord extraction task from 2015

show accuracies between 75% and 82%1.

2.3 simulated annealing

Simulated annealing is a (combinatorial) optimization algorithm introduced by Kirkpatrick et al.
[13] that is applied on problems that have a high amount of different solutions. The simulated
annealing algorithm does not try every possible solution, but instead tries to slowly walk towards
an optimal solution in a somewhat random manner. The steps of the algorithm are as follows:

1. Start with a random solution and compute the score of this solution

2. Move to a neighboring solution by slightly modifying the current solution and compute the
score of this solution

3. If the new solution has a better score, accept it immediately (in this case, better means higher).
Else, accept the new solution with the following probability:

e(Snew−Sold)/T (3)

where Snew and Sold are the scores of the new and old solution respectively. T (>1) is an
integer variable that controls how likely it is that worse solutions get accepted and decreases
over time.

4. Decrease the value of T and go back to step 2 if T is still above some constant value.

The reason why worse solutions also get accepted with a certain probability is to prevent the
algorithm from getting stuck in a local optimum. This is illustrated in Figure 2.1: The x-axis
represents the solution space and the y-axis the score of a solution. If the algorithm would start
with a solution all the way to the right and would only climb up (accept better solutions), it would
get stuck in the local optimum and never reach the global optimum more to the left.

2.4 methods for classification

Since one of our research problems is trying to classify a chord sequence as h-music or non-h-
music, we will now discuss how the classification process works and discuss some classifiers in
more detail. The classification process is a form of supervised learning, which means that we
provide labeled data from which a model (or classifier) can be constructed. We will first discuss
feature classification, which works on data points with specific features and follow up with an
explanation of language models.

1 http://www.music-ir.org/mirex/wiki/2015:Audio_Chord_Estimation_Results

12

http://www.music-ir.org/mirex/wiki/2015:Audio_Chord_Estimation_Results

2.4 methods for classification

Figure 2.1: The search space of simulated annealing.

2.4.1 Feature Classification

In feature classification, each data point consists of some features together with a class label. An
example of a data point is the physical condition of human being. E.g. body temperature, headache
and appetite. With these features we can try to determine whether someone has a fever or not.
If enough data is used to create this classifier, the classifier may then have learned how body
temperature, headache and appetite correspond to a fever. Having good features plays a key role
in the performance of a classifier.

With features and class labels, the classifier can learn which (combinations of) feature values be-
long to a class. The difference between each classification method is the manner in which the model
is constructed. For some classifiers, such as a classification tree (see Figure 2.2 for an example), the
model of the classifier is clearly visible; we can see which rules the classifier follows to determine
the class label. However, for other types of classifiers it is hard or impossible to determine which
concrete rules have been created.

It is possible to combine several classifiers into a new classifier. One way is by making use of
ensemble methods [14] of which the most popular are bootstrap aggregating (bagging) [15] and
boosting [16]. These are methods where multiple classifiers are trained. Classifying new points is
done by taking a (sometimes weighted) majority vote on these classifiers.

In bagging, we take m samples, which could contain some overlap, from the training data on
which m classifiers are trained. These classifiers are trained on different parts of the data and are
allowed to be rather complex, overfitted, models.

The idea of boosting is to turn several weak classifiers (that are slightly better than random
guessing) into strong classifiers. Iteratively, these classifiers are fed training points that have a
weight. Points that are classified incorrectly will receive larger weights and will be fed to the
classifiers more often. After a number of iterations the classifiers will reach acceptable accuracies.

13

2 background and state of the art

Figure 2.2: A decision tree that determines whether someone will like a movie or not based on the genre and
actor of the movie.

Next, a list is shown with descriptions of the most popular classifiers that we will be using.
These classifiers are known to work well, without the need for much parameter tweaking. For a
more in-depth explanation of these (and other) classifiers, we refer the reader to the book of Hastie
et al. [17]

k-nearest neighbors (knn) KNN has one of the most simple models. The model consists
of all training points, which are represented as vectors in a d-dimensional space (d being the
number of features). Classification of point p takes place by looking at the k nearest neighbors
of p. Point p gets assigned to the majority class of the k nearest neighbors. Generally the
euclidean distance is used, but other measures can be used as well. A variety of KNN is
Weighted KNN where the distance from p is used as a weight, resulting in closer points
having more influence.

decision tree A decision tree is easy to understand as well (Figure 2.2). The tree is built by
creating rules over features. A tree gives very good insight into the classification process,
because the decision rules can be accessed. The tree is built by choosing rules such that both
branches of the tree contain a strong majority of a class (i.e. the distribution is far away from
even). A node is not split any further if the distribution of two classes (in binary classification)
is above a certain threshold (e.g. if 99% of the samples are of one class and only 1% are of the
other class).

naive bayes (nb) The idea of NB is that a feature vector (data point) gets the class assigned that
obtains the highest probability. This probability is calculated with Bayes’ theorem (Equation
4) and assumes that each feature is independent from one another.

P(y|x1, . . . , xn) =
P(y)P(x1, . . . , xn|y)

P(x1, . . . , xn)
(4)

where y is the class label and x1, . . . , xn is the feature vector.

Since the feature vector is constant and thus the same for every class, it can be removed from
the denominator. We can then use Equation 5 to compute the class with highest probability:

14

2.4 methods for classification

ŷ = argmax
y

P(y)
n

∏
i=1

P(xi|y) (5)

The independence assumption that NB makes results in incorrect probabilities, but for clas-
sification this does not really matter as long as the correct class gets assigned the highest
probability. Other versions of NB differ in the way P(xi|y) is estimated.

support vector machine (svm) In an SVM classifier, as with KNN, points are represented
as feature vectors in a d-dimensional space. The SVM tries to create a linear boundary that
separates two classes in the best way possible; the distance between all the points and the
boundary should be maximized. It is allowed to have points that are on the wrong side of
the boundary, but they are penalized. The points that are closest to the boundary (and define
the boundary) are called support vectors. Only these support vectors are part of the model of
the SVM, no other points have to be stored.

It is not always possible to create a linear boundary, even when allowing some points to be
on the wrong side of the boundary. This can be solved by applying a so-called kernel trick,
which consists of mapping the points to a higher dimension. In this higher dimension, it is
possible to linearly separate the classes. An example of this can be seen in Figure 2.3. The
kernel trick allows the SVM to work well on data with many dimensions.

New points, of which the class is to be predicted, are mapped to the vector space as well and
are assigned to a class based on which side of the boundary they fall on.

Figure 2.3: The data that can’t be linearly separated (left) is mapped to a higher dimension with the use of a
kernel trick (right). In this higher dimension the data can be linearly separated.

random forest A random forest is a specific type of bagging classifier. It uses decision trees as
its classifiers. The random aspect of this classifier is that the set of features for training trees
are picked entirely random.

adaptive boosting (adaboost) AdaBoost is a popular boosting implementation. It is similar
to the random forest classifier in that it also trains a set of classifiers, which are generally
classification trees.

Obviously, there are other promising classifiers, but they are rather complex and need a lot of
tuning before they start to perform well. Some classifiers that are rather complex and try to match
the training data in the best way possible have the danger of overfitting on the training data. Such
a classifier then performs really well on the training data, but does not generalize well on a larger
data set. A general rule of thumb is to start off with simpler models, and if they perform poorly,
switch to more complex ones.

15

2 background and state of the art

2.4.1.1 Music Classification

Much research on distinguishing music from other sounds (speech, noise etc.) has been done
already[18, 19, 20]. These methods generally consist of extracting several features directly from the
audio such as the silence ratio, harmonicity and pitch. Classifiers such as SVMs, Naı̈ve Bayes and
neural networks are then trained on these audio features. An accuracy of 96% has been obtained
for the binary problem of classifying audio signals between music and noise ([20]). Our research
differs from previous research, since we only use chord sequences from which we extract features
as opposed to using audio. This means the classification process is done with less information,
making it slightly more difficult.

A small amount of classification on chord features has been done before [21, 22]. Pérez-Sancho
et al. [21] have tested both language models (explained in Section 2.4.2) and an NB classifier. They
obtain accuracies between 65% and 85% when doing classification with three distinct genres of
music, and obtain accuracies around 50% when using nine subgenres. They train the NB classifier
is trained on a chord histogram. This is a vector where each dimension represents a chord and one
extra dimension for a No chord (N-chord). In every dimension, either the exact count of every
chord is stored, or only a 1 or 0 based on whether the chord appears in the song or not. Since the
length of a song should not directly influence this feature, the chord histogram can be normalized
by dividing every dimension by the total number of chords in the song.

As an example: A file contains the sequence A-A-A-A-Cm-Cm-N. There are a total of 7 chords
(including the N-chord). The A dimension will get a value of 4/7, the Cmin dimension a value of
2/7, N will get 1/7 and the other dimensions get a value of 0.

2.4.2 N-Gram Language Models

A different kind of approach for classification is to make use of n-gram language models (LMs).
We will now give a basic introduction to n-gram LMs. For a more in-depth explanation we refer the
reader to the book of Jurafsky and Martin [23]. An LM can be explained as a probability distribution
over text of a language. This text is stored in the form of an n-gram, which is a sequence of n words.
Every n-gram has a certain probability of appearing in the language. Let us denote x as a sentence
and wi as word i of that sentence, then an LM estimates the probability x appearing in the data,
which is denoted as P(x) or P(w1, w2, ..., wn).

An LM can either have a closed or an open vocabulary. A closed vocabulary means that all
the possible words that are part of the vocabulary appear in the constructed LM. So the LM is
constructed with the entire vocabulary, and words that are not part of this vocabulary will not
be queried to the LM. With an open vocabulary, the constructed LM does not contain all of the
vocabulary, meaning that unknown words could be queried to the LM. In our case, the vocabulary
is closed because there exists a fixed list of of 25 chords (when we use the simple model explained
in Section 2.1).

When LMs are used for classification, each class has its own LM. Meaning that each LM has
a different probability distribution over words. Pérez-Sancho et al. [21] have used LMs for genre
classification in music, where each genre has its own LM. In their LMs the words corresponded to
chords, so a sentence of words corresponds to a sequence of chords. In order to classify a chord
sequence as a specific genre, all LMs are queried and each LM returns a probability of the chord
sequence. This value explains what the probability is that the given chord sequence appears in

16

2.4 methods for classification

that model (genre of music). The chord sequence gets the class assigned of the LM that returns the
highest probability.

When genres also have rather specific subgenres, the LMs could be further divided into multi-
ple classes (e.g. instead of only having a jazz LM, one could have one for Latin jazz, soul jazz and
rock jazz). In this way each model can capture the characteristics of a specific type of music more
precisely, instead of trying to generalize all kinds of sounds into a single model. During the classi-
fication phase, if one of the jazz subclasses obtains the highest accuracy, then the chord sequences
gets classified as jazz. Pérez-Sancho et al. [21] have also split up their main genres into subgenres,
but they have not mixed them; they have either only classified the subgenres, ignoring the main
genres, or only tried to classify the main genres, not looking at the subgenre information. Using
the subgenre information to classify the main genres may improve the classification performance.

The first step in creating an LM is to store the counts of all the n-grams of a training corpus.
The value of n is the order of the model, which controls what the highest length n-grams are. For
example, in a 3-gram model 1-grams (unigrams), 2-grams (bigrams) and 3-grams (trigrams) are
stored, where 3-grams have the highest length. In an example corpus with one sentence: ”The
trees are tall”, the resulting 1-grams would be { < s > , the, trees, are, tall, < /s >}, the resulting
2-grams would be { < s > the, the trees, trees are, are tall, tall < /s >} and 3-grams would be {
< s > the trees, the trees are, trees are tall, are tall < /s >}. Note that < s > and < /s > are begin-
and end-of-sentence tokens, which are generally automatically added to the vocabulary.

After storing n-gram counts, probabilities for these n-grams can be calculated. Using probability
theory, we can define the probability of a sentence by making use of the chain rule (Equation 6).
This leaves us with a large product that contains many factors. A simple way to calculate these
factors is by using the Maximum Likelihood Estimate (MLE) as shown in Equation 7. C(w1, ..., wi)
stands for the number of times that sentence w1, ..., wi appears in the training data. If we have two
sentences trees are tall and trees are big (both having a count of one), then trees are, which is
C(w1, ..., wi−1), has a count of two. Both sentences then have a probability of 1

2 according to the
MLE calculation.

P(w1, w2, ..., wi) = P(w1)P(w2|w1)...P(wi|w1, ..., wi−1) (6)

PMLE(wi|w1, ..., wi−1) =
C(w1, ..., wi)

C(w1, ..., wi−1)
(7)

To calculate the probability of the sentence ”I often eat Japanese food”, the following equation
holds: P(I often eat Japanese food) = P(I)P(often|I)P(eat|I often)P(Japanese|I often eat)P(food|I often
eat Japanese), begin- and end-of-sentence tokens are left out for simplicity’s sake. It can be noticed
that the factors more the the right have a much larger context.

In an n-gram model the factors of the chain rule product are replaced by n-grams that all have
a length of n. The n-gram model is based on the Markov assumption: The future is independent of
the past, given the present. This assumption leads to not using the entire context w1, ..., wi−1, but
only a subset of that. Thus we approximate with: P(wi|w1, w2, ..., wi−1) = P(wi|wi−n+1, ..., wi−1).
The smaller the value of n (the order of the model), the smaller the used context. In the case of
an 1-gram model the context is of length zero. For a 2-gram model the context is of length one.
Generally, results get worse after an n-value of four, as was the case in the n-gram classifier by
Pérez-Sancho et al. [21].

Unfortunately, it is possible that an n-gram factor of the product is zero, which causes the entire
product to become zero. E.g. a sentence ”I often eat Japanese food” is queried, but the training

17

2 background and state of the art

corpus only contains ”I often eat Chinese food”. Then (in case of a 2-gram model) the 2-grams
”eat Japanese” and ”Japanese food” have a zero probability, because their counts are zero.

There is a large chance that a certain n-gram does not occur in the training corpus, resulting in
a factor of zero. Even with the Markov assumption and working with a closed vocabulary, there
are still n-grams with a zero count. Fortunately, there exist several smoothing techniques to solve
this problem. The concept of smoothing is also thoroughly explained in [23], but we will at least
explain the basics in the next section.

2.4.2.1 Smoothing and Backoff

The idea of smoothing (also called discounting) is to steal probability mass (or word counts) from
seen words and distribute them over unseen words. We first introduce a simple formula that holds
for every bigram. Equation 8 basically states that the probability that word y is followed by one of
the other words from our vocabulary is 1, assuming we have a closed vocabulary.

∑
x∈V

P(x|y) = 1 ∀y where x and y are words in our vocabulary V (8)

We will now explain the concept of smoothing with an ongoing example which makes use of
chords instead of words:

example Assume we are working with a vocabulary of major and minor chords, together with
the N-chord, resulting in a vocabulary of 25 chords (once again leaving out the begin- and
end-tokens). If we had infinite training data we would be able to create a model with 25

unigrams and 625 bigrams (252). But generally not all n-grams appear in the training data,
resultantly some bigrams could be missing.

Now say we have an LM that is trained with only the chord sequences (C, A) and (C, G),
then in our LM we have three different unigram probabilities: P(C), P(A) and P(G) that
sum up to one and two different bigram probabilities P(A|C) and P(G|C) that sum up to one
(by following Equation 8). This means that C can transition into either A or G where both
transitions have a probability of 1

2 using the MLE calculation.

In an unsmoothed LM the probability that C transitions into any other chord than A or G
is equal to zero. Although, we know that there are exactly 23 other possible bigrams that
contain C as their first chord; they just don’t appear in our training data. To solve this, we
could take some probability mass from the two bigrams in the training data and spread it
over the 23 remaining bigrams. This is the concept of smoothing.

The most simple variant of smoothing is additive smoothing, which works by adding a small
value δ (generally 0 < δ ≤ 1) to every n-gram count. When computing the MLE on these new
counts, normalization is applied by adding δN to the denominator, where N is the size of the
vocabulary. The formula for additive smoothing is shown in Equation 9.

P∗add(wi|wi−n+1, ..., wi−1) =
C(wi−n+1, ..., wi) + δ

C(wi−n+1, ..., wi−1) + δN
(9)

18

2.4 methods for classification

example If we go back to our example again and apply additive smoothing where δ = 1 then the
bigrams (C, A) and (C, G) will get one extra count. Thus they will now both have two counts
instead of one. The remaining 23 bigrams will have one count now.

First we had only two bigrams (that start in C) in total, this has now become 27 because of 25

additions. We now have to recalculate the probability of our two bigrams: this used to be 1
2

for each bigram, but this is now 2
27 . For the other 23 bigrams 23

27 probability mass is reserved,
resulting in each separate bigram gaining a probability of 1

27 .

Chen and Goodman have evaluated several smoothing methods which are known to produce
better results than additive smoothing [24], but are also more complex. We will briefly explain
some other smoothing methods that we plan to test. The main concept that all smoothing methods
have in common is that probably mass is taken from existing n-grams in some way and distributed
over unseen n-grams. For a more thorough explanation on these methods, we refer the reader to
the work of Chen and Goodman [24].

• Good-Turing Smoothing In Good-Turing smoothing the count of every n-gram gets recom-
puted. Part of the counts of n-grams that occur r + 1 times get distributed over the n-grams
that appear r times. Generally for the n-grams with r ≥ 3 the amount of discounting does
not vary much. This is where constant discounting improves on.

• Constant Discounting Unlike Good-Turing that computes the discounting value for every
value of r, in constant discounting every n-gram gets discounted by a constant value. Con-
stant discounting also interpolates higher order n-grams with lower order n-grams. Because
some constant value is subtracted from the higher order n-gram, there is room to use some
probability mass for a lower order n-gram. Just one value could be used to discount all the
different order of n-grams, or a distinct discount value for every n-gram order could be used.
The suggested discount factor D can be calculated with D = n1

n1+2n2
where n1 and n2 stand

for the n-grams that have exactly one and two counts respectively.

• Witten-Bell Smoothing Witten-Bell smoothing uses interpolation as well, but the weights
are calculated differently from absolute discounting; no n-grams are directly discounted, but
instead a linear interpolation is applied.

Apart from smoothing, there also is a technique called backoff that can be combined with
smoothing techniques. The general idea behind backoff is that if the n-gram has at least k (>0)
occurrences in the LM, the (discounted) MLE probability is used; otherwise, use the probability of
a lower order n-gram multiplied by a backoff weight α. The formula can be seen in Equation 10.

P∗backo f f (wi|w1, ..., wi−1) =

C(wi−n+1,...,wi)

C(wi−n+1,...,wi−1)
, if C(wi−n+1, ..., wi) > k

α(wi−n+1, ..., wi)P∗backo f f (wi|wi−n+2, ..., wi−1), otherwise
(10)

When there is a backoff to a lower order n-gram, this probability cannot be used immediately,
but must be multiplied by α; otherwise there won’t be a true probability distribution. This will be
further explained in the ongoing example.

example By following Equation 8 we know that P(A|C) + P(G|C) + ∑x∈V/A,G P(x|C) = 1. Since
none of the P(x|C) have real counts, it is replaced by α(C)P(x) (the backoff step). α is now
calculated in such a way that P(A|C) + P(G|C) + ∑x∈V/A,G α(C)P(x) = 1.

19

2 background and state of the art

Remember the 23/27 of probability mass that we took away from P(A|C) and P(G|C) during
the additive smoothing step? This mass is now distributed over ∑x∈V/A,G α(C)P(x). In
the original additive smoothing (without backoff) every n-gram received 1

27 evenly, but with
backoff we use P(x) in the computation, which differs for every x, giving us more accurate
probabilities.

