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Abstract

Let (M,ω) be a closed symplectic 2n-dimensional manifold that is symplectically
aspherical with vanishing first Chern class. The (weak) Arnold conjecture states that the
number of contractible periodic orbits P0(H) of the Hamiltonian vector field XH associ-
ated to a Hamiltonian H is bounded from below by the Betti numbers of the manifold:

P(H) ≥
2n∑
k=0

dimHk(M ;Z2).

These contractible orbits can also be viewed as the fixed points of a Hamiltonian diffeomor-
phism. The first goal of this thesis is to prove the Arnold conjecture using Floer homology.

Floer homology is an infinite-dimensional type of Morse homology where the peri-
odic orbits are described as critical points of the symplectic action functional AH on loop
space. We prove that this homology is well-defined and does not depend on the choice
of the Hamiltonian H and almost complex structure J used to define it. To prove the
Arnold conjecture, we show that the Floer homology HF∗(M) is isomorphic to the Morse
homology HM∗(M) of M .

In the second part we explore several recent papers on Rabinowitz-Floer homology,
a Floer homology associated to the Rabinowitz action functional. The Rabinowitz-Floer
homology RFH∗(Σ,W ) is defined for an exact embedding of a contact manifold (Σ, ξ) into
a symplectic manifold (W,ω). We look at two applications.

The first one is the existence of leaf-wise fixed points. These are generalizations of
fixed points, associated to a coisotropic submanifold. We prove an existence result for
leaf-wise fixed points for a hypersurface of contact type (Σ, ξ) in a symplectic manifold.

The second application is orderability of contact manifolds. A contact manifold is or-

derable when there exists a partial order on C̃ont0(Σ, ξ), the universal cover of the group of
contactomorphisms. We establish conditions in terms of the Rabinowitz-Floer homology
RFH∗(Σ,W ) under which a Liouville fillable closed coorientable contact manifold (Σ, ξ)
with Liouville filling (W,ω) is orderable.
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CHAPTER 1

Introduction

1.1. Motivation and main result

In this section we give some motivation about fixed point theory, after which we state
the main result proven in the thesis.

The motivation comes from physics. There, a mechanical system is described as a
Hamiltonian system on phase space, which is the cotangent bundle of a configuration
space. An example is a particle whose dynamics are governed by time-dependent Hamil-
tonian function. The configuration space is R3. The phase space is T ∗R3, consisting of
pairs (x, p) where p denotes the momentum of the particle. The Hamiltonian is a time-
dependent function H : R × T ∗R3 → R. This phase space has a symplectic structure.
This is a non-degenerate and closed 2-form ω ∈ Ω2(T ∗R3). For T ∗R3, the sympletic form
is given by

ω =
3∑
i=0

dxi ∧ dpi.

Using the non-degeneracy of ω, there is a unique vector field XH defined by

ιXHω = dH

called the Hamiltonian vector field. A particle in the Hamiltonian system (T ∗R3, H)
moves according to the differential equation

(1.1) ξ̇(t) = XH(ξ(t))

where ξ : R → T ∗R3. It is conceivable that the particle returns to its original position
after time 1, which means ξ(t) = ξ(t + 1) for all t ∈ R. This is called a periodic orbit of
period 1. A natural question about a given Hamiltonian system is the following.

Question 1.1 (Periodic orbits). For a given Hamiltonian system, do any periodic
orbits exist. If so, how many at least?

Consider now a symplectic manifold (M,ω) with a 1-periodic Hamiltonian H : S1 ×
M → R. Define

P(H) := {x : S1 →M | x solves equation (1.1)}.
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2 1. INTRODUCTION

When giving an answer to Question 1.1 for contractible orbits, we look at the number of
elements in the set

P0(H) := {x ∈ P(H) | x contractible in M}.
Elements x ∈ P(H) correspond to fixed points of the time-1 flow of XH as ϕ1

H(x(0)) =
x(0). We discuss an example.

Example 1.2. Consider S2 ⊂ R3 be the unit sphere with symplectic structure ω =
dz ∧ dθ in cylindrical coordinates. Consider H = αz. Then ϕ1

H is a rotation through an
angle α. In the case α < 2π the we have the following picture.

x ϕ1
H(x)

ϕ1
H(x)

Figure 1. The fixed points of a rotation of the sphere S2.

We see that ϕ1(H) has precisely two fixed points: the north and south pole.

We look at periodic orbits that are non-degenerate.

Definition 1.3. Let H : S1×M → R be a 1-periodic Hamiltonian and let x ∈ P(H).
We say x is non-degenerate if for the time-1 flow ϕ1

H we have

det(Id−Tx(0)ϕ
1
H) 6= 0.

We say a Hamiltonian H is non-degenerate if all x ∈ P(H) are non-degenerate.

The following famous conjecture was first stated in 1965 by Arnold in [Arn65] (for-
mulated differently, we formulate a homological version). It gives an answer to Question
1.1.

Theorem 1.4 (Arnold Conjecture). Let (M,ω) be a compact symplectic manifold of
dimension 2n. Let H : S1×M → R be a 1-periodic time-dependent Hamiltonian. Suppose
H is non-degenerate. Then

#P(H) ≥
2n∑
i=0

Hi(M,Z2)

This non-degenerate version of the Arnold conjecture has been proven in full gener-
ality by Fukaya-Ono in [FO99] and Liu-Tian in [LT98]. We refer the reader to [MS12]
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page 278 for a historical overview of the proof of the Arnold conjecture. In the first part
of this thesis we prove the following version of the Arnold conjecture.

Theorem 1.5. Let (M,ω) be a compact symplectic 2n-dimensional manifold such
that ∂M = ∅. Assume furthermore that

• For all α ∈ C∞(S2,M) we have
∫
S2 α

∗ω = 0.

• For all α ∈ C∞(S2,M), there exists a symplectic trivialization of the bundle
α∗TM .

Then

#P0(H) ≥
2n∑
i=0

dimHi(M ;Z2).

1.2. Overview of the topics covered

We prove Theorem 1.5 using Floer homology. This is an infinite dimensional Morse
homology for the symplectic action functional. The proof is explained throughout the
first 6 chapters. First, we introduce the necessary symplectic topology in chapter 2. In
chapter 3 we discuss the properties of the symplectic action functional. Critical points
of this functional generate the Floer chain groups. We then discuss the grading of the
critical points by the Conley-Zehnder index in chapter 4, which is based on the Maslov
index for paths of symplectic matrices. In chapter 5, we give a rigorous definition of Floer
homology, with all technical machinery involved. In the following chapter, we establish
that Floer homology does not depend on the choices made and is isomorphic to the Morse
homology of M . We use these facts to prove Theorem 1.5.

In the final chapter of this thesis, we give an overview of Rabinowitz-Floer homol-
ogy, a Floer homology associated to the Rabinowitz action functional. We discuss two
applications of Rabinowitz-Floer homology. The first application is an existence result
for leaf-wise fixed points in contact manifolds of restricted contact type. Leaf-wise fixed
points are a generalization of the fixed points studied in Floer homology. The second
application is a result about the orderability of contact manifolds. A contact manifold

is orderable if there exists a partial order on C̃ont0, the universal cover of the identity
component of the group of diffeomorphisms that preserve the contact structure.

Throughout the text, we will reference to the appendix containing auxiliary results
and background theory.





CHAPTER 2

Symplectic geometry and the Arnold conjecture

2.1. Introduction to symplectic geometry

We give a short introduction to symplectic geometry to introduce the concepts men-
tioned in Theorem (1.4). We first define symplectic vector spaces and symplectic mani-
folds. We then discuss Riemannian metrics and almost complex structures and the notion
of ω-compatibility. These concepts arise in the Floer equation (3.6) which is derived in
Chapter 3.

Definition 2.1 (Symplectic vector space). A symplectic vector space (V, ω) is an
R-vector space V equipped with a bilinear form

ω : V × V → R

such that the following conditions are satisfied

(i) ω is skew-symmetric, which means it satisfies ω(u, v) = −ω(v, u).

(ii) ω is non-degenerate, which means that, for u, v ∈ V , if ω(u, v) = 0 for all u ∈ V ,
then v = 0.

In the following example we equip R2n with the structure of a symplectic vector
space.

Example 2.2. Denote v = (v1, . . . , v2n) and w = (w1, . . . , w2n) two vectors in R2n.
Let ω0 : R2n × R2n → R be defined by

ω0(v, w) =
n∑
i=1

v2i−1w2i − v2iw2i−1.

The pair (R2n, ω0) is a symplectic vector space. The form ω0 is known as the standard
symplectic form on R2n.

Remark. Any symplectic vector space (V, ω) must be even dimensional. This follows
from the fact that any real skew symmetric matrix of odd dimension must have a kernel,
which contradicts the conditions of Definition 2.1.

For any linear subspace of a symplectic vector space, we can define its symplectic
complement.

5



6 2. SYMPLECTIC GEOMETRY AND THE ARNOLD CONJECTURE

Definition 2.3. Let (V, ω) be a symplectic vector space and W ⊆ V a linear sub-
space. Then the symplectic complement of W with respect to ω is defined as

W ω := {v ∈ V | ω(v, w) =0 for all w ∈ W}

By linearity of ω, the subset W ω is a linear subspace. Unlike the orthogonal com-
plement with respect to an inner product, where W⊥ ∩W = {0}, this is not the case for
W ω ∩W . There are several possibilities.

Definition 2.4. Let (V, ω) be a symplectic vector space and W ⊆ V a linear sub-
space with the associated symplectic complement W ω ⊆ V .

• We call W isotropic if W ⊆ W ω.

• We call W coisotropic if W ω ⊆ W .

• We call W Lagrangian if it is both isotropic and coisotropic, i.e. W ω = W .

• We call W a symplectic subspace if W ω ∩W = {0}.

Linear endomorphisms of a vector space can preserve the symplectic structure.

Definition 2.5. Let (V, ω) be a symplectic vector space and Ψ ∈ End(V ). We say
Ψ is a linear symplectomorphism if

Ψ∗ω = ω.

Here, by the pull-back we mean that for v, w ∈ V , Ψ∗ω(v, w) = ω(Ψv,Ψw). All linear
symplectomorphisms of a symplectic vector space (V, ω) form a group denoted

(V, ω).

We can transfer the definition of a symplectic vector space to smooth manifolds by
considering a 2-form ω that equips every tangent space with the structure of an symplectic
vector space. Let M be a manifold, then denote

Ωk(M) = {Differential k-forms on the manifold M}.

We have the following definition for a symplectic manifold.

Definition 2.6 (Symplectic manifold). A symplectic manifold (M,ω) is a pair where
M is a manifold and ω ∈ Ω2(M) such that the following holds

(i) For every x ∈M , the bilinear map ωx : TxM × TxM → R is non-degenerate.

(ii) The 2-form ω is closed, i.e. dω = 0.
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The above definition ensures that for every point x ∈M , the tangent space TxM has
the structure of a symplectic vector space, as ωx is non-degenerate, bilinear and skew-
symmetric.
Extending the definitions of a isotropic, coisotropic and Lagrangian subspaces to the
manifold setting yields the following definition.

Definition 2.7. Let (M,ω) be a symplectic manifold and N ↪→M be a submanifold.

• We call N an isotropic submanifold if for every x ∈ N , the vector space TxN ⊆
TxM is isotropic.

• We call N a coisotropic submanifold if for every x ∈ N , the vector space
TxN ⊆ TxM is coisotropic.

• We call N a Lagrangian submanifold if for every x ∈ N , the vector space
TxN ⊆ TxM is Lagrangian.

• We call N a symplectic submanifold if for every x ∈ N , the vector space TxN ⊆
TxM is symplectic.

Remark. Note that the Lagrangian condition can be rephrased. A submanifold
L ⊆M is Lagrangian if and only if ω|L = 0 and dimL = 1

2
dimM .

A diffeomorphism ψ : M →M can preserve the symplectic form.

Definition 2.8. Let ψ ∈ Diff(M). We say ψ is a symplectomorphism if

ψ∗ω = ω.

All symplectomorphisms of a symplectic manifold (M,ω) form a group denoted

Symp(M,ω).

We define a Riemannian metric on a manifold M . In order to define Floer homology
we need a Riemannian metric on C∞(S1,M).

Definition 2.9 (Riemannian metric). A Riemannian metric (M, g) is a pair where M
is a manifold with an inner product gx on every vector space TxM which varies smoothly
with x. That is, a bilinear symmetric positive definite form

gx : TxM × TxM → R

which depends smoothly on x.

Another concept that shows up in the Floer equation is that of an almost complex
structure. Of special interest is ω-compatibility which constitutes a relation between g, J
and ω.
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Recall that a complex structure J on a vector space V is an automorphism J : V → V
such that J2 = − Id.

Definition 2.10 (Almost complex structure). Let M be a manifold. Then an almost
complex structure J is a complex structure on the tangent bundle TM . This is equivalent
to saying that J : TM → TM is a fiber-preserving map such that J2 = − Id.

If M is a symplectic manifold, there is a concept of compatibility between the sym-
plectic form ω on M and an almost complex structure J on M . We use this to construct
a Riemannian metric on C∞(S1,M) using an almost complex structure and a given ω on
M .

Definition 2.11 (ω-compatibility). Let (M,ω) be a symplectic manifold and J an
almost complex structure on M . Then J is said to be ω-compatible if the form

〈 · , · 〉 : TM × TM → R

defined by

(v, w) 7→ 〈v, w〉 = ω(v, Jw)

defines a Riemannian metric on M .

We denote the set of ω-compatible almost complex structures by

J (M,ω)

Remark. By proposition from [MS98][Proposition 4.1 (i)], we have J (M,ω) 6= ∅.
Hence, given ω, we can always find an ω-compatible almost complex structure, which then
induces a metric ω( · , J ·) by definition of ω-compatibility. We use this to find a metric
on C1(S1,M).

In the introduction we say that the fact that ω is non-degenerate allows us to define
the Hamiltonian vector field XH associated to a Hamiltonian function H : [0, 1]×M → R
defined by

ιXH = dH.

We expand on this and define the group of Hamiltonian diffeomorphisms.

We can also integrate the vector field XH and consider its flow. Suppose that M is
closed 1, then the flow of XH is complete. Then XH generates a 1-parameter family of
diffeomorphisms ϕtH : M →M by

dϕtH
dt
◦ ϕtH = XH

with initial condition ϕ0
H = IdM .

1From now on, we will say a manifold M is closed when M is compact and ∂M = ∅
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Definition 2.12. Suppose H ∈ C∞([0, 1]×M,R) is a Hamiltonian with associated
Hamiltonian vector field XH . Denote the flow of XH by ϕtH . Any map ϕ : M →M such
that there exists H such that ϕ = ϕ1

H is a called a Hamiltonian diffeormorphism. The set
of Hamiltonian diffeomorphisms forms a group denoted Ham(M,ω).

Remark. There are several remarks to be made about the this definition.

• Note that this definition works also for non-compact manifolds. However, some
properties of Ham(M,ω) are not valid in this case. In the non-compact case
therefore, often the restriction is made to Hamc(M,ω), the subset of Hamiltonian
diffeomorphisms generated by compactly supported Hamiltonians. See Remark
10.5 in [MS98]for more details.

• A small computation shows that actually Ham(M,ω) ⊂ Symp(M,ω) is a sub-
group. In the case where M is closed, this subgroup is normal and path-
connected. See [MS98] Proposition 10.2 for both the proof that it is a group
and normal and path-connected.

In the introduction we already mentioned that there is a bijection between x ∈ P(H)
and the fixed points of ϕ1

H .
For any map ϕ : M →M denote

Fix(ϕ) := {x ∈M | ϕ(x) = x}
the set of fixed points. Then the bijection between P(H) and Fix(ϕ1

H) is given by eval-
uation in zero, ev0 : P(H) → Fix(ϕ1

H) where ev0(x) = x(0). In this way, the Arnold
conjecture can be interpreted as a statement about fixed points of Hamiltonian diffeo-
morphisms. However, we prove the weak Arnold conjecture about P0(H), the subset
of contractable periodic orbits. In this case, the relation to fixed points of Hamiltonian
diffeomorphisms becomes more obscure. It may not be the case that for any loop of Hamil-
tonian diffeomorphisms ϕt such that ϕ0 = Id, that for p ∈ M the path xp(t) := ϕt(p) is
contractible. It is true that this is the case, but the proof requires Floer homology. This
is the reason we state the Arnold conjecture as a statement about P0(H) instead.





CHAPTER 3

The action functional

3.1. The loop space

The following section is largely based on Section 6 of [AD14], a very detailed and
thorough book on Floer homology. Some inspiration is also taken from the excellent lec-
ture notes on Floer homology by W.J. Merry which can be found on his website.

The action functional AH defined in the next section is defined on an infinite dimen-
sional path space which we define in this section. We define the space of contractible
loops.

Definition 3.1. Let M be a smooth manifold. Then we denote the space of loops
of class W1, p

L0M := {x ∈ W 1,p(S1,M) | x is contractible}.

By contractible here, we mean that x is homotopic to the constant map. All loops
and homotopies are with free endpoints. The choice for contractible loops is the choice
of a connected component of the space of all loops. In this case the natural choice is the
component containing the constant loops, which means contractible loops.
We need to restrict to this special class of functions instead of C∞ functions, as such spaces
would merely be Fréchet manifolds. By restricting to functions of class W 1,p(S1,M)
however, one can give L0M the structure of a Banach manifold, by application of the
inverse function theorem. The following remark describes the structure of a Banach
manifold on L0M .

Remark. Let x ∈ L0M . Then there is a symplectic trivialization of the pullback
bundle x∗TM , as this is a bundle over S1. For the definition of pullback bundle see
Definition C.8. This is a map Φ : x∗TM → S1 × R2n. Then we set

W 1,p(x∗TM) := {Y ∈ Γ(S1, x∗TM) | ΦY ∈ W 1,p(S1,R2n)}.
One can show that the Banach manifold structure induced in this way does not depend
on the choice of trivialization Φ. Let exp denote the exponential of a fixed Riemannian
metric g. The atlas on the loop space is given by the pairs

(W 1,p(x∗TM), expx)

where W 1,p(x∗TM) is a Banach space as above and expx is the diffeomorphism. This
construction is independent of the choice of Riemannian metric g. See Section 6.8 in
[AD14] for more details, with Theorem 6.8.1 in particular.

11



12 3. THE ACTION FUNCTIONAL

Let us describe tangent vectors at some x ∈ L0M . Recall that a tangent vector X at
x is an equivalence class of paths u(s) through x with u(0) = x and u̇(0) = X. As u(s) is
a loop for every s ∈ R we view it as a map

u : R× S1 →M

(s, t) 7→ u(s, t)

Then by the above definition we have X(t) ∈ Tx(t)M for every t ∈ S1. Hence, philo-
sophically, a tangent vector X is a section of the tangent bundle along x. That is,
X ∈ Γ(S1, x∗TM). One readily sees that a section of the bundle x∗TM is precisely what
we describe above.
Using this notion of a tangent space, one can also define a metric on L0M using that M
comes equipped with a symplectic form ω. In the definition of Floer homology, we will
consider flow lines of the gradient ∇JAH with respect to the L2-metric. Let J ∈ J (M,ω).
Then by definition

gJ = ω( · , J ·)
is a Riemannian metric. Then define the L2-metric.

Definition 3.2. Let x ∈ L0M and X, Y ∈ TxM . Define an metric on L0M by

〈X, Y 〉J =

∫
S1

gJ(X(t), Y (t)) dt

One readily checks that this is indeed a metric.

3.2. The action functional AH

To define the action functional AH we will need two assumptions already mentioned
in the introduction. We provide a few more details here. Let (M,ω) be closed symplectic.

Assumption 3.3 (Symplectic Aspherical). For every smooth map α : S2 → M we
have

∫
S2α

∗ω = 0.

Symplectic manifolds with this property are called symplectic aspherical manifolds.
This can be rephrased in the language of algebraic topology as follows. Let

∆(M) := im{h : π2(M)→ H2(M)} ⊗ R

where h denotes the Hurewicz map. Denote 〈 · , · 〉 the Kronecker pairing then Assumption
3.3 is equivalent to

〈ω, σ〉 = 0

for all σ ∈ ∆(M).

Assumption 3.4 (Vanishing of c1). For every smooth map α : S2 →M , there exists
a symplectic trivialization of the fiber bundle α∗TM .
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Again, in more algebraic terms this means that

〈c1(TM,ω), σ〉 = 0

for all σ ∈ ∆(M). For details on the Chern class, see the Appendix A.3.

Remark. By the algebraic descriptions of both assumptions, it is immediatly clear
that any manifold with π2(M) = 0 satisfies both. Hence, an example of a suitable
symplectic manifold M in our setting would be T 2n with its standard symplectic structure.

In order to define the symplectic action functional AH we need the following lemma.

Lemma 3.5. Let x ∈ L0M be a a loop and u, v : D → M such that u(∂D) =
v(∂D) = x(t). Then ∫

D

u∗ω =

∫
D

v∗ω

Proof.: We can define a function u#v : S2 → M by gluing the two disks on which
u and v are defined along their boundaries, where we have u(∂D) = v(∂D) to define a
map on S2. Then by assumption 3.3, we get that

∫
S2(u#v)∗ω = 0. However, we have∫

Du
∗ω −

∫
Dv
∗ω =

∫
S2(u#v)∗ω, so the integrals agree.

Remark. Strictly speaking, u#v as defined above may not be smooth. It is defined
as a map u#v : D#D→M , where D#D is diffeomorphic to S2 with D := {z ∈ C | |z| ≤
1} is the unit disc in C. We need a small argument by smoothening such that there exists
ε > 0 such that u(z) = u( z

|z|) and v(z) = v( z
|z|) for all z ∈ D such that 1 − ε ≤ z ≤ 1.

Then we can glue these two discs to a sphere and the result follows.

We can then define the action functional associated to the Hamiltonian H.

Definition 3.6 (Symplectic action functional). Let H : S1 ×M → R be a time-
dependent 1-periodic Hamiltonian. The symplectic action functional

AH : L0M → R
is defined by

(3.1) AH(x) =

∫
D
u∗ω +

∫ t

0

H(t, x(t)) dt

Here, u : D→M is an arbitrary extension of x : S1 →M to the disk. More explicitly,
if D = {z ∈ C | |z| ≤ 1}, then u is a map such that u(e2iπt) = x(t) for all t ∈ S1. By
the above lemma 3.5, the right hand side of equation 3.6 is indepedent of the choice of u.
Hence AH is well-defined. The functional AH has the following interesting property.

Proposition 3.7. A loop x ∈ L0M is a critical point of AH if and only if x satisfies

(3.2) ẋ(t) = XH(x(t))

(i.e. x ∈ P0(H).
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Proof. Let x ∈ L0M . By critical points we mean critical in the variational sense.
Therefore, we define a smooth family x̃s(t) := x̃(s, t) around x(t) in the following way.
Extend x to x̃(s, t) such that

x̃(0, t) = x(t) and
∂x̃

∂s
|(0,t) = X(t).

Then we can compute the differential of AH at x applied to X. Formally, we have

(3.3) dAH(x)X =
dAH(x̃)(s, ·)

ds
(0)

To compute the right term, we need to slightly extend u to ũ such that

ũ(0, z) = u(z) and ũ(s, e2iπt) = x̃(s, t).

This allows us to extend X by setting X(z) = ∂ũ
∂s
|(0,z). We can now compute using

Lebesgue dominated convergence

− d

ds
(

∫
D
ũ∗ω)|s=0 = −

∫
D
(
∂

∂s
ũ∗ω)|s=0

= −
∫
D
u∗(LX(z)ω)

= −
∫
D
u∗(diX(z)ω)

= −
∫
S1

x∗(iX(z)ω)

= −
∫ 1

0

ω(X(z), ẋ(t)) dt

=

∫ 1

0

ω(ẋ(t), X(t)) dt

Here in the third step we use Cartan’s formula

LXα = ιXdα + dιXα

for any α ∈ Ωk(M) for k ≥ 0 and the fact that dω = 0. We compute the second term.

d

ds

∫ 1

0

Ht(x̃(s, t)) dt|s=0 =

∫ 1

0

(dHt)x̃(0,t)(X(t)) dt

=

∫ 1

0

ωx(t)(X(t), XHt(x(t))) dt

We have

AH(x̃) = −
∫
D
ũ∗ω +

∫ 1

0

Ht(x̃(s, t)) dt.

Then by the above calculation and equation 3.3, we have

dAH(x)X =

∫ 1

0

ω(ẋ(t)−XHt(x), X) dt.
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Now a critical point x is such that dAH)(x)X = 0 for all X ∈ Tx(t)M . By non-degeneracy
of ω, this happens if and only if

ẋ(t) = XHt(x(t))

which is precicely equation 3.2. This proves Proposition 3.7. �

Using Proposition 3.7 we see that critical points of AH correspond to solutions of
equation (3.2). We now compute the gradient of AH with respect to the metric 〈 · , · 〉J
defined above.

Recall the definition of the gradient. Let (N, g) be a smooth manifold equipped
with a Riemannian metric. Let f ∈ C1(N,R). Then the gradient of f is a vector field
∇f ∈ Γ(N, TN) such that for any vector field X ∈ Γ(N, TN) we have

gx(∇xf,X(x)) = df(x)X(x)

for all x ∈ N . In our case for AH : L0M → R with metric 〈 · , · 〉J the gradient ∇JAH is
then defined by

〈∇JAH , X〉J = dAH( ·)X
for any vector field X ∈ Γ(L0M,TL0M). We have the following proposition.

Proposition 3.8. For the action function AH ,with respect to the metric 〈 · , · 〉J , we
have at x ∈ L0M that

∇JAH(t) = J(x(t))ẋ(t) +∇x(t)Ht

Proof. This is a direct computation using that gJ( · , ·) = ω( · , J ·). �

One can readily compute that the gradient of Ht is the Hamiltonian vector field XHt

composed with J(x) by definition, so that the above can also be rewritten to read

(3.4) ∇JAH(t) = J(x)
(
ẋ(t)−XHt(x(t))

)
We look at negative gradient flow lines, which are maps

u : R→ L0M.

such that

(3.5)
d

ds
u(s) = −∇JAH(u(s))

where ∇JAH is give by equation (3.4). The gradient flow equation (3.5) is an ordinary
differential equation on the loop space L0M . However, L0M is an infinite dimensional
space. Floer’s idea was to instead regard the map u as a map

u : R× S1 →M.

Then, equation (3.5) can be rewritten to a partial differential equation on the finite
dimensional space M . This equation is known as Floer’s equation

(3.6)
∂u

∂s
+ J(u)(

∂u

∂t
−XHt(u)) = 0
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This is the central equation in this thesis. We will analyze solutions to this equation,
which will be essential to defining Floer homology.



CHAPTER 4

The Conley-Zehnder index

The Floer chain complex used to define Floer homology is generated by critical points
of the action functional AH . We saw in Chapter 3 that these critical points correspond
to periodic orbits x ∈ P0(H). In order to grade the Floer chain complex, we index the
critical points using the Conley-Zehnder index, henceforth abbreviated as CZ-index. This
index is based on the Maslov index for a path of symplectic matrices. In this chapter
we give a description of this index. Furthermore, we work out one example where we
compute the index.

We define the CZ-index and calculate this index for a path of rotations in the plane.
This will be used in Chapter 5, where it is shown that the CZ-index equals the Fredholm
index of the vertical differential of the Floer operator.

4.1. Maslov index for paths Φ : [0, 1]→ Sp(2n).

We define the Maslov index for a path of symplectic matrices. In the following, let J0

and ω0 be the standard almost complex structure and standard symplectic form on R2n.
One can also view this as Cn where J0 denotes multiplication by the complex variable i.

Definition 4.1. We call the matrices

Aut(R2n, ω0) = Sp(2n) = {A ∈ R2n×2n | A∗J0A = J0}
the symplectic group.

Note that this is the same as Sp(V, ω) defined in Chapter 2, where now (V, ω) is taken
to be (R2n, ω0), meaning Sp(2n) = Sp(R2n, ω0).

Define the subspace of symplectic matrices A that do not have 1 as an eigenvalue as
follows

Sp∗(2n;R) = {A ∈ Sp(2n;R) | det(A− Id) 6= 0}.
Then the path space we look at are continuous paths that start at Id and end in Sp∗(2n;R).
This space of paths is defined by

S = {Φ ∈ C0([0, 1], Sp(2n)) | Φ(0) = Id,Φ(1) ∈ Sp∗(2n)}.
We equip this space with the compact-open topology.

17
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There are several possible ways to define the Conley-Zehnder index. We follow the
exposition in [SZ92] and define a map ρ that we use to define the Conley-Zehnder index.
The determinant map

det : U(n)→ S1

induces an isomorphism of fundamental groups by using the homotopy exact sequence of
the fibration SU(n)→ U(n)→ S1. Now Sp(2n;R)/U(n) is contractible, so π1(Sp(2n;R)) '
Z. (Some details here) This isomorphism yields a natural continuous map

ρ : Sp(2n;R)→ S1

which extends the determinant map.

We will use the following notation. Suppose (V1, ω1) and (V2, ω2) are two symplectic
vector spaces. Define the product space

(V, ω) = (V1 × V2, ω1 × ω2).

Let (W, ω̃) = (W1×W2, ω̃1× ω̃2) be another product space. Then any A ∈ Lin(V,W ) can
be decomposed as A = A1 × A2 where for v = (v1, v2) ∈ V we have Ai : Vi → Wi such
that

(4.1) A(v1, v2) = (A1v1, A2v2)

Equivalently, Ai is given by

Ai = (pWi
◦ A)|Vi : Vi → Wi

Furthermore, we use Lemma 2.19 from [MS98] which says that any Ψ ∈ Sp(2n;R)∩O(2n)
is of the form

(4.2) Ψ =

(
X −Y
Y X

)
such that XTY = Y TX and XTX + Y TY = Id. Note that this is equivalent to
X + iY ∈ U(n).

The formal definition of ρ is described by the following theorem.

Theorem 4.2. Let (V, ω) be a finite dimensional symplectic vector space. Denote

Aut(V, ω) = {Φ ∈ Aut(V ) | Φ∗ω = ω}.

There is a unique collection of maps

ρ : Sp(V, ω)→ S1

one for each (V, ω), satisfying the following conditions.
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Naturality Let (V1, ω1) and (V2, ω2) be symplectic vector spaces. If T : V1 → V2 is an
isomorphism such that T ∗ω2 = ω1 then

ρ(TAT−1) = ρ(A)

for any A ∈ Sp(V1, ω1).

Product Let (V1, ω1) and (V2, ω2) be symplectic vector spaces and (V, ω) the product

(V, ω) = (V1 × V2, ω1 × ω2).

Then for the decomposition A = A1 × A2 as in (4.1) the following holds

ρ(A) = ρ(A1)ρ(A2).

Determinant Suppose A ∈ Sp(2n;R) ∩O(2n) is of the form (4.2). Then

ρ(A) = det(X + iY ).

Normalization Let A ∈ Sp(V, ω). Suppose that A has no eigenvalues on S1 ⊂ C. Then

ρ(A) = ±1.

We now construct the Conley-Zehnder index. We need a lemma.

Lemma 4.3. The set Sp∗(2n) has two connected components

Sp(2n;R)± = {A ∈ Sp(2n;R) | ± det(Id−A) > 0}.
Furthermore, any loop in Sp(2n;R)∗ is contractible in Sp(2n;R).

Proof. We refer to the proof of Lemma 3.2 in [SZ92]. �

We now define the Maslov index of a path Φ ∈ C0([0, 1], Sp(2n)). Note that this
works for any path, meaning we do not require that Φ(1) ∈ Sp∗(2n).

Definition 4.4 (Maslov index). Suppose Φ ∈ C0([0, 1], Sp(2n)). Choose a continuous
function

α : [0, 1]→ R such that ρ(Φ(t)) = eiα(t).

Then define the Maslov index of Φ

∆(Φ) =
α(1)− α(0)

π
.

This assigns to any Φ ∈ C0([0, 1], Sp(2n)) some number.

Remark. The author was not sure what to call this index. The definition relies on
picking a lift α of ρ(Φ(t)), meaning exactly that ρ(Φ(t)) = eiα(t). Then the difference
α(1)− α(0) is independent of the particular choice of a lift: any two lifts differ only by a
translation by 2kπ in R which is irrelevant for the difference α(0)− α(1).
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The Maslov index usually refers to the above index in the case that Φ ∈ C0(S1, Sp(2n)).
Then the above index can be described as the degree of the path composed with the ro-
tation map ρ. We have

∆(Φ) = deg(t 7→ ρ(Φ(t))).

Note that this index is independent of the choice of α.

4.2. The Conley-Zehnder index of a path Φ ∈ S.

Let now Φ ∈ S. By definition, Φ(1) ∈ Sp∗(2n). Now choose any path Φ′ ∈
C∞([0, 1], Sp(2n;R)∗) such that Φ′(0) = Φ(1) and Φ′(1) ∈ {W+,W−} where

W+ = − Id

and

W− = diag(2,−1, . . . ,−1,
1

2
,−1, . . . ,−1).

in the following way.

Note that either Φ(1) ∈ Sp(2n;R)+ or Φ(1) ∈ Sp(2n;R)− by definition of S. We
choose Φ′(1) = W± whenever Φ(1) ∈ Sp(2n;R)±. Figure 1 depicts the construction of Φ
and Φ′ as just outlined.

