
EvoPoem: Context
Free Grammars for
Automated Poetry

Generation

Jan de Mooij 3966615

First assessor: dr. G.A.W. Vreeswijk

Second assessor: dr. R.W.F. Nouwen

28 February 2016

Bachelor Artificial Intelligence, Utrecht University

7,5 ECTS Bachelor Thesis

Chapter 1 Abstract
In this thesis, we discuss various poetry generators. We present our own text synthesis and natural

language generation algorithm that can be used with various machine learning technologies, as well as a

setup for the final machine learning enabled poetry generator, which we call EvoPoem. The algorithm is

able to produce short, grammatically correct sentences, and create a visual spacing that suggests rhythm.

This algorithm uses a grammar, a lexicon and a feature and unification algorithm enriched with constraint

satisfaction, to parse a string of bits deterministically into a potential poem.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 1

Table of Contents
Chapter 1 Abstract ..0

Table of Contents ..1

Chapter 2 Introduction ...2

Chapter 3 Theoretical Context ..4

Chapter 4 Method ...6

Chapter 5 Novelty of Our Approach ...8

Chapter 6 Construction of the Algorithm ...9

Chapter 7 Results ..12

Chapter 8 Conclusion and Suggestions for Further Research ...14

8.1 Conclusion ..14

8.2 Limitations of the Current Study and Suggestions for Further Research ...15

References ..16

Source ...16

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 2

Chapter 2 Introduction
In 1961 the book Cent Mille Milliards de Poèmes, a book by the French writer and poet Raymond

Queneau, was published. The book contains ten sonnets, of which each of the fourteen lines are printed

on a separate strip of paper, so that fourteen strips make up one page. The reader is free to combine the

lines from any of the poems to reveal a new, original poem. This way, the book effectively contains 1014

poems and thus shows how, even with a small number of building stones, a very large number of poems

can be created. This idea opens up a lot of possibilities for generating poetry with artificial intelligence. A

simple search on websites such as the search engine Google or the social media website and creative

platform Tumblr, show a wide variety of poems written by hobbyists. Many of these poems consist of a

few short lines, where indentation is used to suggest rhythm. Many of these poems do not incorporate

rhythm or rhyme and, in that respect, differ very much from Shakespearian sonnets, but attract a lot of

attention by fellow internet users nonetheless. We are interested in an algorithm that could write this

kind of poetry, and learn from reader feedback to write increasingly good poems. This kind of poetry has

the added advantage that some grammatical errors may be allowed, as the poem is generally judged by

its emotional impact on the reader.

We are interested in the core mechanisms of a system that can write poetry and learn to write better

poetry, without focussing on the machine learning process. We focus on the core system only, which

should be able to generate a few short, grammatically correct lines, including indentation. This led to the

following question: What is needed to create a text generator that uses a modular grammar and lexicon

which can easily be extended, to create texts that can be used for machine learning to create poetry?

We will produce a text synthesis and natural language generation algorithm for poetry-like texts. We will

also shortly discuss techniques that could be used with our algorithm to create the final machine learning

enabled poetry generator, which we call EvoPoem, although we will not create the generator at this time.

Speech and text generation is a widely discussed topic within the field of artificial intelligence, so we

believe this topic fits well within the field. Although our algorithm will not be able to produce text with

intentional meaning, we believe it will be able to produce text that appears to be meaningful, when

adjoined with an appropriate machine learning algorithm.

Although implementing the actual machine learning algorithm – as well as having humans rate the poetry

– falls outside of the scope of this thesis, the concept offers a stepping stone into the other branches of

the field of artificial intelligence. Due to the nature of machine learning, a goal must be provided that can

be expressed as a mathematical formula, before machine learning can take place. Using machine learning

on art is often not trivial, as a score indicating the quality of art is subjective and therefore hard to

capture with mathematics. A mechanism that allows machine learning to work on poetry generation

could therefore be a valuable addition to the field. Additionally, if such a system would be able to

produce proper poetry by learning from user feedback, it would provide useful insights to the field of

psychology, as this may offer understanding of how willing humans may be in accepting mistakes when

dealing with a machine. Furthermore, it raises the philosophical question whether art can only exist when

the message it carries is created explicitly and with intent by the artist, or if it may also be called art when

meaning is only perceived by the beholder.

