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1
Introduction

Mobile gaming [1] is currently a market with incredible growth with new games continually being
released for various platforms including Windows, iOS and Android [2]. However, mobile platforms
like smart phones and tablets have limited computational power which only allows them to play fairly
simple games. Furthermore, mobile platforms have limited battery life which can be depleted very
quickly by a combination of, for example, heavy computations, network usage and camera usage [3].
These factors severely limit the complexity and scale of mobile games that can be reasonably run on
mobile platforms.

A potential solution to this problem is by offloading the resource usage by a game to a remove
server. The basic idea of this is to let remote machines do the resource intensive work and sending the
results to the mobile client. This can free up local resources on the mobile client as well as possibly
save some of its valuable battery power [4].

There are several resources that could be the potential target of offloading. These include compu-
tation time, memory, storage and network usage. However, offloading anything requires an Internet
connection, which results in three major problems. The first one is that mobile clients may have unreli-
able connections with small bandwidths, limiting the amount of tasks that can be offloaded. Secondly,
the client has to wait for the results of offloaded tasks, which can introduce unacceptably long delays
in a real-time game. Third, additional network usage may decrease the battery life of the client if
insufficient hardware is freed up in return.

Network offloading on the other hand can decrease the overall network usage of a game, but
requires a certain amount of network overhead itself. Network offloading is used to lighten the burden
on the client of collecting and organizing of data that is located somewhere else on the Internet.

Because of these challenges with offloading, which tasks, which resources and how to offload should
be carefully chosen to make offloading not only beneficial performance wise, but also to minimize its
negative impacts on the gameplay experience like stutter and delay. These choices depend on several
parameters including the amount of local resources available, network bandwidth, network delays and
the battery level of the client. The most beneficial functions to offload are those that are resource
intensive, have input and output of small sizes and can tolerate a long response delay [4]. In this
thesis, we will call these types of functions coarse-grained functions. Fine-grained functions have a
worse computation versus input/output size ratio and also are called very often.

The benefits of computation offloading have been proven for games with coarse-grained func-
tions [5, 6]. These mobile games have a single coarse-grained function that is offloaded to a remote
machine, like the artificial intelligence of chess and the image recognition of augmented reality games.
These games are generally simple in their gameplay features. Many other types of video games how-
ever have more complicated and feature rich gameplay and therefore, have their major computational
loads spread out across many different fine grained functions. It remains unclear whether offloading
can benefit these kinds of games as well.

For computation offloading to be viable for sophisticated mobile games, it has to meet certain
minimum requirements. The solution should be general enough so that is can be applied to all, if
not many, types of games. The performance of offloaded games should increase even at the absence
of any coarse-grained functions. From the players’ perspective, the game experience should remain
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2 1. Introduction

smooth and responsive as possible. Finally, the solution should not have too much of a negative impact
on the overall power consumption on the mobile device.

The goal of our research is to investigate the viability of performing computation offloading for
sophisticated games with fine grained functions. Our contributions are as follows. First of all, we
present a new generalized offloading framework (OF) which automates part of the offloading process
and that simplies the offloading implementation process for mobile game developers. Secondly, we
present the offloadable entity interface, that allows game developers to partition their program on
the class level while allowing dynamic online control over them by the framework on the instance
level. Thirdly, we show how our framework can dynamically steer the offloading process to meet
certain user level goals by using different offloading strategies. Lastly, we show the results from our
experiments which indicate that using our framework for fine grained offloading for mobile games
significantly increases performance and gives a fairly smooth gaming experience, but also increases
power consumption and induces a slight delay on user input.

The rest of this thesis is structured as follows. In Chapter 2 we look into the current state of the art
in offloading. In Chapter 3 we will present the offloading framework we have created and explain it in
detail. We show our experimental setup in Chapter 4 and show and discuss our results in Chapter 5.
Finally in Chapter 6 we summarize our findings and present potential directions for future studies.



2
Related Work

The vision that one day computing and communication technologies would be seamlessly integrated
into our lives has existed since 1991 [7, 8]. This vision, called ubiquitous computing or pervasive com-
puting, has been brought much closer to reality by the wide adoption of mobile devices like smartphones
and tablets in the modern society.

However, all of the fundamental constraints of mobile devices still apply and need to be alleviated
to further progress towards true pervasive computing [9]. These fundamental constraints are that
mobile-devices are resource-poor compared to static devices, that mobile connections are unreliable
and that mobile devices rely on finite energy sources.

The idea of using offloading to alleviate some of these fundamental constraints was first proposed by
Balan and Flinn 2002 [10] as cyber foraging. They described the idea of cyber foraging as “living off the
land”. The client would use local wireless network technologies to discover resourceful machines called
surrogates. Two characteristics of these surrogates are that they are not trusted by the clients and are
also not directly managed by human users during the offloading process. Balan and Flinn 2002 [10]
implemented cyber foraging in two ways. The first one is called data staging, where the surrogate
acts as an Internet cache for the client, predicting and fetching information from distant servers for
the client. The second one is offloading computation by generating code and API at run-time on the
client and sending these to the surrogate for execution.

Their work inspired numerous other projects creating variations of the implementation of cyber
foraging [11–14]. They differ from each other in various areas like how and which part of applications
are profiled and partitioned for local and remote execution, how offloading is decided and controlled
and how surrogates are discovered and how they are managed. Despite these variations, the general
idea of computation offloading remained the same, which is to somehow relief some work from the
mobile client by using the resources of other machines and using a network connection to transfer the
information.

Olteanu and Ţăpuş 2014 [15] and Khan 2015 [16] have performed a survey on the subject of
offloading. These surveys show that offloading has been a fairly popular topic the past decade,
where different works have created frameworks that all vary from each other one way or another.
The resource that they offload are almost always CPU load, but there are also some works like Has-
san and Chen 2011 [17] and Flores and Srirama 2013[18] can also outsource the processing of local
data, Huerta-Canepa and Dongman 2010 [19] mainly focus on offloading memory usage and the
frameowrk of Zhang and Jeong 2010 [20] can also offload disk storage. The effects of these different
frameworks for the client-side generally follows the same trend of increasing performance and saving
power, proving that offloading can be used with success in various different ways.

Olteanu and Ţăpuş 2014 [15] have identified the main concerns of offloading and created a tax-
onomy for them to better compare the different frameworks. Figure 2.1 is taken from their work and
shows the taxonomy used by them. The application monitoring area involves how the framework pro-
files and partitions the application. Resource management concerns the monitoring of local resources
on the mobile client as well as the discovery of potential machines to offload to. The offload process
controls when and what to offload, possibly using the information from the application monitoring
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4 2. Related Work

Figure 2.1: The taxonomy for offloading concerns as identified by [15]. Image taken from Olteanu and Ţăpuş 2014 [15].

and resource management areas, to get the best benefits. Finally the ortogonal concerns involve for
example how flexible the frameworks are and how secure the system is.

