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Introduction

Symmetry in nature is one of the many connections between mathematics and physics. One may
develop a algebraic way to work with symmetry in mathematics. One example of this are Lie
groups and algebras. Ever since the 20th century symmetry became more important in physics.
From Noether’s theorem, to the theory of spin of particles, symmetry is important in many parts
of physics.

As soon as technology allowed physicist to build sufficiently large detectors to observe a wide
range of exotic particles, the search began for a way to classify the particles. One way to do
this is by using the symmetry properties of the specific system. This is done by looking at the
symmetry group of the Hamiltonian, thereby constructing so called multiplets. In this thesis we
focus specifically on the way in which elementary particles fit into symmetry multiplets of several
symmetry groups, as first described by physicist Gell-Mann.

We start by exploring the general theory of Lie groups and Lie algebras and their representa-
tions. We focus on a particular subgroup of Lie algebras, the semisimple ones. These semisimple
Lie algebras have particularly nice properties whih make them easier to study. Then we focus
on representations of two important Lie algebras, sl2C and sl3C . Especially their irreducible
representations will be of great interest for their applications in the classification of particles. We
aim to therefore fully classify and understand these irreducible representations.

We then turn our attention to the symmetry in physics by considering elementary particles. Us-
ing empirical data, one may classify these particles into groups with similar properties. We then
apply our knowledge of the representation theory of Lie algebras to provide a explanation for
this structure. We will focus on symmetry groups SU(2) and SU(3). Therefore the knowledge
obtained from the latter part will prove very useful. Using the notion of symmetry and represen-
tations one might classify the elementary particles in so-called multiplets. Though this profound
connection may seem suprising and somewhat arbitrary, one may set up a theory (quark model)
in which an explanation is given for the multiplet structure of the elementary particles.

We then proceed to apply this model to several kinds of particles, the baryons and mesons. We
classify them into multiplets using the structure of the Lie algebra sl3C .

Finally, we quickly go over the disadvantages of the quark model. Furthermore, we briefly explain
how one might extend the machinery developed in this thesis to study larger Lie algebras and
thereby larger symmetry groups resulting in a more general setup applicable to many physical
theories. The quark model is an elementary example of the use of representation theory and sym-
metry in physics; many theories are extensions or modifications of some of the theory presented
here.
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1 Lie Groups and Lie Algebras

1.1 Lie Groups

Lie groups are important objects in many parts of mathematis and physics. Intuitively, Lie groups
combine the notion of a group and a manifold into one object. We will define them, and give
some examples. Then we look at what a representation is and what these representations look
like for certain Lie groups. We start by defining what a Lie group is.

Definition 1. A Lie group G is a smooth manifold endowed with the structure of a group
such that this structure is compatible with the manifold structure. That is to say multiplication
× : G×G→ G and inversion ι : G→ G are smooth maps.

Many terms from both groups and manifolds can be applied to Lie groups by regarding the
associated properties. We can therefore talk about connected Lie groups in terms of its manifold
structure, or normal subgroups of a Lie group by studying its group structure. In similar fashion
one may define maps between Lie groups to preserve both of these structures. We then take

Definition 2. A map ρ : G → H between Lie groups is a map that is both differentiable and a
group homomorphism: ρ(g)ρ(h) = ρ(gh) for all g, h ∈ G

Examples of Lie groups are plenty. Most Lie groups we discuss in this thesis will be realized as
matrix groups, hence we will focus on these. A first example would be GLnK. This is the Lie group
of invertible n×n matrices over a field K. We will often use K = R or K = C. It inherits a manifold
structure from the n× n matrices by taking the entries as coordinates and is an open subset of
the n× n matrices by continuity of the determinant function. The smoothness of multiplication
and inversion is easily checked. Multiplication arises as polynomials in the coordinates, which is
smooth, while the smoothness of the inverse operation follows from Cramer’s rule for computing
inverses. All of the groups that we will be using can be viewed as subgroups of GLnR. They arise
in two different ways.

First, one can describe a subgroup using an equation defined on the entries of the matrix. Let us
take K = R for the moment. An example of a subgroup constructed in this way is the following
one. Consider the subgroup of GLnR of invertible n×n matrices by taking all matrices X ∈ GLnR
satisfying det(X) = 1. One may check that this is indeed a Lie group. It is often denoted SLnR.

Alternatively, we may describe them as subgroups of this GLnR, preserving some structure on
Kn. Denote Rn = V . The group SOnR is defined as the subgroup of SLnR preserving a bilinear
symmetric non-degenerate form Q : V × V → C. By this we mean that Q(v, w) = Q(Av,Aw)
for all v, w ∈ V . We can make this more explicit by writing Q as Q(v, w) = vt ·M · w for some
matrix M . Using this definition, preservation of Q is equivalent to vt ·M ·w = vt ·At ·M ·A ·w
for all v, w ∈ V and all A ∈ SOnR. This means M = At ·M · A. Now taking M = Id the form
Q has all the desired properties, and we may describe
SOnR = {A ∈Matn×n : det(A) = 1, At ·A = Id} which is often a more convenient description.

1.2 Representations of Lie groups

We will primarily study representations of Lie groups and algebras. We start by defining what a
representation on a group is.
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Definition 3. Given a group G and a finite dimensional (complex) vector space V , a represen-
tation of G on V is a homomorphism ρ : G→ GL(V )

Often we will call V the representation. This proves convenient for concise notation, while the
meaning is in most cases obvious. We can then define maps between different representations.
These maps will have to be G-linear maps of vector spaces to be maps of representations. That is,
given two representations V and W of a group G, a map ψ : V →W is a map of representations
the following diagram commutes for all g ∈ G

V
ψ−−−−→ Wyg yg

V
ψ−−−−→ W

(1)

We will need to develop some more terminology. First of all there is the notion of a subrepresen-
tation.
Given a representation V a subrepresentation W is a vector subspace of V that is invariant un-
der the action of G: ρ(W ) ⊂ W . Whether a representation contains such subrepresentations is
a interesting subject. Of course, any representation V has two subrepresentations: V itself and
the trivial one {0}.
If the representation contains no other subrepresentations we call it irreducible. If it does, we
call V reducible. We will later see that any reducible representation may be decomposed as a
direct sum of irreducible subrepresentations in which case we call the representation V completely
reducible.

Another basic notion is how one may manipulate representations to create new representations.
These are operations on the underlying vector spaces that create new vector spaces. These are
representations by defining the action of G accordingly. We will discuss a few examples of such
operations and their associated representations. We can later use this information.

• Given two representations V and W their tensor product V ⊗W is a representation where
the homomorphism is defined as ρV ⊗ ρW : G → GL(V ⊗W ) by ρV ⊗ ρW (g)(v ⊗ w) =
ρV (g)(v)⊗ ρW (g)(w) ∈ V ⊗W

• Given two representations V and W their direct sum V ⊕ W is a representation where
the homomorphism is defined as ρV ⊕ ρW : G → GL(V ⊕W ) by ρV ⊕ ρW (g)(v ⊕ w) =
ρV (g)(v)⊕ ρW (g)(w) ∈ V ⊕W

• Given a representation V , its dual1 V ∗ is a representation where the homomorphism is
ρ∗ : G → GL(V ∗) by setting ρ∗(g)(α)(v) = α(ρ(g−1)(v), where α ∈ V ∗. Another way to
state this is to regard ρ∗(g) ∈ GL(V ∗) as a matrix in some basis of V ∗. We then have in
terms of the matrix ρ(g) ∈ GL(V ) that ρ∗(g) = ρ(g−1)t.

It is easily checked that the representations as defined above indeed define genuine represen-
tations. Using these operations on representations, we can construct new representations from
given ones. We will later construct such new representations and study their reducibility.

1The space dual space of V , denoted V ∗, is defined as the vector space of all linear maps λ : V → K where we
will most often use K = C
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1.3 Lie Algebras

Another subject of interest will be the so called Lie algebras. These are objects that correspond
to Lie groups, in the sense we can associate to any matrix Lie group a Lie algebra in a convenient
way. However, we will first define them, and then concentrate on the connection.

Definition 4. A Lie algebra g is a vector space over a field K together with a product map,
sometimes called the (Lie) bracket, [ , ] : g× g→ g with the following properties:

• Bilinearity: [λX + µY,Z] = λ[X,Z] + µ[Y,Z] for all λ, µ ∈ K and all X,Y, Z ∈ g

• Skew-symmetry: [X,Y ] = −[Y,X] for all X,Y ∈ g

• Jacobi identity: [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 for all X,Y, Z ∈ g

Similar to the case of Lie groups, we want maps to retain the structure on the Lie algebra.
A map ψ : g→ h is a map of Lie algebras if it preserves the bracket:

ψ([X,Y ]) = [ψ(X), ψ(Y )] for all X,Y ∈ g

Subalgebras are also defined similarly calling h ⊂ g a Lie subalgebra if [X,Y ] ∈ h for all X,Y ∈ h.
We can also define representations of these objects on vector spaces, as we did for Lie groups.

Definition 5. Given a Lie algebra g and a finite dimensional (complex) vector space V a rep-
resentation of g on V is a map of Lie algebras ρ : g→ gl(V )

This means it is a linear map that preserves brackets: ρ([X,Y ]) = [ρ(X), ρ(Y )]. Here, the
bracket on the Lie algebra gl(V ), the endomorphisms on V , is just the commutator of ma-
trices ([X,Y ] = XY − Y X), as we shall see in the next section. There are many Lie algebras
with a broad variety of properties.
In this thesis we will focus on the so called ”semisimple” Lie algebras. For completeness we
give the definition of a semisimple Lie algebra, as we will prove and use two important prop-
erties of such Lie algebras. To define these semisimple Lie algebras, we need the notion of an ideal.

Definition 6. Given a Lie algebra g, an ideal is a vector subspace h ⊂ g with the property that
[X,Y ] ∈ h for all X ∈ h, Y ∈ g

The idea of an ideal is similar to that of a normal subgroup in group theory, in the sense that a
quotient by an ideal will again be an algebra.
We then define a special chain of ideals {Dkg} constructed inductively by setting Dg = [g, g]
and defining Dkg = [Dk−1g,Dk−1g]. Then we call an algebra or ideal solvable if Dkg = 0 for
some k. Now one calls a Lie algebra g semisimple is it has no solvable ideals. The Lie algebras
we focus on will be semisimple ones because of two very convenient properties that we will see
in due time.

1.4 Lie groups and their Lie algebras

In this section we will establish a relation between Lie groups and algebras. More specifically, we
cam endow the tangent space at the identity of a Lie group with the structure of a Lie algebra.
Let us look at the map given by conjugation by an element g ∈ G: :Ψg : G → G , where
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h 7→ ghg−1. If ρ : G→ H is a homomorphism, we know the following diagram commutes.

G
ρ−−−−→ H

Ψg

y yΨρ(g)

G −−−−→
ρ

H

(2)

We now look at the differential of the conjugation map at the identity e ∈ G, and denote it

(dΨg)e = Ad(g) : TeG→ TeG, so Ad : G→ Aut(TeG)

As TeG is a vector space, this defines a representation, the adjoint representation. Using this
definition and the fact that ρ is a homomorphism, the following diagram also commutes.

TeG
(dρ)e−−−−→ TeH

Ad(g)

y yAd(ρ(g))

TeG −−−−→
(dρ)e

TeH

(3)

If we like dependence only on the differential (dρ)e, as Ad still depends on ρ itself, then we need
to define the differential of the map Ad. We denote ad : TeG → End(TeG). Then the following
diagram commutes

TeG
(dρ)e−−−−→ TeH

ad(dρ(v))

y yad(dρ(v)))

TeG −−−−→
(dρ)e

TeH

(4)

We thereby conclude that for any homomorphism ρ the differential (dρ)e respects the adjoint
action on the tangent space of G. Note that a representation ρ is in particular a map of Lie
groups, thus a homomorphism. In fact, there is a 1-1-correspondence between representations
of simply connected Lie groups and their associated Lie algebras. That is, the converse of the
above construction also works given that the Lie group G is simply connected. A proof of this
theorem might be found in [6] in section 3.6 for matrix Lie groups. We will implicitely use this
as representations of Lie algebras are more convenient to work with.
Now we wish to make TeG compatible with the structure of a Lie algebra. This is then the Lie
algebra g associated with a Lie group G. This can be accomplished by using the map ad above.
Note ad is a multilinear map, as ad(X) ∈ End(TeG), hence ad(X)(Y ) ∈ TeG. We can therefore
see ad as a product map TeG×TeG→ TeG. By setting [X,Y ] = ad(X)(Y ) we have our bracket.
We shall focus on the special case of matrix groups, for which we now show that the bracket
given by the map ad is indeed the same as the commutator, as stated before.