We can compute the Maslov index of Φ′ as in Definition 4.4. From Lemma 3.2 in
[SZ92], it follows that ∆(Φ′) is independent of the specific choice of path Φ′ and depends
only on the particular starting point Φ′(0) = Φ(1). We are now ready to define the
Conley-Zehnder index of a path Φ ∈ S.

Definition 4.5 (The Conley-Zehnder index). Let Φ ∈ S. Define a path Φ′ as
described above. The Conley-Zehnder index of the path Φ is defined by

µCZ(Φ) := ∆(Φ) + ∆(Φ′).

The following Theorem 4.6 is Theorem 3.3 in [SZ92]. It lists several properties of
the Conley-Zehnder index defined in Definition 4.5.

Theorem 4.6. Let µCZ be defined as in Definition 4.5. Then the following properties
hold.

(i) Let Φ ∈ S. The Conley-Zehnder index µCZ(Φ) is an integer.

(ii) Two paths Φ and Ψ are homotopic in S if and only if

µCZ(Φ) = µCZ(Ψ).

(iii) Let Φ ∈ S. Then

sign det(Id−Φ(1)) = (−1)µCZ(Φ)−n.
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det(
A
− Id) =

0

Φ(0)

Φ(1) = Φ′(0)

Φ′(1) = W+

Φ

Φ′

Figure 1. The path used to compute µCZ(Φ) for Φ ∈ S

(iv) Let S ∈ Sym(R2n×2n) be a non-singular matrix such that ‖S‖ < 2π. Define a
path Ψ(t) = exp(J0tS). Then Ψ ∈ S and

µCZ(Ψ) = ind(S)− n.
Here by ind(S) we mean the number of negative eigenvalues of S, counted with
multiplicity.

In this way, we have defined a map

µCZ : S → Z.

Remark. There are two remarks to make here.
First of all, again this construction can be described as the degree of a map. Note that
(ρ(W±))2 = 1. Given Φ ∈ S, let Φ′ be constructed as above a path such that Φ′(1) = W±,

depending on Φ(1). Denote Φ̃ : [0, 2]→ Sp(2n) the path

Φ̃(t) :=

{
Φ(t) 0 ≤ t ≤ 1

Φ′(t− 1) 1 ≤ t ≤ 2
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Then

µCZ(Φ) = deg(t 7→ (ρ(Φ̃(t)))2).

The second remark concerns computability. The above construction is the easiest to
explain, but actually computing µCZ of a path using this definition is hard. There is
another equivalent definition by Robbin-Salamon defined in [RS93]. Here, philosophically
speaking, it is counted how often a path Φ ∈ S ”crosses through” det(Φ(t)− Id) = 0 with
some sign, which is the thick red line in Figure 1. For this alternative definition, we refer
the interested reader to [RS93] for details.

4.3. The Conley-Zehnder index for periodic orbits.

We have defined an index µCZ : S → Z for paths of symplectic matrices. Our goal is
to define an index

CZ : P0(H)→ Z.
In order to do this, we associate to x ∈ P0(H) a path of symplectic matrices Ψ ∈ S, in
the following way.

Recall that a symplectic trivialization of the bundle x∗TM → S1 is given by a map

Φ : S1 × R2n → x∗TM

which intertwines the standard symplectic form on R2n and pulls back ω to the standard
ω on R2n. Writing Φt = Φ(t, ·) this means

Φ∗tω = ω0.

The following lemma tells us such trivializations exist.

Lemma 4.7. For any smooth map ϕ : D→M , there exists a symplectic trivialization

Φ : D× R2n → ϕ∗TM

Furthermore, any two such trivializations are homotopic via symplectic trivializations.

Proof. For the proof of existence we refer to [MS98] Lemma (2.65). The proof is
basically an application of Gramm-Schmidt.
To prove that any two such trivializations are homotopic, let ϕ : D → M be given, and
let Φ,Φ′ : D× R2n → x∗TM be two symplectic trivializations.
Then by definition of symplectic trivialization, for every z ∈ D,

Φ′(z)−1Φ(z)

is a unitary matrix. However, any smooth map D→ U(n) is smoothly homotopic to the
constant map z 7→ Id. This proves that Φ and Φ′ are homotopic. �
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Let x ∈ P0(H). Choose any extension

ϕ : D→M

such that ϕ extends x to the disk D, meaning

ϕ(e2πit) = x(t).

where D is the unit disk in C. By Lemma (4.7) we can trivialize ϕ∗TM . By restriction
to ∂D this gives a trivialization of x∗TM defined by

(4.3) Φx(t) := Φ(e2πit) : R2n → x∗TM

that is periodic.

We prove that this construction does not depend on the particular choice of extension
under Assumption (3.4).

Lemma 4.8. The homotopy class of Φx does not depend on the particular choice of
extension ϕ : D→M if M satisfies Assumption 3.4.

Proof. Suppose we have two extensions, ϕ : D → M and ϕ′ : D → M such that
x(t) = ϕ(e2πit) = ϕ′(e2πit), which the associated symplectic trivializations Φ and Φ′. We
will construct a map u : S2 →M in the following way.
Assume without loss of generality, by shrinking a bit, that there exists ε > 0 such that

ϕ(z) = ϕ(
z

|z|
)

and

Φ(z) = Φ(
z

|z|
)

for 1− ε ≤ |z| ≤ 1 and similarly for ϕ′ and Φ′.

Define u : S2 →M as follows, under the diffeomorphism S2 ' C ∪ {∞}

u(z) =

{
ϕ(z) |z| ≤ 1

ϕ′(1
z
) |z| > 1

Under Assumption (3.4), the bundle u∗TM is trivial. This yields a trivialization

Θ : S2 × R2n → u∗TM.

Now use the second part of Lemma (4.7). Restrict Θ to the upper hemisphere D+ and
lower hemisphere D−. This yields two new trivializations of x∗TM which are homotopic
as they agree along the equator D+ ∩ D−, by Lemma (4.7). Hence Φx(t) and Ψ′x(t) are
both homotopic to Θ(e2πit). This proves that the trivializations are homotopic. �
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We are now ready to define the index of a solution. Let x ∈ P0(H), and choose any
extension ϕ : D → M with the associated restriction Φx, which is a trivialization of the
bundle x∗TM as in equation (4.3). Define a path of symplectic matrices associated to x.

(4.4) Ψx(t) := Φx(t)
−1 ◦ Tx(0)ϕ

t
H ◦ Φx(0) : R2n → R2n

for t ∈ [0, 1]. Then Φx(t) ∈ Sp(2n;R) for every t, as Φ is a symplectic trivialization. Note
that the solution x ∈ P0(H) is non-degenerate if and only if Ψx ∈ S. Then define the
index of x.

Definition 4.9 (CZ-index of a periodic solution x). Let x ∈ P(H) with the associ-
ated path Φx(t) as described by equation (4.4). Then define the Conley-Zehnder index of
x by

(4.5) CZ(x) := µCZ(Φx)

where µ(Φx) is the Maslov index defined in Definition 4.5.

This index is determined uniquely by the condition that Φx extends to a disc bounded
by the periodic solution x. To see this, let Φ′x be any other extension. Then by Lemma
4.8, Φx and Φ′x have the same homotopy class. Then the same is true for the associated
Ψx and Ψ′x. By Proposition 4.6, CZ(Ψx) = CZ(Ψ′x). Hence, this way to define the index
is independent of the particular choice of trivialization Φ.

4.4. Paths with a prescribed Conley-Zehnder index.

In the computation of the Fredholm index of the vertical differential of the Floer
operator, it will be important to use the existence of paths of matrices with a specific
index. We prove the following theorem.

Theorem 4.10. For every k ∈ Z there exists a diagonal matrix Sk ∈M(2n;R) such
that the associated path given by

Ψ(t) = etJ0Sk

is in S and satisfies µCZ(Ψ) = k.

The theorem will result from a reduction to the case n = 1. This is also our example
of a rotation in R2. We consider matrices of the form

S =

(
θ 0
0 θ

)
.

Direct computation shows that

(4.6) Ψ(t) = exp(tJ0S) =

(
cos θt − sin θt
sin θt cos θt

)
Hence, we are computing µCZ(Ψ) where Ψ is a path of rotations in R2.

Proof of Theorem 4.10. In order to prove this we generalize the case n = 1, that
is S ∈M(2;R), to general n. We have the following claim in this case.
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Claim 1. Let S ∈ M(2n;R) invertible and symmetric such that ‖S‖ ≤ 2π. Then
for Ψ(t) = etJ0S we have

µCZ(Ψ) = ind−(S)− 1.

Here ind−(S) denotes the number of negative eigenvalues of S.

Note that this Claim is (iv) of Theorem 4.6. For the sake of completeness, we prove
this Claim.
Proof.: Proof of Claim 1 It is a small calculation to verify that Ψ(t) ∈ S. As S is
symmetric, it is diagonizable by orthogonal matrices. This means that there exists a path

s 7→ Λ(s) ∈ O+(2n)

such that Λ(0) = Id and S(1) = (Λ(1))TSΛ(1) is a diagonal matrix.

Let now

S(λ) = (Λ(λ))TSΛ(λ)

and define

Ψλ(t) = etJ0S(λ).

Note that S(λ) is a path of symmetric matrices that connects S = S(0) to a diagonal ma-
trix S(1). Then the number of negative eigenvalues of Sλ, which we denoted ind−(S(λ)),
does not depend on λ. Also, ‖S‖ < 2π means that Ψλ(1) will never have eigenvalue 1.
This reduces the proof to checking that the Claim is true for diagonal matrices. We can
scale so that without loss of generality, S is of the form

S = diag(ε, . . . , ε,−ε, . . . ,−ε).

where 0 < ε < 2π and we denote the number of negative terms k = ind−(S).

We now reduce to the case n = 1 by decomposing R2n into n symplectic planes. Then
there are three fundamental choices of diagonal matrices.

D1 =

(
ε 0
0 ε

)
, D2 =

(
ε 0
0 −ε

)
, D3 =

(
−ε 0
0 −ε

)
It is now a matter of computing Conley-Zehnder indices for the associated matrices
Ψi(t) = exp(tJ0Di).

Let us do D1 as an example. We have

etJ0D1 =

(
cos εt sin εt
− sin εt cos εt

)
.

Use now the determinant property of the rotation map ρ in Theorem 4.2. Then

ρ(exp tJ0D1) = exp(−iεt).
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As 0 < ε < 2π, we have µCZ(exp(tJ0D1)) = −1. To see this, follow the definition of µCZ.
It is immediate that ∆(Ψ) = −ε

π
, as ρ(Ψ(t)) = e−iεt. Complete the path to the matrix

W+ = − Id as det(Id−Ψ(1)) > 0 by

Ψ′(t) =

(
cos (1− t)ε+ tπ sin (1− t)ε+ tπ
− sin (1− t)ε+ tπ cos (1− t)ε+ tπ

)
.

Then ρ(Ψ′(t)) = e−i((1−t)ε+tπ). Then ∆(Ψ′) = ε−π
π

. Then indeed µCZ(exp tJ0D1) = −1.

Note that D1 has indeed 2 negative eigenvalues, such that µCZ(exp tJ0D1) = ind−(D1)−1
is satisfied. Similar calculations for D2 and D3 show that indeed µCZ(exp(tJ0S)) =
ind−(S)− 1 whenever S is a diagonal 2 by 2 matrix.

The general statement for a diagonal matrix S now follows from the product property
of ρ, which translates to multiplicativity of the Conley-Zehnder indices. This proves the
Claim.

We now go on to construct Sk from the building blocks we saw in the above claim.

Choose some odd integer l ∈ Z and consider S =

(
lπ 0
0 lπ

)
. Then the associated sym-

plectic matrix is

Ψ(t) = etJ0S =

(
cos lπt − sin lπt

sin lπ − t cos lπt

)
.

This path ends at Ψ(1) = W+. Then µCZ(etJ0S) = −l.

For k = n mod 2, consider the matrix

Sk = diag(−π,−π, . . . ,−π,−π, (n− k − 1)π, (n− k − 1)π).

This matrix is precisely such that µCZ(exp(tJ0Sk)) = k.

For k = n− 1 mod 2, consider the matrix

Sk = diag(−pi,−π, . . . , 1,−1, (n− k − 2)π, (n− k − 2)π).

This matrix is also such that µCZ(exp(tJ0Sk) = k.

�



CHAPTER 5

Floer homology and transversality

5.1. Definition of Floer homology

In this section we define the Floer chain groups CF∗(H) and the boundary operator
∂J . The homology associated to this chain complex is the Floer homology HF∗(H, J).

We construct a chain complex from the periodic solutions x : S1 →M of the Hamil-
tonian equation

(5.1) ẋ(t) = XH(x(t))

and flow lines of ∇JAH which were solutions u : R× S1 →M of the Floer equation

(5.2)
∂u

∂s
+ J(u)

(∂u
∂t
−XH(u)

)
= 0

Reminiscent of Morse homology, we want these flow lines to run between critical points.
Hence, we impose

(5.3) lim
s→±∞

u(s, t) = x±(t), uniformly in t

with x± ∈ P0(H) and lims→±∞
∂u
∂s

(s, t) = 0 uniformly in t. This condition can be
rephrased in terms of the energy.

Definition 5.1. Let u : R×S1 →M be a solution to the Floer equation (3.6). Then
its energy is defined to be

(5.4) E(u) :=

∫
R×S1

∥∥∥∂u
∂s

∥∥∥2

J
dsdt

The energy of a solution has the following properties.

Proposition 5.2. Let u : R × S1 → M be a solution to the Floer equation (3.6).
Then

(i) E(u) ≥ 0 and E(u) = 0 if and only if u(s, t) = x(t) for some x ∈ P0(H).

(ii) If E(u) <∞, then there exist x± ∈ P0(H) such that

lim
s→±∞

u(s, t) = x±(t)

uniformly in t. Furthermore, E(u) = AH(x−)−AH(x+).

27
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Let H : S1 ×M → R be a Hamiltonian and J ∈ J (M,ω). We define the moduli
space of solutions running from x− to x+.

Definition 5.3.

M(x−, x+; J,H) := {u : R× S1 →M | u satisfies equations (5.2) and (5.3)}

In Section 5.4 of this chapter, we prove that for generic Hamiltonians, this space
is a finite dimensional submanifold of a particular Banach manifold. This follows from
application of the implicit function theorem. To prove that these spaces are manifolds,
we will need to prove that a particular operator (the Floer operator dV ∂H,J defined in
Section 5.2) is Fredholm with index CZ(x−) − CZ(x+). This will be done throughout
this chapter. We assume that M(x−, x+; J,H) has some manifold structure for the time
being, and define Floer homology.

For u ∈M(x−, x+;H, J) we have the Conley-Zehnder index for the associated critical
points x± defined in Chapter 4. The chain groups are generated by the critical points and
graded by the Conley-Zehnder index.

Definition 5.4 (Floer chain groups). Let

Pk(H) := {x ∈ P(H) | CZ(x) = k}.
Then

CFk(H) :=
⊕

x∈Pk(H)

Z2

In general any ξ ∈
⊕

x∈Pk(H)

Z2 can be viewed as a function

ξ : Pk(H)→ Z2

such that ξ(x) 6= 0 for only finitely many x ∈ Pk(H). For any x ∈ Pk(H), there is a
particular δx ∈ CFk(H) given by

δx(y) :=

{
1 y = x

0 y 6= x
.

In this case, we can write

ξ =
∑

x∈Pk(H)

ξ(x)δx

meaning that these maps generate the complex. We will abbreviate the function δx by
〈x〉. By the above description of an element ξ, it is enough to know what a map does on
the generators 〈x〉.

Associated to the complex CF∗(H) is the boundary operator ∂J . It is defined on the
generators by
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Definition 5.5 (Floer boundary operator).

∂J : CFk+1(H)→ CFk(H)

∂(〈x〉) =
∑

y∈P0(H)
CZ(y)=CZ(x)−1

η(x, y)〈y〉

Here

(5.5) η(x, y) = #
(
M(x, y;H, J)/R

)
Philosophically, it counts the number of solutions u running from x to y modulo transla-
tions in the s variable; we only count unparametrized trajectories.

To be precise, note that there is an R-action on M(x, y; J,H). Let σ ∈ R and
u ∈M(x, y; J,H). Then

(σ · u)(s, t) = u(σ + s, t)

defines and R-action. Assuming, for the moment, thatM(x, y; J,H) is a finite dimensional
manifold, we can define

M̂(x, y; J,H) :=M(x, y, ; J,H)/R

as the quotient manifold equipped with the quotient topology. We will prove in Section

5.5 that M̂(x, y; J,H) is a compact 0-dimensional manifold whenever CZ(y)−CZ(x) = 1.

Hence, η(x, y) = #M̂(x, y; J,H) as defined by equation (5.5) makes sense, as a compact
0-dimensional manifold is a finite number of points.

We define the Floer homology of (H, J).

Definition 5.6 (Floer Homology). Let the Floer chain complex (CF∗(H), ∂J) be as
in Definitions 5.4 and 5.5. The homology of this complex is called the Floer homology of
(H, J):

HF∗(H, J) := H∗(CF∗(H), ∂J).

We use this homology to prove the Arnold conjecture. To do this, we will show that
the above homology is well-defined and canonically independent of the choice of (H, J)
used to define it. We will see that the pair (H, J) will have to satisfy some conditions
to make the spacesM(x, y; J,H) into finite dimensional manifolds. However, it will turn
out these choices are generic.

Then we prove that for a particular Hamiltonian, the Floer homology and the Morse
homology of M coincide. The Arnold conjecture is then a straightforward consequence of
this.
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Remark. Note that to properly define Floer homology as in Definition 5.6, we need

∂2
J = 0. This is a consequence of the topology of the manifold M̂(x, z; J,H) where

CZ(x) = CZ(z)−2. It will be a consequence of Theorem 5.38, which involves complicated
machinery like elliptic regularity and gluing. It is then only after understanding this
Theorem that we can properly prove that ∂2

J = 0. Using Theorem 5.38, proving that
∂2
J = 0 will turn out to be a simple consequence of the fact that a compact 1-dimensional

manifold has an even number of boundary points. This is done in Corollary 5.40.

5.2. Solutions to Floer’s equation as a section

In this section, we consider solutions u : R×S1 →M to equation (3.6). We describe
solutions to this equation as zeros of a section of a Banach bundle over a Banach space.
The goal is to endow the spaces M(x, y; J,H) for x, y ∈ P0(H) with a useful manifold
structure. When we describe M(x, y; J,H) as the zeros of a section, we can use the im-
plicit function theorem in infinite dimensions to accomplish this.

Define the Banach bundle

Ep → W 1,p(R× S1,M)

whose fiber over u is

Epu := Lp(R× S1, u∗TM).

We define the Floer section.

Definition 5.7. Let Ep → W 1,p(R× S1,M) be as above. Then the Floer section

∂H,J : W 1,p(R× S1,M)→ Ep

is given by

∂H,J(u) =
∂u

∂s
+ J(u)

(∂u
∂t
−XH(u)

)
.

As said, we want to use the implicit function theorem. See Appendix Theorem C.13
for the full theorem. Therefore, we need to compute the vertical derivative of the Floer
section ∂H,J . For the definition of the vertical derivative, see Definition C.9.

Lemma 5.8. The vertical derivative

dV ∂H,J(u) : W 1,p(R× S1, u∗TM)→ Eu = Lp(R× S1, u∗TM)

is given by

dV ∂H,J(u)Y = ∇sY + J(u)∇sY +∇Y J(u)
∂u

∂t
−∇Y∇H(u)
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Proof. This is a small computation. Let uλ with λ ∈ (−ε, ε) denote a smooth path
in W 1,p(R× S1,M) such that u0 = u and ∂uλ

∂λ
(t)|λ=0 = Y (t). Then

dV ∂H,J(u)Y =
∂

∂λ
|λ=0

(
∂H,J(uλ)

)
=

∂

∂λ
|λ=0

(∂uλ
∂s

+ J(uλ)
∂uλ
∂t
−∇Ht(uλ)

)
= ∇s

(∂uλ
∂λ
|λ=0

)
+ J(u0)∇t

(∂uλ
∂λ
|λ=0

)
+∇Y J(u0)

∂u0

∂t
−∇Y∇Ht(u0)

= ∇sY + J(u)∇tY +∇Y J(u)
∂u

∂t
−∇Y∇Ht(u)

Here we used that ∇ is torsion free in the third line. �

In order to describe M(x−, x+; J,H) as the zeros of the Floer section we need a
Fredholm section. Therefore, we need to restrict the Floer section to an appropriate
space

B1,p(x−, x+) ⊂ W 1,p(R× S1,M).

These spaces are defined as follows.

Let u : R × S1 → M and x−, x+ ∈ P0(H) with lims→±∞ u(s, t) = x±(t). We say u
decays suitably if there exist positive constants K = K(u) and δ = δ(u) such that∥∥∥∂u

∂s

∥∥∥ ≤ Ke−δ|s|,
∥∥∥∂u
∂s
−XH(u)

∥∥∥ ≤ Ke−δ|s|.

Definition 5.9. Let x−, x+ ∈ P0(H). Then

B1,p(x−, x+) := {(s, t) 7→ expu(s,t) Y (s, t) | u : R× S1 decays suitably, Y ∈ W 1,p(R×S1, u∗TM)}.

Let us fix x−, x+ ∈ P0(H) and denote the Floer section

∂H,J : B1,p(x−, x+)→ Ep.
Then its vertical derivative is a map

dV ∂H,J(u) : W 1,p(R× S1, u∗TM)→ Eu.

There are several small things to verify.

First note that for u ∈ B1,p(x−, x+) we wish to know that ∂H,J(u) ∈ Lp(R× S1,M).
This is indeed the case. This follows immediately from Lemma 13.3.1 in [AD14].

Secondly, we wish to know whether M(x+, x−) ⊂ B1,p(x−, x+). This is Proposition
8.2.3 in [AD14].

Furthermore, it is important to note that B1,p is a Banach space with tangent space
TuB1,p(x−, x+) = W 1,p(R× S1, u∗TM).
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The atlas is defined similarly to the one for L0M . For full details we refer the reader to
[AD14] Section 8.2.d. We define charts in W 1,p(R × S1,R2n). Let w decay sufficiently.
Note that we can identify W 1,p(R × S1,R2n) with W 1,p(R × S1, w∗TM for some suffi-
ciently decaying w. Furthermore, the injection W 1,p(R× S1,R2n) ↪→ L∞(R× S1,R2n) is
continuous by the Sobolev embedding theorem, hence

‖Y ‖L∞ ≤ K‖Y ‖W 1,p .

Let R < ρ, where ρ is the injectivity-radius of the metric we use on M . For every
sufficiently decaying w, define

Φw : {Y ∈ W 1,p(w∗TM)mid‖Y ‖W 1,p ≤ R/K} → B1,p(x−, x+)

given by
Y 7→ expw Y.

This is a smooth bijection on the image, as it is smaller than R. This forms an atlas.

5.3. The operator dV ∂H,J(u) is Fredholm of index CZ(x−)− CZ(x+)

Let u ∈ B1,p(x−, x+) such that ∂H,J(u) = 0. In the previous section we defined

dV ∂H,J(u). The goal of this section is to prove the following theorem.

Theorem 5.10. The operator dV ∂H,J(u) defined in Lemma 5.8 is Fredholm of index
CZ(x−)− CZ(x+).

To prove this we will transfer everything to a linear setting, using symplectic triv-
ializations. The operator in the linear setting will turn out to be a perturbed Cauchy-
Riemann operator. We will prove that this operator is Fredholm in the next subsection.
After this, we compute its Fredholm index separately in subsection 5.3.2. Recall that the
operator dV ∂H,J(u) is given as in Lemma 5.8.

Let Φ : R × S1 × R2n → u∗TM be a symplectic trivialization, with limits Φ± :=
Φ|±∞×S1 trivializations of the limits (x±)∗TM → S1. Then in the coordinates ξ = Φ−1Y ,
we have that dV ∂H,J(u) takes the form

(5.6) DSξ =
∂ξ

∂s
+ J0

∂ξ

∂t
+ Sξ

where

(5.7) S(s, t) := Φ−1(s, t) ◦ (∇sΦ + J(u)∇tΦ +∇ΦJ(u)
∂u

∂t
−∇Φ∇Ht(u)).

This is a direct computation, where DSξ = Φ−1(dV ∂H,J(u))(Φξ) Here, we use that

∇s(Φξ) = Φ∂ξ
∂s

+ (∇sΦ)ξ and likewise for t combined with the fact that JΦ = ΦJ0.
We separate the terms to find the operator of equation 5.6 with S(s, t) as in equation
(5.7).
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For this S ∈ C∞(R× S1,End(R2n), the following is true.

Lemma 5.11. The limit matrices

S±(t) := lim
s→±∞

S(s, t)

given by
S±(t) := (Φ±t )−1 ◦ J(∇tΦ

± −∇Φ±XH(x±)).

are symmetric

Proof. Computing the limits is straightforward. To see that S± are symmetric,
we look at the matrix elements S±ij . Let us omit the ±-superscript for the moment to

avoid clutter. Let ej denote the j-th basis vector of R2n and define the symplectic basis
(ξj)1≤j≤2n by

ξj(t) = Φ(t)ej.

Then the matrix elements of S(t) are given by

Sij = gJ(ξi, J(∇tξj −∇ξjXH) = gJ(ξi, J [XH , ξj]).

Note that by definition
gJ(ξi, J [XH , ξj]) = ω(ξi, [ξj, XH ]).

To get a term involving this Lie bracket, consider the cyclic identity

dω(ξi, ξj, XH) = ξiω(ξj, XH) + ξjω(XH , ξi) +XHω(ξi, ξj) + ω(XH , [ξi, ξj]) + ω(ξi, [ξj, XH ]) + ω(ξj, [XH , ξi])

= −ξidH(ξj) + ξjdH(ξi) +XHω(ξi, ξj) + dH([ξi, ξj]) + ω(ξi, [ξj, XH ]) + ω(ξj, [XH , ξi])

Now note that
d2H(ξi, ξj) = ξidH(ξj)− ξjdH(ξi)− dH([ξi, ξj])

so that the above equation becomes

dω(ξi, ξj, XH) = +XHω(ξi, ξj)+ω(ξi, [ξj, XH ])+ω(ξj, [XH , ξi]) = ω(ξi, [xij, XH ])+ω(ξj, [XH , ξi]).

As ω is closed, we are left with

ω(ξi, [ξj, XH ]) = ω(ξj, [ξi, XH ])

so that

Sij = gJ(ξi, J [ξj, XH ]) = ω(ξi, [ξj, XH ]) = ω(ξj, [ξi, XH ]) = gJ(ξj, J [ξi, XH ]) = Sji.

Hence S is indeed symmetric. This proves Lemma 5.11. �

Let S : S1 → End(R2n). We define such an operator to be non-degenerate whenever
the symplectic matrices associated to it are.

Definition 5.12. Let S : S1 → End(R2n). Let R : [0, 1] → Sp(2n) be given as the
solution of

(5.8)
dR(t)

dt
= J0S(t)R(t), R(0) = Id

We say S is non-degenerate when

det(R− Id) 6= 0.
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Remark. When given a loop S : S1 → End(R2n) by the path of symplectic matrices
associated to S we mean R : [0, 1]→ Sp(2n) as defined by equation (5.8).

Note that the trivializations are isomorphisms. Hence, the following is true.

Theorem 5.13. The operator dV ∂H,J(u) is Fredholm if and only if DS is and

ind(dV ∂H,J(u)) = ind(DS).

Hence, proving that dV ∂H,J(u) is Fredholm is equivalent to proving that DS is Fred-
holm, which is what we will do. We prove the linear analogue of Theorem 5.10. We state
it for any S with the properties that S defined by equation (5.7) has.

Theorem 5.14. Let

DS : W 1,p(R× S1,R2n)→ Lp(R× S1,R2n)

with

DSξ =
∂ξ

∂s
+ J0

∂ξ

∂t
+ Sξ

where S(s, t) is a symmetric matrix with non-degenerate limits S±(t). Suppose further-
more that Ψ±(t) ∈ S are the symplectic matrices associated to S± as in equation (5.8).
Then DS is a Fredholm operator with

ind(DS) = µCZ(Ψ−)− µCZ(Ψ+).

Remark. Compare this to Theorem 5.10, where the index is given in terms of
CZ(x±). A small computations shows that CZ(x±) = µCZ(Ψ±) by the definition of CZ(x±)
in Definition 4.9.
To compute the Conley-Zehnder index in Definition 4.9, we defined from Φ± : S1×R2n →
(x±)∗TM the matrices in equation (4.4) by

Ψx±(t) := (Φx±(t))−1 ◦ Tx(0))ϕ
t
H ◦ Φx±(0).

We show that

(5.9)
dΨx±(t)

dt
= J0S

±(t)Ψx±(t)

so that the matrices associated to S± are Ψx± (i.e. Ψ± = Ψx±).
Note that

Φx±(t) ◦Ψx±(t) = Tx(0)ϕ
t
H ◦ Φx±(0)

by equation (4.4). Differentiate both sides of the equation to t which yields

Φ±(t)
dΨx±(t)

dt
+ (∇tΦx±)Ψx±(t) = (∇Φx±

XH)Ψx± .

Use that Φ is a symplectic trivialization, meaning Φx±(t) ◦ J0 = J ◦ Φx±(t). Therefore

Φx±(t)J0
dΨx±(t)

dt
= JΨx±(t)

dΨx±(t)

dt
= J(∇Φx±

XH −∇tΦx±)Ψx±(t)

= −Φx±(t)S±(t)Ψx±(t)
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Using that Φx±(t) is an isomorphism and J2
0 = − Id we find that equation (5.9) holds.

Therefore, the matrices Ψ± associated to S± are valid to compute the indices CZ(x±).

5.3.1. DS is Fredholm.
The aim of this subsection is to prove that DS is Fredholm. This is the statement of the
following proposition. We will compute the Fredholm index of DS in the next subsection.

Proposition 5.15. Let DS be the perturbed Cauchy-Riemann operator

DS : W 1,p(R× S1,R2n)→ Lp(R× S1,R2n)

given by

(5.10) DSY =
∂Y

∂s
+ J0

∂Y

∂t
+ SY.

Assume that S±(t) := lims→±∞ S(s, t) exist, where the convergence is uniform in t, and
that these limit matrices are symmetric for all t ∈ S1 and S± are non-degenerate. Then
DS is a Fredholm operator.

By the conditions on S(s, t), also Ψ and ∂Ψ
∂t

converge, uniformly in t, as s → ±∞.
Hence, we define the limits

(5.11) lim
s→±∞

Ψ(s, t) = Ψ±(t).

To prove Proposition 5.15 we first consider the perturbed Cauchy-Riemann operator
DΣ, where Σ : S1 → Sym(R2n) and

DΣ : W 1,p(R× S1,R2n)→ Lp(R× S1,R2n)

is defined by

DΣY =
∂Y

∂s
+ J0

∂Y

∂t
+ ΣY.

Suppose furthermore that Σ is non-degenerate. We then prove the following lemma.

Lemma 5.16. For every 1 < p <∞, the operator DΣ is bijective.

Then using the semi-Fredholm Lemma, we prove Proposition 5.15 using Lemma 5.16.

Remark. By DA we will always mean the perturbed Cauchy-Riemann operator
associated to the operator A. However, we are dealing with two possible domains for A.
To avoid confusion, by S we will always mean S : R × S1 → End(R2n). Whenever S
is s-independent, we will denote it Σ : S1 → End(R2n). In this way, we have the two
operators DS and DΣ.

Proof of Lemma 5.16. We prove Lemma 5.16 in two steps. First we treat the case
p = 2. We prove this by defining a bounded inverse. After this, we tackle the general case
p > 1 using a duality argument.
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Proof of Lemma 5.16 in the case p = 2:

Consider the operator

A : W 1,2(S1,R2n)→ L2(S1,R2n)

defined by

AY = J0
∂Y

∂t
+ ΣY.

In fact, denote H = L2(S1,R2n). We will regard A as an operator A : H → H an
unbounded operator defined on the dense domain W 1,2(S1,R2n) ⊂ H. We have the
following claim about the operator A.

Claim 2. Suppose Σ is non-degenerate (in the sense of Definition 5.12). Then the
operator A is invertible.

Proof of Claim 2: Suppose v ∈ H. We wish to find a unique u ∈ W 1,2(S1,R2n) such
that

Au = v.

Let Ψ be given by equation (5.8). The equation Au = v implies

u̇ = J0(Su− v).

We can then construct a solution ux, for any x ∈ R2n, satisfying Aux = v and ux(0) = x.

ux(t) = Ψ(t)(x−
∫ t

0

Ψ(τ)−1J0v(τ) dτ)

for any x ∈ R2n. We wish now to impose periodicity on ux. This is the case if and only if

x = Ψ(1)
(
x−

∫ 1

0

Ψ(τ)−1J0v(τ) dτ
)
.

Rewriting this yields

(Ψ(1)− Id)x = Ψ(1)

∫ 1

0

Ψ(τ)−1J0v(τ) dτ.

