
	

	
	
	
	
	
	
	
	

Visual	Programming	and	Creative	Code:	A	Maker	
Perspective	in	Software	studies	

	
	

Master	thesis	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
MA	Mediastudies	
New	Media	&	Digital	Culture	
Utrecht	University	
Netherlands	
	
Jelke	de	Boer	
3884023	
	 	

	 2	

	

	

	

	

	

	
		 	

	 3	

	
	
	

Abstract	
	
If	software	is	the	cornerstone	of	(post)	modern	society	then	it	is	the	algorithm	that	

serves	 as	 the	 primary	 tool	 of	 the	 information	 age.	 The	 field	 of	 software	 studies	

investigates	 how	 software	 affects	 culture	 and	 society.	 The	 initial	 efforts	 have	

contributed	to	the	understanding	of	the	“nature”	of	code	and	widespread	‘popular’	

or	 ‘mainstream’	 productivity	 software.	 This	 thesis	 shifts	 attention	 to	 visual	

programming,	 a	 popular	 tool	 in	 artistic	 performance,	 interactive	 installations	 and	

electronic	 music	 production.	 How	 can	 visual	 programming	 be	 understood	 as	 an	

artistic	tool?	As	an	overarching	theme	three	concepts	will	be	addressed:	Materiality,	

Agency	and	Sociality.	Building	upon	actor	network	theory	it	will	be	argued	that,	as	a	

tool,	 visual	 programming	 should	 be	 understood	 an	 act	 of	 creative	 coding	 that	

attempts	 to	make	hardware	performative.	Furthermore,	 it	will	also	be	argued	 that	

aside	of	 the	arts,	engineering	and	design,	a	new	tradition	of	creators	has	emerged	

from	maker	culture.	

		

	

	

	

Keywords	
Software	studies,	Visual	Programming,	Artistic	Tools,	Creative	Code,	Agency,	

Performance,	DIY,	Maker	Culture,	Actor	Network	Theory,	Design	Fiction.	

	

	

	

	 	

	 4	

	

	

	

	

	

	
		 	

	 5	

Acknowledgments	

	
The	list	of	people	that	somehow	deserve	to	be	mentioned	for	their	support	is	long,	

including	a	network	of	people	that	covers	all	three	major	Educational	institutions	in	

the	Utrecht	area;	Utrecht	University,	the	University	of	Applied	Sciences	Utrecht	and	

the	University	of	 the	Arts	Utrecht.	The	Utrecht	area	offers	a	wonderful	climate	 for	

students,	lecturers	and	artists,	three	roles	that	I	have	tried	to	combine	following	the	

New	Media	&	Digital	Culture	program.		

	

Of	 course	 my	 gratitude	 goes	 out	 to	 all	 staff	 members	 of	 the	 NMDC	 program.	 A	

special	word	of	thanks	goes	out	to	Dr.	René	Glas	for	his	support	and	feedback	and	to	

Dr.	Mirko	Tobias	 Schäfer	 and	Dr.	 Imar	de	Vries	 for	 their	 inspiring	 lectures	 and	 the	

thoughtful	discussions	that	we	have	had.	I	would	also	like	to	thank	my	colleagues	at	

the	University	of	Applied	Sciences	Utrecht;	and	more	specific	Erik	Hekman,	Ronald	

van	Essen	and	Kees	Winkel	for	the	inspiring	discussions	and	support		

	

Finally,	 my	 gratitude	 goes	 out	 to	 Guinevere,	 Nova	 and	 Tibbe	 and	 their	 great	

patience,	enduring	my	absence.		

Thank	you	

	

Jelke	de	Boer	

	
	 	

	 6	

	

	

	

	

	

	
		 	

	 7	

Table	of	content	

Abstract	..	3	
Keywords	..	3	
Acknowledgments	..	5	
Table	of	content	..	7	

Introduction	..	9	
Research	question	...	11	

Materiality,	Agency	&	Sociality	..	12	
Structure	&	Methodology	..	13	

Max	MSP	vs.	Pure	Data	...	14	

Cultural	interfaces	..	16	
Software	studies	..	16	
Designer,	artist	and	maker	...	17	

Restricted	vs.	mass	production	..	18	
Visual	language	..	19	

Max	MSP	..	21	
The	MIDI	protocol	...	22	
Physical	Interaction	and	hardware	devices	...	23	

Distributing	agency	..	25	
The	Eunoia	project	..	25	

Creative	code	..	26	
Actor	Networks	and	material	semiotics	..	27	

Liveness	in	performance	..	28	

Digital	Material	..	30	
New	media	objects	..	30	
Avant-garde	...	31	

The	Object	as	a	Data	Structure	..	32	
Processing	..	33	

The	Object	as	a	Metaphor	...	35	
Remediation	..	36	

The	visual	programming	interface	..	37	
Inscription	..	39	
The	Computer	as	a	Meta-medium	...	40	

Cultural	logic	..	41	
DIY	and	Maker	Culture	..	41	

Amateur	Operators	..	43	
Design	fiction	..	44	

Conclusions	...	46	
Methodological	reflection	&	further	research	...	48	
References	...	49	

	

	

	
	
	

	 8	

	
	
	
	
	
	
	
	
	 	

	 9	

Introduction	

In	 2013	 media	 and	 performance	 artist	 Lisa	 Park	 presented	 the	 Eunoia	 project,	 a	

digital	 performance	using	 EEG	 technology	 to	manipulate	 sound	 and	 the	motion	of	

water.	 The	 code	 used	 in	 the	 Eunoia	 project	 was	 created	 in	 Max	 MSP1,	 a	 visual	

programming	 interface	aimed	at	 live	performance.	The	project	has	been	presented	

at	 several	 international	 interactive	art	 festivals,	and	 found	 its	way	 into	 the	science	

and	technology	sections	in	popular	media	and	the	technology	related	special	interest	

titles	such	as	Wired	Magazine.	The	article	in	Wired	magazine	reads:		

Increasing	 her	 frustration	 levels	 modulates	 the	volume	 of	 the	 music;	 the	

more	frustrated	Park	becomes,	the	more	intense	the	vibration	of	the	water.	

When	Park	is	calm	or	meditative,	the	frequency	of	the	vibrations	slows	down.	

She	 pans	 the	 sound	 waves	 around	 the	 room	 by	 controlling	 her	 levels	 of	

excitement	and	engagement.	In	that	way,	Park	is	effectively	choreographing	

the	movement	with	her	mind	(Stinson,	2014).		

At	least	part	of	the	interest	in	the	Eunoia	project	can	be	explained	by	the	use	of	the	

EEG	device,	a	technology	that	captures	the	imagination	of	the	technology-enthusiast	

audience.	From	a	media	studies	perspective	one	might	say	 that	 the	Eunoia	project	

appeals	 to	 “the	 dream	 of	 ideal	 communication”	 (De	 Vries,	 2005)	 though	 popular	

media	 seem	 to	 favour	 the	 dystopian	 imaginary:	 “if	 you	 ignore	 the	 black	 sensors	

wrapped	around	her	head	and	watch	 the	pools	of	water	below,	 it	 looks	as	 though	

she’s	 pulling	 off	 some	 serious	 Carrie-style	mind	manipulation”	 (Stinson,	 2014).	 Of	

course,	 and	 as	 always,	 at	 closer	 examination	 the	 dream	 shatters.	 Still	 the	

performance	is	far	from	cheap	trickery;	it’s	a	genuine	invitation	to	the	experience	of	

a	shared	imagination.		

In	 the	media	coverage	of	 the	Eunoia	project	most	attention	may	have	gone	out	 to	

the	EEG	device,	still	it	is	of	crucial	importance	not	overlook	the	role	of	the	software	

code	 that	 ties	 the	 performance	 together.	 Or,	 as	 Cramer	 (2002)	 points	 out	 in	 a	

broader	sense:	

																																																								
1	Max	MSP	visual	programming	software	(https://cycling74.com/)		

	 10	

The	 term	 “digital	 art”	 has	 been	 associated	 primarily	 with	 digital	 images,	

music	 or	 audiovisual	 installations	 using	 digital	 technology.	 The	 software	

which	controls	the	audio	and	the	visuals	is	frequently	neglected,	working	as	a	

black	 box	 behind	 the	 scenes.	 “Interactive”	 room	 installations,	 for	 example,	

get	perceived	as	a	interactions	of	a	viewer,	an	exhibition	space	and	an	image	

projection,	not	as	systems	running	on	code	(Cramer,	2002,	1).	

My	 interest	 is	directed	 towards	Max	MSP,	a	visual	programming	environment	 that	

has	 gained	 a	 wide	 popularity	 among	 “laptop”	musicians,	 artists	 in	 genres	 such	 as	

(interactive)	 installation	art	and	 (live)	performance	and	the	practice	of	“experience	

design”	 for	 physical	 (exhibition)	 spaces.	 It	 is	 important	 to	 note	 that	 there	 is	 a	

difference	 between	 visual	 programming	 and	 the	 syntax	 based	 coding	 style	

commonly	 associated	 with	 software	 code	 and	 the	 algorithm.	 The	 visual	

programming	 interface	does	not	 represent	code	as	 linguistic	 syntax	but	as	a	visual	

mapping	 of	 objects	 that	 represent	 actions.	 This	 visual	 representation	 seems	 to	

appeal	 to	 artists,	 musicians	 and	 others	 involved	 in	 live	 performance.	 Park	 (2015)	

emphasizes	the	importance	of	the	visual	metaphor:		

What	I	like	about	Max	compared	to	other	processing	languages	such	as	C	++,	

is	 that	 it	 has	 the	 visual	 component.	 I	 find	 that	 easier	 to	 work	 with	 and	 it	

makes	more	sense	to	me.	Since	I	was	trained	in	visuals	since	I	was	kid,	I	feel	

more	comfortable	using	Max	compared	to	any	other	coding	program	(Park,	

2015).	

The	visual	representation	of	code	may	be	more	appealing	and	easier	to	grasp	for	the	

visual	artist,	the	electronic	musician	might	also	recognize	the	process	of	“patching”	

the	modular	synthesizer.	Max	MSP	was	originally	designed	as	a	tool	for	the	creation	

of	 software	 sequencers,	 thus	 allowing	 the	 electronic	 musician	 to	 control	 a	 broad	

range	 of	 hardware	 synthesizers	 from	 a	 single	 (customized)	 computer	 interface.	 As	

such,	the	Max	MSP	interface	can	be	related	to	the	early	electronic	musicians	of	the	

1950’s	and	1960’s	whom	aimed	at	creating	new	musical	genres.	One	might	add	that	

these	 early	 electronic	 musicians	 were	 drawing	 from	 engineering	 rather	 than	

instrumental	 virtuosity.	 However,	 that	 does	 not	 mean	 that	 visual	 programming	 is	

	 11	

limited	to	music	production.	If	the	modular	synthesizer	allowed	for	new	approaches	

to	music	 production	 and	 sound	 design	 then	 it	 seems	 fair	 to	 assume	 that	 creative	

coding	 has	 opened	 a	 new	 kind	 of	 performative	 space	 (Saphiro,	 2014).	 Visual	

programming	 in	 Max	 MSP	 thus	 allows	 for	 new	 kinds	 of	 arrangements	 combining	

audio,	 visuals,	 physical	 objects	 and	 human	 bodies	 in	 and	 through	 code.	Of	 course	

creative	 coding	 is	 not	 limited	 to	 visual	 programming,	 still	 investigating	 visual	

programming	may	shed	light	on	the	creative	and	artistic	use	of	software	code.	

Research	question	
	

The	emerging	field	of	software	studies	has	expressed	a	great	concern	for	the	role	of	

software	and	the	algorithm	in	(post)	modern	society.	Much	attention	has	gone	out	

to	 the	 complex	 relations	 in	 digital	 environments	 and	 the	 distribution	 of	 power	

trough	software	interfaces	and	digital	code.	Still	the	code	itself	is	often	perceived	as	

a	 linguistic	 or	 mathematical	 abstraction.	 In	 this	 thesis	 I	 will	 offer	 an	 alternative	

perspective,	 suggesting	 that	 code	may	 also	 be	 understood	 as	 creative,	 visual	 and	

embedded	 in	 a	 context	 of	 artistic	 maker	 practices.	 I	 will	 do	 so	 addressing	 the	

following	research	question:		

	

How	 can	 visual	 programming	 be	 understood	 as	 an	 artistic	 tool	 in	 contemporary	

maker	practices?		

	

I	will	 argue	 that	 through	 visual	 programming	 the	 computer	 can	 be	 explored	 as	 “a	

metamedium,	whose	content	would	be	a	wide	range	of	already-existing	and	not-yet-

invented	media”	 (Kay	&	Goldberg,	 1977,	 40;	Manovich,	 2013,	 105).	 Furthermore	 I	

will	argue	that,	as	a	tool,	visual	programming	allows	the	artist,	maker	or	creator	to	

infuse	 machinery	 with	 subjective	 imagination	 and	 the	 narratives	 of	 design	 fiction	

(Bleecker,	2009).	 I	will	ground	my	approach	 in	actor	network	theory	 (Latour,	1996,	

1999)	 and	 in	material	 semiotics	 (Law,	 2009)	 using	 (digital)	materiality,	 agency	 and	

sociality	as	key	concepts	in	addressing	the	research	question.		

	

	 12	

Materiality,	Agency	&	Sociality	

If	 code	 is	 the	 material	 of	 the	 21th	 century	 artist	 then	 the	 importance	 of	 digital	

materiality	 seems	 self-explanatory.	 Still	 the	 relations	between	artists,	 the	 layers	of	

(visual)	code	and	the	physical	 infrastructure	 in	which	the	code	“lives”	are	complex.	

Or,	as	Cramer	&	Gabriel	(2001)	conclude	when	reflecting	upon	their	role	as	members	

of	the	jury	for	the	“artistic	software”	award	at	the	Transmediale	art	festival:	

The	software	artists	we	reviewed	seem	to	conceive	of	generative	systems	not	

as	 negation	 of	 intentionality,	 but	 as	 balancing	 of	 randomness	 and	 control.	

Program	 code	 thus	 becomes	 a	 material	 with	 which	 artist	 work	 self-

consciously.	 Far	 from	 being	 simply	 art	 for	machines,	 software	 art	 is	 highly	

concerned	 with	 artistic	 subjectivity	 and	 its	 reflection	 and	 extension	 into	

generative	systems	(Cramer	&	Gabriel,	2001,	4).		

Indeed,	 in	 the	 context	 of	 artistic	 practices	 the	 material	 “nature”	 of	 code	 invokes	

questions	 of	 intentionality,	 subjectivity	 and	 agency.	 I	 will	 build	my	 argumentation	

around	digital	materiality	 and	agency,	 but	 to	 fully	 grasp	 visual	 programming	as	 an	

artistic	 tool	 it	 is	 also	 important	 to	 gain	 an	 understanding	 of	 how	 digital	 code	

perceived	 from	 the	 maker	 perspective.	 I	 will	 analyse	 the	 Max	 MSP	 visual	

programming	interface,	but	I	will	do	so	recognizing	that	(visual)	programming	can	be	

associated	 with	 a	 variety	 of	 distinct	 cultural	 practices.	 Of	 course	 there	 is	 a	 great	

difference	between	musicians,	artists	and	others	involved	in	performance	or	maker	

practices.	Still	my	assumption	is	that,	even	though	these	practices	may	vary	in	many	

ways,	they	do	share	some	fundamental	cultural	logic.	