All our matrix groups are subgroups of GLnK. Here, we can extend the conjugation map Ψ to
the entire ambient space End(Kn). Its tangent space at e will again be End(Kn). This means
the differential becomes a conjugation Ad(g)(M) = gMg−1. We can now look at the differential
of Ad by looking at paths.
A way to define the tangent space of a manifold is to define the tangent vectors as equivalence
classes of speeds of the paths at time zero. For the tangent space TxG, take paths γ : [0, 1]→ G
based at x ∈ G and pick a chart φ : U → Rn where x ∈ U is an open neighborhood. Furtheremore
φ ◦ γ is differentiable at 0. Then two such paths γ and δ are equivalent if the differentials at 0 of
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φ ◦ γ and φ ◦ δ coincide. The equivalence classes of these paths are then the tangent vectors and
the collection of all tangent vectors forms the tangent space.
This means, given X,Y ∈ TeGLnK and a path γ : [0, 1] → GLnK, such that γ(0) = e and
γ̇(0) = X. We then have

[X,Y ] = ad(X)(Y )

=
d

dt
|t=0Ad(γ(t))(Y )

=
d

dt
|t=0γ(t)Y γ(t)−1

= γ̇(0)Y γ(0) + γ(0)Y (−γ(0)−1γ̇(0)γ(0)−1

= XY − Y X

We see in the case that we are dealing with a subgroup of GLnK, the Lie bracket is the commu-
tator of matrices. This is a very concrete way to describe the Lie bracket.
Using the definition of Lie algebras associated with a Lie group, we can describe several examples.
First of all, we saw the example of the Lie group SLnC.

Secondly, using this notion, we may also define the tensor products and direct sums as we did
for representations of Lie groups, only now for their corresponding algebras. Let γ(t) be a path
in G based at e, and γ̇(0) = X with X ∈ g, its associated Lie algebra. Let V and W be
two representations of G. The induced representation of g is defined by the action of X on V :
X(v) = d

dt |t=0γ(t)(v). Then we have the following definitions for the tensor product, direct sum
and dual space representations, where we use the derivative properties of these constructions.

• Given represenations V and W , the action of X on their tensor product V
⊗
W is given

by X(v ⊗ w) = X(v)⊗ w + v ⊗X(w)

• Given representations V and W the action of X on their direct sum V
⊕
W is given by

X(v ⊕ w) = X(v)⊕X(w)

• Given a representation ρ : g → gl(V ) on V , the action of X on its dual is given by
ρ′ : g→ gl(V ∗) where ρ′(X) = −ρ(X)t.

When we discuss representations of several Lie algebras, the knowledge of how these operations
construct new representations will prove to be useful.

1.5 Some properties of semisimple Lie algebras

We discuss two important properties of semisimple Lie algebras. The first property has to do
with reducibility. One may prove that any representation of a semisimple Lie algebra is in fact
completely reducible. However, in order to prove this important and fundamental theorem, we
need to introduce some more mechanisms to work with Lie algebras.

We shall first study a bilinear form on the algebra g called the Killing form K. Note that for any
X ∈ g we have the map ad(X) : g→ g. Then we have ad(X) ∈ gl(g). We can define the Killing
form K on X,Y ∈ g as

K(X,Y ) = Tr(ad(X) ◦ ad(Y ))
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One can immediatly see linearity from this definition, as it follows from linearity of ad and the
trace. We will need a property of this Killing form which we will prove.

Lemma 1. Given a Lie algebra g and the letting K be the Killing form on the algebra defined
as above. Then we have K([X,Y ], Z] = K(X, [Y,Z]) for all X,Y, Z ∈ g.

Proof. This is a consequence of properties of the trace of endomorphisms. We have for any
endomorphisms R,S, T of a vector space that Tr(SRT ) = Tr(RTS) by the cyclic property of
the trace. Then using linearity of the trace we have

Tr([R,S]T ] = Tr((RS − SR)T )

= Tr(RST − SRT )

= Tr(RST − SRT +RTS −RTS)

= Tr(RST −RTS) = Tr(R[S, T ])

Then this also holds for the Killing form as ad(X) is a endomorphism of gl(g) for any X ∈ g and
the map ad preserves brackets.

We will use this lemma in the proof of complete reducibility. We will also need a property which is
harder to prove, but it will be useful. A full proof may be found in many books on representation
theory (among which proposition C.10 in [1], page 20 in [2] and Theorem 9.2 in [3]), but we will
only state it here. It is a consequence of a more general theorem known as Cartan’s criterion.

Theorem 1. A Lie algebra g is semisimple if and only if its Killing form K is nondegenerate.

Furthermore, we will need a lemma called Schur’s lemma which is not so difficult to prove, but
will prove to be very useful to extract properties of representations.

Lemma 2. Schur’s lemma
Let V and W be irreducible representations of a group G, and φ : V → W a G-module homo-
morphism then either φ is an isomorphism, or φ=0. If V = W , then φ = λI, for λ ∈ C and I
the identity.

Now we are ready to prove one of the most fundamental theorems about semisimple Lie algebras;
they are completely reducible. This will allow us to study these semisimple algebras in great de-
tail.

Theorem 2. Complete Reducibility
Let V be a finite dimensional representation of a semisimple Lie algebra g. Suppose there is a
subspace W ⊂ V that is invariant under the action of g: ρ(X)(w) ∈ W for all X ∈ g and all
w ∈ W . Then there is a subspace U ⊂ V such that V = W ⊕ U and where U is also invariant
under the action of g

To prove this theorem we need some more instruments.
Assume g ⊂ gl(V ). As g is a vector space, let U1, . . ., Ur be a basis. We also take a dual basis
U1,. . .,Ur in the sense that the Killing form has the property that K(Ui, U

j) = δji (K is nonde-
generate by the preceding theorem).
We then define an operator on the vector space V called a Casimir operator defined as CV (v) =
ΣUi · U i · v. This operator has several properties. However, for concise notation in this proof
we introduce the Einstein summation convention, in which summation over repeated indices is
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implied. We can then write CV = UiU
i.

We first show that CV commutes with the action of g. By linearity of the commutator, we are
done if we can show [Un, CV ] = 0 for all Un.

Lemma 3. Let CV be the Casimir operator as defined above and {Un} a basis with {Un} its
dual basis with respect to the Killing form. Then we have [Un, CV ] = 0 for all Un.

Proof. For any Ui, Uj we have [Ui, Uj ] = ckijUk. These coefficients ckij are called structure con-

stants. Note that by skew symmetry of the bracket we have ckij = −ckji. We wish to know how

the basis {Ui} and its dual {U j} commute. We do this using the above theorem and lemma.
We have K(Ui, [Uj , U

k]) = −K([Uj , Ui], U
k) = −ckji = −K(Ui, c

k
jlU

l). Now using nondegeneracy

of K as g is semisimple, we have [Uj , U
k] = ckljU

l.
We compute

[Un, CV ] = [Un, UiU
i]

= UnUiU
i − UiU iUn − UiUnU i + UiUnU

i

= [Un, Ui]U
i + Ui[Un, U

i]

= clniU
i + cilnU

l

The summation indices i and l are dummy variables, so switching their roles in the rightmost
term we get [Un, CV ] = clniU

i + clinU
i = 0, as required.

We use the Casimir for the actual proof of the complete reducibility theorem. We now give this
proof.

Proof. Complete Reducibility
First of all, let us assume that the representation we are dealing with is faithful (that is, the
group homomorphism is injective). If this is not the case, we can quotient out this kernel without
affecting reducibility.

We start with the case where W ⊂ V is an irreducible submodule of codimension 1. The Casimir
operator acts as multiplication on W , by Schur’s lemma. We have Tr(CV ) 6= 0; this is a nonzero
scalar. Then V/W is 1-dimensional and a g-submodule. Now all 1-dimensional representation of
semisimple Lie algebras are trivial as [g, g] = g, so CV acts on V/W as a scalar 0. This means
for CV : V → V has a 1-dimensional kernel; Ker(CV ) is 1-dimensional, and we have

V = W ⊕Ker(CV )

As CV commutes with the Un, Ker(CV ) is a 1-dimensional g-module.

Now suppose W is not irreducible, but still of codimension 1. Then we have a (maximal) sub-
module Z ⊂W . We then have that W/Z ⊂ V/Z is an irreducible submodule, with codimension
1. Then using the previous result, we find a complementary submodule

V/Z = W/Z ⊕ Y/Z
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where Y/Z is a 1-dimensional submodule of V/Z. Now as dim(Y ) < dim(V ), so by an induction
argument on the dimension of V , which is trivial to prove when dim(V ) = 1, we have that
Y = Z ⊕ U by induction. Note immediatly that U ∩W = {0}. Then we have

V = W ⊕ U

Let W now be any submodule of lower dimension. We saw reducibility does not matter by the
previous argument finding a maximal subalgebra Z, so assume W irreducible. Consider the re-
striction map: ρ : Hom(V,W )→ Hom(W,W ). We can realize the action of g on these spaces by
taking for X ∈ g and f ∈ Hom(V,W ) the action defined by (Xf)(v) = X(f(v)) − f(X(v)) for
all v ∈ V .
Then consider the space of g invariant homomorphisms,Homg(W,W ). Then ρ−1(Homg(W,W )) ⊂
Hom(V,W ) are the homomorphisms that restrict to scalar multiplication on W . Let g be equal
to the identity on W and zero elsewhere. Then given some element h ∈ ρ−1(Homg(W,W )), it
can be written as h = f0 + λg, where f0 ∈ Ker(ρ).
This space Ker(ρ) then has codimension one in ρ−1(Homg(W,W )). By the previous case,
ρ−1(Homg(W,W )) = Ker(ρ)⊕U . By this composition, U is mapped surjectively intoHomg(W,W )
(as ρ is surjective). We must therefore be able to pick ψ in U such that ρ(ψ) = Id. This implies
Ker(ψ) ∩W = 0. Then we have

V = W ⊕Ker(ψ)

There is a different way to prove this using compact forms in [6].
In this way, any reducible representation V may be decomposed in a finite number of irreducible
representations by repeating this process until we are left with only irreducible representations.
Hence we can write V =

⊕
Wα where each Wα is an irreducible subrepresentation of g.

The second important property is the conservation of Jordan-Chevalley decomposition (hereafter
called Jordan decomposition). We first recall the term Jordan decomposition. An operator Xs is
called semisimple when it is diagonizable. Equivalent (over algebraically closed fields) is to say
V is spanned by eigenvectors of the operator Xs or that any Xs invariant subspace W ⊂ V had
an Xs invariant complement W ′ ⊂ V such that V = W ⊕W ′.
An operator Xn is called nilpotent if (Xn)k = 0 for some k. Let X be any linear operator acting
on a finite dimensional vector space V over C (it will work for any perfect field, of which C is an
example).
Then we may decompose X = Xs +Xn which is known as the Jordan-Chevalley decomposition
of an operator. Here Xs is a semisimple operator and Xn a nilpotent one. Furthermore, this
decomposition is unique, Xs and Xn commute and they may be expressed as polynomials in X.

If a semisimple Lie algebra g is a subset of gl(V ) it is clear what we mean by its Jordan decom-
position as it is an algebra of linear endomorphisms.
For general semisimple Lie algebras we can also define an abstract Jordan decomposition. Given
X ∈ g, then we can decompose ad(X) ∈ gl(g) as ad(X) = ad(S)+ad(N) where ad(S) and ad(N)
are the semisimple and nilpotent parts of ad(X) in the usual sense. This decomposition is also
unique. In fact we have S,N ∈ g. This is explained in [2] at the beginning of section 5.6. We will
now state the theorem.

Theorem 3. Preservation of Jordan decompostion
Let g be a semisimple Lie algebra. Then for every X ∈ g, there exists a unique decomposition
X = S + N of X (abstract Jordan decompostion), such that for any representation on a finite
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dimensional vector space V we have for ρ(X) ∈ gl(V ) that ρ(X)s = ρ(S) and ρ(X)n = ρ(N),
where ρ(X)n and ρ(X)s are respectively the semisimple and nilpotent parts of ρ(X) ∈ gl(V )
(usual Jordan decomposition).