By the non-degeneracy condition, this can be solved as the operator Ψ(1)−Id is invertible.
Thus, we have shown that A is invertible. This proves Claim 2.

We now decompose the Hilbert space H. We defined A as an unbounded operator
on H. First note that A is a closed operator with dense domain in H. Furthermore, A is
symmetric as Σ is symmetric. Note that by symmetric we mean that

〈Au, v〉H = 〈u,Av〉H.
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This is in the language of unbounded operators, where symmetric means that A agrees
with its adjoint A∗ on the domain of A. This is easily verified, using J∗0 = −J0 and
ΣT = Σ. Hence, we can decompose H into positive and negative eigenspaces of A. Write

H = H+ ⊕H−.

Define

A± = A|H±∩W 1,2(S1,R2n).

Then A± are self-adjoint unbounded linear operators with dense domain. Now apply the
Hille-Yosida theorem, 13.37 from [Rud73] to A±.

Hence the operators A− and −A+ generate families E−A+(s) ∈ B(H+) and EA−(s) ∈
B(H−). The decomposition of H comes with two orthogonal projections

p± : H → H±.

We define a path of linear operators.

K(s) =

{
E−A+(s)p+ s ≥ 0

−EA−(−s)p− s < 0

This path is continuous for s 6= 0 but discontinious at s = 0. Furthermore, we have the
following estimate.

‖K(s)x‖H = ‖E−A+(s)p+x‖H ≤ e−µs‖x‖H

for µ the smallest element of SpecA+. Together with the same calculation for s < 0
yields, for the operator norm

(5.12) ‖K(s)‖ ≤ e−δ|s|.

for some δ > 0.

Define an operator

Q : L2(R,H)→ W 1,p(R× S1,R2n)

by integration

Qv(s, t) =

∫ ∞
−∞

K(−σ)v(s+ σ, t)dσ.
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This operator is well defined, as it converges in L2(R × S1,R2n) because of the estimate
of equation (5.12) used in the following calculation.∫

R
‖K(−σ)v(s+ σ, t)‖L2(S1×R) dσ =

∫
R

(

∫
R
‖K(−σ)v(s+ σ)‖2

L2(S1) ds)
1
2 dσ

≤
∫
R
(

∫
R
e−2δ|s|‖v(s+ σ)‖2

L2(S1) ds)
1
2 dσ

=

∫
R
e−2δ|σ|‖v‖L2(S1×R) dσ

< +∞

Now we claim that the operator Q we defined is the inverse of DΣ. Suppose v ∈
L2(R,H) and let w such that Qv = w. We can decompose

w = w+ + w−.

By definition

w+(s) =

∫ s

−∞
E−A+(s− τ)p+v(τ) dτ

and

w−(s) = −
∫ ∞
s

EA−(τ − s)p−v(τ) dτ.

Direct computation yields

d

ds
w+(s) = p+v(s)− A+

∫ s

−∞
E−A+(s− τ)p+v(τ) dτ

= p+v(s)− A+w+(s)

The same computation shows

d

ds
w−(s) = p−v(s)− A−w−(s).

Therefore, in general we have
d

ds
w = v − Aw

which means DΣ ◦Q = Id.

A similar calculation shows that Q ◦ DΣ = Id. Let v ∈ W 1,2(R × S1,R2n). We
decompose v = v+ + v− such that

Av = A+v+ + A−v−.

We have

Q(Av) =

∫ s

−∞
E−A+(s− σ)A+v+(σ) dσ −

∫ +∞

s

EA−(σ − s)A−v−(σ) dσ.
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We compute the first term.∫ s

−∞
A+E−A+(s− σ)v+(σ) dσ =

∫ s

−∞
− ∂

∂s
(E−A+(s− σ)v+(σ)) dσ

= − ∂

∂s

∫ s

−∞
E−A+(s− σ)v + (σ) dσ + v+(s)

= − ∂

∂s

∫ 0

−∞
E−A+(−σ)v+(s+ σ) dσ + v+(s)

= −
∫ 0

−∞
E−A+(−σ)

∂v+

∂s
(s+ σ) dσ + v+(s)

An analogous calculation shows that the second term equals

−
∫ +∞

s

A−EA−(σ − s)v−(σ) dσ =

∫ +∞

0

EA−(−σ)
∂v−

∂s
(s+ σ) dσ + v−(s).

Taking the sum we get

Q(Av) = −Q(
∂v

∂s
) + Y.

This precisely means Q ◦ DΣ = Id. Hence we have proven that for p = 2, the operator
DΣ is invertible. This concludes the proof of Lemma 5.16 in the case p = 2.
We now tackle the general case p > 1.

Proof of Lemma 5.16 in the case p > 1: The proof will consist of a series of in-
equalities that are listed as lemmas. Proving all these inequalities would be tedious, so
we refer to the relevant lemmas in [AD14].

We remind the reader we are still in the case where Σ = Σ(t) does not depend on
s. The following two lemmas are technical and should be regarded as preludes to Lemma
5.19.

Lemma 5.17. Suppose p > 1. There exists a constant c > 0 such that for every
k ∈ R and every u ∈ W 1,p(R× S1,R2n) the following inequality holds.

‖u‖W 1,p([k,k+1]×S1) ≤ c(‖DΣu‖Lp([k− 1
2
,k+ 2

3
]×S1) + ‖u‖Lp([k− 1

2
,k+ 3

2
]×S1)).

Proof.: This is Lemma 8.7.11 in [AD14]. Consider first k = 0, in which case the
inequality follows from the elliptic regularity results for the Cauchy Riemann operator.
This is Theorem B.12. By translating the inequality is satisfied for all k. This lemma
leads to another inequality, this time for p > 2.

Lemma 5.18. Suppose p > 2. There exists a constant c1 > 0 such that for every
k ∈ R and every u ∈ W 1,p(R× S1,R2n) the following inequality holds.

‖u‖W 1,p([k,k+1]×S1) ≤ c1(‖DΣu‖Lp([k−1,k+2]×S1) + ‖u‖L2([k−1,k+2]×S1)).
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Proof.: This is Lemma 8.7.12 in [AD14]. It is sufficient to prove for k = 0. We replace
the ‖u‖Lp([− 1

2
, 3
2

]) by a W 1,2-term using Theorem B.7. The previous Lemma replaces this

with L2-terms. We require p > 2 to use Hölder’s inequality to replace one of the L2-terms
by an Lp term which gives the resulting inequality. The above lemma gives an estimate
of ‖u‖ for u ∈ W 1,p(R×S1) in terms of ‖DΣu‖Lp(S1). This lemma is the central inequality
we will use.

Lemma 5.19. Suppose p > 2. There exists a constant c > 0 such that if u ∈
W 1,2(R × S1,R2n) and DΣu ∈ Lp(R × S1,R2n) Then the following two conditions are
satisfied.

(i) u ∈ W 1,p(R× S1,R2n)

(ii) ‖u‖W 1,p(R×S1) ≤ c‖DΣu‖Lp(R×S1)

Proof.: We refer the reader to the proof of Lemma 8.7.13 in [AD14]. Here, the inverse
Q constructed in the previous part of the proof (the p = 2 case) is used together with
Young’s and Hölder’s inequalities. We can now first prove the following claim.

Claim 3. DΣ is bijective for p > 2.

Proof of Claim 3: Let u ∈ W 1,p(R × S1,R2n) ∩W 1,2(R × S1,R2n). Then by Lemma
5.19 (ii), we have

(5.13) ‖u‖W 1,p(R×S1) ≤ c‖DΣu‖Lp(R×S1)

Then in particular, this inequality holds for u ∈ C∞0 (R × S1,R2n). However, the space
C∞0 (R × S1,R2n) is dense in W 1,p(R × S1,R2n), see [Eva98] Section 5.3.2 or [MS12]
Appendix B. Hence the inequality (5.13) is true for any u ∈ W 1,p(R × S1,R2n). This
implies that DΣ is injective.

Also, W 1,p(R × S1,R2n) is complete, so its image under DΣ in Lp(R × S1,R2n) is
closed. It remains to show that DΣ is surjective. By closedness of the image, it is suffi-
cient to prove the image is dense inside Lp(R× S1,R2n).

Suppose v ∈ Lp(R×S1,R2n)∩L2(R×S1,R2n). Note that the space Lp(R×S1,R2n)∩
L2(R×S1,R2n) is dense in Lp(R×S1,R2n). Now we use that surjectivity of DΣ for p = 2
has been established, which gives us an u ∈ W 1,2(R× S1,R2n) such that DΣu = v. Then
by Lemma 5.19 (i), we have u ∈ W 1,p(R×S1,R2n). This establishes that DΣ is surjective
and hence that DΣ is bijective for p > 2. This proves Claim 3.

For the general case p > 1, it remains to show that DΣ is bijective for 1 < p < 2.
This is a duality argument via the dual D∗Σ and an application of Riesz’s theorem.

Claim 4. The operator DΣ is bijective for 1 < p < 2.
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Proof of Claim 4: The idea of the proof is the same as the case p > 2 in the sense
that we will derive again inequality (5.13) in the case 1 < p < 2. Because of the density
argument (approximation by smooth functions), it is enough to show this inequality for
compactly supported smooth functions u ∈ C∞0 (R× S1,R2n). To this end, introduce the
adjoint operator.

Let q be such that 1
p

+ 1
q

= 1. Denote the adjoint

D∗Σ : W 1,q(R× S1,R2n)→ Lq(R× S1,R2n)

defined by

f 7→ −∂f
∂s

+ J0
∂f

∂t
+ Σf.

A small calculation shows that the above operator is indeed the adjoint, in the sense that
for u ∈ W 1,p(R× S1,R2n) and v ∈ W 1,q(R× S1,R2n) we have∫

R×S1

〈DΣu, v〉 =

∫
R×S1

〈u,DΣ
∗v〉.

We use here that Σ is symmetric. Note that q > 2 (as 1 < p < 2) and D∗Σ is of the same
form as DΣ. Hence, the results we proved for DΣ also apply to D∗Σ. In particular, also
D∗Σ is bijective. This can be used to derive inequality (5.13) for the case 1 < p < 2. We
refer the reader to [AD14] pages 282-283. The inequality results from some computations
using D∗Σ. By inequality (5.13), injectivity is immediate.

For surjectivity, again one first shows that DΣ has closed image. Suppose that its
image is not closed. Then by Riesz’s theorem, there would be a nonzero w ∈ Lq(R ×
S1,R2n) such that 〈w,DΣv〉 = 0 for all u ∈ W 1,p(R × S1,R2n). Then D∗Σw = 0. This
is a direct computation, preformed in [AD14] Lemma 8.5.2. As w solves a perturbed
Cauchy-Riemann equation, by elliptic regularity (Theorem B.13), w ∈ W 1,q(R×S1,R2n).
Therefore, w ∈ ker(D∗Σ) which means w = 0 as DΣ was injective. This is a contradiction,
which proves Claim 4. Hence, we have shown that the operator DΣ is bijective for the
general case p > 1 as required. The above claims therefore prove Lemma 5.16.

�

We now know that the operator DΣ is bijective in the case where Σ = Σ(t) and is
symmetric. We now proceed to prove that it is Fredholm in the more general case of
theorem, using that DΣ is invertible. Let us return now to the case where S = S(s, t)
with limits lim

s→±∞
S(s, t) = S±(t).

We start with a Lemma.

Lemma 5.20. Let Y ∈ W 1,p(R × S1,R2n). Then there exists c > 0 and M > 0
sufficiently large such that

(5.14) ‖Y ‖W 1,p(R×S1) ≤ c(‖DSY ‖Lp(R×S1) + ‖Y ‖Lp([−M,M ]×S1))
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Proof. From Proposition 5.16, we know DΣ is bijective. By the Banach open map-
ping theorem, its inverse is continuous, hence there exists K > 0 such that

‖Y ‖W 1,p(R×S1,R2n) ≤ K‖Y ‖Lp(R×S1,R2n .

Recall that there exists uniform limits S±(t) = lims→± S(s, t). For a constant M > 0,
truncate Y ∈ W 1,p(R × S1,R2n) by setting Y (s, t) = 0 for |s| ≤ M − 1. By uniform
convergence

‖DSY −DΣY ‖Lp(R×S1) ≤ sup
t∈S1

|s|≥M

|S(s, t)− S±(t)|‖Y ‖Lp(R×S1) ≤ ε‖Y ‖W 1,p(R×S1).

Therefore, there exists a constant C > 0 such that

‖Y ‖W 1,p(R×S1) ≤ C‖DSY ‖Lp(R×S1).

Choose a bump function β ∈ C∞(R, [0, 1]) such that

β(s) =

{
1 |s| ≤M − 1

0 |s| ≥M

This way, we can write

Y (s, t) = β(s)Y (s, t) + (1− β(s))Y (s, t).

Recall the estimate of Lemma 8.7.2 in [AD14], which is Appendix Lemma B.11 which
says that Z ∈ W 1,p(R× S1,R2n) satisfies

‖Z‖W 1,p(R×S1) ≤ C(‖DSZ‖Lp(R×S1) + ‖Z‖Lp(R×S1)).

Hence,

‖Y ‖W 1,p(R×S1) ≤ C ′(‖DS(βY + (1− β)Y )‖Lp(R×S1) + ‖βY + (1− β)Y ‖Lp(R×S1)

≤ C ′(‖DSβY ‖Lp(R×S1) + ‖DS(1− βY )‖Lp(R×S1) + ‖βY ‖Lp(R×S1) + ‖(1− β)Y ‖Lp(R×S1)

Note that (β(s)− 1)Y (s, t) = 0 for |s| ≤M − 1. Therefore, there exists K > 0 such that

‖Y ‖W 1,p(R×S1) ≤ K‖DSY ‖Lp(R×S1).

Then the above inequality gives

‖Y ‖W 1,p(R×S1) ≤ C ′(‖DSβY ‖Lp(R×S1) + (1 +K)‖DS(1− βY )‖Lp(R×S1) + ‖βY ‖Lp(R×S1)).

Adding K + 1(‖DSβY ‖Lp(R×S1) + ‖βY ‖Lp(R×S1)) and choosing C = C ′(1 +K) we get

(5.15) ‖Y ‖W 1,p(R×S1) ≤ C(‖DSβY ‖Lp(R×S1) + ‖DS(1− β)Y )‖Lp(R×S1) + ‖βY ‖Lp(R×S1))

Note that DS(βY ) = βDSY + β̇(s)Y . For s ∈ [−M,M ], we have |β̇(s)| ≤ R whereas

β̇(s) = 0 for |s| ≥M . Hence

‖DSβY ‖Lp(R×S1)‖ ≤ ‖DSY ‖Lp(R×S1 +R‖Y ‖Lp([−M,M ]×S1),

‖DS(1− β)Y ‖Lp(R×S1)‖ ≤ ‖DSY ‖Lp(R×S1 +R‖Y ‖Lp([−M,M ]×S1)

. Plugging this into equation (5.15), we find a constant C2 such that

(5.16) ‖Y ‖W 1,p(R×S1) ≤ C2(‖DSY ‖Lp(R×S1) + ‖Y ‖Lp([−M,M ]×S1))

This proves Lemma 5.20. �
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We can now prove the Fredholm property of DS, which was Proposition 5.15.

Proof of Proposition 5.15. Let DS be as in the hypothesis. We prove that
ker(DS) is finite-dimensional, im(DS) is closed and coker(DS) is finite dimensional.
The first two follow from application of the semi-Fredholm Lemma C.10. Lemma 5.20
gives a C > 0 such that equation (5.14) holds. By Rellich’s theorem, the restriction
operator to the truncated cylinder

K : W 1,p(R× S1,R2n)→ Lp([−M,M ]× S1,R2n)

is compact. Then by Lemma 5.20, we see the hypothesis of the semi-Fredholm Lemma
C.10 are satisfied for X = W 1,p(R×S1,R2n), Y = Lp(R×S1,R2n) and Z = Lp([−M,M ]×
S1,R2n). Therefore, ker(DS) is finite dimensional and im(DS) is closed.
To prove that coker(DS) is finite dimensional, we use a duality argument. Let q ∈ R be
such that 1

p
+ 1

q
= 1. We consider the adjoint operator

D∗S : W 1,q(R× S1,R2n)→ Lq(R× S1,R2n)

given by

D∗SY = −∂Y
∂s

+ J0
∂Y

∂t
+ STY.

Let Z ∈ Lq(R × S1,R2n) such that 〈im(DS), Z〉 = 0. Suppose that D∗SZ = 0, then by
elliptic regularity Z ∈ W 1,q(()R× S1,R2n), so Z ∈ ker(D∗S). Denote

Λ := {Z ∈ Lq(R× S1,R2n) | 〈im(DS), Z〉 = 0}.

We conclude

Λ ⊂ ker(D∗S).

Note that D∗S is of the same form as DS. Hence, we can repeat the procedure of
the first part of the proof (applying the semi-Fredholm Lemma together with Rellich’s
theorem and Lemma 5.20) to conclude that ker(D∗S) is finite dimensional. We now use
the Hahn-Banach theorem to conclude that coker(DS) is finite dimensional.

By Hahn-Banach, we find linear ϕ : Lp(R × S1,R2n) → R such that ϕ(Z) = 0 for
all Z ∈ im(DS). By the Reisz representation theorem, ϕ is of the form ϕ = ϕX for some
X ∈ Lq(R× S1,R2n) with ϕX(Y ) = 〈X, Y 〉. As all ϕ vanish on im(DS), we have X ∈ Λ.
However, Λ is finite-dimensional, so then coker(DS) is also finite-dimensional. This proves
Proposition 5.15. �

5.3.2. The Fredholm index of DS.
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In this subsection we compute the index of the operator DS, where S = S(s, t) with
limits uniform in t given by

lim
s→±∞

S(s, t) = S±(t).

This we do as follows.
The first step is to replace S(s, t) by the matrix Sσ which is S± on either end. The index
of DSσ will be the same as that of DS, provided that σ is large enough, as the index is
invariant under small peturbations. This means

ind(DS) = ind(DSσ).

In the second step we perturb DSσ again. This time, Sσ is replaced by a diagonal
matrix Σσ = Σσ(s), such that it is a constant matrices Σ±σ for s outside [−σ, σ]. Then
another Fredholm invariance theorem (under homotopy) implies that

ind(DSσ) = ind(DΣσ).

We have then reduced the problem to the case of computing the index of DΣσ which
we can do by hand using Section 4.4.

Lemma 5.21. Let σ ∈ R>0. Suppose the matrices S(s, t) are given with the uniform
limits S±(t). Define

Sσ(s, t) =


S−(t) s ≤ −σ
S(s, t) −σ < s < σ

S+(t) s ≥ σ

Then
ind(DS) = ind(DSσ).

Proof. Let ε > 0. As S±(t) are the limits of S(s, t) uniformly in t, there exists a
τ ∈ R such that

(5.17) ‖S(s, t)− S−(t)‖ < ε

and

(5.18) ‖S(s, t)− S+(t)‖ < ε

for all |s| > τ . Consider a smooth bump-function ρ : R→ [0, 1] such that

ρ(s) =

{
1 |z| ≤ τ

0 |z| ≥ 2τ

We define a perturbation of DS in the following way. Let

Sρτ =


ρ(s)S(s, t) + (1− ρ(s))S−(t) s ≤ −τ
S(s, t) |s| ≤ τ

ρ(s)S(s, t) + (1− ρ(s))S+(t) s ≥ τ
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S(s, t)S(s, t)S−(t)S−(t) S+(t)S+(t)
ρ(s)S(s, t)ρ(s)S(s, t)

++
(1− ρ(s))S−(t)(1− ρ(s))S−(t)

ρ(s)S(s, t)ρ(s)S(s, t)
++

(1− ρ(s))S−(t)(1− ρ(s))S−(t)

−τ τ 2τ−2τ ∞−∞
s

Figure 1. The cylinder of matrices Sρτ (s, t).

We rewrite DS as a perturbation of DSρτ by some A(s, t), by noting that

DS = DSρτ + A(s, t)

where

A(s, t) =


(1− ρ(s))(S(s, t)− S−(t)) s ≤ −τ
0 |s| ≤ τ

(1− ρ(s))(S(s, t)− S+(t)) s ≥ τ

By equation (5.17) and (5.18), and the fact that |ρ(s)| ≤ 1 for all s ∈ R, it is immediate
that

‖A(s, t)‖ < ε.

Heuristically speaking, τ was chosen to be big enough such that the matrix A(s, t) is suf-
ficiently small. Then by Theorem C.11 (ii) in the appendix, we have ind(DS) = ind(DSρσ)
by choosing ε as in the theorem. Note that this means that τ depends on the choice of ε.

We use that Sρτ looks like Figure 1 as ρ(s) = 0 for |s| ≥ 2τ . That is, it coincides with
S± for ±s ≥ 2τ . However, τ depends on the choice of ε made. The goal was to relate the
Fredholm index ind(DS) to ind(DSσ) for some fixed σ. Recall that the Fredholm index is
a continuous map on the set of Fredholm operators, which is an open subset of the space
Lin(W 1,p, Lp). Therefore, it suffices to connect Sρτ to Sσ defined by

Ss0(s, t) =


S−(t) s ≤ −s0

S(s, t) −so < s < s0

S+(t) s ≥ s0

The Fredholm index is constant throughout this path if we pick it constant for s large.
This is the case as the Fredholm index is a continuous map on the set of Fredholm
operators, which is an open subset of the space of all operators. �
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We now modify S again. As S±(t) are non-degenerate and symplectic, the symplectic
matrices Ψ±(t) given by equation (5.8) have well-defined Conley-Zehnder indices. We
denote

µCZ(Ψ±) = k±.

The following lemma relates the index of DS to the index of an operator of which we can
compute the Fredholm index by hand.

Lemma 5.22. Let Σσ : R→M(2n,R) be a path of diagonal matrices such that

Σσ(s) = Sk+ s ≥ σ

and

Σσ(s) = Sk− s ≤ −σ.
Then

ind(DΣσ) = ind(DS).

Remark. Here, by the matrices Sk± we mean the ones defined in Section 4.4. They
are diagonal and defined such that for the associated paths of symplectic matrices Ψk±

defined by equation (5.8) we have µCZ(Ψk±) = k±.

Proof. We prove that there exists a path of symmetric matrices that interpolates
between Ψ± and Ψk± in the following way.

Claim 5. There exist maps

S± : [0, 1]× S1 → Sym(2n,R)

such that

(i) The path S±(s, ·) : [0, 1]→ Sym(2n,R) is such that the path of symplectic ma-
trices associated to it (by equation (5.8) is in S for all s ∈ [0, 1].

(ii) The symplectic matrices associated to S±(0, t) are Ψ±(t).

(iii) The symplectic matrices associated to S±(1, t) are Ψk±(t).

Proof.: Note that

µCZ(Ψk±) = k± := µCZ(Ψ±).

Then by Theorem 4.6 (ii), these paths of matrices must be homotopic. Hence there exist
C1 homotopies

H± : [0, 1]× [0, 1]→ Sp(2n)

such that H±(s, ·) ∈ S for all t ∈ [0, 1] and H±(0, t) = Ψ±(t) and H±(1, t) = Ψk±(t).
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Let ρ ∈ C∞([0, 1], [0, 1]) be such that ρ̇ > 0 and for a small ε > 0 we have ρ(t) = 0 if
t < ε and ρ(t) = 1 if t > 1− ε.

There exists a homotopy

Λ : [0, 1]× [0, 1]→ [0, 1]

between ρ and Id (i.e. Λ(0, t) = ρ(t) and Λ(1, t) = t).
Note that

dΨ±(Λs(t))

dt
= J0Λ̇s(t)S

±(t)Ψk±(Λs(t))

using the chain rule and the fact that dΨ±(t)
dt

= J0S
±(t)Ψ±(t). Hence associated to the

composition Ψ±(Λs(t)) are the matrices

Λ̇s(t)S
±.

We want these to be 1-periodic, which happens precisely when we choose the homotopy
Λ such that for every s

(5.19)
dΛs

dt
(0) =

dΛs

dt
(1)

The condition in equation (5.19) ensures that when we view that homotopy Ψ±(Λs(t))
between Ψ(t) and Ψ(ρ(t)), all associated matrices will be periodic. The same holds for
Ψk±(Λs(t)).

The second step is to homotope from Ψ±(ρ(t)) to Ψk±(t) using the homotopy H± by
precomposing with ρ.
Define

G± : [0, 1]× [0, 1]→ Sym(2n,R)

by

G(s, t) := H±(s, ρ(t)).

Now note that we picked ρ(t) such that ρ(t) is constant around t = 0 and t = 1. This
implies that the matrices associated to G±( · , t) will be periodic for every s ∈ [0, 1] as
these associated matrices will be zero around t = 0 and t = 1.

The third and final step is to homotope from Ψk± back to Ψk±(t) like in the first step.
The condition in equation (5.19) ensures that all associated symmetric matrices will be
1-periodic.

Concatenating these three steps yields a map S± : [0, 1] × S1 → Sym(2n,R) that
satisfies all the required properties. This proves Claim 5.
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We use this path to interpolate by introducing a parameter λ ∈ [0, 1] in the following
way. We can define a map

S : [0, 1]× R× S1 → Sym(2n;R)

that satisfies

S(λ, s, t) =


S(s, t) λ = 0

S+(λ, t) s ≥ σ

S−(λ, t) s ≤ −σ0

S(s) λ = 1

This can readily be done. By Lemma 5.21, we know we can assume S to be independent
of s for |s| large. We can use the map that we obtained from Claim 5 to modify S(λ, s, t)
at both ends (for |s| large). Modifying the middle part is easy; as long we make sure
the ends extend, we can modify S on this compact subset of R × S1 without changing
the Fredholm index. This is due to Theorem C.14, which implies that changing on this
compact set only, we change DS by a compact operator. Then Theorem C.11 states that
this operator has the same index.

Write Sλ(s, t) := S(λ, s, t). Then the family of operators DSλ are all Fredholm
operators and all have the same index by the above explanation. Note that S0 = Sσ and
S1 = Σσ. Therefore,

ind(DS) = ind(DSσ) = ind(DΣσ)

where we used Lemma 5.21 for the first equality. This proves Lemma 5.22. �

Our aim is to compute the index of DΣσ , so that by Lemma 5.22, we know ind(DS).
We prove the following lemma.

Lemma 5.23. Let Σ : R→M(2n,R) be as in Lemma 5.22. Then

ind(DΣσ) = k− − k+.

In order to prove this lemma, we will reduce to the case R2. Therefore, we mention
the following lemma.

Lemma 5.24. Let p > 2 and

FS : W 1,p(R× S1,R2)→ Lp(R× S1,R2)

defined by

ξ 7→ ∂ξ

∂s
+ J0

∂ξ

∂t
+ S(s)ξ.

Suppose

S(s) =

(
α1(s) 0

0 α2(s)

)
.
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where

αi(s) =

{
α−i s ≤ −s0

α+
i s ≥ s0

to impose the limit behaviour of S and furthermore suppose that α±i /∈ 2πZ. Then

(i) If α1(s) = α2(s) = α(s). Then

dim kerFS = 2#{l ∈ Z | a− < 2πl < a+}
and

dim kerF ∗S = 2#{l ∈ Z | a+ < 2πl < a+}.

(ii) If sups∈R ‖S(s)‖ < 1 then

dim kerFS = #{i ∈ {1, 2}|a−i < 0, a+
i > 0}

and
dim kerF ∗S = #{i ∈ {1, 2} | a+

i < 0, a−i > 0}.

The proof of this lemma is a computation involving power series. We refer to [AD14]
page 293 for the proof. We now prove Lemma 5.23.

Proof. To compute the Fredholm index of DS1 we use that cokerDS1 is isomorphic
to kerD∗S1

, where the adjoint is defined as

D∗S1
: W 1,q(R× S1,R2n)→ Lq(R× S1,R2n)

by

ξ 7→ −∂ξ
∂s

+ J0
∂ξ

∂t
+ St(s)ξ

with 1
p

+ 1
q

= 1. Hence, it is enough to only compute kernels of operators of this type.

Recall J0 =



(
0 −1
1 0

)
(

0 −1
1 0

)
. . . (

0 −1
1 0

)


As J0 only has 2 × 2-blocks, we

can reduce to the R2 case. As above, we have a diagonal matrix defined by

S(s) =

(
α1(s) 0

0 α2(s)

)
.

where

αi(s) =

{
α−i s ≤ −s0

α+
i s ≥ s0

to impose the limit behavious of S.
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We can now explicitely compute the dimensions of the kernel. This is a case distinc-
tion in the parity of k+−n and k−−n, which leads us to four cases. As the computations
are totally analogous, we only treat the case k− = n mod 2 and k+ = n mod 2. The
diagonal matrices Sk± are in this case

Sk− = diag(−π, . . . ,−π, (n− 1− k−)π, (n− 1− k−)π)

and

Sk+ = diag(−π, . . . ,−π, (n− 1− k+)π, (n− 1− k+)π).

Then we are in case (i) of Lemma 5.24. This lemma then gives

dim kerDΣσ = 2#{l ∈ Z | n− 1− k− < 2l < n− 1− k+}

. This means

dim kerDSΣσ
=

{
k− − k+ k− > k+

0 k− ≤ k+
.

Similarly, by case (i) of Lemma 5.24, we find

dim kerD∗Σσ =

{
k+ − k− k+ > k−

0 k+ ≤ k−
.

Then

ind(DΣ) = dim kerDSΣ
− dim cokerD∗SΣ

hence by the above

ind(DS1) = k− − k+.

This proves the lemma in one parity case. The other three follow by applying Lemma
5.24 appropriately and doing the same computation. This proves Lemma 5.23. �

5.4. A manifold structure on M(x−, x+; J,H) using transversality

In this section we prove that for a generic choice of non-degenerate H, the spaces
M(x−, x+; J,H) are manifolds of dimension CZ(x−) − CZ(x+). We primarily follow
[FHS94].

We consider a non-degenerate Hamiltonian H0 ∈ C∞(S1 ×M,R). Define the space
of perturbations of H0 that have the same periodic orbits.

Definition 5.25. Let H0 be non-degenerate. Then for l ≥ 2 define

C l(H0) := {H ∈ C l(M×S1,R) | H agrees up to second order with H0 around every x ∈ P(H0)}.

The space C l(H0) is a Banach space. We are interested in pairs (H, J) that are
regular in the following sense.
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Definition 5.26. We say (H, J) ∈ C∞(S1×M,R)×J (M,ω) is a regular pair if H is
non-degenerate and the Floer operator dV ∂H,J(u) is surjective for all u ∈M(x−, x+;H, J)
for all x−, x+ ∈ P(H). We denote the collection of regular pairs by

(H×J )reg := {(H, J) ∈ C∞(S1 ×M,R)× J (M,ω) | (H, J) is a regular pair}.

By application of the implicit function theorem, this means that for a pair (H, J) ∈
(H × J )reg, the spaces M(x−, x+; J,H) are all finite dimensional submanifolds of the
Banach spaces B1,p(x−, x+) of dimension CZ(x−)− CZ(x+). We prove that after picking
a J ∈ J (M,ω), this happens for generic Hamiltonians H.

Theorem 5.27. Let H0 ∈ C∞(S1 × M,R) be non-degenerate and J ∈ J (M,ω).
Then the set

Hreg(H0) := {H ∈ C∞(H0) | (H, J) ∈ (H,J )reg}
is of the second category in C∞(H0).

This says that for a generic choice ofH, we may assume that the spacesM(x−, x+;H, J)
are manifolds of dimension CZ(x−)−CZ(x+), by application of the implicit function the-
orem.

The proof of Theorem 5.27 reasons by the Sard-Smale transversality theorem of a
projection (u,H) 7→ u. We follow [FHS94], taking several technical results in this paper
for granted. The first step is defining a space Z(x, y;H) of pairs (u,H) that satisfy the
Floer equation ∂H,J(u) = 0 for H with u ∈ B1,p(x, y). We will prove that the space
Z(x, y, J) is a Banach manifold for x 6= y. The strategy is again to describe Z(x, y, J)
as the zeros of a section of a Banach bundle over a Banach manifold. We then apply the
Sard-Smale Theorem C.12 to the projection (u,H) 7→ H and show that the regular values
of this projection are precisely the H such that dV ∂H,J are surjective. By the Sard-Smale
theorem, such regular values are of the second category.

To prove Theorem 5.27, we need two additional lemma’s. We need that for solutions
u ∈M(x, y), the set of (s, t) ∈ R×S1 where u is injective is dense. We make the following
definitions.

Definition 5.28 (Critical points). Let u ∈M(x, y). A point (s, t) ∈ R×S1 is called
a critical point of u if either ∂u

∂s
(s, t) = 0 or u(s, t) = x(t) or u(s, t) = y(t). We denote the

set of critical points of u inside R× S1 by C(u).

Definition 5.29 (Regular points). Let u ∈M(x, y). A point (s, t) ∈ R×S1 is called
a regular point of u if it is not a critical point and u(s, t) 6= u(s′, t′) for every s 6= s0. We
denote the set of regular points of u inside R× S1 by R(u).

The critical and regular points defined in Definitions 5.28 and 5.29 have the following
property. This is Theorem 8.2 in [SZ92] or a combination of Theorem 4.3 and Lemma
4.1 in [FHS94].