2.4.2.2 Factored Language Model

A model that can take more information into account than just the chord itself is the Factored
Language Model (FLM) introduced by Bilmes and Kirchhoff [25]. In this model a word (or chord)
is composed of several factors. Khadkevich and Omologo have used FLMs for chord extraction
[26] by splitting a chord into a label (e.g. E-min) and a duration. They obtained a slight increase in
accuracy of 0.25% compared to normal smoothed LMs. FLMs also make use of backoff, which is
now done over factors instead of words. This is explained in the example below.

example We may use the factors: Note, chord type and duration. We could then query for an
n-gram ”C-maj F-maj-0.45 A-min-0.6”. This is a C-maj of any length followed by an F-maj of
0.45 seconds, followed by an A-min of 0.6 seconds. If this n-gram does not exist, there are
multiple backoff paths that can be taken. For example, the first chord type could be omitted,
resulting in ”C F-maj-0.45 A-min-0.6”, or the second duration could be omitted, resulting in
”C-maj F-maj A-min-0.6”.

2.5 segmentation methods

This section describes some related work in the area of music segmentation. The task of segmenta-
tion according to López and Volk [27] is ”the process of automatically determining segments given
a symbolic or sub-symbolic representation of a musical piece/melody/part”. Generally these seg-
ments are found by detecting boundaries first. There are multiple approaches in finding these
boundaries, which are all explained in the overview paper by López and Volk [27].

Most work in [27] focuses on the symbolic representation of music on the note level. These
methods generally find two notes that greatly differ from each other (e.g. in pitch or duration). This
work cannot be directly applied to chords because of the following reasons: Firstly, the difference
between a high note and a low note is very different from the difference between a chord with a
high root bass note and a chord with a low root bass note; mainly because notes are distributed
over multiple octaves and chords are not. Secondly, timing differences between notes, such as long
rests, are more common than timing differences between chords of a chord sequence. Chords are
much more beat aligned, as a result the duration of chords will deviate less from one another
compared to the duration of notes. Apart from the fact that the methods in [27] mainly work on
notes, instead of chords, these algorithms also work on (h-)music only and find segments within
this music, thus they cannot directly be used to segment h- from non-h-music.

A different group of algorithms works in the audio domain. In 1996, Saunders [28] was able to
segment music from noise with a 98% accuracy by using a simple Naive Bayes classifier trained on
audio features. Other audio-based classifiers that followed, gained similar high accuracies [29, 30].

We have to look for an approach that is more suited to symbolic chord sequences. Ferrand
et al. [31] have constructed a model that makes use of probabilities to find segment borders. The
model stores the probability of several chord transitions. If a chord transition with a low probability

20

2.6 regression analysis

occurs in a chord sequence, the likelihood of a border is high. The model that they use is based on
notes, but it is straightforward to apply the model to chords as well.

2.6 regression analysis

In this section we will give a brief introduction to regression analysis. In regression analysis a
model is estimated that consists of several independent variables and (generally) one dependent
parameter which is influenced by the independent parameters. The goal of regression analysis is
to find the exact influence of the independent variables on the dependent variable.

We will now give a simple regression example in which we want to determine the price of a
house. The price of a house is determined by several factors, for example, the size of the house (in
square meters), number of rooms and whether the house is located in the city or not. The price
of the house is the dependent variable (which we denote as Y), and the factors that determine the
price are the independent variables (X1 is the size of the house, X2 is the number of rooms, and X3
is a 1 for being in the city and a 0 otherwise). From these variables a model (or function) can be
approximated:

price = c0 + c1X1 + c2X2 + c3X3 (11)

The goal of the regression analysis is to find the correct values for the coefficients (c1, c2 and c3).
With a lot of training data available, the coefficients are fitted such that they match the data. For
example: If it appears from the data that there is no price difference between houses in the city and
houses in rural areas, then the c3 coefficient is set to 0.

The most simple form of regression is the least squares method. In the least squares method,
the coefficients are fitted in such a way that the error of the predictions is minimal. This error is
calculated with the following function:

1
n

n

∑
i=1

(yi − ŷi)
2, (12)

where n is the size of the data set, yi is the ground truth value of point i and ŷi is the prediction
for point i.

A slightly more complex model is obtained with KNN regression. This model works similar to
the classification variant of KNN: The points of the training set are put into a d-dimensional space,
where d is the number of independent variables. The value of a new point is calculated by taking
the weighted mean of the k closest points; points that are closer to the queried point (e.g. by using
the euclidean distance), have a larger weight.

For a more thorough explanation of regression analysis we refer the reader to the book of
Faraway [32].

21

2 background and state of the art

2.7 evaluation methods

This section describes how we can evaluate the performance of the different (classification, segmen-
tation, and quality assessment) algorithms that we produce.

2.7.1 Classification Evaluation Methods

To evaluate the performance of a classifier, generally both a training and test set is required. For
all the data points in the training and test set the class labels (ground truth) are also known. A
classifier is created using the training data and then evaluated with the test data. After a classifier
has made predictions on a test set, we have the predicted classes and the ground truth classes, from
which we can compute various evaluation measures. The most basic measures are true positives
(TPs), false positives (FPs), true negatives (TNs) and false negatives (FNs). Their meanings are
made clear in the so called confusion matrix in Table 2.1

ground truth
class
1 0

predicted 1 TP FP
class 0 FN TN

Table 2.1: A confusion matrix showing true positives, false positives, true negatives and false negatives.

The most straightforward measure is the accuracy measure which calculates the fraction of cor-
rect predictions:

accuracy =
TP + TN

TP + TN + FP + FN
(13)

When the class distribution is skewed and one class appears a lot more in the training/test data
than the other class, then the accuracy measure becomes very high when a classifier simply always
classifies everything as the most occurring class. For such circumstances, something called the F1
measure is a more appropriate measure:

F1 =
2TP

2TP + FP + FN
= 2 · precision · recall

precision + recall
(14)

where
precision =

TP
TP + FP

(15)

and
recall =

TP
TP + FN

(16)

Recall tells us of all the points that are of class c, how many are classified as class c. Precision
tells us what fraction of points that are classified as class c are really of class c. The F1 measure
combines precision and recall with a similar weight, but other F measures exist that give different
weights to precision and recall respectively.

Instead of using a training and test set, cross validation could also be used as an alternative. In
k-fold cross validation the data is split into k equal parts (folds). The first k− 1 folds are used for
training the classifier and the k-th fold for testing it. We keep rotating one step, as a result that after

22

2.7 evaluation methods

k iterations every fold has been part of the test set once. The k obtained classification scores (which
can be the evaluation measures mentioned above) can then be averaged. When a limited amount of
data is available, cross validation becomes useful, as it allows one to use all data for both training
and testing.

2.7.2 Segmentation Evaluation Methods

We will now discuss how we can properly evaluate the performance of a segmentation algorithm.
According to López and Volk [27], the most common method is to, per song, store both the algo-
rithm’s output and the ground truth in its own vector. The song is divided in multiple small slices
of similar size (generally less than a second). Every value in the vector corresponds to such a slice,
which is given a label (in our case this is either a 0 for noise, or a 1 for music. A -1 could be used if
it’s unclear whether there is music or noise, which can then be ignored in the evaluation).

The algorithm’s segmentation is compared with a ground truth segmentation that is obtained
from human annotators. Generally, one would want multiple annotators, to counter subjectivity
and human errors. But for something as unambiguous as deciding at what time the music has
stopped playing, having just one annotator is enough.

By comparing the algorithm’s segmentation and the ground truth segmentation, the perfor-
mance of the segmentation algorithm can be computed. This is done by doing a stepwise compar-
ison of the two vectors. For this stepwise comparison we can use regular classification measures
that were introduced in the previous section. Every component of the vector basically corresponds
to one data point with a class label, thus every value of the algorithm’s produced vector can be
compared to the ground truth vector. From these comparisons it is straightforward to calculate TPs,
TNs, FPs and FNs.

Apart from the stepwise comparison of class labels, the structure of the segmentation can also
be evaluated. In Figure 2.4 we can see two different segmentations. They all obtain the same
accuracy and recall, but the first segmentation is preferred over the second, because its structure
is more consistent. A simple method for determining the segmentation quality is to compare the
predicted borders to the ground truth. For this comparison a different vector is used that has a
1 for the timestamps that contain a border and a 0 for timestamps that do not contain a border.
From the predicted borders and ground truth borders we can also calculate TPs, FPs, TNs and FNs.
Because the majority of a sequence does not contain a border, there will be many TNs.[27] states
that in most studies the precision, recall and F1 measure has become a standard, as they do not
take TNs into consideration.

Figure 2.4: Two estimations of a segmentation algorithm can be seen. In grey are the frames that contain an
error. Both segmentations obtain the same accuracy and recall, but the first segmentation is preferred since its
structure is more consistent.

23

2 background and state of the art

2.7.3 Quality Assessment Evaluation Methods

The performance of a regression method can be evaluated by determining how far the predicted
scores are away from the ground truth. Unlike with classification, there is no binary value of 1 and
0 for correct and incorrect predictions. Rather, the distance between the prediction and ground
truth is calculated. A common measure is to use the mean squared error, which we also introduced
in Section 2.6 for the least squares method. We will repeat this function here:

1
n

n

∑
i=1

(yi − ŷi)
2 (17)

where yi is the ground truth value, ŷi is the prediction of the regression model.

A straightforward way to first evaluate the quality of the regression model is by using the R2

measure, which is defined in Equation 18:

R2 = 1− ∑(ŷi − yi)
2

∑(yi − ȳi)2 (18)

where ȳi is the average value of the data set.

The R2 score explains how strong the correlation between the independent and dependent
variables are and can be at most 1. The higher the value of R2, the higher the correlation and the
better the regression model is compared to always using the mean value of the data as a prediction.
A score of 0 means that using the mean value as a prediction works as well as using the regression
model. A negative score means that always using the average value, results in a lower error than
using the regression model.

2.7.4 Testing the Statistical Significance

In some cases we want to compare the results (performance measures) of two methods or algo-
rithms with one another and determine which of the two performs better. When we compare the
mean performance measures of the two algorithms, we could conclude that the algorithm with the
highest score performs the best. But how do we know for certain that the winning algorithm wasn’t
just lucky, and with slightly different data (or more samples of the same kind of data) the other
algorithm would perform better? A method for for determining whether the algorithms perform
roughly the same or whether one performs significantly better is that of statistical hypothesis testing.
We will only briefly discuss the basic concept of statistical hypothesis testing. For a more thorough
explanation of statistical hypothesis testing (and statistics in general), we refer to reader to the free
e-book of Lowry [33]2.

We can generalize the aforementioned algorithms as populations (that contain several values).
The so-called null hypothesis states that there is no significant difference between the two popula-
tions. If we want to show that there is a significant difference, we have to reject the null hypothesis
with a certain confidence (probability) α, which generally is 0.05. One could say that the the null
hypothesis is only rejected, when less than 5% of the difference in means can be accounted to luck.

2 http://vassarstats.net/textbook/index.html

24

http://vassarstats.net/textbook/index.html

2.7 evaluation methods

There are numerous tests that can be used to determine whether there is a significant difference
between two (or more) populations. Simply said, such a test returns a certain value, which reflects
the difference between the populations. From this value, we can compute the probability that the
null hypothesis is true. If this probability is larger than our confidence value, then we are unable
to reject the null hypothesis.

When we want to compare more than two populations with one another, it is advised to not run
multiple paired tests that compare two populations every time. Apart from the fact that the number
of tests increases substantially as the number of populations increases, for every test we also have a
5% probability of making an error (when 0.05 is our significance level, 5% of the detected difference
can be accounted to luck). As the number of tests increases, there is more opportunity for errors.
The correct way to compare multiple populations is to first use a test that detects whether there is
any significant difference between the populations, and to then use a post-hoc test that determines
between which populations there is a significant difference and with which probability.

25

3

P I P E L I N E S A N D A L G O R I T H M S

In this chapter we describe our experimental pipelines, which differ for each research problem. We
also introduce several novel algorithms, which are partly inspired by the related work, and explain
how they function within our pipelines.

3.1 h- and non-h-music classification pipeline

This section explains how we plan to tackle the problem of classifying chord sequences between h-
and non-h-music. We discuss how our pipeline is functioning, what kind of data we have as input,
which features are extracted and how classification results are obtained. Since feature classification
and LM classification work slightly different, they each have their own pipeline. The details about
the implementation for both classification methods can be found in Appendix A.

3.1.1 Classification on Chord Features

Our feature classification pipeline is illustrated in Figure 3.1. In our goal to achieve the best clas-
sification accuracy possible, we have found four important parameters that significantly affect the
results of the classification. These parameters are explained further below. Apart from that, we also
experiment with different data sets, resulting in the fifth parameter of our pipeline. These data sets
are further explained in Chapter 4 .

In this pipeline, the five different parameters are: data set, chord merge, features, transposition
and classifier. Each of these parameters can take on several different values. A certain value assign-
ment of these parameters is called a configuration. Every parameter can be changed independently
of one another, and by changing only one parameter in the configuration we can see the impact of
that parameter on the classification results. Once we’ve determined the optimal value assignment
for a certain parameter, we will not change it anymore.

1. Data set: One of the data sets (explained in Chapter 4) is chosen:

• chordino

• ht

• corner

• ht-small

• corner-small

26

3.1 h- and non-h-music classification pipeline

Figure 3.1: The pipeline for feature classification. 1) A data set is chosen and parsed. 2) Optionally, adjacent
similar chords in the chord sequences are merged in all the data. 3) Specific features are extracted and the
data is split in a test and training set via 10-fold cross validation. 4) Optionally, transposition is applied on
the training set or both training and test set. 5) A classifier is created from training data. Finally, the test set
is classified and scores are obtained.

2. Chord merge: During the parsing step we can also merge similar adjacent chords together.
In a chord sequence it is possible that the same chord is repeated several times after each
other. When we merge chords we treat these repetitions of the same chord as one chord (with
a longer duration).

27

3 pipelines and algorithms

3. Features: Features are extracted from every chord sequence in the data set. There are four
different feature sets that we can choose from, which are explained below:

• chords

• chords + beat

• chords + duration-sd

• chords + beat + duration-sd

chords: This is a normalized chord histogram as explained in Section 2.4.1.1

beat: In many cases, chords sound for longer than just one time stamp. In their paper,
Khadkevich and Omologo [26] show that chords often repeat an even number of times (mostly
durations of 2, 4 and 8 beats) in music. Using this information, we introduce a feature which
we will call a beat histogram. We store how many beats a chord repeats itself and create a
vector of 1 through n beats. For every beat repetition from 1 till n, we store how many times
this beat repetition occurs, disregarding the chord label and type.

In this example sequence: A-A-Bm-Bm-C-C-C-A-Bm, we have two occurrences of a 1-beat-
repetition, two occurrences of 2-beat-repetition and one occurrence of a 3-beat-repetition.
These values are then normalized over the number of beats, such that the length of the song
does not matter.

When we use the merge chord option, there are no chord repetitions at all, making this feature
useless. As a result, when we use the merge chord settings, we will look at the unmerged
chord sequence when constructing the beat histogram.

duration-sd: In music, the beat is clearly structured, resulting in every chord sounding
roughly the same duration. In noise there is no such structure, thus it may be possible
that the duration of chords are much more random. We will look at the standard deviation
of the chord duration, which is independent of any specific chord. The higher the standard
deviation, the more variable the duration of a chord is.

After the feature extraction, we split the data in a test and training set with 10-fold cross
validation. This results in 90% of the data being used for training and 10% for testing. Since
we have 10 folds, the remaining steps are repeated 10 times.

4. Transposition: In order to increase the training data for our classifier, we can also apply
a technique which we call 12-transpose. We transpose every chord sequence to all of the
12 pitch classes, giving us 12 different versions of the same chord sequence. As an exam-
ple, a song that consists of 3 chords: {C, F, Gm}, would result in 11 additional versions:
{C#, F#, G#m}, {D, G, Am}, . . . , {B, E, F#m}.
This gives us two advantages: 1) It gives us 12 times as much data and 2) it may remove
potential biases in our h-music data set; since it could be possible that our chord files often
are in a certain key, classifiers would then learn that h-music is always in a certain key, instead
of learning relations between chords. On the other hand, songs are, for example, more likely
to be in the key of C than C#, which is ignored when using 12-transpose.

12-transpose is applied after the data is split between training and testing sets. If we would
apply 12-transpose before splitting, different versions of the same data point could appear in
both the training and test data, resulting in bias. We can either apply 12-transpose to only
the training set or to both the training and test set. If we choose to also 12-transpose the test
set, then we keep the 12 transposed versions together as a set of data points, let the classifier
classify every version separately, and then take a majority vote to decide the class of the data
point set.

The options regarding transposition are:

• no transpose: Do not transpose chord sequences

28

3.1 h- and non-h-music classification pipeline

• 12-train: Only transpose the training data to all 12 pitches, giving us 12 times as many
data points for training

• 12-full: Transpose both the training and test data, using the voting mechanism

5. Classifier: A classifier is chosen and is fit to the training data. The list of classifiers that we
test are:

• KNN

• NB

• Decision Tree

• SVM

• Random Forest

• AdaBoost

After the classifier has been trained, the classes of the test data are predicted with the classifier.
A data point from the test set is queried to the classifier, resulting in a prediction for the class
of the data point. If we choose to use 12-full, then we also 12-transpose the queried data point
and apply a majority voting, such as we explained above.

From these predictions we can calculate various performance scores that were introduced in
Section 2.7.1. Since our class distribution has a ratio of 50:50, the accuracy measure is a good
measure to rate the overall performance of a classifier. But for the Chordify use case, it may
be interesting to look at a different measure besides accuracy. When a false negative occurs, a
Chordify user submits h-music, but the classifier predicts it as non-h-music. This means that
chords may possibly be of low quality; is it acceptable that the user will not get chords then?
When a false positive occurs, a Chordify user submits non-h-music, but the classifier thinks
it’s music and accepts it. Then either the audio is real noise, but somehow the chords are
acceptable and appeared as music or the user submitted atonal music and got chords back.
These chords may not properly match the music, since it is atonal music.

In general false negatives are worse to have; a user is expecting to receive chords (because
h-music is submitted), but (s)he does not receive them. Since we would like to minimize the
number of false negatives, we would like to maximize the recall measure on h-music. Thus,
besides accuracy, we will also do evaluations based on the recall score. But because the recall
could always be optimized by only classifying pieces as h-music, the accuracy measure will
still be the main measure to use.

Each cross validation iteration returns one score. In total we get 10 scores of which we take
the mean. For every configuration, we do 100 iterations and take the mean score of those
iterations.

3.1.2 Chord Language Model Classification

For the LM experiments, we have also found four important parameters (and the fifth parameter
being the data set). The parameters for LM classification are slightly different. There are no
specific features to extract, since the model is built from pure chord sequences, and instead of
having different classifiers, we have one classifier that differs in the n-gram model order and the
smoothing method. This gives us the following parameters: data set, chord merge, transposition,
n-gram order and smoothing. The pipeline for LM classification is illustrated in Figure 3.2.

1. Data set: One of the data sets is chosen and parsed:

29

3 pipelines and algorithms

Figure 3.2: The pipeline for LM classification. 1) A data set is parsed, chord sequences are put in a simple
format. 2) Optionally, adjacent similar chords in the chord sequences are merged in all the data.The data is
then split in a test and training set via 10-fold cross validation. 3) Optionally, transposition is applied on the
training set or both training and test set. 4) A separate LM for h- and non-h-music is build with the chosen
n-gram order and 5) smoothing method. Finally, the test set is classified and scores are obtained.