We will need two facts that are stated in [2]: lemma A in 4.2 and proposition 4.2.C. They say
the following.

1. For X ∈ gl(V ) with usual Jordan decomposition X = Xs + Xn, then ad(X) = ad(Xs) +
ad(Xn) is the Jordan decomposition of ad(X).

2. Given a vector space V , with A ⊂ B ⊂ V subspaces and X maps B in to A, then both Xs

and Xn map B into A

We can now prove the theorem. This will be done in two parts.

Proof. We will proceed in the following way. First we show that if g ⊂ gl(V ), then for X ∈ g we
also have Xs, Xn ∈ g. Note that by uniqueness of the decompositions and by virtue of fact (1),
the abstract and usual Jordan decomposition for elements in g coincide as it implies that both
ad(Xs) and ad(Xn) are semisimple, hence Xs and Xn are the unique candidates for S and N
given that they lie in g. So if we prove that Xs and Xn are indeed in g we have that the two
Jordan decompositions coincide. We are then able to prove the full theorem.

So, let g ⊂ gl(V ) and X ∈ g an arbitrary element. For semisimple Lie algebras, we have [g, g] ⊂ g
and thereby [X, g] ⊂ g. Then we have immediatly [Xs, g] ⊂ g and [Xn, g] ⊂ g by fact (1). Define
the normalizer of g as n = {A ∈ gl(V ) : [A,X] ∈ g ∀X ∈ g}. Then we have Xs, Xn ∈ n. Note
that n includes g as an ideal.

Now for any g-submoduleW ⊂ V (subspace invariant under the action of g), define the subalgebra
of gl(V )

sW = {Y ∈ gl(V ) : Y (W ) ⊂W,Tr(Y |W ) = 0}

For example, if V were irreducible, the only subalgebra of this type would be sV = sl(V ). For
an arbitrary representation V there will generally be more such g-submodules W . The algebra
g is a subalgebra of the sW for any W by definition of g-submodule and the fact that g = [g, g]
forcing the elements of g to be traceless. Furthermore, by fact (2), both Xs and Xn preserve the
g-submodule W . Also Xn is traceless (as is any nilpotent endomorphism) which forces Xs to be
traceless as well. Therefore Xn and Xs are both in sW .

Let then g′ = n ∩ (
⋂
W

sW ). Here the intersection runs over all g-submodules W . We will show

g = g′. For any X ∈ g′ both Xs and Xn are in g′ as they are in n and in all sW . If we can prove
that g′ = g we are done.

By complete reducibility, we have g = g′ ⊕ h. This is the case as g′ is a finite dimensional g-
module. However, we have g′ ⊂ n. By definition of n we then have [g, g′] = g, we must have
[g, h] = 0. For any irreducible g-module, we have for any Y ∈ h that [g, Y ] = 0. By Schur’s
lemma Y restricted to W is a scalar, but Y ∈ sW . This means Tr(Y |W ) = 0 and hence Y |W = 0.
This holds for any irreducible submodule, hence Y = 0. This means h = 0 and thus g = g′ and
we are done.

The theorem now follows from this. Let ρ : g → gl(V ) be the map of Lie algebras associated
to a finite dimensional representation of a semisimple Lie algebra g. Then let us look at the
algebra ρ(g) ⊂ gl(V ). By definition of semisimplicity, noting that ad(S) ∈ gl(g), we have that g
is spanned by eigenvectors of ad(S), and therefore ρ(g) is spanned by eigenvectors of ad(ρ(S))
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by preservation of the bracket. Then ad(ρ(S)) is semisimple.

By a similar argument (preservation of bracket) the nilpotency of ad(N) assures that ad(ρ(N))
is also nilpotent. Furthermore ad(ρ(S)) and ad(ρ(N)) commute, by using the Jacobi identity
and preservation of brackets under ρ. This means that ρ(X) = ρ(S) + ρ(N) is the abstract
Jordan decomposition of ρ(X) by definition. Then knowing ρ(X) ∈ gl(V ) we showed that the
decompositions coincide, hence this is also the usual Jordan decompostion. That is, ρ(X)s = ρ(S)
and ρ(X)n = ρ(N).

This is in fact a very useful theorem. If we know some element can be diagonalized in some
faithful representation, we know the particular choice of representation is not important. In any
representation this element will be diagonizable. This means we can fully study the structure
of semisimple Lie algebras by looking at specific faithful representations. The properties we
distill from these representations will then often carry over to any arbitrary other representation,
providing a very general analysis. We will use this fact in the representations of the Lie algebras
we study.
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2 Classification of representations of the Lie algebras sl2C
and sl3C

By using the above theorems for semisimple Lie algebras, we can study in great detail some of
such Lie algebras. Two important Lie algebras are sl2C and sl3C . Both are semisimple and both
have many uses in the field of physics. One such application we shall discuss in this thesis in de-
tail. In this section, we shall build the needed machinery to fully understand the representations
of these Lie algebras. Special attention will be given to their irreducible representations, and how
one may extract the decomposition of irreducible components from a given representation.

2.1 The Lie algebra sl2C

The Lie algebra sl2C will prove of great importance within the scope of this thesis. It is one of
the simplest cases of a semisimple Lie algebra, it is indeed even a simple algebra. Knowledge
about its stucture can be used in many other semisimple Lie algebras, as will be demonstrated in
due time. It is an important algebra as its representations are in 1-1 correspondence to represen-
tations of the group SU(2) which is often used in physics. Representations of SU(2) are in 1-1
correspondence with its Lie algebra su(2) as it is simply connected. Then these representations
are in 1-1 correspondence to representations of its complexification, which is the algebra sl2C .
We will not elaborate on these relations and just focus on the algebra sl2C .
The Lie algebra is sl2C can be realized as the Lie algebra of traceless 2 × 2 matrices where the
product is the commutator of matrices. We pick a basis for this algebra. The algebra itself will
be three dimensional because of the restriction on the trace. We pick the following basis:

H =

(
1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
Every traceless 2×2 matrix may indeed be written as a linear combination of these three. Because
the Lie bracket is bilinear and skew-symmetric, writing down the different brackets (also called
commutation relations as in this context the bracket is the commutator) of the basis elements.
We have:

[H,E] = 2E, [H,F ] = −2F , [E,F ] = H

Now we are ready to use one of the properties of semisimple Lie algebras. The Jordan decompo-
sition is preserved, meaning that for any irreducible finite-dimensional representation V of sl2C,
H will again be diagonizable.

Using this, one can immediatly decompose V accordingly into linear eigenspaces of the (diagonal)
action of H. We denote these different eigenspaces by which eigenvalue H has on them. That
is, we write V =

⊕
Vα, such that for v ∈ Vα we have H(v) = αv. Here, the α are just a finite

collection of complex numbers. Of course, we wish to know how the other basis elements act on
the eigenspaces Vα. We can calculate this using the commutation relations. For example for F
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we have:

H(F (v)) = F (H(v)) + [H,F ](v)

= F (αv)− 2F (v)

= (α− 2)F (v)

Hence, we have that F : Vα → Vα−2. Similarly, for E we find that E : Vα → Vα+2. Because of
finite dimensionality of V this must break at some point. That is, at some point we must have
Ek(v) = 0 and F l(v) = 0 for some k and l. We get several eigenspaces that are mapped to each
by the action of the spaces E and F . We will call these eigenspaces a string.
Furthermore, what this tells us is that the space V =

⊕
n∈Z Vα+2n is invariant under the action

of sl2C, so it must be the whole space by irreducibility of V . So all Vα that appear can be reached
by application of the operators E and F . The spaces form an unbroken string of eigenspaces:
only at the ends of the string the action of E and F kills the spaces. We may summerize the
action of the basis elements in a diagram:

E

��

Vα−2
F
oo

E

��

H

WW
Vα

F
oo

E

��

H

XX
Vα+2

F
oo

H

WW

By finite dimensionality we know there must be some maximal α, such that Vα 6= 0. Let us
denote this α by n. Then for v ∈ Vn we have X(v) = 0. Such v are sometimes called highest
weights vectors. We will come back to this in greater detail for sl3C . We have several facts:

• The vectors {v, F (v), F 2(v), . . .} span V

• E(Fm(v)) = m(n−m+ 1)Fm−1(v)

• All eigenspaces Vα are one dimensional

We can quickly illustrate the second fact. Let v be a highest weight vector with weight n. Then
we have

E(F (v)) = [E,F ](v) + F (E(v))

= H(v) + F (0) = n

Repeating this process the pattern becomes clear. However, we can just prove our statement by
induction. The above provides the induction basis. We then compute

E(Fm(v)) = E(F (Fm−1(v)))

= [E,F ](Fm−1(v)) + F (E(Fm−1(v)))

= H(Fm−1(v)) + F ((m− 1)(n−m+ 2)Fm−2(v))

= ((n− 2(m− 1)) + (m− 1)(n−m+ 2))Fm−1(v)

= m(n−m+ 1)Fm−1(v)

Note that from the second fact we can draw another conclusion. By finite dimensionality there
must be m such that Y m(v) = 0. Then E(Fm(v)) = m(n−m+1)Fm−1(v) = 0, so n−m+1 = 0,
so n ∈ N. This brings us to the theorem:
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Theorem 4. For every n ∈ N there is a (n+ 1)-dimensional representation D(n), where H has
integral eigenvalues {−n,−n+ 2, . . . , n− 2, n}.

We will just construct them. A first step would be to look at the standard representation of
sl2C, where V = C2 and we let the matrices work on this vector space. Using the standard
basis {e1, e2}, we note H(e1) = e1 and H(e2) = −e2. Then this representation is exactly V (1) as
described above. The rest of the representations D(n) may now be realized as symmetric powers
of V . The statement is that any irreducible representation of the Lie algebra sl2C is a symmetric
power2of the standard representation V = C2.

Let us look at an example, where we take a simple tensor product of some representations, and
try to find how it decomposes. For sl2C this might seems somewhat trivial, but it shows some
machinery that we will need to decompose representations of sl3C , in particular a few tensor
products which have important physical implications.
Let V = C2 the standard representation. How can we decompose Sym2V ⊗ Sym3V ? Using
our knowledge of irreducible representations Sym2V has eigenvalues −2, 0, 2 while Sym3V has
eigenvalues −3,−1, 1, 3. From the discussing of Lie algebras we know how to find eigenvalues of
the tensor product. They will be pairwise sums of the possible eigenvalues of both the spaces.
We get the following picture:

−5 −3 −1 −1 3 5

From the picture we deduce there are three different irreducible components. We can imme-
diatly discern Sym5V . Ignoring the eigenvalues of this representation, there is again a single
highest representation Sym3V . Continueing in this way, one concludes we have the decom-
position: Sym2 ⊗ Sym3V = Sym5V ⊕ Sym5V ⊕ V In fact, one may generalize this state-
ment to immediatly find how a tensor of two such spaces decomposes. In general we have

SymaV ⊗ Symb =
b⊕
i=0

Syma+b−2iV .

Let us summarize what we have found. Every irreducible representation of sl2C on a vectorspace
V is isomorphic to the representation SymnC2 for some integer n. We called these D(n). The
eigenvalues of such a representation will be integral between n and −n, and differ by two:
−n,−n+ 2, . . . , n− 2, n. We will later use this short description of irreducible representations of
sl2C when we find subalgebras isomorphic to sl2C in sl3C , at which point this knowledge will
prove to be very useful.