52 5. FLOER HOMOLOGY AND TRANSVERSALITY

Lemma 5.30. Assume x, y ∈ P0(H) and x 6= y. Let u ∈ M(x, y). The set C(u) is
discrete and the set R(u) is open and dense in R× S1.

Note that Lemma 5.30 is highly non-trivial; it is the main content of the paper
[FHS94]. The following explaination should be interpreted as philosophical in nature.

The fact that C(u) is discrete follows (in [FHS94]) from the Carleman Similary
Principle (Theorem 2.2 in [FHS94], Theorem 2.3.5 in [MS12]). An immediate Corollary
says that, roughly speaking, if u satisfies a perturbed Cauchy-Riemann equation, then its
derivative must be non-vanishing on some small ball. If u satisfies the Floer equation,
we look at the local flow of XH denoted ϕtH . We then compare u to v = (ϕtH)−1u.
Heuristically this is a reduction to the case XH = 0. Then v satisfies a perturbed Cauchy-
Riemann equation. Using the Carleman Similarity Principle, dv is non-vanishing on a
ball, which implies that ∂u

∂s
vanishes on a discrete set only.

The fact that R(u) is dense is even more involved and uses a unique continuation lemma
for solutions of a perturbed Cauchy-Riemann equation that follows from the Carleman
Similarity Principle. For more details, we refer the reader to the relevant Lemmas and
Theorems in [FHS94].

We now give a proof of Theorem 5.27 using these Lemma 5.30.

Proof (of Theorem 5.27). Let H0 : S1 ×M → R be a Hamiltonian non-degenerate
Hamiltonian and let J ∈ J (M,ω). Let C l(H0) be as above. Let x, y ∈ P(H0) and
Z(x, y; J) be the space of pairs (u,H) such that u satisfies ∂H,J(u) = 0. We prove that
this space is an infinite dimensional manifold, so that we can apply the Sard-Smale theo-
rem to the projection (u,H) 7→ H.

Let p > 2 and l ≥ 2 and let B1,p(x, y) be as described in Definition 5.9. We construct
a bundle over B1,p × C l(H0). This is the bundle E whose fiber over (u,H) is

E(u,H) := Lp(u∗TM).

Define a smooth section of this bundle

σ : B1,p(x, y)× C l(H0)→ E
by setting

σ(u,H) = ∂H,J(u).

We prove that the vertical differential of this section is surjective, which is equivalent to
saying the section is transversal to the zero section.

Note that

THC
l(H0) = {h ∈ C l(S1×M,R) | h vanishes up to second order around points x(t) for x ∈ P0(H0) }.
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By direct computation the vertical derivative of the section σ

dV σ(u,H) : W 1,p(u∗TM)× THC l(H0)→ Lp(u∗TM)

given by

dV σ(u,H)(ξ, h) = dV ∂H,J(u)ξ −∇h.
We prove that this map is surjective whenever σ(u, h) = 0.

Let 1
p

+ 1
q

= 1 and suppose η ∈ Lq(u∗TM) is non-zero and orthogonal to the range

of dV σ(u,H), meaning ∫
R×S1

〈dV σ(u,H)(ξ, h), η〉J dsdt = 0

for all (ξ, h). That is, suppose dV σ(u,H) is not surjective. This happens if and only if

(5.20) dV ∂H,J(u)η = 0

and

(5.21)

∫
R×S1

dh(u)η dsdt = 0

for all h ∈ THC l(H0).

By elliptic regularity and duality, η is smooth. We will show that for any η ∈
Lq(u∗TM) such that equation (5.21) is satisfied for all h, we have η = 0. This is then
a contradiction with the fact that dV σ(u,H) is not surjective. We prove the following
claim.

Claim 6. There exists a smooth function λ : R × S1 \ C(u) → R such that for all
(s, t) ∈ R× S1 we have

η(s, t) = λ(s, t)
∂u

∂s
(s, t).

Proof. Suppose that ∂u
∂s

and η are linearly independent at some point (s0, t0) ∈
R×S1. By Lemma 5.30, we may asusme (s0, t0) ∈ R(u). We can construct a neighborhood
U0 ⊂M × S1 of the point (u(s0, t0), t0) with the property that the open set

V0 = {(s, t) | (u(s, t), t) ∈ U0}
is a small neighborhood of (s0, t0).

Suppose this is not the case, then there would exist a sequence (sn, tn) such that
tn → t0 and u(sn, tn) → u(s0, t0) and |sn − s0| > δ (i.e. it converges in U0 but not in
V0). The sequence sn must be bounded because u(s0, t0) is regular, or u(s0, t0) would
be one of the end-points. Assume it converges to some s′. Then |s′ − s0| > δ for some
δ > 0 and u(s′, t0) = u(s0, t0) so u /∈ R(u) by definition of R(u) in Definition 5.29. This
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contradiction proves the existence of V0 for some small U0.

We can embed a sufficiently small ball inside U0. Let ε > 0 be sufficiently small and
t close to t0 such that gt : Bε(0, s0)→ U0 given by

gt(r, s) := expu(s,t)(rη(s, t))

is an embedding. Then gt(0, s) = u(s, t) and ∂gt(0,s)
∂r

= η(s, t). We use this function gt to
generate a Hamiltonian function ht.

Let β : R→ [0, 1] be a cut-off function equal to 1 near 0. As gt is an embedding, we
can construct ht : M → R supported in U0 that is of the following form

ht(gt(r, s)) = rβ(r)β(s− s0)β(t− t0).

The Hamiltonian ht has the property that it vanishes outside U0 and ht(u(s, t)) = 0.
Furthermore, by differentiating we see that

dht(u(s, t), t)η(s, t) = ρ(s− s0)ρ(t− t0).

In particular, we have that equation (5.21) is not satisfied for this particular h. This is a
contradiction, which proves Claim 6. �

We claim that λ(s, t), which exists by virtue of Claim 6 has the following property.

Claim 7. The function λ(s, t) is such that ∂λ
∂s
≡ 0.

Proof. Assume that ∂λ
∂s

(s0, t0) 6= 0 for some (s0, t0) ∈ R× S1 \ C(u). As η(s, t) 6= 0
everywhere but a discrete set, we may assume λ(s0, t0) 6= 0. Furthermore, by Lemma
5.30 we may assume (s0, t0) ∈ R(u). Choose some small neighborhood V0 of (s0, t0) such
that on λ(s, t) 6= 0 and ∂λ

∂s
(s, t) 6= 0 for all (s, t) ∈ V0. Construct a compactly supported

function α : V0 → R such that

(5.22)

∫
V0

λ(s, t)
∂α

∂s
(s, t) dsst 6= 0

As above, we can construct a Hamiltonian h : M × S1 → R such that

ht(u(s, t)) = α(s, t)

for all (s, t) ∈ V0. This yields

dht(u(s, t), t)η(s, t) = λ(s, t)
∂α

∂s
(s, t)

for all (s, t) ∈ V0. Again, together with equation (5.22) this implies that the integral in
equation (5.21) is non-zero. This contradiction proves Claim 7. �
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Since C(u) is discrete, an immediate consequence is that λ(s, t) = λ(t) such that

η(s, t) = λ(t)
∂u

∂s
(s, t).

Assume η 6= 0. Then η(s, t) vanishes on a discrete set only as it satisfies (∂H,J(u))∗η =
0 together with Corollary 2.3 in [FHS94]. As η 6= 0, we have λ(t) 6= 0 for all t ∈ S1.
Assume that λ(t) > 0. We can then compute

(5.23)

∫ 1

0

〈∂u
∂s

(s, t), η(s, t)
〉
J
dt =

∫ t

0

λ(t)
∣∣∣∂u
∂s

(s, t)
∣∣∣2
J
dt > 0.

On the other hand we have

(5.24) dV ∂H,J(u)
∂u

∂s
= 0 and (dV ∂H,J(u))∗η = 0.

We claim that

(5.25)
d

ds

∫ 1

0

〈∂u
∂s

(s, t), η(s, t)
〉
J
dt = 0

This requires a small computation. Note that

(dV ∂H,J(u))∗η = −∇sη + J(u)∇tη +∇ηJ
∂u

∂t
−∇η∇H(u).

Hence, the part except for ∇s is self-adjoint. Write dV ∂H,J(u) = ∇s + Au. Therefore, we
can compute

d

ds

∫ 1

0

〈∂u
∂s

(s, t), η(s, t)
〉
J
dt =

∫ 1

0

(〈
∇s

∂u

∂s
(s, t), η(s, t)

〉
J

+
〈∂u
∂s

(s, t),∇sη(s, t)
〉
J

)
dt

=

∫ 1

0

〈
η, dV ∂H,J(u)

∂u

∂s
− Au

∂u

∂s

〉
J

+
〈
Auη + (dV ∂H,J(u))∗η,

∂u

∂s

〉
J
dt

=

∫ 1

0

〈
η, dV ∂H,J(u)

∂u

∂s

〉
J
−
〈

(dV ∂H,J(u))∗η,
∂u

∂s

〉
J
dt

= 0

Combining equation (5.23) and equation (5.25) we find by integrating over t that

(5.26)

∫ +∞

−∞

∫ 1

0

〈∂u
∂s

(s, t), η(s, t)
〉
J
dsdt = +∞

However, this contradicts the assumption that ∂u
∂s
∈ Lp(u∗TM) and η ∈ Lq(u∗TM).

Hence, this contradicts the assumption that η is non-zero meaning that for any η such
that ∫ +∞

−∞

∫ 1

0

〈
dV σ(u,H)(ξ, h), η

〉
J
dtds = 0

for all (ξ, h) ∈ W 1,p(ξ∗TM)× THC l(H0) we must have η ≡ 0.
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Therefore, dV σ(u, h) is indeed surjective whenever σ(u, h) = 0.

Let

Z(x, y;H) := {(u,H) ∈ B1,p(x, y)× C l(H0) | σ(u,H) = 0}.
By the implicit function theorem and the above conclusion, Z(x, y;H) is a Banach sub-
manifold of B1,p(x−, x+). Hence, we can apply the Sard-Smale theorem to the following
projection. Consider the projection

π : Z(x, y;H)→ C l(H0)

defined by

(u,H) 7→ H.

This map is a Fredholm map between two Banach manifolds of the same index as
dV ∂H,J . By the Sard-Smale transversality theorem, Theorem C.12, it follows that the
regular values of π are of the second category in C l(H0). We show that the regular values
of π are precisely H ∈ C l(H0) such that (H, J) is a regular pair.

Suppose H is a regular value of π and let u ∈ M(x, y; J,H). Suppose dV ∂H,J(u) is
not surjective. Then there exists a non-zero η ∈ Lq(u∗TM) such that

(5.27)

∫
R×S1

〈dV ∂H,J(u)ξ, η〉J dsdt = 0

for all ξ ∈ W 1,p(u∗TM). Surjectivity of dπ(u,H) implies that for every h ∈ C l(H0) there
exists an ξ ∈ W 1,p(u ∗ TM) such that dV σ(u,H)(ξ, h) = 0. This is the case as

T(u,H)Z(x, y;H) = {(ξ, h) ∈ W 1,p(u∗TM)× C l(H0) | dV σ(u,H)(ξ, h) = 0}.

In the proof above, we already showed that for this ξ we cannot have that equation (5.27)
is satisfied for a non-zero η. This contradiction shows that dV ∂H,J(u) is surjective.

Conversely, suppose that dV ∂H,J(u) is surjective for all u ∈ M(x, y; J,H). Suppose

h ∈ C l(H0) is given. By surjectivity we can pick ξ such that dV ∂H,J(u)ξ = −∇h. This
means that (ξ, h) ∈ T(u,H)Z(x, y;H) and dπ(u,H)(ξ, h) = h which means dπ(u,H) is
surjective.

This proves the statement of the theorem in C l. For completeness we still need to
extend to C∞. This is done via an argument due to Taubes (according to [MS12] from
personal communications, hence no reference given) and explained more thoroughly in
[MS95] in the proof of Theorem 3.1.2 (ii). Here however, a result is proven for a general
J-holomorphic curve instead. For a discussion in the Floer setting, we refer the reader to
the proof of Theorem 5.1 (i) in [FHS94] where the extension to C∞ is made in the case
of a perturbation of J on page 18. The argument in the case of a perturbation of H is
analogous. This proves Theorem 5.27. �
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Remark. As stated, the above argument to extend to the C∞ case is due to Taubes.
One can prove Theorem 5.27 without this argument, which is done in [AD14] Section 8.5
and 8.3. This uses an argument originally due to Floer in [Flo88].
Here one considers a Banach space C∞ε (H0) of perturbations h of H0 such that the norm
‖h‖ε =

∑
k≥0 εk sup |dkh(x, t)| is finite. The sequence εk is chosen such that C∞ε is dense in

C∞. Then one considers the above argument where the Banach space C l(H0) is replaced
by the Banach space C∞ε (H0) of Hamiltonians H = H0 + h where ‖h‖ε < +∞.

5.5. Broken trajectories and gluing

Suppose from now on we are in the case where we have fixed the pair (H, J) ∈
(H × J )reg). By the previous sections, the moduli spaces M(x, y) are manifolds. In
this section we discuss the compactness of M(x, y). A priori, this manifold can not be
compact as we can translate in the s-parameter. That is, let u ∈M(x, y). Then there is
an action

R×M(x, y)→M(x, y)

given by

(σ, u(s, t)) 7→ σ · u(s, t) = u(s+ σ, t).

We can quotient by this action to define the space M̂(x, y).

Definition 5.31. Let x, y ∈ P0(H). Define

M̂(x, y) :=M(x, y)/R
equipped with the quotient topology.

The space M̂(x, y) is the space of unparametrized trajectories of finite energy running
between x and y. We saw its topology is instrumental in defining the Floer boundary

operator ∂J in Definition 5.5. The space M̂(x, y) has the following unique limit property.

Lemma 5.32. Let x, y ∈ P0(H). Let (un) ⊂ M(x, y) be a sequence with two se-
quences (sn), (σn) ⊂ R such that

lim
n→∞

un(sn + s, ·) = us ∈M(x, zs)

and

lim
n→∞

un(σn + s, ·) = uσ ∈M(x, zσ)

for two us, uσ ∈ P0(H) distinct from x. Then

(i) zs = zσ.

(ii) Denote z := zs = zσ. Let π : M(x, y) → M̂(x, y), then π(us) = π(uσ). This is
equivalent to the existence of τ ∈ R such that

us(τ + s, t) = uσ(s, t).
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For a proof we refer to [AD14] Proposition 9.1.2. Note that this immediately implies

that M̂(x, y) equipped with the quotient topology is a Hausdorff space.

We denote the space of all flow lines by

M(J,H) =M := {u ∈ C∞(R×S1,M) | u is a contractible solution to equation 3.6 and E(u) < +∞}.

This is the space of all possible solutions to Floer’s equation with finite energy. By
Theorem 6.5.6 in [AD14], if u is such that E(u) < +∞, then there exist x± ∈ P0(H)
such that

lim
s→±∞

u(s, ·) = x±

in C∞(S1,M). This implies that M is the union of all the moduli spaces.

M(J,H) =
⋃

x−,x+∈P0(H)

M(x−, x+; J,H).

To study the topology of M̂(x, y) we will want to prove a compactness theorem about
M. It is this theorem that is the central reason why we assume the manifold M to satisfy
Assumption 3.3.

Theorem 5.33. The space M is compact in the C∞loc-topology.

Theorem 5.33 can be interpreted as a ”No bubbling” result. It asserts that no bub-
bles are formed. Such bubbles form an obstruction to the compactness of the space M.
Assumption 3.4 will prove crucial in proving this result.

Remark. We give a brief explanation of what is meant by ”bubbling” in the more
general sense. We follow the introduction of Section 4.2 in [MS12]. Let (M,ω) be a
compact symplectic manifold and S(Σ, jΣ) be a closed Riemann surface. In our case this
is the surface R×S1, which is of course not closed. However, our additional assumptions
on M fixes this. LEt J ∈ J (M,ω). Suppose we are given a sequence of J-holomorphic
maps uν : Σ → M such that their derivatives are unbounded, i.e. sup

ν
‖duν‖L∞ = ∞.

Suppose we look at sequence with uniformly bounded energy (this is the case in M).
Then we can rescale the sequence uν to a sequence vν : U → M where U is some ball
around 0 in C by passing through a coordinate chart. Using the limit v of the sequence
vν we obtain a map that extends to the Riemann-sphere v : C ∪ {∞} →M by removing
a singularity around 0. This map is called a bubble. It is a non-constant J-holomorphic
map with positive energy.

The proof of Theorem 5.33 requires the following technical result.

Theorem 5.34. On the space M, the C0
loc and the C∞loc-topologies coincide.
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Proof. The proof is results from elliptic regularity combined with a bound on the
gradient of u ∈ M (Lemma 5.35 below). We refer the reader to the proof of [AD14]
Proposition 6.5.3. �

The central point in proving Theorem 5.33 is proving that the derivatives of u ∈M
have a bound. This is described by the following Lemma. Note that Assumption 3.3 is
required in the hypothesis.

Lemma 5.35. Suppose M is closed and satisfies Assumption 3.4. Then there exists
C > 0 such that for all u ∈M we have

‖∇u(s, t)‖J ≤ C.

Proof. For a proof we refer the reader to [AD14] Proposition 6.6.2. The proof
reasons by contradiction by considering a sequence (sk, tk) and a sequence (uk) ⊂M such
that

lim
k→∞
‖∇uk(sk, tk)‖J = +∞.

Then define a rescaling of uk denoted vk using the half maximum lemma. This vk, by
application Arzela-Ascoli, using compactness of M and elliptic regularity, converges to
some smooth J-holomorphic v (meaning it satisfies ∂v

∂s
+ J(v)∂v

∂t
= 0). One can compute

that v has finite energy (Lemma 6.6.4 in [AD14]). The contradiction is then obtained
by proving that whenever Assumption 3.3 is satisfied, there exist no non-constant J-
holomorphic w : C→M with finite energy. �

Let us give an outline of the proof of Theorem 5.33.

Proof of Theorem 5.33. Consider a sequence (un) ⊂ M. Note that the bound
in Lemma 5.35 is independent of u, hence this inequality asserts the equicontinuity of
u ∈ M. By Arzela-Ascoli, the closure M⊂ C0(R× S1,M) is compact. Hence, (un) has
some subsequence that converges to some u0 in C0

loc(R× S1,M).

By elliptic regularity, u0 is of class C∞. �

Recall that our goal is to define the boundary operator ∂ : CFk → CFk+1 such

that ∂ ◦ ∂ = 0. To do this we first consider M̂(x, y) for which the index difference is 1:

CZ(x)− CZ(y) = 1. To prove ∂ ◦ ∂ = 0 we consider M̂(x, y) where the index difference
is 2.

5.5.1. M̂(x, y) is compact 0-dimensional if CZ(x)− CZ(y) = 1.

We start by proving compactness of M̂(x, y) in the case where the index difference
is 1.

Theorem 5.36. Suppose CZ(y) = CZ(x) + 1. Then the space M̂(x, y) is compact.
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x0 = x

x1

x2 = y

Figure 2. An picture of Theorem 5.37 in the case l = 1.

This theorem implies that this space is a finite set, as it is compact and zero dimen-
sional. Then the number η(x, y) defined in Definition 5.5 is a well defined finite number.

We attack this problem in the following way. Consider M̂(x, y) for an arbitrary

index difference. Suppose (un) ⊂ M̂(x, y) is a sequence. It might be that (un) has no
convergent subsequence. However, we will show that there always exists a subsequence
that converges to a broken flow line from x to y. This is an collection of intermediate
critical points x = x0, . . . , xk = y together with solutions uk ∈M(xk, xk+1). The following
theorem gives a precise description of this behavior.

Theorem 5.37. Let (un)n∈N be a sequence in M(x, y). Then there exists a subse-
quence of (un) and with

• Critical points x0 = x, x1, . . . , xl, xl+1 = y

• Sequences (skn) ⊂ R for 1 ≤ k ≤ l

• Elements uk ∈M(xk, xk+1) such that for every k = 0, . . . , l, we have

lim
n→∞

un · skn = uk

in the C∞loc topology.

Figure 2 depicts the situation. We will prove now prove this theorem and then explain
how it solves Theorem 5.36.
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u0
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u2

u3

u4

u0(s1
0, ·)

u1(s1
1, ·)u1(s1
1, ·)
u2(s1

2, ·)u2(s1
2, ·)

u3(s1
3, ·)u3(s1
3, ·)

u4(s1
4, ·)u4(s1
4, ·)

B(x0; ε)
x0

n

Figure 3. The definition of s1
n as the sequence of numbers for which un leaves the ball

B(x0; ε).

Proof. Let ε > 0 be sufficiently small such that balls with radius ε centered around
the critical points of AH are disjoint. This is possible as there are only finitely many
critical points. Let (un)n∈N ⊂M be a sequence.

If we view un as a path in LM , then it must leave B(x, ε) at some point, for it goes
to y 6= x. Denote x0 := x. Define

(5.28) s1
n = inf{s ∈ R | d∞(un(s, ·), x0) > ε}

Here d∞ is the distance function inducing the C∞ topology. Loosely speaking, s1
n ∈ R

such that un leaves the ball B(x0; ε) for the first time. Figure 3 depicts the situation.
By compactness of M, we can extract a subsequence such that the sequence (un · s1

n)n∈N
converges to some u1 ∈M.
By definition of s1

n (5.28), we must have

u1(s, ·) ∈ B(x0; ε)
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for all s ≤ 0 and

u1(0, ·) ∈ ∂B(x0; ε).

To see this note that if s ≤ 0, then s+ s1
n ≤ s1

n for all n ∈ N. Therefore

d∞(u1(s, ·), x0) = d∞( lim
n→∞

un(s+ s1
n, ·), x0)

= lim
n→∞

d∞(un(s+ s1
n, ·), x0)

≤ ε

where we use s+ s1
n ≤ s1

n and the definition of s1
n (5.28).

This means that u1 is a trajectory from x0 = x to some other critical point, as it exits
the ball B(x0, ε). Hence, u1 ∈M(x0, x1) for some x1 ∈ CritAH . We have two cases.

If x1 = y we are done. This is the case where l = 0.

If x1 6= y we proceed by induction. This means that we have found

• Sequences (s0
n)n∈N, . . . (s

k
n)n∈N

• Trajectories uj ∈ M(xj−1, xj) such that xj 6= y for 0 ≤ j ≤ k with the property
that

lim
n→∞

un · sjn = uj

for all 0 ≤ j ≤ k.

We consider the last trajectory ukin(xk−1, xk) which tends to xk as s→∞. This implies
the existence of an s′ ∈ R such that

uk(s, ·) ∈ B(xk; ε)

for all s ≥ s′.
Note that un(s′ + skn, ·) converges to uk(s′, ·) by the induction hypothesis. Therefore, for
n sufficiently large,

un(s′ + skn, ·) ∈ B(xk; ε).

However, the trajectory (un) tends to the orbit y, where y 6= xk. Hence un must leave
B(xk; ε) for some s > skn + s′. We define the first point s ∈ R at which this happens.

(5.29) sk+1
n = sup{s ≥ skn + s′ | un(r) ∈ B(xk; ε), s

k
n + s′ ≤ r ≤ s}

This is the point at which un leaves the ball B(xk; ε) for the first time, as illustrated in
figure 4. By compactness of M, extract a subsequence such that un · sk+1

n converges to
some uk+1 ∈M. It remains to show that uk+1 ∈M(xk, xk+1) for some xk+1 6= xk.

Claim 8. We have sk+1
n − skn →∞ as n→∞.
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B(xk; ε)
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Figure 4. The definition of skn as the sequence of numbers for which un leaves B(xk; ε) for
the first time.

Proof.: Assume sk+1
n − skn < C for all n for some C ∈ R. The interval [s′, sk+1 − skn] is

contained in some compact interval K. On this compact interval, un · skn converges to uk

uniformely. Then for any s ∈ [s′, sk+1 − skn] we have un(skn + s, ·) ∈ B(xk, ε). However,
un(sk+1

n ) ∈ ∂B(xk, ε), whih is a contradiction. This proves Claim 8.

Let s ∈ R<0. If n is sufficiently large, by Claim 8 we have

skn + s′ < sk+1
n + s < sk+1

n .

By definition of sk+1
n (5.29) and s < 0 we have

un(sk+1
n + s, ·) ∈ B(xk; ε).

This holds for any s < 0. Therefore,

un(sk+1
n , ·) ∈ B(xk, ε),

which implies
uk+1((−∞, 0), ·) ⊂ B(xk, ε).

Note that for s = 0,
un(sk+1

n , ·) ∈ ∂B(xk, ε).

Taking the limit we have
uk+1(0) ∈ ∂B(xk, ε).

This means that uk+1 leaves the ball B(xk, ε) as required. This proves Theorem 5.37. �
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The proof of Theorem 5.36 is a straightforward consequence of Theorem 5.37.

Proof. Proof of Theorem 5.36 Let x, y be as in the hypothesis and et (un) ⊂M(x, y)
be a sequence. Then Theorem 5.37 ensures the existence of a subsequence with properties
as in the hypothesis of this theorem. However, the index difference is 1, so that there
can be no intermediate critical points (M(x, y) = ∅ whenever x 6= y and CZ(x) = CZ(y))
ensuring that the sequence (un) has a convergent subsequence. �

We use this same idea to study the structure of the space M̂(x, z) whenever CZ(x)−
CZ(z) = 2. In this case, a sequence (un) ⊂ M̂(x, z) either has a convergent subsequence
or converges to some broken flow line inM(x, y)×M(y, z) for CZ(x) < CZ(y) < CZ(z).

The idea is to ”compactify” M̂(x, z) be adding the limits of sequences converging to
broken trajectories. This is done in the next subsection.

5.5.2. The compactification of M̂(x, z) is compact 1-dimensional.

We add the broken trajectories to M̂(x, z). We have the following theorem about
the resulting space

Theorem 5.38. Suppose (H, J) ∈ (H×J )reg. Let x, z ∈ P0(H) such that

CZ(x)− CZ(z) = 2.

Define the compactified space of trajectories by

(5.30) M(x, z) :=M(x, z) ∪
( ⋃

y∈P0(H)
CZ(x)<CZ(y)<CZ(z)

M(x, y)×M(y, z)
)

ThenM(x, z) is a compact 1-dimensional manifold with boundary. The boundary is given
by

∂M(x, z) =
⋃

y∈P0(H)
CZ(x)<CZ(y)<CZ(z)

M(x, y)×M(y, z).

We already know that the space M(x, z) is compact, by Theorem 5.37. We also
know that M(x, z) is a manifold of dimension 1. Therefore, we only need to study what
happens around the boundary points. Hence, Theorem 5.38 is a result of the following
gluing statement.

Theorem 5.39. Let x, y, z ∈ P(H) such that

CZ(x) = CZ(y) + 1 = CZ(z) + 2.

Let (û, v̂) ∈ M̂(x, y)× M̂(y, z). Denote π :M(x, z)→ M̂(x, z) the projection. Then for
some ρ0 > 0 there exists a differentiable map

ψ : [ρ0,+∞)→M(x, z)
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such that for the induced map

ψ = π ◦ ψ

we have that

(i) The map ψ̂ is an embedding

ψ̂ : [ρ0,+∞)→ M̂(x, z)

such that

lim
ρ→∞

ψ̂(ρ) = (û, v̂) ∈M(x, z).

(ii) Suppose (ŵn) ⊂ M̂(x, z) is a sequence that converges to (û, v̂). Then for n

sufficiently large, there exist ρn ∈ R such that ψ̂(ρn) = ŵn.

Proof. The proof of Theorem 5.39 is too long to give a full proof here. The proof
relies on using a parametrized version of the Floer equation to interpolate between two
solutions u and v of the Floer equation using a parameter ρ. We then exponentiate along
these interpolations wρ in order to find ψ. However, elliptic regularity is required to prove
that such solutions indeed converge to true solutions of the Floer equation. We refer the
reader to Sections 9.3,9.4,9.5 and 9.6 in [AD14] for a thourough proof. �

Using Theorem 5.39, Theorem 5.38 can be proven. We now have the tools to prove
that the Floer boundary operator as defined in Definition 5.5 has the required property
∂J ◦ ∂J = 0, thereby proving that Floer homology is well defined. This fact is now a
straightforward Corollary using Theorem 5.38.

Corollary 5.40. Let ∂J : CFk+1(H)→ CFk(H). Then ∂J ◦ ∂J = 0.

Proof. We compute ∂2
J of some generator x ∈ CFk+1(H). Recall that ∂J was defined

on the generators and extended by linearity. Some notation is ommited.

∂(∂(x)) = ∂
( ∑

CZ(y)=k

η(x, y)y
)

=
∑

CZ(y)=k

η(x, y)∂y

=
∑

CZ(y)=k

η(x, y)
( ∑

CZ(z)=k−1

z
)

=
∑

CZ(z)=k−1

( ∑
CZ(y)=k

η(x, z)η(z, y)
)
y
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By definition, η(a, b) = #M̂(a, b). Note that∑
CZ(y)=k

η(x, z)η(z, y) =
∑

CZ(y)=k

#M̂(x, y)× M̂(y, z)

= #
( ⋃

CZ(y)=k

M̂(x, y)× M̂(y, z)
)

= 0 mod 2

Here we used that ∂M(x, z) =
⋃

CZ(y)=k M̂(x, y) × M̂(y, z). Note that M(x, z) is a

compact 1-dimensional manifold. Therefore, ∂M(x, z) contains an even number of points.
We conclude that indeed ∂2

J = 0 which proves Corollary 5.40. �



CHAPTER 6

HF∗(M) is isomorphic to HM∗(M)

In this chapter we prove that there exists an isomorphism between Floer homology
and Morse homology. This is the final step in proving the Arnold conjecture. This can
be done in several ways. Here, we construct a particular Hamiltonian H, small in some
sense, such that the Floer complex CF∗(H, J) and the Morse complex CM∗(H, J) agree.
This is what we do here, so that we can disregard the invariance of Floer homology with
respect to the choices made.

6.1. Invariance of Floer homology

In this section we give a brief summary of the proof of the following theorem.

Theorem 6.1. Let (H, J), (H ′, J ′) ∈ (H×J )reg. Then

HF∗(M ;H, J) ' HF∗(M ;H ′, J ′).

Many of the techniques required to prove this theorem have already been used
throughout the text. We give a brief summary of the proof.

Let (Hα, Jα), (Hβ, Jβ) ∈ (H×J )reg. Consider a smooth homotopy

Γα,β : (Hα, Jα) ' (Hβ, Jβ)

by which we mean a map

Γα,β : R→ C∞(S1 ×M,R)× J (M,ω)

such that

(6.1) Γα,β(s) =

{
(Hα, Jα) s ≤ −R
(Hβ, Jβ) s ≥ R

The main ingredient of the proof of Theorem 6.1 is associating to such homotopies a
chain map that induces an isomorphism in homology.

Proposition 6.2. Let Γα,β = Γ : (Hα, Jα) ' (Hβ, Jβ) as above. There exist a chain
map

ΦΓα,β CF(Hα)→ CF(Hβ)

with the following properties.

67
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(i) Let (Hα, Jα) ∈ (H × J )reg. For the constant homotopy Γα,α(s) = (Hα, Jα) we
have

ΦΓα,α = Id .

(ii) Let (Hα, Jα), (Hβ, Jβ), (Hγ, Jγ) ∈ (H×J )reg, and let Γα,β : (Hα, Jα) ' (Hβ, Jβ),
Γβ,γ : (Hβ, Jβ) ' (Hγ, Jγ) and Γα,γ : (Hα, Jα) ' (Hγ, Jγ). Then

ΦΓα,γ is homotopic toΦΓβ,γ ◦ ΦΓα,β .

Remark. By a chain map, we require that in every degree

∂Jβ ◦ ΦΓα,β = ΦΓα,β ◦ ∂Jα .
This means that the chain maps induce maps in homology

ϕΓα,β : HF∗(H
α, Jα)→ HF∗(H

β, Jβ).

Then property (ii) implies that

ϕΓα,γ = ϕΓβ,γ ◦ ϕΓα,β .

From Proposition 6.2, it follows immediatly that ϕΓα,β depends only on the end points
(Hα, Jα) and (Hβ, Jβ) and that ϕΓα,β is an isomorphism.

We will give a brief description of the proof. We will see that many techniques used
in previous chapters make a reappearance, hence we can be concise. For more details we
refer the reader to Chapter 11 in [AD14]

Let Γ(s) = (Hs, Js) be a given homotopy between some given regular (H+, J+) and
(H−, J−). Associated to the s-dependent Hamiltonian is the Hamiltonian vector field Xs,t

given by

ιXs,tω = dHs,t.

We look at solutions of the parametrized Floer equation.

(6.2)
∂u

∂s
+ Js(u)

(∂u
∂t
−Xs,t(u)

)
= 0

The energy of a solution to equation (6.2) can be defined just as in Defintion 5.4, where
we now use the metric

gJ = gJs := ω( · , Js ·).
We look at moduli spaces for Γ defined by

MΓ := {u ∈ C∞(S1 × R,M) | u solves equation (6.2), is contractible and E(u) < +∞}.
Let now x− ∈ P0(H−) and x+ ∈ P0(H+). We can consider the component of MΓ of
solutions running from x− to x+ defined by

MΓ(x−, x+) := {u ∈MΓ | lim
s→±∞

u(s, t) = x±(t)}.
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We can describe these spaces as finite dimensional submanifolds of a W 1,p-Banach mani-
fold in the same way as M(x−, x+; J,H).