30

3.2 h- and non-h-music segmentation pipeline

• chordino

• ht

• corner

• ht-small

• corner-small

2. Chord merge: We have the option to merge similar adjacent chords together.

After the possible chord merge, chord sequences are put in a simple format that LM classifiers
support: This is one long string where each chord (label and type, e.g. Fmin) is separated by
a space. After that, the data is split in a test and training set via 10-fold cross validation.

3. Transposition: Once again, the options regarding transposition are:

• no transpose: Do not transpose chord sequences

• 12-train: Only apply 12-transpose on the training data.

• 12-full: Transpose both the training and test data, using the voting mechanism

4. n-gram order: The n-gram order of the LM is chosen between 2 through 8. The minimum of
2 is used, because we are interested in the relation between chords, thus need more than one
chord for that. The maximum of 8 is chosen because models beyond that were not promising
anymore; mainly because they became too sparse and did not provide any extra information.

5. Smoothing: Choose the smoothing method of the LMs, then estimate the LMs for h- and
non-h-music from the training data. The h-music LM is created from only h-music training
samples and the non-h-music LM is created from only non-h-music training samples. The
smoothing options are:

• No smoothing

• Additive smoothing

• Good-Turing smoothing

• Constant discounting

• Witten-Bell smoothing

For the FLM, no smoothing is not an option of the program and additive smoothing is also
not available.

In the final step we query the test data to both models. When we query a data point (a
chord sequence), both the h- and non-h-music model return a probability score for that chord
sequence. We will classify the data point to the model that returns the highest probability.
From these predictions we can calculate the accuracy and recall as we did in the feature
classification pipeline. Each cross validation iteration returns one score. In total we get 10

scores of which we take the mean. For every configuration, we do 100 iterations and take the
mean score of those iterations.

3.2 h- and non-h-music segmentation pipeline

In this section we discuss how we will try to solve the problem segmenting a chord sequence into
parts of h-music and parts of non-h-music. The pipeline that we use to solve this problem can be
seen in Figure 3.3.

The first step in our pipeline is to create an h-music classifier. This is the classifier that we have
carefully constructed and tested in the pipeline of Section 3.1. This classifier is trained on both the

31

3 pipelines and algorithms

Figure 3.3: The pipeline for segmentation.

training and testing data that was used for the classification experiments. This classifier will be
used later on by our segmentation algorithms. During the classifier’s construction, we also parse
the mixed data set that consists of chord sequences generated from audio that we would like to
segment. For this data set we have on every time stamp (of roughly a quarter of a second) a chord
together with the ground truth (a 0 for noise, a 1 for music or a -1 when both music and noise is
sounding at the same time). The data sets are explained further in Chapter 4.

The next step is to split the mixed data set into a training and test set via 4-fold cross validation.
Three fourth of the files are used for training our segmentation algorithm and one fourth is used
for testing it. We use four folds, because the more folds we use, the smaller the test set becomes.
As the audio tracks of the data set can greatly vary in length, we could potentially end up with
three tracks of only 15 minutes each in the test set, which is undesirable. If we have more files in
the test set, we reduce the chance that the test set consists of only a few short tracks.

The remaining steps are done four different times for each rotation in the cross validation. The
training set is used to find a set of optimal parameters for the segmentation algorithm. These

32

3.2 h- and non-h-music segmentation pipeline

algorithms and their parameters are explained in Section 3.2.1. The algorithm outputs a vector of
0s and 1s, which can be compared with the ground truth vector. The -1 values in the ground truth
vector (which stand for music and noise sounding simultaneously) are not taken into consideration
when calculating the performance of the algorithm. When we compare the ground truth and
estimated vectors we can calculate various performance measures as explained in Section 2.7.2.
Because not all chords in the input have the same length, we should take this length into account.
If we, for example, calculate the number of true positives, we calculate for how many (mili)seconds
there was a true positive and not for how many chords there was a true positive. The choice for
our performance measure is discussed a bit further below.

For a given training set, we use 1000 iterations of simulated annealing to find the parameters that
give us the best results. In every iteration we randomly change the value of one of the parameters
and then let the segmentation algorithm segment the training set. From these 1000 iterations we
remember the parameters that obtained the highest score. These parameters are then possibly
overfitted to the training set, hence we will do the final evaluation on the test set. We do 25

iterations of the entire pipeline, in which we obtain a score for every fold of the cross validation.
This leaves us with a total 100 scores, as we have four folds.

If the results from the test set are far lower than those of the training set (i.e. more than 5%
difference), then this hints at overfitting on the training set. Unfortunately, it is difficult to avoid
overfitting, thus the main goal of this experiment is not necessarily to find the best parameters
possible. As for different kinds of data, e.g. audio where 90% consists of h-music compared to
audio with 90% noise, different parameters may work well. We are mainly interested in finding
out what the effect of these parameters is, and how they are influenced by overfitting.

Now the question that remains is which performance measures to use. An important application
of the segmentation algorithm is to filter out the segments that do not correspond to music and
to only keep the chords for the segments with music. A false negative indicates that chords are
not shown, even though music is actually playing, which is something we strongly want to avoid.
Thus, once again we would like to use the recall measure on h-music. Apart from the recall,
we also want to keep using the accuracy measure, as it gives us good insight in how correct
the overall segmentations are. Unfortunately, we can greatly vary the accuracy and recall of the
algorithm. We can tweak the parameters of the algorithm such that the accuracy is high, but the
recall mediocre. Similarly, we can obtain a very high recall on h-music, accompanied by a low
accuracy. As accuracy and recall can differ considerably from one another in certain parameter
configurations, it is better to use the F1 score (explained in Section 2.7.1) as the quality measure for
the segmentation algorithm, which is a combination of precision and recall. The precision could
be considered a form of accuracy, but only on h-music, as it only takes true and false positives into
account.

Additionally, we’d also like to investigate how well the algorithm finds the borders of the
segments. There is a border when in the estimated vector we go from a 1 to a 0 or vice versa.
We can put the time stamps of the ground truth borders and estimated borders in two separate
vectors: gt is the vector with all the ground truth border timestamps and est is the vector with
the timestamps of predicted borders. When the algorithm has detected a border that is within
30 seconds of the ground truth border (either 30 seconds earlier or later), we consider this a true
positive (TP). As we are working with recordings of at least 15 minutes, a 30 second offset for a
border is acceptable (in Section 6.1.2.1 this is discussed further). We introduce a measure called
border recall, which is defined as the fraction of correctly predicted borders: TP

|gt| , where |gt| is
the length, or the number of borders, of gt. The border precision is then the fraction of predicted
borders that are actually a border: TP

|est| . If the recall is low, then the algorithm predicts too few
borders and/or predicts them at the wrong places. If the precision is low, then the algorithm
predicts too many borders, and/or predicts them at the wrong places.

33

3 pipelines and algorithms

3.2.1 Segmentation Algorithms

In this section we will introduce two segmentation algorithms: First a simple baseline algorithm
is shown, which is then followed by a more sophisticated algorithm that tries to improve on the
baseline. Both algorithms have a set of parameters that greatly influence their performances. These
parameters are underlined in both the text and the pseudocode of the algorithms. Both algorithms
get as input a list of time stamped chords with ground truth class labels, and give as output a list
of class labels which has the same size as the input list.

3.2.1.1 Separate Segment Algorithm

We will now explain how the baseline algorithm, which we will call the separate segment algorithm,
works. The general idea of the algorithm is as follows: We split up the entire input chord sequence
into chunks of similar size (window size). We then classify these chunks separately and give all the
chords in the chunk the same class.

The pseudocode can be found in Algorithm 1 and works in the following way: The output
vector that will store the class labels is initialized in step 2. The window is defined by the begin
and end indices in step 3 and 4. In step 5 through 10 we will take the chords from the chord vector
that are within the window and obtain a class label from our h-music classifier. We then append
this obtained class to the class vector as many times as the number of chords in the window. In
step 11 through 13 we move the window by window size steps, such that the current window does
not overlap with the previous window and we thus classify an entirely different chunk. We do this
until all chords have been classified.

Algorithm 1 Separate Segment Algorithm

1: procedure SeparateSegment(chord vector)
2: class vector = list()
3: begin = 0

4: end = window size
5: while begin < end do
6: chords = chords between begin and end of chord vector
7: c = obtain class label of chords from h-music classifier
8: for i = 0 to chords.length do
9: append c to class vector

10: end for
11: begin += window size
12: end += window size
13: end = min(end, chord vector.length)
14: end while
15: return class vector
16: end procedure

3.2.1.2 Sliding Window Algorithm

The pseudocode of the sliding window segmentation algorithm can be seen in Algorithm 2. We
will cover all the steps of the pseudocode in the explanation below. After the description of the
algorithm, we will discuss the ideas behind the algorithm, the choices that we have made and the
details of the parameters.

34

3.2 h- and non-h-music segmentation pipeline

Algorithm 2 Sliding Window Algorithm

1: procedure SlidingWindow(chord vector)
2: prob vector = list()
3: prev p = null
4: begin = 0

5: end = window size
6: while end < chord vector.length do
7: chords = chords between begin and end of chord vector
8: p = obtain class probability of chords from h-music classifier
9: append step size values to prob vector interpolating between prev p and p

10: begin += step size
11: end += step size
12: prev p = p
13: end while
14: add prob vector[0] window size/2 number of times in the front of prob vector
15: add prob vector[-1] window size/2 number of times in the back of prob vector
16: for i = 0 to probVector.length do
17: class vector.append(max(1, round(prob vector[i]+music bias)))
18: end for
19: smoothed class vector = SegmentSmoothing(class vector)
20: return smoothed class vector
21: end procedure

22: procedure SegmentSmoothing(class vector)
23: prev class = null
24: for i = 0 to class vector.length do
25: if prev class != class vector[i] then
26: c = 0

27: for j = i to i + segment size do
28: if class vector[j]==class vector[i] then
29: c += 1

30: end if
31: end for
32: if c

segment size > segment purity then
33: Real border detected . Do nothing
34: else
35: class vector[i] = prev class
36: end if
37: end if
38: prev class = class vector[i]
39: end for
40: return class vector
41: end procedure

35

3 pipelines and algorithms

The algorithm has three important procedures:

1. Slide a window over the input chord sequence and classify the entire window. This results in
an initial vector of class probabilities which has a one-on-one mapping with the input chord
vector. Each value in the probability vector is the probability that the chord corresponds to
h-music (occurs in SlidingWindow procedure).

2. Add a small constant value to the probabilities, such that h-music obtains a small bias and
round the class probabilities to concrete classes of 0 and 1 (occurs in SlidingWindow proce-
dure).

3. Smooth out small miss-classifications, such that only larger segments remain (occurs in Seg-
mentSmoothing procedure).

• SlidingWindow This procedure is the entrance point and core of the algorithm. The proce-
dure receives a vector of time stamped chords as input. On line 2 the vector that will store
all the class probabilities is initialized. The class probability is a value between 0 and 1 that
reflects the probability of the time stamp corresponding to h-music. A value below 0.5 results
in the classification of non-h-music and above 0.5 results in the classification of h-music. In
step 4 and 5 the begin and end indices of the sliding window are initialized. In steps 6 through
13 we slide over the chord vector by moving the window by step size number of spaces per
iteration. In one iteration we take the chords that are within the window size (step 7), put
them in the h-music classifier, obtain a probability (step 8) and append it to the probability
vector (step 9). If the step size is higher than 1, every iteration we skip some chords, thus we
need to add some additional probabilities to the vector, in between the previous and current
probability. We add the current probability p and some values that are linearly interpolated
between p and prev p (e.g. if prev p = 1, p = 0, and step size = 4, then the probabilities we
will add in that iteration are 0.75, 0.5, 0.25 and 0).

Note that the initial chord sequence and the resulting probability and class vectors have the
exact same size, so when we classify a chord sequence, the obtained probability is assigned
to the chord in the center of the sequence. Since we assign a probability to the middlemost
chord of the chord sequence, the sliding window can’t classify the first few and last few
chords as these chords will never be in the middle of the sliding window. That is why we add
additional probabilities to the start and end of the vector in step 14 and 15. The probabilities
added in the front use the probability of the first element in the vector, the probabilities added
in the back use the probability of the last element in the vector.

After having obtained a full probability vector, we round these probabilities to class labels of
0 and 1 and then apply the max function to make sure we do not exceed the value of 1 (step
16-18). But before doing the rounding step, we add a small value of size music bias to each
probability. The result of the bias is that a value that would normally be rounded off to 0

might now be rounded off to 1. The reason for adding this bias is explained further below.
The output of this step is a class vector of 0s and 1s. In Step 19 the SegmentSmoothing

procedure is called to smooth out potential miss-classifications.

• SegmentSmoothing In this procedure we make some final modifications to the class vector.
Starting on line 24, we loop over every value in the class vector. The moment we encounter
a change in class (line 25), a potential border is detected and we check the next segment size
number of values in the class vector (line 27 through 31). We count how many values in that
window are of the same class as the class that initiated the border. When we divide that count
by the segment size we get a ratio. If this ratio is higher than segment purity then we have
detected a border. Else, it was just a miss-classification and we change the value of the class
in step 38. Then, in step 40 we return the final vector of class labels.

36

3.2 h- and non-h-music segmentation pipeline

We will now discuss the ideas and choices behind the algorithm and explain the parameters.

• Sliding window The SlidingWindow procedure is the core of the algorithm, it produces the
initial vector on which further computations are done. The parameters that are used here are:

– Window size: The window size is notated in seconds. When we retrieve the chords
in a certain window, we obtain all the chords that have their time stamps within the
window size. The reason that we use seconds as opposed to number of chords is that
using the number of chords would result in a variable window size. As some audio has
a faster beat than others, chords last less long, which then results in a shorter window
size. Although the downside of using seconds is that some window slices contain more
chords than others, we think it is the better choice.

– Step size: The step size, unlike the window size, is notated in number of chords, not
seconds. Since not all chords have the same length, it is possible we will not always skip
the same number of chords if we use a step size in seconds. We would then not know
for sure how many interpolated probabilities we should add in step 9 of Algorithm 2.

In this procedure we also have the option to add a small bias to all the probabilities, before
rounding to class labels. The reason for this is that the classifier tends to classify chord se-
quences as non-h-music more often. This probably happens, because these sequences contain
both music and speech, whereas the classifiers were trained on sequences containing pure
music or pure noise. By adding a small bias, we give h-music an increased probability and
hopefully counter these miss-classifications. The parameter that controls this bias is:

– Music bias: This is a value between 0 and 0.5. If the value is 0, no bias is added at all. If
the value is 0.5, every element will have a probability of at least 0.5, thus every element
will get classified as h-music.

• Segment smoothing The SegmentSmoothing procedure is an optional smoothing step in
the algorithm. The procedure basically filters out the few out-of-place class values; a small
number of 0s that are surrounded by several 1s or vice versa. The idea behind this smoothing
is that when we come across a border, but the majority of values after the border are of
the class before the border, then this border is probably a miss-classification. The following
parameters explain this more:

– Segment size: This is the number of elements following the detected border that we look
at.

– Segment purity: This is the fraction of elements in the segment size window that must
be part of the detected border class, in order for the border to be valid. If the border is
not valid, then the class of the border gets changed to the class before the border. The
segment purity is a value between 0 and 1.

Initially, we tried using a median filter to perform smoothing on the probabilities. Unfortu-
nately, there were some side effects, making the filter less suitable. When there are multiple
border changes close to each other, the median filter does not always filter the small segments
out, but sometimes combines them. This can be seen in Figure 3.4, where we try to filter out
all segments smaller than 3 by using a window size of 5. Separate segments will get filtered
out correctly, but when two small segments are close to each other, we obtain a new small
segment after the filter step.

37

3 pipelines and algorithms

Figure 3.4: A median filter with a window size of 5 is applied on a vector of probabilities. In grey are the
segments that are below 0.5 and will get classified as non-h-music.

3.3 assigning quality scores to chords

We will now describe the process of creating a pipeline that allows us to assign quality scores to
chord sequences. This score describes to what degree the Chordify user accepts the chords for a
particular song. The most straightforward way to measure this quality is by means of user ratings.
Chords with high user ratings are assumed to be of high quality, and chords with low user ratings
are assumed to be of low quality. It should be clear that a user rating (thus also a quality score) is
all about the user’s opinion and not the ”real” correctness or ground truth of the chords. These two
are not strongly correlated according to Macrae and Dixon [34]. They state that chord sequences
that got high ratings from users did not necessarily match the ground truth annotated chords. Thus,
the ratings that we obtain from users do not reflect the chord accuracy (compared to some expert
ground truth), but rather an acceptance rating of the user.

As was the case for the previous two problems, for this problem we will also need some data
set with ground truth scores. A method to gain these ground truth quality scores is to allow users
to rate chord sequences with the help of a rating system, which we describe in Section 3.3.1. When
there are a sufficient number of ratings available, we can apply several techniques, discussed in
Section 3.3.2, to predict the rating of a chord sequence ourselves, without the need for user ratings
for that particular song.

3.3.1 Rating System

We will first explain which stakeholders are involved in the rating system and how their wishes
may conflict with each other. After that we will look into different rating scales and determine
which scale would be most suitable for us.

3.3.1.1 Stakeholders

There are three stakeholders involved in the rating system:

1. Researchers: Our goal is to obtain ratings that properly reflect what users think of the quality
of the chord sequence. It is also important to have a sufficient number of songs with a
sufficient number of ratings. We expect that at least 50 rated songs are required, and each
song must have at least 20 ratings for the average of the ratings to be reliable. There should
alse be a variety in good and bad quality chords.

38

3.3 assigning quality scores to chords

From these ratings, a model can be trained that is able to predict the quality of a song auto-
matically. This is also interesting for Chordify, so that they have information about the quality
of the chords of a song for all songs (especially the ones that have not been rated yet).

2. Chordify as a company: They want to improve the user experience. When a user searches
for a song, an ordering of results can be made based on the chord quality (when there are
multiple versions of the same song). A specific ”hub” for chord edits could be created, where
users could search for songs they want to edit, based on the quality of the chords. (e.g. some
users would only like to edit songs that are almost of perfect quality and only contain minor
mistakes).

3. Chordify user: They would like to know when chords are of low quality, so they do not have
to bother using them; they would like to never come across low quality chords. They want
the rating process to cost as little time and cognitive load as possible, but don’t want to have
too few options, such that they cannot properly express their opinion of the quality.

Some of these interests may conflict with each other. The first point is that users may want
to express themselves properly, giving a precise score for a chord sequence (just like our goal
as researchers is to obtain ratings that reflect the user’s opinion properly). But if we want precise
information, it may be necessary to give users many options to express themselves. This contradicts
with the fact that users may want the rating process to cost as little time and cognitive load as
possible. If users need to interact with a rating system with too many options, they may refrain
from using it, leaving us with less data. So if the rating system provides fewer options, users may
use it more quickly, but the precision may not be as correct.

3.3.1.2 Play Time Information

Some user votes may be more reliable than others and the play time of a song may help us to
determine the reliability. The longer the user plays the song, the higher the probability is that the
user accepts these chords. If a user has played a song for only a short amount of time, but has
rated it anything but low, then the rating may not be reliable. On the other hand, if the user gave
a low rating after a short listening time, it may be reliable, because one can find out more quickly
whether chords are of bad quality than whether they are of good quality. This suggests that an
individual user vote should always be combined with the play time, so votes with low play time
could possibly be filtered out.