Olteanu and Ţăpuş 2014 [15] have categorized each of the frameworks they have analyzed using
their taxonomy. Most created frameworks differ from each other in many of these aspects. Our frame-
work is no exception. The number of variations for every aspect of offloading for all previously created
frameworks is too large for us to handle here. We therefore refer you to Olteanu and Ţăpuş 2014 [15]
for an overview of what previous frameworks have done.

We will however describe our framework using this same taxonomy of, so it can be more easily
compared to others. As our framework was initially created to create a way to perform real-time
offloading of sophisticated mobile games and see whether it is beneficial, it lacks many features that
belong to more complete frameworks. Below is the description of our framework using the defined
taxonomy. For a more detailed explanation of how our framework works, see Chapter 3.

1. Application monitoring

(a) Profiling mechanism: None. Our framework does not provide any tools to profile the appli-
cation, but it can be extended with such in the future.

(b) Application metrics: None, as our framework does not perform profiling.

(c) Partition mechanism: Manual partition by the developers by implementing our interfaces.

(d) Partition granularity: Code partioning is on the class level, but during run-time the partioning
is done on the instance level of the partioned classes. This allows dynamic fine-grained
offloading.

2. Resource management

(a) Resource metrics: Our framework currently monitors the ticks per second and the bandwidth
usage of the application to guide the offloading process, but can extended to use other
metrics too.

(b) Offloaded resource: Computation.

(c) Discovery mechanism: Currently, the user has to manually input the server’s address, but our
framework easily supports extension where a more automated discovery and management
of servers is supported.

(d) Offload target placement: The server can be run on basically any machine that the client
can connect to and that to be offloaded application can be run on, from home computers to
powerful cloud servers.

3. Offload process

(a) Benefit Assesment: None, but can be extended with a learning process.
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(b) Feedback Collection: None.

(c) Offloading mechanism: Our framework uses a form of replication where the same game
runs both on the client and the server. The server runs ahead of the client and sends the
offloaded state changes to the client when needed.

(d) Paralellism: The client and the server run the game concurrently.

4. Ortogonal concerns

(a) Adaptability: None.

(b) Security and privacy: None.

There has not been many offloading frameworks that were tested using video games and even
less were created specifically for them. The frameworks that do have are are Li et al. 2001 [21],
Chu et al. 2004 [22], Kemp et al. 2010 [5] and Cuervo et al. 2010 [23]. However, these works only
tested their framework using very simple games like board games. They also use a stateless server.
The client is then required to serialize its game state at every call of an offloaded function and send
it to the server along with the function to call. The server will then perform the function and send
the game state back. During all this time, the client is required to block the program. This generally
works well for simple, non-real-time games like the board games which are experimented with, but
unacceptable in modern games. This is because modern games could have an FPS of 60, which means
a single frame must complete within a 16ms. Sending an offloading request and receiving its result of
a single function takes too long from this perspective; not only would it require a ping to the server
lower than 16ms, it would also require the server to complete the function really fast, the client to
serialize its state accurately and fast and also for the result to arrive soon enough so the client still
has time to perform the rest of its frame like rendering. And this is only for one call to an offloadable
function. Clearly, such an approach is not suitable for sophisticated games we want to offload.

The work most similar to our own one is Kemp et al. 2010 [5], which created the Cuckoo framework,
a system that can perform computation offload for Android applications. The authors have created a
programming model that extends the build process of Android applications. It automatically creates
interfaces for Android services that the developer has to implement. At run-time, the Cuckoo framework
can decide whether a call to a service should be done locally or remotely. Like many other offloading
frameworks, the Cuckoo framework also uses a stateless server and offloads functions on a call by call
basis. Another limitation of their work is that their framework enforces the use of the Android build
structure and also require that the server side uses the Java virtual machine.

Olteanu and Ţăpuş 2014 [15] have also performed experiments with offloading of OpenTTD, which
is exactly the same game we that have used. However, it is unclear which offloading framework they
have used to obtain their results and also unclear what their exact experimental setup was.

Our work focuses on finding out what the effects are of offloading on sophisticated mobile games.
For this we have created a framework that tries meet the high real-time and user experience require-
ments of sophisticated mobile games. This focus has resulted that although our offloading framework
uses some existing concepts, but also being vastly different in other aspects. There are two key as-
pects that our framework differs from others. The first one is that we do not use a stateless server,
but use replication instead. The second one is that the client only need to subscribe to certain in-game
events that it wants to offload. The client then does not need to run the logic of those events itself but
only needs to wait for the results that the server sends. These two aspects together makes it possible
that the client can continue the gameloop without the need to offload and wait for the result of every
call to an offladable function. Another benefit is that it significantly lowers the overhead required for
offloading because the client does not need to serialize game states.

As far as we are aware of, our work is also the first that thoroughly examines the different effects of
offloading on a game. We do not only examine the performance, power consumption and bandwidth
usage, but we also examine the delays and stutterings caused by offloading.

An existing alternative to offloading for games is cloud gaming [24]. Cloud gaming attempts to
allow users to play the most modern games without the need to constantly upgrade their hardware.
Cloud gaming systems execute all of the game’s logic on a remote cloud server, renders the scene and
sends it as a video to the client. The client itself is very thin and only acts as a user input terminal
and video player. Cloud gaming can be considered the most extreme form of offloading, where only



6 2. Related Work

the bare minimum is done on the client. Out of the many cloud gaming systems that existed over the
years, only a few remain like StreamMyGame and GamingAnywhere [24].

The exact reason for why commercial cloud gaming systems have not been very successful is outside
the scope of this paper, but from a computer science point of view, cloud gaming systems suffer a few
major problems that are inherent to the Internet [25]. The first one is that no matter how fast and
stable the user’s connection is, they will always experience a delay between their moment of input and
the moment the result of the input is fed back to the user. This delay will be at least as long as a
single round-trip time between the client and the server. The second problem is that the Internet is
inherently unstable and that packets can and will get lost during transit. Cloud gaming systems are
very sensitive to both of these types of problems as they cause artifacts and stutter in the streamed
video [26]. This reduces playability and can also break the immersion of the player. Furthermore,
users of mobile platforms do not always have access to a high quality Internet connection, making
cloud gaming rather unsuitable for mobile gaming.

Our work is somewhat similar to cloud gaming systems in the sense that the client and server need
to be synchronized through a stream of messages. Any delays in these messages can cause stutter on
the client side. Our framework also creates a delay beteen the moment of user input and the moment
the user can see the effects of the input. This is also a neccessary evil caused by our architecture,
which is explained in detail in Chapter 3. We have analyzed the extend of both of these problems in
Chapter 5.
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The Offloading Framework

In this chapter we will describe the offloading framework (OF) we have created as a tool to help game
developers perform computation offloading for their mobile games.