Let
∂Γ : B1,p(x−, x+)→ Ep

be a section given by

∂Γ(u) :=
∂u

∂s
+ Js(u)

(∂u
∂t
−Xs,t(u)

)
where the fiber over u is given by Epu := Lp(R × S1, u∗TM) as before. We have the
following analogue of Theorem 5.10.

Theorem 6.3. Let (H+, J+), (H−, J−) ∈ (H × J )reg and x± ∈ P0(H±). Let Γ :
(H−, J−) ' (H+, J+). Then at every zero u ∈ MΓ(x−, x+), the vertical derivative
dV ∂Γ(u) is a Fredholm operator of index CZ(x−)− CZ(x+).

The proof of Theorem 6.3 is very similar to that of Theorem 5.10. Recall that in
order to prove Theorem 5.10, we transfered to a linear setting, in which the vertical deriv-
ative was a perturbed Cauchy-Riemann operator, with some peturbation S. We showed
that the Fredholm index of this operator only depends on the assymptotic ends S±. In
this case, for s large, we are in this situation as well, as the homotopy Γ is constant for
|s| > R. We refer the reader to Theorem 11.1.7 in [AD14].

If the vertical derivative dV ∂Γ(u) is surjective, we know by the implicit function the-

orem that ∂
−1

Γ (0) = MΓ(x−, x+) is a smooth submanifold of B1,p(x−, x+) of dimension
CZ(x−)−CZ(x+). The following transversality result shows that for generic Γ, surjectiv-
ity is satisfied. It is the analogue of Theorem 5.27.

Consider h : R× S1 ×M → R with compact support such that ‖h‖varepsilon <∞.

Theorem 6.4. There exists a countable intersection of dense open subsets of Hreg

inside a neighborhood of 0 in C∞ε , such that for h ∈ Hreg we have that for Γh := (H +

h, J), the vertical differential dV ∂Γh(u) is surjective for every u ∈MΓh(x−, x+) for every
x±P0(H±).

Remark. Note that for every h, we have that Γh connects (H−, J−) and (H+, J+),
as h has compact support.

The proof of this statement is easier than that of the analogous Theorem 5.27. We
refer the reader to Theorem 11.1.6 in [AD14]. The proof again proceeds by looking
at a section of Ep → W 1,(R × S1, u∗TM) × C∞ε (H0). Again, we want to prove that if
〈û,∇h〉 = 0 for some û ∈ Lq(u∗TM), then û = 0. Suppose that û is non-zero somewhere.
We can now let h depend on s. Picking an h supported around this point immediatly
proves the theorem.
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By the above transversality result, the moduli spacesMΓ(x−, x+) have a nice mani-
fold structure for generic Γ, via the implicit function theorem.

We now sketch the definition of ΦΓα,β . Let x ∈ P0(Hα). Then for x ∈ CFk(H
α), we

have

ΦΓα,β

k (x) =
⊕

y∈P0(Hβ)
CZ(y)=k

ηΓ(x, y)y

where

ηΓ(x, y) := #MΓ(x, y).

Here, two important properties need to be verified.

First, we need to prove that ηΓ is well defined, meaning thatMΓ(x, y) is finite. This
will again be done by proving it is a compact 0-dimensional manifold.

Secondly, we want ΦΓα,β to be a chain map, so that it induces a map in homology.
This means we need to check that

(6.3) ΦΓα,β ◦ ∂Jα = ∂Jβ ◦ ΦΓα,β

This will be done in a way similar to proving that for the Floer boundary we have ∂2
J = 0.

We will describe terms that arise when computing equation (6.3) as boundary points of
some 1-dimensional compact manifold.

Both these properties rely on compactness results for the spaces MΓ(x, y). These
are more difficult to prove than compactness results for trajectory spaces of the Floer

equation M̂(x, y). Like in the unparametrized Floer case, the main tool is to compactify
MΓ(x, y) by adding the limits of sequences that converge to broken trajectories. This
is similar to the construction of the compactified M(x, y) of Theorem 5.38. However,
the definition of a broken trajectory is more involved, as the intermediate critical points
belong to P0(Hα) at one end and to P0(Hβ) at the other end. Roughly speaking, the
trajectory consists of two broken trajectories; one inside M(Hα, Jα) that ends at some
critical point xk and one in M(Hβ, Jβ) that starts at some critical point y0. These two
are connected by a cylinder w ∈ MΓ(xk, y0). We will only state the compactness result
and the existence of the gluing map.

Theorem 6.5. Suppose (un) ⊂MΓ(x, y) is a sequence.
Then there exists a subsequence of (un) together with critical points x = x0, x1, . . . , xk of
AHα and critical points y0, y1, . . . , yl = y of AHβ .
These critical points are accompanied by sequences (sin)n ⊂ R for 0 ≤ i ≤ k − 1 such that
sin → −∞ and (σjn)n ⊂ R for 0 ≤ j ≤ l − 1 such that σjn → +∞.
There exist elements ui ∈ M(xi, xi+1;Hα, Jα) for 0 ≤ i ≤ k − 1 and elements vj ∈
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M(yj, yj+1;Hβ, Jβ) for 0leqj ≤ l − 1 and a w ∈ MΓ(xk, y0) such that for 0 ≤ i ≤ k − 1
and 0 ≤ j ≤ l − 1 we have

lim
n→∞

un · sin = ui,

lim
n→+∞

un · σjn = vj

and

lim
n→∞

un = w.

For a proof we refer to [AD14], Theorem 11.1.10. A key result in understanding
ηΓ(x, y) is the following lemma. It gives a bound on the number of broken flowlines
between two critical points.

Lemma 6.6. Let k and l be as in Theorem 6.5. Then

CZ(x)− CZ(y) ≥ k + l.

This is an immediate result from the manifold structure of M(x, y;H, J). From the
conditions of Theorem 6.5, it is immediate that if CZ(x) = CZ(y), thenMΓ(x, y) is com-
pact of dimension 0 (by Theorem 6.4) hence ηΓ(x, y) is well defined.

Furthermore, property (i) of Theorem 6.2 is also satisfied immediately. Let k =
CZ(x) = CZ(y) and Γ = Id. Then

MΓ(x, y) =M(x, y;H, J)

so that

ηΓ(x, y) =

{
0 x 6= y

1 x = y
.

Therefore, ΦΓ
k = Id for every k.

We still want to show that ΦΓ is a chain map. To do this, we need to compactify
the space MΓ(x, z) where CZ(x) − CZ(z) = 1. This is the statement of the following
theorem, which is an analogue of Theorem 5.38.

Theorem 6.7. Let x ∈ P0(Hα) and z ∈ P0(Hβ) with CZ(x)−CZ(y) = 1. Then the
space

MΓ
(x, z) :=MΓ(x, z) ∪ M̃Γ(x, z)

is a compact 1-dimensional manifold with boundary ∂MΓ
(x, z) = M̃Γ given by

M̃Γ :=
( ⋃

y∈P0(Hα)
CZ(x)−CZ(y)=1

M̂(x, y;Hα, Jα)×MΓ(y, z)
)
∪
( ⋃

y′∈P0(Hβ)
CZ(y′)=CZ(x)

MΓ(x, y′)× M̂(y′, z;Hβ, Jβ)
)
.
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This is Theorem 11.1.15 in [AD14]. Now, one can check that ΦΓ is a chain map, as
by the above Theorem 6.7, we have∑

y∈P0(Hα)
CZ(x)−CZ(y)=1

η(x, y)ηΓ(y, z) =
∑

y′∈P0(Hβ)
CZ(x)=CZ(y′)

ηΓ(x, y′)η(y, z)

is satisfied modulo 2. These terms arise when computing equation (6.3). However, these

are precisely terms that count the boundary components ofMΓ
(x, z) which is a compact

1-dimensional manifold, by Theorem 6.7, which has an even number of boundary points.

Hence, the main point is to prove Theorem 6.7. This is done by the existence of a

gluing map, as we already know the components of MΓ
(x, z) are manifolds of the right

dimension. This is an analogue of Theorem 5.39.

Theorem 6.8. Let x ∈ P0(Hα) and y, z ∈ P0(Hβ) such that

CZ(x) = CZ(y) = CZ(z) + 1.

Let u ∈MΓ(x, y) and v̂ ∈ M̂(y, z;Hβ, Jβ). Then, there exists for ρ0 > 0 an embedding

ψ : [ρ0,+∞)→MΓ(x, z)

such that
lim
ρ→∞

ψ(ρ) = (u, v̂)

and if (wn)n ⊂ MΓ(x, z) is a sequence that tends to (u, v̂), then there exist ρn such that
wn = ψ(ρn) for n sufficiently large.

Note that by ϕ(ρ) converging to (u, v̂) we mean that it converges to the broken flow
line as in Theorem 6.5. In this way, the gluing statement Theorem 6.8 shows that the

compactified space MΓ
(x, z) is a 1-dimensional compact manifold with the right bound-

ary, as claimed in Theorem 6.7.

This concludes the sketch of the proof of Theorem 6.1. We have defined the required
chain maps that induce isomorphisms in homology, and shown that they are well-defined.

6.2. Small Hamiltonians

We have defined what the chain groups CF∗(H, J) are. Here, we denote CM∗(H, J)
the Morse complex associated with the Morse function H and the vector field∇JH defined
with respect to the metric gJ . The goal of this section is to prove the following theorem.

Theorem 6.9. Let (M,ω) be a compact symplectic manifold satisfying Assumptions
3.3 and 3.4. There exists a non-degenerate Hamiltonian H : M → R for which we can
find a J ∈ J (M,ω) such that both the Morse and Floer complexes exists and

CF∗(H, J) = CM∗+n(H, J).
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By Section 6.1, we know that if the above choice is such that (H, J) ∈ (H × J )reg

then we can prove the Arnold conjecture. For all regular pairs (H, J), the Floer homology
groups are isomorphic, so it is sufficient to prove the Arnold conjecture for this particular
choice, which is straightforward using Theorem 6.9. We will say a few words about the
proof of this theorem.

We accomplish this by starting with a non-degenerate Hamiltonian H0. Note that we
have two notions of non-degeneracy here. On the Floer side, H0 is non-degenerate when
its periodic trajectories are non-degenerate. On the Morse side, H0 is non-degenerate if
all of its critical points are non-degenerate. In this case H0 is a Morse function. In order
to prove Theorem 6.9 our aim is to find H with the following properties.

(i) Crit(AH) = Crit(H)

(ii) H is nondegenerate both in the Floer and Morse sense.

(iii) For x ∈ Crit(H), we have the index formula indH(x) = µCZ(x) + n.

(iv) The differentials of both complexes exist and coincide.

We start with H0 a non-degenerate Hamiltonian in the Floer sense, and consider

H = H0/k

for k sufficiently large. The first three items (i),(ii) and (ii) are relatively easy. Item
(iv) is the hard part. Hence, for the first three items we refer the reader to page 360 in
[AD14], which refers to the relevant results. These are Proposition 6.1.5, Proposition
5.4.5 and Proposition 7.2.1 in [AD14]. The first three items imply that as vector spaces,
CFk(H, J) and CMk+n(H, J) are indeed the same. We will say a bit more about item (iv).

To define the trajectories used in Morse theory, we need a Morse function H together
with a vector field X satisfying the Morse-Smale condition. We therefore want X to be
the gradient of H with respect to the metric gJ for J ∈ J (M,ω). Hence, we need to
pick a J such that this is satisfied. We need the following transversality result, which is
Theorem 10.1.2 in [AD14].

Theorem 6.10. Let H be a Morse function on a symplectic manifold M . There
exists a dense subset Jreg(H) ⊂ J (M,ω) of almost complex structures such that the pair
(H,−JXH) is Morse-Smale (i.e. H is a Morse function and −JXH is a gradient-like
vector field satisfying the Smale condition).

Using Theorem 6.10, we choose a J such that (H,−JXH) is Morse-Smale such that
we can define the Morse complex, as in the Appendix Section A.1. We compare solutions
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to the Floer equation to trajectories of the vector field −JXH .

Note that if u solves the Floer equation, but does not depend on t, then u is a tra-
jectory of XH .

Let Hk = H/k with k sufficiently large. Consider the following proposition.

Proposition 6.11. For k sufficiently large, then any u ∈ C∞(R× S1,M) such that
∂J,Hk(u) = 0 connecting two critical points x and y such that

indHk(x)− indHk(y) ≤ 2

is independent of t.

By the above Proposition 6.11, trajectories of the Floer equation associated to (H, J)
connecting x and y coincide with the trajectories of the vector field −JXH which was a
Smale vector field (by choice of J). We need to verify that the spaces M(x, y;H, J)
can still be constructed as before. This is done by the following Proposition, which is
Corollary 10.1.8 in [AD14].

Proposition 6.12. Suppose H is a sufficiently small Hamiltonian. Then the Fred-
holm operator dV ∂J,H(u) is surjective along every trajectory of −JXH .

Therefore, the spaces M(x, y;H, J) are manifolds by the implicit function theorem
as before. In this way we can define the Floer complex CF∗(H, J). The above two
propositions then show that the differentials of both complexes agree, hence Theorem 6.9
holds.

6.3. The Arnold conjecture

We can now prove the Arnold conjecture. In Section 4.9 of [AD14], it is proven
that the Morse homology of a manifold coincides with the cellular homology in Theorem
4.9.3. We will exploit this now. The cellular homology of the manifold is isomorphic to
the singular homology H∗(M ;Z2).

Proof of Theorem 1.5. Suppose M is as in the hypothesis of the Arnold conjec-
ture. This means M is closed, symplectically aspherical and with vanishing first Chern
class. We have for a regular pair (H, J) there is a well defined Floer complex CF∗(H, J)
and associated to it the Floer homology HF∗(H, J). Recall that CFk(H, J ;Z2) is gener-
ated by the periodic orbits of the Hamiltonian equation with coefficients in Z2. Hence,

#P0(H) =
2n∑
k=0

dim CFk(H, J).
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It follows that

#P0(H) ≥
2n∑
k=0

dim HFk(H, J ;Z2).

By Theorem 6.9 and invariance of Floer homology, we have

#P0(H) ≥
2n∑
k=0

dimHk(M ;Z2).

This proves Theorem 1.5, the Arnold conjecture. �





CHAPTER 7

Rabinowitz-Floer homology

In this chapter we will describe a flavour of Floer homology defined relatively re-
cently. The Rabinowitz-Floer homology is a Floer homology associated to a hypersurface
of contact type in an exact symplectic manifold.

We will first give an overview of the contact topology required to define Rabinowitz-
Floer homology.

After this, we give the definition of the Rabinowitz-Floer homology groups RFH∗(M,Σ).
We sketch the definition given in [CF09] and point out the central points in the definition.

Secondly, we consider a perturbation of the Rabinowitz action functional. We show
that it gives rise to leaf-wise fixed points, which are a generalization of the fixed points
encountered in Hamiltonian Floer homology as described in the main body of the thesis.
We give the proof of an existence result of leaf-wise fixed points due to P. Albers and U.
Frauenfelder in [AF].

In the final section, we describe another application of Rabinowitz-Floer homology.
We show that non-vanishing of the Rabinowitz-Floer homology of a manifold implies that

it is orderable. Orderability means that there is a partial order on ˜Cont0(Σ, ξ), the uni-
versal cover of the group of contactomorphisms of a contact manifold (Σ, ξ). This result
is due to P. Albers and W. J. Merry in [AM14].

The notation and conditions on our manifolds will vary throughout this chapter, as
every paper requires its own conditions. We will try to make clear what the set-up is in
each separate case.

7.1. Preliminaries on Contact Topology

77
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Rabinowitz-Floer homology is defined for a coisotropic submanifold of contact type.
We follow the exposition in [Gei08] to introduce contact manifolds.
Let M be a differential manifold of dimension 2n+ 1.

Definition 7.1. A contact structure on M is a maximally non-integrable hyperplane
field ξ ⊂ TM .

Recall that non-integrable has two interpretations. Geometrically, it means that there
is no hypersurface in M that is tangent to ξ along an open subset of the hypersurface.

Non-integrable can also be described in terms of 1-forms. For every neighborhood
U ⊂M there is a form α ∈ Ω1(U) such that ξ|U = kerα. We refer the reader to [Gei08]
Lemma 1.1.1. The hyperplane field ξ is non-integrable if for every locally defining 1-form
α we have

α ∧ (dα)n 6= 0.

Remark. There exists a global α ∈ Ω(M) such that ξ = kerα if and only if ξ is
coorientable. Recall that coorientability means that the bundle (TM/ξ)∗ admits a global
section. Pulling this section back to T ∗M via the projection π : TM → TM/ξ yields the
form α. Conversely, α such that kerα = ξ yields a non-zero section of TM/ξ.
Whenever we assume ξ to be coorientable we call this global α the contact form. Note
that this is slight abuse of language, as any α′ such that α = fα′ with f : M → R \ {0}
has the property that ξ = kerα′

When defining these structures it is natural to give a name to maps that preserve
such structures.

Definition 7.2. Suppose (M1, ξ1) and (M2, ξ2) are two contact manifolds. A con-
tactomorphism ϕ is a diffeomorphism ϕ : M1 → M2 such that for dϕ : TM1 → TM2 we
have dϕ(ξ1) = ξ2. If a contactomorphism ϕ : M1 →M2 exists, M1 and M2 are said to be
contactomorphic.

Remark. In the case that (M1, ξ1) and (M2, ξ2) are coorientable with contact forms
ξi = kerαi for i = 1, 2 we can rephrase what it means to be contactomorphic in terms of
the contact forms. M1 and M2 are contactomorphic if and only if there exists a nowhere
vanishing function f : M1 → R \ {0} such that

ϕ∗α2 = fα1.

Note that this is sufficient, as it is sufficient for ϕ∗α2 and α2 to define the same hyperplane
field, so they differ a nonwhere vanishing function at most. In the special case that f ≡ 1,
ϕ is sometimes called a strict contactomorphism.

When considering a contact manifold (M, ξ) the contactomorphisms ϕ : M → M
form a group when equipped with the composition of functions, which we denote

Cont(M, ξ)
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Associated to a contact form α is the Reeb vector field.

Definition 7.3. Let α be a contact form on M . The Reeb vector field Rα is the
unique vector field defined by

(i) ιRαdα = 0

(ii) α(Rα) = 1

Remark. The fact that the Reeb vector field defined as such is well-defined and
unique follows from linear algebra. Condition (i) determines the direction of Rα while
condition (ii) provides a normalization. We refer the reader to Lemma/Definition 1.1.9
in [Gei08].

Suppose that (W,ω) is a symplectic manifold.

Definition 7.4. A Liouville vector field Y on (W,ω) is a vector field satisfying the
equation

LY ω = ω

Such a Liouville vector field connects contact geometry and symplectic geometry in
the following way.

Lemma 7.5. Suppose (W,ω) is a symplectic manifold and let Y be a Liouville vector
field. Define α ∈ Ω1(W ) by

α := ιY ω.

Then the form α is a contact form on any hypersurface Σ ⊂ W transverse to Y . A
hypersurface with this property is called a hypersurface of contact type.

Proof. The proof follows from the Cartan formula, dω = 0 and the fact that ωn

is a volume form when restricted to the tangent bundle of Σ. We refer the reader to
Lemma/Definition 1.4.5 in [Gei08]. �

This yields a particular class of hypersurfaces inside a symplectic manifold that we
will study in the upcoming sections. Another required concept relates Hamiltonians on a
contact manifold to vector fields fixing the contact hyperplanes.

Definition 7.6. Let (M, ξ) be a cooriented contact manifold with associated contact
form α and let X be a vector field on M . Denote ϕtX the flow of X 1. Then X is called a
contact vector field if

dϕtX(ξ) = ξ for all t ∈ R.
If the contact form is preserved, i.e. (ϕtX)

∗
α = α for all t ∈ R, then X is called a strict

contact vector field.

1Note that the domain may not be the full manifold.
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Remark. The above definition can also be characterized in terms of the Lie deriv-
ative. A vector field X is a contact vector field of ξ if and only if LXα = λα for some
function λ : M → R. This condition is independent of the choice of contact form α.

The following lemma describes a relation between Hamiltonians and contact vector
fields.

Lemma 7.7. Let (M, ξ = kerα) be a contact manifold. For a fixed α there is a
bijective correspondence between contact vector fields X on M and Hamiltonians H :
M → R. This correspondence

{contact vector fields X on M } ←→ {Hamiltonians H : M → R}
is given by the two maps

X 7−→ HX := α(X)

and
H 7−→ XH

where XH is defined uniquely by α(XH) = H and ιXHdα = dH(Rα)α− dH

Using this lemma, we can speak of contact Hamiltonians as Hamiltonians that are
associated to a contact vector field. That is, a Hamiltonian H with the property that
there exists a contact vector field X such that H = HX = α(X). This means that the
above gives a bijection between the set of contact vector fields and the set of contact
Hamiltonians. Note that XH defined as such is unique as dα is non-degenerate on ξ,
whereas Rα ∈ ker(dH(Rα)α− dH).

Lemma 7.7 is useful in the following setting. Let (M,α) be a closed contact manifold,
and H : [0, 1]×M → R a time-dependent family of Hamiltonians. We have an associated
time-dependent contact vector field Xt. Then the flow of Xt, denoted ϕt is globally defined
(by closedness) and is such that

ϕ∗tα = λtα

for λ : [0, 1]×M → R+. Hence, we can construct from a Hamiltonian a contact isotopy.

7.2. The Rabinowitz action functional and Rabinowitz-Floer homology

We define the Rabinowitz action functional. The Floer homology associated to this
functional gives rise to Rabinowitz-Floer homology. We follow the exposition in [CF09]
where the Rabinowitz-Floer homology was first defined. We first describe the setting.

Let (V, λ) be an exact convex symplectic manifold that is connected and without
boundary. By exactness we mean that the two form ω := dλ is symplectic. By convex we
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mean the strong version of convex (at infinity) as outlined in [MS12]. This is Definition
9.2.6 combined with Remark 9.2.7.

Definition 7.8. Let (M,ω) be a symplectic manifold. Then it is called convex (at
infinity) if there exists a pair (f, J) with J ∈ J (M,ω) and f : M → [0,∞) a smooth
proper function such that for

ωf := −d(df ◦ J)

we have that ω = ωf globally.

Note that this is the stronger definition of Remark 9.2.7. In [CF09], convexity is de-
fined differently. Here (V, ω) is convex if there exists an exhaustion

⋃
k Vk = V of compact

sets Vk ⊂ Vk+1 such that λ|∂Vk is a contact form. We will however adhere to Definition
7.8. This Definition implies the one in [CF09]. To see this, we refer to the computation
in [FS03] on pages 2 and 3. Using f , we can construct an exhaustion as the inverse image
of an exhaustion of compact sets in [0,∞) (which are compact as f is proper), if we avoid
singular values, which has the required properties. This is the case as the gradient of f
is a Liouville vector field that defines the same contact structure as λ on the boundaries
(see Exercise 9.2.9 (ii) in [MS12]).

Define a vector field Yλ by ιYλω = λ. We say (V, λ) is complete if Yλ is complete. We
say that (V, λ) has bounded topology if Yλ 6= 0 outside some compact set.

Remark. It is important to note that (V, λ) is complete and of bounded topology
if and only if ”it looks like a contact manifold with a cylindrical end attached”. To be
precise, there exists and embedding ϕ : M ×R+ → V such that ϕ∗λ = erαM with contact
form αM = ϕ∗λ|M×{0} such that V \ ϕ(M × R+) is compact.

We will consider a hypersurface (without boundary) inside (V, λ). We say Σ ⊂ V is
exact convex if there exists a contact form on α such that α − λ|Σ is exact and V \ Σ
consists of one compact and one noncompact component. Note that we can modify λ to

λ̃ = λ+ dh such that ω = dλ̃ and α = λ̃|Σ. Hence, we can consider the following general
setting.

From now on, let (V, λ) be a complete exact convex symplectic manifold with bounded
topology. Suppose Σ ⊂ V is an exact convex hypersurface with contact form α so that
λ|Σ = α.

Remark. By Lemma 1.4 in [CF09], the hypothesis that V be complete and of
bounded topology are superfluous as this can always be arranged. However, we mention
these conditions as they are needed to define the Rabinowitz-Floer homology.

Let F : V → R be a smooth time-independent Hamiltonian with associated Hamil-
tonian vector field XF by ιXFω = −dF .
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Recall the definition of the loop space LM := C∞(S1,M).

Definition 7.9. The Rabinowitz action functional is defined as

AF : LM × R −→ R

by

(x, η) 7−→ AF (x, η) :=

∫
S1

x∗λ− η
∫ 1

0

F (x(t)) dt

Similarly to Floer homology, we look at critical points of the functional AF . A
computation shows the following.

Proposition 7.10. Let (x, η) ∈ CritAF . Then (x, η) satisfies

(7.1) ẋ(t) = ηXF (x(t)),∀t ∈ S1

and

(7.2)

∫ 1

0

F (x(t)) dt = 0

Proof. To get the first equation (7.1), we compute the differential of AF analogous to
the computation as in the proof of Proposition 3.7. The second equation (7.2 arises from

the variation in η, which is just linear in the term η
∫ 1

0
F (x(t)) dt. This yields equation

(7.2. �

An immediate corollary is the following.

Corollary 7.11. Let (x, η) ∈ CritAF . Then (x, η) satisfies

(7.3) ẋ(t) = ηXF (x(t)), ∀t ∈ S1

and

(7.4) F (x(t)) = 0,∀t ∈ S1

Proof. We have equation (7.1) which implies that x(t) is the reparametrized flow of
the vector field XF . Denote the flow by ϕtF . Then equation (7.1) implies that

x(t) = ϕηtF (x(0)).

By definition of the Hamiltonian vector field XF , its flow ϕtF : M → M leaves level sets
of F invariant. Therefore equation (7.2) implies that

F (x(t)) = 0,∀t ∈ S1.

This proves Corollary 7.11. �
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Hence, critical points of the Rabinowitz action function AF are periodic orbits of the
Hamiltonian vector field XF with period η that lie on the hypersurface Σ := F−1(0).

Consider a Hamiltonian F : W → R such that Σ = F−1(0) such that XF has compact
support and agrees with R = Rα, the Reeb flow of α, on Σ.

Consider AF for such a Hamiltonian. Then critical points are precisely Reeb orbits

ẋ(t) = ηR(x(t)).

We will give a consise explanation of the following Theorem, which is Theorem 1.1
in [CF09].

Theorem 7.12. Let (V, λ) with hypersurface (Σ, α) be as above. Let F define Σ
as above. Then we can define the Floer homology of AF denoted RFH(AF ). The Floer
homology RFH(AF ) is independent of the choice of F used to define Σ, so that we can
speak of the Rabinowitz-Floer homology RFH(Σ, V ).

We will look into some details of the proof of the above theorem. Most important
are the conditions on Σ and V , as this ensures that flow lines of AF will be compact
modulo breaking, so that the definition of the Floer homology is standard (i.e. as in the
Hamiltonian Floer homology in the main body of the thesis). The only difference is that
AF is Morse-Bott so that we define the homology using flow lines with cascades. This
requires a non-degeneracy assumption on the Reeb orbits of the contact manifold (Σ, α).

Assumption 7.13. Let T ∈ R and denote θt the Reeb-flow of Rα. Then the set of
closed T -periodic Reeb orbits RT ⊂ Σ is a closed submanifold with the rank of dα on RT

is locally constant and TpRT = ker(TpθT − Id) for all p ∈ RT .

This assumption is generically satisfied, meaning we may assume AF to be Morse-
Bott. See page 11 of [CF09] for more details.

Consider the metric gJ on LV × R given by

(7.5) g(x,η)((x̂1, η̂1), (x̂2, η̂2)) :=

∫ 1

0

ω(x̂1(t), Jt(x(t))x̂2(t)) dt+ η̂1η̂2

for (x, η) ∈ LV × R and (x̂1, η̂1), (x̂2, η̂2) ∈ T(x,η)(LV × R). The gradient of AF with
respect to this metric gives rise to the following PDE for the gradient flow lines. They
are maps (x, η) ∈ C∞(R× S1, V )× C∞(R,R) that solve

(7.6)


∂x

∂s
+ Jt(x)

(∂x
∂t
− ηXF (x)

)
= 0

∂η

∂s
+

∫ 1

0

H(x(t)) dt = 0

In the Floer case, to prove that the moduli spaces of flow lines were compact up to
breaking, we showed bounds on solutions u of the gradient flow equation. The same can
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be done here. Note that in the Floer case, we assumed our manifold to be compact. Here,
V is generally not compact, so we need to additional condition that V is convex to find
these bounds. Furthermore, we need bounds on derivatives of u. Here we use that V
is exact so that no bubbling occurs. However, we also need a bound on η ∈ R. This a
central Proposition in [CF09].

Proposition 7.14. There exists ε > 0 such that for every M > 0 there exists a
constant cM such that if

‖∇gAH(x, η)‖J ≤ ε

and

|AH(x, η)| ≤M,

then

|η| ≤ cM .

This is a Proposition that should be regarded as an analogue of Theorem 5.35 for η.
A direct consequence of this Proposition is that the L∞-norm of η is uniformely bounded.
This is Corollary 3.3 in [CF09].

We define the Rabinowitz-Floer homology as the Floer homology of AF in the follow-
ing way. Assume that AF is Morse-Bott and let h : Crit(AF ) → R be a Morse function.
Then let

CF(AF , h) =
⊕

c∈Crit(h)

ξcc

with coefficients ξc ∈ Z2 such that

#{c ∈ Crit(h) | ξc 6= 0,AF (c) ≤ κ} < +∞

for all κ ∈ R.

The boundary operator is defined using Jt. We require some conditions so that cas-
cades remain inside some compact subset of V . These are three conditions. We refer the
reader to page 17 of [CF09]. They are phrased in terms of the symplectically embedded
Σ× R+ which was possible as V is convex and of bounded topology.

Choosing a Riemannian metric gc on Crit(AF ) we can consider for c−, c+ ∈ Crit(h)
the moduli space of gradient flow lines with cascades running from c− to c+ denoted

Mc−,c+(AF , h, J, gc).

We refer the reader to Appendix A.2 for details. Here, the choice of J together with the
convexity at ∞ guarantees compactness up to breaking. By exactness of ω, no bubbling
will occur.
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For generic choices in J and gc, this is a smooth manifold with a compact 0-dimensional
component M0

c−,c+(AF , h, J, gc). Therefore, we can set

η(c−, c+) := #M0
c−,c+(AF , h, J, gc) mod 2.

Then we can define the boundary operator ∂ : CF(AH , h)→ CF(AH , h) by setting

∂c =
∑

c′∈Crit(h)

η(c, c′)c′.

By compactness modulo breaking, we have ∂2 = 0. Then define RFH∗(AF , h, J, gc) :=
H∗(CF(AF , h), ∂). One can prove that this homology is independent of the choice of
particular h, J and gc. Furthermore, HF(AF ) is independent of the particular choice of
H used to define it (for a hypersurface Σ). Hence we can speak of the Rabinowitz-Floer
homology

RFH(Σ, V )

.

Remark. In [CFO09], it is proven that the above definition can also be made by
considering the Floer homology of AF for AF (x, η) ∈ (a, b). Then one defines truncated
Rabinowitz-Floer homology groups

RFH(a,b)(Σ, V ) := HF(a,b)(AF ).

The full Rabinowitz-Floer homology is then defined by taking the limits

RFH∗(Σ, V ) := lim−→
b

lim←−
a

RFH(−a,b)
∗ (Σ, V ).

It is proven here that these two definitions coincide. The definition in this Remark is the
one used in [AM14]. We will discuss the results of this paper when discussing orderability.

7.3. The peturbed Rabinowitz-Floer action functional and leaf-wise fixed
points

We first discuss the definition of a leaf-wise fixed point in the general setting of a
coisotropic manifold inside a symplectic manifold. We then prove an existence theorem
for these leaf-wise fixed points using a perturbed version of Rabinowitz-Floer homology.

Let (M,ω) be a symplectic manifold and N ⊆ M be a submanifold. Recall that N
is called coisotropic if

(TxN)ω ⊆ TxN for all x ∈ N.
as in 2.7. We have an inclusion map

ιN : N →M.
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In this case (TN)ι
∗
Nω is a subbundle of TM of rank dimN − corank ι∗Nω. Note that

dι∗Nω = ι∗Ndω = 0, hence the distribution is involutive. By the Frobenius theorem,
this gives a foliation of N . We refer the reader to any standard book on differentiable
manifolds, for example [War00] Theorem 1.60. We call these integral manifolds the leaves
of the foliation and denote

Nω
x := {The isotropic leaf in N passing through x}.

Denote the collection of leaves by
Nω.

We define what it means for a point x ∈ N to be a leaf-wise fixed point.

Definition 7.15. Let (M,ω) be a symplectic manifold and N ⊆ M a coisotropic
submanifold. Let ϕ : M →M be a map. We call x ∈ N a leaf-wise fixed point for ϕ with
respect to N if and only if

ϕ(x) ∈ Nx.