2The symmetric power of a vector space is denoted Symn(V ). The symmetric power can be constructed as a
quotient space of the tensor V ⊗n by the subspace v1⊗ . . .⊗ vn− vσ(1)⊗ . . .⊗ vσ(n) where σ ∈ Sn, the symmetric
group on n elements. It comes with a product, denoted ” · ”.
Given {ei} a basis for V , then

{ei1 · ei2 · . . . · ein : i1 ≤ i2 ≤ . . . ≤ in}
is a basis for Symn(V ). Hence Symn(V ) can be viewed as the space of homogeneous polynomials in the variables
ei. For more information, see appendix B of [1].
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2.2 The Lie algebra sl3C and its adjoint action

This is the algebra that will be of great importance for our example of representation theory
pertaining to particle physics. One may realize this Lie algebra as the algebra of traceless 3× 3
matrices, and it is sometimes called A2 in light of the full classification of Lie algebras. Indeed,
we may again pick a basis, which will this time be 8-dimensional.
For the time being we wil soon pick a basis of this Lie algebra that will prove convenient to
work with. However, in the section on particle physics, we may normalize somewhat differently
as dictated by the literature. This however, changes nothing about the general theory developed
here.
Note that in the case of sl2C there was a specific element H that acted diagonally. By using
this element we could decompose any representation in terms of the action of H. In the case of
sl3C the role of H will not be played by a single element, or a one dimensional subalgebra if you
will, but by a bigger subalgebra. We will take this algebra to be the two dimensional subalgebra
of diagonal matrices (three elements on the diagonal, together with tracelessness imposes two
degrees of freedom). In more general cases, it is always important to find such an algebra; an
abelian subalgebra that acts diagonally (appendix D of [1]). Such a subalgebra is called a Cartan
subalgebra, and one may prove that it always exists. In the present case, we merely give this
subalgebra and use it immediatly without worrying about the general case.
We will denote the Cartan subalgebra h, so in the present case h ⊂ sl3C are the traceless diagonal
3× 3 matrices. Now how do we compose with respect to the action of h? We define

Definition 7. An eigenvector for h is a vector v ∈ V such that we can write H(v) = α(H)v,
where α ∈ h∗ a linear functional on h and H ∈ h.

We then call such functionals α the eigenvalues. By complete reducibility we can now decompose
V into spaces associated with the eigevalues α, so that we have for any finite-dimensional repre-
sentation V =

⊕
Vα, where Vα is an eigenspace for h and α ∈ h. Some more terminology is in

order. We call the functionals α occuring in a representation the weights of this representation.
The associated eigenspaces Vα will be called weight spaces, and vectors within these spaces are
the weight vectors.
A special role is played by the adjoint action, as we will see. We can do the above operations on
this special representation, where the eigenspaces will then be subspaces of sl3C itself. Using this
adjoint representation, we can decompose sl3C = h ⊕ (

⊕
gα). The eigenspaces and eigenvalues

of the adjoint representation have special names. We call the weight spaces the root spaces and
the weights roots. To make this explicit, we pick the following basis, where H12 and H23 will be
the basis of the subalgebra h. Denote Eij the matrix with a 1 in the ith row and jth collumn.
Then take the basis

H12 = E11 − E22, H23 = E22 − E33 (5)

Eα = E12, E−α = E21 (6)

Eβ = E23, E−β = E32 (7)

Eγ = E13, E−γ = E31 (8)

Calculating commutation relations we find for a general H ∈ h, that is H = diag(λ1, λ2, λ3),
that

[H,Eij ] = (λi − λj)Eij
Define the fuctional ωi ∈ h∗ in the following way. Let H ∈ h, which means H = diag(λ1, λ2, λ3).
We take ωi(H) = λi. This is just projection on the first matrix element.
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Note that the span over C of {ω1, ω2, ω3} is h∗. This is the case as h∗ is 2-dimensional. The three
ωi are not linearly independent, as ω1 + ω2 + ω3 = 0 as the matrices are traceless. However, any
two ωi and ωj are linearly independent for i 6= j. So, this span is also two dimensional and a
subspace of h∗, hence all of h.
Then by the above calculation, we have that the roots are ωij = ωi−ωj , as these are the eigenval-
ues of the adjoint action of h, calculated from the commutator. Then to such a root ωij is associ-
ated its root space Eij . We have thus decomposed sl3C as follows: g =

⊕
α gα = h⊕ (

⊕
i 6=j gωij ).

Let us draw a picture of the roots in h∗. In the picture, the dependent vectors ωi are of equal
length with a angle π

3 between them, such that ω1 + ω2 + ω3 = 0. The roots will then be given
by just adding up vectors, in which way we produce a regular hexagon. This choice of angle
may seem somewhat arbitrary. However, note that first of all, it works. Adding these vectors as
described in the upcoming picture satisfies all the requirements we have for the ωi. The reason
why this should be an angle π

3 is actually much more involved. It turns out that for semisimple
Lie algebras of rank two, there are only several possible configurations of roots of which this is
one. This has to do with the Killing form but is quite involved so we will briefly come back to it
in section 2.3.

Note that a weight will be a certain eigenvalue α which assigns values to the elements of h. We
know the vectorspace h is two dimensional, so let us take H12 and H23 as a basis. We can denote
then α = (m1,m2) where α(H1) = m1 and α(H2) = m2. We can therefore also denote weights
as ordered pairs of two numbers. This will turn out to be convenient when classifying different
irreducible representations later on.

The adjoint action of h is clear as it sends each root space to itself by multiplication by some
scalar which is the eigenvalue. We can use this knowledge to find out how the rest of the Lie
algebra acts by calculation. In general, we can come to the following conclusion. Given X ∈ gα
and Y ∈ gβ , where the subscripts of the eigenspaces denote the corresponding eigenvalues in h∗.
Then we have for any H ∈ h:

[H, [X,Y ]] = [X, [H,Y ]] + [[H,X], Y ]

= [X,β(H)Y ] + [α(H)X,Y ]

= (α(H) + β(H))[X,Y ]

Therefore, [X,Y ] is an eigenvector for the adjoint action of h with eigenvalue α + β. Therefore,
we can indeed conclude that the adjoint actions of the eigenspaces permute the eigenspaces
themselves. That is

ad(gα) : gβ → gα+β

In our case, we may calculate how every root space Eα, Eβ , Eγ , E−α, E−β , E−γ permutes the
spaces using the adjoint action. For example, we compute the adjoint action of Eα. We get

[Eα, Eα] = 0, [Eα, E−α] = H12

[Eα, Eβ ] = Eγ , [Eα, E−β ] = 0

[Eα, Eγ ] = 0, [Eα, E−γ ] = E−β

We can repeat this process for all eigenspaces and draw them in a diagram. Let us put the spaces
on the vertices of a hexagon, with the eigenspace h with eigenvalue 0 in the middle. We denote
the adjoint action by an arrow. When the arrow leaves the diagram, we mean it maps to 0,
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killing the corresponding eigenspace. We use red arrows for the adjoint action of Eα and E−α,
where the arrows going to the right denote the action of the first, and the arrows going to the
left denote the action of the latter. We do this in blue for Eβ and its counterpart, and in green
for Eγ and its counterpart. We obtain the following diagram.

Eα

EγEβ

E−α

E−γ E−β

We see that the adjoint action of a particular eigenspace shifts all the other eigenspaces into a
particular direction which is parallell to where the rootvector itself is pointing.

We can now use this knowlegde to compute how elements of a arbitrary representation shift the
eigenspaces. The same picture applies here. Let V be a representation of sl3C . We know our
Cartan subalgebra h acts diagonally by virtue of the preservation of Jordan decomposition, so
again we may decompose V into eigenspaces, as we saw before for the adjoint representation:
V =

⊕
Vα, where α ∈ h∗. We call the α the weights of the representation, and the spaces Vα

the weight spaces. We now wonder how the rest of sl3C acts on V . If we let X ∈ gα and v ∈ Vβ ,
how will X act on this vector v? This can be calculated this using the commutator, which is the
adjoint action as our elements are matrices. Similarly, we compute the action of H on X(v) to
see in which eigenspace it is.

H(X(v)) = X(H(v)) + [H,X](v)

= X(β(H)v) + (α(H)X)v

= (α(H) + β(H))X(v)

This means that X(v) is again eigenvector, only now with eigenvalue α+ β. In terms of our two
numbers, we have for a weight β = (b1, b2) and a root α = (a1, a2) that X(v) is in the weightspace

19



with weight β + α = (b1 + a1, b2 + a2). We can use these roots to generate a lattice in h∗, we
shall denote ΛR, the root lattice.

ΛR = {aω12 + bω23 + cω13 : a, b, c ∈ Z}

All weights α occuring in the representation will lie in some translate of this lattice as they
are congruent modulo this lattice. If this were not the case, W =

⊕
β∈ΛR

Vα+β would be a
subrepresentation, and this contradicts with irreducibility. We conclude all eigenvalues occuring
in an irreducible representation of sl3C differ by integral linear combinations of the roots ωij ∈ h∗.
We will use this property to describe general irreducible representations of sl3C .

2.3 The irreducible representations of sl3C

We now wish to find how the irreducible representations of sl3C are structured. In the case of
sl2C , we found a vector that generated the entire representation. This is in fact a very general
principle that works for semisimple Lie algebras. However, we will state it specifically for sl3C
here. To do this, we need some kind of notion of a vector that lies in an eigenspace that is in
some sense on the edge of our weight diagram. To specify what we mean, let us order the roots.
This is done by picking a linear functional

l : ΛR → R
We will define then positive roots as roots α such that l(α) > 0 and negative roots when l(α) < 0.
Note that to avoid ambiquity, we need to pick l irrational with respect to the lattice so it can never
intersect a root. Let us just pick some linear functional. We will later see it doesn’t matter which
one we picked. As it is defined on the root lattice, we take l(λ1ω1 +λ2ω2 +λ3ω3) = aλ1 +bλ2 +cλ3

with a > b > c such that l is indeed irrational with respect to ΛR. Drawing this l in a picture of
h∗ with our roots, we get the following picture

ω13

ω23

ω21

ω31

ω23

ω12

0

l = 0

The positive roots will now be ω12, ω13 and ω23 for the specific l we have chosen. Note that
they are not linearly independent. We will call a root simple if it cannot be expressed as a linear
combination with positive coefficients of other positive roots. The simple roots will therefore be
ω12 corresponding to the root space Eα and ω23 corresponding to Eβ . We can express all roots
in terms of these positive simple roots. This can be done by looking at what values they assign
to H1 and H2, as these are a basis of h. We have ω12 = (2,−1) and ω23 = (−1, 2). Then we have:

ω13 = (1, 1) ω31 = (−1,−1)

ω21 = (−2, 1) ω32 = (1,−2)
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2.3.1 The highest weights

Definition 8. Let V be an irreducible finite-dimensional representation of sl3C . Then there is
a vector v ∈ V called the highest weight vector which has the property that

• The vector v is in some eigenspace Vλ, meaning it is an eigenvector for h

• The vector v is killed by the action of the positive root spaces, Eα, Eβ and Eγ .

Note that if Eα and Eβ kill v then Eγ also kills v because Eγ = [Eα, Eβ ]. The existence of such
a vector v that is killed by the three positive root spaces might be somewhat intuitive by looking
at the picture. This vector will in some sense be at the edge of the weight diagram, contained
in a weightspace, such that our positive rootspaces act as shifts beyond the edge, our vector v
is killed. In fact, the highest weight will be that for which the functional l we picked is maximal
because any weight space beyond the highest weight space will be killed by action of the positive
root spaces.
In a similar way to sl2C , this highest weight vector and its highest weight will prove very
important to our discussion. As we saw in the case of sl2C , an entire irreducible representa-
tion was generated by applying the operator F to a weightspace with the highest weight. This
highest weight was some integer, and fully determined the irreducible representation. We wish
to do something similar for sl3C , but now we have two numbers to work with to find highest
weights. We will later see any two integers (m1,m2) will be the highest weights of some irre-
ducible representation. Thus for any two integers we get an irreducible representation of sl3C .
Let us first begin by stating in detail why the highest weight is so useful in the following theorem.

Theorem 5. Let V be a finite-dimensional representation of sl3C , and v ∈ V a highest weight
vector. Then W , the subspace generated by successively applying the negative root spaces E−α,
E−β and E−γ to v, is irreducible.

Proof. We will first assume V to be irreducible. We generate W by applying the negative root
spaces, and prove that W is invariant under sl3C . By irreducibility, W must be the entire V .
It is enough to check that the root spaces Eα, Eβ and Eγ map W to itself. Furthermore, as Eγ
is the commutator of the other two, it is enough just to check for Eα and Eβ . Of course, for v
itself the statement is trivial, as it is in the kernel of the action of the root spaces.
We now proceed by induction.
Let wn be a word on the letters E−α and E−β with length smaller or equal to n. We take Wn

the vector space spanned by such applying such words to v. Then W =
⋃
nWn. Now let us

calculate how the spaces Eα and Eβ act on wn(v). The above step gives the induction basis for
the statement that Eα and Eβ carry Wn into Wn−1. Let us proceed by induction for wn. Note
we can write any such wn(v) as E−α(wn−1((v)) or E−β(wn−1(v)). Then for Eα:

Eα(E−β (wn−1(v))) = E−β(Eα(wn−1(v))) + [Eα, E−β ](wn−1(v))

∈ E−β(Wn−2)

⊂Wn−1

Similarly,
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Eα(E−β (wn−1(v))) = E−β(Eα(wn−1(v))) + [Eα, E−β ](wn−1(v))

∈ E−β(Wn−2)

⊂Wn−1

A similar calculation for Eβ proves the theorem for reducible V . Let us now look at any represen-
tation V . Let λ be the weight associated to v (v ∈ Vλ). The above calculation establishes that W
is a subrepresentation of V . We have that Wα is one dimensional. Suppose now, on the contrary,
that W is not irreducible. Then W = W ′ ⊕W ′′ for representations W ′ and W ′′. Because they
are representations, projections on either component commutes with the action of h. Therefore,
we can decompose Wα = W ′α⊕W ′′α . Because Wα is one-dimensional, so v is in either W ′ or W ′′,
which W is either W ′ or W ′′, meaning it is irreducible.