3.3.1.3 Rating Systems

We will now compare different kind of rating systems, looking at their pros and cons. The main
difference in these systems is the number of choices that users have, to express the degree of their
acceptance of the chords. The least amount of choice would be a ”like” or thumbs up such as
Facebook does it. A user could either like the chords or do nothing. With one extra option comes
a binary scale of like-dislike (or thumbs up/down) such as YouTube does. After that, a dislike-
neutral-like scale can be used. This can be expanded further and further, until we reach a scale
from 0 to 100 (generally, scales do not become larger than this). Apart from the granularity itself,
different meanings could be assigned to every option. Scales exist where there is no neutral option
(-3, -2, -1, 1, 2, 3), and some scales might give users more positive than negative options.

If there are fewer options, users may interact with the system more quickly, because it takes
less time and effort. On the other hand, users may become frustrated, because they are unable

39

3 pipelines and algorithms

to express their opinion properly. A neutral option gives users more expressiveness. In addition,
when users find it difficult to make a choice, the neutral option makes the rating process easier. On
the other hand, when users are indifferent, they may not even bother to vote; only when they have
a strong opinion (like or dislike strongly), they may want to express that.

There is much literature on determining which rating scale works best [35, 36, 37], but the
conclusions are varied so it’s difficult to generalize to the context of Chordify. The context in which
these rating systems are evaluated are often in surveys or recommender systems. These contexts
are different from Chordify in a few ways: A survey is much more confronting than the Chordify
rating system; people only interact with the Chordify rating system if they feel like doing so.
Another point is that, generally, complex opinions need to be expressed by users in surveys instead
of a simple ”rate the quality of these chords” for Chordify. Chordify differs from recommender
systems, because people gain a direct benefit from rating items in a recommender system, namely
receiving better recommendations, whereas users do not directly benefit from rating chords in
Chordify (although in the long run they will).

Cosley et al [35] have done a study on the interface of rating systems and whether the user’s
opinion could be manipulated. They have compared several rating scales for a movie recommender
system and evaluated which system users like the most by asking users to give a score between 1

and 5 to several rating scales (the reason for using this 5 point scale to rate other rating scales has
not been explained). Of the 26 users that responded, the majority likes to have more choices: the 10

(half star) scale obtained a score of 4.2 (out of 5), the 5-star scale got a 3.8, the no-zero scale (-3 till
3) obtained a 3.2 and the binary scale obtained a score of 2.2. They also state that when users are
forced to choose between two options, they generally give a positive rating when they are neutral.
In the Chordify rating system people are not forced to make a choice; if they don’t have a strong
opinion, they do not have to interact with the system. So in that respect, having no neutral option
isn’t necessarily bad.

A different study, that is done by Preston and Colman [36], provides some more inside in the
different scales. They tested scales ranging from 2 till 11 options and also a 101-point scale by
letting 149 users rate several aspects of a restaurant or shop. They present the users’ preferences
of the different scales, which can be seen in Figure 3.5. The conclusions they draw from this is that
the scales with few options are the quickest to use, but not necessarily the easiest to use because it
does not allow for users to express themselves properly.

Figure 3.5: Scales Ranked in order of increasing respondent preference. Taken from [36].

We will now discuss three conventional systems with one another and explain how suitable
they are for the context of Chordify.

Unary: Quality Chords

40

3.3 assigning quality scores to chords

For the unary system, the user has only one button to click (seen in Figure 3.6). The user only
interacts with the system (clicks on the button) if it accepts the quality of the song. If the user
thinks the quality of the chords is low, they won’t use the rating system (will not press the button).
This unary measure works OK for gauging the popularity of a song, but the quality is a bit more
difficult. For the people that have not voted, we don’t know whether they are neutral or negative
towards the chords, or if they just don’t feel like voting. Even if we use the play time information,
the sentiment of users that haven’t voted is difficult to determine. The upside is that the interaction
is straightforward; the user presses this button if they think the chords are of good quality. This
requires minimal user time and effort.

Figure 3.6: A button that Chordify users can click when they think the chords are of good quality.

Binary: Bad and Good Quality

In the binary rating system (Figure 3.7) the user has two choices: either positive (Good quality)
or negative (Bad quality). If the user has no strong opinion, he is either forced to pick between one
of the options or not to give a rating at all.

Figure 3.7: Two buttons that Chordify users can click to show their opinion about the chords. The user is
forced between a positive and a negative choice

It is possible that there is a skew towards ”Good Quality”; when a user likes something a lot,
he is more motivated to say something about it. When he dislikes something he just wants to
get away from it quickly. This is not necessarily bad, because our guess is that good, bad and
average quality chords can still be distinguished from each other. Bad quality chords will most
likely hardly have any likes and multiple dislikes. Average quality chords most likely have a low
number of dislikes and slightly more likes. We predict that good quality chords will receive many
likes and few dislikes.

The cognitive load is increased compared to the unary system; when a user has no strong
opinion, it may require effort to make a choice. On the other hand, people know this system very
well from for example YouTube (Figure 3.8).

Figure 3.8: User interface of YouTube’s rating system.

With this system it is straightforward to gauge the quality of the chords: the fraction of Good
Quality chords compared to all the votes. E.g. 80 Good votes and 20 Bad votes result in a score of
80% (100 being the maximum and 0 being the minimum).

41

3 pipelines and algorithms

5-Stars

A five star rating (Figure 3.9) gives the user the most choice of these three scales. The user can
give a song 1 to 5 stars, where 1 star corresponds to a very poor quality and 5 stars corresponds to
an (almost) flawless quality. This system also contains a neutral option with 3 stars. An advantage
of this system is that users know this system relatively well, as it is used in many different web
services such as Amazon or guitar tab websites such as Ultimate Guitar. Another advantage is that
it is straightforward to compute a score from these star ratings. We can take the average stars that
a song has gotten resulting in a score between 1 and 5.

Both [35] and [37] state that people prefer to have more options (5- or 10-star systems), but other
evidence in this blog from YouTube1 suggests that these different choices are not always used; it
can be seen that only very strong opinions (1 and 5 stars) are expressed. Additionally, with the
5-star scale, more information has to be conveyed; it is more difficult to display how the chords
have been rated by other people. One could only show the mean rating, or show how many people
have given how many stars.

Figure 3.9: 5-star rating system that allows the user to express themselves about the quality of the chords of a
song.

3.3.1.4 Final Choice

From the proposed options the binary system and 5-star rating system seem to be most appropri-
ate. The reason the unary ”like” system is not very suitable is because it only conveys positive
information; it is difficult to detect if chords are of low quality.

When we compare the binary scale with the 5-star scale the main difference is in the amount of
choice the user has. The main questions are: 1) Are users more inclined to use the binary system
than the 5-star system and 2) how is the precision of the 5-star scale used; are all the votes at the
far ends or are they spread out evenly? Unfortunately, these questions cannot be answered easily
without testing both systems first.

Because we have to make a choice, we choose to implement the 5-star rating system for the
following reasons:

1. People associate the 5-star rating with quality more often than the binary rating. People may
associate the binary rating that YouTube has popularized a lot with like and dislike and could
then possibly rate whether they like the song instead of the quality of the chords.

2. The 5-star rating gives people more options, so the quality scores may become more precise
that way. Even if users will only use 1 or 5 stars, there is not really a negative effect of having
these extra options in the rating system.

The implemented rating system can be seen in Figure 3.10. We have chosen to not display any
average rating (before the user has given a rating himself), as this could introduce bias.

1 http://youtube-global.blogspot.com/2009/09/five-stars-dominate-ratings.html

42

http://youtube-global.blogspot.com/2009/09/five-stars-dominate-ratings.html

3.3 assigning quality scores to chords

Figure 3.10: The user interface of Chordify. A user has given this song 5 stars.

3.3.2 Score Prediction Pipeline

We will now discuss the pipeline that we use for predicting scores of chord sequences and evaluat-
ing the performance of the predictor. We have two separate pipelines: one for regression and one
for a sliding window scoring algorithm.

3.3.2.1 Regression Pipeline

The regression pipeline is very similar to the classification pipeline of Section 3.1. Instead of a
classification model, we use a regression model. The features that we use and the application of
12-transpose remain unchanged, so we refer the reader to Figure 3.1 again for a visualization of
our pipeline. We briefly discuss the steps of the pipeline here:

1. Data set: The rating data set is parsed. This data set contains songs for which we have user
ratings.

2. Chord merge: During the parsing step we have the option to merge similar adjacent chords
together.

3. Features: Features are extracted from every chord sequence in the data set. There are four
different feature sets that we can choose from:

• chords

• chords + beat

43

3 pipelines and algorithms

• chords + duration-sd

• chords + beat + duration-sd

After the feature extraction step we use 10-fold cross validation again to split the data into a
training and test set.

4. Transposition: We can choose a form of transposition:

• no transpose: Do not transpose chord sequences

• 12-train: Only apply 12-transpose on the training data.

• 12-full: Transpose both the training and test data, using the voting mechanism

5. Regression method: A regression method is chosen and is fit to the training data. The
regression methods that we test are:

• Least squares

• KNN regression

After the regression model has been trained, the ratings of the test data are predicted. We can
compare these ratings with the ground truth ratings and compute the mean squared error,
which is explained in Section 2.7.3.

Each cross validation iteration returns one error score. In total we get 10 scores of which we
take the mean. We repeat this process for 100 iterations and take the mean score of those
iterations.

3.3.2.2 Sliding Window Pipeline

This pipeline uses the sliding window segmentation algorithm from Section 3.2.1.2 to compute a
rating. This method works as follows:

1. Apply the sliding window segmentation algorithm on the queried chord sequence for which
we want to compute a rating, but only use the first step of the algorithm, in which we obtain
a vector of class probabilities.

2. Take the mean of these probabilities and convert them to a quality rating. The maximum and
minimum rating are 5 and 1 respectively and the maximum and minimum probability are 0

and 1 respectively. We can map a probability to a rating with the following equation:

rating = 1 + probability · 4 (19)

3. Calculate the mean squared error by comparing each predicted rating with the corresponding
ground truth rating, and then take the average error of all points in the data set.

Because the segmentation algorithm is deterministic such that it always produces the same
probabilities, and it does not have to be trained with the rating data, there is no need to use
(multiple iterations of) cross-validation with this method.

44

4

D ATA

In order to train and test a classifier or a segmentation algorithm, a data set is required. This data
set should consist audio from which we can extract the chords ourselves. The types of audio that
we will use for our experiments are:

1. H-music: These are full songs containing only h-music. This is music that follows the rules
of harmony.

2. Non-h-music: This is audio that does not contain any h-music at all. This is either audio
that does not contain any music or is audio containing music without a harmony (atonal and
percussive music).

3. Mixed audio: This audio is a mixture of h-music and non-h-music (e.g. a song that has a long
intro without music or a radio show or podcast where a person is talking in between songs).

Full h- and non-h-music chord sequences are required for the classification and segmentation
algorithms. Both algorithms require a classifier that can distinguish h- from non-h-music, hence
we need to train the classifier with such audio. The mixed audio is used to train and test the
segmentation algorithm.

A good source for h-music is the McGill Billboard [38] data set. This data set contains around
900 songs of a variety of popular music. These songs are representative of the type of music that
is queried in Chordify. One issue is that the audio of these songs is not publicly available because
of copyright issues. Chord labels of these songs have been annotated by experts, but the format
of these annotations are rather different from the output of chord extraction algorithms. Luckily
Dan Ellis has written a script that can download the Billboard songs from YouTube, based on audio
fingerprints1. By using this script, we have access to the audio of the Billboard data set and can
then use our own chord extraction algorithms to obtain annotations, instead of using the Billboard
annotations.

For non-h-music audio we have gathered a large variety of different sound recordings from the
internet. These files have been obtained from the freesound.org sound library [39]. Naturally, it
is impossible to get every kind of variation of sound, but it must be sounds that are somewhat
common in daily life. The sounds for non-h-music are:

• Radio/TV shows (with only talking people)

• Bar/restaurant noise (crowded places where people talk with each other)

1 http://labrosa.ee.columbia.edu/˜dpwe/resources/matlab/audfprint/scrape-yt.html

45

http://labrosa.ee.columbia.edu/~dpwe/resources/matlab/audfprint/scrape-yt.html

4 data

• City environmental sounds

• Animal sounds

• Construction work

• Weather (rain, thunder or heavy wind)

• Music without a harmony

– Percussive music

– Atonal music. These are our corner cases, as they contain an intended melody.

A problem with these audio pieces from the internet is that their length varies from 30 seconds
to an hour. We will only pick audio that has a length of at least one minute, otherwise there are too
few chords in the audio. For the maximum length we take a look at our h-music data. The average
length in that data set is 3m30s and the maximum length is roughly 10 minutes. If an audio piece
is below 10 minutes, we will not make any cuts in it. But if it is above 10 minutes, we well take
a random slice of around 4 minutes from somewhere in the middle of the audio piece. We pick
the middle because the start or end could have weird artifacts (music tune for a radio show, long
silences at the end, etc.), so we think that the middle part is the most representative of the audio
piece.

For the mixed audio, we have gathered several internet radio podcasts from the archive.org
internet library. These podcasts consist of speech (non-h-music) alternated by music (h-music), as
this kind of audio is the most logical use case for segmentation of h- and non-h-music. We have a
total of 17 files that are all between 15 and 79 minutes long and have a combined playtime of 12

hours. The ratio of h-music vs non-h-music of all files combined is 47.4% h-music and 52.6% non-
h-music. Although, for an individual file the ratio is a bit more skewed towards h- or non-h-music.
For every file, we have manually annotated the time stamps of the segment borders. With these
borders, it is straightforward to calculate a ground truth class vector of 0s, 1s and -1s (mentioned in
Section 2.7.2), that we can then use for evaluation later on. The length of the segments differ quite
a bit, with the longest segment being 30 minutes and the shortest segment being only 15 seconds.
The average length of a segment is 250 seconds with a standard deviation of 267 seconds.

All the audio of the non-h-music and mixed audio are under the creative commons license or
can be directly found on YouTube. The name of this audio data set is Non Harmonic Audio and
Music (NHAaM). The sources and a download link for the NHAaM data set can be found here:
https://www.projects.science.uu.nl/music/resources/nhaam/.

We will also make all the extracted chords of the different data sets available and combine them
into the Extracted Chords of Harmonic and Non Harmonic Audio (ECoHaNHA) data set. This
data set can be found at the following link: https://www.projects.science.uu.nl/music/
resources/ecohanha/.

We also have a data set of 2539 songs that have been given a rating by Chordify users via the
rating system. This rating is the average of all given ratings for that song. We will call this collection
of chord sequences the rating data set. Each song has obtained between one and six ratings, the
majority of which only has one or two ratings. The number of ratings per song is lower than our
preferred number of 20 ratings (mentioned in Section 3.3.1).

Chord extraction

We let chord extraction algorithms extract the chords from the aforementioned audio files.
When the chord sequences are extracted from the audio files, each audio file is converted into

46

https://www.projects.science.uu.nl/music/resources/nhaam/
https://www.projects.science.uu.nl/music/resources/ecohanha/
https://www.projects.science.uu.nl/music/resources/ecohanha/

a chord file. In this chord file, each line stores a chord together with an onset and duration. These
chords can be of one of the twelve pitches and either a major or minor triad. We consider a sharp
chord and its flat variant (e.g. C# and D[) to be the same chord, since they have the same pitch
frequency, thus sound the same. Other chord types are not used, because many chord extraction
algorithms, including HarmTrace, only work with minor and major types.

There is also the N-chord that indicates that no chord is currently being played. Some chord
extraction algorithms only use the N-chord when there is no sound at all, whereas other algorithms
also use the N-chord for sound that cannot be properly classified in one of the chords of the
vocabulary, such as non-harmonic sounds. We end up with a vocabulary of 25 different chords.

There are two chord extraction algorithms that we will use:

• HarmTrace, Chordify’s chord extraction algorithm, is the most important one that we will use
throughout this research. HarmTrace calculates the beat and generally places four chords in
one beat. This means that chords have a length between roughly 1

4 and 3
4 of a second, but the

same chord can be repeated multiple times. HarmTrace only assigns the N-chord to total
silence.

• Chordino is a chord extraction algorithm created by Mauch and Dixon [40] that uses a Hidden
Markov Model. Chordino assigns N-chords to not only silence, but non-harmonic sound as
well. There is a specific parameter (boostn) that determines the likelihood of the N-chord
appearing. We’ve set this value slightly lower than the default (from 0.1 to 0.001) such that
the chord files in the noise data set do not solely consist of N-chords.

Chordino also does not put chords on fixed timestamps, thus never shows repetitions of the
same chord. Instead it prints the chord with its duration, thus a chord that lasts 10 seconds is
the same as a chord that lasts only 1 second in the sense that it gets printed only once. These
single chord prints matter when we are using n-grams where the duration is not taken into
account or in classification where we only look at the chord and no other information. The
chord merge option that we mentioned in Section 3.1.1 is already applied by the Chordino

algorithm automatically.

Our data sets are described in Table 4.1. In all data sets, except for mixed and rating, the number
of h- and non-h-music files is exactly the same.

2 All the non-corner data sets don’t have any atonal music in them.

47

4 data

Data set # of total files # of chords Description

ht 280 118891
Contains HarmTrace extracted chords for 140

h-music and 140 non-h-music files.

chordino 280 22854
Contains Chordino extracted chords for 140 h-music
and 140 non-h-music files.

ht-small 100 44643
A subset of ht: contains 50 h-music and 50

non-h-music files (HarmTrace extracted).

corner-small 100 45702
Contains 50 h-music files and 50 atonal non-h-music
files2 (HarmTrace extracted).

corner 380 166019
A combination of ht, 50 atonal non-h-music files, and
50 extra h-music files.

mixed 17 63991
Contains HarmTrace extracted chords of 17 mixed
audio files that contain both h-music and speech.

mixed-chordino 17 44400
Contains Chordino extracted chords of 17 mixed
audio files that contain both h-music and speech.

rating 2539 288125
Contains HarmTrace extracted chords together with
an average user rating per file.

Table 4.1: Description of the data sets.

48

5

C L A S S I F I C AT I O N O F H - M U S I C A N D N O N - H - M U S I C

We will now describe the experiments that we have done for the classification problem. Our goal
is to classify a chord sequence (of an entire audio file) as either h-music or non-h-music. In these
experiments we will investigate the effect of various parameters. We wrap up the chapter by
discussing the results of the experiments.

5.1 experiments and results

Both the feature and LM classifier experiments are structured similarly. As a starting point we
will use a default parameter configuration which we expect will perform well. These parameter
configurations are explained prior to the experiments. Then in each experiment, we investigate one
parameter by testing every value of that parameter. When a certain parameter assignment obtains
better results than our default assignment, it will become the new default.

Occasionally, we will refer to the appendix for results of an experiment that used different
parameter values than the default. Generally, these configurations perform worse, but since they
have been tested, they are put in the appendix for the sake of completeness. Tables B.1 and B.2
contain all the parameter configurations that we have tested.

5.1.1 Feature Classification Experiments

We will now discuss the feature classification experiments, in which we will evaluate the following
parameters: classifier, data set, chord merge, features, and transposition. Per parameter we will
conduct some experiments and determine what effect the parameter has on the classification results.
During an experiment of a specific parameter, we only change that specific parameter and leave
the other parameters fixed to a specific value, otherwise an exponential number of configurations
must be evaluated. Since each experiment takes several hours to complete, we would need several
weeks to exhaustively test every configuration.

The default data set parameter will be fixed to corner, since it is the largest data set and contains
the most variation in audio. The features parameter will be fixed to chords, because it is a stable
feature that performs well and roughly the same in many configurations. By default, 12-transpose
will be used on the training data only, since it reduces potential bias to certain keys and gives us
more training data. We won’t merge chords by default during the parsing step. We will still display
the results of every classifier (with optimal classifier parameters), since they occasionally produce
very different results.

49

5 classification of h-music and non-h-music

Not all of the experimental results are listed here, because often they do not show anything new.
Additional experimental results can be found in Appendix B. Only the most relevant results are
shown in this section.