We denote the set of all leaf-wise fixed points of ϕ with respect to N by

Fix(ϕ,N) := {x ∈ N | ϕ(x) ∈ Nx}.

In the case where (M,ω) is a symplectic manifold with some coisotropic submanifold
N ⊆M , we can define the minimal symplectic action

A(M,ω,N) := inf
({∫

D
u∗ω | u ∈ C∞(D,M),∃F ∈ Nω such that u(S1) ⊆ F

}
∩ (0,∞)

)
We will consider fixed points of Hamiltonian diffeomorphisms ϕ ∈ Hamc(M,ω), where

Hamc(M,ω) ⊂ Ham(M,ω) denotes the subgroup of compactly supported Hamiltonian
diffeomorphisms. On Ham(M,ω) a norm can be defined, called the Hofer norm. Recall
the set H(M,ω) which contains all H ∈ C∞([0, 1]×M,R) such that the Hamiltonian flow
ϕtH : M →M exists and is surjective for every t ∈ [0, 1].
Let ϕ ∈ Ham(M,ω). Define

‖H‖ :=

∫ 1

0

(
sup
M

H t − inf
M
H t
)
dt.

The Hofer norm of ϕ is given by

‖ϕ‖ω := inf{‖H‖ | H ∈ H(M,ω) with ϕ1
H = ϕ}.

We will prove the following theorem on the existence of leaf-wise fixed points, using
Rabinowitz-Floer homology.

Theorem 7.16. Let M be an exact symplectic manifold with symplectic form ω = dλ.
Suppose furthermore that M is convex at infinity and let Σ ⊂M be a closed hypersurface
of contact type, such that Σ bounds a compact region in M . Let ϕ ∈ Hamc(M,ω). If
‖ϕ‖ω < A(M,ω,Σ) then

Fix(ϕ,Σ) 6= ∅.
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This is a result by P. Albers and U. Frauenfelder from [AF]. In this paper, the above
theorem is Theorem A, except for some minor rephrasing. The proof relies on the analysis
of flow lines of the perturbed Rabinowitz action functional.

Note that a compact hypersurface Σ of contact type such that its Liouville vector field
is globally defined is said to be of restricted contact type. However, if ω is exact, every
connected hypersurface of contact type is of restricted contact type. All our symplectic
manifolds are exact, so the distinction is somewhat superfluous.

Remark. In [AF], the condition on ϕ ∈ Hamc(M,ω) reads ‖ϕ‖ω < ℘(Σ, α). Here
α = λ|Σ is the contact form (Σ is of contact type). Furthermore, ℘(Σ, α) > 0 is the
minimal period of a Reeb orbit of (Σ, α) that is contractible in M with the added condition
that if no contractible Reeb orbit exists we set ℘(Σ, α) = +∞.
We have A(M,ω,Σ) = ℘(Σ, α). To see this, note that by exactness of ω, we can apply
Stokes’ theorem. For a u ∈ C∞(D,M) such that u(S1) is on a leaf of the Reeb foliation,
we have ∫

D
u∗ω =

∫
S1

u∗α.

Because of the normalization α(Rα) = 1, this integral is precisely the period of the Reeb
orbit. Furthermore, if no contractible Reeb orbit exists, then also A(M,ω,N) = +∞ as
inf{∅} = +∞.

We recall the notion of convexity at infinity, which is Definition 7.8. In general,
the manifold M will not be compact. To ensure that the J-holomorphic curves used to
define the Rabinowitz-Floer homology stay inside compact sets, we need some regularity.
Therefore, we require M to be convex (at ∞). The conditions on Σ will give a bound on
the Lagrange multiplier η.

We now consider a perturbation of the Rabinowitz action functional we discussed in
Section 7.2 and see how it gives rise to leaf-wise fixed points.

The flow ϕtF preserves the hypersurface Σ = F−1(0). Hence, Σ is foliated by leaves

Lx := {ϕtF (x) | t ∈ R}
for x ∈ Σ.
The strategy to prove Theorem 7.16 is to choose F cleverly and peturb AF in a way such
that critical points of the peturbed functional give rise to leaf-wise fixed points. We begin
by describing the Hamiltonians we will use.

Definition 7.17. Let F,H : M × S1 → R be a pair of Hamiltonians. A pair (F,H)
is called a good pair if it satisfies

(i) F ( · , t) = 0 for all t ∈ [1
2
, 1]
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(ii) H( · , t) = 0 for all t ∈ [0, 1
2
].

(iii) F is of the form
F (x, t) = ρ(t)f(x)

where ρ : S1 → [0, 1] is a smooth map such that
∫ 1

0
ρ(t) dt = 1 and f : M → R.

The definition has many conditions, hence might seem restrictive. However, such
good pairs are abundant in the following sense.

Lemma 7.18. Suppose F̃ : M → R is an autonomous Hamiltonian and let H̃ :
M × S1 → R be arbitrary. then there exist F,H : M × S1 → R such that

• The pair (F,H) is a good pair.

• The Hamiltonian flows of (F,H) denoted (ϕtF , ϕ
t
H) are time reparametrizations

of the flows of ϕt
F̃
, ϕt

H̃
)

We define the perturbed Rabinowitz action functional. Recall that we assume our
manifold M to be exact (ω = dλ). Define the following.

Definition 7.19 (Peturbed Rabinowitz action functional). Let M be an exact sym-
plectic manifold and let (F,H) be good pair. The perturbed Rabinowitz action functional
is defined by

AFH : LM × R −→ R

(x, η) 7−→ −
∫ 1

0

x∗λ−
∫ 1

0

H(x, t) dt− η
∫ 1

0

F (x, t) dt.

We look at critical points of this functional. We have the following lemma.

Lemma 7.20. The critical points (x, η) ∈ LM × R of the action functional AFH are
the solutions of

(7.7)


ẋ(t) = ηXF (x, t) +XH(x, t) for all t ∈ S1∫ 1

0

F (x, t) dt = 0

Choosing a particular F will make sure that (x, η) satisfying equation (7.7) will give
rise to a leaf-wise fixed point. Let M be a exact symplectic manifold (ω = dλ) which is
convex at infinity and Σ a closed hypersurface such that (Σ, α = λ|Σ) is a contact manifold
and Σ bounds a compact region in M . In this case, Σ is of restricted contact type, and
is foliated by the leaves of the characteristic line bundle spanned by the Reeb vector field
of α. Hence, we can talk about leaf-wise fixed points in this setting. For x ∈ Σ, denote
Lx the leaf through x.
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To see that (Σ, α) is of constricted contact type, note the following. Define a vector
field Y by

ιY dλ = λ.

Then this vector field is a Liouville vector field for (Σ, α). We need to check that LY ω = ω
and Y t Σ. This follows directly from the Cartan formula. Note that λ(Y ) = dλ(Y, Y ) =
0. Hence

LY λ = dιY λ+ ιY dλ

= d0 + ιY dλ

= λ

using the definition of Y . Hence,

LY ω = LY dλ
= dLY λ
= dλ

= ω

To prove that Y t Σ, suppose conversely that Y ∈ TxΣ. This implies

dα(Y,R) = 0.

However,
dλ(Y,R) = λ(R) = α(R) = 1.

Therefore, Y t Σ.

We define an F such that the critical points of AFH will give rise to leaf-wise fixed
points, using the Liouville vector field Y .

The flow ϕtY is defined near Σ because of transversality. Reparametrize such that for
a fixed δ0 > 0, the flow ϕtY |Σ is defined for all |t| ≤ δ0. We can define

Ĝ : Σ→ R
by

Ĝ(ϕtY (x)) = t.

Let 0 < δ ≤ δ0 and set
Uδ := {x ∈M | |Ĝ(x)| < δ}.

Because Σ bounds a compact region, we can extend Ĝ to the whole of M to a function
G : M → R that is locally constant outside Uδ0 , coincides with Ĝ on U δ0

2

and G−1(0) = Σ.

These conditions imply that the Hamiltonian vector field XG satisfies XG|Σ = Rα,

the Reeb vector field. Fix some smooth function ρ : S1 → R with
∫ 1

0
ρ(t) dt = 1 and

supp(ρ) ⊂ (0, 1
2
). Let

F : S1 ×M → R
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defined by

(7.8) F (t, x) := ρ(t)G(x)

This F has Hamiltonian vector field

XF (t, x) = ρ(t)XG(x).

For the above F , the functional AFH has the following property.

Proposition 7.21. Let F : S1×M → R be as in equation (7.8). Let H : S1×M → R
be such that H(t, ·) = 0 for t ∈ [0, 1

2
] so that (F,H) is a good pair. Suppose (x, η) ∈

CritAFH . Then the point p = x(1
2
) satisfies ϕH(p) ∈ Lp, so it is a leaf-wise fixed point.

Proof. We use the conditions on F and H. Recall that F (t, x) = ρ(t)G(x). We
prove the following claim.

Claim 9. For t ∈ [0, 1
2
], we have x(t) ∈ Σ.

Proof. We use the chain rule and the fact that (x, η) ∈ CritAFH for the good pair
(F,H) to compute

d

dt
G(x(t)) = dG(x(t))

∂x

∂t
= dG(x(t))

(
XH(t, x) + ηXF (t, x)

)
We assumed H(t, ·) = 0 for all t ∈ [0, 1

2
]. Hence XH = 0 on this interval. Furthermore,

XF (t, x) = ρ(t)XG(x). Using the definition of the Hamiltonian vector field ιXGω = dG,
we have dG(XG) = 0. We conclude

d

dt
G(x(t)) = 0.

Therefore, G(x(t)) = c for some constant c. Hence∫ 1

0

ρ(t)G(x(t)) dt = c

∫ 1

0

ρ(t) dt = c.

However, using that F (t, x) = ρ(t)G(x(t)) and equation (7.7), we find c = 0. The
construction of G is such that G−1(0) = Σ, thus x(t) ∈ Σ for t ∈ [0, 1

2
]. This proves

Claim 9. �

We then proceed in two steps. Define p := x(1
2
). First, we show that x(1) ∈ Lp.

Then we show that x(1) = ϕH(p), which completes the proof of Proposition 7.21.

As above, for t ∈ [0, 1
2
], we have

ẋ(t) = ηρ(t)XG(x).

because F (t, ·) = 0. By construction of G, we have XG|Σ = Rα. Using Claim 9, we
know that x(t) ∈ Σ. As the foliation is generated by the Reeb vector field R, we have
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Σ

L
x(1

2)

x(1
2)

x(0) = x(1)

dx
dt = XH(x, t)

Figure 1. A critical point of AFH .

x(0) ∈ Lx( 1
2

). As x(0) = x(1), we have x(1) ∈ Lp.
For the second part, let t ∈ [1

2
, 1]. By construction, F (t, ·) = 0 on this interval. Using

equation (7.7), we find

ẋ(t) = XH(t, x).

Note that this is precisely what it means to be the flow of H, hence

x(1) = ϕH(x(
1

2
)) = ϕH(p).

This proves the second part.
We conclude that for p := x(1

2
), we have x(1) ∈ Lp and x(1) = ϕH(p), so ϕH(p) ∈ Lp. This

is the definition of a leaf-wise fixed point, hence this concludes the proof of Proposition
7.21. �

Figure 1 gives an illustration of the situation. For t ∈ [0, 1
2
], u runs along the Reeb

flow. For t ∈ [1
2
, 1] the path u flows along XH .

Thus we see that critical points of the peturbed Rabinowitz action functional give rise
to leaf-wise fixed points. To prove then the existence of these leaf-wise fixed points, we
need to establish some analytical properties of the perturbed Rabinowitz action functional.

We repeat the steps we took in order to define Floer homology. Our approach is
heuristic and some details are left out. For the functional AFH as defined above, we look
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at the gradient flow lines. Instead of a single H, we will now look at a parametrized family
Hs of Hamiltonians with the following properties.

• For s ≥ 1, Hs(t, x) = H+(t, x) for some fixed H+ : S1 ×M → R.

• For s ≤ −1, Hx(t, x) = H+(t, x) for some fixed H− : S1 ×M → R.

• Hs(t, ·) = 0

• Hs has compact support uniformly in s

We look at gradient flow lines of AFH . To define this, define the same metric we defined
in Section 7.2 which was remniscent of Definition 3.2.

Choose a family J(s, t) ∈ J (M,ω) of compatible almost complex structures, such
that J(s, t) = J+(t) and J(s, t) = J−(t) for s ≥ +1 and s ≤ −1 respectively. Similarly to
the definition of gJ , we define a metric by setting

g(s,t)( · , ·) := ω( · , J(s, t) ·).
Let (x, η) ∈ L×R, we define the L2-metric on T(x,η)(LM ×R) similarly to Definition 3.2.

gs : T(x,η)(LM × R)× T(x,η)(LM × R) −→ R
by setting for (ξ1, Y1), (ξ2, Y2) ∈ T(x,η)(LM × R)

(7.9) gs((ξ1, Y1), (ξ2, Y2)) :=

∫ 1

0

g(s,t)(ξ1, ξ2) dt+ Y1Y2

We can now define the gradient flow lines.

Definition 7.22. Let AFH be the peturbed Rabinowitz action functional. A gradient
flow line is a map u = (x, η) ∈ C∞(R,L × R) which satisfies

(7.10)
∂u

∂s
= −∇sAFH(u(s))

The gradient is taken with repect to the L2-metric gs.

Analogously to Floer homology, we switch view points. Instead of viewing x as a
map x : R → LM we view it as a map x : R × S1 → M . Then we can rewrite equation
(7.10) to read

(7.11)


∂x

∂s
(s, t) + J(s, t, x)(

∂x

∂t
(s, t)−XHs(t, x)− ηXF (t, x)) = 0

∂η

∂s
(s, t)−

∫ 1

0

F (t, x) dt = 0

We define the energy of a gradient flow line.



7.3. THE PETURBED RABINOWITZ-FLOER ACTION FUNCTIONAL AND LEAF-WISE FIXED POINTS93

Definition 7.23. Let u ∈ C∞(R,LM × R). The energy of u is defined as

E(u) :=

∫ ∞
−∞
‖∂u
∂s
‖

2

ds.

Like in the Floer theory that is the main theory of thesis, the energy of a gradient
flow line has a bound. In the Floer case, the energy was equal to the difference of the
action values of the two limits of the flow line. However, in this case there is an additional
term.

Lemma 7.24. Suppose u is a gradient flow line. Denote lims→±∞ u(s, ·) = u±( ·).
Then

E(u) ≤ AFH(u−)−AFH(u+) +

∫ ∞
−∞

∥∥∥∂Hs

∂s

∥∥∥
−
ds.

From this it follows that AFH(u(s0)) is bounded for any s0 ∈ R by

(7.12) |AFH(u(s0))| ≤ max{AFH−(u−),−AFH+
(u+)}+

∫ ∞
−∞

∥∥∥∂Hs

∂s

∥∥∥
−
ds

We study the convergence of sequences of gradient flow lines. In the Floer case, then
every reparametrization of a sequence of gradient flow lines has a C∞loc-convergent subse-
quence. This is also the case now. Let un = (xn, ηn) be a sequence of gradient flow lines.
We can find bounds on the ”loop parts” of (un) like in the Floer case. However, we also
need an L∞-bound on the ”multiplier-part” η-part,

The central point is to bound ‖η‖L∞(R) in some way. This is achieved by Proposition
2.10 in [AF].

Proposition 7.25. Given two critical points u−, u+ ∈ CritAFH then there exists a
constant K such that for every gradient flow line u = (x, η) with lim

s→±∞
u = u± we have

‖η‖L∞(R) ≤ K.

The proof of the lemma uses the following inequality that is the content of the Fun-
damental Lemma (1.23) in [AF10] and Lemma 2.11 in [AF]. It is the perturbed version
of Proposition 7.14. (TODO: CHANGE ALL THE SIGMAS HERE TO SOMETHING
ELSE SUPER UGLY)

Lemma 7.26. There exists a constant C > 0 such that for all (x, η) ∈ C∞(S1,M)×R
we have

(7.13) ‖∇sAFH(x, η)‖ < 1

C
=⇒ |η| ≤ C(AFH(x, η) + 1)

Let us prove Proposition 7.25 using Lemma 7.26.
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Proof. We have

E(w) ≤ AFH−(u−)−AFH+
(u+) +

∫ 1

0

∥∥∥∂Hs

∂s

∥∥∥ ds.
Fix C as in Lemma 7.26. Let σ ∈ R and define

(7.14) τ(Σ) := inf{τ ≥ 0 | ‖∇sAFH(u(σ + τ)‖ ≤ 1

C
}

We have that

‖∇sAFH(u(s))‖2 ≥ 1

C2
.

Therefore,

(7.15) E(u) ≥
∫ σ+τ(σ)

σ

‖∇sAFH(u(s))‖2 ≥ τ(σ)

C2

We now use that u is a gradient flow line, hence solves equation (7.11). The second line
implies that

(7.16)
∥∥∥∂η
∂s

∥∥∥
L∞
≤ ‖F‖L∞

Recall that F (t, x) = ρ(t)G(x). Here G was defined to be locally constant outside a
compact set. Therefore, dF = 0 outside some compact set. This implies ‖F‖L∞ is finite,

which means
∥∥∥∂η∂s∥∥∥ is finite.

We also have a bound on AFH(u(s)) for any s ∈ R given by equation (7.12), where we
integrate over Hs now in the last term. We write the following inequality to express |η(σ)|
in terms of an integral over ∂η

∂s

(7.17) |η(σ)| ≤ |η(σ + τ(σ))|+
∫ σ+τ(σ)

σ

∣∣∣∂η
∂s

∣∣∣ ds
By the definition of τ(s0) (equation 7.14) and Lemma 7.26, we have

|η(s0 + τ(s0))| ≤ C
(
|AFH(u(s0 + τ(s0)))|+ 1

)
.

By equation (7.12), we have

(7.18) |η(s0 + τ(s0))| ≤ C
(

max{AFH−(u−),−AFH+
(u+)}+

∫ 1

0

∥∥∥∂Hs

∂s

∥∥∥ ds+ 1
)

On the other hand, equation (7.16) implies∫ s0+τ(s0)

σ

∣∣∣∂η
∂s

∣∣∣ ds ≤ ‖F‖L∞τ(s0).

Using equation (7.15, we find

(7.19)

∫ s0+τ(s0)

σ

∣∣∣∂η
∂s

∣∣∣ ds ≤ C2‖F‖L∞E(u)



7.3. THE PETURBED RABINOWITZ-FLOER ACTION FUNCTIONAL AND LEAF-WISE FIXED POINTS95

Combining equations (7.18) and (7.19) implies

|η(s0)| ≤ C
(

max{AFH−(u−),−AFH+
(u+)}+

∫ 1

0

∥∥∥∂Hs

∂s

∥∥∥ ds+ 1
)

+ C2‖F‖L∞E(u).

This holds for any s0 ∈ R. Hence this inequality proves Proposition 7.25. �

We have the tools required to prove Theorem 7.16, the existence of leaf-wise fixed
points. We will need the following lemma. Recall the definition of a Morse-Bott function
in Definition A.14 in the Appendix A.2. Let A : E → R be a functional. We call
C ⊂ CritA a Morse-Bott component if A is Morse-Bott on this set.

Lemma 7.27. Let Σ be as in the hypothesis of Theorem 7.16. Then Σ ⊂ CritAFH is
a Morse-Bott component.

Proof. Let p ∈ Σ so that (p, 0) is a critical point. Then the Hessian of AF at (p, 0)
is well-defined. It is given by the vertical derivative. A computation like (FLOER CASE)
shows that the gradient of AF satisfies

(7.20) ∇sAF (v, η) =

(
Jt(v)

(
∂v
∂t
− ηXF (v)

)
∫ 1

0
F (v) dt

)
Then the requirement for a tangent vector (v̂, η̂) ∈ C∞(S1, TpM)× R to be in the kernel
of the Hessian is equivalent to saying it solves

(7.21)


∂v̂

∂t
= η̂XF (t, p)∫ 1

0

dF (t, p)v̂ dt = 0

Here we used that F (t, p) = ρ(t)G(p). We can integrate the first equation to find an

expression for v̂(1). Using that
∫ 1

0
ρ(t) dt = 1, we find

v̂(1) = v̂(0) + η̂XG(p).

As v̂ is a loop, we must have η̂ = 0, so v̂ = v̂0 ∈ TpM is a constant path. Then the second

equation, using that
∫ 1

0
ρ(t) dt = 1 again, implies dG(p)v̂0 As G−1(0) = Σ, we have

v̂0 ∈ TpΣ.
This proves Lemma 7.27. �

Proof of Theorem 7.16. Let H : S1 × M → R be as in the hypothesis of the
Theorem (ϕ = ϕH and ‖ϕ‖ω < A(M,ω,Σ). Choose a parametrized family of functions
βr ∈ C∞(R, [0, 1]) for r ≥ 0 satisfying the following conditions

(i) For r ≥ 1 we have

(7.22)

{
βr(s) = 1 for |s| ≤ r − 1

βr(s) = 0 for |s| ≥ r
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and β̇r(s) · s ≤ 0 for all s ∈ R

(ii) For r ≤ 1 we have

(7.23)

{
βr(s) ≤ r for all s ∈ R
βr(s) = 0 for all s ∈ (−∞,−1) ∪ (1,∞)

(iii) The functions defined by

β±∞(s) := lim
r→∞

βr(s∓ r)

exists as limits in the C∞-topology.

Define

(7.24) Kr(s, t, x) = βr(s)H(t, x)

r = 0 r = 1 r

s

s = 0βr(s) = 1βr(s) < r

βr(s) = 0

βr(s) = 0

β̇ r
(s

) <
0

˙β
r (s) >

0

Figure 2. The function βr(s) ∈ C∞(R, [0, 1]).

To see how βr(s) interpolates between the perturbed and unperturbed functional,
Figure 2 gives a schematic view of βr(s) as just defined.

Fix some p ∈ Σ. We consider the moduli space of solutions of equation (7.7) for
H = Kr that start at p and end somewhere in Σ. Concretely, consider
(7.25)

M(Σ, p) :=

{
(r, u) ∈ [0,∞)× C∞(R,L × R)

∣∣∣∣∣
u satisfies equation (7.11) with H = Kr

lim
s→−∞

u(s) = (p, 0)

lim
s→+∞

u(s) ∈ Σ

}
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To prove the theorem we need the following compactness result about M.

Claim 10. Suppose there is no leaf-wise fixed point. Then the moduli space M is
compact with ∂M = (0, p, 0).

Let us assume the Claim. The proof is now straightforward using the techniques
demonstrated before. The moduli space M is a zero section of a Fredholm section of a
Banach-bundle over a Banach manifold of index 1.

To see this, note that this the r-parameter interpolates between the unperturbed
functional at the r = 0 end, and the perturbed functional at the r = +∞ end. Consider
the unperturbed functional. In this case, the point (p, 0) is a critical point, hence the
Fredholm index is 0. The Fredholm index is invariant under perturbations, so that the
same is true for the perturbed functional. By introducing the r-parameter, we consider a
one-parameter familiy of functionals. This is then a problem of Fredholm index 1.

By the Morse-Bott condition, the section is regular at the boundary. Peturb the
section away from this boundary (0, p, 0) to a transverse section, so that M is a smooth
compact submanifold of the base space, with boundary (0, p, 0). However, such a manifold
cannot exist, therefore the assumption that there are no leaf-wise fixed points is false. This
proves Theorem 7.15. The more difficult part is proving Claim 10. We refer the reader to
page 10 of [AF], where several lemmas are used mentioned in the same paper. �

For the actual definition of the perturbed Rabinowitz-Floer homology, we proceed
as in Floer homology. Choose some s-independent H : S1 ×M → R with the additional
condition that H(t, ·) = 0 for t ∈ [0, 1

2
]. Assume that the peturbed Rabinowitz action

functional AFH from Definition 7.19 is Morse. For generic H with the above condition,
this is true. We refer the reader to Theorem 2.14 in [AF]. Note that this is easy for
any H but the vanishing of H for t ∈ [0, 1

2
] is a complicating factor. Furthermore, it

is interesting because the unperturbed Rabinowitz functional can never be Morse. The
proof is in Appendix A of [AF].

As we may assume AFH to be Morse, we do not have to work with the Morse-Bott
homology, as was the case for the unperturbed functional.
Define the chain complex. Let

Cκ := {α ∈ CritAFH(α) ≥ κ}.

(7.26) CRF (AFH) := {
∑

α∈CritAFH

ξαα | ξα ∈ Z2, |Cκ| <∞ for all κ ∈ R}

Then define the moduli space of solutions running between critical points modulo reparametriza-
tion in the s-variable.

(7.27) M̂(α−, α+) := {w : R× S1 →M | w solves (7.11) and lim
s→±∞

w = c±}/R
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In the Floer case we saw that we need transversality of the moduli spacesM(α−, α+). In
this case, this is more difficult. Abstract peturbation theory developed in the theory of
polyfolds by Hofer, Wysocki and Zehnder is required to prove transversality.

Let us for now assume that we have perturbed the gradient flow equation such that
the resulting manifolds, also denoted M(α−, α+) are smooth submanifolds of some Ba-
nach space. Like in Floer theory, denote η(α−, α+) the number of elements in the zero-
dimensional component of M(α−, α+) modulo Z2. Define the boundary map on the
generators

∂ : CRF (AFH)→ CFH(AFH)

by

α 7→
∑
β

η(α, β)β.

The following theorem gives an interesting result about leaf-wise fixed points in terms
of the Rabinowitz-Floer homology RFH∗(M,Σ).

Theorem 7.28. HF (AFH) ∼= RFH(M,Σ)

Proof. The proof reasons by just taking a homotopy from H to 0. Because of
compactness results (Theorem 2.9 in [AF]), the homology is independent of homotopies,
so that we have HF(AFH) ' HF(AF0 ). Note that RFH(M,Σ) = HF(AF0 ) to prove the
theorem. �

An immediate Corollary is the following. It gives a condition for the existence of leaf-
wise fixed points in terms of the vanishing of the Rabinowitz-Floer homology RFH(M,Σ).

Corollary 7.29. Suppose RFH(M,Σ) 6= 0. Then for any ϕ ∈ Hamc(M,ω) we have

Fix(ϕ,Σ) 6= ∅.

This Corollary is surprising as there is no assumption on ‖ϕ‖ω, contrary to many
other results. However, the condition that RFH∗(M,Σ) 6= 0 may be hard to verify.

7.4. Orderability

We will first explain the setting by defining a particular class of contact manifolds.
Then we define what is means for a general contact manifold to be orderable. After this
we discuss an orderability result.

We introduce a class of manifolds that, heuristically speaking, are symplectic man-
ifolds that have a contact manifold as their boundary. From the perspective of contact
manifolds, we fill out our contact manifold to form a symplectic manifold. This will be
the setting in which we consider orderability, as in [AM14].
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We first introduce a Liouville domain.

Definition 7.30. Let W be a compact manifold with boundary and λ ∈ Ω1(W ) such
that dλ is non-degenerate. We call the pair (W,λ) a Liouville domain if the unique vector
field Yλ defined by ιYλdλ = λ is transverse to ∂W pointing outwards.

Remark. First of all, as dλ is non-degenerate and closed, it is a symplectic form on
W , meaning (W,dλ) is symplectic. Furthermore, Yλ is a Liouville vector field as defined
in Definition 7.4. Note that the above definition is equivalent to saying that λ|∂W is a
positive contact form on ∂W , as ∂W is then a hypersurface transverse to Yλ. Hence, by
Lemma 7.5, ∂W is a contact manifold with contact form λ|∂W .

We can complete Liouville domains by attaching a cylindrical end to ∂W and ex-
tending the form λ appropriately. This is done by considering the Liouville vector field
Yλ and using that it is transverse to ∂W . Let ψt = ψtYλ denote the flow of Yλ. We can

define an embedding ∂W × (0, 1] ↪→ W by (x, r) 7→ ψlog r(x). Using this identification, we
can glue a cylindrical end to W .

Definition 7.31. Let (W,λ) be a Liouville domain. We define the completion of

(W̃ , ω̃) by setting

W̃ := W ∪∂W (∂W × [1,∞).

Associated to this is the form λ̃ ∈ Ω1(W̃ ) defined by

λ̃ =

{
λ|W on W ⊂ W̃

rλ|∂W on ∂W × [1,∞) ⊂ W̃

Then dλ̃ is a symplectic form on W̃ . The manifold (W̃ , dλ̃) is called a Liouville manifold.

Remark. We can also extend the vector field Yλ to W̃ by Yλ̃ = r ∂
∂r

on ∂W × [1,∞).

We can approach this construction from the other point of view by starting with
a closed connected coorientable contact manifold (Σ, ξ). We require that this contact
manifold plays the role of ∂W . That is, we say (Σ, α) is Liouville fillable if there exists a
Liouville domain (W,λ) such that ∂W = Σ and α := λΣ is a positive contact form on Σ.

The Liouville filling of (Σ, ξ) is then the completed Liouville manifold (W̃ , dλ̃).

A way to construct a symplectic manifold from a contact manifold is the symplecti-
zation.

Definition 7.32. Let (Σ, ξ) be a coorientable contact manifold with associated con-
tact form α. Then the symplectization of Σ is the sympletic manifold defined by

SΣ = Σ× (0,∞)

with symplectic form
ω := d(rα).
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This definition is somewhat reminiscent of the Liouville filling. Indeed, suppose (Σ, ξ)

is Liouville fillable, then we can embed SΣ into the Liouville filling (W̃ , ω̃), using the flow
of Yλ̃.

The last thing we discuss is how to lift contact isotopies ϕ : [0, 1] → Cont0(Σ, ξ) to
symplectic isotopies of SΣ.

Definition 7.33. Let {ϕt} ∈ Cont(Σ, ξ). Then there exists {Φt} ∈ Ham(SΣ, d(rα))
which we call the symplectization of ϕt. This is defined in the following way. Let ρt be
defined by ϕ∗tα = ρtϕt. Then

Φt : SΣ→ SΣ

is defined by
Φt(x, r) = (ϕt(x), rρt(x)−1).

One can prove that indeed the path Φt is Hamiltonian, generated by the Hamiltonian
function

H : S1 × SΣ→ R
given by

Ht(x, r) = rht(x)

where ht denotes the contact Hamiltonian associated to ϕt. See for example Proposition
2.3 in [AF11].

We define what it means for a contact manifold to be orderable. Recall that for any
set, there is the notion of a partial order.

Definition 7.34. Let S be a set. A partial order is a binary relation ≤ on S such
that the relation is reflexive, anti symmetric and transitive, i.e.

• a ≤ a.

• a ≤ b and b ≤ a implies a = b.

• a ≤ b and b ≤ c implies a ≤ c.

We begin by defining the notion of orderability in the sense of Eliashberg, described in
[EKP06]. Let (Σ, ξ) be a contact manifold and denote Cont0(Σ, ξ) the identity component

of the group of contactomorphisms. Let C̃ont0(Σ, ξ) be its universal cover equipped with
the quotient topology.

Definition 7.35. Let f̃ , g̃ ∈ C̃ont0(Σ, ξ). We say f̃ � g̃ if f̃ g̃−1 is represented by a
path generated by a non-negative contact Hamiltonian. We call a contact manifold (Σ, ξ)

orderable if the relation � on C̃ont0(Σ, ξ) defines a partial order.

Remark. Note that the definition of � immediatly implies that it is both reflexive
and transitive, hence it is the antisymmetry that is of particular importance.
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There is an equivalent definition of orderability that we will use. This is a rephrasing
of Proposition 1.9 in [EKP06].

Proposition 7.36. Let (Σ, ξ) be a closed contact manifold. Then (Σ, ξ) is orderable
if and only if there does not exist a loop ϕ : S1 → Cont0(Σ, ξ) with ϕ(0) = IdΣ, such that
ϕ is generated by a contact Hamiltonian Ht with Ht(x) ≥ 0 for all x ∈ Σ and t ∈ [0, 1].

A question in contact geometry is which manifolds are orderable. This question is
relevant in the search for a analogue of the Gromov non-squeezing theorem in contact
geometry. Recall that Gromov’s non-squeezing result states that the symplectic ball B2n

cannot be symplectically embedded into the symplectic cylinder C2n := B2×R2n−1. This
result is related to the geometry of the group of symplectomorphisms. Similary, there
is a correspondence between contact non-squeezing and the geometry of the group of
contacomorphisms. We refer the reader to the paper [EKP06]. This provides motivation
to answer the orderability problem. In a particular setting, this question can sometimes be
answered using Rabinowitz-Floer homology. The following result from the paper [AM14]
by P. Albers and W. J. Merry provides some answer to this question.

Theorem 7.37. Let (Σ, ξ) be a closed coorientable contact manifold that admits a

Liouville filling (W,λ) such that RFH∗(Σ,W ) is non-zero. Then C̃ont0(Σ, ξ) is orderable.

The proof results from the existence of a map for every Z ∈ RFH(Σ,W ) called c( · , Z)

that assigns to elements of C̃ont0(Σ, ξ) a number in such a way that c( · , Z) descends to

a map on C̃ont0(Σ, ξ) that is order reversing when one looks at the associated contact
Hamiltonians. The map c( · , Z) is described in the following Theorem 7.38 which is the
content of Theorem 1.1 in [AM14].