As	such	my	approach	seem	in	line	with	the	three	primary	facets	of	software	studies	

as	 identified	by	Mackenzie	 (2006):	 “(1)	agency,	 the	concept	of	who	does	what;	 (2)	

materiality,	 or	 what	 counts	 as	 the	 basic	 stuff	 that	 exists;	 and	 (3)	 sociality;	 the	

concept	of	how	we	belong	together,	how	attachments	form	and	collective	social	life	

coheres”	 (2006,	 171).	 For	Mackenzie	 these	 concepts	 underline	 the	 importance	 of	

software	code	in	contemporary	society	as	algorithms,	network	protocols	and	digital	

infrastructures	 reshape	 power	 relations	 in	 production,	 consumption	 and	

	 13	

distribution.	My	aim	is	different	-	and	perhaps	more	modest	-	as	what	is	of	interest	

here	 is	 how	 software	 code	 is	 perceived	 and	 produced	 from	 the	 specific	 cultural	

position	of	the	artist,	designer	or	maker.	From	this	specific	perspective	digital	code	

could	-	and	should	-	be	understood	as	creative	rather	than	productive.		

Structure	&	Methodology	
	
Agency	 and	 digital	 materiality	 and	 cultural	 logic	 will	 provide	 the	 overarching	

structure	of	this	thesis.	But	first	I	will	situate	my	research	within	the	field	of	software	

studies.	I	will	build	upon	Lev	Manovich’s	(2013)	analysis	of	the	software	tools	most	

frequently	associated	with	creative	practices:	Adobe	Photoshop	and	the	collection	of	

tools	bundled	in	the	Adobe	Creative	Suite.	I	will	argue	that	software	may	provide	a	

bridge	 between	 culture	 and	 technology	 (Rieder	 &	 Schäfer,	 2008)	 and	 clarify	 my	

understanding	of	 the	artist,	designer	and	maker	 in	 contemporary	 (techno)	 culture.	

Finally	 I	 will	 introduce	 Max	 MSP	 discussing	 the	 MIDI	 protocol	 and	 the	 use	 of	

hardware	devices	in	(digital)	performance	and	music	production.	

In	the	second	part	of	this	thesis	I	will	turn	to	the	question	of	agency.	Reviewing	the	

Eunoia	project	introduced	earlier	I	will	discuss	the	interactions	between	performer,	

code,	 hardware	 and	 audience	 arguing	 that	 creative	 code	 has	 opened	 a	 new	

performative	 space	 (Saphiro,	 2014)	 in	 which	 the	 artist,	 designer	 or	 maker	 can	

explore	the	arrangement	of	agency.	From	there	I	will	build	a	theoretical	framework	

connecting	actor	network	 theory	 (Latour,	1996,	1999)	and	material	 semiotics	 (Law	

2009)	 with	 the	 concept	 of	 liveness	 in	 (digital)	 performance.	 Following	 Auslander	

(2012)	I	will	conclude	the	second	chapter	arguing	that	digital	 liveness	“results	from	

our	conscious	act	of	grasping	virtual	entities	as	live”	(2012,	10).		

In	 the	 third	 chapter	 I	 will	 broaden	 the	 theoretical	 framework	 discussing	 digital	

materiality	and	the	“nature”	of	digital	code.	 I	will	 follow	Manovich	(2013)	 in	“close	

reading”	the	Max	MSP	visual	programming	interface	though	I	will	do	so	recognizing	

that	the	computer	and	the	software	 interface	are	extremely	marked	by	metaphors	

(Van	 den	 Boomen,	 2014).	 I	 will	 start	 from	 the	 notion	 of	 the	 “object	 as	 a	 data	

structure”	 and	 the	 general	 approach	 of	 adopting	 terms	 and	 concepts	 from	

computational	 sciences	as	proposed	by	Manovich	 (2001,	39).	Second,	 I	will	discuss	

	 14	

the	 “object	 as	 a	 metaphor”	 emphasizing	 crucial	 role	 of	 the	 metaphor	 (Van	 den	

Boomen,	2014)	and	real-world	analogies	(Bolter	&	Grusin,	2000)	in	the	perception	of	

the	 computer	 interface.	 Close	 reading	 the	Max	MSP	 interface	will	 reveal	 that	 the	

metaphors	 used	 in	 visual	 programming	 reflect	 the	 materiality	 of	 the	 computer	

hardware	itself.	Finally	it	will	be	argued	that	the	computer	can	best	be	understood	as	

“a	metamedium,	whose	content	would	be	a	wide	range	of	already-existing	and	not-

yet-invented	media”	(Kay	&	Goldberg,	1977,	40;	Manovich,	2013,	105).		

Finally,	I	will	situate	visual	programming	in	DIY	and	Maker	culture	arguing	that	visual	

programming	can	best	be	understood	as	maker	practice.	That	does	not	mean	that	I	

wish	to	suggest	that	artistic	practices	and	DIY	or	Maker	culture	are	the	same	thing.	It	

merely	 implies	 that	 the	 artist	 and	 the	 maker	 share	 an	 interest	 in	 exploring	 the	

computer	 interface	 and	 digital	 code	 as	 a	medium	 for	 their	 own	 expression.	 Still	 it	

seems	 to	 me	 that	 the	 maker	 perspective	 on	 computer	 technology	 is	 of	 vital	

importance.	 I	 will	 argue	 that	 both	 artists	 and	 makers	 playfully	 explore	 digital	

technology	as	“design	fiction”	(Bleecker,	2009)	suggesting	that	it	is	the	perception	of	

technology	 rather	 than	 the	 technology	 itself	 that	 is	 at	 stake.	 I	 will	 conclude	 that	

visual	 programming	 and	 creative	 code	 allows	 the	 artist	 or	 maker	 to	 playfully	 re-

imagine	the	“history	of	the	future”.		

	

Max	MSP	vs.	Pure	Data	
	

My	analysis	of	the	visual	programming	interface	is	based	upon	the	commercial	Max	

MSP	software,	but	that	does	not	mean	that	the	scope	is	limited	to	Max	MSP;	it	also	

applies	to	Pure	Data,	the	open	source	alternative	to	Max	MSP.	Of	course	there	are	

other	visual	programming	tools	such	as	Scratch2,	the	excellent	educational	package	

developed	 by	 the	MIT	Media	 Lab.	 However,	 as	 both	Max	MSP	 and	 Pure	Data	 are	

specifically	 aimed	 at	 live	 performance,	 these	 applications	 are	 of	 primary	 concern	

here.	 Obviously	 there	 is	 an	 important	 difference	 between	 open	 source	 and	

commercial	or	branded	software.	The	pricing	of	the	commercial	Max	MSP	package	is	

																																																								
2	Scratch	(https://scratch.mit.edu/)	is	freely	available	as	a	browser-based	online	application	and	
as	a	standalone	application	

	 15	

steep,	especially	when	considering	the	availability	of	Pure	Data,	the	free	alternative	

developed	by	Miller	Smith	Puckette,	the	very	same	person	that	also	developed	Max	

MSP.	 The	 fundamental	 and	 deeply	 political	 differences	 between	 open	 source	 and	

commercial	 software	 may	 invoke	 principal	 discussions	 within	 artist	 and	 maker	

communities	 as	 well	 as	 in	 scientific	 discourse.	 However,	 this	 complex	 and	 highly	

politicized	debate	 is	beyond	the	scope	of	 this	 thesis.	For	now	 it	seems	plausible	to	

assume	 that	both	Max	MSP	and	 its	open	 source	equivalent	Pure	Data	appeal	 to	 a	

more	or	 less	similar	audience	of	artists	and	makers.	One	may	be	willing	to	buy	the	

Max	 MSP	 software	 while	 the	 other	 may	 principally	 reject	 the	 use	 commercial	

software	thus	preferring	Pure	Data.	Still	others	will	avoid	purchasing	software	at	all	

using	illegal	versions.		

	

The	 complex	 mathematical	 foundations	 of	 electronic	 music	 production	 and	 visual	

mapping	 techniques	 in	 live	performance	 	 -	 in	Max	MSP	or	Pure	Data	 -	will	 also	be	

avoided,	 first	because	my	aim	here	 is	much	broader	than	the	mathematical	details	

that	 underpin	 live	 performance	 and	 music	 production,	 and	 second	 because	 the	

theoretical	side	to	these	issues	-	tone	generation,	modulation	and	sound	processing	

to	name	a	few	-	have	already	been	described	in	detail	(Puckette,	2007).		

	
	 	

	 16	

Cultural	interfaces	

	

Software	studies	
	
In	 the	 introduction	 to	 Software	 studies:	 A	 lexicon	 (2013)	 Fuller	 notes	 that	 “while	

applied	 computer	 science	 and	 related	 disciplines	 such	 as	 those	 working	 on	

computer-human	interface	have	now	accreted	around	half	a	century	of	work	on	this	

domain,	software	is	often	a	blind	spot	in	the	wider,	broadly	cultural	theorization	and	

study	 of	 computational	 and	 networked	 digital	media”	 (2013,	 3).	 Thus	 “software	 is	

seen	 as	 a	 tool,	 something	 that	 you	 do	 something	 with.	 It	 is	 neutral,	 grey,	 or	

optimistically	 blue”	 (2013,	 3).	Over	 the	 last	 decade	 the	 interest	 in	 software	within	

the	Humanities	has	steadily	grown,	and	the	field	of	software	studies	has	emerged	as	

a	vital	part	of	the	“Digital	Humanities”.	Lev	Manovich,	perhaps	the	most	prominent	

scholar	in	software	studies,	recognizes	that	“outside	of	certain	cultural	areas	such	as	

crafts	and	fine	art,	software	has	replaced	a	diverse	array	of	physical,	mechanical,	and	

electronic	 technologies	 used	 before	 the	 twenty-first	 century	 to	 create,	 store,	

distribute	and	access	cultural	artifacts”	(Manovich,	2013,	2).	Manovich	also	point	out	

that	we	are	not	merely	 interfacing	with	a	computer	system.	That	 is	 to	say,	we	use	

the	 computer	 to	 interact	 with	 cultural	 data.	 The	 human-computer	 interface	 has	

become	a	human-computer-culture	interface,	or	in	short,	a	cultural	interface	(2001,	

80).		

Thus	the	role	of	software	and	those	whom	produce	software	 interfaces	should	not	

be	 underestimated.	 Pold	 (2008)	 writes:	 “the	 relations	 between	 the	 software’s	

senders	 and	 receiver(s)	 or	user(s)	 are	defined,	most	often	within	 very	 strict	 limits.	

Normally,	 it	 is	only	possible	to	change	certain	things	and	change	them	the	way	the	

senders	 have	 prefigured”	 (2008,	 219).	 Initially	 most	 attention	 has	 gone	 out	 to	

widespread	 ‘popular’	 or	 ‘mainstream’	 productivity	 software	 such	 as	 the	 software	

bundled	in	the	Adobe	Creative	Suite3	(Manovich,	2013).	At	first	glance	it	seems	not	

																																																								
3	The	Adobe	Creative	Suite	(http://www.adobe.com/products/cs6/faq.html)	bundles	all	Adobe	
productivity	software	for	printmedia,	AV	production	and	webdesign.	In	2015	the	standalone	
applications	in	the	Creative	Suite	(version	6)	have	been	replaced	with	the	Adobe	Creative	Cloud	
versions	that	offers	a	subscription	model.	

	 17	

that	difficult	to	trace	the	pre-digital	practices	that	most	common	media	productivity	

software	 such	 as	 Adobe	 Photoshop4	or	 Apple’s	 Final	 Cut5	remediate.	 The	 Adobe	

software	is	building	upon	existing	practices	and	relies	on	metaphors	firmly	rooted	in	

the	 pre-digital	 era.	 As	 a	 consequence	 “many	 software	 techniques	 that	 simulate	

physical	tools	share	a	fundamental	property	with	these	tools:	they	require	a	user	to	

control	 them	 “manually.”	 The	 user	 has	 to	 micro-manage	 the	 tool,	 so	 to	 speak,	

directing	it	step-by-step	to	produce	the	desired	effect”	(Manovich,	2013,	128).	Still,	

and	 as	 Manovich	 also	 points	 out,	 below	 the	 surface	 of	 the	 user	 interface	 the	

analogies	 between	 software	 and	 real	 world	 practices	 are	 complex	 and	 deceitful	

(2013,	59).		

Thus	over	the	past	decade	the	insight	 in	“mainstream”	and	“productivity"	software	

has	steadily	grown	and	software	design	has	been	recognized	as	of	vital	importance	in	

the	 complex	 interplay	 between	 culture	 and	 technology.	 Or,	 as	 Rieder	 &	 Schäfer	

(2008)	 suggest,	 software	 may	 provide	 a	 bridge	 between	 culture	 and	 technology.	

Their	suggestion	 is	build	around	two	 intertwining	observations;	 the	 first	 recognizes	

that	 “software	 plays	 an	 increasingly	 important	 role	 in	 our	 everyday	 lives,	

accentuating	 culture	 as	 a	 hybrid	 of	 technology	 and	 discourse”	 (2008,	 168);	 the	

second	adds	“software	production	flourishes	outside	of	the	classical	institutions	and	

methodology	of	engineering”	(2008,	168).			

Designer,	artist	and	maker	
	
Rieder	&	Schäfer	also	recognize	a	shift	 from	engineering	towards	design,	as	“every	

age	seems	to	have	an	epitomical	figure	of	technical	creation:	the	craftsman	for	the	

Middle	Ages,	the	inventor	in	the	industrial	Revolution,	and	the	engineer	in	the	20th	

century:	the	designer	as	the	toolmaker	of	the	information	age”	(2008,	159).	Thus	the	

(software)	 designer	 has	 emerged	 as	 the	new	 central	 or	 iconic	 figure	 in	 a	 software	

driven	society;	replacing	the	engineer	as	the	paradigmatic	 figurine.	Still	one	should	

remain	 cautious	when	 confronted	with	 the	 protagonist	 in	 the	 heroic	 narratives	 of	

																																																								
4	Adobe	Photoshop	(www.adobe.com/Photoshop);	the	hallmark	application	in	the	Adobe	
software	family	
5	Final	Cut	Pro	(http://www.apple.com/final-cut-pro/)	video	editing	software,	only	available	for	
the	Apple	platform	

	 18	

innovation.	The	term	“designer”	can	be	confusing	as	it	may	include	a	wide	variety	of	

practices.	Whereas	Rieder	&	Schäfer	 (2008)	 seem	 to	understand	 the	designer	as	 a	

software	designer	creating	new	digital	tools,	for	Manovich	(2001,	2013)	the	designer	

is	 to	 be	 understood	 as	 a	 media	 designer,	 a	 professional	 producing	 (new)	 media.	

Obviously	there	is	a	crucial	difference	between	those	using	existing	tools	and	those	

creating	 new	 ones.	 The	 average	 media	 designer	 working	 with	 mainstream	

productivity	 software,	 using	brushes,	 selection	 tools,	 and	 the	paint	 bucket	 to	 earn	

her	monthly	salary	might	be	far	closer	to	the	traditional	craftsman	then	to	the	iconic	

image	of	the	toolmaker	of	the	information	age.		

In	 contrast	 to	 the	 Adobe	 Creative	 Suite	 the	 Max	 MSP	 interface	 does	 not	 offer	

manually	controlled	brushes,	selection	tools	or	paint	buckets.	Max	MSP	draws	on	the	

electronic	 component	 and	 (analogue)	 circuitry	 as	 its	 primary	 interface	 metaphor.	

Max	MSP	thus	draws	from	engineering	rather	than	craftsmanship.	Furthermore,	Max	

MSP	 allows	 the	 user	 to	 create	 (visual)	 code.	 As	 such,	 the	 artist	working	with	Max	

MSP	might	be	closer	to	the	software	designer	than	the	(new)	media	designer.		