The offloading framework is designed with mobile games in mind, but the idea is general enough
for games on other platforms too. Our framework does have a requirement on the delta-time of the
game. The delta-time of the game defines how far the simulation of the game world should progress
with each update and can vary from update to update. Our framework requires that the delta-time of
the game to be fixed throughout a session. A common genre of games that use such a scheme are
real-time strategy games (RTS), where the whole game is divided into equal sized simulation ticks.

We will first present the general architecture of the offloading framework in Section 3.1. In the
sections that follow we will go deeper into the specifics of the components of the offloading framework.
In Section 3.2 we will show a variation of the lockstep algorithm being used to timestamp in-game
events. This is needed for event synchronization. In Section 3.3 we will explain a core concept of our
framework, the offloadable entity, that allows program partitioning as well as dynamic offloading. In
Section 3.4 we explain which parts of the offloading process the offloading controller will automate and
what is required from the game for that. Section 3.5 explains how we decide which entities to offload
and presents our concept of offloading strategies that guides the offloading process to meet certain
user preferences. Finally, in Section 3.6 we go through some of the limitations of our framework and
aspects that could be improved.

3.1. Architecture
Figure 3.1 shows the general architecture and the main components of the offloading framework. At
the highest level it consists of a client and a server running the same game that uses the offloading
framework in respectively client and server mode. The server will be the machine that the client will
offload computation to. In principle this can be any machine that the game can run on and that the
client can connect to using an Internet connection. These machines can range from home computers
to virtual machines in the cloud. The framework requires that the game is pre-installed on the server
and that the IP-address and port number of the server are known to the client beforehand.

The framework has been made to be as indepedent from the actual game as possible, so it can
be compatible with more than one game. This has resulted in two separate interfaces that are used
to communicate with the underlying game, which are the offloadable entity and the offloading game
controller interfaces. These two interfaces will be explained in detail in Section 3.3 and Section 3.4
respectively. Furthermore, all offloading related network is controlled by the framework itself.

Both the client and the server will run the same game at the same time. We use this replication
technique for several reasons. The reason that the whole game is on the client-side is because in
a situation where no network connection is available, the client should still be able to run the whole
game, although possibly with lower performance. We think this is important as mobile users may often
temporarily lose network connection as they move. However, in our current implementation, it is not
possible yet to continue playing and reconnecting later, but the framework is adjustable to allow this in
the future. The reason that the server-side runs the whole game too is to avoid the need to synchronize

7



8 3. The Offloading Framework

Figure 3.1: Architecture of the offloading framework and its components. The game depends on the offloading framework, but
not vice-versa. The client and server both run the same game. Offloading and synchronization are completely managed by the
framework at run-time. The server-side does not employ offloading strategies as the client decides which entities to offload.

the complete game state. This is very important as this dramatically reduces network usage as well as
simplifying the framework.

An offloading session can be started by the client’s request. The client will first connect to the
server and then communicate a game starting point using a savegame that is either pre-loaded on the
server or sent on the fly. Both sides then run the game like normal, but with the framework in control
of offloading. In our current implementation, it is required to manually copy the save from the client
to the server beforehand. Both saves also must have the same name and the save must be stored into
the default save folder of OpenTTD on the server-side.

During an offloading session, the client will subscribe to certain types of events in the game. The
client will then stop handling these types of events itself and instead, waits for the server to handle
such an event when it arises and sending the client a message with the result of it. We will call
such a message an offloaded event message. This method removes the need to send each individual
offloading request and in doing so, removes the need to block the program at each call of an offloaded
function. This latter is essential to get a smooth game experience.

The benefits of using this architecture are as follows. Firstly, the client does not need to serialize and
send the game state for every offloading request, which dramatically reduces the overhead required
to perform offloading. Secondly, the client does not need to send an offloading request at every call
of an offloadable function. The client simply subscribes to an event and waits for offloaded event
messages. This allows developers to beneficially offload even the most fine-grained functions, as the
client does not need to make the decision of whether it is faster to just execute the function itself
instead of sending an offloading request and waiting for the result. The client will never need to wait
for an offloaded event message as the server will send the result to the client ahead of time.

3.2. Tick Synchronization
Many events in video games have a temporal aspect to them; their logic must be performed at some
specific time for them to have the desired effect. When running a game normally without offloading,
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an event can simply be performed the moment it arises. When performing computation offloading
however, it becomes necessary to time-stamp events as they need to be communicated with the other
party so they are executed at the exact same moment in the simulation for all parties.

The framework that we have created uses a variation of the lockstep system to achieve this. Bet-
tner and Terrano 2001 [27] describe how they implemented lockstep for Age of Empires. The lockstep
system in video games basically consists of multiple machines running the same game in parallel,
notifying each other of their progress using some time unit 𝑇 and synchronizing user input so they
happen at the same time on all machines. At some point during the session, one of the machines may
notice that the difference between its own 𝑇 and the 𝑇 with one or more of its peers is larger than a
pre-defined amount. In such a case the machine must wait till its peers catches up with it.

Our framework only supports games that simulates its game state in discrete ticks, which is also
typically what lockstep games use. A tick is a single game simulation step, where the delta-time of
each tick is the same no matter how much time has passed between two ticks. The game may set this
delta-time as any value as long as all ticks have this value. The 𝑇 of the application can then simply
be denoted as the tick at which it is at. The framework will then time-stamp all events using the tick
at which they occurred. This allows the framework to accurately communicate events in such a way
that they happen at the exact same moment in the game of both the client and the server.

However, some genres of games typically use a variable delta-time for each tick, like first-person
shooter games. Having this requirements makes our framework incompatible with them. We still
decided to have this requirement as it makes synchronizing events much easier. To illustrate this,
imagine that the server wants to synchronize an event at 𝑇 = 1. If the game has a variable delta-time,
the may be possible that the client never arrives at 𝑇 = 1 and instead, may jump from 𝑇 = 0.9 to
𝑇 = 1.1 after a single tick. Although these types of games can often tolerate these margins of error, we
think that for offloading, these errors can become too big causing desynchronizations. If the delta-time
of each tick is equal, every instance of the same application will start at the same 𝑇 at some point in
time.

During an offloading session, both the client and the server notify each other of their respective ticks
at certain intervals as they progress. This tick update frequency (TUF) can be adjusted to compromise
between game smoothness and bandwidth usage. High frequency tick updates use more bandwidth,
while low frequency tick updates causes both parties to have more inaccurate information about the
state of the other party. Accurate information on the tick of the other party is very important in our
framework, as it can influence the smoothness of the game on the client-side as well as the response
time of user-input. Both of these aspects have to do with how our lockstep system works, which is
explained below.