Thus we know that the whole irreducible representation is, so to speak, contained below the
eigenspace Vλ with highest weight containing the highest weight vector. As the action of the root
vectors shift in particular directions, the above proof shows that only by shifting in the E−α,
E−β and E−γ directions do we get to nontrivial spaces.
If λ is a highest weight, then dim(Vα) = 1 as can be verified by taking another vector in v′ ∈ Vλ.
Then write v′ in terms of the generating operators and v. By using the linear indepence of two
of the three roots one may conclude that v′ = cv. This shows that in fact, the highest weight is
unique up to scalars as the highest weight space is one-dimensional, and therefore an irreducible
representation is fully determined by its highest weight vector.
Furthermore, given an arbitrary representation, every highest weight vector we find corresponds
to an irreducible subrepresentation, and the dimensionality of the weight space containing this
highest weight vector gives the multiplicity of the irreducible subrepresentation in the decom-
position of the representation. If we were to plot such an highest weight λ corresponding to a
highest weight vector v, we get the following picture.

λ

Eγ

Eβ

E−α

E−γ

E−β

Eα

Here, λ is shown as a point in h∗ and we also show the directions in which the root spaces shift.
As the positive root spaces kill the highest weight vector and the negative root spaces generate
the entire irreducible representation, we know the weights are contained in the blue area of the
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diagram. We can now concentrate on what happens on the edges of the blue portion of the dia-
gram to see if we can further confine the weights that will appear in our representation.However,
let us first look in more detail at what these highest weights look like. For such highest weights
λ we have the following characterization in terms of what the values of the highest weight is on
H12 and H23. This will turn out to be handy to actually give names to irreducible representations.

Lemma 4. Given any two positive integers m1,m2 there is an irreducible representation of
sl3C having λ = (m1,m2) as highest weight. In terms of {ω1, ω2, ω3} the highest weight will be
m1ω1 −m2ω3.

We first prove a lemma about highest weights of tensor products.

Lemma 5. Let v ∈ V be highest weight vector and w ∈ W a highest weight vector of represen-
tations V and W . This means both are killed by Eα, Eβ and Eγ . Consider the representation
V ⊗W . Then v ⊗ w is a highest weight vector for this representation.

Proof. We compute the action of Eα on v ⊗ w ∈ V ⊗W :

Eα(v ⊗ w) = Eα(v)⊗ w + v ⊗ Eα(w)

= 0⊗ w + v ⊗ 0 = 0

Similar calculations hold for Eβ and Eγ . So we see that indeed v ⊗ w will be a highest weight
vector of V ⊗W .

Furthermore, we know a similar calculation for the weights corresponding to v and w that the
weight corresponding to v⊗w will be the sum of the two weights for v and w. We can now prove
the theorem.

Proof. Lemma 5
We then have highest weight (1, 0) which belongs to the standard representation V of sl3C on C3

by just letting the matrices act as operators. The eigenvectors will be the standard basis. Then
note that Eα and Eβ and Eγ all kill e1 and that indeed e1 had weight (1, 0). In terms of the
weights {ω1, ω2, ω3} it corresponds to the weight ω1.
Now, we already determined how the adjoint standard representation V ∗ works. An matrix X is
represented by−Xt. We therefore our positive roots are represented by their negatie counterparts,
and we have now that e3 will be the highest weight vector, with weight (0, 1) or −ω3. These
representations with weights (1, 0) and (0, 1) are the so called fundamental representations. We
will use them to build other representations with the required highest weights. We do this by
taking tensor products of the fundamental representations. Let us take the representation W =⊗m1 V ⊗

⊗m2 V ∗.
We have that a highest weight of this representation will be e1⊗. . .⊗e1⊗e3

∗⊗. . .⊗e3
∗ with weight

(m1,m2) or m1ω1 −m2ω3. It is entirely unclear whether this representation is irreducible, but
this doensn’t matter. By the previous theorem we can generate an irreducible subrepresentation
with highest weight (m1,m2).

Indeed we now know that any to integers m1,m2 give rise to an irreducible representation of
sl3C .
Let use denote such representations with highest weight (m1,m2) as D(m1,m2). The question is,
is this representation unique? It turns out we can indeed speak of an unique D(m1,m2). Suppose
there are two irreducible representations V and W with highest weight α and highest weight
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vectors v ∈ V and w ∈W .
By a simple calculation using the properties of the direct sum space V ⊕W that we calculated
before, we know (v, w) is a highest weight in V ⊕W with weight α. Using this highest weight
(v, w) generate a irreducible subrepresentation U ⊂ V ⊕W , by succesively applying the negative
root spaces. Then we have projection maps πV : U → V and πW : U →W . Now note that πV |U
is nontrivial as πV |U (v ⊕ w) = v. Likewise πW |U is nontrivial. By Schurs lemma, any nontrivial
homomorphisms between two irreducible representations is an isomorphism. As V , W as well as
U are all irreducible, we have U ∼= V and U ∼= W , hence V ∼= W and we have uniqueness.

So we conclude that for every two positive integers m1, m2 we have a unique irreducible represen-
tation D(m1,m2) with highest weight (m1,m2) or more geometrically highest weight m1ω1−m2ω3.

What we have not calculated is what exactly such a representation will precicely look like. First
of all, we state a fact here that may be deduced from the so called Weyl character formula. This
is a way to calculate multiplicities of weights within a representation. For more on the Weyl
character formula see [2] chapter 24 section 3 or [1] chapter 24. For these representations of sl3C
(also called A2 in [2]) we have

dim(D(m1,m2)) =
1

2
(m1 + 1)(m2 + 1)(m1 +m2 + 2)

One may in fact prove that these representations can be realized as the kernel of the contrac-
tion map on the representation Symm1V ⊗ Symm2V ∗. However, the exact construction is not
really insightful. We can just construct some representations as examples. First example will be
the representation D(1,0). We know it is the standard representation on V = C3. Therefore, we
immediatly know the weights and thereby the weight diagram. The weights will be our ω1, ω2

and ω3 by the action of the matrices on the standard basis e1, e2 and e3.

We will draw the roots as vectors of equal lengths with angles π
3 between them. The explanation

for this is quite involved and pertains to a full classification of the semisimple Lie algebras, but
we will briefly discuss it here. The Killing form may be used to define an inner product < , >
on the vector space of roots h∗.
Now define numbers nβα with α and β in the positive simple roots as

nβα =
2 < β,α >

< α,α >

It turns out that these nβα are always integers. This then fixes a combination of length and angle
between the positive simple roots. There are then only several possibilities. For Lie algebras of
rank two, one possibility is the angle 2π

3 between two positive roots of equal length. This is the
case for sl3C , and is what we have drawn so far, considering ω12 and omega23 are the positive
simple roots.

Let us now come back to the first irreducible representation of sl3C , which has the following
weight diagram
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We see the highest weight is ω1. From now on we will circle the highest weight space in red. We
can do the same for D(0,1), which will be the standard action on V ∗. We get weight diagram

Here the highest weight is −ω3.
Now let us treat an important, more insightful representation which we will use later on. Let
us take a look at the representation D(0,1) ⊗ D(1,0). We already calculated how these tensor
products work, that is by adding the weights of the respective representations. However, we now
get several ways in which to reach the 0-functional (that is, the spaces associated with h). We
get the following diagram

Here the highest weight is ω1−ω3. We can immediatly see the subrepresentation D(1,1) generated
by the sum of the highest weights of the two representations. This will be the hexagon plus
two middle points as one may readily calculate by generating the irreducible subrepresentation
using the negative root spaces. We are left with a single dot with weight 0. We then see that
D(1,0) ⊗D(0,1) = D(1,1) ⊕D(0.0). We can continue building bigger representations like this, and
deduce from them their irreducible components by finding highest weight vectors and acting on
them with the negative root spaces. However, this requires lenghty calulations.
In fact we can generalize how the weight diagrams look, together with the multiplicity of each
weight space in general. However, it will be easier to explain this once we have a more geometric
picture of how general weight diagrams look for sl3C .

We now continue to look at how the weight diagram develops geometrically. This will prove to
be insightful in how the weight diagrams of irreducible representations look. Let us return to
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our highest weight λ somewhere in the weight diagram, and look at what happens when we
study the eigenspaces occuring by acting with a single root space. We have three directions to
choose from, being ω21, ω32 and ω31 by acting with E−α, E−β and E−γ respectively. Let us move
along the border by taking E−α and apply it successively to the eigenspace Vλ. We get a string
in the ω21-direction. That is, we generate the spaces Vλ+k(ω21). By finite dimensionality of the
representation this must end at some point, hence k is some finite integer.
Now let us use our knowledge of sl2C and construct a subalgebra of sl3C isomorphic to sl2C .
This is done by the identification

Eα 7→ E ∈ sl2C, E−α 7→ F ∈ sl2C, [Eα, E−α] = H12 7→ H ∈ sl2C

Calculating the commutators we see that this is indeed a representation of sl2C with the right
eigenvalues (±2). Let us call this subalgebra sω12 . This string of eigenspaces, W =

⊕
k

gα+kω21

will be preserved by the action of sω12
. In other words, this W is a representation of sl2C (by

restriction of the action on V to this particular subalgebra).

We can now use our knowledge of representations of sl2C to deduce what this string looks like.
We know the eigenvalues are integers and integral, and symmetric with respect to zero. That is,
symmetric about the eigenspace Vω corresponding to eigenvalue ω, such that that ω(H12) = 0.

Using this first step (generating a string that is a sl2C representation), we can fully generalize
to find what the weight diagram looks like. We introduce the Weyl group.

Definition 9. The Weyl group W of a Lie algebra g is the group generated by the involutions
Wα(β) = β − β(Hα)α on h∗ where α is a root and β ∈ h∗

These are exactly the reflections in the lines Ωα = {β ∈ h∗ :< Hα, β >= 0}. Such Weyl groups
may be constructed for any semisimple Lie algebra. Here we see the Weyl group is a group
isomorphic to S3, the permutations on three elements, as there are three possible reflections.

Let us draw such a line, for example Ωω12
. We take this as an illustration of what happens around

one such line of reflection pertaining to the Weyl group. The same story holds for Ωω23
and Ωω13

This line consists of alll L ∈ h∗ such that ω(H12) = 0, in the plane h∗. We conclude that the
string generated by applying E−α to the highest weight is symmetric about this line by the sl2C
properties, and hence is conserved under reflection in this line.
Let us draw this line in our picture of h∗. We know the functionals ω1, ω2 and ω3 span h∗, so we
write down Ωω12 in terms of these. As we want zero eigenvalue on H12 for every functional on
the line, it is easy to see that

Ωω12 = {aω1 + bω2 + cω3 : a = b}

Putting this into a picture we immediatly see that this line is orthogonal to the string generated
by applying E−α to the highest weight space.

Let us now look at the left end of the string W generated by Eα from the highest weight vector.
At some point we must have smallest integer m such that Emα (v) = 0, by finite dimensionality
of the representation. Let us look at the eigenspace Vρ where ρ = ω + (m − 1)ω12. We see that
v′ ∈ Vρ is also a highest weight vector had we chosen a different functional, because it is a vector
that is killed by the root spaces E−α, Eβ and Eγ . Choosing a functional that maximizes the
coefficients in front of these root spaces will have maximal weight ρ.
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Then the statement after this, however, would not have changed. The entire representation would
still be generated by the action of the now negative root spaces. We could again shade the area
spanned by the negative root spaces and see we have confined our weight diagram to a smaller
area in h∗. This is what happens around the line Ωω12

. We have the unbroken string of eigenspaces
from λ to ρ which is symmtric about the line Ωω12

.