Restricted	vs.	mass	production		
	
In	 this	 thesis	a	distinct	 is	being	made	between	artists	and	designers,	 as	 the	 first	 is	

more	precise,	 and	 the	 second	 is	more	 inclusive.	Here	 the	artist	 is	understood	as	a	

(new)	media	artist	whom	not	only	makes	use	of	 tools	but	also	actively	engages	 in	

(tool)	making	practices.	Till	a	certain	end	the	artist	may	also	stand	for	the	“limited”	

or	“artistic”	production	where	the	designer	should	be	read	as	an	umbrella-term	that	

includes	a	wide	variety	of	practices	in	cultural	production.	That	does	not	mean	that	I	

wish	to	affirm	the	“high	culture”	versus	“low	culture”	dichotomy,	 it	merely	 implies	

that	 the	 distinct	 between	 restricted	 and	 mass	 production	 still	 operates	 as	 an	

important	 organizing	 principle	 in	 cultural	 production.	 It	 is	 also	 important	 to	

recognize	that	“certain	forms	of	digital	art	are	starting	to	enter	the	mainstream	both	

commercially	and	 institutionally”	 (Anderson	&	Pold,	2011,	8).	 Indeed,	 the	 realm	of	

the	 arts	 does	 not	 always	 or	 necessarily	 operate	 outside	of	 commerciality,	 and	 the	

aesthetics	 of	 contemporary	 interface	 culture	may	 call	 for	 a	 re-examination	 of	 the	

relation	between	the	(digital)	arts	and	design	(2011,	8).	In	a	more	general	sense	one	

	 19	

could	add	that	“there	is	now	a	huge	amount	of	cultural	production	taking	place	on	

the	 boundaries	 between	 sub-fields	 of	mass	 and	 restricted	 production;	 or,	 perhaps	

better	still,	that	restricted	production	has	become	introduced	into	the	field	of	mass	

production”	(Hesmondhalgh,	2006,	222).	The	 important	observation	that	“software	

production	 flourishes	 outside	 of	 the	 classical	 institutions	 and	 methodology	 of	

engineering”	(Rieder	&	Schäfer,	2008,	168)	might	also	suggest	that	the	archetypical	

distinct	 between	 ‘the	 engineer’,	 ‘the	 designer”	 and	 ‘the	 artist’	 may	 need	

reconfiguration.	The	rise	of	software	may	call	 for	a	new	kind	of	 typology	 for	 those	

involved	in	cultural	making	practices.		

Visual	language	
	
The	20th	century	avant-garde	artists	explored	the	machinery	of	mass	production	as	

an	 artistic	 tool,	 rejecting	 the	 traditional	 craftsmanship	 of	 the	 pre-industrial	 era.	 In	

the	21th	century	the	attention	is	shifting	towards	software	interfaces,	the	algorithm	

and	(creative)	code.	The	tools	most	commonly	associated	with,	and	often	regarded	

as	 essential	 to	 the	 creative	 practice	 -	 the	 software	 bundled	 in	 the	Adobe	Creative	

Suite	 -	 have	been	 thoroughly	 examined	by	Manovich	 (2013).	Manovich	 concludes:	

“before	 they	 adopted	 software	 tools	 in	 the	 1990s,	 filmmakers,	 graphic	 designers,	

and	animators	used	completely	different	 technologies.	Therefore,	as	much	as	 they	

were	 influenced	 by	 each	 other	 or	 shared	 the	 same	 aesthetic	 sensibilities,	 they	

inevitably	 created	 differently	 looking	 images”	 (2013,	 297).	 Manovich	 argues	 that	

these	 distinct	 artistic	 languages	 -	 both	 in	 terms	 of	 form	 and	 content	 –	 have	 been	

replaced	by	“the	same	software-generated	iconography	.	.	.	found	across	all	types	of	

media,	 all	 scales,	 and	 all	 kinds	 of	 projects”	 (2013,	 303).	 The	 common	 sense	

explanation	 provided	 by	 Manovich	 is	 that	 the	 palette	 of	 software	 used	 by	

contemporary	 designers	 is	 small;	 they	 make	 use	 of	 the	 same	 set	 of	 software	 to	

design	everything	(2013,	300).		

This	may	 indeed	 hold	 for	 the	mainstream	 of	 commercial	media	 production	 and	 a	

large	 part	 of	 the	 vast	 body	 of	 commercially	 produced	 media	 that	 circulates	 the	

Internet.	 Indeed,	 the	 Adobe	 software	 family,	 including	 Photoshop,	 Illustrator	 and	

Indesign	dominates	 the	broad	mainstream	of	media	production	and	media	design.	

	 20	

But	of	course	this	mainstream	culture	does	not	represent	human	culture	as	a	whole.	

One	 might	 add	 that	 it	 seems	 hardly	 surprising	 that	 the	 global	 mainstream	 of	

commercial	media	production	is	marked	by	its	homogeneity.		

Compared	to	the	Adobe	Creativity	Suite	–	the	software	bundle	often	considered	the	

industry	 standard	 for	 the	 “creative	 industries”	 -	 the	 Max	 MSP	 user	 base	 may	 be	

small,	 and	 the	 Pure	Data	 community	may	 be	 even	 smaller.	 Still	 the	 artist	working	

with	 Max	 MSP	 and	 Pure	 Data	 do	 reach	 a	 substantial	 and	 significant	 audience.	

Recalling	his	visit	to	electronic	musician,	writer	and	artist	DJ	Spooky	Manovich	(2013)	

briefly	mentions	Max	MSP:		

The	only	“instrument”	Paul	Miller	(aka	DJ	Spooky	That	Subliminal	Kid)	owned	

was	his	15-inch	PowerBook	laptop,	made	by	Apple.	This	was	his	“Dynabook”:	

a	“self-contained	knowledge	manipulator	in	a	portable	package	the	size	and	

shape	 of	 an	 ordinary	 notebook.”	 Although	 this	 “Dynabook”	 did	 not	 have	

Smalltalk,	it	ran	another	programming	environment	which	was	powerful,	fast	

and	 allowed	 for	 visual	 programming—MAX,	 the	 language	 of	 choice	

worldwide	 for	 tens	 of	 thousands	 of	 electronic	 musicians,	 VJs,	 dancers,	

theatre	 performers	 and	 others	 working	 with	 different	 forms	 of	 real-time	

performance	(333).		

Indeed,	 (electronic)	 musicians	 and	 performing	 artists	 have	 developed	 their	 own	

practices	building	their	own	collection	of	software	tools.	Besides	Max	MSP	and	Pure	

Data	-	the	visual	programming	software	discussed	here	-	the	most	notable	tools	are	

Ableton	 Live6,	 Propellerheads	Reason7,	Native	 Instruments	 Traktor8,	 Avid	 Protools9	

and	 exclusively	 for	 the	 Apple	 users	 Logic	 Pro10.	 It	 is	 important	 to	 add	 that	 most	

performing	 artists	 will	 also	 carry	 one	 or	 several	 physical	 devices	 to	 provide	 the	

necessary	 knobs,	 sliders	 and	 buttons	 as	 the	 mouse	 and	 keyboard	 are	 practically	

																																																								
6	Ableton	Live	(https://www.ableton.com/)	combines	electronic	music	production	an	live	
performance.		
7	Reason	(https://www.propellerheads.se/reason)	electronic	music	production	studio	
8	Traktor	(http://www.native-instruments.com/en/products/traktor/)	soft-	and	hardware	for	
DJ’s	
9	Protools	(http://www.avid.com/us/products/family/pro-tools)	for	professional	studio	
recording		
10	Logic	Pro	(http://www.apple.com/logic-pro/	

	 21	

useless	 in	the	context	of	 live	performance.	 In	other	words,	 in	 live	performance	the	

physical	human–computer	 interface	matters.	What	 is	unique	to	Max	MSP	–	and	 its	

open	source	counterpart	Pure	Data	-	is	that	the	artist	can	create	her	own	(physical)	

user	interface.	Furthermore,	Max	MSP	allows	the	artist	to	control	other	applications	

through	 the	MIDI	 protocol.	 The	 artist	may	 thus	 create	 a	 unique	 custom	 interface	

combining	physical	hardware	and	software	applications	through	(visual)	code.	A	data	

stream	 can	 be	 transcoded	 into	 sound	 patterns,	 a	 slider	 might	 be	 replaced	 by	 a	

physical	gesture	and	moving	towards	specific	positions	could	trigger	the	projection	

of	visual	material.		

	

Max	MSP	

The	first	version	of	Max,	released	 in	1988,	was	 limited	to	MIDI	control	signals.	The	

computers	available	in	the	1980’s	were	not	fast	enough	to	deal	with	real	time	audio.	

The	 rapid	 increase	 in	 processing	 speed	 allowed	 for	 the	 release	 of	 the	 MSP	11	

extension	 thus	 making	 the	 computer	 a	 musical	 instrument	 capable	 of	 live	

performance	 (Puckette,	 2007,	 ix).	 In	 2003	Max	was	 further	 extended	with	 Jitter,	 a	

code	 library	 that	 allows	 for	 real-time	 video	 processing.	 Still	 initially	Max	MSP	was	

conceptualized	 as	 a	 musical	 instrument,	 “played”	 or	 “operated”	 by	 a	 human	

performer.	Puckette	(1991)	explains:	

	I	 am	 against	 trying	 to	 set	 the	 computer	 up	 as	 a	musical	 performer.	 Large	

software	systems	which	try	to	 instill	“musical	 intelligence”	 in	the	computer,	

while	interesting	as	research	projects,	are	not	likely	to	be	musically	useful	.	.	.	

The	computer	is	better	used	as	an	instrument.	A	unique	one,	to	be	sure:	no	

violin	has	a	programmable	user	 interface.	The	computer	 instrument	widens	

the	possibilities	of	musical	expression	-	human	musical	expression	-	 in	ways	

which	we	are	only	beginning	to	explore	(1991,	2)	

Since	it’s	first	release	in	1988	Max	–	now	often	referred	to	as	Max	MSP,	a	convention	

that	 I	 will	 follow	 -	 has	 gradually	 been	 extended	 well	 beyond	 the	 realm	 of	 music	

																																																								
11	MSP	is	short	for	Max	Sound	Processing.	It	also	refers	to	the	initials	of	Miller	Smith	Puckette	

	 22	

production.	According	to	the	official	Max	MSP	website12	“Max	is	built	on	the	idea	of	

connecting	things	together	to	make	something	new.	Connect	plugins,	media	players,	

and	 custom	 DIY	 effects,	 or	 build	 something	 completely	 from	 scratch	 .	 .	 .	 Max	

provides	everything	from	the	most	basic	nuts	and	bolts	to	advanced	effects	modules	

that	are	 ready	 to	use.	Mix,	match,	and	 tinker	without	 limits”.	The	project	pages	 in	

the	 Max	 community	 hosted	 by	 Cycling’74	 showcase	 a	 wide	 variety	 of	 projects,	

loosely	 organized	using	 tags13.	 Even	 though	 a	 substantial	 amount	of	 projects	 lacks	

tagging,	the	list	of	the	49	most	frequently	used	tags	gives	an	impression	of	how	Max	

MSP	is	used	in	practice.	The	top	ten	tags	are:	 Interactive	(127),	Performance	(125),	

Max-For-Live	 (116),	 Installation	 (116),	 Real-Time	 (103),	 Ableton	 (89),	 Audio	 (89),	

Sound	 (83),	Midi	 (83)	 and	 Video	 (81).	 The	most	 frequently	 used	 tags	 suggest	 that	

Max	MSP	is	still	being	used	as	an	instrument	–	or	as	a	tool	to	create	instruments	-	in	

music	production	and	in	live	performance.	Arguably	the	most	well	known	artists	that	

are	known	to	make	use	of	Max	MSP	include	Autechre,	Aphex	Twin,	Daft	Punk,	Jamie	

Lidell	 and	 Radiohead.	 However,	 the	 use	 is	 most	 certainly	 not	 limited	 to	 music	

production;	Max	MSP	 is	also	widely	used	 in	 interactive	 installations	and	 in	a	broad	

range	of	other	types	of	performance.	It	is	hard,	if	not	impossible	to	narrow	down	the	

wide	variety	of	different	projects	into	a	small	set	of	subcategories.	Perhaps	the	one	

key	 characteristic	 that	 most	 if	 not	 all	 projects	 share	 is	 the	 use	 of	 a	 variety	 of	

hardware	devices.	

	

The	MIDI	protocol	
	
In	its	first	releases	-	before	the	Max	Sequencing	Protocol	(MSP)	modules	were	added	

-	Max	was	designed	as	a	software	interface	for	analogue	hardware	synthesizers	using	

the	 Musical	 Instrument	 Digital	 Interface	 (MIDI)	 protocol.	 The	 MIDI	 protocol	 was	

standardized	 in	 the	 early	 1980’s	 and	 was	 set	 up	 as	 a	 message	 system	 between	

analogue	hardware	devices	 to	control	a	wide	 range	of	musical	parameters	 such	as	

tempo,	 note	 and	 pitch.	 The	 development	 of	 the	 MIDI	 protocol	 was	 important	

because	it	allowed	musicians	to	combine	controllers	and	instruments	from	different	
																																																								
12	https://cycling74.com	
13	https://cycling74.com/community/?q=project	

	 23	

manufacturers	into	a	single	setup.	The	MIDI	protocol	was	adapted	by	the	upcoming	

personal	computer	industry	halfway	the	1980’s	and	has	since	remained	the	industry	

standard	 for	both	music	 software	and	 the	music	hardware	 industry.	A	stored	MIDI	

file	 contains	 instructions	 only	 and	 does	 not	 carry	 sound	 signals,	 thus	 a	 MIDI	 file	

requires	 a	 synthesizer	 (or	 a	 software	 emulation	 of	 a	 synthesizer,	 a	 soft-synth)	 to	

become	 audible.	 The	 only	 significant	 change	 in	 the	MIDI	 standard	 up	 till	 now	 has	

been	the	introduction	of	the	USB	(Universal	Serial	Bus)	 interface	replacing	the	five-

pin	DIN	connector.	Still	older	MIDI	devices	using	the	five-pin	connector	can	easily	be	

connected	 to	 a	 modern	 personal	 computer	 or	 laptop	 using	 a	 cheap	 USB	 to	MIDI	

hardware	interface.		

Physical	Interaction	and	hardware	devices	
	
The	hallmark	feature	of	Max	MSP	thus	is	its	capability	of	connecting	and	controlling	

hardware	devices.	The	Cycling’74	homepage	explicitly	mentions:	“(1)	the	Arduino	to	

connect	electronic	sensors,	motors,	and	other	components	with	this	programmable	

board;	 (2)	 controllers	 to	 use	 any	 MIDI	 controller	 with	 knobs,	 sliders,	 buttons,	 or	

keyboards;	(3)	synthesizers	to	combine	hardware	synths	with	Max	to	create	custom	

editors	 or	 drive	 a	 multi-hardware	 performance;	 (4)	 DMX	 lightning	 to	 add	 audio-

responsive	 and	 interactive	 elements	 to	 a	 show	 system;	 (5)	 projectors	 with	

interactive	 support	 for	 multiple	 screens,	 OpenGL	 hardware	 graphics,	 and	 video	

playback;	and	(6)	live	inputs	to	connect	live	instruments	and	sound	sources	to	Max”	

(Cycling’74,	 2015,	 June	29).	 Furthermore,	 the	 tools	 section	of	 the	user	 community	

offers	 a	 wide	 variety	 of	 user-contributed	 patches	 for	 connecting	 and	 controlling	

hardware.	In	short,	the	cultural	artefacts	produced	through	Max	MSP	challenge	the	

popular	notion	of	 the	 “desktop”	 computer	operated	using	a	mouse,	 keyboard	and	

screen	interface.		