This thesis describes the proof of concept we developed for a simple poetry text generation algorithm

that meets the requirements we mentioned earlier. First we will look into similar attempts in this field,

and how they differ from what we wish to achieve. Then we will describe the goal of this research in

more detail and explain our methods. We will then present the proof-of-concept algorithm we developed

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 3

as the core mechanism for this poetry generator, and discuss the performance of this algorithm. We will

finish with a discussion of our methods and with suggestions as to how this algorithm can be used in

further research.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 4

Chapter 3 Theoretical Context
As a research interest, the topic of generating art – and poetry in particular – is not new. A good overview

of previous attempts of poetry generation is presented by Oliviera (2009). For example, PO-EVOLVE is a

prototype implementation of a model for poetry generation using evolutionary algorithms and neural

networks (Levy, 2001). Levy compares creative processes to Darwinian evolution, where something good

that is also something new, is created by accident. This model of creativity served as the inspiration for

his model of poetry generation. In the PO-EVOLVE implementation, limericks are created by randomly

generating a population – a series of candidate solutions to a search problem, in this case texts – with a

set of words, which are tagged with phonetic and stress information and which are then placed on a

rhythm template. The words at the end of each line are selected to rhyme. Evaluation happens by means

of a recurrent neural network, to which the words of the poem are fed one by one, and which then

returns a score indicating the creativity of the poem based on pre-defined rules.

Another example is McGonnagall (Manurung, 2003), an advanced poetry generator developed by

Manurung for his Ph.D. and based on his previously developed chart system (Manurung, 1999). This

system makes use of genetic algorithms as well. A grammatically correct poem is constructed and can be

evolved by replacing, adding or removing parts of the parsing tree. The goal of this evolution is to create

poems which are syntactically correct and fulfil a certain goal (their given example is “to create an iambic

pentameter couplet that describes the act of walking and sleeping by a person named John”) (Manurung ,

2003, p. 56). A start sentence (“John walks”) is generated based on the semantics of the goal, and is

expanded by the algorithm to become a poem. His most important addition to the field, however, seems

to be his definition of what a poem is. As they point out, a poem can take many forms and a circular

definition such as “A poem is a poem because people call it a poem”, while complete, does not allow for

falsification of whether the generated poem is actually a proper poem (Manurung, 2003, pp. 15-16).

Therefore, they created three traits that a text must satisfy before it can be classified as a poem:

1) Meaningfulness: A poem must convey a (conceptual) message and this has to be an intentional

message

2) Grammaticality: A poem must abide by the rules of grammar for the given language and be very

restricted in its use of poetic license.

3) Poeticness: A poem must exhibit poetic features, such as rhythm or rhyme.

Although Manurung points out this definition excludes a lot of texts that would be classified as poetry by

the previous (circular) definition, these three traits seem to be treated as rules by many researchers who

try to create a poetry generator. In his text, Oliviera even uses these traits to assess the different poetry

generators he discusses on their overall performance (2009).

Of these three traits, the issue of meaningfulness seems to present the most difficulties. Meaningfulness

is usually achieved with a semantic modelling of words (Levy, 2001; Manurung, 2003) or a semantic

relation map (Toivanen, Toivonen, Valitutti, & Gross, 2012). In the first case, the semantics are being

build and then translated to natural language, while the latter mechanism only uses words related to a

given topic.

The second trait, grammaticality, is ensured by a variety of techniques. Some authors use some form of

text generators (such as context free grammars or chart parsers) (Manurung, 2003) while others use

structures of existing poems, where the existing words are partly, or indeed completely, replaced with

words matching a given lexical category (Toivanen et al., 2012). Still other authors use their application

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 5

for translating poems from other languages. This method deals with the matter of meaningful content, as

meaning is already present in the original poem (Greene, Bodrumlu, & Knight, 2010).

Most of the poetry generators seem to focus primarily on the concept of poeticness, however. It seems

that as long as a poem has the proper poetic form, content is treated as less relevant. To ensure

poeticness, end of line words are matched to rhyme, and words in a sentence are assessed and selected

on how their metre (rhythm) fits into a sentence. Emphasis information for words can easily be retrieved

from a dictionary, and metres for sonnets are well defined. Some methods use constraints to ensure a

rhythm (Manurung, 1999), others make use of a predefined rhythmic scheme alongside their

grammatical template (Greene et al., 2010).