5.1.1.1 Classifier

In this experiment we will evaluate which classifier performs the best when using the default
parameter configuration. We will find the best settings for every every classifier and return the ac-
curacy that we have obtained with that classifier. These optimal classifier settings are for the corner
set with 12-transpose, using the chords feature without the chord merging during the parsing step.
It could be possible that these settings are suboptimal for a different configuration of parameters.

These are the classifiers together with their settings that we can tweak:

• KNN

– k: The larger the value of k, the more stable the classifier becomes and the less overfitting
takes place. This means that it won’t be influenced by outliers or noise quickly.

The best value of k turned out to be 1. Increasing the value of k only lowered the accuracy of
the classifier.

• NB

– Has no settings to tweak.

• Decision Tree

– Maximum depth of the tree.

– Minimum number of samples required to split an internal node.

– Minimum number of samples required for a leaf node.

A deeper tree and a low minimum of samples required for both type of nodes results in more
overfitting, because more rules are created this way.

Having no maximum depth turned out to be the best, having the required samples for an
internal and leaf node as low as possible (2 and 1 respectively) also turned out to be the best.
This means a rather complex and overfitted tree is built.

• SVM

– Kernel: This can be Gaussian, Linear, Polynomial or Sigmoid.

– C: The cost parameter puts a certain penalty on points that are too close to or on the
wrong side of the boundary.

– γ: Kernel specific parameter.
The Gaussian kernel turned out to produce the best results. We first evaluated the
individual effect of increasing C and γ. We used values for C between 1 and 10000,
where 1000 gave the best results. For γ we tested values between 0.001 and 25, where 20

gave the best results. When combining C and gamma, simply using the best individual
values did not give the best results; we had to find a good balance between them to obtain
good accuracies. Eventually the best results were obtained with C = 10 and gamma = 20.

• Random Forest

– Maximum number of classifiers.

50

5.1 experiments and results

– Parameters of the decision tree.

We used the same settings that we used for the individual decision tree. For the number of
classifiers we tested values between 1 and 200. The difference between 50 and 200 classifiers
was very small, thus we chose for the simpler model that only has 50 classifiers.

• AdaBoost

– Maximum number of classifiers.

For AdaBoost we also tried between 1 and 200 classifiers. Similarly to the random forest, 50

classifiers gave the best results.

Figure 5.1: Accuracy and recall classification results for the corner data set, where each classifier is optimized.
Only the chords feature is used.

Figure 5.1 shows that the random forest performs the best, being the only classifier above 90%
accuracy. In other configurations, which can be seen in Tables 5.1 and 5.3, the random forest also
performs the best. Similarly, the recall of the random forest is also the highest, but the AdaBoost
and SVM classifiers are not far off.

For the remaining experiments we will not include the decision tree and NB classifier, because
the NB classifier performs a lot worse than other classifiers and the decision tree is just a simpler
(and worse performing) variant of the random forest.

• Best parameter setting: Random forest.

5.1.1.2 Data Set

In this experiment we will test how a data set influences the classification results. We will briefly
reintroduce the five data sets:

• chordino: 280 audio files (140 pure h-music, 140 pure non-h-music) from which the Chordino

algorithm has extracted the chords.

51

5 classification of h-music and non-h-music

• ht: 280 audio files (140 pure h-music, 140 pure non-h-music) from which the HarmTrace

algorithm has extracted the chords.

• corner: 380 audio files (190 pure h-music, 140 pure noise, 50 atonal music) from which the
HarmTrace algorithm has extracted the chords.

• ht-small: Subset of ht with 100 audio files (50 pure h-music, 50 pure non-h-music).

• corner-small: Subset of corner with 100 audio files (50 pure h-music, the same as in ht-small,
50 atonal music pieces, the same as in corner)

We think that corner will obtain a lower accuracy than ht because it contains atonal music,
which is more likely to be incorrectly classified as h-music than random noise. Because these two
data sets aren’t of the same size the experiment could be slightly flawed. ht-small and corner-small
are therefore used to further investigate how difficult it is to classify atonal music. The results of
the experiments are show in Table 5.1.

chordino ht corner ht-small corner-small
KNN 96.5 86.1 88.6 79.9 83.2
SVM 98.2 89.9 89.1 88.6 83.6
Random Forest 96.8 93.3 92.9 95.0 92.7
AdaBoost 96.4 90.2 89.3 91.6 86.1

Table 5.1: Classification accuracies for different data sets and classifiers. In bold is the data set that obtains the
highest accuracy (where ht and corner are compared with each other).

The chordino data set obtains the highest classification results. Even though both Chordino

and HarmTrace are chord extraction algorithms, it is interesting that the chords produced by
Chordino perform considerably better with classification. Two reasons in which Chordino differs
from HarmTrace are 1) there are no chord repetitions (adjacent chords that are similar are merged
by default) and 2) the non-h-music files of Chordino contain many N-chords, because Chordino

does not classify these non-harmonic signals as musical chords.

The normal HarmTrace set and the HarmTrace set with corner cases perform almost evenly.
Even though the set with corner cases might contain more difficult cases, it also contains more
training data. For a better comparison between corner cases and normal noise, we use the two
smaller data sets, ht-small and corner-small, which have the same amount of data. These results
hint that the corner cases are indeed harder to classify.

5.1.1.3 Chord Merge

As seen in the previous experiment, the Chordino data set obtains a rather high accuracy. The
merged chords might be the cause for this high accuracy. In this experiment we will merge the
chords of the corner data set and compare it with the non-merged set. These results are shown in
Figure 5.2.

The results for chord merge vary per classifier. KNN and SVM obtain a noticeable higher
accuracy when using the merged chords. AdaBoost receives a small boost from the merged chords.
The performance of the random forest does not improve when merged chords are introduced. The
reason that the random forest performs worse may be because of the fact that the classifier creates
several complex and overfitted trees. When we merge chords, we throw away some information,
which the overfitted trees can then no longer use.

52

5.1 experiments and results

Figure 5.2: Classification accuracies for the corner data set where we examine the effect of merging of adjacent
similar chords. Only the chords feature is used.

Even with merged chords, our classifiers still perform considerably worse on the corner data
set than on the chordino data set. We hypothesize that merging chords isn’t the only thing that
sets Chordino apart, but also its assignment of N-chords to non-harmonic audio. This hypothesis
is confirmed when we look at Table 5.2. We’ve done a run on the chordino set and have used a
chord histogram in which we have omitted the N-chord dimension and have compared this to a
run with a full chord histogram. Without the N-chord, the classification accuracy is much lower.

Full histogram Histogram without N-chord
KNN 96.5 91.6
SVM 98.2 94.5
Random Forest 96.8 96.0
AdaBoost 96.4 80.5

Table 5.2: Classification accuracies for the chordino data set, using a chord histogram with and without the
N-chord.

For the remaining experiments we will use the merge setting on KNN, SVM and AdaBoost. For
the random forest we will not merge the chords.

• Best parameter setting:

– Random Forest: No merge.
– KNN, SVM and AdaBoost: Merge.

5.1.1.4 Features

In this experiment, of which the results are shown in Table 5.3, we will examine how well every set
of features performs. We will briefly repeat the features here:

• chords: Uses a normalized chord histogram, storing the relative occurrence of every chord.

53

5 classification of h-music and non-h-music

• chords + beat: Uses the chord histogram and a beat histogram. The beat histogram stores
how many times the same chord repeats itself n times.

• chords + duration-sd: Uses the chord histogram and stores the standard deviation of the
duration of all the chords combined.

• chords + beat + duration-sd: Uses all three features.

Beat and duration-sd features are only shown in combination with the chord feature, because
on their own they perform far below 80% accuracy.

chords chords + beat chords + duration-sd chords + beat + duration-sd
KNN 90.2 88.6 90.2 89.7
SVM 92.6 90.1 92.3 90.7
Random Forest 92.9 93.4 93.4 94.2
AdaBoost 90.5 91.0 90.0 90.7

Table 5.3: Classification accuracies for different features and classifiers. For every classifier, in bold is the
feature set that obtains the highest accuracy. KNN, SVM and AdaBoost use chord merge, random forest does
not use chord merge.

We can see that the random forest works better with every feature we add. The most likely
explanation for this is that the random forest can turn into a rather complex classifier that makes
use of all these different features. The best accuracy is obtained by the random forest classifier
using the chords + beat + duration-sd feature. For the other classifiers, these extra features do not
improve the accuracy (by much).

• Best parameter setting:

– KNN and SVM: chords

– Random forest: chords + beat + duration-sd

– AdaBoost: chords + beat

5.1.1.5 Transposition

In this experiment the effect of transposition is evaluated. The results are shown in Table 5.4. The
options regarding transposition are:

• no transpose: Do not transpose chord sequences

• 12-train: Only transpose the training data to all 12 pitches, giving us 12 times as many data
points for training

• 12-full: Transpose both the training and test data, using the voting mechanism

In all cases, using a 12-transpose variant is better than not using one. For the random forest
and AdaBoost the effect is less strong than for KNN and SVM. The difference between 12-train and
12-full is very small. 12-full seems to be slightly better, but we cannot draw any conclusions from
these numbers. Since both 12-transpose methods perform similarly and 12-train is the simpler we
variant, we choose this transposition as our default.

• Best parameter setting: 12-train.

54

5.1 experiments and results

no transpose 12-train 12-full
KNN 85.3 90.2 90.1
SVM 85.6 92.6 92.6
Random Forest 91.2 92.9 93.2
AdaBoost 88.0 90.5 90.9

Table 5.4: Classification accuracies for different types of transposition and classifiers. For every classifier, in
bold is the type of transposition that obtains the highest accuracy.

5.1.1.6 Best Configurations

For all previous experiments, we have only reported the accuracy measure, but as stated earlier in
Section 3.1.1, the recall measure on h-music is also interesting for us. Fortunately, the recall scores
are very similar to the accuracy scores. The classifiers that obtained a high accuracy also obtain the
highest recall. The best obtained results are shown in Figure 5.3, in which both the accuracy and
the recall can be seen.

Figure 5.3: Classification results of the best configurations taking into account both the accuracy and recall.

The parameter configuration for the best overall classifier that also obtains the highest accuracy
is:

• Classifier: Random forest.

• Merging: No merge.

• Features: chords + beat + duration-sd.

• Transposition: 12-train.

SVM takes the second place with multiple configurations. When using full features (chords
+ beat + duration-sd) and merging chords during the parsing step, a very high recall can be ob-

55

5 classification of h-music and non-h-music

tained with the SVM classifier. Unfortunately, the accuracy then suffers greatly. Thus using this
configuration is generally not recommended, unless recall is of utmost importance.

5.1.2 Language Model Experiments

Similar to the feature classification experiments, we have several parameters, of which we change
one at a time to evaluate the effects of that parameter. These parameters are: smoothing, data
set, chord merging, transposition and n-gram order. For every experiment all order of LMs are
shown and the default settings are to use the corner data set without merged chords and to use
12-transpose on only the training data. We also use additive smoothing by default, since it is the
most simple and easy to understand smoothing method.

5.1.2.1 Smoothing

In this experiment we evaluate the effect of smoothing. Four different kinds of smoothed LMs and
one unsmoothed LM are tested:

• No smoothing

• Additive smoothing

• Good-Turing smoothing

• Constant discounting

• Witten-Bell smoothing

These LMs are built from the corner data set with 12-transpose applied on the training set. The
results for unmerged chords can be seen in Table 5.5, the results for merged chords are in Figure
5.4. For additive smoothing, we use δ = 1, which means that we add one count to every n-gram.

n None Additive Good-Turing Constant Discounting Witten-Bell
2 91.5 91.4 91.4 91.3 91.3
3 89.0 90.3 90.1 90.0 90.1
4 70.1 93.7 93.3 93.2 93.5
5 75.4 93.5 92.9 93.2 93.5
6 48.6 94.2 93.7 94.4 94.8
7 48.3 94.6 94.2 94.4 94.6
8 51.3 94.6 94.5 94.7 94.9

Table 5.5: Classification accuracies for different smoothing methods on different order unmerged LMs. In bold
is the smoothing method obtaining the highest accuracy per n-gram order.

For the unmerged chords, the higher the order of LM, the more noticeable the effect of smooth-
ing is. 2- and 3-gram unsmoothed LMs still perform as well as the smoothed LMs, but beyond that,
smoothed LMs clearly outperform unsmoothed ones. From this we can conclude that using any
form of smoothing is at least as good as using none, thus it is recommended to use some form of
smoothing.

There seems to be no strong differences between the smoothing methods themselves. As we
are using the LMs for classification, it does not matter if the probabilities of n-grams aren’t entirely

56

5.1 experiments and results

Figure 5.4: Classification accuracies for different order merged LMs using different types of smoothing.

correct. As long as the h-music LM gives higher probabilities to h-music chord sequences than
the non-h-music LM does (and vice versa for non-h-music sentences), then the specific probability
does not matter. Since additive smoothing appears to be working well on average and is easy to
understand, we will continue with this smoothing method for unmerged chords.

When using the chord merge setting (Figure 5.4) beyond n = 5, the accuracy of Witten-Bell
smoothing is about 1% higher than that of additive smoothing and a lot higher than the other
smoothing methods. Thus for the chord merge setting we will make use of Witten-Bell smoothing.

• Best parameter setting:

– With chord merge: Witten-Bell smoothing.

– Without chord merge: Additive smoothing.

5.1.2.2 Chord Merge

In this experiment we will merge adjacent similar chords of the corner data set and compare it
with the unmerged set. These results are shown in Figure 5.5.

For every order, the setting with merged chords obtains a considerably higher accuracy. Another
advantage of merging chords is that chord sequences are becoming more compact, this means that
the LM takes up less space (See Table 5.6), and the querying also takes up less time.

For the remaining experiments we will merge chords by default and use Witten-Bell smooth-
ing. Occasionally, we will also do the experiment without the chord merge setting, in which case
additive smoothing is used.

• Best parameter setting: Merge.

57

5 classification of h-music and non-h-music

Figure 5.5: Classification accuracies for the corner data set where we examine the effect of merging of adjacent
similar chords. The merged-chord configuration uses Witten-Bell smoothing and the non-merged configura-
tion uses additive smoothing.

5.1.2.3 Data Set

In this experiment we apply classification on each of the five data sets. The results for merged
chords can be seen in Figure 5.6. The results for unmerged chords can be seen in Table B.3 in
Appendix B.

Figure 5.6: Classification accuracies for different order LMs using different data sets with merged chords.

As with the feature classification results, the chordino data set is the easiest to classify; every
LM classifier scores the highest on this data set. For the HarmTrace extracted chords, there seem
to be no strong difference between the corner and ht data set. The 50 additional atonal pieces in
the corner set do not result in a lower accuracy.

58

5.1 experiments and results

When we look at distinguishing noise from h-music (ht-small) compared to distinguishing
atonal music against h-music (corner-small), there seems to be no strong difference either. The
only trend we can see, is that the smaller data sets result in a lower accuracy, which is logical
because there is less training data. In Paragraph B.1 of Appendix B we have looked into music
styles a bit further with a different experiment that makes use of more than two LMs. Since no
increase in accuracy is obtained in these experiments, they are not shown in this section.

5.1.2.4 Transposition

We will now look at the effects of transposition. The results from these experiments can be seen
in Figure 5.7. In all the order LMs, apart from order 2, any form of transposition increases the
accuracy by around 1%. Thus, using some form of 12-transpose is recommended.

Figure 5.7: Classification accuracies for different order LMs using different kinds of transposition on the
merged corner data set.

The only downside of using 12-transpose is that we create data that does not really exist. Many
songs for example are more likely to appear in the key of C than in the key of C#, although we are
assuming that the two are both as likely to happen.

There seems to be no clear difference between applying 12-transpose on only the training set
(12-train) or on both the training and testing set with a voting mechanism (12-full). Because of the
voting mechanism the accuracy is increased in some cases, but is also decreased in others. Thus, as
was the case for the feature classifiers, we prefer to use the simplest form of 12-transpose, which is
12-train.

In Table B.5 of Appendix B the effect of transposition on unmerged smoothed and unsmoothed
LMs can be seen. These results reinforce the conclusion that 12-transpose has a positive effect on
the accuracy.

• Best parameter setting: 12-train.

59

5 classification of h-music and non-h-music

5.1.2.5 N-gram Order

Finally, the effect of the order of the LM is investigated. We test n-gram orders between 2 and 8. A
larger value of n means that we look at longer chord sequences, making the model more complex.
In Table 5.6 is displayed how much n-grams of each order appear in our noise LM that has an
order of 8. Every time we increase the order, the number of n-grams in the LM increases as well,
meaning that longer combination of chords are also found plenty in our data. This means that
more information is used in the higher order n-grams, since an n-gram model contains all n-grams
up to n. Although, the number of possible n-grams increases by a factor 25 (which is the size of the
chord vocabulary minus start- and begin of sentence tokens), the number of n-grams in our data
only increases by a factor of roughly 2 in the unmerged-chord LMs of orders 4 and above. For the
merged-chord LMs, increasing the order past 5 does not provide us with many new n-grams.

n Unmerged chords Merged chords
1 27 27

2 675 650

3 8,799 12,324

4 30,183 45,960

5 69,447 17,460

6 186,363 2,232

7 299,247 372

8 440,391 96

Table 5.6: Amount of n-grams that the noise LM with an order of 8 for merged and unmerged chords contains
in the corner data set. An LM of order n contains the n-grams of order 1 through n.

In Table 5.5 it can be seen that higher order models only work when smoothing is applied.
Smoothed LMs obtain an increased accuracy when we increase the order, whereas unsmoothed
LMs perform much worse when we increase the order. In Figure 5.5 we can see that both the
merged-chord and unmerged-chord LM accuracies are increased when we increase the order of the
model. For merged-chord LMs an order of 3 already gives very good results, and an order of 5 is
optimal for predictions. For the unmerged-chord setting this logically is more, as the many chord
repetitions do not provide much extra information (i.e. Am-Am-C-C-G-G does not provide much
more information than Am-C-G).

In language processing, using an order above four often gives poor results, as there isn’t enough
data to support the model. Since our vocabulary only contains 27 tokens, there are not that many
possible combinations of n-grams (compared to a natural language), which means that many of
the possible combinations of chords appear in our data. For that reason, our higher order n-gram
models are also performing well.

• Best parameter setting: 5-gram model.

5.1.2.6 Factored Language Models

We will now experiment with FLMs, by splitting up the chords in several factors. The results can
be seen in Table 5.7. The n stands for the number of chords used, not the number of factors. For
example, when we use both the label and the type as a factor, an n-gram of length two will have
four factors. When the duration factor is also used, n = 2 results in six factors.

60

5.1 experiments and results

Factors
n Label Label + type Label + type + duration
2 91.7 93.0 93.2
3 93.0 84.5 93.5
4 93.4 84.9 92.3
5 94.0 84.0 91.1
6 90.4 83.1 91.3
7 90.7 83.3 timeout
8 91.0 83.5 timeout

Table 5.7: Classification accuracies for FLMs that use different factors and a different number of chords.
Chords of the corner data set are merged and Witten-Bell smoothing is applied.

First, the most simple configuration is used: We only use the root note of the chord as a factor
(e.g. C or G), omitting the chord type. These results are not that high compared to normal LMs,
mainly because we are using less information with only one factor.

The next step is adding the chord type as a factor (resulting in, for example, C minor or G
major). During the classification phase, when a queried n-gram is not found in the training set
(resulting in a backoff to a lower order n-gram), we first remove the type factor of the furthest away
chord and then the label of the furthest away chord. We keep backing off to smaller n-grams until
there are counts in the training data for the n-gram. For n = 2 the results have become better with
the additional factor, but for all the other order FLMs the accuracy has dropped by almost 10%
with the additional type factor.