Shifting	attention	to	 the	physicality	of	 interaction	should	not	go	at	dispense	of	 the	

complex	cognitive	processes	 involved.	Manovich	 (2001)	strongly	opposes	using	 the	

term	 “interactive	 media”	 precisely	 for	 this	 reason:	 “when	 we	 use	 the	 concept	 of	

“interactive	media”	exclusively	in	relation	to	computer-based	media,	there	is	danger	

that	 we	 interpret	 "interaction"	 literally,	 equating	 it	 with	 physical	 interaction	

	 24	

between	a	user	and	a	media	object	(pressing	a	button,	choosing	a	 link,	moving	the	

body),	at	 the	sake	of	psychological	 interaction”	 (2001,	71).	Manovich	points	at	 the	

principle	 of	 hyperlinking	 to	 illustrate	 how	 association,	 problem	 solving,	 recall	 and	

reflection	 are	 externalized.	 These	mental	 processes	 central	 to	 human	 thinking	 are	

objectified	and	reduced	to	following	a	path	of	hyperlinks	(2001,	74).	As	a	result,	“the	

interactive	media	 asks	 us	 to	 identify	with	 somebody's	 else	mental	 structure	 .	 .	 .	 a	

computer	 user	 is	 asked	 to	 follow	 the	mental	 trajectory	 of	 a	 new	media	 designer”	

(2001,	74).		

This	may	indeed	count	as	a	serious	problem	in	the	mainstream	of	digital	media	and	

in	 the	 mainstream	 of	 productivity	 software	 as	 both	 follow	 the	 same	 relentless	

doctrine	 of	 “user-friendliness”	where	 the	 “new	media	 designer”	 does	 the	 thinking	

and	 the	“user”	 is	 restricted	 to	clicking.	But	 the	context	of	 live	performance	 is	 very	

different.	Electronic	musicians,	VJs,	dancers	and	performers	do	not	merely	make	use	

of	 digital	 computer	 technology	 to	 produce	 media.	 In	 digital	 performance	 the	

relations	 between	 the	 artist	 and	 the	 environment	 in	 which	 the	 code	 lives	 are	

complex,	 but	most	 of	 all	 they	 are	 physically	 embodied.	One	might	 say	 that	 in	 the	

context	of	(artistic)	live	performance	the	physical	human-computer	interface	created	

through	Max	MSP	is	part	of	the	artwork.	Perhaps	that	should	not	come	as	a	surprise	

as	 the	 interactive	 arts	 in	 general	 and	 digital	 performance	 in	 specific	 have	 build	 a	

tradition	 in	 exploring	 the	 embodied	 physicality	 of	 interaction,	 questioning	 the	

traditional	notion	of	 the	 interface	as	 standing	 in-between	or	 separating	 the	“user”	

from	the	“content”.	However,	that	does	not	mean	that	there	is	only	physical	devices	

and	programmable	hardware	to	recon	with,	or	that	“there	is	no	software”	as	Kittler	

famously	posed	(1995,	3).	In	contrast,	it	is	through	–	and	in	-	software	code	that	the	

digital	artwork	comes	into	being.		

	
	 	

	 25	

Distributing	agency	
	

The	Eunoia	project	

The	Eunoia	project	introduced	earlier	well	illustrates	the	notion	of	the	artwork	as	a	

human-computer	interface	running	on	software	code.	From	a	“neutral”	engineering	

perspective	the	Eunoia	project	can	easily	be	summarized	(Figure	1):	The	meditating	

performer	 (1)	 uses	 the	 commercially	 produced	 Emotiv	 EEG	 headset	 (2)	 that	 can	

detect	 a	 limited	 range	 of	 emotions	 like	 excitement,	 engagement,	 meditation,	

frustration,	boredom.	The	captured	data	is	transcoded	into	the	Open	Sound	Control	

(OSC)	format	and	send	to	Max	MSP	(3).	The	data	stream	is	then	used	to	manipulate	

the	volume,	panning,	and	playback	speed	of	a	pre-recorded	set	of	sound	samples	(4)	

stored	 on	 the	 computer’s	 hard	 drive	 (5).	 The	 digital	 audio	 data	 is	 converted	 into	

analogue	signals	using	a	Digital	to	Audio	(DAC)	interface	capable	of	handling	multiple	

audio	 streams	 (6).	 The	 modified	 speakers	 (7)	 receive	 the	 analogue	 signal,	 now	

audible	 for	 the	 audience	 (8).	 The	 sound	 waves	 become	 visible	 as	 the	 speaker’s	

oscillation	 disturbs	 the	 calm	 water	 (7).	 The	 reaction	 of	 the	 audience	 (8)	 and	 the	

sound	 produced	 by	 the	 speakers	 (7)	 affect	 the	 emotional	 state	 of	 the	 performing	

artist	thus	creating	a	feedback	loop.	

	

	

Figure	1:	The	Eunoia	Project	

	

	 26	

Of	 course	 this	 plain	 and	 descriptive	 summary	 of	 the	 Eunoia	 project	 falls	 short	 in	

many	ways.	It	does	not	address	the	subjective	complexity	of	the	artwork	nor	does	it	

fully	 capture	 the	 complex	 relation	 between	 human	 performer,	 code,	 physical	

hardware	and	the	audience	in	digital	performance.	And	this	description	ignores	the	

crucial	role	of	software	code.	It	excludes	the	complex	algorithms	processing	the	EEG	

data	captured	by	the	Emotiv	EEG	device14	and	the	artistic	interpretation	of	the	EEG	

data	 through	 visual	 programming.	 What	 is	 of	 importance	 here	 is	 the	 subjective	

artistic	interpretation	of	the	data	rather	than	the	data	produced	by	the	EEG	device.	

That	is	to	say,	the	Eunoia	project	should	not	merely	be	understood	as	an	engineering	

project	and	 its	goal	 is	not	 to	optimize	the	performance	of	hardware;	 it	 is	an	act	of	

creative	coding	that	attempts	to	make	the	hardware	performative.		

Creative	code	
	

The	move	towards	creative	coding	of	which	Eunoia	is	just	one	example	marks	a	shift	

in	paradigm	as	“creative	coding	wants	to	fashion	a	‘new	reality’,	a	hybrid	of	the	good	

old	familiar	phenomenological	‘reality’	and	new	‘virtual	realities’,	new	experiences	of	

existence	 in	a	hybrid	real/virtual	dimension”	(Saphiro,	2014).	Or,	as	Saphiro	writes:	

“creative	 coding	 where	 a	 line	 of	 code	 is	 an	 aesthetic	 artefact	 and	 not	 only	 an	

instruction	to	the	machine,	where	a	new	software	layer	opens	up	as	a	performance	

space	for	music,	poetry,	storytelling,	dance	and	philosophy”	(Saphiro,	2014).	As	such,	

creative	coding	seems	a	logical	progression	in	the	artistic	tradition	of	collage.	If	the	

collage	restructures	the	spatial	organization	of	images	on	a	flat	canvas	and	the	remix	

restructures	 the	 temporal	 organization	 of	 audio-visual	media	 then	 creative	 coding	

reconfigures	the	relations	between	actors.	Creative	coding	thus	allows	the	artist	to	

explore	the	distribution	of	agency.	 If	 the	principal	concern	 in	contemporary	artistic	

practice	 is	 the	 composition	 of	 relations	 through	 operations,	 then	 perhaps	 indeed	

“the	 greatest	 interactive	 work	 is	 the	 interactive	 human-computer	 interface	 itself”	

(Manovich,	2003,	15).		

																																																								
14	Exactly	how	the	Emotiv	EEG	device	(http://www.emotiv.com)	and	the	devices	produced	
by	rivaling	commercial	companies	transcode	the	captured	brain	signals	into	digital	code	is	
not	publicly	available.	The	company	only	provides	detailed	instructions	on	how	to	handle	the	
data	output.		
	

	 27	

Actor	Networks	and	material	semiotics	
	

The	Eunoia	project	could	thus	be	described	as	a	complex	network	of	ideas,	physical	

artefacts	and	interactions	bound	together	in	software	code.	As	such	it	seems	only	a	

small	 step	 to	 the	 Actor-Network-Theory	 (ANT)	which	 “describes	 the	 enactment	 of	

materially	 and	 discursively	 heterogeneous	 relations	 that	 produce	 and	 reshuffle	 all	

kinds	 of	 actors	 including	 objects,	 subjects,	 human	 beings,	 machines,	 animals,	

“nature,”	 ideas,	 organizations,	 inequalities,	 scale	 and	 sizes,	 and	 geographical	

arrangements”	 (Law,	 2009,	 141).	 Though	 this	 brief	 description	 may	 effectively	

summarize	ANT,	a	few	clarifications	need	to	be	made.	Both	Latour	(1996,	1999)	and	

Law	(2009)	express	their	discomfort	with	the	term	“Actor	Network	Theory”	as	it	may	

easily	 lead	 to	misunderstandings.	 Law	argues	 that	 “it	 is	 better	 to	 talk	 of	 “material	

semiotics”	 rather	 than	 “actor	 network	 theory.”	 This	 better	 catches	 the	 openness,	

uncertainty,	 revisability,	 and	 diversity	 of	 the	 most	 interesting	 work”	 (2009,	 142).	

Latour	 playfully	 suggests	 adding	 hyphen	 thus	 writing	 ‘actor’	 ‘network’	 ‘theory’	 to	

underline	that	each	element	may	easily	be	misinterpreted	(1999,	24).		

	

Let	me	briefly	address	the	three	terms	combined	in	ANT.	First,	Latour	(1996)	stresses	

that	“an	“actor”	in	AT	is	a	semiotic	definition	-an	actant-,	that	is,	something	that	acts	

or	to	which	activity	 is	granted	by	others.	 It	 implies	no	special	motivation	of	human	

individual	 actors,	 nor	 of	 humans	 in	 general.	 An	 actant	 can	 literally	 be	 anything	

provided	it	is	granted	to	be	the	source	of	an	action”	(1996,	7).	Thus	agency	is	in	flux;	

it	 is	distributed	and	activated	 through	a	network	 rather	 than	bound	 to	 the	human	

agent.	Second,	the	word	‘network’	may	suggest	a	technological	network	in	the	sense	

of	 engineering,	 or	 in	 the	 sense	 of	 the	 computer	 network.	However,	 as	mentioned	

earlier,	 the	 network	 in	 ANT	 can	 include	 anything	 that	 is	 related	 to	 action.	 It	 is	

important	to	emphasize	that	the	networks	that	are	of	interest	here	are	not	“locked”	

in	the	(software)	interface;	they	may	includes	the	human	performer(s),	the	physical	

hardware,	 the	 audiences,	 the	 communities	 of	 makers	 that	 engage	 in	 producing	

digital	artefacts,	ideas	in	(artistic)	discourse	and	so	on.	Third,	ANT	is	an	approach,	not	

a	theory	(Latour,	1999,	19;	Law,	2009,	141).	Law	explicitly	underlines	the	importance	

of	 stories	 in	 material-semiotics	 (2009,	 143)	 stressing	 that	 the	 narrative	 is	

	 28	

performative,	 not	 innocent	 (2009,	 155).	 The	 Eunoia	 Project	 well	 illustrates	 how	

different	traditions	may	construct	very	different	networks	of	relations,	thus	creating	

stories	that	by	no	means	merely	describe	the	“real”,	they	also	produce	the	realities	

that	they	aim	to	depict.	The	ways	in	which	the	signs,	symbols,	metaphors	and	stories	

that	mark	technology	are	being	produced	and	simultaneously	are	being	productive	

should	 not	 be	 neglected.	 Software	 in	 general,	 and	 the	 syntax	 of	 digital	 code	 in	

specific	are	frequently	portrayed	in	terms	of	neutral	abstractions.	Material-semiotics	

reminds	 us	 of	 the	 crucial	 role	 of	 the	 metaphor	 in	 digital	 technology,	 not	 only	 in	

representation	 and	 discourse	 but	 also	 in	 the	 very	 thingness	 of	 digital	 objects	

themselves	(Van	den	Boomen,	2014,	188).		

	

Liveness	in	performance	
	

Even	 though	 “the	 general	 point	 that	 agency	 is	 distributed	 between	 humans	 and	

nonhumans	has	been	well	established	in	many	different	fields”	(Mackenzie,	2006,	9)	

in	 the	 context	 of	 artistic	 performance	 some	 difficulties	may	 arise.	 In	Performance	

studies:	 An	 introduction	 (2013)	 Schechner	 states:	 “whatever	 is	 being	 studied	 is	

regarded	 as	 practices,	 events,	 and	 behaviors,	 not	 as	 “objects”	 or	 “things”.	 This	

quality	of	“liveness”	–	even	when	dealing	with	media	or	archival	materials	–	is	at	the	

heart	of	performance	studies”	(Schnechner,	2013,	2).	Though	the	subject	of	interest	

here	is	software	as	an	artistic	tool	rather	than	the	artistic	expression	itself,	and	even	

though	 this	 thesis	 should	 be	 situated	 within	 software	 studies	 rather	 than	 in	

performance	 studies	 still	 Schechner	 points	 at	 an	 important	 issue:	 the	 virtue	 of	

“liveness”	in	performance.	

	

I	 wish	 to	 avoid	 the	 complex	 discussion	 on	 what	 exactly	 may	 count	 as	 live,	 still	

“liveness	is	not	an	ontologically	defined	condition	but	a	historically	variable	effect	of	

mediatization.	 It	was	the	development	of	recording	technologies	that	made	it	both	

possible	 and	 necessary	 to	 perceive	 existing	 representations	 as	 “live””	 (Auslander,	

2012,	 3).	 As	 such	 the	 use	 of	 software	 may	 radically	 alter	 the	 shape	 of	 live	

performance,	but	 that	does	not	necessarily	mean	that	 the	use	of	 technology	 limits	

	 29	

human	expression.	Puckette	(2007)	explains	that	when	realizing	both	Pure	Data	and	

Max	MSP15	the	capability	of	live	performance	was,	and	presumably	still	is	an	explicit	

goal	 in	 realizing	 these	 software	 tools	 (Puckette,	 2007,	 ix).	 The	 emphasis	 on	 live	

performance	in	these	software	interfaces	seems	to	underscore	that	“the	phrases	live	

broadcast	and	 live	 recording	suggest	 that	 the	definition	of	what	 counts	as	 live	has	

expanded	 well	 beyond	 its	 initial	 scope	 as	 the	 concept	 of	 liveness	 has	 been	

articulated	to	emergent	technologies.	And	the	process	continues,	still	 in	relation	to	

technological	development”	(Auslander,	2012,	5-6).	My	point	here	is	that	the	use	of	

software	 allows	 for	 artistic	 arrangements	 and	 live	 composition	 that	 supersede	 a	

distinct	between	“live”	versus	“recorded”	or	“analogue”	versus	“digital”.	Auslander	

(2012)	 concludes:	 “digital	 liveness	 emerges	 as	 a	 specifc	 relation	between	 self	 and	

other,	 a	 particular	 way	 of	 “being	 involved	 with	 something.”	 The	 experience	 of	

liveness	results	from	our	conscious	act	of	grasping	virtual	entities	as	live	in	response	

to	the	claims	they	make	on	us”	(Auslander,	2012,	10).	 It	seems	fair	to	assume	that	

these	“virtual	entities”	are	similar	–	or	at	 least	not	structurally	different	from	–	the	

actor	or	actant	in	ANT.	Analysing	the	Max	MSP	software	used	in	digital	performance	

and	interactive	installations	will	provide	an	insight	how	these	‘virtual	entities’	can	be	

arranged	trough	and	in	creative	code.		

	
	 	

																																																								
15	Both	Pure	Data	(https://www.puredata.info/)	and	Max	MSP	(https://cycling74.com/)	are	
visual	programming	tools	primarily	used	by	electronic	musicians,	VJs,	dancers,	theatre	
performers	and	others	working	with	different	forms	of	real-time	performance	(Manovich,	2013,	
333).	