Although not all discussed systems try to incorporate all three traits mentioned in Manurung’s definition

of poetry, most of the above discussed systems at least require their generated poetry to exhibit poetic

features (i.e. rhyme and rhythmicality). This is probably mainly to distinguish from automatically

generated narrative: in poetry, there is a strong connection between content and form and, as some may

argue, to the extent where form is more important than content (Toivanen et al., 2012).

In some cases, however, following Manurung’s definition seems to be a purely pragmatic choice. As

Manurung states, the hardest part of automatically generating creative works, is evaluation in such a way

that the assertion that the output of a given system that generates poetry can be verified as being poetry.

In other words, the assertion must be falsifiable (Manurung, 2003, p. 3). So a strong definition is needed,

to assess the performance of a generator. If no such strict rules for evaluation are at hand, the only

logical alternative seems to be using something like a Turing test, or acceptance of the poem in some

established venue (Toivanen et al, 2012, p. 178). This is exactly the approach that Toivanen et al. took

and which seems to distinguish their research from other research on this topic. To assess the

performance of their poetry generator, they asked a human jury to rate their automatically generated

poems on the following aspects (2012, p. 178):

1) How typical is the poem?

2) How understandable is the poem?

3) How good is the language?

4) Does the text evoke mental images?

5) Does the text invoke emotions?

6) How much does the subject like the text?

This results in a score for the poem that is probably more subjective, but accounts better for the

creativity of a poem than Manurung’s definition does, as it does not limit the rating of a poem to a

constraining definition of what a poem is.

There are many attempts at generating poetry, using different degrees of artificial intelligence and

automatic text generation. Manurung’s work has had a great influence in the field with his definition of

what a poem is. For him and many other researchers, rhythm and rhyme are such important aspects of

poetry that the quality of a poem can be judged by them.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 6

Chapter 4 Method
With the final poetry generator EvoPoem, we aim to create a system that learns to generate increasingly

good poems by means of a genetic algorithm. Each poem will consist of a few short sentences and will be

presented using various degrees of indentation. The quality of the poem is determined by means of

human ratings. The grammatical structure, the word choice, and the visual spacing are subject to a

genetic algorithm. This means all these elements, which constitute the poem, can evolve throughout the

process. If enough poems are generated, and rated by real humans, we hope EvoPoem will output

increasingly good poetry which feels more natural in rhythm and meaning than their predecessors, and

which feels more appealing in their visual presentation. In this thesis, we focus on the underlying

mechanisms of representation and the generation of single candidate poems, rather than on the machine

learning process.

The internal representation of a poem in the EvoPoem generator will be a bitstring: a sequence of ones

and zeros which are given meaning by a generator. The generator must be able to parse this bitstring to a

poem, and must be able to do so deterministically, meaning each bitstring has a one to one mapping with

a poem. It is important that every time a specific bitstring is parsed, the output will be the same, because

the evolution happens based on the bitstring, and not on the poem itself, which is rated by the user.

To give the bitstring meaning for the parser, the bit string must be converted to a sequence of integers.

The length of the bitstring may vary by implementation. The bitstring must be read as a stream, where

some amount of bits form a unit together, which is converted to an integer. If the end of the bitstring is

reached, the bitstring is read from the start again. As units consisting of multiple bits are used, the

integer output is only repeated if the length of the bitstring is divisible by the unit length.

In order to have the bitstring parsed into a grammatically correct poem, a grammar needs to be defined

that can generate a template which holds the grammatical structure. This template needs to be filled in

with words that fit the template, but which are also congruent with each other. For example, a template

could be:

 Noun Verb Det Noun

This template could be filled correctly with the following words:

 I walk a dog

The template could also, however, be filled with these words:

 * I walking an dogs

A method must be found to avoid ungrammatical sentences like the last example. This method must

select a word that fits the grammatical template and then select an inflection of that word which is

congruent with the rest of the sentence in which it is used.

To present the poem in a visually appealing manner, a way must be found to insert indentation to the

poem. This too must happen based on the bitstring which the poem is generated from, and must be done

deterministically.