We define transmission delay (TD) as the single-trip time measured in ticks for a message to arrive
from the client to the server or vice-versa. This value is measured dynamically during run-time and
can fluctuate depending on network conditions. The framework measures this value by sending, at the
application level, a TD measurement packet to the server. Upon receiving this packet, the server will
immediately respond with a TD measurement response packet. When the client receives this response,
it will then calculate the difference in ticks between the moment of sending the the TD measurement
packet and the moment it received the response packet. Dividing this value by two and ceiling the
result yields the TD value. A thing to note about the TD value is that it has a minimum value of one.
This is because due to the update order of the game, it is impossible for the client to send and receive
the result of a TD measurement packet within a single tick. A TD smaller than one is also nonsensical,
as a single tick is inidivisible, so events cannot be scheduled at different times within a single tick.

Our decision to measure TD in ticks instead of milliseconds like ping does introduce some subtle
inaccuracies. The TD is measured at the client-side and on the same thread as the game loop. This
means that when the game slows down, the relation between TD and the actual ping between the
client and the server changes. It might have indeed be a better idea to measure TD in a separate
thread outside of the gameloop in milliseconds instead of ticks and then converting this value to ticks
to schedule events. This way, we avoid inaccuracies caused by the varying speeds of the game loop.

To ensure that game event messages from the server arrive at the client in time before their sched-
uled ticks, the client should always stay at least TD number of ticks behind the server. The client
machine itself should enforce this rule by waiting when it detects that the difference between its own
tick and the last known server tick comes too close to TD. This way, the client will always remain at
least TD ticks behind the server even when the client does not have the actual tick of the server. The
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actual tick of the server can only be equal or higher than the server tick known by the client, thus the
actual tick difference will never be lower than the one calculated by the client.

However, the above reasoning is only true for a perfect Internet connection where the measured
TD remains the same for all messages. This is obviously unrealistic, so one should let the client
stay behind the server for more ticks than TD to cope with network uncertainties. We define the
lower tick difference (LTD) as the advised number of ticks the client should stay behind the server
to maximize the likelihood that messages arrive in time even under flunctuating connection qualities.
During an offloading session, the client will check whether it is still indeed behind the currently known
server tick by at least LTD number of ticks. If not, it will stop simulating the game till it receives a
server tick update message that would cause the tick difference to be larger than LTD ticks again. A
downside of this scheme is that the player of the game may experience hiccups in the game as the
client waits for the server.

With this rule, we have created a way for offloading event messages from the server to likely
arrive at the client in time for execution. One problem remains to be solved however, which is how
to communicate user input events from the client to the server. The client cannot execute the user
event immediately, as otherwise it would cause an inconsistent state for the server as the server has
already passed the tick of that event. The solution we use to solve this problem is to schedule the user
event in both the future of the client and the server. In particular, to ensure that user input is process
synchronously, we schedule the event at the current known server tick at the client plus at least input
tick delay (ITD) ticks.

Choosing the ITD value is much harder than choosing the LTD value. This is because we measure
TD from the client’s perspective. There is no guarantee that the server will not simulate faster than
the client, in fact it will likely do so as it is a more powerful machine. This results in the time between
two ticks on the server-side having a different value than on the client-side. As our TD measurement
scheme is dependent on this time between two ticks, it makes the measurement more uncertain.

Moreover, if the server simulates the game much faster than the client, the tick the server is at
will be increasingly further away for the client as time passes. This means that when the client wants
to schedule a user input event, it has to schedule it very far into the future, causing huge user input
delays, which is unacceptable for playability.

To remedy both of the above problems with scheduling user input, we define the upper tick dif-
ference (UTD) to be the maximum number of ticks the server is allowed to be in front of the client.
Unlike LTD, it will be the server this time which will check and enforce this rule. This rule ensures that
the server will not simulate too far ahead of the client, which minimizes user input delays perceived
by the player of the game. A second result of this rule is that in the case that the server can indeed
simulate much faster than the client, it is likely that the client’s tick will often stay at UTD ticks behind
the server. This causes the server to often stop simulating and wait for the client to keep the client’s
tick within UTD ticks behind it. The result of this is that the server will then more or less simulate as
fast as the client does, which makes the TD measurement for user input delays more accurate.

With this additional rule, we can then make a rough estimate of the minimum value of ITD. We
estimate this value to be at least 2 ⋅ 𝑇𝐷. We need to at least schedule the event 1 ⋅ 𝑇𝐷 ahead of the
server due to message sending delays. An additional 1 ⋅ 𝑇𝐷 is required as the client may not have the
most up to date server tick. For example, if the 𝑇𝑈𝐹 = 1 for the server-side, there may be TD number
of tick update messages underway from the server to the client.

The LTD, UTD and ITD values are dynamically calculated at run-time according to the measured
TD of that time. This means that they change along with TD. To obtain the value of LTD, UTD and ITD
at run-time, we multiply TD with some real number and then ceil it. The real number TD is multiplied
with can be chosen differently for LTD, UTD and ITD as long as they satisfy the conditions given by
Equation 3.1 and Equation 3.2. The value of ITD can be chosen freely from the other two as it is used
for something completely different. For example, one can set LTD as 1 ⋅ 𝑇𝐷, UTD as 1.5 ⋅ 𝑇𝐷 and ITD
as 2 ⋅ 𝑇𝐷.

𝑇𝐷 ≤ 𝐿𝑇𝐷 ≤ 𝑈𝑇𝐷 (3.1)

2 ⋅ 𝑇𝐷 ≤ 𝐼𝑇𝐷 (3.2)

Figure 3.2 is an exmaple of a situation with all the above rules combined. Ticks are represented as
lengths in the figure. To summarize the above rules and explain what happens during an offloading
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(a) In this situation, the client is currently at tick X and the server at tick Y. The values for TD, LTD, UTD and ITD
are shown. Note that the client tick is maintained between LTD and UTD. Suppose that two things happen at this
moment. Firstly, the client receives user input, it will schedule the event at tick and sends the message
to the server. Secondly, the server detects an offloaded event, schedules it at tick Y and sends the message to

the client.

(b) This is the situation after TD ticks have passed since the last situation. The client is now at X + TD ticks and
the server at Y + TD ticks. Both parties likely have received the message from the other party, as the chosen

LTD, UTD and ITD values are all equal or larger than the measured TD.

Figure 3.2: An example scenario to visualize our lockstep scheme. a) Initial situation. b) Situation after TD ticks.

session, we periodically measure the TD value on the client-side to estimate the time in ticks required
for a message from the client to arrive at the server and vice-versa. The user of the framework will
choose the LTD, UTD and ITD values as a multiple of the measured TD according to Equation 3.1 and
Equation 3.2. The client’s tick will be kept between LTD and UTD number of ticks behind the server.
Offloaded events will and must be scheduled at the tick at which the server detects them. Because the
client will be at least TD ticks behind the server, offloaded event messages from the server to the client
will likely arrive in time before the client reaches the tick at which the event occurred. User inputs will
be scheduled ITD number of ticks ahead of the server tick. This means that the client will need to wait
at least 𝐿𝑇𝐷+𝐼𝑇𝐷 number of ticks before it can process the user input event. This causes a user input
delay from the player’s perspective, which can be a problem for the gameplay experience.