Recall that by P Cont0(Σ, ξ) we denote the space of paths ϕ : [0, 1] → Cont0(Σ, ξ)
such that phi0 = IdΣ. These are often called contact isotopies. Let θ denote the flow of
the Reeb vector field.

Proposition 7.38. Suppose (Σ, ξ) satisfies the hypothesis of Theorem 7.37. Then
for any non-zero class Z ∈ RFH∗(Σ,W ) there exists a map c( · , Z) : P Cont0(Σ, ξ) → R
satisfying the following properties.

(i) The map c( · , Z) descends to a well defined map

c̃( · , Z) : C̃ont0(Σ, ξ)→ R.

(ii) Let λ ∈ R. Then

c(t 7→ θλt, Z) = −λ+ c(IdΣ, Z).

(iii) The map c( · , Z) is continuous with respect to the C2-norm on P Cont0(Σ, ξ).
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(iv) Let ϕ, ψ ∈ P Cont0(Σ, ξ) be generated by contact Hamiltonians Ht and Gt respec-
tively, such that Ht(x) ≥ Kt(x) for all x ∈ Σ and all t ∈ [0, 1]. Then

c(ϕ,Z) ≤ c(ψ,Z).

Using Proposition 7.38 we can immediately prove Theorem 7.37.

Proof of Theorem 7.37. We use the equivalent definition of orderability from
Proposition 7.36. By contradiction, suppose (Σ, ξ) is not orderable. Then a loop ϕ
as in Proposition 7.36 exists, generated by a contact Hamiltonian Ht with Ht(x) ≥ ε for
all x ∈ Σ and t ∈ [0, 1] for some ε > 0. We first prove the following claim.

Claim 11. For the loop ϕ as described above, we have c(ϕ,Z) < c(IdΣ, Z).

Proof of Claim 11. Denote Kε the constant function with value ε. This function
generates the path κε : t 7→ θtε. Using Proposition 7.38 (iv) we have

c(ϕ,Z) ≤ c(κε, Z).

Then by Proposition 7.38 (ii) it follows that

c(κε, Z) = −ε+ c(IdΣ, Z).

As ε > 0 we conclude
c(ϕ,Z) < c(IdΣ, Z).

This proves Claim 11. �

We see that for ϕ, the conditions (ii) and (iv) of Proposition 7.38 imply that

c(ϕ,Z) < c(IdΣ, Z).

However, contractability of ϕ together with Proposition 7.38 (i) implies that

c(ϕ,Z) = c(IdΣ, Z).

This is a contradiction, proving Theorem 7.37. �

We still need to prove Proposition 7.38 which is much more involved. We need several
definitions. We first define the notion of a translated point of a contactomorphism. This
term was introduced in [San12] in a somewhat different context. We follow Definition 2.3
from [AM14]. We then define a functional whose critical points are translated points.

Definition 7.39. Let (Σ, ξ) be a closed connected coorientable contact manifold,
which associated contact form α ∈ Ω1(Σ) such that kerα = ξ. Let ϕ ∈ Cont0(Σ, ξ). Let
f : Σ→ R \ {0} be such that ϕ∗α = fα.
A translated point of ϕ is a point x ∈ Σ such that there exists η ∈ R such that

ϕ(x) = θη(x) and f(x) = 1.

The number η is called the time-shift.

Remark. Note that the above f : Σ→ R \ {0} exists and is unique by Remark 7.1



7.5. RABINOWITZ FLOER HOMOLOGY AND ORDERABILITY 103

We also have a notion of contractibility of translated points with respect to a Liouville

filling (W̃ , ω̃).

Definition 7.40. Let (Σ, ξ) be a closed contact manifold and (W̃ , dλ̃) is Liouville

filling, with α = λ|Σ. Let [ϕ] ∈ C̃ont0(Σ, ξ) where x is a translated point of ϕ(1) with
time-shift η. We call (x, η) contractible if and only if the loop γ : S1 → Σ defined by

(7.28) γ(t) =


ϕ2t(x) for 0 ≤ t ≤ 1

2

θ2η(1−t) for
1

2
≤ t ≤ 1

is contractible in W .

Remark. Note that this notion is independent of the particular representative of [ϕ]
chosen. That is, suppose γ is as above in equation (7.28). Choose another representative
ψ of [ϕ] and let γ′ be the associated loop as in equation (7.28). Then γ is contractible in
W if and only if γ′ is. This is immediate from the fact that ϕ is homotopic to ψ.

7.5. Rabinowitz Floer homology and orderability

We define the Rabinowitz Floer homology required to prove Theorem 7.37. We first
define the functional we use, and then prove that the critical points of this functional are
translated points.

Definition 7.41. Let ϕ ∈ Cont0(Σ, ξ). Define a functional on the loop space of the
symplectization

Aϕ : LSΣ× R −→ R
by

Aϕ(u, η) :=

∫ 1

0

u∗λ− η
∫ 1

0

β(t)(r(t)− 1) dt−
∫ 1

0

χ̇(t)Hχ(t)(u(t)) dt

Here β : S1 → R is a smooth function such that β(t) = 0 for all t ∈ [1
2
, 1] and

∫ 1

0
β(t) dt = 1.

χ : [0, 1]→ [0, 1] is a smooth function such that χ̇(t) ≥ 0, χ(1
2
) = 0 and χ(1) = 1.

By r(t) we denote the second component of the map u : S1 → SΣ, so that r : S1 → R.

Remark. Let us make a few remarks on the similarities between this definition and
the one of Definition 7.19 and 7.17.
Recall that the part involving η was a function F : M × [0, 1]→ R of the form F (x, t) =
ρ(t)f(x). In this case, this role is played by F0 := β(t)(r(t)−1). The role of ρ(t) is played

by β(t), with
∫ 1

0
β(t) dt = 1 whereas r(t) − 1 depends on u : S1 → SΣ. Furthermore,

F0( · , t) = 0 for all t ∈ [1
2
, 1] as β(0) = 0 on this interval.

For the part involving H, setting H0(u, t) = χ̇(t)Hχ(t)(u(t)) we see that indeed H0( · , t) = 0
for t ∈ [0, 1

2
] as in Definition 7.17. This is the case as χ(t) = 0 for t ∈ [0, 1

2
].
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In this case, the critical points turn out to be translated points of ϕ. We denote the
the critical values by

(7.29) Spec(ϕ) := Aϕ(Crit(Aϕ))

Again, two equations describe the critical points, reminiscent of equation (7.7).

Lemma 7.42. Let (u, η) ∈ LSΣ × R and write u = (x(t), r(t)). The critical points
(u, η) of the functional Aϕ are the solutions of

(7.30)


∂u

∂t
= ηβ(t)R((x(t)) + χ̇(t)XHχ(t)

(u(t))∫ 1

0

β(t)(r(t)− 1) dt = 0

Here R denotes the Reeb vector field on Σ.

Proof. The proof is very similar to that in the Floer case and in the peturbed
Rabinowitz Floer case. In the proof of Lemma 7.19 some details were provided. �

These critical points have the following interpetation, which is the content of Lemma
2.7 in [AM14].

Theorem 7.43. Let (u, η) ∈ LSΣ × R. Write u(t) = (x(t), r(t)) as above. Then
(u, η) is a critical point of Aϕ only if p := x(1

2
) is a translated point of ϕ with time-shift

−η. Conversely, given a translated point p of ϕ with time-shift −η, then the pair (p, η)
gives rise to a unique critical point of Aϕ.

Proof. The proof is similar to the one of Theorem 7.21. Recall that we denote by
θt the flow of the Reeb vector field. Denote Φt : SΣ → SΣ the lift of ϕ as described in
Definition 7.33. Suppose that (u, η) is a critical point, where we write u(t) = (x(t), r(t)).
Then u satisfies equation (7.30).
We first consider t ∈ [0, 1

2
]. Note χ(t) = 0 on this interval. Hence,

∂u

∂t
= ηβ(t)R(x(t)).

Note that the function r(t)− 1 is constant on flow lines of ηβ(t)R(x), meaning r(t)− 1 is
some constant c. The second line of equation (7.30) tells us that c = 0, meaning r(t) = 1.
Note that R|Σ×1 = Rα where Rα denotes the Reeb vector field on Σ. Therefore

(7.31) u(
1

2
) = (θη(x(0)), 1)

Consider t ∈ [1
2
, 1]. In this case, β(t) = 0. Hence,

∂u

∂t
= χ̇(t)XHχ(t)(u(t))

This implies that

u(t) = Φχ(t)(u(
1

2
))
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on this interval, as H was defined to be such that its Hamiltonian flow is precisely the
symplectization Φt : SΣ→ SΣ. In particular for t = 1 we have χ(1) = 1 so

x(1) = ϕ(x(
1

2
)).

Now note that

x(1) = x(0) = θ−η(x(
1

2
))

using equation (7.31) so that

ϕ(x(
1

2
)) = θ−η(x(

1

2
)).

Equation (7.31) also implies that ρ = 1, as this is the second component. We conclude
that x(1

2
) is a translated point with time shift −η. This completes the first part of the

proof.

Note that for λ we have the following

(7.32) λ(XH(x, r)) = dH(x, r)(r
∂

∂r
) = H(x, r)

Now β(t) = 0 for t ∈ [1
2
, 1]. On the other hand, χ̇(t) = 0 for t ∈ [0, 1

2
]. Therefore,

collecting non-zero terms for a critical point (u, η) yields

Aϕ(u, η) =

∫ 1
2

0

(rα)(ηβ(t)R(x(t))) dt+

∫ 1

1
2

λ(χ̇(t)XHχ(t)(u))− χ̇(t)Hχ(t)(u) dt

= η

Here, we used that equation (7.32) to conclude that λ(χ̇XHχ(t)(u)) = χ̇(t)Hχ(t)(u) as well

as
∫ 1

2

0
β(t) dt = 1. �

We have now defined the functional Aϕ on LSΣ× R. We use the embedding of SΣ

into W̃ to extend Aϕ to the whole of LW̃ × R. We do this by extending the functions
r(t)− 1 and H by truncating them. This is done in section 2.3 in [AM14].

We replace F0 by a function F : W̃ → R such that

F (x, r) := r − 1 on Σ× (
1

2
,∞)

F |W̃\SΣ := −3

4
and

∂F

∂r
(x, r) ≥ 0 for (x, r) ∈ SΣ.
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Next we truncate H. For κ > 0, let εκ ∈ C∞([0,∞), [0, 1]) be defined by

(7.33) εκ(r) :=

{
1 for r ∈ [e−κ, eκ]

0 for r ∈ [0, e−2κ] ∪ [eκ + 1,∞)

with the following decay behavior

0 ≤ ε′κ(r) ≤ 2e2κ for r ∈ [e−2κ, e2κ]

−2 ≤ ε′κ(r) ≤ 0 for r ∈ [eκ, eκ + 1]

Define Hκ
t : W̃ → R by setting

(7.34) Hκ
t :=

−
3

4
on W̃ \ SΣ

εκ(r)Ht(x, r) for (x, r) ∈ SΣ

Then define the Rabinowitz Floer action functional on LW̃ .

Definition 7.44. Define

Aκϕ : LW̃ × R→ R
by

Aκϕ(u, η) :=

∫ 1

0

u∗λ− η
∫ 1

0

β(t)F (u(t)) dt−
∫ 1

0

χ̇(t)Hκ
χ(t)(u(t)) dt

Definition 7.45. Let ϕ ∈ P Cont0(Σ, ξ). Define ρt : Σ → (0,∞) by ϕ∗tα = ρtα.
Define the constant κ(ϕ) by

(7.35) κ(ϕ) := max
t∈[0,1]

∣∣∣∫ t

0

max
x∈Σ

ρ̇τ (x)

ρτ (x)2
dτ
∣∣∣

The following lemma is necessary to define the Rabinowitz Floer homology RFH(a,b)
∗ (Aϕ,W )

for a, b ∈ [−∞,∞] \ Spec(ϕ). It should be viewed as a technical compactness result. We
will consider only flow lines with energy less than some constant depending on κ to guar-
antee compactness (i.e. we truncate the groups).

Lemma 7.46. Suppose κ > κ(ϕ). If (u, η) ∈ Crit(Aκϕ) then u(S1) ⊆ SΣ and for

u(t) = (x(t), r(t)) we have r(S1) ⊆ (e−
κ
2 , e

κ
2 ).

We can now define RFH(a,b)
∗ (Aϕ,W ) as the gradient flow lines when choosing a suit-

able almost complex structure. The following is a sketch of the precise definition.

As in the Floer case, we start by picking an almost complex structure. As the
manifold SΣ is non-compact, we need some regularity to ensure J-holomorphic curves
do not leave compact sets. This regularity is captured by the almost complex structure.
In [AM14], a stronger notion of convexity is used, where we demand ωf = ω outside
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a compact set. This means that when we consider the symplectic manifold (SΣ, d(rα))
then J is convex whenever there exists S0 > 0 such that

−d(dr ◦ Jt) = d(rα)

on Σ× [S0,∞). Here, f = r is our function.

Recall that we can embed SΣ ↪→ W . We denote Jconv(W ) the set of time-dependent
almost complex structures J = {Jt}t∈S1 such that J |SΣ ∈ Jconv(SΣ). Let J ∈ Jconv(W ).
Define the L2-inner product on LW × R as in equation (7.9). For (u, η) ∈ LW × R and
ξ, ξ′ ∈ Γ(u∗TW ) and Y, Y ′ ∈ R set

(7.36) 〈〈(ξ, Y ), (ξ′, Y ′〉〉J :=

∫ 1

0

dλ(Jtξ, ξ
′) dt+ Y Y ′

We are interested in the gradient of Aκϕ with respect to 〈〈 · , · 〉〉J . Let ϕ be non-
degenerate, κ > κ(ϕ) and J ∈ Jconv(W ). By assumptionAκϕ is Morse-Bott, not necessarily
Morse. Therefore, we define the Morse-Bott homology with cascades as in section A.2 in
the appendix, with several small modifications. Instead of counting flow lines, we count
flow lines with cascades. A short overview can be found in the appendix in A.2. This
approach was first used by U. Frauenfelder in [?]. In many interesting cases however, Aϕ
is Morse and we can take g ≡ 0, thus defining the normal Morse homology.

Choose a Morse function g : Crit(Aκϕ)→ R and a Riemannian metric ρ on Crit(Aκϕ)
such that the negative gradient flow of g with respect to ρ is Morse-Smale.
Let w−, w+ ∈ Crit(g) denote w± = (u±, η±). We are in the situation where we can define
the moduli space of gradient flow lines with cascades of the quadruple (Aκϕ, g, 〈〈 · 〉〉J , ρ),
which we denote

Mw−,w+(Aκϕ, g, J, ρ)

The grading on Crit(g) is the following.

(7.37) µ(u, η) :=


µCZ(u)− 1

2
dim(u,η) Crit(Aκϕ) + indg(u, η) for η > 0

µCZ(u)− 1

2 (u,η)
Crit(Aκϕ) + indg(u, η) for η < 0

1− n+ indg(u, η) for η = 0

Here, µCZ denotes the Conley-Zehnder index of the loop t 7→ u( t
η
) which was defined

in Chapter 4.The number dim(u,η) Crit(Aκϕ) the local dimension of Crit(Aκϕ) at (u, η).
Recall that if Aϕ is Morse-Bott then this number is defined as CritAϕ is a submanifold
of M . However, the dimension may vary in the components.

Let −∞ < a < b <∞ such that a, b /∈ Spec(ϕ) and define chain groups by

RFC(a,b)
∗ (Aκϕ, g) := Crit(a,b)

∗ (g)⊗ Z2
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where
Crit(a,b)

∗ (g) := {w ∈ Crit(g) | a < Aϕ < b}.
Note we need a, b /∈ Spec(ϕ), or this is not well defined because of the definition of Spec(ϕ)

in equation 7.29. The moduli spaces M̂(Aphi, g, J, ρ) are finite dimensional smooth man-
ifolds. As before, the zero dimensional components are compact. The boundary operator
is defined by counting the number of elements in these zero dimensional components.
From compactness and gluing arguments it follows that

∂2 = 0

hence we can look at the homology associated to this complex. This way, we define

RFH(a,b)
∗ (Aϕ,W ) := H∗(RFC(a,b)

∗ (Aϕ, g), ∂).

Then this homology is independent of the particular choices made.

Taking direct limits in a and b we define the following spaces.

Definition 7.47.

RFHb
∗(Aϕ,W ) := lim−→

a↓−∞
RFH(a,b)

∗ (Aϕ,W )

RFH(a,∞)
∗ (Aϕ,W ) := lim←−

b↑∞
RFH(a,b)

∗ (Aϕ,W )

RFH∗(Aϕ,W ) := lim−→
a↓−∞

lim←−
b↑∞

RFH(a,b)(Aϕ,W )

In the following part we list properties of the Rabinowitz-Floer homology groups.
This part is technical. We will just state the properties and then use them to prove
Theorem 7.37.

Proposition 7.48. The Rabinowitz Floer homology RFH(a,b)
∗ (Aϕ,W ) has the follow-

ing properties.

(i) There is a universal object RFH∗(Σ,W ) that comes with canonial isomorphisms

ζϕ : RFH∗(Σ,W )→ RFH∗(Aϕ,W ).

Let ϕ, ψ ∈ P Cont0(Σ, ξ). Then there is a map

ζϕ,ψ : RFH∗(Aϕ,W )→ RFH∗(Aψ,W )

such that
ζψ = ζϕ,ψ ◦ ζψ.

These maps define for every non-zero class Z ∈ RFH∗(Σ,W ) a particular non-
zero class Zϕ ∈ RFH∗(Aϕ,W ) by two conditions:

ZIdΣ
= Z ∈ RFH∗(Σ,W )

and
ζϕ,ψ(Zϕ) = Zψ.
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(ii) Let a ≤ b ≤ ∞. There exists a natural map

ja,bϕ : RFHa
∗(Aϕ,W )→ RFHb

∗(Aϕ,W )

and a natural map

pa,b∗ : RFHb
∗(Aϕ,W )→ RFH(a,b)

∗ (Aϕ,W ).

Furthermore, if Spec(ϕ) ∩ [a, b] = ∅ then ja,bϕ is an isomorphism and pa,bϕ is the
zero map.

(iii) There exist maps

ζaϕ,ψ : RFHa
∗(Aϕ,W )→ RFHa+K(ϕ,ψ)

∗ (Aψ,W )

for some constant K(ϕ, ψ) ≥ 0. Denote Ht and Kt the contact Hamiltonians
associated with ϕ and ψ respectively. Then K(ϕ, ψ) satisfies

(7.38) K(ϕ, ψ) ≤ emax(κ(ϕ),κ(ψ)) max(‖H −K‖+, 0)

Furthermore, for all Z ∈ RFHa
∗(Aϕ,W ) we have

ζϕ,ψ(jaϕ(Z)) = j
a+K(ϕ,ψ)
ψ (ζaϕ,ψ(Z))

(iv) Σ is contained in Crit(AIdΣ
) as a Morse-Bott component as the constants. Let

ε > 0 such that ε < ℘(Σ, ξ). Then there is a canonical isomorphism

RFH(−ε,ε)
∗ (Σ,W ) ' H∗+n−1(Σ,Z2).

Using the above proposition we can define the following.

Definition 7.49. Let Z ∈ RFH∗(Σ,W ) be a non-zero class and let ϕ ∈ P Cont0(Σ, ξ)
be non-degenerate. Define the spectral number

c̃(ϕ,Z) := inf{a ∈ R | Zϕ ∈ jaϕ(RFHa
∗ (Aϕ,W ))}

Note that this definition works for non-degenerate ϕ only. To extend c̃( · , Z) to the
whole of P Cont0(Σ, ξ) we make the following definition.

Definition 7.50. Let ϕ ∈ P Cont0(Σ, ξ) be a non-degenerate path. Let ϕk be a
sequence of non-degenerate paths such that ϕk → ϕ in C2. Let c̃( · , Z) be as above. We
set

c(ϕ,Z) = lim
k
c̃(ϕk, Z).

We prove that the map c( · , Z) has the required properties listed in Proposition 7.38.
We need the following Lemma which is part of Lemma 3.3 in [AM14].

Lemma 7.51. Let ϕ ∈ P Cont0(Σ, ξ). Then c(ϕ,Z) ∈ Spec(ϕ).

Proof of Proposition 7.38. We follow the order of properties stated in the propo-
sition. We prove (iv) first, then use it to prove (iii). The continuity statement in (iii) is
required to prove both (i) and (ii).
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(iv) Let ϕ, ψ ∈ P Cont0(Σ, ξ) be non-degenerate. Denote Ht and Kt the contact
Hamiltonians associated to ϕ and ψ respectively. We first prove the following
Claim which is a direct result of the properties listed in Proposition 7.48.

Claim 12. For two non-degenerate paths ϕ and ψ we have

c(ψ,Z) ≤ c(ϕ,Z) +K(ϕ, ψ).

Proof of Claim 7.5. Let a ∈ R be such that Zϕ ∈ jaϕ(RFHa
∗(Aϕ,W )).

Now note that Proposition 7.48 (i) says that

Zψ = ζϕ,ψ(Zϕ).

Furthermore, Proposition 7.48 (iii) says that

ζϕ,ψ ◦ jaϕ = j
a+K(ϕ,ψ)
ψ (ζaϕ,ψ(Z)).

From this it is immediate that

Zψ ∈ ja+K(ϕ,ψ)
ψ (RFHa+K(ψ,ϕ)

∗ (Aψ,W )).

Therefore, it follows that c(ψ,Z) ≤ c(ψ,Z) + K(ϕ, ψ) as required, as this still
holds for the infimum. This proves Claim 7.5. �

We now combine the inequality of Claim 7.5 with equation (7.38) in Proposition
7.48 (iii) which yields

(7.39) c(ψ,Z) ≤ c(ϕ,Z) + emax(κ(ϕ),κψ) max(‖Ht −Kt‖+, 0)

Suppose now that Ht(x) ≤ Kt(x) for all x ∈ Σ and all t ∈ [0, 1]. Then

c(ψ,Z) ≤ c(ϕ,Z)

is immediate. The inequality is still satisfied when taking the limits to extend
c( · , Z) to the whole of P Cont0(Σ, ξ). This proves property (iv).

(iii) Note that if ϕk → ϕ in C2, then also κ(ϕk) → κ(ϕ) by the definition of κ(ϕ) in
equation (7.35) as the integral. Denote Hk the contact Hamiltonian associated
to ϕk and H the contact Hamiltonian associated to ϕ. Then by C2 convergence
of ϕk and the definition of Hk as

Hk ◦ ϕtk := α(
d

dt
ϕtk)

we have that ‖H−Hk‖+ → 0. Then from equation (7.39) it follows that c(ϕk, Z)
converges. Hence when P Cont0(Σ, ξ) is equipped with the C2-topology, the
function c( · , Z) is continuous. This proves property (iii).

(i) The first property relies on a property of Spec(ϕ). We use Lemma 3.8 from
[Sch93] by M. Schwarz.

Lemma 7.52. The set Spec(ϕ) ⊂ R is residual, meaning that it is nowhere dense
and depends only on ϕ1.
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By property (iii) we know c( · , Z) is continuous. Furthermore, we know that
c(ϕ,Z) ∈ Spec(ϕ1) for all ϕ ∈ P Cont0(Σ, ξ). Suppose ϕ ∼ ψ via a homotopy
H with fixed endpoints. Then c(Ht, Z) takes values in the nowhere dense set
Spec(ϕ1), hence is constant. In particular c(ϕ,Z) = c(ψ,Z). This proves prop-
erty (i).

(ii) For this property, note that Spec(θλ) = −λ+ Spec(IdΣ). Again by Lemma 7.52,
Spec(IdΣ) is nowhere dense and by property (iii) the map c( · , Z) is continuous.
As above, this implies

c(t 7→ θλt, Z) = −λ+ c(IdΣ, Z).

This proves property (ii).

We see that c( · , Z) satisfies all properties listed in Proposition 7.38. Hence this concludes
the proof of Proposition 7.38. �





APPENDIX A

Collection of auxillary results

Also, Hamiltonian diffeomorphisms actually preserve the symplectic form. That is,
if we define the symplectic group

Symp(M,ω) = {ψ ∈ C∞(M,M) | ψ∗ω = ω}

of diffeomorphisms the preserve the symplectic form, then

Ham(M,ω) ⊂ Symp(M,ω).

This is easily checked by the following computation

Let ϕ ∈ Ham(M,ω), which is generated by some H : M → R. Then

d

dt
(ϕtH)∗ω = ϕtH

∗
(LXHω)

= ϕtH
∗
(dιXHω + ιXHdω)

= ϕtH
∗
(ddH)

= 0

Here we used the Cartan formula, the definition of XH and the fact that ω is closed.
Now note ϕ0

H = IdM so that (ϕ0
H)∗ω = ω, so the same holds for ϕ = ϕ1

H by the above
calculation, so ϕ ∈ Symp(M,ω).

A.1. Morse theory

We provide a short overview of Morse theory. This is used in Chapter 6. Because
many concepts in Morse theory are similar to those in Floer theory, a brief overview will
suffice. We inform the reader that Morse theory may be approached in two different way.
The classical way is as in Milnor’s standard text [Mil63]. A more modern viewpoint,
similar to how we treated Floer homology (involving Fredholm theory) can be found in
[Sch93]. We will mostly follow the classical approach as this is more accessible. We base
this approach on [Nic07].

In this section, let (M,ω) be a symplectic manifold. Let J ∈ J (M,ω) with gJ =
ω( · , J ·) the associated metric.

113
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Let f : M → R be a smooth function. A point x ∈ M is a critical point if for
df(x) : TxM → R we have df(x) = 0 (when viewed as an element of T ∗xM). At a critical
point x, we can construct a bilinear form which is known as the Hessian of f at x. We
need Lemma 1.6 from [Nic07].

Lemma A.1. Let f ∈ C∞(M,R) and x ∈ Crit(f). Let X,X ′, Y, Y ′ ∈ Γ(M,TM) be
smooth vector fields on M such that X(x) = X ′(x) and Y (x) = Y ′(x). Denote X(f) =
df(X). Then

X(Y (f))(x) = X ′(Y ′(f))(x) = Y (X(f))(x).

This is a small computation that depends on the fact that x ∈ Crit(f). Using the
lemma, we define the Hessian of f at x.

Definition A.2. Let x ∈ Crit(f). Then define

Hessf (x) : TxM × TxM → R

by

Hessf (x)(v, w) := X(Y (f))(x)

where X, Y ∈ Γ(M,TM) such that X(x) = v and Y (x) = w.

Remark. In local coordinates the Hessian is probably familiar to the reader. Let
(x1, . . . , xn) be local coordinates around x with xi(x) = 0. Then Hessf (x) is a matrix
which has as its i, jth entry the function

∂2f

∂xi∂xj

∣∣∣
x
.

Let us rephrase to avoid confusion. In local coordinates, X =
∑

iX
i ∂
∂xi

. Then the Hessian
of f at x is given by

Hessf (x) :=
∑
i,j

hijX
iY j

with

hij :=
∂2f

∂xi∂xj
(x).

By Lemma A.1 this Definition does not depend on the choice of X and Y . Further-
more, the map Hessf (x) is bilinear and symmetric also by Lemma A.1. We define what
it means for x ∈ Crit(f) to be non-degenerate, in terms of this Hessian.

Definition A.3. Let f ∈ C∞(M,R) and x ∈ Crit(f). Then x is called non-
degenerate if and only if Hessf (x) is non-degenerate. A function f ∈ C∞(M,R) is called
Morse if all x ∈ Crit(f) are non-degenerate.

Remark. Recall that a bilinear form b : V ×V → R is non-degenerate if b(v, w) = 0
for all w ∈ V if and only if v = 0. In the case of local coordinates, a critical point is
non-degenerate whenever its Hessian matrix is such that det(hij) 6= 0.
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Recall that for a general bilinear form, we have the notion of an index. Let V be a
finite-dimensional vector space and b : V ×V → R be a bilinear symmetric non-degenerate
form. Then there exists a basis (e1, . . . , en) of V such that for v =

∑
i v

iei we have

b(v, v) = −|v1|2 − . . .− |vλ|2 + |vλ+1|2 + . . . |vn|2.
Then the number λ does not depend on the choice of basis. We define

ind(b) = λ.

We extend this to the Hessian.

Definition A.4. Let f ∈ C∞(M,R) be a Morse function and x ∈ Crit(f). Then we
define the Morse index of x to be

indf (x) := ind(Hessf (x)).

The beauty of Morse functions is that around a critical point, there exists coordinates
such that they look like a quadratic polynomial. This is the famous Morse lemma, which
is Corollary 1.17 in [?].

Lemma A.5. Let f ∈ C∞(M,R) be Morse with x ∈ Crit(f) such that indf (x) = λ.
Then there exists coordinates (x1, . . . , xn) centered at x such that

f = f(x)−
λ∑
i=1

x2
i +

n∑
j=λ+1

x2
j .

These local coordinates give a chart (U,ϕ) of some open set around x and a diffeo-
morphism ϕ : U → Rn. A chart such that the Morse lemma holds is known as a Morse
chart.

The goal of this section is to define the Morse homology. This homology is generated
by the critical points of a Morse function, and the boundary operator counts the number
of flow lines associated to a particular vector field running between critical points. In
the Floer case, we needed some conditions to make sure that the gradient of the action
functional connects critical points and to ensure that ∂2

J = 0. For Morse homology, we
want similar results; we want flows that connect critical points and we want the boundary
operator to be well-defined. We discuss the conditions on our vector field.

Definition A.6. Let f ∈ C∞(M,R) be a Morse function. We say a X ∈ Γ(M,TM)
is a gradient-like vector field with respect to f if

(i) We have df(x)X < 0 for all x ∈M \ Crit(f).

(ii) For every p ∈ Crit(f), there is a Morse chart centered at p such that

X = −2
λ∑
i=1

xi
∂

∂xi
+ 2

n∑
j=λ+1

xj
∂

∂xj
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for λ = indf (p).

Philosophically, in a Morse chart X looks like the standard gradient on Rn. The num-
ber of dimensions flowing down from a critical point is then precisely its index. These
gradient-like vector fields always exists. This follows from partition on unity (we assume
our manifolds to be paracompact). We refer the reader to [AD14] 2.1.c. In particular
we can pick a Riemannian metric g such that the gradient ∇f of f with respect to g is a
gradient-like vector field.

These gradient-like vector fields have the following useful property we wanted.

Proposition A.7. Let M be a compact manifold and let γ : R→M be the trajectory
of a gradient-like vector field X. Then there exist x−, x+ ∈ Crit(f) such that

lim
x→±

γ(s) = x±.

We can observe the space formed by everything flowing away from a critical point by
a gradient-like vector field and likewise for flowing towards. We make this precise.

Definition A.8. Let f ∈ C∞(M,R) be Morse and x ∈ Crit(f). Denote ϕs the flow
of a gradient-like vector field X. Define the stable manifold

(A.1) W s(x) :=
{
p ∈M | lim

s→+∞
ϕs(p) = x

}
and the unstable manifold

(A.2) W u(x) :=
{
p ∈M | lim

s→−∞
ϕs(p) = x

}
As the name suggests, these spaces are indeed submanifolds of M . They are diffeo-

morphic to open disks with the property that

dimW u(x) = codimW s(x) = indf (x).

See Proposition 2.1.5 in [AD14].

We want the moduli space of solutions running between critical points to be a mani-
fold of the right dimension. Therefore, we require an additional condition on the gradient-
like vector fied X.

Definition A.9. Let f ∈ C∞(M,R) be Morse and X a gradient-like vector field.
Then we say the pair (f,X) satisfies the Smale condition if for all x, y ∈ Crit(f) we have

W u(x) t W s(b).

Note that this implies that for any two x, y ∈ Crit(f), we have

dim(W u(x) ∩W s(y)) = indf (x)− indf (y).

Remark. Such gradient-like vector fields satisfying the Smale condition are still
generic. Roughly speaking, for any gradient likeX there exists a gradient-likeX ′ satisfying
the Smale condition close to X. See Theorem 2.2.5 in [AD14].
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We can then consider the space of trajectories running from x− to x+ for a pair (f,X)
where f ∈ C∞(M,R) is Morse and X is gradient-like satisfying the Smale condition.
Define

M(x−, x+; f,X) := {x ∈M | x ∈ W u(x−) ∩W s(x+)}.
Like in the Floer case, there is an action of R on M(x−, x+). Let x ∈ M(x−, x+) and
s ∈ R. Denote ϕtX the flow of X. Then s · x = ϕsX(x) is an action. Consider the quotient
manifold

M̂(x−, x+; f,X) := M̂(x−, x+; f,X)/R.
This is a manifold of dimension indf (x

−)− indf (x
+)− 1.

We can now define the Morse complex and Morse homology. Let M be a compact
manifold, f ∈ C∞(M,R) a Morse funtion and X a gradient-like vector field satisfying the
Smale condition.

Definition A.10. The Morse chains are the vector spaces

CMk(f) :=
⊕

x∈Crit(f)
indf (x)=k

〈x〉Z2.

The chains are given like in Floer homology by counting the number of trajectories
between the critical points.

Definition A.11. Define ∂X : CMk(f)→ CMk−1(f) by

∂X(x) :=
∑

y∈Crit(f)
indf (y)=k−1

η(x, y)y

with η(x, y) = #M̂(x, y) mod 2.