To achieve all this, a proper data structure for the grammar, the lexicon and the poem itself have to be

designed. For the purposes of this proof of concept, we will use a very small grammar and lexicon, but

this method must work with large grammars and lexicons just as well. In other words, the method must

be easily extendible, so the algorithm itself requires no rewriting when working with a different or more

extensive grammar or lexicon.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 7

Considering the baseline representation of a poem is a bitstring, and this bitstring can be parsed
deterministically to a poem, given a certain grammar and lexicon, the evolutionary process is not
implemented in this proof of concept. A genetic algorithm to actually evolve the generated poetry is fairly
simple to implement as the workings of genetic algorithms are documented very well (Mitchell, 1998).
Furthermore, the method of generating new poems can be changed very easily from a genetic algorithm
to something else, e.g. an artificial neural network, without too much work, because the poem is parsed
from a bitstring. Any machine learning algorithm used in EvoPoem only requires to create valid bitstrings,
based on the user rating. For the purpose of testing the poetry generator, we will use randomly
generated bitstrings.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 8

Chapter 5 Novelty of Our Approach
All attempts of automatic poetry generation that we have reviewed in Chapter 3 use a well constrained

definition of what a poem is. The generation process is bound by constraints, to ensure meaningfulness,

poeticness, and grammaticality. All generated texts must follow a strict metre to qualify as a poem. Some

generators use existing poems to replace words until the meaning of the poems subject is the one

envisioned by the generator, others only use the grammatical structure of existing poems and fill in their

own words. However, all of these generators have in common that the creative freedom of the computer

is hugely limited by the set definition.

We propose to let go of the restrictions of poeticness and meaningfulness so this will not limit the search

space of possible poetry that can be generated based on user ratings. Rather than letting an algorithm

define what constitutes proper poetry, we intend to have proper poetry shaped by the ratings given by

readers of the poetry. The restrictions of poeticness and meaningfulness are too constricting for these

purposes. We intend to keep the constraint of grammaticality in place, as this hardly limits the search

space for a possible poem, while being a relatively easy first filter to apply on generated poetry. To

ensure grammaticality, we propose to use a customized context free grammar (CFG), which we will

elaborate on in Chapter 6.

We further propose making use of a user rating system to assess the fitness of a generated poem, rather

than programmatically checking the satisfaction of predefined and possibly limiting constraints. The exact

implementation of such a user rating system is beyond the scope of this research project, but our

algorithm was developed with a relative rating system in mind. Such a rating system could consist of a

website that allows users to select the better of two poems that appear simultaneously on the screen

and replacing the lesser of the two with a new and as yet by that user unrated poem. This way of rating

poetry is inspired by the Turing test, which, according to Toivanen (2012, p. 178) has been suggested as a

way to evaluate poetry before. Certainly, because of the subjective nature of art, a human rating system

will work very well for our approach. If the user base is large enough, this further ensures that the poem

is determined to be good in general and by a large audience, rather than being good according to

predefined and potentially incomplete mathematical formulas, or according to a few individuals with a

very specific taste in poetry. Especially with the type of poetry that will be generated with EvoPoem,

which may not appeal to poetry critics, but hopefully will appeal to a large audience of poetry

enthusiasts, this way of rating poetry would work especially well. This approach does, therefore, not

require a more strict definition of poetry than “A poem is a poem, because people call it a poem,”

(Manurung, 2003, p. 7) but in fact embraces this definition.

This approach differs from previous cases, because poeticness and meaningfulness are not ensured by

the algorithm, but introduced by the genetic algorithm that uses user rating as a fitness function.

Previous attempts focus on generating one genre of poetry, such as Shakespearian sonnets or Haiku’s. In

contrast, EvoPoem will very likely not output just one specific type of poetry, nor will poetry be

generated with meaningfulness in mind. This is something that Manarung condemns, but which may

yield very interesting insights into the previously discussed philosophical and psychological questions.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 9