The third factor that we will add is the duration of a chord. This is the duration in seconds,
rounded down. Unfortunately, this extra factor still does not allow the FLM to become nearly
as good as normal LMs. A further consideration is the running time of the FLM models, which
becomes exponentially larger as we increase the model order and number of factors. The 7- and
8-gram model with three factors did still not give us any results after running for three full months,
so we have canceled these runs (hence the timeout in Table 5.7).

In Table B.7 of Appendix B some other FLM experiments are displayed with unmerged chords.
These produce slightly higher accuracies, but still not better than our normal merged LMs. We can
safely say that in our situation FLMs do not provide any benefits compared to normal LMs.

5.1.2.7 Best Configurations

We will now display the best results of the LM experiments, based on both the accuracy and recall.
We only show one configuration, since this configuration obtains both the best accuracy (96.5%)
and recall (97.5%):

• Smoothing: Witten-Bell smoothing.

• Merging: Merge.

• n-gram order: 5-gram model.

• Transposition: 12-train.

61

5 classification of h-music and non-h-music

5.2 discussion

In this chapter we have seen how two different types of classifiers, the feature classifier and lan-
guage model classifier, perform at the classification task. We will now briefly discuss some impor-
tant results.

The first thing to note is that the chord extraction algorithm plays an important role. When
we applied classification on the chordino data set, we obtained much higher accuracies compared
to classification on HarmTrace data sets. The fact that the adjacent similar chords are merged
together by Chordino’s algorithm plays but a small role. More important is the fact that non-
harmonic audio get N-chord labels, which is something the HarmTrace algorithm does not do.

In every situation, regardless of the type of classifier or other settings, 12-transpose is a tech-
nique that works well. It managed to greatly improve the classification results in all cases. There
is no strong difference between using 12-transpose on only the training set or using it on both the
training and test set with a voting mechanism. The question remains whether 12-transpose stays
beneficial when we have more data. Perhaps with more data, we will notice that most songs are
in a similar key, resulting in similar chords being used. 12-transpose then throws this information
away.

For the general classifiers, the random forest performs best in almost every situation. When
classifying the corner data set, which is a broad representation of audio files, making use of the
full set of features (chords + beat + duration-sd) an accuracy of 94.2% is obtained and a recall
on h-music of 95.1% is obtained. The simpler SVM classifier is about 2% worse and came on the
second place. Perhaps in situations where memory or speed play a crucial role, it might be more
advantageous to use the SVM classifier instead.

The best LM classifier performs around 2% better than the random forest, with an accuracy of
96.5% and a recall of 97.5%. This LM classifier is created by using two LMs with an order of 5 on
which Witten-Bell smoothing has been applied and of which the chords have been merged during
the parsing step. Both in terms of accuracy and recall, this classifier performs the best. On the other
hand, the random forest classifier has many implementations and libraries available, whereas LM
implementations are not widely available or require a bothersome installation process. Random
forests also perform slightly better in terms of speed, although this difference is only noticeable
when processing a large amount of data.

62

6

S E G M E N TAT I O N O F H - M U S I C A N D N O N - H - M U S I C

In this chapter we discuss the experiments that are done for the segmentation problem. The goal
is to segment chord sequences into parts of h-music and parts of non-h-music. In Section 3.2
we proposed two segmentation algorithms with several parameters, that we will now test. After
showcasing the experiments, we will discuss the results that we have obtained.

6.1 experiments and results

Since our segmentation algorithm makes use of an h-music-classifier, we have first done some
extra classifier experiments. This is shortly followed by the experiments on the two segmentation
algorithms, in which we investigate the effect of several parameters.

6.1.1 Variable Length Classification Experiments

Even though we have found the optimal classifier in the previous chapter, this classifier may work
less well on chord sequences of smaller length, containing both music and speech. These experi-
ments serve to find the best classifier that works on shorter chord sequences. We have done these
tests for both a feature and LM classifier.

6.1.1.1 Variable Length Feature Classification

In this experiment we will observe what effect the length of a chord sequence has on the classifica-
tion results. We train the classifier with full length chord sequences, whereas the chord sequences
in the test set have a reduced length. Instead of querying a full chord sequence to the trained
classifier, we pick a random starting position in the chord sequence and then only use n seconds of
the chord sequence for classification.

Similar to the chord merging experiments of Section 5.1.1.3, here merging chords is beneficial as
well. The results for different classifiers using merged chords can be seen in Figure 6.1. The results
for unmerged chords can be found in Tables B.8 and B.9 of Appendix B. In all cases, 12-train has
been used, since it has always proved beneficial.

For all cases, increasing the length of a chord sequence also increases the accuracy. KNN
already reaches an optimal accuracy at the one minute mark, whereas the other classifiers still keep

63

6 segmentation of h-music and non-h-music

Figure 6.1: Obtained accuracies for different chord sequence lengths with using the chords feature and merg-
ing adjacent similar chords.

Figure 6.2: Classification results for using two different feature sets for variable length merged chord se-
quences.

improving beyond one minute. For the durations that are below one minute, KNN outperforms
the other classifiers. Beyond one minute, the SVM and random forest classifiers perform better.
In segmentation tasks, we generally look at segments that are less than a minute, thus the KNN
classifier is the best candidate for segmentation purposes.

64

6.1 experiments and results

In Figure 6.2 we evaluate which feature performs the best for the KNN classifier. In these results
we can see that with lower durations, the chords feature performs the best. In Tables B.10 and B.11

of Appendix B the effect for the features on the other classifiers can be seen.

The best configuration to use on small sequences is:

• Classifier: KNN.

• Merging: Merge.

• Features: chords.

• Transposition: 12-train.

6.1.1.2 Variable Length LM Classification

This experiment is done in the same manner as the feature classification experiment: Train LMs on
full length chord sequences and classify a test set of chord sequences that contain only n seconds,
starting at a random position. The parameters that we have tested in the first experiment are: 1)
chord-merging, 2) smoothing and 3) the order of the LM. The results displayed here, which can be
seen in Figure 6.3, use LMs with an order of 4. We refer the reader to Appendix B for the results of
all the different parameter combinations.

Figure 6.3: Obtained accuracies on chord sequences of variable duration with different LM classifiers.

Similar to the general classifiers, the longer the chord sequence becomes the better the classi-
fication performance. When we compare additive smoothing to Witten-Bell smoothing, additive
smoothing is slightly better in almost all cases. Lastly, when we compare merging chords to not
merging chords, there is an interesting trend. Below a duration of 30 seconds, not merging gives
better results. On the other hand, when the duration goes beyond 30 seconds, merging chords be-
comes beneficial. The reason for that is when merging very short chord sequences, only a handful

65

6 segmentation of h-music and non-h-music

of chords remain. Classifying on only a few chords logically makes the classification process more
difficult.

In Figures 6.4 and 6.5 we compare the different order LMs with one another for unmerged and
merged chords respectively. Only additive smoothing is used in these comparisons. For durations
between 10 and 30 seconds we use unmerged LMs, since they work better for these short durations.
For durations between 30 and 60 seconds we use the merged chords. We do not look at longer
durations, since in our research our window size for segments is generally not longer than one
minute.

For the unmerged chords 2- and 4-gram models appear to work best. For the merged chords
3-, 4- and 5-gram models work best on average. For simplicity’s sake we will say that in general a
4-gram model works best.

Figure 6.4: Obtained accuracies on chord sequences of variable duration for an LM classifier with unmerged
chords.

The best configuration to use on small sequences is:

• Smoothing: Additive smoothing.

• Merging: No merge below 30 seconds. Merge above 30 seconds.

• n-gram order: 4-gram model.

• Transposition: 12-train.

6.1.2 Segmentation Experiments

Now that we know which classifiers work best on shorter chord sequences, we can continue with
the segmentation experiments. Initially, we will try both the LM and KNN classifier. Because we
require the classifier to return probabilities now, instead of class labels, it is not useful to use only
one neighbor for KNN (as we then only get probabilities of 0 and 1). Class probabilities for KNN
are computed by calculating the fraction of neighbors that are of the h-music class. We have chosen

66

6.1 experiments and results

Figure 6.5: Obtained accuracies on chord sequences of variable duration for an LM classifier with merged
chords.

k = 7, because 1) a higher k means that we obtain more precise probabilities and 2) increasing k
beyond 7 gave us considerably worse results.

In each experiment we have applied 4-fold cross validation 25 times. This results in 100 train-
ing and test set pairs. In each of these 100 iterations we have have used simulated annealing and
have tried to obtain the best segmentation F1-score on the training set, and have then used those
parameters to segment the test set. Each of these 100 iterations has resulted in a parameter config-
uration paired by three scores (F1, border precision, and border recall) that were obtained on the
test set. For every parameter we report the range in which the parameter was found (in those 100

iterations). We also report the mode of that parameter together with how many times it occurred
(as a percentage), as we can then easily observe whether the parameter varied a lot or was mainly
the same value. We also report the mean of each score over those 100 iterations. In Section 6.1.2.4
we give an overview of the obtained results and compare those results with one another.

6.1.2.1 Computing a Random Baseline

Before we commence the segmentation experiments, we would first like to know how difficult this
problem is (with our specific data set). For that reason, we will calculate a random baseline first.
We look at our data set and estimate what the F1, border precision, and border recall scores would
be if we would randomly place borders.

Our data set consists of 12 hours of audio, which equals 43200 seconds. The number of borders
of all files combined is 177. We will denote the number of predictions that we make as n. The border
precision can be calculated as the probability that all n predictions fall 30 seconds within a ground
truth border. The probability that one prediction falls within a border is 177 · 30/43200 = 0.123.
Thus the probability that n predictions fall 30 seconds within a ground truth border is 0.123n. For
177 predictions the border precision would be equal to 0.123177, which is extremely small.

The border recall can be computed as the probability that all ground truth borders fall within
30 seconds of the predicted borders. The probability that only one ground truth border falls 30

67

6 segmentation of h-music and non-h-music

seconds within a predicted border is n · 30/43200. The probability that all ground truth borders fall
within 30 seconds of a prediction is then (n · 30/43200)177. Theoretically, with 1440 predictions the
border recall would be equal to 1. With 177 predictions, the border recall is equal to 7.26285e-162,
which is once again very small.

As the F1 score is not based on border predictions, but based on whether a time frame cor-
responds to h-music or non-h-music, we can’t use the precision and recall scores that we just
computed. But since the F1 score is basically computed for a binary classification problem (per
time frame), on average, the F1 score would be equal to 50%.

Based on these numbers, we can safely say that border precisions and recalls that are around
50% are already an enormous improvement over random guessing. Therefore, we also think that
using a border threshold of 30 seconds is acceptable, as the problem is quite difficult.

6.1.2.2 Separate Segment Algorithm (SSA)

We will now investigate the separate segment algorithm (SSA) that was introduced in Section 3.2.1.1.
Since the only parameter that this algorithm has is the window size, it does not make sense to use
simulated annealing to explore to solution space. For this experiment we will instead iteratively
check every window size between 4 and 100 seconds. The remaining steps of the pipeline remain
unchanged; when we have found the optimal window size for the training set, we will segment the
test set with this window size and obtain a performance score from that.

Results:

• Window size: 18-35 sec., mode: 32 sec. (23%)

• F1: 87.2% (89.4% on the training set)

• Border precision: 58.8%

• Border recall: 82.7%

This experiment has also been done with an LM classifier (4-gram model with 12-transpose and
merged chords).

• Window size: 34-57 sec., mode: 46 sec. (52%)

• F1: 82.7% (84.2% on the training set)

• Border precision: 61.7%

• Border recall: 70.2%

6.1.2.3 Sliding Window Algorithm (SWA)

We will now perform several experiments that test the performance of the sliding window algo-
rithm (SWA). As previously mentioned in the introduction of the algorithm, the SWA has three

68

6.1 experiments and results

important procedures: 1) The core algorithm (core SWA) that produces a probability vector, 2)
the addition of a bias value for h-music to all probabilities (bias SWA), and 3) smoothing out the
smaller segments that are most likely miss-classifications (smoothing SWA). In these experiments
we will evaluate the effect of these procedures.

Experiment 1: Core SWA

In the first experiment we will evaluate the core algorithm. Only the step size and window size
are used by setting the parameters as follows:

• Step size: Varying between 1 and 10 (interval of 1).

• Window size: Varying between 10 and 100 seconds (interval of 2 seconds).

• Music bias: Fixed to 0.

• Segment size: Fixed to 10 seconds.

• Segment purity: Fixed to 0.

With this parameter configuration the step size and window size, that are part of the core
algorithm, can be varied. The music bias is fixed to 0, thus always disabled. The segment size and
segment purity are fixed to 10 and 0 respectively. As a result, when at least 0 of the 10 class values
in the segment after a border have the same class as the border element (which is always true), the
border is valid and no segments are smoothed away.

Results:

• Step size: 1-10, mode: 2 (16%)

• Window size: 16-40 sec., mode: 26 sec. (48%)

• F1: 89.8% (89.9% on the training set)

• Border precision: 23.5%

• Border recall: 96.8%

The core SWA seems to outperform the SSA. Only the border precision has dropped, which
indicates that many more borders are predicted, of which a large portion are no real borders.

For the LM classifier we have fixed the step size to 4. The reason for this is that the step size did
vary greatly in the KNN experiment, thus this parameter does not really influence the algorithm.
If we fix the step size, then we only have to vary the window size. This can be done iteratively
once again, instead of using simulated annealing, which greatly decreases the running time of the
algorithm (else this experiment would take a couple of weeks). The results for the LM classifier are
as follows:

• Step size: Fixed to 4.

• Window size: 6-25 sec., mode: 10 sec. (42%)

69

6 segmentation of h-music and non-h-music

• F1: 87.5% (89.3% on the training set)

• Border precision: 62.1%

• Border recall: 82.5%

Because the LM classifier perform worse than the KNN classifier and is 5 to 10 times as slow,
we will perform the remaining experiments with only the KNN classifier.

Experiment 2: Bias SWA

In the second experiment we will include the music bias to the parameters that we allow to
vary. Additionally, we will fix the step size to 4, as it did not seem to have a big influence on the
segmentation results. This results in the following parameter configuration:

• Step size: Fixed to 4.

• Window size: Varying between 10 and 100 seconds (interval of 2 seconds).

• Music bias: Varying between 0 and 0.5 (interval of 0.05).

• Segment size: Fixed to 10 seconds.

• Segment purity: Fixed to 0.

Results:

• Window size: 38-64 sec., mode: 54 sec. (49%)

• Music bias: 0.35 (100%)

• F1: 93.6% (93.7% on the training set)

• Border precision: 32.0%

• Border recall: 96.0%

We can see that the addition of the music bias greatly improves the results compared to the core
SWA that uses KNN. Only the the border recall suffers slightly and has decreased by 0.8%.

Experiment 3: Smoothing SWA

For this experiment we will apply the segment smoothing step instead of the music bias proce-
dure.

• Step size: Fixed to 4.

• Window size: Varying between 10 and 100 seconds (interval of 2 seconds).

• Music bias: Fixed to 0.

• Segment size: Varying between 10 and 100 seconds (interval of 2 seconds).

70

6.1 experiments and results

• Segment purity: Varying between 0.6 and 1.0 (interval of 0.05).

Results:

• Window size: 10-26 sec., mode: 10 sec. (53%)

• Segment size: 10-98 sec., mode: 14 sec. (6%)

• Segment purity: 0.6-0.95, mode: 0.65 (24%)

• F1: 92.2% (93.6% on the training set)

• Border precision: 82.4%

• Border recall: 72.0%

The F1-score is slightly lower on the test set compared to the bias SWA. Additionally, the bor-
der precision has increased considerably, whereas the border recall is slightly lower. This occurs
because we remove a lot of small segments (including their borders). Therefore, there are consid-
erably fewer (false) border predictions, which increases the precision. But because there are fewer
predicted borders, some real borders are also not found anymore, which decreases the recall.

Experiment 4: Full SWA

In the fourth experiment we will use all three procedures (core, bias and smoothing) of the
algorithm and thus use all parameters, except for the step size because of its minimal effect. This
results in the following parameter configuration:

• Step size: Fixed to 4.

• Window size: Varying between 10 and 100 seconds (interval of 2 seconds).

• Music bias: Varying between 0 and 0.5 (interval of 0.05).

• Segment size: Varying between 10 and 100 seconds (interval of 2 seconds).

• Segment purity: Varying between 0.6 and 1.0 (interval of 0.05).

Results:

• Window size: 10-28 sec., mode: 14 sec. (21%)

• Music bias: 0.1-0.35, mode: 0.25 (36%)

• Segment size: 26-70 sec., mode: 50 sec. (9%)

• Segment purity: 0.6-0.95, mode: 0.8 (31%)

• F1: 95.1% (96.4% on the training set)

• Border precision: 87.7%

71

6 segmentation of h-music and non-h-music

• Border recall: 72.8%

Compared to only using the bias or segment smoothing, the combination of these two proce-
dures greatly increases the F1-score and the border precision. The border recall is slightly higher
than the smoothing SWA, but considerably lower than the bias SWA.

Initially, we allow a prediction of a border to be 30 seconds off to still consider it a correct
prediction. Below, we can see how the border precision and recall are affected if we change this
value to 10 seconds.

• Border precision, length 10: 74.4%

• Border recall, length 10: 71.5%

The border recall does not change much compared to the 30 seconds variant, which means that
most of the correctly predicted borders are only 10 seconds off from the ground truth. The border
precision, however, suffers more, which means that a considerable portion of the predicted borders
are between 10 and 30 seconds away from ground truth borders.

Experiment 5: Chordino

We do one final experiment in which we use chordino extracted chords instead of HarmTrace

chords (once again using the 30 second border threshold). In the classification experiment of
Section 5.1.1.2 we could see that the chordino data set was much easier to classify. We test whether
segmentation also works better on Chordino extracted chords.

Results:

• Window size: 18-44 sec., mode: 2 sec.6 (24%)

• Music bias: 0.0-0.15, mode: 0.0 (71%)

• Segment size: 24-98 sec., mode: 60 sec. (8%)

• Segment purity: 0.65-0.95, mode: 0.75 (20%)

• F1: 94.5% (94.7% on the training set)

• Border precision: 84.7%

• Border recall: 80.2%

The F1 score and border precision are slightly lower compared to using HarmTrace chords.
We would like to investigate why Chordino performed very well on the classification problem,
but not on the segmentation problem. We have tried increasing the probability of N-chords (boostn
> 0.01), but this didn’t give us far different results. When we take a closer look at the ratio of
N-chords in both the chordino and the mixed-chordino set, they appear to be exactly even (0.063),
therefore the N-chords can’t be the cause.

When we inspect the files of the chordino set more closely, there is a large difference in file
size (and thus the number of chords). Many non-h-music files are really small and sometimes

72

6.2 discussion

only contain one long N-chord, whereas the h-music files and a minority of non-h-music files
contain many (short) chords. What’s more, the non-h-music files that are speech samples contain
the most number of chords (in relation to the length of the file). It is therefore very likely that
speech and music share similar (Chordino extracted) chord patterns or at least a greater variation
in chords. As the chord structure of speech looks similar to music, Chordino has more difficulty
distinguishing music from speech. Our segmentation data set mainly consists of music and speech,
hence the reason Chordino doesn’t perform as well as it did for the classification problem.

This theory is strengthened by the fact that the best value for the music bias parameter often was
0.0 (71% of the time). Since speech looks similar to music, many speech (non-h-music) segments
are classified as music, and therefore, the music bias is no longer required.