3.3. Program Partitioning
For computation offloading, one needs to create well defined parts of the program that will act as
candidates for offloading. This can be done in various ways. An extra requirement for our work is that
it must be possible to dynamically turn offloading on and off for the offloadable parts of the program.
In this section, we will present the method we have chosen to partition games.

We have decided to do the partioning of the game during development, instead of during run-time.
This is because we believe that run-time partioning is too computationally intensive by itself to be of
any use in a game.

To partition a game and to be able to dynamically select offloadable parts, we have decided to divide
a game into offloadable entities (OEs), where each OE is some instance of a class that implements the
OE interface. An OE can be for example, a vehicle that runs its own logic, or an abstract controller
object like an artificial intelligence that manages the vehicles.

The motivation behind this partioning scheme is that a typical video game is always separated into
well defined classes of which multiple instances may be created of at run-time. Each separate instance
runs its own logic and contributes to the overall computational load of the game. Intuitively, it seems
like a good idea to implement an interface for each type of object one wants to offload while deciding
which instance to offload at run-time.
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Vehicle : OffloadableEntity {
void Update() {

Move();

if (IsServer) {
DoPathPlanning();

if (Offloaded)
SendEventMessage(newDirection)

}
else if (IsClient & !Offloaded) {

DoPathPlanning();
}

}

void SendEventMessage(payLoad) {
OffloadingFramework::SendEventMessage(payLoad);

}

void ReceiveEventMessage(payLoad) {
direction = payLoad;

}
}

Listing 3.1: Example code of a simplified class implementing the OE interface. The function Move() is always executed while
DoPathPlanning() is only executed on the client if the entity is currently not being offloaded. If an instance of the class is
marked as offloaded and a path-planning event is triggered on the server side, a messages will be sent by the server by

creating a custom payload and sending it by calling SendEventMessage(payLoad). When the client receives the message, it will
pass its contents to ReceiveEventMessage(payLoad).
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Listing 3.1 shows an example implementation of the OE interface. To mark a game object as an
OE, the game developer must implement the OE interface for that type of object. The OE interface
requires the developers to implement several things for the class that implements it. The first one is to
separate the logic of the entity into two parts; one part that will always be executed by both the client
and the server and one part that will only be executed on the client if the OE is currently not being
offloaded. The game itself is still fully in control of the logic of the OE. The OE does provide attributes
to tell the game whether the entity is currently in an offloaded state, so the instance can know which
parts of its logic can be skipped.

The second part to implement are functions that create and read event messages for that type of
entity. The creation functions need to be called at the server side when the entity is marked as offloaded
and a corresponding event occurs with the entity. The creation function should then generate a custom
payload and pass it to the OF to handle further. The reading function is for when the OF on the client
side receives an event message for this particular entity and passes the custom payload to the reading
function to be processed.

Implementing the interface allows the offloading framework to know which entities can be offloaded
and also allows dynamic control over them. The necessary skills required for implementing the OE
interface is similar to synchronizing objects in a multiplayer online game. Developers familiar with
network games should have no problem in doing this.

That said, our approach in program partioning still requires significant work from the developers.
Reducing the amount of work by integrating more into the framework seems to be impossible as the
partioning and the logic behind them are game specific. We have considered taking over the game
loop of each OE by the framework, but abandoned the idea as it would likely cause too many problems
depending on the roles of the classes that implemented the OE interface.

To make sure the client and the server can communicate information about a certain OE, each OE
must have a unique identifier, represented by a number. This ID is very important as it will be used
to properly communicate all information about a certain OE. Although it is possible for the offloading
framework to handle the assigning of the IDs, in our current implementation we have decided that the
game using the framework should assign the IDs instead. This is because we think it might be handy
if the game has more control over it, as it might already use an ID system itself. Moreover, the game
needs to be aware of these IDs anyway, as it is required to be able to save and load these IDs when
creating or loading a save game. This is to make sure save games can be used as a synchronized initial
state for offloading. The saving and loading of the game is impossible to automate by the offloading
framework, as the creation of the save games is unique to the game itself.

3.4. Offloading Control
The offloading framework controller in Figure 3.1 manages the overall offloading process. It has nu-
merous tasks including managing incoming and outgoing messages, maintaining tick synchronization,
scheduling offloaded events and on the client side, deciding which entities to offload and communicat-
ing this with the server.

For some of these tasks it is necessary for the framework to be able to interact with the game that
uses it. A part of this is done using the offloadable entity interface explained in Section 3.3. Another
part is through the offloading game controller shown in Figure 3.1. The game using the offloading
framework should provide it with an object that implements the offloading game controller interface.
This interface defines functions that the OF can call to control the flow of the game, including pausing,
resuming, loading and quitting the game. It also defines an event that the OF can subscribe to that
should be invoked each time the game progressed a tick. These components together give the OF
enough control over the game to automate the rest of the offloading process.

Offloading and unoffloading registered entities is automatically controlled by the framework itself.
The decision process of which entities and how many entities to offload is done at the client side and
will be discussed in Section 3.5. As entities can be offloaded and unoffloaded dynamically at run-time,
these events need to be synchronized too. This is done by the client first sending a message to the
server with the ID of the entity it wants to change the offloading state of as well as the offloading state
to change to. After which the client will mark the entity as pending and will still do the same thing
as before, which means it should still run all of the entity’s logic as if it was marked as not offloaded.
When the server receives the offloading state change message from the client, it will change the state
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of the entity it corresponds to. Note that the server will run all the logic of the entity whether the client
wants to offload that entity or not. The only difference is that the server will start sending the client
offloaded event messages if the client wants to offload the entity. After the state change, the server
will send a response message to the client with the same information the original message had as well
as the server tick number the server processed the message. This tick number will be used by the
client when it receives the server response to change the state of the entity at the same tick as the
server.

This way, it is impossible for the client to mark the entity as offloaded before the server has, which
would have resulted in desynchronization due to logic not being run as well as not having received
offloaded event messages for a certain entity. However, it is possible that the client marks the entity
as not offloaded later than the server, which would cause desynchronizations in the same way as
above. This can happen when the client wants to change the state of an entity from offloaded to not
offloaded, but receiving the response from the server later than the tick the server received the request.
Fortunately, we think that the chance of this happening is fairly low due to our tick synchronization
scheme. The tick the server receives the request of the client is in the future of the client, which gives
the response from the server some arrive at the client in time.