We need compactness results for the spaces M̂(x, y) in order to prove that η(x, y) is
well-defined and that ∂2

X = 0. We state these as Theorems here and refer the reader to
[AD14].

The first theorem implies that η(x, y) is well-defined and is Corollary 3.2.4 in [AD14].

Theorem A.12. Suppose x, y ∈ Crit(f) such that indf (x) = indf (y) + 1. Then

M̂(x, y) is a compact 0-dimensional manifold, hence a finite set.

The following theorem implies that ∂2
X = 0 and is Theorem 3.2.7 in [AD14].

Theorem A.13. Let x, z ∈ Crit(f) such that indf (x) = indf (z) + 2. Then

M(x, z) := M̂(x, z)
⋃

y∈Crit(f)
indf (y)=indf (x)−1

M̂(x, y)× M̂(y, z)
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is a compact 1-dimensional manifold with boundary

∂M(x, z) =
⋃

y∈Crit(f)
indf (y)=indf (x)−1

M̂(x, y)× M̂(y, z).

Then the Morse homology of M for the pair (f,X) is given by

HM∗(M ; f,X) := H∗(CM∗(f), ∂X).

The homology thus defined depends on the choice of Morse function f and a gradient-
like vector field X satisfying the Smale condition. However, it can be proven that the
homology obtained is independent of the choice of (f,X). This is proven in Section 3.4
in [AD14].

For a particular manifold M , the pair (f,X) can be used to define a cellular de-
composition of M . In this way, the Morse homology and the cellular homology coincide.
Thus, the Morse homology of M is isomorphic to the integral homology of M . This is
what we exploit in Chapter 6 to prove the Arnold conjecture. For a proof, we refer the
reader to [AD14] Section 4.9.

A.2. Morse-Bott theory

Morse-Bott homology is defined as the homology associated to a chain complex gen-
erated by the critical points of a Morse-Bott function. The boundary operator is defined
by counting gradient flow lines with cascades. This theory is required to define the Ra-
binowitz Floer homology RFH∗(Σ,W ) of a hypersurface of contact type Σ in a Liouville
manifold W , as the functional Aϕ is not Morse in general but still Morse-Bott.

Remark. There are many ways to compute the homology of a smooth closed mani-
fold using Morse-Bott functions. See the paper [?] by D.E. Hurtubise for an outline. The
approach using cascades is what we explain in this section. Another path is provided by
peturbing the Morse-Bott function to a Morse function. A additional ways are using a
multicomplex, or using spectral sequences. We choose the cascade approach as this is the
one used in [AM14] and [AF]. Flow lines with cascades where first introduced by U.
Frauenfelder (one of the authors of [AF]) in his PhD thesis [?]. We follow the exposition
in Appendix A of [Fra08].

We begin by defining a Morse-Bott function.

Definition A.14. Let (M, g) be a Riemannian manifold. A function f ∈ C∞(M,R)
is called Morse-Bott if the following conditions are satisfied.

(i) Crit(f) is a submanifold of M
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(ii) For each x ∈ Crit(f) we have Tx Crit(f) = ker(Hess(f)(x)).

The Morse-Bott condition implies the Morse condition of Definition ??. Conversely,
denote Cx the connected component of Crit(f) containing x. Then a Morse function such
that Cx = {x} for all x ∈ Crit(f) is a Morse-Bott function. We demonstrate a simple
example of a Morse-Bott function and a function that is not Morse-Bott.

Example A.15. Let f, g : Rn → R be the functions f(x1, . . . , xn) = x2
1 and g(x1, . . . , xn) =

x3
1. Then f is Morse-Bott whereas g is not. For f , the critical manifold Crit(f) is the

hyperplane x1 = 0. The condition Tx Crit(f) = ker(Hess(f)(x)) is also satisfied for any
x ∈ Crit(f). For g, the critical manifold Crit(g) is also the hyperplane x1 = 0. However,
the condition Tx Crit(g) = ker(Hess(g)(x)) is not satisfied.

Morse-Bott functions have the property that their gradient flow lines are bounded
and run between critical points (provided that M is compact). This is made precise in
the following theorem.

Theorem A.16. Let (M, g) be a compact Riemannian manifold and f : M → R
a Morse-Bott function. Suppose u : R → M is a negative gradient flow line, that is, a
solution of

u̇(t) = −∇f(u(t)).

Then there exist x± ∈ Crit(f) and constants δ > 0 and K > 0 such that

lim
s→±∞

u(s) = x±

and ∣∣∣∂u
∂t

(t)
∣∣∣ ≤ Ke−δt.

Proof. This is a standard result in Morse-Bott theory. See for example Theorem
A.3 in [Fra08]. �

We define flow lines with cascades. In the following, let (M, g) be a compact Rie-
mannian manifold and f : M → R a Morse-Bott function. Fix a Riemannian metric on
(the submanifold) Crit(f) and a Morse function h : Crit(f)→ R such that h satisfies the
Morse-Smale condition from Definition ??.
We look at critical points of h and define a grading on them. Let x ∈ Crit(h). Then
the Morse index indh(x) as in Definition ?? makes sense, as h is Morse. Furthermore,
the index as defined in Definition ?? still makes sense for x ∈ Crit(f) as the number of
strictly negative eigenvalues of dV (df)(x). We define the Morse-Bott index as follows.

Definition A.17. Let f : M → R be a Morse-Bott function and h : Crit(f)→ R a
Morse function. Let p ∈ Crit(h). We define the Morse-Bott index of p to be

ind(p) = indf,h(x) := indf (x) + indh(x).
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We are now ready to define flow lines with cascades. The idea is to flow between
critical points of h, flowing along negative gradient lines of h with respect to ρ when in
Crit(f) and flowing between components of Crit(f) via the negative gradient flow lines of
f with respect to g. The following definition makes this idea precise. Recall the definition
of the stable and unstable manifolds of a Morse function at a critical point in equations
(A.1) and (A.2).

Definition A.18. Let p, p′ ∈ Crit(h) and m ∈ N. A flow line from p to p′ with m
cascades consists of a collection of maps and a collection of times

((xk)1≤k≤m, (tk)1≤k≤m−1)

where xk ∈ C∞(R,M) and tk ∈ R≥0 such that the following holds.

(i) The maps xk ∈ C∞(R,M) are non-constant negative gradient flow lines of f with
respect to g. They solve

∂xk
∂s

= −∇gf(xk).

(ii) There exist points a ∈ W u
h (p) and b ∈ W s

h(p′) such that

lim
s→−∞

x1(s) = a, lim
s→∞

xm(s) = b.

(iii) For 1 ≤ k ≤ m− 1 there exist negative gradient flow lines of h with respect to ρ.
That is, maps uk ∈ C∞(R,Crit(f)) which solve

∂uk
∂s

= −∇ρh(uk)

such that

lim
s→∞

xk(s) = uk(0), lim
s→−∞

xk+1(s) = uk(tk).

The above definition of a flow line with cascades is visualized in Figure 1 for the case
m = 2 for two critical points p, p′ ∈ Crit(h).
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W u
h (p)

W s
h(p′)

p

p′

a

b

ẋ1 = −∇gf (x1) x1

ẋ2 = −∇gf (x2)x2

u1 u̇1 = −∇ρh(u1)

u1(0) u1(t1)

Figure 1. A gradient flow line from p to p′ with two cascades

Here, the blue boxes are the submanifold Crit(f). From p the gradient flow of h meets
a negative asymptotic end a of the gradient flow line x1 of f . The positive asymptotic
end of x1 converges to some point in Crit(f). This is the first cascade. From this point,
we flow via the gradient flow of h on Crit(f) , which we call u1 until we encounter some
other negative asymptotic end of a gradient flow line x2 of f after some time t1. Figure
1 depicts the situation with two cascades.

We look at the moduli space of flow lines with m cascades running from p to p′

denoted

Mm(p, p′).

We quotient out reparametrization. Note that there is a reparametrization action of R on
gradient flow lines of h connecting two critical points on the same level (i.e. flow lines in
M0(p, p′)) and an action of Rm onMm(p, p′) by shifting time in each cascade. We denote
the quotient by these actions by

Mm(p, p′).

The space of all flow lines with cascades running from p to p′ we denote

M(p, p′) :=
⋃
m∈N

Mm(p, p′).

One may wonder whether the above picture is accurate. The following lemma states
that cascades can only ”run down”.
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Lemma A.19. Suppose f(p) < f(p′) then M(p, p′) = ∅. If f(p) = f(p′) then

M̂(p, p′) = M̂0(p, p′). If f(p) > f(p′) then M̂(p, p′) \ M̂0(p, p′) = M̂(p, p′).

To consider homology, we need to take care of compactness. Like previous spaces of
trajectories, there is a concept of broken flow lines with cascades.

The important result that follows from this is the following.

Theorem A.20. Let p, p′ ∈ Crit(h). Then for a generic choice of Riemannian metric

g on M , the space M̂(p, p′) is a smooth finite dimensional manifold of dimension

dimM̂(p, p′) = ind(p)− ind(p′)− 1.

Furthermore, whenever ind(p) − ind(p′) = 1, the manifold M̂(p, p′) is a compact zero
dimensional manifold, hence a finite set.

The proof is similar to the Floer case we consider in the main part of the thesis. We
define a suitable Banach bundle E → B with a section F : B → E . Then prove that the
vertical derivative of this section is a Fredholm operator of a suitable index. The proof is
somewhat complicated because one needs to keep track of the m cascades. We refer the
reader to the proof of Theorem A.11 in [Fra08].

We can now define the Morse-Bott homology. This is section A.3 in [Fra08]. Consider
a pair (f, h) of a Morse-Bott function f : M → R and a Morse function h : Crit(f)→ R.
Define a chain complex

(A.3) CMBk(M ; f, h) :=
⊕

c∈Crit(h)
ind(c)=k

Z2〈c〉

Similarly to the Floer case, we define a boundary operator. Suppose ind(p)− ind(p′) = 1.
Set

η(p, p′) := #M̂(p, p′) mod 2.

This is a finite number, as Theorem A.20 asserts that M̂(p, p′) is a smooth compact
manifold of dimension 0. Define the boundary operator

∂k : CMBk(M ; f, h)→ CMBk−1(M ; f, h)

by setting

∂kp =
∑

ind(p′)=k−1

η(p, p′)p′

on the generators p ∈ Crit(h) with ind(p) = k and linearly extending. Analogous to the
Floer case, compactness and gluing implies that

∂2 = 0

so that we can define homology groups

HMBk(M ; f, h, g, ρ) := Hk(CMB(M ; f, h), ∂)
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It is important that this definition does not depend on the choices made. In this case,
the choice of (f, h) and the associated metrics g on M and ρ on Crit(f). This is indeed
the case. The following theorem is Theorem A.17 in [Fra08].

Theorem A.21. Let (fα, hα, gα, ρα) and (fβ, hβ, gβ, ρβ) be two regular quadrupels.
Then HMB∗(M ; fα, hα, gα, ρα) and HMB∗(M ; fβ, hβ, gβ, ρβ) are naturally isomorphic.

This gives rise to the Morse-Bott homology of M by setting

HMB∗(M) := HMB(M ; f, h, g, ρ)

for a regular quadruple (f, h, g, ρ). Note that in the case that f is actually Morse, we can
take h = 0 throughout this entire construction. This immediatly implies that HMB∗(M)
is isomorphic to HM∗(M).

A.3. The Chern Class

In this section we establish the existence of the first Chern class c1, which associates
to a bundle π : E → B an element of H2(B;Z). If B is 2-dimensional, the Chern class
is determined by the first Chern number. We first state the axiomatic definition of the
first Chern class and then provide a theorem that is relevant to choosing a symplectic
trivialization of the bundle x∗TM for x ∈ P(H).

Definition A.22 (The first Chern number). There exists a unique functor c1, the
first Chern number, that assigns to every symplectic vector bundle π : E → Σ over a
closed Riemann surface an integer c1(E) ∈ Z satisfying the following conditions

(naturality) Two symplectic vector bundles E and E ′ over Σ are isomorphic if and only if
they have the same dimension and the same Chern number.

(functoriality) For any smooth map ϕ : Σ′ → Σ of oriented Riemann surfaces and any symplectic
vector bundle E → Σ, we have

c1(ϕ∗E) = deg(ϕ)c1(E).

(additivity) For any two symplectic vector bundles E1 → Σ and E2 → Σ, we have

c1(E1 ⊕ E2) = c1(E1) + c1(E2).

(normalization) The Chern number of TΣ is

c1(TΣ) = 2− 2g

where g denotes the genus of the surface Σ.

The following lemma is what we use to find a trivialization of the bundle x∗TM .

Lemma A.23. The first Chern number vanishes if and only if the bundle is trivial.
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Proof. This follows directly from the axioms. �

Therefore, we see that the condition that for every smooth map α : S2 → M there
exists a symplectic trivialization of the bundle ∗TM is equivalent to saying that the first
Chern class vanishes over TM . The condition on smooth maps is however what we will
use.



APPENDIX B

Distributions and Sobolev spaces and Elliptic regularity results

B.1. Sobolev spaces

Let Ω ⊂ Rn be an open subset. The goal is to define the Sobelev space W k,p(Ω). The
following is based on Chapter 5 of [Eva98] and Appendix B.1 of [MS12]. We define the
weak derivative.

Definition B.1. Let u : Ω → R be locally integrable (so u ∈ L1
loc(Ω)) and let

α = (α1, . . . , αn) be a multi-index and denote |α| = α1 + . . .+ αn the order of α. We call
a locally integrable uα : Ω→ R the weak derivative of u corresponding to α if and only if

(B.1)

∫
Ω

u(x)∂αϕ(x) dx = −1|α|
∫

Ω

uα(x)ϕ(x) dx

for every C∞0 (Ω).

Such ϕ ∈ C∞0 (Ω) are often called test functions. If the weak derivative of u exists,
it is unique almost everywhere. Suppose uα and u′α are both weak derivatives of u with
respect to α. Then in particular∫

Ω

uα(x)ϕ(x) dx =

∫
Ω

u′α(x)ϕ(x) dx

for all ϕ ∈ C∞0 (Ω). Therefore∫
Ω

(uα(x)− u′α(x))ϕ(x) dx = 0

for all ϕ ∈ C∞0 (Ω) which means that uα − u′α = 0 almost everywhere. By uniqueness (up
to a set of measure 0) we can speak of the weak derivative of u with respect to α, which
we denote

∂αu := uα.

Remark. Suppose u ∈ Ck(Ω,R). Then u has weak derivatives up to order k and
these agree with the ”normal” strong derivates of u.

We can now define the Sobolev space W k,p(Ω). Fix k ∈ N and 1 ≤ p <∞.

Definition B.2. The Sobolev space W k,p(U) is the space of equivalence classes of
functions u ∈ Lp(Ω) such that for every multi-index α with |α| ≤ k, the weak derivative
∂αu exists and ∂αu ∈ Lp(Ω).
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The space W k,p(U) has a norm associated to it.

Definition B.3. Let u ∈ W k,p(Ω). Its W k,p-norm is defined by

‖u‖Wk,p :=
(∫

Ω

∑
|α|≤k

|∂αu(x)|p dx
)1/p

Remark. The definition of W k,p(Ω) does not exclude the case p =∞. However, the
W k,∞-norm is defined differently as

‖u‖W 1,∞ :=
∑
|α|≤k

ess sup |∂αu|.

Hence, we can define the Sobolev spaces for all 1 ≤ p ≤ ∞.

One readily checks this is a norm. By defining this, we also have the notion of
convergence in W k,p(U) given by norm convergence in the W k,p-norm. Given this norm,
it is natural to ask whether W k,p(Ω) together with the W k,p-norm is a Banach space. This
is indeed the case.

Theorem B.4. Let k ∈ N and 1 ≤ p ≤ ∞. Then the Sobolev space W k,p(Ω) is a
Banach space. Furthermore, for 1 < p <∞, W k,p(Ω) is reflexive.

Proof. We refer to Theorem 2 on page 249 of [Eva98]. Here, the reflexivity state-
ment is not present here, but we can view W k,p(Ω) as a closed subspace of Lp(Ω,RN for
suitable N and use that a closed subspace of a reflexive Banach space is reflexive combined
with the fact that Lp(Ω,RN) is reflexive for 1 < p <∞. �

Using this definition we can define the locally W 1,p functions.

Definition B.5. Let Ω ⊂ Rn be open. Then

W k,p
loc (Ω) := {u : Ω→ R | For any K ⊂ Ω compactly contained, we have u|K ∈ W k,p(K) }.

We now collect several results about Sobolev spaces that we use, in particular in
Chapter 5 when computing the index of the vertical derivative of the Floer operator.
They give estimates of the W k,p-norm of a function in terms of the Hölder norm and the
Lp norm.

Theorem B.6 (Sobolev estimate). Let Ω ⊂ Rn be a bounded Lipschitz domain and
suppose kp > n and 0 < k−n

p
< 1. Set µ := k−n

p
. Then there exists a constant C =

C(k, p,Ω) > 0 such that
‖u‖C0,µ ≤ C‖u‖Wk,p .

for any u ∈ C∞(Ω). Furtheremore, the inclusion W k,p(Ω) ↪→ C0(Ω) is compact.

Theorem B.7 (Rellich’s Theorem). Let Ω ⊂ Rn be a bounded Lipschitz domain and
suppose kp < n. Let r := np

n−kp Then there exists a constant C = C(k, p,Ω) such that

‖u‖Lr ≤ C‖u‖Wk,p

for u ∈ C∞(Ω). Furthermore, if q < r, then the inclusion W k,p(Ω) ↪→ Lq(Ω) is compact.
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B.2. Elliptic regularity

Recall that the Laplace operator ∆ on Rn is given by

∆ :=
∂2

∂x1
2 + . . .+

∂2

∂xn
2 .

Let Ω ⊂ Rn be an open subset and u ∈ C2(Ω,R). Then u is called harmonic iff ∆u = 0.
An important question is whether for a given f : Rn → R there exists a solution to
∆u = f . It turns out there is a positive answer in the following setting of a weak solution.
This definition is similar to the one of a weak derivative.

Definition B.8. Let f ∈ L1
loc(Ω). Then u ∈ L1

loc(Ω) is called a weak solution of
∆u = f if ∫

Ω

u(x)∆ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx

for all test functions ϕ ∈ C∞0 (Ω).

Let ωn be the volume form on the unit sphere in Rn. Then define the fundamental
solution of Laplace’s equation

(B.2) K(x) :=


log |x|

2π
, n = 2

|x|2−n

(2− n)ωn
, n ≥ 3

The following inequality is important.

Theorem B.9 (Calderon-Zygmund inequality). Let K be as in equation (B.2). Let
1 < p <∞ and let f ∈ C∞0 (Rn). Then there exists a constant C = C(n, p) > 0 such that

‖∇(∂jK ∗ f)‖Lp ≤ C‖f‖Lp
for j = 1, . . . , n.

This has the following consequence for the perturbed Cauchy-Riemann operator.
We use this when proving the Fredholm property of the vertical derivative of the Floer
operator.

Lemma B.10. Let p > 2 and DS : W 1,p(R × S1,R2n) → Lp(R × S1,R2n) the
perturbed Cauchy Riemann operator where S ∈ C∞(R × S1,End(R2n)) which converges
to symmetric operators S± as s→ ±∞ with lims→±∞

∂S
∂s

(s, t) = 0 uniformly in t.
Let u ∈ W 1,p(R× S1,R2n). Then there exists C > 0 such that

‖u‖W 1,p(R×S1) ≤ C(‖DSu‖Lp(R×S1) + ‖u‖Lp(R×S1)).

Recall the definition of the convolution product of functions. Let f, g : Rn → R.
Then

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy.
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The following is Lemma B.2.2 in [MS12].

Lemma B.11. Let u, f ∈ L1(Rn) with compact support. Then u is a weak solution
of ∆u = f if and only if u = K ∗ f .

We now concentrate on the elliptic regularity of solutions to the Floer equation. In
particular, when proving transversality results, we had solutions of the Floer equation in
a space B1,p(x, y) modeled on a Sobolev space. We want to conclude that these solutions
are of class C∞. Using a symplectic trivialization we transfered everything to a linear
setting. Here, the vertical derivative of the Floer equation took the form of a perturbed
Cauchy-Riemann operator. This operator has several regularity results we used.

We start with two theorems on the elliptic regularity in the case where our manifold
M = R2n. These results are easier to prove.

The central theorem on which this section is a regularity result for the Cauchy-
Riemann operator ∂. Compare this for example to Theorem B.3.1 in [MS12], which is
very similar for the Laplace operator ∆ (up to change in some degrees to take care of the
extra derivatives). The following is Theorem 12.1.2 from [AD14].

Theorem B.12 (Elliptic regularity for the Cauchy-Riemann operator). Let 1 < p <
∞ and k ∈ N. Suppose Ω ⊂ C is open. If u ∈ Lploc(Ω) is a weak solution of ∂u = f for

f ∈ W k,p
loc (Ω), then

u ∈ W k+1,p
loc (Ω).

Moreover, for every relatively compact open set Ω′ ⊂ C such that Ω′ ⊂ Ω, there exists a
constant C = C(k, p,Ω′,Ω) > 0 such that for every u ∈ C∞(Ω) we have

(B.3) ‖u‖Wk+1,p(Ω′) ≤ C
(
‖∂u‖Wk,p(Ω) + ‖u‖Lp(Ω)

)
Remark. Note that we require p > 2.

From this theorem, we can prove a similar theorem for the peturbed Cauchy-Riemann
operator, provided the peturbation is sufficiently well-behaved.

Theorem B.13 (Elliptic regularity for the peturbed Cauchy-Riemann operator).
Let 1 < p <∞ and let S ∈ C∞(R× S1,End(R2n) such that the limits

lim
s→±∞

S(s, t) = S±(t)

exist with

lim
s→±∞

∂S

∂s
(s, t) = 0

uniformly in t. Let DS be the peturbed Cauchy-Riemann operator

DS := ∂ + S.
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If u ∈ Lp(R × S1,R2n) is a weak solution to DSu = 0, then u ∈ C∞(R × S1,R2n) ∩
W 1,p(R× S1,R2n).

Proof. For details, we refer to the proof of Theorem 12.1.3 in [AD14]. By induction,

using Theorem B.12 we find that u ∈ W k,p
loc (R× S1,R2n) for all k ∈ N, which implies that

u is smooth. Such an argument is sometimes called elliptic bootstrapping. The statement
that u ∈ W 1,p(R × S1,R2n) follows from a version of Theorem B.12 for the peturbed
Cauchy-Riemann operator without conditions on S that we used. This is Theorem �

We now list regularity results for the non-linear case. The following is a non-linear
version of Theorem B.13. It is Proposition 12.1.4 in [AD14].

Theorem B.14 (Elliptic regularity of the Floer equation). Let 2 < p <∞. Suppose
u ∈ W 1,p

loc (R× S1,M) such that ∂H,J(u) = 0. Then u ∈ C∞(R× S1,M).

When referring to elliptic regularity for a solution to Floer’s equation to prove that
it is smooth, we are referring to this theorem.





APPENDIX C

Banach manifolds and Banach bundles

Floer homology is Morse homology for the symplectic action functional. This func-
tional is defined on the space of contractible loops, which can be given the structure of
a Banach manifold. In this section we define such manifolds. Let us briefly recall the
definitions and important theorems associated to Banach manifolds such as the inverse
function theorem, Fredholm stability and the semi-Fredholm lemma. We follow the ex-
position of [Lan85]. We assume some familiarity with differentiable manifolds.

Let X be a vector space. We have the following definition of a normed space

Definition C.1 (Normed space). Let X be a F-vector space, where we will take
F = C or F = R, equiped with a map ‖ · ‖ : X → R with the following properties.

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

(ii) ‖αx‖ = |α|‖x‖ if x ∈ X and α ∈ F

(iii) ‖x‖ > 0 if x 6= 0

Then X is called a normed space.

Every normed space can then be regarded as a metric space, by definining the dis-
tance function d‖·‖ : X×X → R by d(x, y) = ‖x−y‖, which has all properties associated
to a metric (do we need to check?)

Using this metric, there is a special class of normed spaces.

Definition C.2 (Banach space). A Banach space is a normed space for which the
metric d‖·‖ is complete.

On these Banach spaces we can define a topology induced by the metric. Hence,
we can speak of topological notions like continuity and openess in the context of Banach
spaces.

Now we can define differentiable manifolds with these Banach spaces. First define
atlasses.
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Definition C.3 (Atlas). Let X be a set. An atlass of class Cp on X is a collection
of pairs (Ui, ϕi) satisfying

(i) Each Ui is a subset of X and the Ui together form a cover of X.

(ii) Each ϕi : Ui → Ei is a bijection unto an open subset ϕi(Ui) of some Banach
space Ei. Furthermore, for any i, j we have that ϕi(Ui ∩ Uj) is open in Ei.

(iii) The transitions ϕj ◦ϕi−1 : ϕ(Ui∩Uj)→ ϕj(Ui∩Uj) is a Cp isomorphism for each
pair i, j.

Now one can construct a unique topology on X such that each Ui is open and the ϕi
are homeomorphisms. Suppose we are given some homeomorphism ϕ : U → V from an
open subset U ⊂ X to an open subset V of a Banach space E. Then (U,ϕ) is compatible
with the atlas {(Ui, ϕi)}i if each map ϕiϕ

−1 is a Cp isomorphism. Two atlases are com-
patible if each chart of one is compatible with each the other atlas. Such compatibility is
an equivalence relation, and thereby we can make the following definition.

Definition C.4 (Cp-manifold). A Cp-manifold is a pair (X,A) where A is an equiv-
alence class of atlasses of class Cp on X.

If in some atlas the vector spaces Ei are isomorphic, we can find and equivalent at-
las for which they are all equal to some vector space E. Note that for E = Rn we get
the ”regular” definition for an n-dimensional manifold. So, we extend the definition of a
manifold to also take into account spaces that locally look like Banach spaces, instead of
just Rn or Cn.

Likewise, we can also define tangent vectors and tangent spaces. Automatically, these
tangent spaces have the structure of a Banach space. Suppose X is a Cp manifold and
let x ∈ X. We define a tangent vector at x.

Definition C.5. Consider a triple (U,ϕ, v) where (U,ϕ) is a chart of X and v ∈ ϕ(U)
is an element of a vector space E. Two triples (U,ϕ, v) and (V, ψ, w) are equivalent if for

Tϕ(x)(ψ ◦ ϕ−1) : ϕ(U)→ ψ(U)

we have Tϕ(x)(ψ ◦ ϕ−1)(v) = w. An equivalence class of triples is called a tangent vector
of X at x. The set of all tangent vectors is the tangent space TxX of X at x.

Note that a chart (U,ϕ) gives a bijection of the Banach space E and TxX by
(U,ϕ, v) 7→ v. In this way, TxX is endowed with the structure of a Banach space.

Suppose X and Y are manifolds and f : X → Y is a morphism of class Cp. We can
define a tangent map Txf : TxX → TxY using charts. Let (U,ϕ) and (V, ψ) be charts at
x and f(x) respectively. Let v be a tangent vector at x, represented by v ∈ ϕ(U). Define
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Txf(v) as the tangent vector at f(x) represented by DfU,V (x)v, the derivative of the map
fU,V := ϕ ◦ fψ−1.

We define bundles over Banach manifolds.

Definition C.6 (Banach vector bundle). Let X be a manifold of class Cp. A Banach
vector bundle over X is a total space E together with a continuous map π : E → X such
that the following holds

(i) For all x ∈ X the fiber π−1(x) = Ex has the structure of a Banach space.

(ii) There exists a cover Ui of X and a collection of maps associated to it ψi :
π−1(Ui)→ Ui×E for some Banach space E such that each ψi is an isomorphism
commuting with projection unto the first coordinate pr2. That is, pr2 ◦ ψi = π
and for each x ∈ Ui the map ψi : π−1(x)→ E is an isomorphism.

(iii) The transition maps are continuous Cp.

Really, the above defines a trivializing cover, and for a vector bundle one needs to
have an equivalence class of such bundles over a space X.

For any manifold X there is the construction of the tangent bundle.

Definition C.7. At every point we have a tangent space TxX. Let

TX =
⊔
x∈X

TxX

be the disjoint union of tangent spaces. This comes with the projection π : TX → X by
TxX 7→ x. We define a trivialization on this bundle. Let (U,ϕ) be a chart on X. Then
the map ΦU : π−1(U) = TU → U ×E is a bijection, using the definition of tangent vector
as a triple (U,ϕ, v). This commutes with projection U ×E → U . Similarly we can define
transition maps

Φij = Φj ◦ Φ−1
i : ϕi(Ui ∩ Uj)× E → ϕj(Ui ∩ Uj)× E

by

Φij(x, v) = (ϕij(x), Dϕij(x)v).

One can readily check that this satisfies the necessary properties of a vector bundle.

There are natural construction to construct from vector bundles new ones. One such
construction that we will often use is the pullback bundle.
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Definition C.8 (Pullback bundle). Suppose π : E → X is a vector bundle and
f : X ′ → X is a continuous map. Then we can define a vector bundle called the pullback
bundle

f ∗π : f ∗(E)→ X.

Here f ∗(E) is defined by the fibered product

f ∗(E) = X ′ ×X E = {(x′, e) ∈ X ′ × E | π(e) = f(x′)}
and

f ∗π = pr1

projection unto the first coordinate.

One of the goals of Floer homology is to define moduli spaces of solutions to the
Floer equation. To do this, we view the Floer operator as a section σ of a vector bundle
π : E → B as described above. To establish this, one needs to prove that σ is transverse
to the zero section. Let

Dσ(u) : TuB → Tσ(u)E
denote the derivative, then we must have that it is complementary to the tangent space
TuB of the zero section.

A different way to phrase this is to look at the canonical splitting of the vector bundle
E at the zero section. Denote by Eu the fiber at u. There is an canonical isomorphism
T(u,0)E ' TuB ⊕ Eu. We make the following definition.

Definition C.9 (Vertical differential). The vertical differential dV σ(u) of the section
σ ∈ Γ(B, E) at u ∈ B is defined by dV σ(u) = pr2 ◦Dσ(u) : TuB → Eu where pr2 : T(u,0)E '
TuB ⊕ Eu → Eu denotes projection unto the second coordinate.

It is now immediate that transversality of σ to the zero section is the same as saying
that Dv

uσ is surjective for every u ∈ B.

We now state several theorems concerning Banach spaces. These will be used through-
out the text.

The statements are primarily from [MS12] and [AD14], collected throughout several
chapters and the appendices. Recall the definition of a Fredholm operator and Fredholm
index. Suppose X, Y are Banach spaces with F : X → Y a bounded linear operator.
If F has finite-dimensional kernel and cokernel and has closed range, then we call F a
Fredholm operator. In this case, its index is given by

ind(F ) = dim kerF − dim cokerF.

Theorem C.10 (Semi-Fredholm lemma). Let X,Y ,Z be Banach spaces. Assume
D : X → Y is a bounded linear operator, and K : X → Z is a compact operator. Assume
there is a c > 0 such that

‖x‖X ≤ c(‖Dx‖Y + ‖Kx‖Z)

for x ∈ X. Then D has closed image and a finite dimensional kernel.
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What we do to compute indices of Fredholm operators is perturb them, so that we
get operators for which we can compute the index. Hence there is the following important
theorem stating that the Fredholm property and index are stable.

Theorem C.11 (Fredholm stability). Suppose D : X → Y be a Fredholm operator.
We have the following

(i) Let K : X → Y be a compact operator. Then D + K : X → Y is a Fredholm
operator with ind(D +K) = ind(D).

(ii) For any D there exists ε > 0 such that for A : X → Y a bounded linear operator
with ‖A‖ < ε, then D + A : X → Y is a Fredholm operator with ind(D + A) =
ind(D).

The next theorem is a theorem from functional analysis, called the Sard-Smale The-
orem. It is used to prove that the Hamiltonians H such that the spaces of solutions to
the Floer equation are finite dimensional manifolds are generic.

Theorem C.12 (Sard-Smale Theorem). Let X and Y be separable Banach spaces
and U ⊂ X be an open set. Suppose F : U → Y is a Fredholm map of class Cl where

l ≥ max{1, ind(F ) + 1}.
Then the set

Yreg(F ) = {y ∈ Y | x ∈ U, F (x) = y =⇒ imdf(x) = Y }.
of regular values of F is residual in the sense of Baire.

This is also sometimes called of the second category in the sense of Baire. It is the
same as saying that the set contains a countable intersection of open and dense sets. If
A is a set with a subset B of the second category in the sense of Baire, we say that the
choice of some a ∈ B is generic.

Another important theorem is an infinite dimensional version of the implicit function
theorem. This is the following statement. It is used to give the space of solutions to
Floer’s equation a manifold structure by describing them as regular values of a section of
a Banach bundle over a Banach space.

Theorem C.13 (Implicit function theorem). Let X and Y be Banach spaces and let
U ⊂ X be an open set, and l a positive integer. If F : Y → Y is of class Cl and y is a
regular value of F .
Let

M = F−1(y) ⊂ X.

Then M is a Cl Banach manifold and TxM = ker df(x).
In the special case that F is a Fredholm map, then M is finite dimensional with

dimM = ind(F ).
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