6.1.2.4 Significance Tests

We will now test whether there is a significant difference between the results of the segmentation
algorithms and its variants. We will test whether there is any significant difference between the
algorithms of experiment 0 (the separate segment algorithm) through 4 (the full sliding window
algorithm with all its procedures). An overview of the obtained scores can be seen in Table 6.1 .

F1 Border precision Border recall
Experiment 0: SSA 87.2 61.7 70.2
Experiment 1: Core SWA 89.8 23.5 96.8
Experiment 2: Bias SWA 93.6 32.0 96.0
Experiment 3: Smoothing SWA 92.2 82.4 72.0
Experiment 4: Full SWA 95.1 87.7 72.8

Table 6.1: Overview of the obtained results of the segmentation experiments on the mixed data set. The KNN
classifier is used for the segmentation algorithm.

We have 17 data points in the mixed data set, and have done 25 iterations of cross validation.
This gives us 17 · 25 = 425 different values. We can either take the mean of the 25 iterations for each
of the 17 data points, or keep all the values as separate points. As there sometimes is a difference
of more than 5% between values of the same song, we decide to keep each point separate.

We have first performed a Friedman ANOVA test to determine whether there are any significant
differences between the results of the three algorithms. The regular ANOVA test cannot be used,
as it assumes that our data is normally distributed, which is something we cannot assume. We will
follow this up with a post-hoc Tukey HSD test, to determine which algorithms differ significant
from each other.

There are significant differences between the algorithms, χ2(4, 2120) = 564, p < 0.00001. With
the Tukey HSD test results we can observe a significant difference between all algorithms, except
for Bias SWA and Full SWA, and Bias SWA and Smoothing SWA, using α = 0.01 (see Table 6.2).

6.2 discussion

When classifying chord sequences of much shorter length, we have seen that for the feature classi-
fiers, KNN with merged chords and the chords feature performs the best in all cases. For the LM
classifiers, an order of 4 with additive smoothing seems to work best, and merging only is benefi-
cial when chord sequences are longer than 30 seconds. When we apply classification on chords of a

73

6 segmentation of h-music and non-h-music

Algorithm 1 Algorithm 2 Difference in means p-value Signifcant?
SSA Core SWA -0.0208 < 0.001 Yes
SSA Bias SWA -0.0548 < 0.001 Yes
SSA Smoothing SWA -0.0438 < 0.001 Yes
SSA Full SWA -0.0651 < 0.001 Yes
Core SWA Bias SWA -0.0340 < 0.001 Yes
Core SWA Smoothing SWA 0.0230 < 0.001 Yes
Core SWA Full SWA 0.0443 < 0.001 Yes
Bias SWA Smoothing SWA -0.0110 0.0490 No
Bias SWA Full SWA 0.0103 0.0755 No
Smoothing SWA Full SWA -0.0213 < 0.001 Yes

Table 6.2: Results for the Tukey HSD test using α = 0.01.

mixed audio signal that contains both h- and non-h-music, the KNN classifier is the most suitable,
both in terms of F1 score and processing speed.

The segmentation problem (for this specific data set) cannot be solved with random heuristics,
as we obtain a random baseline with a border precision and recall close to 0. We have obtained
baseline scores with the separate segment algorithm, which obtains an F1-score of 87.2% (on the
test set). Relatively many false borders are predicted (border precision of 41.2%), but most of the
ground truth borders are also found (border recall of 82.7%).

The sliding window algorithm improves on these results in many ways. When using only
the core algorithm (core SWA), an F1-score of 89.8% is obtained. This is a statistically significant
improvement over the separate segment algorithm. Unfortunately, many false borders are predicted
as the border precision is only 23.5%. On the other hand, the border recall is 96.8%. We conclude
that the core algorithm predicts too many borders.

Adding either the music bias procedure (Bias SWA) or the smoothing procedure (smoothing
SWA), significantly improves the F1 score once again to 93.6% and 92.2% respectively. With the
smoothing procedure, there is a large increase in the border precision (from 32.0% to 82.4%), which
indicates that many falsely predicted borders are indeed smoothed out.

When combining the music bias and segment smoothing procedure (full SWA), an even better
F1-score is obtained: 95.1%. A border precision of 87.7% and a border recall of 72.8% is obtained.
The F1 score of the full SWA is significantly better than all algorithms, except for bias SWA.

From these tests we can conclude that the core SWA already performs significantly better than
the separate segment algorithm (in terms of F1 score), and that each procedure we add has a
positive effect. In many cases, every extra procedure increases the F1 score significantly.

When we compare the training and test set F1 scores with each other, in most cases the training
score is higher than the test score. However, these differences in score are generally small and at
most 2%. Thus in our eyes, overfitting does not strongly influence the results.

74

7

A S S E S S I N G T H E Q U A L I T Y O F C H O R D S

We will now discuss how we have tackled the problem of assigning quality scores to chords. The
goal of assessing the quality of chords is solved by first gathering user quality ratings. With these
ratings we train two different algorithms, a regression method and a sliding window approach,
and then try to predict the user ratings ourselves.

Unfortunately, the results of these experiments have been inconclusive so far. We will now
provide a small case study, in which we examine the ratings a bit more and report the results from
our initial experiments. In the discussion we will try to explain these poor results.

7.1 case study on quality assessment

We will first take a closer look at our data. In Section 3.3.1 we stated that we wanted at least 50

songs, and at least 20 ratings per song. We do have 2539 songs, but do not have 20 ratings per song.
In most cases we only have 1 or 2 ratings, and in a few rare cases we have between 3 and 6 ratings
for a song. A person could give a bad rating to good quality chords and vice versa (either with ill
intend, or because the user rates how much he likes the song instead of the chords). When those
chords only have that specific ”miss-rating”, the average rating becomes totally useless. Whereas,
when there are more than 20 ratings for a song, the probability that all these ratings are ”miss-rated”
is low, leaving us with a more reliable average rating.

To investigate the reliability of these ratings, we have taken a look at some default chords. These
are chords of songs that have been edited by hand; therefore we know that these chords are of high
quality. We have obtained ratings for 17 of these default chords and taken the mean of all these
ratings. One would expect these ratings to be high, as we know the quality of these chords is high.
This is indeed the case, as the average rating for the 17 default chords is 4.69, which partially rejects
the hypothesis that the ratings are unreliable.

7.1.1 Experiments

In the quality assessment pipeline of Section 3.3.2 we proposed two methods of predicting ratings
for chord sequences: Regression analysis and a sliding window approach. For both methods we
report the mean squared error and the R2 score. Apart from our two proposed models, we also try
some other heuristic methods for predicting quality ratings. The results can be found in Table 7.1.

75

7 assessing the quality of chords

MSE R2

Least squares regression 2.70 -0.01

KNN regression (k = 15) 2.78 -0.04

Sliding window algorithm 2.83 -0.05

Always predict with the average rating of the training set 2.69 0.0
Always predict a rating of 3 2.81 -0.05

Train and test with all data (least squares) 2.69 0.0

Table 7.1: Mean squared error and R2 score results for different models that try to predict the rating for a
chord sequence.

The first thing to notice from these results is that every model obtains an R2 of zero or lower,
which indicates that the models are of poor quality, as using the average rating as a prediction
works as well as using the model. Even when the model is trained and tested with all data, it is
still unable to do proper predictions.

7.2 discussion

We will now discuss the poor results that we have obtained and try to explain them. The first reason
for these poor results, could be the lack of data. As we have previously mentioned, for many songs
we only have one or two ratings, which makes these ratings unreliable. We also cannot guarantee
that Chordify users are rating the quality of the chords and not whether they like or dislike the
song. Even though 17 default songs obtained high ratings, which is something one would expect
of high quality chords, we do not know for sure whether other chords have been also been rated
reliably.

The second reason for poor quality predictions, could be related to the features and algorithms
that we use for this problem. We do not exactly know why users rate a chord sequence as high
or low quality. A low rating might be the result of some local error in the chords that occurs only
for a few seconds. In the chord histogram that we use for the regression model, this local error
will never be found, since we take the histogram of the entire song. The sliding window algorithm
might be able to detect this local error, and return a few low probabilities. But as we take the mean
of these probabilities to compute a score, these local errors also fade out. This could potentially be
solved by being more strict towards low probabilities, although it might be difficult to tweak this
properly.

Another problem with the sliding window approach, is that the algorithm is trained on Harm-
Trace extracted chord sequences. This means that the sequences that are trained with could also
be of low quality. The classifier that is used for the segmentation algorithm will still associate these
low quality chord sequences with h-music, and will give these low quality chord sequences a high
probability of being h-music.

76

8

C O N C L U S I O N S A N D F U T U R E W O R K

We will first summarize the conclusions from our experiments in Section 8.1 and discuss what we
have learned about our three problems, which were as follows:

1. Classification: Given a chord sequence, can we determine whether the chord sequence corre-
sponds to h-music or non-h-music?

2. Segmentation: Can we make a segmentation of the chord sequence such that we obtain
h-music and non-h-music segments?

3. Quality Assessment: When we deal with a chord sequence that corresponds to h-music, can
we give a score to this sequence that reflects to which degree a Chordify user accepts the
chord sequence?

As there was not enough time to investigate all problems thoroughly, some future work remains.
This future work is discussed in Section 8.2.

8.1 conclusions

We have constructed a classifier which is able to classify chord sequences as h-music from non-h-
music. In our framework we have tested several parameters which strongly influence the classifica-
tion results. We have created a model for several feature classifiers (K-Nearest Neighbors, Support
Vector Machines, Random Forests and AdaBoost) which uses a chord histogram. This chord his-
togram stores the relative appearances of each chord in the chord sequence. By using additional
information about chord repetitions and durations we manage to obtain an accuracy of 94.2% and
a recall on h-music of 95.1%.

We have also tested language models (LMs), which create a probability distribution over chord
sequences. An LM for both h- and non-h-music is created, which both return a probability for a
queried chord sequence. The queried chord sequence obtains the class of the LM that returns the
highest probability. With this LM classifier we have obtained an accuracy of 96.5% and a recall of
97.5%.

When we use Chordino, instead of HarmTrace, to extract chords, accuracy and recall scores
of around 98% are obtained. The main reason for that is that Chordino assign N-chords to non-
harmonic audio, whereas HarmTrace only assigns N-chords to silence. These N-chords make it
easier to distinguish h- from non-h-music.

77

8 conclusions and future work

These classifiers have been used by a segmentation algorithm, such that we can segment chord
sequences into segments of h- and non-h-music. We have constructed a sliding window segmen-
tation algorithm that obtains an F1-score of 95.1%. To obtain this score, we had to apply a small
counter bias for music, as classifying a mixed signal (of both music and noise) automatically gave
a bias to non-h-music. We have also applied a heuristic that smooths out small segments that are
only a few chords long, as these small segments are most likely miss-classifications.

We have also tried to predict the quality of a chord sequence according to which degree the
user accepts the chord sequence. We have first gathered 5-star user ratings for songs (and thus
chord sequences) with our rating system. We have then tried to create a regression model from
these chord-rating pairs, which gave us rather poor results; always predicting the average rating
(three stars) gave the same results as using the model’s predictions. Using classifier probabilities
as a quality prediction gave poor results as well. The main causes for these poor results were a
lack of reliable data and the fact that our methods work on global features, whereas errors in chord
sequences are mostly local errors.

Our framework can be used by Chordify in several ways. Our classifier can be used to determine
whether chords of an uploaded audio file should be stored or not. Only when the classifier predicts
that the chords correspond to h-music will the chords get stored. As the recall of the classifier is
97.5%, in only 2.5% of the cases the chords will not get stored, even though they should be because
they correspond to h-music. As a consequence, the chords must be calculated every time someone
uploads this specific audio file.

The segmentation algorithm could potentially be used to only display chords in songs when
there is actually h-music playing. Because the impact of false negatives (not showing chords, even
though there is music) is much higher, the performance might first need to improve further to F1

scores close to 100% before Chordify would want to use the segmentation algorithm. Although the
parameters of the algorithm could be easily tweaked, such that the recall becomes close to 100%,
meaning that the number of false negatives is almost non-existent. Our method for assessing the
quality of a chord sequence still needs some work as well, before Chordify can use it. This is further
discussed in the next section.

8.2 future work

We will now discuss some additional research that could be done to improve our understanding of
our research problems and to potentially obtain better results. In Section B.1, we did some small
experiment in which we used three LMs instead of only two, where the third LM consisted of
atonal music. There was no strong evidence that using three LMs gave us better results, but it
might be worth to investigate this more thoroughly. When a large data set is available, of a least
thousand entries, for different genres of music and perhaps different kinds of noise, it might prove
beneficial to create an LM for every kind of genre music (or noise) and then use these LMs for
classification. This improved LM classification could also be applied to other related research areas
such as music genre classification.

The second area, in which many improvements can still be made, is that of quality assessment.
First, more user ratings (for the same songs) must be obtained, before new experiments can be done.
The methods to predict scores may also need to be modified, such that they can detect local errors
more easily. The sliding window algorithm is the most suitable for this, as the window works on
local parts of the chord sequence.

78

8.2 future work

Koops [41] has already done some research on improving the quality of chord sequences by
means of data fusion; users suggest improvements to chord sequences (edits), which are then
fused together to obtain a better chord sequence. If these edits are investigated, we might be able
to employ machine learning techniques to learn what good edits are, and then also learn what
good and bad chord sequences are. With this information it might be easier to assess the quality of
a chord sequence and to automatically improve it. Information about good and bad quality chord
sequences could be applied to other chord extraction algorithms apart from HarmTrace

Something else that is missing in this research is a comparison with audio based techniques.
We have obtained certain results with our algorithms that work on chord sequences, but we do not
know how well they perform compared to the more common algorithms that work with the whole
spectrum of audio features. It would be interesting to see whether our algorithms are able to keep
up with audio based techniques.

79

Appendices

80

A
I M P L E M E N TAT I O N S

This section describes how the different pipelines are implemented. The entire framework is built
with Python and is tested in version 2.6.6 and 2.7.6. We also make use of NumPy 1.8.2, SciPy 0.14.0
and the enum library found here: https://pypi.python.org/pypi/enum34#downloads.

a.1 feature classification

All classification methods come from the scikit-learn1 module that has been developed by Pe-
dregosa et al. [42]. This module contains a large collection of state-of-the-art machine learning
algorithms. We are using version 0.16.1 of this module. These are the links to the documentation
of the specific classifiers:

KNN:

http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-
classification.

Decision trees:

http://scikit-learn.org/stable/modules/tree.html#classification.

NB:

http://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-
bayes.

SVM (SVC):

http://scikit-learn.org/stable/modules/svm.html#classification

Random Forest:

http://scikit-learn.org/stable/modules/ensemble.html#random-forests.

AdaBoost:

http://scikit-learn.org/stable/modules/ensemble.html#adaboost.

1 http://scikit-learn.org/

81

https://pypi.python.org/pypi/enum34#downloads
http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification
http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification
http://scikit-learn.org/stable/modules/tree.html#classification
http://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
http://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
http://scikit-learn.org/stable/modules/svm.html#classification
http://scikit-learn.org/stable/modules/ensemble.html#random-forests
http://scikit-learn.org/stable/modules/ensemble.html#adaboost
http://scikit-learn.org/

A implementations

a.2 language model classification

For the estimation of an LM out of a training set, the SRILM toolkit2 is used. The functionality of
this toolkit is explained in the paper by Stolcke [43]. A C++ binary (ngram-count) is called that
has as parameters a text file with chords (our training set text file), several options for smoothing
and the name/location of the output file. The generated output file is of the ARPA format, which
contains probabilities for every n-gram found in the data.

With the ngram binary we query a chord sequence to the LM. We have applied several smooth-
ing methods, these are the flags used for each smoothing method:

• No smoothing: -cdiscount 0 -gt3min 1 -gt4min 1 -gt5min 1 -gt6min 1 -gt7min
1 -gt8min 1

• Witten-Bell smoothing: -ndiscount

• Additive smoothing: -addsmooth 1

• Constant discounting: -cdiscount 0.75

• Good Turing smoothing: No extra flags, since this is the default smoothing used.

FLMs are handled by the SRILM toolkit as well. The binary fngram-count is called to create
an FLM. It uses a specific text file that lists the backoff path of the different factors. The FLMs
are outputted to their respective ARPA file. The binary fngram then queries the FLMs with a test
set and obtains probabilities for chord sequences in this test set. A thorough tutorial for the FLM
component is contained in [44].

a.3 regression methods

The regression methods also come from scikit-learn.

Least squares:

http://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-
squares

KNN regression:

http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-
regression

2 http://www-speech.sri.com/projects/srilm/

82

http://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
http://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
http://www-speech.sri.com/projects/srilm/

B
E X T R A R E S U LT S

This section shows additional results from the experiments. In Table B.1 and B.2 we have listed
all the configurations that we have tested with feature and LM classifiers (including the ones
outside of the appendix).

Classifier Data Set Chord
Merge Features Transposi-

tion

Number of
configura-
tions

Found in

KNN, NB,
Decision Tree,
SVM,
Random
Forest,
AdaBoost

Fixed to
corner

Fixed to No
Merge Fixed to chords Fixed to

12-train 6 Fig. 5.1

KNN, SVM,
Random
Forest,
AdaBoost

chordino, ht,
corner,
ht-small, and
corner-small

Fixed to No
Merge Fixed to chords Fixed to

12-train 20 Table 5.1

KNN, SVM,
Random
Forest,
AdaBoost

Fixed to
chordino

Fixed to No
Merge

chords and
chords without
N-chord

Fixed to
12-train 20 Table 5.2

KNN, SVM,
Random
Forest,
AdaBoost

Fixed to
corner

Merge and
No Merge Fixed to chords Fixed to

12-train 8 Fig. 5.2

KNN, SVM,
Random
Forest,
AdaBoost

Fixed to
corner

Fixed to
Merge and
No Merge

chords, chords +
beat, chords +
duration-sd, and
chords + beat +
duration-sd

Fixed to
12-train 20 Table 5.3

KNN, SVM,
Random
Forest,
AdaBoost

Fixed to
corner

Fixed to
Merge and
No Merge

Fixed to chords,
chords + beat,
and chords +
beat +
duration-sd

no transpose,
12-train, and
12-full

12 Table 5.4

KNN, SVM,
Random
Forest,
AdaBoost

Fixed to
corner

Merge and
No Merge

chords, and
chords + beat +
duration-sd

Fixed to
12-train 16

Fig. 6.1 and
6.2, Table
B.8, B.9, B.10

and B.11

Table B.1: List of all configurations that were tested for the feature classification experiments. In italic is
the parameter of which every value has been tested. If two parameters (columns) are italic in the same
row, then all possible combinations of the two parameters have been tested.

83

B extra results

Smoothing Data Set Chord
Merge Transpostion n-gram

order

Number of
configura-
tions

Found in

None,
Additive,
Good-Turing,
Constant
Discounting,
Witten-Bell

Fixed to
corner

Merge and
No Merge

Fixed to
12-train 2 through 8 70

Table 5.5,
Fig. 5.4

Fixed to
Additive
and
Witten-Bell

Fixed to
corner

Merge and
No Merge

Fixed to
12-train 2 through 8 14 Fig. 5.5

Fixed to
Additive
and
Witten-Bell

chordino, ht,
corner,
ht-small,
corner-small

Merge and
No Merge

Fixed to
12-train 2 through 8 70 Fig. 5.6

Fixed to
Witten-Bell
for Merge.
None and
Additive for
No Merge

Fixed to
corner

Merge and
No Merge

no transpose,
12-train, and
12-full

2 through 8 63
Fig. 5.7,
Table B.5

FLM fixed
to
Witten-Bell

Fixed to
corner

Merge and
No Merge

Fixed to
12-train

2 through 8
and 1
through 3
factors

42
Table 5.7
and B.7

Additive and
Witten-Bell

Fixed to
corner

Merge and
No Merge

Fixed to
12-train 2 through 8 28

Fig. 6.3, 6.4
and 6.5,
Table B.12,
B.13, B.14

and B.15

Table B.2: List of all configurations that were tested for the LM classification experiments. In italic is the
parameter of which every value has been tested. If two parameters (columns) are italic in the same row, then
all possible combinations of the two parameters have been tested.

b.1 multiple lms

To continue with the question whether it is more difficult to combine two types of sound, we have
done another experiment where we use three different LMs: one for h-music, one for noise, and
one for atonal music. If either the atonal music or noise LM returns the highest probability in
classification, we will classify the chord sequence as non-h-music. If the h-music LM returns the
highest probability, we will classify the sequence as h-music. The results from this experiment are
shown in Figure B.1.