	 30	

Digital	Material		
	

New	media	objects	
	
In	The	Language	of	New	Media	(2001)	Manovich	refers	to	his	method	of	enquiry	as	

“digital	materialism”	(2001,	35)	explaining	that	“rather	than	imposing	some	a	priori	

theory	 from	above,	 I	build	a	 theory	of	new	media	 from	the	ground	up.	 I	 scrutinize	

the	principles	of	 computer	hardware	and	software,	and	 the	operations	 involved	 in	

creating	cultural	objects	on	a	computer,	 in	order	to	uncover	a	new	cultural	 logic	at	

work”	 (2001,	 35).	 Manovich	 analyses	 a	 wide	 variety	 of	 existing	 (new)	 media	

technologies	 and	 the	 content	 of	 a	 broad	 selection	 of	 what	 he	 refers	 to	 as	 “new	

media	objects”.	These	“objects”	can	be	as	small	as	a	single	pixel	and	as	large	as	the	

entire	World	Wide	Web.	In	this	approach	the	“object”	functions	as	a	key	concept	as	

it	serve	as	point	of	departure	in	exploring	software	as	a	cultural	phenomenon.		

Manovich	 identifies	 five	 hierarchically	 structured	 principles	 that	 “should	 be	

considered	not	as	some	absolute	laws	but	rather	as	general	tendencies	of	a	culture	

undergoing	 computerization”	 (2001,	49).	 The	 five	 key	principles	 are:	 (1)	Numerical	

representation;	(2)	Modularity;	(3)	Automation;	(4)	Variability;	and	(5)	Transcoding.	

For	 Manovich	 it	 is	 the	 last	 principle	 that	 describes	 “the	 most	 substantial	

consequence	 of	 media’s	 computerization”	 (2001,	 63).	 The	 fifth	 key	 principle	 thus	

seems	more	 complex	 and	more	 powerful	 than	 the	 first	 four	 principles.	Manovich	

explains:		

The	ways	in	which	computer	models	the	world,	represents	data	and	allows	us	

to	operate	on	 it;	 the	key	operations	behind	all	computer	programs	(such	as	

search,	match,	 sort,	 filter);	 the	conventions	of	HCI	—	 in	 short,	what	 can	be	

called	 computer’s	 ontology,	 epistemology	 and	 pragmatics	—	 influence	 the	

cultural	layer	of	new	media:	its	organization,	its	emerging	genres,	its	contents	

(2001,	65).	

Obviously,	the	“object”	should	be	understood	as	a	direct	reference	to	computational	

science	 as	 Manovich	 advocates	 adopting	 “the	 terms	 and	 paradigms	 of	 computer	

	 31	

science	 for	 a	 theory	 of	 computerized	 culture”	 (2001,	 39).	 Indeed,	 one	 can	 hardly	

overestimate	the	influence	of	digitalization	on	contemporary	culture,	and	indeed	the	

terms	and	paradigms	of	computer	science	can	hardly	be	ignored.	Still	the	computer	

sciences	 terminology	has	 its	 limitations.	Or,	 and	as	will	be	argued	here,	 real-world	

analogies	 and	 cultural	 logic	 are	 of	 crucial	 importance	when	 analysing	 the	material	

“nature”	of	digital	code.	

Avant-garde	
	
That	does	not	mean	that	Manovich	ignores	the	cultural	layer	as	a	whole.	Besides	the	

obvious	 links	 to	 computational	 sciences	 and	 object	 orientated	 programming	 for	

Manovich	the	“object”	also	 invokes	the	 ideas	of	the	early	twentieth	century	avant-

garde	 movement	 as	 “the	 word	 pointed	 toward	 the	 model	 of	 industrial	 mass	

production	 rather	 than	 the	 traditional	 artist’s	 studio,	 and	 it	 implied	 the	 ideals	 of	

rational	 organization	 of	 labor	 and	 engineering	 efficiency	 which	 artists	 wanted	 to	

bring	 into	 their	own	work”	 (2001,	39).	Thus	 for	Manovich	 the	“new	media	object”	

should	be	understood	in	the	light	of	the	early	twentieth	century	modernist	ideology	

as	 “one	 general	 effect	 of	 the	 digital	 revolution	 is	 that	 avant-garde	 aesthetic	

strategies	 came	 to	 be	 embedded	 in	 the	 commands	 and	 interface	 metaphors	 of	

computer	 software.	 In	 short,	 the	avant-garde	became	materialized	 in	a	 computer”	

(2001,	306-307).		

Linking	 new	 media	 to	 the	 early	 20th	 century	 avant-garde	 and	 the	 modernist	

movement	is	most	certainly	useful.	Still	it	seems	to	me	that	the	modernist	ideology	

of	 “rational	 organization	 and	 engineering	 efficiency”	 only	 captures	 part	 of	

contemporary	techno-culture.	That	is	to	say,	producing	new	media	is	not	limited	to	

the	 professional	 media	 designer	 (Jenkins,	 2012)	 and	 software	 production	 is	 not	

bound	to	the	institutions	and	methodology	of	engineering	(Rieder	&	Schäfer,	2008,	

168).	I	will	come	back	to	the	issue	of	cultural	logics	in	the	final	chapter	of	this	thesis,	

my	 aim	here	 is	 to	 analyse	 the	material	 “nature”	 of	 the	 digital	 code	 used	 in	 visual	

programming.	 I	 will	 follow	 Manovich	 (2013)	 in	 “close	 reading”	 the	 Max	 MSP	

software	 interface	 though	 I	 will	 do	 so	 recognizing	 that	 the	 computer	 and	 the	

software	 interface	 are	 extremely	 marked	 by	 metaphor	 and	 analogy	 (Van	 den	

	 32	

Boomen,	2014).		

	

The	Object	as	a	Data	Structure	
	
	In	more	 recent	publications	Manovich	 seems	 to	have	abandoned	 the	 “new	media	

object”,	 now	promoting	 “data	 structure”	 as	 “the	 term	will	 keep	 reminding	us	 that	

what	we	experience	as	“media,”	“content”	or	“cultural	artifact”	is	technically	a	set	of	

data	organized	in	a	particular	way”	(2013,	201).	Or,	as	Manovich	summarizes:		

	Software	simulation	substitutes	a	variety	of	distinct	materials	and	the	tools	

used	to	inscribe	information	(i.e.,	make	marks)	on	these	materials	with	a	new	

hybrid	 medium	 defined	 by	 a	 common	 data	 structure.	 Because	 of	 this	

common	 structure,	 multiple	 techniques	 that	 were	 previously	 unique	 to	

different	media	can	now	be	used	together	(Manovich,	2013,	203).		

For	 Manovich	 “the	 crucial	 factor	 is	 not	 the	 tools	 themselves	 but	 the	 workflow	

process,	enabled	by	“import”	and	“export”	operations	and	related	methods	(“place,”	

“insert	object,”	“subscribe,”	“smart	object,”	etc.),	that	ensure	coordination	between	

these	 tools”	 (2013,	 300).	 From	 there	 Manovich	 concludes	 that	 at	 a	 more	

fundamental	 level	 the	 same	goes	 for	 visual	 techniques	 and	design	 strategies:	 “the	

same	software-enabled	design	strategies,	the	same	software-based	techniques,	and	

the	same	software-generated	iconography	are	now	found	across	all	types	of	media,	

all	scales,	and	all	kinds	of	projects”	(2013,	303).		

Conceptualizing	“media”,	 “content”	and	“cultural	artifacts”	as	objects	defined	by	a	

common	 data	 structure	 is	 useful	 as	 it	 well	 describes	 the	 general	 effect	 of	

computation	 in	 contemporary	 culture.	 But	 it	 is	 also	 useful	 because	 creating	 data	

structures	 and	 controlling	data	 flow	 is	 at	 the	heart	of	 visual	 programming.	 In	Max	

MSP	“media”,	 “content”	and	“cultural	 artifacts”	are	 indeed	 represented	as	objects	

that	 can	 be	 organized	 in	 a	 visual	 data	 structure.	 For	 example:	 a	 movie	 clip	 is	

displayed	 using	 the	 movie	 object	 (see	 figure	 1)	 that	 can	 be	 controlled	 using	 the	

inlet(s)	 and	 the	outlets	of	 the	 visual	 object.	 The	 inlet(s)	 can	 receive	messages,	 the	

outlets	 send	 out	messages.	 But	 the	movie	 object	 does	 not	 display	 the	movie	 clip	

	 33	

content	by	itself;	it	is	merely	a	placeholder	waiting	for	instructions.	A	movie	clip	has	

to	be	loaded	into	the	object	by	adding	an	argument	–	the	filename	and	path	to	the	

location	of	 the	movie	clip	 -	or	by	sending	a	“read”	message	 to	

the	movie	object	 inlet	 (see	 figure	1).	The	movie	clip	content	 is	

not	displayed	within	the	max	MSP	workspace;	 it	 is	opened	in	a	

separate	 output	 window	 after	 receiving	 a	 “start”	 message.	

Finally,	 the	 outlets	 can	 be	 used	 to	 send	 messages	 to	 other	

objects.	 Thus	 (media)	 objects	 can	 be	 connected	 and	 the	

parameters	of	the	one	can	be	used	to	influence	the	other.	Music	

notes	 may	 be	 used	 to	 generate	 visuals;	 an	 excel	 sheet	

containing	 financial	 data	 might	 be	 interpreted	 as	 a	 musical	

composition	and	EEG	data	could	be	used	to	trigger	sounds	and	the	motion	of	water.		

In	 most	 of	 the	 mainstream	 productivity	 software	 “import”,	 “export”	 and	 related	

operations	 can	 only	 be	 accessed	 through	 drop	 down	 menu’s	 and	 pop-up	 dialog	

windows.	The	data	structure	of	the	object	itself	is	hidden	from	the	user.	In	Max	MSP	

these	 operations	 and	 methods	 allow	 the	 artist	 or	 maker	 to	 combine,	 remix,	

reconfigure	and	repurpose	the	parameters	of	objects	through	(visual)	programming	

code.	 Max	 MSP	 thus	 allows	 artists	 and	 makers	 to	 question	 conventions	 in	

mainstream	culture	and	existing	cultural	forms.	That	does	not	mean	that	it	is	easy	to	

do	 so,	 it	 requires	 creativity	 and	 ingenuity	 to	 combine,	 remix,	 reconfigure	 or	

repurpose	“media,”	“content”	and	“cultural	artifacts”	through	creative	code.	

Processing	
	
Of	course	visual	programming	in	Max	MSP	is	just	only	one	of	the	many	approaches	

towards	 creative	 coding.	 One	 example	 of	 a	 programming	 environment	 popular	

amongst	 artist	 and	 makers	 is	 Processing16.	 The	 official	 processing	 website	 reads:	

“Processing	 is	 a	 flexible	 software	 sketchbook	 and	 a	 language	 for	 learning	 how	 to	

code	 within	 the	 context	 of	 the	 visual	 arts.	 Since	 2001,	 Processing	 has	 promoted	

software	literacy	within	the	visual	arts	and	visual	literacy	within	technology”.	Though	

																																																								
16	Processing	(https://www.processing.org)	is	fully	compatible	with	Java,	Python	and	Ruby	and	
is	available	as	a	free	download			

	

Figure	1	The	movie	
object	in	Max	MSP	

	 34	

aimed	 at	 the	 creation	 of	 visuals	 and	 the	 visual	 arts	 Processing	 relies	 on	 the	 same	

coding	conventions	the	same	code	syntax	as	other	programming	languages.	Playing	

a	movie	clip	thus	requires	a	short	script	–	or	sketch	-	to	be	executed:		

import	processing.video.*;	
Movie	myMovie;	
	
void	setup()	{	
myMovie	=	new	Movie(this,	"/path/to/filename.mov");	
		myMovie.loop();	
}	
	
void	draw()	{	
image(myMovie,	0,	0);	
}	
	
void	movieEvent(Movie	m)	{	
		m.read();	
}	

	

The	“Import”	command	in	the	first	line	includes	the	code	library	for	handling	movie	

clip	 data.	 The	 second	 line	 creates	 an	 empty	 variable	 that	will	 be	 used	 to	 hold	 the	

movie	 clip.	 In	 the	 setup	 the	 location	 of	 the	movie	 clip	 is	 specified,	 and	 finally	 the	

movie	 clip	 is	 displayed	 in	 a	 separate	window	 using	 the	 “draw”	 and	 “movieEvent”	

functions.		

The	 Sketch	 (Processing)	 and	 the	 Patch	 (Max	MSP)	 do	 the	 same	 thing	 in	 terms	 of	

functionality.	A	variable	is	created	as	a	placeholder	for	the	movie	clip.	The	movie	clip	

object	 is	then	 loaded	into	the	variable	and	displayed	 in	a	separate	output	window.	

Still	there	is	a	great	difference	between	the	patch	and	the	sketch.	Obviously	the	code	

is	 represented	 in	a	very	different	way,	as	a	visual	mapping	versus	 linguistic	syntax.	

But	 the	differences	between	Patch	 and	Sketch	 are	not	merely	differences	 in	 style;	

they	also	shape	the	perception	of	the	computer	itself.	The	syntax	based	coding	style	

used	 in	 Processing	 emphasises	 the	 abstract	 “nature”	 of	 software	 code;	 the	 visual	

programming	style	accentuates	the	“thingness”	of	the	computer	hardware.		

	 35	

	

	

The	Object	as	a	Metaphor	
	
	
Both	Max	MSP	and	Processing	are	explicitly	intended	as	artistic	tools,	but	that	does	

not	necessarily	make	 them	similar	 tools.	 The	quite	obvious	metaphors	of	Patching	

and	Sketching	 illustrate	 the	 specific	 character	of	 these	 tools.	Max	MSP	 is	aimed	at	

building	 custom	 interfaces	 for	 (live)	 performances;	 Processing	 is	 aimed	 at	 creating	

visual	 effects	 using	 software	 code.	 That	 does	 not	mean	 that	 Processing	 cannot	 be	

used	in	live	performance	or	that	Max	MSP	is	unsuitable	for	exploring	visuals.	In	fact	

they	are	often	combined	or	used	together	as	both	have	their	specific	strengths	and	

weaknesses.	Still	the	differences	between	Patch	and	Sketch	illustrate	that	metaphors	

and	analogies	do	matter	when	analysing	software	as	an	artistic	tool.	Or,	as	Van	der	

Boomen	 points	 out:	 “software	 is	 inextricably	 connected	 to	 and	 formatted	 by	

metaphors	and	analogies”	(2014,	156).	Van	der	Boomen	stresses	that	in	the	context	

of	digital	materiality	the	metaphor	should	not	merely	be	understood	as	a	conceptual	

metaphor.	The	notion	of	the	metaphor	should	be	extended	because	in	digital	praxis	

the	metaphor	is	embodied	in	discourse,	but	also	in	the	objects	themselves:	

Digital	 computer	 technology	 is	 extremely	 marked	 by	 metaphors.	 Here,	

metaphors	 nestle	 themselves	 not	 only	 in	 the	 representations	 of	 the	

technology	 and	 the	 discourse	 on	 its	 use	 and	 functions,	 but	 also	 in	 the	

technological	 objects	 themselves:	 the	 very	 thingness	 of	 digital	 objects	

consists	 of	 metaphors	 made	 material	 and	 operational.	 (Van	 den	 Boomen,	

2014,	188).		

Thus	 the	metaphor	 is	 not	merely	 a	way	 of	 conceptualizing	 digital	material,	 it	 also	

shapes	 the	 very	 “nature”	 of	 the	 digital	 object.	 In	 other	 words,	 the	 metaphor	 is	

“inscribed”	 into	 the	 object.	 One	 of	 the	 crucial	 problems	 in	 understanding	 the	

material	 “nature”	 of	 software	 code	 then	 is	 that	 “the	 complexity	 of	 digital	 code	 is	

necessarily	 black	 boxed	 in	 user-friendly	 interfaces,	 and	 this	makes	 assumptions	 of	

mysterious	immateriality	hard	to	exorcize”	(Van	der	Boomen	et	Al.,	2009,	9).		