An alternative to this scheme is to use the same scheme as we do to schedule user input events
explained in Section 3.2. With that scheme, it is then impossible for the client to mark an entity as not
offloaded later than the server, but instead, it is possible that the client marks an entity as offloaded
earlier than the server. Although we think that a single packet arriving too late in this alternative
scheme is equally unlikely as in our chosen scheme, we find that the characteristics of the alternative
scheme are less desirable for changing the offloading state of entities. This is because marking an
entity of offloading will be likely used much more often than marking an entity from offloaded to not
offloaded. So even when a single packet arriving too late is equally unlikely, the difference in the
number of packets does influence the chance of something going wrong between the two schemes.
This is the reason why we have chosen not to use the same scheme as we do for scheduling user input
events.

3.5. Offloading Decision
During run-time, the OF executes code to decide which of the existing OEs should be offloaded or
unoffloaded. The frequency of these offloading decision moments can be adjusted according to the
preferences of the developer or user.

To decide which and how many entities to offload, we have come up with several different policies
we call offloading strategies. These strategies make their decisions based on the current state of the
game and the goal of the user. Always offloading all entities for maximum performance may not always
be desirable due to bandwidth usage and power consumption.

To cope with this problem, we have designed a few offloading strategies that reduce the amount of
offloaded entities while maintaining some user defined goal. The first strategy is the target FPS strategy.
This strategy monitors the current FPS of the game and attempts to offload just enough entities to
maintain a user specified FPS. The max bandwidth strategy does something similar by offloading as
many entities as possible within the user specified limits on download and upload rates. The coarse-
grained only strategy only offloads entities that are very suitable for offloading in the sense that the
offloaded functions are computationally heavy, require very little bandwidth to transmit results and
also occur with low frequency. Due to the lack of any profiling tools of the framework, it is required
by the developers themselves to give information about which offloadable entities (Section 3.3) are
coarse-grained. Finally, we have the offload all strategy, which simply offloads all possible entities at
any given time for maximum performance.

3.6. Limitations
One major limitation of our framework is that it can only be used for games that use discrete ticks to
simulate their game world. Although this idea is general enough to be used for many games, some
types of games with more continuous worlds, like first-person shooters and action games, tend to take
more liberty with their tick lengths. Whether our framework can be modified to be used for these kinds
of games is left as a future study.
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Another major problem with our current framework is that it cannot recover from a desynchronized
state caused by any factor. We have deliberately left this out of our current framework as this problem
is complicated enough to warrant a study on its own.

Another thing we have left out is automatic server discovery. We think this problem is fairly easy
to solve with existing solutions. Our framework is flexible enough to have a server discovery module
build on top of it without much problem.

Our framework currently puts a lot of work in the hands of the game developers. They have
to implement the OE interface as well as a game offloading controller. The OE interface requires a
significant amount of work and thinking from the developers’ part, but should not be a problem for
developers who are comfortable with programming regular multiplayer games.

Furthermore, our approach can introduce subtle problems with the game loop locations at which
offloaded events are executed. On the server side, offloaded events are executed at the moment they
occur in the game loop. On the client side however, the results of all received offloading events are
passed to the game at the point the game called the update function of the OF. If the game processes
these events immediately, it may create desynchronizations due to the difference in the location in the
game loop at which the same event is processed on the server and the client sides. We could not come
up with a solution for this other than that the game developers should take this into account when
creating OEs. The developers can also consider to temporarily store the received event result on the
client side till its game loop reaches the same spot at which the server processed the event.

There is also a problem with how we estimate the TD. We have measured it in ticks, but this causes
that the TD value is not only influenced by the ping, but also the TPS of the game. This generally is not
a problem when the TPS does not make any wild swings between TD measurements, but can cause
inaccuracies. Furthermore, the TPS of the client is not the same as the TPS of the server, so even when
the network connection between them is parallel, the TD value might differ depending on which side
is measuring it. However, the server likely has similar TPS as the client due to our lock-step scheme.





4
Experimental Setup

In this chapter we will present our experimental setup. In Section 4.1 we describe the game called
OpenTTD that we have used to test our framework with and why we have chosen to use this game.
Section 4.2 explains how we have modified OpenTTD to work with our offloading framework. In
Section 4.3 we explain how we have setup various aspects of our experiments, namely the game
parameters (Section 4.3.1), offloading parameters (Section 4.3.2), the client and server devices we have
used (Section 4.3.3) and the offloading strategies (Section 4.3.4) we have used. In Section 4.3.5 we
show what kind of data we record during our experiments and how we record it. Finally in Section 4.3.6
we will combine all the different experimental parameters into experiment sets that we will perform.

4.1. OpenTTD
To test whether our framework and fine-grained computation offloading works, we need an actual
game to perform offloading on. For this we have chosen an open source real-time strategy game
called Open Transport Tycoon Deluxe (OpenTTD) [28]. OpenTTD is a multiplayer simulation game
where each player is part of a transport company playing on the same map. The goal of the game is
to earn more money than other companies by building infastructure and vehicles to transport various
types of goods like passengers, mail and oil.

Figure 4.1a shows a screenshot of what OpenTTD looks like in-game. This screenshot only shows
a small portion of the entire game map. In the center is a city that provides opportunities to transport
goods from and to it. The colored name labels are stations build by different companies in an attempt
to make use of this opportunity. Some yellow colored busses can be seen driving around transport-
ing passengers. The UI buttons are visible on both sides of the screen, which can be used to gain
information on objects on the map as well as building and managing the player’s own assets.

In OpenTTD, players cannot control entities like cities on the map directly, but instead can only
influence them by means of transporting goods. These entities will change on their own as time
passes. For example, a city with a lot of goods transported to and from it will grow in size. The player
can more forcibly influence a city to a certain extent by changing its roads or demolishing buildings.
The entities that the player does have control over are the things that they build themselves. These
include the infrastructure, stations and vehicles. Vehicles however find a path and travel on their own
after being given orders to transport goods from A to B and back. This results in the player being
occupied with only building and managing assets on a fairly high level.

OpenTTD simulates its game world in ticks. The game progreses with the same amount with every
tick no matter how much time has elapsed since the last tick. This fulfills the requirement of our
framework. The set maximum number of ticks when running the game on regular speed is 33. The
version of OpenTTD we use does not render a frame at every one of those ticks. Instead, it only
renders a new frame when there is an animation change and the animation is also visible on screen.
This results that the maximum frames per second (FPS) of OpenTTD is 33, but it is usually much lower.
A result of this is that we cannot accurately measure the FPS of OpenTTD. Instead, we will measure
the ticks per second (TPS) of the game, which gives a more consistent result that is independent of
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(a) Screenshot of the Android port of OpenTTD build and running on Linux.