λ

λ+ ω21

λ+ 2ω21

ρ = λ+ 3ω21

Ωω12

We can keep on repeating this process. Generate a string along the edge and find a subalgebra
isomorphic to sl2C , by sending the root space generating the string, its negative and their com-
mutators to the elements of sl2C . In this way we find again a line of reflection Ωωij under which
the string is invariant.
In this way, the set of α for which Vα 6= 0 is symmetric with respect to the reflections of W.
We have constructed a so called hull in which all the weights occuring the representation are
contained. Note that by definition of the Ωωij they intersect at 0 ∈ h∗ as all coefficients must be
equal, but ω1 + ω2 + ω3 = 0.

Now as the eigenvalues of the Hij must be integers by virtue of the sl2C subrepresentations, we
know that the weights occuring will be integral linear combinations of the ω1, ω2 and ω3. This
is the case because any weight can be expressed as ω = aω1 + bω2 + cω3. It must have integer
values on H12 and H23, forcing a, b, c ∈ Z. That is, the weights lie on the weight lattice

ΛW = {aω1 + bω2 + cω3 : a, b, c ∈ Z}

We therefore find that the occuring weights must lie in the lattice generated by the weights
ΛW , as well as being congruent modulo the action of the root spaces, so congruent modulo ΛR.
Summarizing the entire preceding construction we can improve our diagram and find
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λ

Ωω12

Ωω23

Ωω13

Here, we see the root lattice drawn in red. From the highest weight λ, all weights within the hull
are congruent to each other modulo ΛR, whereas the weights themselves lie on the triangular
grey grid, within the blue convex hull spanned by the image of λ under the Weyl group. This
in fact is almost all there is to know about representations of sl3C . Given a finite dimensional
irreducible representation of sl3C , we can search for the highest weight vector λ ∈ ΛW . The set
of eigenvalues occuring in V will the the functionals congruent to λ modulo ΛR, lying inside the
convex hull (a hexagon) generated by the images of λ under the Weyl group W.

Note however, that we are not entirely done. The multiplicities of the weights are something we
have not calculated. This may be calculated, but the calculation is quite long so we just state the
result. Going one shell inwards (every weight space reached by acting with one generating root
space) has multiplicity 2 all around. As long as the shells have a hexogonal shape, the multiplicity
increases by one on each shell going inwards. Once the shells become triangles, the multiplicity
becomes constant among these triangles.

Finally we briefly introduce the concept of the Weyl chamber. At this time, it is not that useful,
but for different semisimple algebras we can reduce the amount of calculation greatly as we need
to only focus on this Weyl chamber. When we found a highest weight, we know we can generate
the convex hull that contains all the weights of the irreducible representation associated with
this highest weight. However, by acting with the Weyl group, we need very little information
actually. We only need the cone between the lines Ωω12 and Ωω23 , as all other weights will be
conjugate to weights between these lines under the Weyl group.
We call this cone the Weyl chamber W . In the above diagram we filled it purple. Now this subset
of h∗ is convex. In fact, any weight inside is a linear combination of ω1 and −ω3. Therefore, the
highest weight will be within the Weyl chamber. Indeed, there is a bijection between the elements
of ΛW ∩W and irreducible representations of sl3C , as any weight aω1 − bω3 in this set can be
associated to an irreducible representation D(a,b).
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To summarize, given that we want to construct some irreducible representation, we know that
this is equivalent to giving two integers m1 and m2 and constructing D(m1,m2). This construction
is then done by what we calculated before. Let the Weyl group act on the highest weight m1ω1−
m2ω3, and fill out the rest of the diagram with weights congruent the lattice ΛR on the lattice
ΛW . The multiplicities of on the inner shells are described by what we had before. Therefore, we
have fully characterized all irreducible representations of sl3C .
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3 Elementary particles

As presented in the introduction, we now apply our knowledge of representation theory to an
important application in physics. Of great interest will be the algebras sl2C and sl3C which we
have discussed in great detail.

3.1 Interaction in particle physics

As technology advanced, physicists were able to construct high energy particle accelerators.
Experiments conducted with these accelerators produced a wealth of new particles that could
be studied. From many types of collisions one may produce many types of particles. However, in
this particle pandemonium many structures were observed. We can even classify them in a rather
beautiful way using representation theory inspired by experimental data. By carefully studying
all particles that appear, we may group them. From this experimental observation, a theory was
developed which explained this phenomomen. This is the quark model. It is a great example of
the way in which theory and experiment come together to produce a powerful model.
What we are concerned with is the so called strong force. Of course, other forces might be of
interest, like electromagnetic forces in the charges or weak interaction in decay. However, we will
concentrate only on the strong interaction, which is several orders of magnitude stronger than
the other interactions. The strong interaction is what binds the nucleus together. To further
explain why we need representation theory, let us explain how symmetry plays a role in physics.

3.2 Symmetry groups and physics

Many things about physical systems can be learned from their symmetries. In 1918, E. Noether
derived conservation laws using the symmetries of physical systems. In this thesis we will focus
on more restricted cases, and simplify some theory in order to remain concise.
Let us first state what we mean by a symmetry. Physical systems have an energy which in
quantum mechanics is given by the Hamilton operator H̄. The particles are states |ψ〉 which are
vectors in some vector space.
A physical system is said to have a symmetry group Gα if the Hamiltonian describing the system
commutes with the operators Û(α) ∈ Gα. These are matrix operators assigned to the group
elements, so it is a representation of the group Gα on the vector space of states |ψ〉. Because the
Hamiltonian governs time evolution of our system this is indeed very important. Let us make
this statement more concrete.
Physical quantum systems will be described by wave functions governed by the Schrödinger
equation. The interpetation of such wavefunctions is as vectors in a complex Hilbert space. They
are functions of space and time, together with an inner product < | >. Then the inner product
of a state with itself squared is interpeted as the probability of finding a particle at a position ~r
at time t.
The Hamiltonian H̄ is a way to measure the energy of a given state. Given that the Schrödinger
equation holds for some initial state we have

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t)

30



Applying the symmetry operator Û(α) we have

i~
∂Û(α)ψ(r, t)

∂t
= Û(α)ĤÛ−1(α)Û(α)ψ(r, t)

Then the displaced wave function Û(α)ψ(r, t) obeys the same Schrdinger equation as ψ(r, t) if
we have [Ĥ, Û(α)] = 0 which is then what it means to be a symmetry of the Hamiltonian.
From this we can also make a statement about the infinitesimal operators associated to Gα. That
is, the operators which generate the group. Note that in the case Gα is a Lie group this will be its
associated Lie algebra. From the previous calculation, we then have for the infinitesimal operators

that [Ĥ, e−iαkL̂k ] = 0, where L̂k are the infinitesimal operators. Then for small displacements we
have

[Ĥ, L̂k] = 0

So for a symmetry group Gα, the infinitesimal generators L̂k will also commute with the Hamil-
tonian. In physics, the irreducible representations of Gα on the vector space of states is called a
multiplet. We will actually use the representations of the Lie algebra, as there is a 1-1 correspon-
dence and they are easier to work with.
Now we wish that symmetry operators Ûα conserve the probability interpetation. That is, they
preserve the inner product on the vector space of states. One may calculate that this implies that
the representations are unitary. We will only be looking at the case of SU(2) and SU(3). We
know that any representation of semisimple Lie algebras is completely reducible, so the action
of Gα can be decomposed into multiplets.

Now we come to an important property of such multiplets. If a state |ψ〉 has an energy E, we
mean that it has eigenvalue E for the Hamiltonian Ĥ. That is

Ĥ |ψ〉 = E |ψ〉

From commutativity of the Hamiltonian with group operators Û(α), we see that the displaced
wave function |ψ′〉 = Û(α) |ψ〉 also has eigenvalue E for the Hamiltonian operator H̄

Ĥ |ψ′〉 = ĤÛα |ψ〉
= ÛαĤ |ψ〉
= ÛαE |ψ〉
= E |ψ′〉

Therefore, we can conclude the eigenvalue of the Hamiltonian operator for all these particles
is the same; all states inside a multiplet have the same energy. Because the Hamiltonian also
commutes with infinitisimal generators L̂k also commute with Ĥ this is also true. However, there
is another class of operators which will prove interesting.

We have introduced Casimir operators, which we shall denote Ĉλ. They are operators that
commute with all the infinitesimal generators and for every two Ĉλ and Ĉµ we have [Ĉλ, Ĉµ] = 0
. One may deduce that for symmetry groups SU(n) these operators will always be homogeneous
polynomials in the infinitesimal generators: Ĉλ(L̂1, L̂2, . . . , L̂k). This is referenced on page 75 of
[5] (Biedenharn, 1963).
The number of independent Casimir operators depends on the rank of the Lie algebra (the
dimension of h). In fact, the number of Casimir operators equals the rank of the Lie algebra
(theorem by Chevalley).
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Consider a rank l Lie algebra. The Casimir operators also commute with H̄, and therefore, can
be simultaneously diagonalized. In quantum mechanics this means that their eigenvalues can be
simultaneously observed, together with the energy as this is the eigenvalue of the commuting
operator H̄. In some sense these operators are more important than the infinitesimal generators.
By Schur’s lemma the Casimir operators act as scalars on the multiplets. Then any multiplet
can be characterized by the l eigenvalues of these l independent Casimir operators C̄λ, with
λ = 1, 2, . . . , l.

Before we start with our first part, the theory of isospin which arises from SU(2) symmetry, let
us introduce some more terminology. Particles that interact strongly are called hadrons. Note
that this does not mean they cannot interact via electromagnetic or weak forces. However, we
pretend that the only force is the strong interaction.
One may divide the hadrons into two groups called mesons and baryons. Mesons are particles
with half-integer spins (fermions), whereas baryons have whole integer spins (bosons). Spin is an
intrinsic way to characterize the internal angular momentum of elementary particles. The theory
for isospin will be very similar to that of spin. From the many high energy collision experiments,
very many mesons and baryons are known. We shall focus on these baryons and mesons.

3.3 Isospin and sl2C

After the discovery of the neutron it was noted that this particle was very similar to the proton.
Of course, their charge differs. However, we will only be concerned with the strong forces that act
on the particles, so we disregard this for the time being. Comparing some empirical properties
of the neutron and proton yields

Mass (in [MeV]) Spin Lifetime (in [s])
p 983.213 1

2 stable
n 939.507 1

2 918 ± 14

We see that their spin is the same, and their masses are nearly the same. If we assume that
the small mass difference is due to electromagnetic interactions, their masses are approximately
equal with respect to the strong interaction. In 1932 Heisenberg proposed that the proton and
neutron were two states of one and the same particle, the nucleon. This is reflected by taking
the group SU(2) as the symmetry group of the strong interaction. This means we are only con-
cerned with the Hamiltonian of strong forces. Note that the Lie algebra that has representations
corresponding to those of SU(2) that we will use is sl2C . We know how to classify multiplets
in this case. We need only one number n ∈ N. In physics however, it is custom to normalize
differently (the 2 arised as eigenvalue of H), such that the number n can now be half-integer:
n = 0, 1

2 , 1,
3
2 , . . .. Then so are the representations of su(2) classified, so also SU(2).

The theory of spin was already present, which makes this a somewhat natural extension. Spin
arises from interactions invariant under rotations due to symmetric potentials. Heisenberg pro-
posed that likewise, the proton and neutron were invariant under isospin rotations.
If we see the proton and neutron as two states of one particle, we may denote them as two states
in isospin space, that is two basis vectors

|p〉 = e1 |n〉 = e2

Now one wants to mix these components by means of sl2C transformations. Now we group the
neutron and proton under a isospin doublet, a multiplet consisting of two states. The smallest
nontrivial multiplet we can take is the one classified by the number 1

2 . We call this number T ,
the total isospin. Now we can write these particles in the basis associated to this classification.
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We take our standard basis with a little modification to the diagonal operator such that they
are classified by half-integer numbers. That is the basis {E,F, 1

2H}, which we call {T̂1, T̂2, T̂3}.
Then we can denote the proton and neutron as |T, T3〉, which is |p〉 =

∣∣ 1
2

1
2

〉
and |n〉 =

∣∣ 1
2 −

1
2

〉
.

Looking at other particles, we can again find three very similar particles. These are the pions,
π−, π0 and π+. Let us again look at their properties.