	 36	

	

Remediation	
	
The	 concept	of	 remediation	 (Bolter	&	Grusin,	 2000)	has	played	a	 vital	 role	 tracing	

existing	media	 formats,	 metaphors	 and	 real-world	 analogies	 in	 digital	 technology.	

Bolter	 and	Grusin	explain:	 “what	 is	 new	about	digital	media	 lies	 in	 their	particular	

strategies	 for	 remediating	 television,	 film,	 photography,	 and	painting.	 Repurposing	

as	 remediation	 is	 both	 what	 is	 "unique	 to	 digital	 worlds"	 and	 what	 denies	 the	

possibility	of	that	uniqueness”	(2000,	50).	Indeed,	“if	we	limit	ourselves	to	looking	at	

the	 media	 surfaces,	 the	 remediation	 argument	 accurately	 describes	 much	 of	

computational	media”	(Manovich,	2013,	59).	Still	one	should	not	merely	think	of	the	

computer	as	a	 “remediation-machine”	as	 “computer	 simulations	of	physical	media	

can	 add	many	 exciting	 new	 properties	 to	 the	media	 being	 simulated”	 (Manovich,	

2013,	86).	Thus	“while	on	the	level	of	appearance	computational	media	indeed	often	

remediate	 (i.e.	 represent)	previous	media,	 the	 software	environment	 in	which	 this	

media	 “lives”	 is	 very	 different”	 (Manovich,	 2013,	 86).	 Or,	 as	 Manovich	 concludes	

from	“close	reading”	the	“Wave	Filter”	in	Adobe	Photoshop:	“many	algorithms	only	

simulate	 the	 effects	 of	 physical	 tools	 and	 machines,	 materials	 or	 physical	 world	

phenomena	when	used	with	particular	parameter	settings;	when	these	settings	are	

changed,	they	no	longer	function	as	simulations”	(2013,	136).		

Manovich	makes	an	important	point	by	stressing	that	software	should	not	merely	be	

understood	as	a	simulation	of	already	existing	media	or	real-world	practices.	Indeed,	

the	parameter	 settings	of	 the	 tools	 and	 filters	 in	Adobe	Photoshop	can	be	abused	

and	 exploited.	 Simultaneously	 the	 Adobe	 Photoshop	 interface	 also	 lacks	 the	

directness	and	 the	physicality	of	 the	 real-world	process	of	painting	on	a	 canvas	or	

drawing	on	 a	 sheet	 of	 paper.	 Still	 the	 “user”	 is	 severely	 limited	by	 the	 conceptual	

space	provided	by	the	Adobe	Photoshop	canvas.	Still,	and	even	though	some	exploits	

may	 be	 available,	 the	Adobe	 Photoshop	 interface	 is	 designed	 as	 a	 specific	 kind	 of	

productivity	tool,	optimized	for	the	production	of	digital	 images.	But	the	metaphor	

does	not	merely	touch	the	visual	surface	and	the	conceptual	notion	of	the	computer	

interface.	 The	 crucial	 point	 is	 that	 in	 max	 MSP	 “media”,	 “content”	 or	 “cultural	

artifact”	is	performed	rather	than	produced.	

	 37	

	

The	visual	programming	interface	
	
Thus	the	metaphor	also	operate	on	a	deeper	-	and	often	hidden	–	 layer	within	the	

software	 code	 (Van	 der	 Boomen,	 2014).	 The	 Max	 MSP	 (visual)	 programming	

interface	reveals	how	the	metaphor	is	“inscribed”	in	the	software	code:	the	“inlets”	

and	“outlets”	of	an	object	define	how	the	object	interacts	with	its	environment.	The	

“movie	 object”	 discussed	 earlier	 can	 only	 send	 and	 receive	 a	 specific	 subset	 of	

messages	that	are	defined	by	the	movie	clip	metaphor.	The	same	principle	applies	to	

other	 programming	 languages.	 An	 object	 is	 always	 bound	 by	 a	 specific	 subset	 of	

operators,	attributes	and	 libraries	 that	allow	 for	 interactions	with	other	objects.	 In	

other	 words,	 the	 metaphor	 structures	 the	 relations	 between	 the	 “user”	 and	 the	

software	interface	as	well	as	the	relations	between	objects	in	software	code.	Let	me	

provide	 two	 very	 basic	 examples	 to	 illustrate	 my	 point.	 The	 first	 is	 a	 simple	

calculation	(figure	2),	the	second	is	a	very	basic	single	tone	generation	patch	(figure	

3).	Both	examples	were	made	using	Max	MSP	version	7.	

	

To	create	a	simple	calculation	 in	Max	MSP	several	objects	have	to	be	combined	or	

“patched”	 together.	 The	 first	 object	 in	 this	 diagram	 (figure	 2)	 is	 a	 button	 that	

initiates	the	calculation	by	sending	a	“bang”	through	its	bottom	outlet.	The	“bang”	is	

	
	

Figure	2	Basic	Calculations	Patch	in	Max	MSP	 Figure	3	Tone	Generation	Patch	in	Max	MSP	

	 38	

received	 through	 the	 left	 inlets	 of	 the	 number	 boxes	 that	 display	 and	 output	 a	

number,	 in	 this	 case	 the	 values	 of	 “1”	 and	 “2”.	 The	 math	 operator	 receives	 the	

numbers	 and	 adds	 them	 together.	 The	 result,	 in	 this	 case	 “3”	 is	 displayed	 in	 the	

number	box	that	completes	the	diagram,	or	patch.	Up	till	this	point	the	term	“data	

structure”	 seems	 to	 adequately	 describe	 the	 Max	 MSP	 interface,	 as	 indeed	 the	

interface	is	a	visual	representation	of	data	flowing	through	a	system.	Thus	the	basic	

idea	 behind	 visual	 programming	 is	 “boxes	 and	 arrows”,	 where	 boxes	 represent	

objects	and	arrows	represent	relations	between	these	objects.	One	might	also	notice	

that	for	the	simple	calculation	in	this	example	the	visual	representation	seems	quite	

inefficient.	 In	most	 common	 syntax	 a	 single	 line	 of	 code	 could	 perform	 the	 same	

operation.	Still	the	ridiculously	simple	operation	of	adding	1	and	2	as	described	here	

is	not	possible	within	most	of	the	standard	media	productivity	software.	One	could	

say	 that	 brushes,	 paint	 buckets	 and	 selection	 tools	 are	 not	 very	 suitable	 tools	 for	

basic	maths.		

	

The	 second	 example	 (figure	 3)	 shows	 a	 slightly	 more	 complicated	 patch	 used	 for	

generating	and	manipulating	a	 single	 tone.	 The	values	 in	 the	 two	numerical	boxes	

represent	 the	minimum	 and	maximum	 value	 of	 the	 slider	 object	 they	 connect	 to.	

Here	 the	 slider	 can	be	 set	 to	a	minimum	of	100	and	a	maximum	of	800	using	 the	

buttons,	or	 it	can	manually	dragged	to	any	value	 in	between.	These	values	are	not	

fixed	or	predefined;	they	are	merely	used	as	an	example.	The	number	box	below	the	

slider	displays	its	current	value	and	sends	passes	it	to	the	cycle~	object	that	operates	

as	a	standard	oscillator	generating	a	tone	based	on	the	value	it	receives.	The	tone	is	

then	 passed	 to	 the	 ezdac~	 object	 at	 the	 end	 of	 this	 chain,	 the	 recognizable	 audio	

icon	 (the	 user	 interface	 version	 of	 the	 dac~	 object)	 that	 serves	 as	 an	 output	 for	

sounds.	 The	 Max	 MSP	 reference	 entry	 for	 the	 slider	 reads:	 “the	 slider	 is	 a	 user	

interface	 that	 resembles	 a	 sliding	 potentiometer”.	 Thus	 the	 slider	 resembles	 an	

electric	 component,	 a	 voltage	 divider	 used	 to	 measure	 electric	 potential.	 The	

potentiometer	 is	widely	applied	in	electronic	devices;	one	of	 its	many	appliances	 is	

controlling	 oscillators,	 the	 electric	 components	 used	 to	 generate	 sound.	Of	 course	

this	 patch	 is	 far	 less	 complex	 in	 terms	 of	 wiring	 compared	 to	 its	 analogue	

counterpart,	and	the	slider	is	not	controlled	by	an	actual	potentiometer	somewhere	

	 39	

inside	the	machine.	In	contrast,	the	dac~	object	does	refer	to	a	very	real	component	

found	 every	 digital	 device	 capable	 of	 producing	 sound.	 Every	mp3	 player,	 iPhone,	

iPod,	 laptop	 computer,	 DVD	 player	 or	 smart	 watch	 needs	 a	 Digital-To-Analog-

Converter.	 The	 Max	 MSP	 reference	 explains:	 “The	dac~	object	 is	 the	 Digital-To-

Analog-Converter	 through	 which	 you	 will	 route	 all	 signals	 from	 MSP	 out	 to	 your	

computer	speakers	or	audio	hardware	to	be	audible	to	the	human	ear.	It	also	gives	

you	 access	 to	 the	 Audio	 Status	 window	 which	 controls	 your	 audio	 settings	 and	

hardware”.	 This	 very	 basic	 example	 clearly	 shows	 how	 the	 physical	 hardware	 and	

the	 electronic	 circuitry	 of	 the	 computer	 itself	 are	 part	 of	 the	 metaphors	

underpinning	the	visual	programming	interface.		

	

Inscription	
	
The	metaphors	used	in	mainstream	software	may	refer	to	the	craftsmanship	of	the	

19th	 century,	 the	 20th	 century	 avant-garde	 agenda	 or	 the	 modern	 office	

environment.	 	 Still	 the	 computer	 itself	 and	 its	 hardware	 infrastructure	 seem	 to	be	

avoided.	The	Max	MSP	patch	shows	that	where	“data	structure”	should	remind	us	

“that	what	we	experience	as	“media,”	“content”	or	“cultural	artifact”	is	technically	a	

set	of	data	organized	 in	a	particular	way”	 (Manovich,	2013,	201);	as	a	counterpart	

the	 “object”	 should	 remind	 us	 that	 these	 data	 structures	 are	 inscribed	 into	 the	

physical	 “stuff”	 that	 computers	 are	 build	 off.	 One	 could	 also	 say	 that	 the	 slider,	

cycle~	 and	 dac~	 objects	 simulate	 the	 computer	 itself,	 reshaping	 its	 circuitry	 into	

creative	material.	The	visual	programming	interface	reconnects	software	code	with	

the	 hardware	 environment	 in	 which	 the	 code	 ”lives”.	 Still	 the	 notion	 of	 material	

inscription	also	holds	for	software	development	 in	general.	Or,	as	Van	der	Boomen	

(2014)	argues:	

	For	 software	 developers	 the	 inscription	 metaphor,	 with	 all	 its	 layers	 and	

ambiguities,	 is	 a	 material	 metaphor	 that	 profoundly	 organizes	 their	 daily	

work:	inscribing	code,	editing,	modifying,	running	it,	revising,	testing,	putting	

it	 in	a	version	control	system,	and	so	on.	But	that	material	metaphor	 is	not	

supposed	 to	 travel	 outside	 the	programmers’	 den.	After	 all,	 the	 imperative	

	 40	

for	user-friendly	software	is	precisely	to	make	the	large	chain	of	translations	

invisible	for	ordinary	users”	(van	der	Boomen,	2014,	101).	

The	Processing	platform	explicitly	aims	at	demystifying	software	code,	and	in	MIT’s	

Scratch	software	the	visual	programming	approach	is	used	in	an	attempt	to	increase	

code	literacy	amongst	children	and	teenagers.	The	Max	MSP	community	seems	less	

explicit	in	its	concern	with	these	affords	in	increasing	code	literacy.	Of	course	there	is	

a	broad	 range	of	 tutorials	 available	online,	 starting	 from	 the	most	basic	 level,	 and	

code	fragments	and	patches	are	actively	shared.	Still	the	primary	concern	within	the	

Max	 MSP	 community	 is	 the	 exploration	 of	 the	 computer	 as	 an	 artistic	 and	

performative	 platform.	 One	 might	 add	 that	 in	 the	 specific	 context	 of	 artistic	

performance	the	somewhat	mythical	quality	of	software	code	might	even	be	useful	

as	illusion	and	enchantment	are	powerful	tools	in	the	artistic	repertoire.		

	

The	Computer	as	a	Meta-medium	
	

For	 Manovich	 “the	 greatest	 interactive	 work	 is	 the	 interactive	 human-computer	

interface	 itself”	 (2003,	 15);	 and	 “the	 greatest	 avant-garde	 film	 is	 software	 such	 as	

Final	Cut	Pro	or	After	Effects	which	contains	the	possibilities	of	combining	together	

thousands	 of	 separate	 tracks	 into	 a	 single	movie”	 (2003,	 15).	 Dixon	 (2007)	 firmly	

rejects	the	suggestion	of	artistic	quality	in	mainstream	software	or	the	standardized	

computer	interface.	Dixon	points	out	that	this	proposition	would	be	the	same	as	“to	

propose	the	theatre	building	as	the	greatest	piece	of	theater,	since	that	is	where	the	

finest	performance	can	–	or	may,	at	some	time,	perhaps,	be	staged”	(Dixon,	2007).		

Where	Manovich	celebrates	the	notion	of	the	computer	as	the	“universal	machine”	

the	most	common	configuration	of	the	computer	interface	can	also	be	described	as	

an	anachronism:	

	An	 anachronistic	 dinosaur	 of	 a	 machine	 that	 places	 file-cabinet	 icons	

borrowed	 from	 the	 nineteenth	 century	 offices	 onto	 a	 TV	 screen	 monitor	

design	originated	in	the	1930’s,	above	a	QWERTY	keyboard	that,	even	when	

it	 was	 launched	 as	 a	 typewriter	 in	 1878,	 was	 shown	 to	 have	 the	 worst	

possible	letter	pattern	configuration”	(Dixon,	2007,	6).		

	 41	

These	 positions	 represent	 two	 very	 different	 narratives	 that	 create	 a	 dichotomy	

between	the	conceptual	model	of	what	a	computer	could	be	and	 the	very	specific	

reality	of	the	computer	in	the	urban	office	and	in	everyday	life.	My	point	here	is	that	

these	stories	can	be	countered	by	artistic	explorations	of	what	the	computer	might	

be.	Manovich	adopts	 the	description	of	Kay	&	Goldberg	 (1977)	whom	think	of	 the	

computer	 as	 “a	 metamedium,	 whose	 content	 would	 be	 a	 wide	 range	 of	 already-

existing	and	not-yet-invented	media”	 (1977,	40).	The	notion	of	the	computer	as	“a	

metamedium”	 is	 useful	 as	 it	 is	 inclusive;	 it	 combines	 the	 conceptual	 ideal	 of	 the	

“universal	machine”	with	the	reality	of	everyday	practice.	If	the	computer	is	indeed	

to	be	understood	as	a	“metamedium”	then	it	is	of	vital	importance	to	permanently	

re-imagine	its	configuration.	Max	MSP	invites	the	artist	to	explore	the	computer	as	a	

meta-medium	and	creative	coding	in	Max	MSP	allows	for	the	playful	re-imagination	

and	reconfiguration	of	the	computer	interface.		