(b) Screenshot of the Android port of OpenTTD running on a Nexus 7 tablet computer.

Figure 4.1: Screenshots of the OpenTTD versions we have used.

coincidences of whether there was an animation on screen or not. For other games however, it would
be better if we measured FPS instead, as that is actually what the player directly perceives.

OpenTTD is very suitable for our research purposes as it is open source, available on multiple
platforms, including for mobile devices, and is also a very sophisticated game. The computational load
of OpenTTD is divided among a large number of game objects which need to be constantly updated.
These game objects are for example, map tiles, AI players, vehicles, stations, towns and factories. After
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updating all objects, the screen also need to be rendered and displayed, which is also computationally
heavy. These components provide a variety of offloading opportunities of varying granularity.

We have chosen to use an Android port of OpenTTD made by pelya [29]. In particular, we used
the OpenTTD-1.4.4.36 version of pelya’s port, which is a port of the regular OpenTTD 1.4.4 version.
Figure 4.1b shows a screenshot of this version of OpenTTD running on a Nexus 7 device. This version
of OpenTTD allowed us to build to both Android and Linux using the same code, which is very important
for our framework to work. The Android version will be used as the client-side and the Linux version
will be used as the server-side. It is possible for the Android version to play with the regular Linux or
Windows versions, as the only difference between them is how the I/O is done.

4.2. Offloading OpenTTD
For our offloading framework, the server-side will not use the regular server mode of OpenTTD. Instead,
it will run the game normally the same way as the Android client as if playing a single-player game.
The only difference being that our offloading logic will be run on server mode on the server and client
mode on the client. We does it this way because we want our framework to be as indepedent from the
game as possible and using the network code of OpenTTD would create a dependency. As the game
will be played from the mobile device and not the server, the server-side will run the game without
visual and andio output. This significantly reduces the load on the server side, allowing our offloading
framework to be used with lighter servers.

To implement our framework for OpenTTD, we have first implemented an offloading game controller
that notifies the offloading framework of tick updates as well as providing functions to start, pause,
resume and quit the game. As for the OEs, we have decided to let all road vehicle types and all
companies to inherit from the OE interface. For road vehicles, we have partioned its logic so the
collision detection and the path-planning parts can be offloaded. For companies, we have made sure
that if they are controlled by AIs, the AI logic will be offloaded. We have defined the companies to be
coarse-grained, as the AIs are likely computationally intensive, but do not send many actions.

A custom message is sent from the server to the client each time an offloaded event of a certain
type occurs. For example, when the client offloads a roadvehicle, it will stop updating its collission
detection and path-planning logic. Instead, when either code is run on the server side, the server will
send a message to the client with the result of that call. The client will store the result till it arrives at
the tick the call occurred before processing it.

We have also looked into offloading other parts of OpenTTD, including the path-planning of trains
and the stocking of goods at stations. However, both of these functions had too many dependencies
to be easily offloaded, hitting one of the problems of our framework. OpenTTD was not made with
offloading in mind, so the separation of logic and its result is not always ideal.

We have not performed any profiling of OpenTTD to select the components to offload. Instead,
we simply looked at the code looking for code blocks that look computationally intensive, are called
often and also can be separated fairly easily. As the code of video games almost always consists of
multiple classes with different tasks, this method can work fairly well to partition most video games for
offloading given enough knowledge about the game itself.

To synchronize user input when offloading OpenTTD, we made sure that every time a game state
changing event has been initiated by the user, a message is sent from the client to the server to
synchronize the event. This means that certain kinds of user input are not synchronized, like user
input that opens a game window to view information. These actions do not change the game state so
do not need to be synchronized. OpenTTD is well structured in this regard as all game state changing
events all go through the same function, making adjusting the code relatively easy and efficient.

For the server-side, we have turned off game features that are not neccessary due to the machine
running it being used as a server. This means that we could turn off any I/O that were not neccessary
without a player, like rendering, audio and polling for user input. We also let the server be able to run
the game at more than 33 ticks per second. This allows the server to be able to more rapidly respond to
client messages as well as to get into the next tick as soon as possible to reduce the chance of the client
needing to wait. In particular, we set the maximum ticks per second to 120 for the server. This number
is obtained by testing increasingly higher maximum ticks per second values on the server and looking
at the measured TD value on the client. We noticed that if we ran the server at the same speed as the
client with a maximum of 33 ticks per second, the measured TD value on the client would range from
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Figure 4.2: The settings used to generate the map used in our experiments as seen from in-game.

1 to 3. As we increased the maximum ticks per second on the server we noticed that the measured TD
value on the client would decrease, till it reached a steady value of 1, which is the smallest TD value
possible. This happened around the value of 120, so that is the value we have chosen. The reason that
the TD value is influenced by this parameter is that the server needs to run the game loop to respond
to messages, even though it would not update the game afterwards because the client is lacking too
far behind.

4.3. Setup
The main goal of this research is to find out whether fine-grained computation offloading can be a viable
solution to increase the performance of mobile games. In this section, we will present how we have
set up our experiments to answer this question. In Section 4.3.1 we will explain OpenTTD specific
parameters that we have set and the save games we have created to act as experiment starting
points. In Section 4.3.2 we will show the parameters that we have chosen that are related to the
offloading framework we have created. Section 4.3.3 shows the client and server devices we have
used. Section 4.3.4 the parameters we have chosen to test the offloading strategies we have created.
Those sections conclude the different experimental parameters we have used. In Section 4.3.5 we
show what data we record during our experiments and how we record it. Finally, in Section 4.3.6
we combine all the different experimental parameters into more concrete experiment sets that we will
perform.

4.3.1. Game Settings and Save Games
A single game of OpenTTD lasts for many hours and can have different computational loads depending
on the amount of entities in the game. To test our offloading framework for different computational
loads of OpenTTD, we have decided to create several experiment starting points beforehand by using
AI players to gradually fill the map. The idea is that the different starting points we create this way will
have increasing computational loads, representing the way the game progresses over time.

To do this, we have first generated a random OpenTTD map using settings that would create a
mostly flat map that is easy to play on. Figure 4.2 shows the exact settings used to generate the
map. These settings were chosen to give the AI players a relatively easy time and enough space to
fill the map with vehicles. The map size of 1024x1024 was chosen based on the number of AIs we
are planning to use and our experience with how much space an AI would need. We have chosen a
starting year far into the future so in-game technology progression would be eliminated.