Mass (in [MeV]) Spin Lifetime (in [s]) Charge (in e)
π− 139.59 0 (2.55 ± 0.03) ×10−8 -1
π0 135.00 0 0.83 ×10−16 0
π+ 139.59 0 (2.55 ± 0.03) ×10−8 0

Again, we see three very similar particles. Distinguish them again by isospin we can take the
next smallest representation with three eigenspaces, whih has T = 1. Then their eigenvalues on
the diagonal operator T3 will be {1, 0,−1}. We can group them into an isotriplet with T = 1 as
it is a three dimensional representation of sl2C∣∣π+

〉
= |1, 1〉∣∣π0
〉

= |1, 0〉∣∣π−〉 = |1,−1〉

This process seems somewhat arbitrary in the sense that we have stated whether this property
of these particles, their isospin, can be observed. Spin for example can be demonstrated (Stern-
Gerlach experiment). However, it turns out we can indeed see isospin as something more than
bookkeeping.

In quantum mechanics, when decay takes place a certain isospin state decays into two or more
different isospin states. The decay that can take place must satisfy certain rules. The way in which
to calculate how a particle with a certain state will decay is done by seeing it as a composition
of states of the end products with coefficients. These coefficients are called Clebsch-Gordan
coefficients. They also arise from the representation theory but we will not calculate them. They
can be interpeted as a chance of the particle decaying to those particular states. This theory
may be found in 5.5 of [5]. Let us take as an example proton-deutron scattering as in [5] page
115-116. We consider two possibilities that can occur

p+ d→ π0 +3 He

p+ d→ π+ +3 H

One may calculate that the initial state in isospin space is
∣∣ 1

2 ,
1
2

〉
|0, 0〉, whereas the final states

are |1, 1〉
∣∣ 1

2 ,−
1
2

〉
and |1, 0〉

∣∣ 1
2 ,

1
2

〉
. The likelyhood of either of these interactions occuring may be

calculated from the Clebsch-Gordan coefficients. It turns experimentally that the results are very
similar to the results aquired from the mathematical theory. Over time, many such experiments
have been conducted, giving credibility to isospin invariance.
We can therefore say that isospin is indeed a real property of particles.

3.4 Hypercharge and sl3C

As we saw, we can classify particles using isospin and thus classify them into multiplets (i.e. dou-
blets, triplets). However, physicists wished to group these particles in bigger multiplets, thereby
extending the symmetry group.
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Historically, we need to start with the notion of strangeness. This notion was introduced to
describe unexplained phenomena. For example, in proton-proton collisions there were single π-
mesons being produced. However, K-meson production only occured in pairs. Furthermore, these
K-mesons appeared to not be able to decay in a strong fashion. There was some mechanism pre-
venting this.
This strange behaviour prompted the proposition of a new quantity called strangeness. The rel-
ative strangeness of particles can be determined by looking at production and decay reactions.
To normalize, the proton and electron were assigned zero strangeness. In this way, we can assign
to all particles their strangeness S. This strangeness was assumed to be a conserved quantity for
strong interactions. Note that this means it can still be violated by, for example, a K0 meson
(S = 1) decaying to two π0 mesons (S = 0). However, the decay is much slower than one would
expect from strong interaction, so this is weak decay. So, strong interactions conserve strangeness,
whereas weak interactions don’t.

Empirically, a rule for the charge was derived using the concepts we saw so far. This is known
as the Gell-Mann - Nishijima rule (introduced independently in 1953) which says

Q =
1

2
Y + T3 (9)

Here, T3 is the three-component of the isospin. We are dealing with a representation of sl2C .
There we had two operators whose actions shifted between eigenspaces and one diagonal operator
determining which eigenspace one is looking at. The operator T3 is that operator. The operator
T is the operator which determines what representation we are dealing with. The eigenvalue for
T for all particles within a multiplet is the same. The particles within the mulitplet are distin-
guished by their values of T3, as T and T3 are diagonalized simultaneously.
In terms of operators we had Y = S + B is the hypercharge, where S is the strangeness and
B the baryon number. The baryon number is a way to distinguish baryons and mesons among
the hadrons. Baryon number 1 is associated to baryons, baryon number−1 to antibaryons and
baryon number 0 to (anti)mesons. This new quantum number Y suggests we should enlarge the
symmetry group of strong interactions. For isospin we had SU(2) symmetry. A new theory was
introduced, called SU(3) flavour symmetry. The idea was, like for isospin, to group all hadrons
into multiplets of this SU(3) flavour symmetry.

Again, we can construct multiplets which will now be two dimensional. However, the masses
thoughout the multiplet will be very different, with an, as we will see, up to 40% mass difference.
The idea was that the lightest mesons should form a multiplet. These are the following particles.
They are all mesons with zero spin.

Particle Mass (in [MeV]) Isospin T Isospin component T3 Hypercharge Y
π± 139.6 1 ±1 0
π0 135.0 1 0 0
K± 493.7 1

2 ± 1
2 ±1

K0 497.7 1
2 − 1

2 1
K̄0 497.7 1

2
1
2 -1

η 549.0 0 0 0

We can now draw these particles in the Y − T3-plane using these properties. This yields the
following picture
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Y

T3

π+

K+K0

π−

K̄0K−

η

π0

1
2

− 1
2

1
2- 1

2

1

−1

1-1

We can do this for other groups of particles in this empirically based way. However, a model
was devoloped in which one may assign the known particles to composite states of a new type
of particle. In this way, all emperical data coincides with the results of this model, proving its
usefulness. The model is the quark model.

3.5 Quark model

As we have seen we can group particles in multiplets in an empirical way. What we look for is
a model that explains this behaviour. Such a model is the quark model, in which we introduce
new particles that build the known particles and derive their properties using this model.
Historically, empirical data suggested that indeed particles could be grouped up into multiplets
as we saw in the previous section. Looking closely at this picture, it has the shape of the D(1,1)

representation of sl3C . Inspired by the succesful idea of isospin, let us extend this to the rep-
resentation theory of SU(3), where the multiplets correspond to irreducible representations of
sl3C .
Now the particles from the previous section form a multiplet. The question was what the most
fundamental representations, out of which one can build all others, should correspond to.
These are new particles called quarks, and the model they arise in is called the quark model.
From a standpoint of group representation, let us assign operators to the quantum numbers like
we did in the case of isospin. The fundamental representations will then arise as the multiplets
belonging to quarks. We will now drop the numbers corresponding to the Casimir operators that
distinguish between the different multiplets and just look at the multiplets on their own. We
now have two quantum numbers to distinguish particles by; the hypercharge Y and the third
component of the isospin T3. Both Y and T3 should be assigned diagonal operators. For the rest,
we take the basis we are familiar with. Only, we have now taken the diagonal elements differently
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(that is, a different basis for h), so some normalization slightly changes. This is the custom way
to represent these operators in physics. We take the following basis of sl3C

Y =
1

3

1 0 0
0 1 0
0 0 −2

 T3 =

1 0 0
0 −1 0
0 0 0

 T± = E±α, U± = E±β , V± = E±γ

The theory remains quite the same, only the eigenvalues will be somewhat different. Let us
again calculate some commutation relations. We already know the commutation relations on T±,
U± and V±. However, commutators between these operators and the new basis of the Cartan
subalgebra will give a somewhat different numbers. We will still have that [Eδ, E−δ] ∈ h for
δ ∈ {±α,±β,±γ}, but it will be a different linear combination of the operators. For completeness
let us here show all commutation relations.

[T3, T±] = ±T± [T3, U±] = ∓1

2
U± [T3, V±] =

1

2
V± [T3, Y ] = 0

[Y, T±] = 0 [Y,U±] = ±U± [Y, V±] = ±V±

[T+, T−] = 2T3 [U+, U−] =
2

3
Y − T3 [V+, V−] =

2

3
Y + T3

[T+, U+] = V+ [T+, U−] = 0 [T+, V+] = 0 [T+, V−] = −U−
[T−, U+] = 0 [T−, U−] = −V− [T−, V+] = U+ [T−, V−] = 0

[U+, V+] = 0 [U+, V−] = T− [U−, V+] = −T+ [U−, V−] = −U−

These are all the commutation relations (apart from, of course, the ones aquired by the skew
symmetry of [ , ]). We see that these operators shift eigenspaces in six directions as before.
Also note again the positive and negative versions of the operators T , U and V together with
their commutator each form a sl2C subrepresentation within our representation of sl3C . In this
case, the T± operators form the sl2C representations associated with the isospin. This means
that taking the directions of T± horizontal, in our representations isospin multiplets can be found
along a horizontal line.

We now introduce the quark model. This is a model that explains the empirical data about
particles regarding their isospin and hypercharge. It arises as the empiral data suggests a multiplet
structure, which by using representation theory can be built using fundamental representations.
The quarks and antiquarks then correspond to these fundamental representations (there are two).
At first, the idea of quarks was merely regarded as mathematical bookkeeping. Only after many
years, they were accepted as being ”real” particles.
We will only discuss the quark model with three quarks. There are more flavours of quarks,
but these three are historically the first ones proposed. Furthermore, the three flavour model is
quite accurate as the weights of the quarks are very close together. The other quarks have very
different weights, which is why it is hard to fit them into multiplets.

We begin by constructing the smallest possible non-trivial representation of SU(3), the funda-
mental ones. In the basis we have picked, we can first look at the smallest isospin doublet we
can aquire. Because the normalization chosen, the smallest representation has two eigenspaces
with eigevalues 1

2 and − 1
2 for T3. This is what we have seen before: it is exactly the property of

sl2C , only now we have normalized the diagonal element associated with the sl2C subalgebra
differently, such that the eigenvalues differ by a factor 1

2 . However, also U -spin and V -spin (U±
and V± with their commutatosr, as before) form sl2C subalgebras. From our theory of sl3C we
know what the smallest non-trivial representations look like: these are D(1,0) and D(0,1).
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However, like the sl2C subalgebras, the normalization is different. Let us calculate what the
eigenvalues corresponding to this representation are. We can again calculate how the operators
shift the eigenvalues of Y and T3 using the commutation relations. Let us calculate the action of
V+ as an example, and summarize the rest of the operators in a picture. Given a vector v ∈ Vα
in some eigenspace, we see

T3(V+(v)) = [T3, V+](v) + V+(T3(v)) Y (V+(v)) = [Y, V+](v) + V+(Y (v))

=
1

2
V+(v) + α(T3)V+(v) = V+(v) + α(Y )V+(v)

= (α(T3) +
1

2
)V+(v) = (α(Y ) + 1)V+(v)

As we see, V+ increases the value of T3 by 1
2 and the value of Y by 1. We can make the same

calculation for all operators, and get the following picture.

V+U+

T− T+

U−V−

Y

T3

From this picture one may easily read what the action of the different operators does to the eigen-
values of T3 and Y . Along the T , U and V lines we have subrepresentations that are isomorphic
to representations of sl2C , like we saw in the classification of the irreducible representations of
sl3C .
Let us now look at what happens for the smallest representation. We have the three basis vectors
e1, e2 and e3, which we shall denote u, d and s respectively. Then the fundamental representation
D(1,0) is just given by letting the matrices of sl3C act on these basis vectors, as before. We get
three eigenspaces corresponding the the span of each basis vector. Let us denote the vectors in
a more physical notation as a ket where the first number indicates the eigenvalue of T3 and the
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second one the eigenvalue of Y . Unlike before we do no denote the eigenvalues of the Casimir as
we just calculate within multiplets and this would be cumbersome. Furthermore, Casimir oper-
ators are difficult to find so we just keep in mind their usefulness for keeping track of multiplets.
We then have

|u〉 =

∣∣∣∣12 , 1

3

〉
|d〉 =

∣∣∣∣−1

2
,

1

3

〉
|s〉 =

∣∣∣∣0,−2

3

〉
Note that by a historical coincidence, the strange quark has negative strangeness S = −1. We
also know how to construct the other fundamental representation, by acting with a factor −1 on
the transpose. We denote e∗1, e∗2 and e∗3 by ū,d̄ and s̄ respectively. We then have in the same way

|ū〉 =

∣∣∣∣−1

2
,−1

3

〉 ∣∣d̄〉 =

∣∣∣∣12 ,−1

3

〉
|s̄〉 =

∣∣∣∣0, 2

3

〉
What we do now is construct particles that are composed of these so called quarks. In quantum
mechanics particles are composed as tensor products. That is, the composed particle is in a state
that is the tensor product of its constituents. In this case, we can also take tensor products; we
have seen before how this works. Let us compose compose an |u〉 and |s̄〉. We calculate T3 on
|u〉 ⊗ |s̄〉, as we are interested in the eigenvalues. This will give the values of T3 and Y of the
composit particle. We repress the ⊗-sign for cleaner notation.