Chapter 6 Construction of the Algorithm
For McGonnagall (Manurung, 2003), a reversed chart parser was used to generate grammatically correct

poetry. The evolution process is performed by replacing parts of the parser tree in the poem. We propose

to use a context free grammar (DCG) (Jurafsky & Martin, 2009, pp. 421-426) for the generation of the

grammar template. The approach is much the same as that of definite clause grammars (DCGs) that have

been created for use with Prolog (Jurafsky & Martin, 2009, p. 560). The grammar defines nodes, which

may contain references to other nodes or to leaf nodes. The end nodes, or leafs, are a specific class of

words, such as a noun or a verb. The root node will be a sentence, denoted as S. This node consists of

other nodes, for example a noun phrase and a verb phrase. The noun phrase may consist of a determiner

and a noun, and the verb phrase could be just a verb. According to this CFG, the only grammatically

correct sentence that can be generated is one of the form determiner noun verb. In many

grammars, however, each node, except for an end node, offers a choice for different phrases. A verb

phrase may as well consist of a verb and a noun phrase. These choices can be represented as a tree. In

our approach, we use the next integer returned from the bitstring to select which branch of the tree to

expand, implementing grammatical evolution (Dempsey, O'Neill, & Brabazon, 2009, pp. 9-24). This way,

as long as the grammar does not change, a bitstring will always result in the same grammatical template.

This approach is very suitable to use CFGs to parse bitstrings, which means that anyone who wishes to

adapt our system to generate poetry in their own way, only has to generate a bitstring instead of having

to redesign the grammar, lexicon and text generation algorithm.

We implemented this grammar in Java as a search tree which wespecifically adapted for our purposes.

Each node in this search tree is flagged as either group, clause or lexicon. A group-node defines a split

point, and contains one or more nodes, one of which can be expanded. The example of the verb-phrase,

which can either be a verb, or a verb and a noun phrase, is a group-node. A group-node indicates the

current node has to be replaced by exactly one of its members. A clause-node contains clauses, or

phrases. The node for sentence as well as the given examples for the noun and verb phrases are such

clause-nodes. It indicates the current node has to be replaced by all its members. Typically, a clause node

will contain a group node and vice versa. The last group of nodes are the lexicon-nodes. They contain a

reference to exactly one word class (e.g. noun, verb, determiner) and indicate the current node has to be

replaced by one word from the given word class.

Figure 1 shows the pseudo algorithm for generating the grammatical template from the bitstring, using

the grammar as described above.

1. Let grammar GrammerRootNode

2. Do:

3. For each x in grammar:

4. If type of x == clause:

5. let x x.members

6. Else if type of x == group:

7. Let y next_bit_string_int()

8. Let x x.member(y % x.size)

9. Else:

10. Continue

11. While not all x in gram of type lexicon:

12. return grammar

Figure 1 The pseudo code describing the process of generating the grammatical template from the bitstring

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 10

The lexicon is represented as a list of word classes. Each word class contains a list of objects of words that

fit into that class. The word object contains the base form for a word, and a list of possible inflections.

Each end node in the grammar points to exactly one word class which provides a list of words that fit into

that position of the grammatical template. The algorithm from Figure 1 returns a grammatical template

that contains only lexicon-nodes. From each of those lexicon-nodes, one word is selected. Figure 2 shows

the pseudo code for selecting the words to fill the grammatical template. It takes the grammar from the

algorithm shown in Figure 1 and the bitstring as arguments and returns an ordered list of word objects.

Again, because the words are selected based on the next integer returned by the bitstring, the choice of

words is deterministic, given that the grammar and lexicon remain unchanged. The final challenge

remains to pick the correct inflection for each word in order to ensure congruence between words. One

option would be to tag the initial CFG with extra information about, among other things, person, number

and tense, but this would mean creating a separate clause for each possible inflection and would result in

unmanageably large grammars. Instead, we opted for another approach, suggested by Jurafsky and

Martin (2009, pp. 523-561) which uses features and unification. We provide each word inflection with an

attribute value matrix (AVM). This AVM contains attributes that are relevant for the word class, such as

person, number or tense. Not all attributes are relevant for each word class; e.g. tense is not relevant for

a noun, so only attributes relevant for the word are used. The AVM as proposed by Jurafsky and Martin is

then adapted to allow features to have multiple values. This way, a word object – which sits one

abstraction level above the inflection object – can contain the combined values of an attribute of all

inflections of that word. The grammar is then extended so that additional constraints can be defined on

unification within a clause. This ensures not all features are necessarily unified, which is especially useful

in subordinate clauses, where a noun may appear that is not congruent with the subject.