In	 the	previous	chapter	 it	has	been	argued	that	creative	coding	has	opened	a	new	

kind	of	performative	space	(Saphiro,	2014).	Following	Auslander	(2012)	 It	has	been	

suggested	that	the	“experience	of	liveness	results	from	our	conscious	act	of	grasping	

virtual	entities	as	live	in	response	to	the	claims	they	make	on	us”	(2012,	10).	We	may	

now	 add	 that	 these	 “virtual	 entities”	 are	 far	 from	 “virtual”.	 The	 “virtual	 entity”	

materializes	 in	 a	 data	 structure,	 and	 it	 materializes	 in	 the	 composition	 of	 objects	

shaped	 by	metaphor	 and	 analogy.	 It	 has	 also	 been	 argued	 that	 -	 in	 line	 with	 the	

Actor	Network	 approach	 (Latour,	 1996,	 1999;	 Law,	 2009)	 -	 these	 “virtual	 entities”	

can	best	be	understood	as	“actors”	or	”actants”	in	a	complex	network	that	combines	

human	 actors,	 technologies,	 ideas	 and	 cultural	 practices.	 Creative	 coding	 in	 Max	

MSP	 allows	 the	 artist	 or	 maker	 to	 visualise	 and	 orchestrate	 actions	 in	 actor	

networks,	exploring	the	computer	as	a	“meta	medium”.		

Cultural	logic	
	

DIY	and	Maker	Culture	
	
The	 artists	 and	 makers	 that	 make	 use	 of	 Max	 MSP	 do	 not	 strive	 towards	 “the	

rational	 organization	 of	 labor”	 or	 “engineering	 efficiency”.	 Still	 Manovich’s	

	 42	

observation	that	“the	avant-garde	became	materialized	in	a	computer”	(2001,	306-

307)	is	crucial	because	it	signifies	that	our	understanding	of	the	computer	interface	

is	grounded	 in	cultural	 logics.	 If	 the	(new)	media	designer	 is	 to	be	understood	as	a	

professional	working	within	the	“creative	 industries”	then	Manovich	most	certainly	

has	a	point.	And	perhaps	indeed	the	entire	field	of	the	arts	has	been	infused	with	the	

suggestion	 that	 the	 “production”	 of	 human	 culture	 should	 be	 understood	 as	 an	

industrial	process	(Adorno	&	Horkheimer,	2007,	34	-43).		

But	 simultaneously	 “software	 production	 flourishes	 outside	 of	 the	 classical	

institutions	and	methodology	of	engineering”	(Rieder	&	Schäfer,	2008,	168).	Rieder	

&	 Schäfer	 emphasize	 the	 importance	of	 the	open-source	 scene	 that	 “distinguishes	

itself	from	traditional	engineering	in	social	norms	and	general	mindset”	(2008,	166).	

This	“general	mindset”	of	the	open-source	scene,	though	diverse	on	its	own,	seems	

part	of	an	even	broader	and	more	diverse	cultural	phenomenon:	Do-it-Yourself	(DIY)	

or	Maker	Culture.	DIY	or	Maker	Culture	holds	 its	own	specific	 values,	and	 the	way	

that	specific	concepts	are	understood	may	radically	differ	 from	the	global	business	

environment.	 These	differences	 are	 far	 from	 semantic;	 they	 express	 values	 deeply	

anchored	 in	 distinct	 cultural	 positions.	 A	 key	 example	 is	 “creativity”,	 a	 concept	

formerly	 associated	 with	 the	 arts	 and	 humanities	 that	 over	 the	 past	 decade	 has	

gradually	 been	 incorporated	 in	 management-lingo.	 From	 a	 business	 perspective	

creativity	 should	be	 applied	 and	exploited	 as	 a	 valuable	 resource,	 from	 the	maker	

perspective	creativity	is	to	be	understood	as	a	virtue	on	its	own.		Or,	as	Kuznetsov	&	

Paulos	(2012)	conclude:	“DIY	communities	and	projects	are	driven	by	creativity.	The	

vast	 majority	 of	 our	 respondents	 contribute	 to	 DIY	 communities	 not	 to	 gain	

employment,	money	or	online	fame,	but	to	express	themselves	and	be	 inspired	by	

new	 ideas”	 (8).	 Still	 maker	 practices	 also	 rely	 on	 the	 infrastructure	 provided	 by	

commercial	enterprise	and	the	formal	institutions.	Even	though	maker	practice	may	

flourish	 outside	 the	 walls	 of	 the	 institution,	 still	 “some	 of	 the	 most	 successful	

platforms	 in	 the	 DIY	 world	 have	 emerged	 from	 universities”	 (Tanenbaum	 et	 Al.,	

2013,	2610).	In	other	words,	the	university	can	play	a	vital	role	in	connecting	creative	

communities.	

	

	 43	

Amateur	Operators	
	

It	may	be	tempting	to	understand	contemporary	maker	practices	and	DIY	culture	as	

an	effect	of	digitalization	and	networked	society	but	in	many	ways	the	ideas,	ideals	

and	practices	hold	within	contemporary	DIY	or	Maker	Culture	are	far	from	new:		

	

In	 the	1980’s,	 the	 low-cost	MIDI	equipment	enabled	people	without	 formal	

training	 to	 record	 electronic	 music,	 evolving	 into	 the	 rave	 culture	 of	 the	

1990’s.	 During	 this	 time,	 computer	 hobbyists	 also	 formed	 communities	 to	

create,	explore	and	exploit	software	systems,	resulting	in	the	Hacker	culture.		

(Kuznetsov	&	Paulos,	2012,	1).		

	

Modern	desktop	or	laptop	computers	may	be	traced	to	the	fundamental	work	done	

by	 epic	 figurines	 such	 as	 Vannevar	 Bush,	 Alan	 Key	 or	 Alan	 Turing;	 still	 local,	

“amateur”	computer	 clubs	 such	as	 the	Homebrew	Computer	Club	 in	 the	vicinity	of	

Palo	Alto	also	played	a	vital	 role	 in	popularizing	 the	personal	 computer	during	 the	

1970’s	and	1980’s.	Contemporary	maker	culture	may	also	be	 linked	to	 the	birth	of	

the	radio	and	the	era	of	the	amateur	operator:	“one	of	the	earliest	“modern	era”	DIY	

communities	formed	among	amateur	radio	hobbyists	in	the	1920’s.	These	hobbyists	

relied	 on	 amateur	 handbooks,	 which	 stressed	 “imagination	 and	 an	 open	 mind”	

nearly	 as	 much	 as	 the	 technical	 aspects	 of	 radio	 communication”	 (Kuznetsov	 &	

Paulos,	2012,	1).	Indeed,	“the	amateurs	didn't	just	adopt	this	new	technology;	they	

built	 it,	 experimented	 with	 it,	 modified	 it,	 and	 sought	 to	 extend	 its	 range	 and	

performance.	 They	made	 radio	 their	 own	medium	 of	 expression”	 (Douglas,	 1986,	

44).	 But	 the	 enthusiasm	 for	 the	 radio	 was	 ideological	 as	 much	 as	 it	 was	

technological;	it	also	served	as	a	vessel	for	utopian	dreams:		

	

The	properties	of	radio	seemed	to	perfectly	encapsulate	the	recurrent	dream	

of	 universal	 and	 direct	 communication	 .	 .	 .	 It	 was	 not	 just	 telegraphy	 or	

telephony	 without	 wires;	 everyone	 with	 a	 receiver	 could	 tune	 in	 and	 feel	

connected	to	a	virtual	community.	Because	of	the	messianic	character	of	live	

broadcasting,	 the	 popular	 idea	 took	 hold	 that	 radio	 could	 be	 a	 tool	 to	

	 44	

establish	 social	 cohesion	 and	 world	 peace,	 bringing	 direct	 democracy	 and	

global	harmony	to	the	people	(De	Vries,	2012,	114).		

Of	course	there	are	many	fundamental	differences	between	the	era	of	the	amateur	

operator	and	contemporary	DIY	culture	and	of	course	one	should	be	weary	not	 to	

impose	 the	 present	 onto	 the	 past.	 Still	 there	 is	 a	 striking	 similarity	 between	 the	

ideals	expressed	in	early	20th	century	discourse	surrounding	amateur	operators	and	

contemporary	 DIY	 culture.	 A	 similar	 notion	 of	 “democratized	 technological	

practices”	 can	be	 found	 in	 the	contemporary	discourse	on	DIY:	 “The	 rise	of	maker	

culture	 is	 creating	 new	 values	 around	 technological	 practices”	 (Tanenbaum	 et	 Al.,	

2013,	2605).		

In	 contrast	 to	 the	 amateur	 operators	 in	 the	 early	 days	 of	 the	 radio	 contemporary	

maker	 culture	 does	 hold	 such	 high	 expectations	 towards	 technological	 innovation	

itself.	 In	 contrast,	 maker	 culture	 celebrates	 a	 somewhat	 nostalgic	 or	 romantic	

interest	 in	“out-dated”	(media)	technology	rather	than	a	utopian	belief	 in	salvation	

through	innovation.	On	the	other	hand,	contemporary	DIY	and	maker	culture	most	

certainly	 “use	 artifacts	 to	 explore	 a	new	and	present	 future	of	 design,	 fabrication,	

and	 consumption.	 These	 designs	 often	 embody	 cultural	 imaginations,	 engaging	 in	

the	relatively	recently	articulated	concept	of	design	fiction”	(Tanenbaum	et	Al.,	2013,	

2606).			

Design	fiction	
	
The	concept	of	“design	fiction”	introduced	by	Bleecker	(2009)	can	be	summarized	as	

“a	 conflation	 of	 design,	 science	 fact,	 and	 science	 fiction.	 It	 is	 an	 amalgamation	 of	

practices	that	together	bends	the	expectations	as	to	what	each	does	on	its	own	and	

ties	 them	 together	 into	 something	 new.	 It	 is	 a	 way	 of	 materializing	 ideas	 and	

speculations	without	the	pragmatic	curtailing	that	often	happens	when	dead	weights	

are	fastened	to	the	imagination”	(Bleecker,	2009,	6).	Bleecker	clarifies	his	position	as	

he	writes:	“I	think	of	design	as	a	kind	of	creative,	imaginative	authoring	practice	—	a	

way	of	describing	and	materializing	ideas	that	are	still	 looking	for	the	right	place	to	

live.	 A	 designed	 object	 can	 connect	 an	 idea	 to	 its	 expression	 as	 a	made,	 crafted,	

instantiated	object.	These	are	like	props	or	conversation	pieces	that	help	speculate,	

	 45	

reflect	and	imagine,	even	without	words”	(2009,	6).	Thus	design	fiction	and	science	

fiction	can	be	closely	related	though	the	first	explicitly	includes	maker	practices:		

	Design	fiction	aims	at	creating	conversational	pieces	that	aid	discussions	on	

how	this	 imagined	future	would	 look,	 feel,	and	be	 lived	 in;	 it	 is	a	technique	

for	 reflecting	 on	 what	 technology	 we	 should,	 or	 should	 not,	 design	

(Tanenbaum	et	Al.,	2013,	2606).		

However,	design	fiction	should	not	overhasty	be	embraced	as	a	vehicle	for	imagining	

the	 future.	 In	 an	 extensive	 analysis	 of	 science	 fiction	 novels	 Jameson	 (2005,	 286)	

argues	 that	 it	 is	 not	 so	 much	 the	 future	 as	 well	 as	 the	 present	 that	 is	 under	

negotiation.	 In	 other	 words,	 science	 fiction	 restructures	 our	 experience	 of	 the	

present.	Jameson	concludes:	

	

We	 no	 longer	 entertain	 such	 visions	 of	 wonderworking,	 properly	 “science-

fictional”	 futures	of	 technological	automation.	These	visions	are	themselves	

historical	 and	 dated	 –	 streamlined	 cities	 of	 the	 future	 on	 peeling	murals	 –	

while	our	lived	experience	of	our	greatest	metropolises	is	one	of	urban	decay	

and	blight”	(Jameson,	2005,	286).		

	

Still	the	“streamlined	cities	of	the	future	on	peeling	murals”	provide	a	rich	repository	

for	 repurposing	 and	 remixing	 the	 history	 of	 the	 future.	 One	 might	 say	 that	 the	

makers	 in	 maker	 culture	 explore	 the	 dreams	 of	 the	 past	 rather	 than	 facing	 the	

uncertainties	 of	 an	 unpredictable	 future.	 One	might	 also	 say	 that	 their	 works	 are	

introspective	 rather	 than	 extravert.	 “Collectively,	 subculture	 members	 create	 a	

common	vision	of	what	 that	 subculture	 is,	 and	how	the	practice	of	making	 fits	 in”	

(Tanenbaum	 et	 Al.,	 2013,	 2607).	 Maker	 culture	 creates	 its	 own	 multiplicity	 of	

alternative	 modernity’s	 favouring	 playful	 re-imagination	 and	 creative	 exploration	

over	practical	utility	and	rigid	usability.	Interpretations	are	playful,	creative,	artistic,	

poetic,	 romantic	 or	 even	 nostalgic	 but	 by	 no	 means	 historic	 or	 predictive	 in	 a	

scholarly	 sense.	They	are	build	by	creators	 that	make	use	of	 cultural	artefacts	and	

technological	 practices	 from	 past	 days	 as	 well	 as	 the	 present,	 creating	 a	 diverse	

	 46	

imaginary,	a	remix	of	the	many	histories	of	already	past	futures.	History	and	future	

convolute	in	contemporary	maker	culture.	

	

Conclusions	
	
Three	overarching	themes	–	materiality,	agency	and	sociality	(Mackenzie,	2006,	171)	

-	have	been	set	out	as	an	approach	to	answering	the	initial	question:	How	can	visual	

programming	be	understood	as	a	creative	 tool?	How	then	can	visual	programming	

be	understood,	in	terms	of	agency,	materiality,	and	sociality?	Who	does	what,	what	

counts	as	the	basic	stuff	that	exists	and	how	do	we	belong	together?	And	how	these	

complex	 concepts	 intertwine?	 A	 first	 remark	 needs	 to	 be	 made	 concerning	 the	

question	 of	 agency,	 that	 is,	 following	 Actor	 Network	 Theory	 the	 question	 should	

actually	 read:	 Who	 or	 what	 does	 what?	 The	 question	 of	 who,	 or	 what	 and	 the	

complex	layers	of	materiality	will	serve	to	conclude	this	thesis.	

	

Materiality	

Though	easily	recognizable	in	the	visual	programming	environment,	the	principles	of	

new	media	(Manovich,	2001)	only	touch	the	surface	of	the	complex	layers	of	digital	

materiality.	 Understanding	 the	 metaphors	 that	 shape	 digital	 material	 is	 crucial	 in	

unwrapping	 digital	 materiality	 (Van	 der	 Boomen,	 2014).	 As	 such,	 these	 principles	

function	 as	 powerful	 metaphors	 too;	 they	 act	 as	 confirmation	 of	 the	 popular	 yet	

problematic	virtual-real	dichotomy.	The	visual	programming	interface	illustrates	that	

software	 cannot	 be	 separated	 from	 the	 hardware	 environment	 in	which	 the	 code	

“lives”.		

	

In	 artistic	 practice	 the	 “desktop-metaphor”	 and	 the	 mouse-keyboard-screen	

interface	 seem	 problematic.	 The	 hallmark	 feature	 of	 both	Max	MSP	 and	 its	 open	

source	counterpart	Pure	Data	is	the	ability	to	create	and	control	hardware	devices	to	

create	music	 instruments,	 live	performances,	 interactive	 installations,	and	so	on.	A	

useful	 yet	 complex	 solution	 then	 is	 the	 inscription	metaphor;	 though	 the	question	

then	is:	what	exactly	 is	 it	that	 is	being	inscribed?	Most	obviously	there	is	data,	and	

	 47	

the	objects	combined	in	data	structures.	But	that	far	from	answers	the	question.	The	

question	of	what	has	to	be	redirected	to	the	question	of	who-or	what	does	what,	as	

inscription	invokes	agency.		

	

Agency	

My	suggestion	–	perhaps	a	provocative	one	–	 is	 that,	at	 the	 least	 in	the	context	of	

artistic	digital	media	performance,	agency	itself	has	become	the	material	of	the	21th	

century	artist.	The	distribution	of	agency	is	inscribed	in	the	physicality	of	hardware.	