T3(|u〉 |s̄〉) = (T3 |u〉) |s̄〉+ |u〉 (T3 |s̄〉)

=
1

2
|u〉 |s̄〉+ |u〉 0 |s̄〉

=
1

2
|u〉 |s̄〉

Y (|u〉 |s̄〉) = (Y |u〉) |s̄〉+ |u〉 (Y |s̄〉)

=
1

3
|u〉 |s̄〉+ |u〉 2

3
|s̄〉

= |u〉 |s̄〉

So we see the composite particle |u〉 ⊗ |s̄〉 is the state
∣∣ 1

2 , 1
〉
. We already know a particle with

T3 = 1
2 and Y = 1; the kaon K+. In this way we can associate to the quark content |u〉 ⊗ |s̄〉

the particle K+, such that we can say the particle K+ is made up of one up quark and one
anti-strange quark. One can now repeat this same computation for all combinations of quarks.

Mesons are made up of a quark-antiquark pair. The baryons will be a composite particle of three
quarks (or three antiquarks). We will not look at any other possibilities. This has to do with
the theory of quantumchromodynamics (QCD), in which an extra symmetry plays a role. This
is associated to another charge possessed by quarks, the colour charge. Every quark also has a
colour, wheras antiquarks have anticolours (red, blue, green and antired, antiblue, antigreen).
The theory then says that hardrons must have neutral colour charge. This means a colour and
its anticolour, or three different colours. Then we can only construct particles consisting of a
quark and an antiquark, or of three quarks or three antiquarks. We shall however not concern
ourselves with the theory of QCD and just restrict ourselves to the situation of q and q̄ or three
(anti-)quarks.

If we make the calculations, we see there are several composites with quantum numbers T3 = 0
and Y = 0. Let us denote the fundamental representations D(1,0) and D(0,1) by their dimensions,
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as this pertains to the number of particles in the multiplet (often used notation). Then we have
[3] and [3̄] respectively.
Then what we are looking at for the mesons is [3] ⊗ [3̄]. Multiplets that arise as composites of
these quarks are irreducible representations in this representation [3] ⊗ [3̄]. This representation
is not irreducible, as it has multiplicity three for eigenvalue 0. We can see for example that the
linear combination uū+dd̄+ss̄√

3
has T3 = 0 and Y = 0, and is killed by all the operators T±, U±

and V±. This means it is an trivial irreducible subrepresentation [1] ⊂ [3] ⊗ [3̄]. In fact we can
compute how [3] ⊗ [3̄] decomposes in irreducible components. We have [3] ⊗ [3̄] = [8] ⊕ [1]. By

associating particles we have η′ = uū+dd̄+ss̄√
3

. This particle η′ is called the singlet, whereas the

other eight particles belonging to the other multiplet are knows as the octet. Together they form
a meson nonet. The normalization of η′ is picked because of the probability interpetation of
quantum mechanics. This means that when looking at the quark content of a η′ particle, there
is a chance of 1

3 to find uū, dd̄ or ss̄ as its content.

We get the following diagram. These are the so called pseudoscalar mesons. The nomenclature
is of too much theoretical depth but we briefly give some properties. First of all they are all
particles with 0 spin, which is integer as they are mesons. Secondly they are particles with odd
parity. Parity is a concept that requires some knowledge of quantum field theory to explain, so
we shall not delve into it here. Let us just say it is a property of particles that can be observed
by how they interact with specific other particles, which is useful for classifying particles. These
properties of the pseudoscalar mesons can be summarized in notation as JP = 0− (here J stands
for spin and P stands for parity).
In a diagram with Y and T3 on the axis, the different pseudoscalar mesons may be depicted as
such

Y

T3

π+

K+K0

π−

K̄0K−

η

π0η′

1
2

− 1
2

1
2- 1

2

1

−1

1-1
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Note we can also put into this diagram the charges of the particles using the Gell-Mann Nishijima
rule, where lines of constant charge turn out to be lines in the diagonal direction (left bottom to
top right). We do not plot these as it is just a coincidence derived from the Gell-Mann Nishijima
rule that one might notice. We then get the following quark content

Name Multiplet Quark content
π+ [8] ud̄
π− [8] dū
π0 [8] 1√

2
uū− dd̄

K+ [8] us̄
K− [8] sū
K0 [8] ds̄
K̄0 [8] sd̄
η [8] 1√

6
(uū+ dd̄− 2ss̄

η′ [1] 1√
3
(uū+ dd̄+ ss̄

Note that the quark content of the particles with T3 = Y = 0 may seem strange. The normaliza-
tion factor is chosen such that the square sum of the coefficients equals 1. However, which linear
combinations to pick for which particle follows from the Clebsch-Gordan coefficients as these
follow from reactions within the multiplet. It is in fact quite involved, but a full calculation may
be found in [5] 8.10. This always happens in the middle of the meson multiplets. For baryons it
will be much easier as there this problem does not occur; no such fractional contents arise.

3.5.1 Mesons

We encountered a meson multiplet before. However, there are more mesons with different spins
and parities. The point though is essentially the same. From the particles known, empirical
data suggests which particles form the multiplets. The different meson multiplets differ in spin
and parity. This might seem strange as this means quark content does not fully determine the
properties of a particle. Particles with the same quark content may have properties such as spin.
However, the way these particles interact cannot be seen from this model which only takes into
account a single symmetry and no interactions.
We will merely connect the empirical data to the multiplets with the corresponding values of Y
and T as we did before. The pictures will be similar to the one of pseudoscalar mesons, only the
actual particals are different. We list here several types of mesons, from which their properties
can be deduced from the pictures. Let us explore other mesons. Another multiplet of mesons is
the scalar mesons, which can be summerized by denoting them JP = 0+. They too belong to a
meson nonet which looks like this

40



Y

T3

δ+

κ+κ0

δ−

κ̄0κ−

S∗

δ0σ

1
2

− 1
2

1
2- 1

2

1

−1

1-1

Then there are several more. We also have the vector mesons JP = 1−, which look like

Y

T3

ρ+

K∗+K∗0

ρ−

K̄∗0K∗−

Φ

ρ0ω

1
2

− 1
2

1
2- 1

2

1

−1

1-1
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and lastly the tensor mesons, the JP = 2+ mesons.

Y

T3

A+
2

K∗+2K0

A−2

K̄∗02K∗−2

f

A0
2f ′

1
2

− 1
2

1
2- 1

2

1

−1

1-1

These are all mesons. We now wish to construct the particles that are composed of three quarks,
which will be the baryons.

3.5.2 Baryons

We can also construct the baryons as SU(3) multiplets like we did for the mesons. This means we
need to decompose the representation [3]⊗[3]⊗[3]. We quickly invoke the previous notation, which
means we wish to find the decomposition of V ⊗V ⊗V in terms of the irreducible representations
D(m1,m2). One may calculate that this can be decomposed as

V ⊗ V ⊗ V = D(3,0) ⊕D(1,1) ⊕D(1,1) ⊕D(0,0)

That is, [3] ⊗ [3] ⊗ [3] = [10] + [8] + [8] + [1]. We already saw the proton and neutron, which
were baryons. As they are made of only up and down quarks, knowing that their baryon number
should be 1 implies that the hypercharge of the proton and neutron should be 1. We can do
something similar for the ∆ baryons. These are baryons with strangeness S = 0. Only this time,
there are four particles in a isospin multiplet with Y = 1. This is exactly the shape associated
to [10], which is a triangle with four weight spaces at Y = 1.
Now we can continue this process of classifying. For strangeness S = −1 we have the Σ baryons,
as well as the Λ0-baryon. Now the Σ baryons are Σ−, Σ0 and Σ+ and their resonances Σ∗−,
Σ∗+ and Σ∗0. Resonances are very short lived particles that are excited states of other particles.
However, the interaction does not concern us and their property are exactly what we want, so
we just view them as particles in this model.
The particles and their resonances are distinguished by their spin which is 1

2 for the first triplet,
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and 3
2 for the second triplet. Hence, we group the first ones with the proton and neutron in the [8]

representation, and the second ones in the [10] representation where we had the ∆-baryons, also
with spin 3

2 . The same story holds for the Ξ particles, which will be in the [8] representation with
Y = −1, whereas their resonances will be in the [10] representation with Y = −1. Resonances
of particles are excited states of these particles. They have different properties and are only very
short lifed as they nearly immediatly decay. However, they are particles satisfying this multiplet
structure in the sense that they have the required properties and therefore fit into the model.
To fill the multiplet [10] we need one more particle, which should be a S = −3 (or Y = −2)
baryon with spin 3

2 . At the time the quark model was being developed, a particle with these
properties had not been found. However, in 1964 the Ω− particle as discovered. This particle
had the right properties and the right decay products predicted by the quark model. This was a
great triumph for the quark model, showing its usefulness. So far it seems as if one might only
use it for classification purposesess. The discovery of the Ω−-baryon, however, shows that this
also works the other way around in which the theory predicts the existence of real particles.
Summarizing the previous findings about the baryons, we draw similar pictures to the ones drawn
for the mesons. We begin with the baryons associated to the [10]-representation, the baryon
decuplet. By knowing their place in the diagram, we know their place in the representation and
hence we are able to calculate the quark content of all these particles. The diagram for the baryon
decouplet looks like this

Y

T3

Σ∗0

1

−1

1−1

2

−2

2−2

∆− ∆0 ∆+ ∆0

Σ∗+Σ∗0

Ξ∗− Ξ∗0

Ω−

Secondly, there are the baryons corresponding to the [8] representation, which is the baryon octet
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Y

T3

Σ+

pn

Σ−

Ξ̄0Ξ−

Λ

Σ0

1
2

− 1
2

1
2- 1

2

1

−1

1-1
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4 Conclusion

We have seen that using the mathematical concept of representation theory, one may produce a
classification of light hadrons that is quite accurate. It is a great example of how representation
theory may be used in physics. Its theory is quite concise, whereas for full understanding of these
particles one needs knowledge of quantum fieldtheory, with reasonably little knowledge we can set
up such a classification scheme. Though the quark model was very succesful, the small differences
between model and reality become large for heavier particles by introducing more flavours of
quarks. In due time, more quark flavors were postulated. Outside of the three mentioned in this
thesis there are also the charm, top and bottom quark. For these higher numbers of quarks,
the quark model becomes more and more inacurate. The deviations between masses within the
multiplets become significantly large. This has to do with the fact the other quark flavours are
extremely heavy. For three flavours, the quark model works very well, but it quickly breaks down
for more flavours. The multiplet structure interpeted mathematically assumes that the weights
within multiplets are exactly the same. That is, in a perfect world where flavour symmetry is
exact, the proton and neutron have exactly the same weights. However, they don’t, as this model
does not take into consideration these weight differences as well as many other influences (such
as magnetic and electric forces). When the quark masses are very different, the model becomes
inaccurate and it is no longer sensible to fit the particles into multiplets. Furthermore, the model
is not particularly useful for predicting particles. It primarily is a scheme by which to classify
particles.

However, the concept of using such representation theory is present in many areas of physics.
We have alluded to one particular use, that of quantum chromodynamics. Here, particles are
assigned colour charge, and the operators of SU(3) mix components of these colours. The same
theory applies, but this time, QCD appears to be an exact symmetry of the strong force, in
contrast with the flavour symmetry. The concepts of representation theory however, apply in
the same way as the underlying SU(3) symmetry is still the same. In this way, knowledge of
representation theory of more Lie groups can be very useful in very many areas of physics. The
theory covered in this thesis might serve as an introduction or priliminary to more complicated
applications of representation theory in physics.

The symmetry of some physical systems may be more extensive, for example bigger groups.
However, the concepts presented in this thesis may readily be extended. Objects like Weyl groups
and Weyl chambers are very general in the sense of semisimple Lie algebras, and with the
knowledge we have now we can easily extend to many more Lie algebras. Examples would be
more general ones like slnC, spnC and sonC.

The geometric interpetation of the weight diagrams can also be extended, and they can be
beautifully summarized and classified using so called Dynkin diagrams. One may summarize all
important information of a Lie algebra into a single small drawing. In this way, all Lie algebras
may be classified in classes of classical ones for which the structure is similar throughout higher
dimensions and five exceptional ones. The theory of sl2C and sl3C is only a small part of this
larger context.
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