Now that the structure is in place, the algorithm for unification needs a few adaptations as well to make

use of the previously made changes. First, unification must unify all possible values for a feature, rather

than merely unifying all features, to ensure the set of possible inflections remains as large as possible.

This adaptation is necessary to generate text, instead of parsing text as the algorithm as described by

Jurafsky and Martin was originally intended for. Inflections have to be selected based on how they fit

within the structure. One possibility would be to choose one inflection that fits for a single word and

work from there, starting over if a subsequent word has no inflections that fit into the sentence. This

could be done with depth-first or breadth-first search. Instead, we opted to convert the search problem

into a constraint satisfaction problem, where constraint propagation is used to search through a domain

of possibilities (Russel & Norvig, 2013, pp. 202-230). This means our method starts with the complete

domain of possible inflections for each word. With every step, all inflections that are no longer congruent

with a chosen inflection are eliminated from subsequent words. The result of this approach is that during

unification, a feature appearing in both AVMs will return the conjunction of the domain of the feature in

both AVMs. The rest of the rules for unification remain unchanged.

1. Define empty wordlist

2. For each x in grammar:

3. Let lexicon x.getLexicon

4. Let y next_bit_string_int()

5. Wordlist.add(lexicon.get(y % lexicon.size))

6. Return wordlist

Figure 2 The pseudo code describing the process of selecting words to fill the grammatical template

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 11

The nodes in the grammar do not require the features, as the features are only used to select the proper

inflection after the final word list is created. This means unification can happen after the final list of

words is generated by the algorithm in Figure 2. However, clauses are used to define which attributes of

two AVMs must be unified. To do this, whenever a clause is encountered, the unification instructions

have to be unified with the children of a clause node, for example a clause for noun phrase may consists

of a determiner and a noun, and declares unification must happen on the feature number. The clause

noun phrase is then replaced with the lexicon nodes determiner and noun, both of which receive a

reference to each other’s feature number in their AVM. After the final word list is generated, each word

has an AVM that describes all allowed values for its attributes. Where two features have been unified,

the two AVMs point to the same object, to ensure they remain similar, even after changes have been

made to either. This is just as proposed by Jurafsky and Martin (2009, pp. 525-526). The inflections are

now chosen by iterating over each word, populating the domain with a list of all inflections for the word

that could be unified with the AVM for that word, and then using the next integer from the bitstring to

select an inflection from the domain. Then, the AVM of the inspected word and the selected inflection

are unified and the values from the domain that are eliminated in this step are eliminated from all

subsequent words using constraint propagation. This ensures inflections that can be selected for future

words remain congruent with all earlier selected inflections.

Figure 3 shows the algorithm, which takes the output from the algorithm of Figure 2 as an argument, and

selects one of the allowed inflections of a word, ensuring congruency between words. This algorithm

then returns a grammatically correct single sentence.

To finish the poem, the number of lines is either set as a constant, or determined by the bitstring. For

each of the lines, the previously mentioned algorithms are executed on the bitstring. The indentation is a

function of the next bitstring integer as well, working in similar ways as selection based on the bitstring

happens in the previously described algorithms. The exact implementation of this function can be defined

by the user of the EvoPoem system before letting it run. A new line can be started between any two

words as well. Whether this happens should be determined by whether the next bitstring integer is

higher than a certain user defined constant as well: the higher this constant, the lower the amount of

premature line breaks.

The result of these algorithms is a poem parsed from a bitstring. The bitstring will always parse into the

same poem, provided the grammar and lexicon do not chance, and is therefore deterministic.

1. Define empty line

2. For each x in wordlist:

3. Define allowed_inflection_list

4. For each inflection in x:

5. If inflection.AVM.unify(x.AVM):

6. allowed_inflection_list.add(inflection)

7. Let y next_bit_string_int()

8. Let selected allowed_inflection_list.get(y % allowed_inflection_list.size)

7. Line.add(selected)

8. X.AVM.unify(selected.AVM)

9. Return line

Figure 3 The pseudo code that shows the procedure for selecting congruent inflections for each of the selected words in a poem. The
algorithm uses feature unification and constraint satisfaction to ensure congruency.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 12

Chapter 7 Results
For our implementation in Java, we used a simplified version of one of the example grammars provided

by Jurafsky and Martin (2009, p. 462). This grammar defines a few options for noun phrases, verb phrases

and prepositional phrases, and provides rules for how they can be combined to form grammatically

correct sentences, as discussed in the previous section. We created a lexicon for all the word classes

required by this grammar: nouns, verbs, articles, prepositions and pronouns. A dictionary could be used

to provide a lexicon, but for this proof of concept, we made a custom selection of words for our lexicon.