The differences between using three LMs as opposed to two LMs is very small. For this specific
configuration (Witten-Bell smoothing with merged chords), using three LMs negatively impacts the
accuracy in most cases.

In Figure B.2, the same experiment is done while using additive smoothing on merged chords.
Those results hint that there could be a potential increase in accuracy. In Table B.3 the results of

84

B.2 additional results

Figure B.1: Classification accuracies for using two LMs versus using three LMs for different order merged
LMs of the corner data set using Witten-Bell smoothing.

No smoothing Smoothing
n Two LMs Three LMs Two LMs Three LMs
2 91.5 92.6 91.4 92.6
3 89.0 90.1 90.3 91.5
4 70.1 89.5 93.6 93.8
5 75.4 88.2 94.2 93.9
6 48.6 64.6 94.0 94.6
7 48.3 64.9 94.7 93.1
8 51.3 58.8 94.6 93.0

Table B.3: Classification accuracies for using two LMs versus using three LMs, for both smoothed and un-
smoothed LMs. In bold is the LM count that obtains the highest accuracy, per smoothing category.

using three LMs on unmerged smoothed and unsmoothed LMs can be seen. Unsmoothed models
always benefit from three LMs, whereas for smoothed ones the results vary a lot.

Larger differences in accuracy could possibly be achieved if there was more atonal data or when
there were more subclasses (for which in turn we would need even more data). Unfortunately with
a total data set of 50 atonal pieces, only 5-10 atonal pieces out of the 50 total pieces will be in the
test set. Thus only with more data the effect can be properly investigated.

b.2 additional results

no transpose 12-train 12-full
KNN 82.1 88.6 88.6
SVM 82.9 89.1 89.3
Random Forest 91.0 92.9 93.1
AdaBoost 87.2 89.3 89.8

Table B.4: Classification accuracies for different types of transposition and classifiers. For every classifier, in
bold is the type of transposition that obtains the highest accuracy. KNN, SVM and AdaBoost do not use chord
merge, random forest does use chord merge.

85

B extra results

Figure B.2: Classification accuracies for using two LMs versus using three LMs for different order merged
LMs of the corner data set using additive smoothing.

Figure B.3: Classification accuracies for different order LMs using different data sets with unmerged chords.

No smoothing Smoothing
n no transpose 12-train 12-full no transpose 12-train 12-full
2 89.0 91.5 91.4 91.1 91.4 91.4
3 87.1 89.0 89.0 90.0 90.3 90.3
4 48.7 70.1 70.7 91.8 93.6 93.7
5 49.3 75.4 75.4 90.2 94.2 93.5
6 40.6 48.6 48.4 91.1 94.0 94.1
7 41.1 48.3 48.4 88.5 94.7 94.7
8 52.2 51.3 51.6 87.0 94.6 94.7

Table B.5: Classification accuracies for different types of transposition and different smoothing for every n-
gram order using the unmerged corner data set. In bold is the transposition method that obtains the highest
accuracy (separately measured for smoothed and unsmoothed LMs.

86

B.2 additional results

No smoothing Smoothing
n Two LMs Three LMs Two LMs Three LMs
2 93.6 90.3 93.5 90.1
3 93.6 85.5 92.2 91.1
4 97.9 87.7 94.3 93.6
5 96.2 84.1 93.1 95.2
6 94.9 49.0 93.2 95.8
7 93.7 47.6 96.6 98.4
8 76.2 27.3 96.9 98.4

Table B.6: Classification accuracies for using two LMs versus using three LMs, for both smoothed and un-
smoothed LMs. In bold is the LM count that obtains the highest recall, per smoothing category.

Factors
n Label Label + type Label + type + duration
2 89.3 91.4 91.5
3 86.9 90.0 90.0
4 91.8 93.2 93.4
5 91.7 93.3 93.4
6 93.2 94.4 94.5
7 93.0 94.7 timeout
8 93.5 94.3 timeout

Table B.7: Classification accuracies for unmerged FLMs that use different factors and a different number of
chords. In bold is the configuration that achieves the highest accuracy for every n-gram order.

Duration KNN Random Forest AdaBoost SVM
00:10 72.6 61.5 69.6 70.6
00:20 80.6 68.1 76.9 80.2
00:30 83.8 71.4 75.4 84.6
00:40 85.6 72.8 73.1 86.0
00:50 86.1 74.0 72.9 87.2
01:00 87.1 74.1 72.2 88.1
01:30 88.2 74.1 69.6 88.9
02:00 87.9 74.3 68.8 88.8
03:00 88.1 81.8 74.9 89.5
04:00 88.9 89.5 84.5 89.6
06:00 88.8 92.2 88.8 89.4

Table B.8: Classification accuracies for chord sequences with varying length. The settings are unmerged chords
and the chords feature.

Duration KNN Random Forest AdaBoost SVM
00:10 73.8 66.1 62.3 59.1
00:20 81.5 71.3 68.9 73.6
00:30 84.2 73.6 72.2 80.8
00:40 86.1 74.6 73.1 84.2
00:50 87.7 75.9 73.3 86.1
01:00 88.3 76.8 74.4 87.2
01:30 89.3 76.8 75.8 89.4
02:00 89.1 77.2 76.3 90.1
03:00 88.5 83.5 81.4 90.3
04:00 87.9 90.2 86.4 90.6
06:00 87.7 93.1 88.6 90.6

Table B.9: Classification accuracies for chord sequences with varying length. The settings are unmerged chords
and the chords + beat + duration-sd feature.

87

B extra results

Duration KNN Random Forest AdaBoost SVM
00:10 78.3 78.9 58.9 74.5
00:20 85.0 84.0 77.1 82.5
00:30 87.4 85.0 82.2 86.2
00:40 88.7 85.6 82.5 87.8
00:50 88.6 85.8 82.3 89.1
01:00 89.7 85.1 82.1 89.6
01:30 89.9 85.1 80.5 91.5
02:00 90.5 84.8 79.1 91.8
03:00 90.6 87.6 82.2 92.5
04:00 89.7 90.5 85.8 92.8
06:00 89.5 92.1 88.4 92.8

Table B.10: Classification accuracies for chord sequences with varying length. The settings are merged chords
and the chords feature.

Duration KNN Random Forest AdaBoost SVM
00:10 78.0 70.7 66.5 58.8
00:20 84.6 77.1 75.1 74.2
00:30 87.1 78.7 78.7 81.2
00:40 88.6 79.9 79.2 84.7
00:50 89.4 81.2 79.9 86.9
01:00 90.0 81.7 80.5 88.5
01:30 90.9 82.1 81.0 89.8
02:00 90.6 82.4 80.9 90.5
03:00 90.5 86.1 83.6 90.7
04:00 90.2 90.5 86.8 90.6
06:00 90.2 92.5 88.6 90.7

Table B.11: Classification accuracies for chord sequences with varying length. The settings are merged chords
and the chords + beat + duration-sd feature.

Duration 2 3 4 5 6 7 8
00:10 77.2 74.8 72.2 72.5 72.4 72.5 72.5
00:20 86.5 86.3 85.1 83.9 83.7 83.7 83.5
00:30 89.0 89.9 89.3 88.8 88.3 88.3 88.2
00:40 90.1 91.9 91.5 91.3 90.9 91.1 90.9
00:50 91.1 92.7 92.6 92.6 92.5 92.3 92.2
01:00 91.8 93.0 93.0 93.0 93.1 93.2 93.1
01:30 92.0 94.0 93.4 93.8 93.9 94.1 94.0
02:00 92.6 94.0 94.0 94.5 94.6 94.7 94.4
03:00 93.2 94.4 95.0 95.5 95.4 95.5 95.4
04:00 93.4 94.9 95.5 96.3 96.2 96.2 96.1
06:00 93.4 94.9 95.6 96.4 96.4 96.2 96.1

Table B.12: Classification accuracies for chord sequences with varying length. The settings are merged chords
and Witten-Bell smoothing.

88

B.2 additional results

Duration 2 3 4 5 6 7 8
00:10 78.2 74.9 73.7 74.7 74.4 74.6 74.6
00:20 86.5 86.4 85.4 85.5 84.9 85.0 85.0
00:30 89.1 90.4 89.8 89.7 89.4 89.2 89.5
00:40 90.4 91.7 91.6 91.8 91.7 91.6 91.6
00:50 91.1 92.7 92.8 93.0 92.7 92.4 92.5
01:00 91.6 93.2 93.4 93.5 93.1 93.4 93.2
01:30 92.1 94.2 93.8 94.1 94.0 93.9 93.9
02:00 92.6 94.1 94.3 94.3 94.1 94.0 93.7
03:00 93.3 94.6 94.9 95.0 94.9 94.8 94.6
04:00 93.5 94.9 95.2 95.2 95.2 95.0 95.1
06:00 93.6 94.9 95.4 95.3 95.2 95.2 95.2

Table B.13: Classification accuracies for chord sequences with varying length. The settings are merged chords
and additive smoothing.

Duration 2 3 4 5 6 7 8
00:10 79.7 78.1 78.2 76.3 76.0 76.1 75.9
00:20 86.2 84.8 87.0 86.1 86.7 86.5 85.7
00:30 88.2 86.6 89.6 89.2 89.8 89.8 89.4
00:40 88.5 87.6 90.5 90.1 91.1 90.7 90.9
00:50 89.2 87.8 91.0 90.8 91.9 91.7 91.6
01:00 89.4 87.9 91.4 91.1 92.3 92.3 92.1
01:30 90.0 88.6 92.1 91.7 93.0 93.0 93.0
02:00 90.3 88.9 92.3 92.2 93.0 93.1 93.4
03:00 91.2 89.7 93.1 93.0 93.9 93.8 94.2
04:00 91.6 90.3 93.6 93.4 94.4 94.4 94.4
06:00 91.7 90.3 93.7 93.5 94.6 94.4 94.6

Table B.14: Classification accuracies for chord sequences with varying length. The settings are unmerged
chords and Witten-Bell smoothing.

Duration 2 3 4 5 6 7 8
00:10 80.09 78.72 79.25 78.24 76.36 75.69 74.73

00:20 86.6 84.8 87.2 86.4 86.1 84.5 83.3
00:30 88.0 86.7 89.6 89.3 89.4 88.0 86.3
00:40 88.7 87.7 90.4 90.5 90.9 89.1 87.7
00:50 89.3 87.7 91.2 90.9 91.5 90.4 89.0
01:00 89.7 88.2 91.5 91.3 92.0 90.7 89.4
01:30 90.0 88.7 92.6 92.3 92.6 92.1 91.4
02:00 90.3 89.3 93.0 92.9 93.1 93.0 92.2
03:00 91.2 90.0 93.4 93.4 93.2 94.0 93.7
04:00 91.7 90.5 93.7 93.5 93.8 94.2 94.0
06:00 91.8 90.5 93.9 93.5 94.0 94.5 94.7

Table B.15: Classification accuracies for chord sequences with varying length. The settings are unmerged
chords and additive smoothing.

89

B I B L I O G R A P H Y

[1] C. Harte, M. B. Sandler, A. A. Abdallah, and E. Gómez. Symbolic representation of musical
chords: A proposed syntax for text annotations. In ISMIR, volume 5, pages 66–71, 2005.

[2] T. Fujishima. Realtime chord recognition of musical sound: A system using common lisp
music. Proc. of ICMC, pages 464–467, 1999.

[3] G. H. Wakefield. Mathematical representation of joint time-chroma distributions. In SPIE’s
International Symposium on Optical Science, Engineering, and Instrumentation, pages 637–645. In-
ternational Society for Optics and Photonics, 1999.

[4] L. Oudre, Y. Grenier, and C. Févotte. Chord recognition by fitting rescaled chroma vectors
to chord templates. IEEE Transactions on Audio, Speech, and Language Processing 19.7, pages
2222–2233, 2011.

[5] A. Sheh and D. P. W. Ellis. Chord segmentation and recognition using em-trained hidden
markov models. Proc. of 4th International Conference on Music Information Retrieval, pages 185–
191, 2003.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38,
1977.

[7] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory 13.2, pages 260–269, 1967.

[8] L. Rabiner. A tutorial on hidden markov models and selected applications in speech recogni-
tion. Proceedings of the IEEE 77.2, pages 257–286, 1989.

[9] W. B. de Haas, J. P. Magala̋es, and F. Wiering. Improving audio chord transcription by exploit-
ing harmonic and metric knowledge. Proc. of 13th International Conference on Music Information
Retrieval, pages 295–300, 2012.

[10] W.B. De Haas et al. Music information retrieval based on tonal harmony. 2012.

[11] K. Lee. Automatic chord recognition from audio using enhanced pitch class profile. In Proc. of
the International Computer Music Conference, 2006.

[12] E. Gómez. Tonal description of polyphonic audio for music content processing. INFORMS
Journal on Computing, 18(3):294–304, 2006.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. science,
220(4598):671–680, 1983.

[14] T. G. Dietterich. Ensemble methods in machine learning. In Multiple classifier systems, pages
1–15. 2000.

[15] L. Breiman. Bagging predictors. Machine learning 24.2, pages 123–140, 1996.

[16] R. E. Schapire. The boosting approach to machine learning: An overview. In Nonlinear estima-
tion and classification, pages 149–171. 2003.

90

BIBLIOGRAPHY

[17] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining,
inference and prediction, second edition. 2009.

[18] G. Lu and T. Hankinson. A technique towards automatic audio classification and retrieval.
pages 1142–1145, 1998.

[19] P. Dhanalakshmi, S. Palanivel, and V. Ramalingam. Classification of audio signals using svm
and rbfnn. Expert Systems with Applications 36.3, pages 6069–6075, 2009.

[20] A. Pikrakis, T. Giannakopoulos, and S. Theodoridis. A speech/music discriminator of radio
recordings based on dynamic programming and bayesian networks. IEEE Transactions on Mul-
timedia 10.5, pages 847–857, 2008.

[21] C. Pérez-Sancho, D. Rizo, and J. M. Iñesta. Genre classification using chords and stochastic
language models. Connection science 21(2-3), pages 145–159, 2009.

[22] T. Hedges, R. Hedges, R. Pierre, and F. Pachet. Predicting the composer and style of jazz chord
progressions. Journal of New Music Research, 43(3):276–290, 2014.

[23] D. Jurafsky and J. Martin. Speech and language processing: An introduction to natural lan-
guage processing. Computational Linguistics and Speech Recognition. Prentice Hall, NJ, USA, 2000.

[24] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language model-
ing. Computer Speech & Language 13.4, pages 359–393, 1999.

[25] J. A. Bilmes and K. Kirchhoff. Factored language models and generalized parallel backoff. In
Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology: companion volume of the Proceedings of HLT-NAACL
2003–short papers-Volume 2, pages 4–6, 2003.

[26] M. Khadkevich and M. Omologo. Use of hidden markov models and factored language mod-
els for automatic chord recognition. Proc. of 10th International Conference on Music Information
Retrieval, pages 561–566, 2009.

[27] M. R. López and A. Volk. Automatic segmentation of symbolic music encodings: A survey.
2012.

[28] J. Saunders. Real-time discrimination of broadcast speech/music. In icassp, pages 993–996.
IEEE, 1996.

[29] E. Scheirer and M. Slaney. Construction and evaluation of a robust multifeature speech/music
discriminator. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE Interna-
tional Conference on, volume 2, pages 1331–1334. IEEE, 1997.

[30] L. Lu, H. J. Zhang, and S. Z. Li. Content-based audio classification and segmentation by using
support vector machines. Multimedia systems, 8(6):482–492, 2003.

[31] M. Ferrand, P. Nelson, and G. Wiggins. Unsupervised learning of melodic segmentation: A
memory-based approach. In Proceedings of the 5th Triennial ESCOM Conference, pages 141–144,
2003.

[32] J. J. Faraway. Practical regression and anova using r., 2002.

[33] R. Lowry. Concepts and applications of inferential statistics. 2014.

[34] R. Macrae and S. Dixon. Guitar tab mining, analysis and ranking. In ISMIR, pages 453–458,
2011.

[35] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl. Is seeing believing? how recom-
mender system interfaces affect users’ opinions. pages 585–592, 2003.

91

BIBLIOGRAPHY

[36] C. C. Preston and A. M. Colman. Optimal number of response categories in rating scales: reli-
ability, validity, discriminating power, and respondent preferences. Acta psychologica, 104(1):1–
15, 2000.

[37] E. I. Sparling and S. Sen. Rating: how difficult is it? pages 149–156, 2011.

[38] J.A. Burgoyne, J. Wild, and I. Fujinaga. An expert ground truth set for audio chord recognition
and music analysis. Proceedings of the 12th International Society for Music Information Retrieval
Conference, pages 633–638, 2011.

[39] F. Fond, G. Roma, and X. Roma. Freesound technical demo. Proceedings of the 21st ACM
international conference on Multimedia, pages 411–412, 2013.

[40] M. Mauch and S. Dixon. Approximate note transcription for the improved identification of
difficult chords. Proc. of 11th International Conference on Music Information Retrieval, pages 135–
140, 2010.

[41] H. V. Koops, W. B. de Haas, and A. Volk. Integration of crowd-sources chord sequences using
data fusion.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12, pages 2825–2830, 2011.

[43] A. Stolcke. Srilm-an extensible language modeling toolkit. Proc. Intl. Conf. on Spoken Language
Processing 2, pages 901–904, 2002.

[44] K. Kirchhoff, J. Bilmes, and K. Duh. Factored language models tutorial. 2007.

92

	Introduction
	Background and State of the Art
	Musical Terminology
	Chord Extraction
	Template Pattern Matching
	Hidden Markov Models
	Chordify Harmony Model
	Performance of Chord Extraction Algorithms

	Simulated Annealing
	Methods for Classification
	Feature Classification
	N-Gram Language Models

	Segmentation Methods
	Regression Analysis
	Evaluation Methods
	Classification Evaluation Methods
	Segmentation Evaluation Methods
	Quality Assessment Evaluation Methods
	Testing the Statistical Significance

	Pipelines and Algorithms
	H- and Non-H-Music Classification Pipeline
	Classification on Chord Features
	Chord Language Model Classification

	H- and Non-H-Music Segmentation Pipeline
	Segmentation Algorithms

	Assigning Quality Scores to Chords
	Rating System
	Score Prediction Pipeline

	Data
	Classification of H-Music and Non-H-Music
	Experiments and Results
	Feature Classification Experiments
	Language Model Experiments

	Discussion

	Segmentation of H-Music and Non-H-Music
	Experiments and Results
	Variable Length Classification Experiments
	Segmentation Experiments

	Discussion

	Assessing the Quality of Chords
	Case Study on Quality Assessment
	Experiments

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Implementations
	Feature Classification
	Language Model Classification
	Regression methods

	Extra Results
	Multiple LMs
	Additional Results