Thus	 another	 shift	 is	 made;	 back	 to	 layers	 of	 materiality.	 That	 is	 to	 say,	 the	

metaphors	underpinning	visual	programming	remediate	the	materiality	of	computer	

hardware	itself.	The	Max	MSP	interface	can	be	read	as	a	visual	representation	of	the	

components	 inside	 the	 “black	 box”.	 Visual	 programming	 thus	 reveals	 rather	 than	

hides.	 Visual	 programming	 allows	 the	 artist	 to	 create	 an	 assemblage	 of	 relations	

between	 objects;	 where	 the	 object	 represents	 action.	 As	 an	 artistic	 tool,	 visual	

programming	may	thus	function	as	a	tool	for	exploring	actor-networks	in	the	sense	

of	 actor	 network	 theory.	 Still	 visual	 programming	 should	 not	 be	 positioned	 in	

engineering;	it	allows	for	expression	in	and	through	code.	Its	goal	is	not	to	optimize	

the	performance	of	hardware;	it	 is	an	act	of	creative	coding	that	attempts	to	make	

the	hardware	performative.		

	

Sociality	

Though	 visual	 programming	 may	 be	 positioned	 outside	 of	 the	 institutions	 of	

engineering;	 that	does	not	 imply	 that	 it	 should	be	placed	within	 the	 institutions	of	

the	arts.	 The	 craftsman,	 inventor,	 engineer,	 artist	 and	designer,	perhaps	 these	are	

themselves	historical	and	dated,	as	much	as	the	“streamlined	cities	of	the	future	on	

peeling	murals”	of	science	fiction	(Jameson,	2005).	Still	these	“murals”	do	not	merely	

portray	the	incapacity	to	imagine	technological	advance,	they	are	also	infused	with	

hopes	and	dreams	that	reoccur	through	history	(Huhtamo,	1997;	De	Vries,	2012).	As	

a	 tool,	 visual	 programming	 may	 be	 associated	 with	 the	 “dream	 of	 democratizing	

technologies”	 held	 within	 contemporary	 maker	 culture.	 As	 a	 tool,	 visual	

programming	allows	for	playful	re-imagination	of	the	history	of	the	future.	And	as	a	

	 48	

tool,	 it	 allows	 the	 artist,	 maker	 or	 creator	 to	 infuse	 machinery	 with	 subjective	

imagination	and	the	narratives	of	design	fiction.	

	

Methodological	reflection	&	further	research	
	
Perhaps	one	might	hold	that	–	at	 least	till	a	certain	extend	–	the	perception	of	the	

computer	 interface	 evolves	 around	 affordances.	 Tracing	 affordances	 in	 human-

computer	interactions	has	been	of	great	influence	in	“user-centred”	software	design	

and	in	the	on-going	agenda	of	realizing	usable	and	useful	interfaces;	where	“useful”	

should	be	understood	as	 rigidly	goal-orientated	 (McGrenere	&	Ho,	2000,	6).	Or,	as	

put	 by	Norman	 (1990):	 “an	 interface	 is	 an	 obstacle:	 it	 stands	 between	 the	 person	

and	 the	 system	 being	 used.	 How	 can	 anything	 be	 optimal	 if	 it	 is	 in	 the	 way,	 if	 it	

stands	 between	 the	 person	 and	 what	 needs	 to	 be	 done?”	 (1990,	 216)	

Simultaneously	the	concept	of	affordances	has	proven	to	be	a	valuable	instrument	in	

questioning	what	exactly	it	 is	that	needs	to	be	done	and	who	is	to	determine	what	

should	count	as	useful.	As	such,	the	agenda	of	creating	“useful”	interfaces	has	been	

criticized	 as	 the	 construct	 of	 the	 “user”	 may	 reduce	 the	 human	 subject	 to	 a	

predictable	 and	 controllable	 object	 at	 the	mercy	 of	 the	 designer,	 the	 engineer	 or	

marketer	(Almquist	&Lupton,	2010,	3).	The	concept	of	affordances	has	been	avoided	

precisely	for	that	reason:	what	is	of	concern	here	is	the	nature	of	(visual)	code	as	an	

artistic	 material	 rather	 than	 the	 complex	 political	 relations	 instilled	 in	 the	

mainstream	of	productivity	software.		

	

The	term	“affordance”	was	first	coined	by	Gibson	(1977)	and	popularized	by	Norman	

(2013).	 For	 Gibson	 “the	 affordances	 of	 the	 environment	 are	 what	 it	 offers	 the	

animal,	 what	 it	 provides	 or	 furnishes,	 either	 for	 good	 or	 ill”	 (1977,	 127).	 Norman	

(2013)	 adds	 a	 crucial	 detail	 by	 stressing	 the	 importance	 of	 what	 is	 perceived	 as	

possible;	based	on	knowledge	and	the	perception	of	things	(2013,	219).	This	thesis	

aimed	 at	 shifting	 the	 attention	 towards	 the	 use	 of	 visual	 programming	 in	 artistic	

maker	 practice.	 The	 argumentation	 presented	 here	 focussed	 on	 the	 visual	

programming	 interface	 as	 well	 as	 the	 “cultural	 logic”	 of	 DIY	 and	 maker	 culture;	

stressing	the	importance	of	the	metaphor	at	the	expense	of	affordances.		

	 49	

	

Still,	 and	 even	 though	 some	 critical	 remarks	 have	 been	 made	 concerning	 the	

understanding	 of	 the	 human	 subject	 as	 a	 “user”	 in	 the	 field	 of	 Human	 Computer	

Interaction,	the	concept	of	affordances	is	of	vital	 importance	in	software	studies.	A	

thorough	 understanding	 of	 the	 differences	 between	 the	 visual	 representation	 of	

code	 and	 the	 far	 more	 common	 linguistic	 or	 syntax-based	 style	 of	 programming	

could	help	in	further	developing	the	understanding	of	code.	Simultaneously	software	

studies	 should	 not	 lock	 itself	 within	 the	 black	 box	 of	 code,	 the	 algorithm	 or	 the	

software	interface.	I	have	positioned	the	use	of	software	in	a	specific	context	of	DIY	

and	maker	 culture,	 arguing	 that	 the	 understanding	 of	 software	 and	 the	 computer	

interface	 may	 radically	 differ	 between	 distinct	 fields	 and	 subcultures	 in	 (post)	

modern	 society.	 As	 such,	 material	 semantics	 is	 of	 importance	 as	 it	 helps	 in	

recognizing	how	the	interface,	affordances	and	metaphors	are	being	understood.	Of	

course	 (sub)	 cultures	 are	 complex,	 diverse	 and	 hard	 to	 grasp.	 If	 indeed	 the	 artist,	

designer	 and	 the	 engineer	 represent	 their	 own	 specific	 cultural	 logic,	 then	 it	 is	

important	 to	 expand	 the	 insight	 in	 how	 (sub)	 cultures	 understand	 software	 and	

digital	 code.	 The	 “nature”	 of	 digital	 code	 and	 digital	 materiality	 cannot	 fully	 be	

understood	without	a	thorough	understanding	of	distinct	real-world	cultural	praxis.		

	
	

References	
	
Adorno,	Theodor	and	Horkheimer,	Max.	(2007).	The	culture	industry:	enlightenment	
as	mass	deception.	In	S.	Redmond	&	S.	Holmes	Stardom	and	celebrity:	A	reader	(pp.	
34-43).	London:	SAGE	Publications	Ltd.	doi:	10.4135/9781446269534.n4	
	
Almquist,	Julka,	and	Julia	Lupton.	2010.	“Affording	Meaning:	Design-Oriented	
Research	from	the	Humanities	and	Social	Sciences.”	Design	Issues	26,	no.	1	3–14.	
doi:10.1162/desi.2010.26.1.3	
	
Andersen,	Christian	Ulrik,	and	Søren	Pold.	2011.	Interface	criticism:	aesthetics	
beyond	the	buttons.	Aarhus	[Denmark]:	Aarhus	University	Press.	
	
Auslander,	Philip.	2012.	"Digital	Liveness:	A	Historico-Philosophical	Perspective".	PAJ:	
A	Journal	of	Performance	and	Art.	34	(3):	3-11.	doi:10.1162/pajj_a_00106.	
	

	 50	

Bleecker,	J.	(2009).	Design	Fiction:	A	short	essay	on	design,	science,	fact	and	fiction.	
Near	Future	Laboratory,	29.	
	
Bolter,	Jay	David,	and	Richard	Arthur	Grusin.	2000.	Remediation:	understanding	new	
media.	Cambridge	(Mass.):	MIT	Press.	
	
Cramer,	F.	(2002,	March).	Concepts,	notations,	software,	art.	In	Seminar	for	
Allegmeine	und	Vergleischende	Literaturwissenschaft.	

Cramer,	Florian	and	&	Ulrike	Gabriel.	2001.	“Software	Art	and	Writing.”	In	American	
Book	Review	22	(6),	issue	“Codeworks”	edited	by	Alan	Sondheim.	

De	Vries,	Imar.	O.	2005.	“Mobile	Telephony:	Realising	the	Dream	of	Ideal	
Communication?”	In	Mobile	world	past,	present,	and	future	edited	by	Hamill,	Lynne,	
and	Amparo	Lasen.	11–28.	New	York,	N.Y.:	Springer.	

De	Vries,	Imar	O.	2012.	Tantalisingly	close	an	archaeology	of	communication	desires	
in	discourses	of	mobile	wireless	media.	Amsterdam:	Amsterdam	University	Press.	

Dixon,	Steve.	2007.	A	Digital	Performance:	History	of	New	Media	in	Theater,	Dance,	
Performance	Art,	and	Installation.	Cambridge,	Mass:	MIT	Press.		
	
Douglas,	Susan.	1986.	“Amateur	operators	and	American	broadcasting:	shaping	the	
future	of	radio.”	In	Imagining	tomorrow:	history,	technology,	and	the	American	
future,	edited	by	Joseph	J.	Corn.	34-57.	Cambridge,	Mass:	MIT	Press.	

Fuller,	Matthew,	ed.	2008.	Software	studies	a	lexicon.	Cambridge,	Mass:	MIT	Press.		
	
Gibson,	James.	J.	1977.	The	theory	of	affordances.	Hilldale,	USA.	
	
Hesmondhalgh,	David.	2006.	Bourdieu,	the	media	and	cultural	production.	Media,	
culture	&	society,	28(2),	211-231.		
doi:10.1177/0163443706061682.	
	
Jameson,	Fredric.	2005.	Archaeologies	of	the	future:	the	desire	called	utopia	and	
other	science	fictions.	New	York:	Verso.	
	
Jenkins,	Henry.	2012.	Textual	poachers:	Television	fans	and	participatory	culture.	
New	York:	Routledge.	
	
Kay,	A.,	&	Goldberg,	A.	1977.	Personal	dynamic	media.	Computer,	10(3),	31-41.	
doi:10.1109/c-m.1977.217672	
	
Kittler,	Friedrich.	A.	1995.	There	is	no	software.	ctheory,	10(18),	1995.	

	 51	

	
Kuznetsov,	S.,	&	Paulos,	E.	(2010,	October).	Rise	of	the	expert	amateur:	DIY	projects,	
communities,	and	cultures.	In	Proceedings	of	the	6th	Nordic	Conference	on	Human-
Computer	Interaction:	Extending	Boundaries.	295-304.	New	York,	NY:	ACM	

Latour,	Bruno.	(1996).	“On	actor-network	theory:	a	few	clarifications	plus	more	than	
a	few	complications.”	Soziale	welt,	369-381.	

Latour,	Bruno.	1999	“On	Recalling	ANT.”	The	Sociological	Review	47	(1).	15–
25.doi:10.1111/j.1467-954x.1999.tb03480.x.		

Law,	John.	2009.	"Actor	Network	Theory	and	Material	Semiotics".	In	The	new	
Blackwell	companion	to	social	theory,	edited	by	Bryan	S	Turner.	141-158.	Chichester,	
West	Sussex,	United	Kingdom:	Wiley-Blackwell.	
	
Mackenzie,	Adrian.	2006.	Cutting	code:	software	and	sociality.	New	York,	N.Y.:	Peter	
Lang.	
	
Manovich,	Lev.	2001.	The	Language	of	New	Media.	Cambridge,	Mass:	MIT	Press,		
	
Manovich,	L.	2003.	“New	media	from	Borges	to	HTML.”	Introduction	to	The	New	
Media	Reader,	edited	by	Noah	Wardrip-Fruin	and	Nick	Montfort.	Cambridge,	MA:	
The	MIT	Press,	2003,	13-25.		

Manovich,	Lev.	2013.	Software	Takes	Command.	New	York:	Bloomsbury,	2013.	Print.	

McGrenere,	Joanna	and	Wayne	Ho.	2000.	“Affordances:	Clarifying	and	Evolving	a	
Concept”.	In:	Proceedings	of	Graphics	Interface	2000	179-186.	May	15-17,	2000,	
Montreal,	Quebec,	Canada.		

Norman,	Donald	A.	1990.	“Why	interfaces	don’t	work”.	In	The	Art	of	human-
computer	interface	design,	edited	by	Laurel,	Brenda,	and	S.	Joy	Mountford..	Reading,	
Mass:	Addison-Wesley	Pub.	Co.	

Norman,	Donald	A.	2013.	“The	design	of	everyday	things.”	New	York,	NY:	Basic	
Books.	
	
Park,	Lisa.	2015,	March	2.	“An	Interview	with	Lisa	Park.”	Retrieved	from	
https://cycling74.com/2015/03/02/an-interview-with-lisa-park/	
	
Pold,	Søren.	2008.	"Preferences/settings/options/control	panels."	In	Software	
studies:	a	lexicon,	edited	by	Matthew	Fuller.	218-224.	Cambridge,	Mass:	MIT	Press	
	
Puckette,	Miller.	1991.	"Something	Digital".	Computer	Music	Journal.	15	(4):	65-69.	

	 52	

doi:10.2307/3681075.	
	
Puckette,	Miller.	2007.	The	theory	and	technique	of	electronic	music.	Hackensack,	
N.J.:	World	Scientific	Publishing	Co.	
	
Rieder,	Bernhard,	and	Schäfer,	Mirko	Tobias.	2008.	"Beyond	Engineering:	Software	
Design	as	Bridge	over	the	Culture/Technology	Dichotomy".	In	Philosophy	and	Design:	
From	Engineering	to	Architecture,	edited	by	Pieter	E.	Vermaas.	159-171.	Dordrecht:	
Springer	Netherlands.	
	
Saphiro,	Alan.	N.	2014,	may	17.	“Code	as	Expanded	Narration.”	retrieved	from:		
http://www.alan-shapiro.com/software-code-as-expanded-narration-by-alan-n-
shapiro/	
	
Schechner,	Richard.	2013.	Performance	studies:	an	introduction.	London:	Routledge.	
	
Stinson,	Liz.	2014,	“Watch	An	Artist	Control	Pools	of	Water	With	Her	Brainwaves”.	
Wired	Magazine,	November	24.	Accessed	July	6,	2015.	
http://www.wired.com/2014/11/watch-artist-control-pools-water-brainwaves/	

Tanenbaum	J.G.,	Desjardins	A.,	Tanenbaum	K.,	and	Williams	A.M.	2013.	
"Democratizing	technology:	Pleasure,	utility	and	expressiveness	in	DIY	and	Maker	
practice".	Conference	on	Human	Factors	in	Computing	Systems	-	Proceedings.	2603-
2612.	
	
Van	den	Boomen,	Marianne.	2014.	Transcoding	the	digital:	how	metaphors	matter	in	
new	media.	Theory	on	demand,	14.	Amsterdam:	Institute	of	Network	Cultures,	2014.	
	
Van	den	Boomen,	Marianne,	ed.	2009.	Digital	Material:	Tracing	New	Media	in	
Everyday	Life	and	Technology.	Vol.	2.	Amsterdam:	Amsterdam	University	Press.	
	

	
	