We selected some homonymous words, which could appear in multiple word classes. This was done to

increase the chances of encountering double meaning, which is often used in the poetry we focus on. Our

program generates random bitstrings, which are then parsed into a poem, using the algorithms described

in the previous section. The features we used for this implementation are limited to person, number and

tense. To distinguish between the forms of a noun, we used features for indicating whether an inflection

is personal, distant or possessive. Another feature was added to nouns that indicated whether the word

should be preceded by the ‘a’ article, or the ‘an’ article.

Figures 4 to 7 provide a small selection of some random four line poems that were generated using this

algorithm.

 the dives answered

 damage

 an answer dies

cured

Figure 4 Example poem bandage

you cured

 we alerted

 they died

Figure 5 Example poem

they echoed

 they ached

 a claim acted

 they ached

Figure 6 Example poem

 cured

 you cover

 the cures count through you to the answers on the brushes

covered

we dived

Figure 7 Example poem

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 13

The reader should keep in mind that with these tests, the word selection is based on a completely

random bitstring. No evolution has taken place with this algorithm so any form of meaning – or lack

thereof – is purely coincidental and the presented poems are first generation candidates only; not the

final result of a full machine learning enabled poetry generator. However, these examples clearly show

the general form of the type of poetry we described before. The example ‘poems’ consist of a few short

sentences and use indentation to change the perceived rhythm of the poem. Although the word choice

makes it more difficult to perceive the poems as fully grammatically correct, the sentence structure is

grammatical under the implemented grammar. In this case, the words the algorithm selected were a

product of a first generation random bitstring, but should follow from the evolutionary process, not the

bitstring parsing algorithm. Although the poems do not consist of sentences that would be used in a

natural English conversation, the structure more than suffices to have them serve as a starting point for

evolving poetry.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 14

Chapter 8 Conclusion and Suggestions for Further
Research

8.1 Conclusion
Our goal was to develop an algorithm that could use a simple grammar data structure that could hold

complex grammars, to parse a bitstring deterministically to a small poem. We used the concept of

context free grammars (CFGs) and feature mapping and we extended this concept to include features and

unification, using constraint propegation to ensure congruency. This combines in a decision tree-like

structure that is able to generate text. At each possible moment, a decision is made by parsing the next

part of the bitstring. The result of our algorithm will always yield the same output (poem) for a given

input (bitstring), provided that none of the parameters – such as the grammar and the lexicon – are

changed.

In our implementation, we used a very simple grammar, with a very limited lexicon and only the most

important features. This served well for testing purposes, as it allowed us to show our proof of concept

algorithm satisfies all of our requirements. Although the small grammar and lexicon we provided allow

for some variation in the poems that can be generated, our algorithm differs drastically from a fully

developed natural language in the sense that the number of distinct poems that can be generated with

this algorithm is far from infinite. With a more exhaustive grammar and lexicon, the search space for

poetry would increase as well.

Implementing the evolutionary algorithm fell outside of the scope of our proof of concept. Because of

this, the poems that were generated by our algorithm are, effectively, random, rather than the result of

an intelligent process. This means the poems generated by our implementation of the algorithm should

not be treated as an end result yet, in the same sense that the first generation of any genetic or

evolutionary algorithm population should not be treated as the end result.

It should also be mentioned that the algorithm we developed entails a specific approach for generating

grammatically correct texts and an internal representation that can be used for evolution. It is not,

however, the only approach. As is often the case in programming, other algorithms can be developed

that can meet all our requirements as well. Neither are our choices for the implementation of feature

unification or for how to handle the constraint satisfaction search problem necessarily the only correct

method.

Lastly, the poetry that is generated by our algorithm, or by an evolutionary algorithm that uses our

algorithm to parse the individuals in a population, is the product of chance crossovers and mutations of

previous poems. All elements of the poem, including meaning, are the product of combining previous

successful combinations, and are not put in the poem with the specific intent to exhibit “poeticness”. This

means the burden of assigning meaning is left with the reader and the poems generated with this

algorithm cannot be classified as poems if one follows the definition penned by Manarung. Although

Manargun’s definition seems to have become the standard, disregarding it allows for methods that differ

from previous attempts. For our goals, the attributes of poeticness and rhythmically would have been too

constraining, as they limit the way the final product can be shaped by how poems are rated by readers.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 15

8.2 Limitations of the Current Study and Suggestions for
Further Research
Implementing the evolutionary algorithm fell outside the scope of our proof of concept. The algorithm

that we developed as our proof of concept, however, was designed with the intent to use it in

combination with an evolutionary algorithm. We would be interested to see this aspect of the EvoPoem

poetry generator implemented. We would suggest implementing a mutation operator and a cross-over

operator in the bitstring object, where a mutation is the random flip of a bit and a cross-over is the

exchange of a sub string of two bitstrings. The theories for evolutionary algorithms are well developed

and the implementation of such an algorithm would not be very hard to realise, as we discussed before.

We left this implementation out, however, because it would need to run for a very long time before

yielding interesting results. We leave the decision of parameter values, such as mutation chance and

population size, to the research team that will continue this project. As discussed in previous sections, we

advise to use human readers to assess the quality of a generated poem and implement a fitness function

that works on this user rating. Our suggestion would be building a website that shows two poems next to

each other and asks the user to click on the poem he or she likes less than the other. The poem that was

clicked is then replaced by another poem and the rating for the poems is updated in the database to

indicate that the clicked poem is perceived as a worse poem than the one that was not touched. This

method results in a relative rating between poems, rather than an absolute rating such as would be the

result of using a scale. We believe this relative rating will handle user inconsistency better than an

absolute rating. Due to the implementation of our algorithm, any other fitness function, such as

automatic rating based on some features, will work with the algorithm just as well. When this system is

designed and based on a user rating, an interesting research question would be that of what makes a

poem a poem. Can a reader assign meaning to any text, regardless of intent, or is intent required to make

a text be perceived as meaningful? An answer to this question would provide valuable insights into the

human psyche.

Lastly, the data structure used to store the grammar and lexicon are complete in the sense that they can

contain all necessary features and do not grow exponentially when they are extended, but they could

hugely benefit from a more readable format. Research effort could be put in developing a data structure

for this grammar and lexicon that can be read, understood, adapted and extended without extensive

knowledge of programming and independent of the programming language in which the grammar is

implemented.

Jan de Mooij Bachelor Thesis Artificial Intelligence
2016-03-08 Utrecht University 16

References
Dempsey, I., O'Neill, M., & Brabazon, A. (2009). Foundations in Grammatical Evolution for Dynamic

Environments. Springer.

Greene, E., Bodrumlu, T., & Knight, K. (2010). Automatic Analysis of Rhythmic Poetry with Application to

Generation and Translation. Proceedings of the 2010 conference on empirical methods in natural

language processing. Association for Computational Linguistics.

Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (Second ed.). Prentice Hall.

Levy, R. (2001). A Computational Model of Poetic Creativity Width Neural Networks as Measure of

Adaptive Fitness. Proceedings of the ICCBR-01 Workshop on Creative Systems.

Manurung, H. (1999). Chart Generation of Rhythm-Patterned Text. Proceedings of the First International

Workshop on Literature in Cognition and Computers.

Manurung, H. (2003). An Evolutionary Algorithm Approach to Poetry Generation. University of Edinburgh.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Oliveira, H. G. (2009). Automatic Generation of Poetry: An Overview. Universidade de Coimbra.

Queneau, R. (1961). Cent Mille Milliards de Poèmes. Gallimard.

Russel, S., & Norvig, P. (2013). Artificial Intelligence: A Modern Approach. Pearson.

Toivanen, J. M., Toivonen, H., Valitutti, A., & Gross, O. (2012). Corpus-Based Generation of Content and

Form in Poetry. Proceedings of the Third International Conference on Computational Creativity,

(pp. 175-179).

Source
The source code of the proof of concept described in this thesis is available free of charge for reference

and reuse from Bitbucket.com under the General Public License v3.0.

Via WWW https://bitbucket.org/automatedpoetry/evopoem-bitstring-parser

https://bitbucket.org/automatedpoetry/evopoem-bitstring-parser