After generating the map, we then start running the game and gradually populate it with AI players
as in-game time passes. The AIs already in the game will already start filling the map with entities. At



4.3. Setup 21

Savegame Name Road vehicles AIs Game Time (days) Game Time (ticks)
Save 1 267 4 714 52836
Save 2 620 5 1263 93462
Save 3 1519 7 2656 196544
Save 4 2685 9 4212 311688
Save 5 4859 14 7326 542124
Save 6 6337 14 9532 705368

Table 4.1: The save games we have created as the experiment starting points with the numner of offloadable entities per type
in them. Also included is the amount of time that has elapsed since the start of the game. One day in OpenTTD is equal to 74

ticks.

certain intervals, we save the game to create a potential experiment starting point we can use later. So
all the save games we have created originated from running a single game from an initial map. Using
this method, we have obtained a set of save games with increasing computational load, representing
how far a single OpenTTD game has progressed.

From all the save games we have created, we have chosen six to experiment things with. As the
game progresses and the computational load increases, so does the number of OEs. We have selected
the save games based on the number of OEs on the map. Table 4.1 shows the initial number of OEs and
the number of AIs in each of the selected save games. The relation between the actual computational
load of the save and the number of OEs in it is likely not linear. However, as we have not done any
profiling of OpenTTD, we will simply use the number of OEs as an indicator of game progress and
computational load.

The OEs of our selected save games range from more than 200 to more than 6000. We have chosen
to choose more save games in the lower OE ranges while having less save games in the higher OE
ranges. This is to better experiment with a wide range of computational loads while minimizing the
number of experiments required. The number of OEs may change slightly during a single experiment
due to AI actions and collisions, but does not influence the overall number by much.

The types of AIs we have used are the OtviAI version 418 [30], the SimpleAI version 10 [31] and
the ChooChoo AI version 418 [32]. These two AIs were chosen because from our experience, they
can fill up a map quite well. The OtviAI and SimpleAI both use a variety of vehicles, but mainly road
vehicles, while the ChooChoo AI mainly builds rails and trains. As our offloading of OpenTTD mainly
focuses on road vehicles and the collission detection between road vehicles and trains, we think these
three AIs together will create save games that are not only suitable to test our offloading framework
with, but also represent a game of OpenTTD fairly well.

Due to the limited number of AI players that can be in the game at the same time, Save 5 and
Save 6 have the same number of AIs. This is not a problem however, as the difference in the number
of roadvehicles between the two saves is still very large. When all the AIs are active, we have used a
total of 7 OtviAIs 4 ChooChoo AIs and 3 SimpleAIs. The save games with less than 14 AIs will have a
lower number of AIs of each type.

For each save file, we have put the camera at the same position, overlooking the same city in a fairly
zoomed out state. Figure 4.1b shows this position for Save 4. This position influences the performance
of the game because OpenTTD will spend a lot of time rendering if a lot is visible and moving at that
position. We think that the increase in activity at the set position reflects the increase in computational
load due to game progress well.

4.3.2. Offloading Parameters
For the fastest response times and smoothness of the game, we have set 𝑇𝑈𝐹 = 1. We have noticed
that this does not incur too much of a bandwidth usage.

Due to the lack of any implementation to recover from desynchronization, we have decided to set
LTD, UTD and ITD on the safe sides. In particular, we have set LTD as 2 ⋅ 𝑇𝐷, UTD as 3 ⋅ 𝑇𝐷 and ITD
as 2 ⋅ 𝑇𝐷. From our initial tests, this resulted in all packets arriving on time.

Furthermore, we run our offloading decision making process once every three seconds. This is
more than enough to detect and offload new entities when they are created as well as giving offloading
strategies enough opportunity to respond to the changing environment.
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We also let the client measure its TD to the server by sending ping packets once every 80 ticks. We
noticed that the Internet connection we used did not fluctuate much. This meant that the frequency
of these latency measurements does not influence our framework much.

4.3.3. Devices

Device CPU GPU RAM Resolution
Nexus 3 (Galaxy Nexus) ARM Cortex-A9 (1.2 GHz, dual-core) PowerVR SGX540 1 GB 720x1280
Nexus 6 Krait 450 (2.7 GHz, quad-core) Adreno 420 3 GB 2560x1440
Nexus 7 (2013) Krait 300 (1.5 GHz, quad-core) Adreno 320 2 GB 1920x1200

Table 4.2: Specifications of the three client devices we have used for our experiments.

Table 4.2 shows all the client devices we have used for our experiments. The Nexus 3 and Nexus 6
are both smartphones while the Nexus 7 is a tablet computer. Despite its numbering, the Nexus 6 is
actually a newer model than the Nexus 7 and boasts better hardware.

We have chosen these devices to test a range of different devices with different specs. The Nexus 3
represents a somewhat older device while the Nexus 6 is a more up-to-date device, with the Nexus 7
somewhere in between. It is important to note that the screen resolution is also of importance here.
A higher screen resolution means that more pixels must be rendered. This has significant impact on
the performance of the device.

All of the above devices have trouble running OpenTTD at its maximum tick rate when the number
of OEs is high. This means that any increase in performance should be easily visible by looking at the
average number of ticks per second that the device can simulate with and without offloading.

The clients will connect through the Internet using a wireless Internet connection. The experiments
are all performed at the TU Delft. The wireless connection we used is the eduroam connection. This
is a wireless connection that is only accessible for university staff and students. It is a fairly stable
network connection if the signal is strong enough, but can also fluctuate every now and then.

Device CPU GPU Memory Ping (avg/std dev)
Samsung Q330 Intel i3 M350 GeForce 310M 4 GB 12.129/8.395
Amazon EC2 t2.micro (Frankfurt) Intel Xeon Processor E5-2676 v3 (1 vCPU) None 1 GB 23.515/27.437
Amazon EC2 t2.normal (Frankfurt) Intel Xeon Processor E5-2676 v3 (2 vCPUs) None 4 GB 20.207/5.395
TU Delft DAS4 Intel Xeon Processor X5650 None 48 GB 15.595/46.646

Table 4.3: Specifications of the four server devices we have used during our experiments.

Table 4.3 shows the server devices. Our experiments only involve a server providing offloading
services for only one mobile client at the same time. This means any ordinary computer that can run
OpenTTD can be used. It is important however that the server can run OpenTTD much faster than
the client can. This is generally easy as even the most modern consumer level mobile devices are
still significantly slower than computers of a few years old. Moreover, the server will be running the
game without user related IO like rendering and without audio output, significantly decreasing the
computational load.

The Samsung Q330 laptop will be used to see how well a non-optimized home computer performs
as the server. It is a simple home laptop with very mediocre specs. The two Amazon EC2 servers will be
used as the more realistic cloud solution. We use two different Amazon servers to see whether having
over capacity has any influence on the offloading process. We have chosen to set up both Amazon
servers in the Frankfurt area, as that is the closest area that is available. We also think that in the
situation of an actual deployment of our framework, this distance is fairly realistic. Finally, we have the
TU Delft’s DAS4 system, which is a powerful distributed computation cluster. Although our experiments
will not be using the distributed side of it, we will make use of its high computational power.

One problem of the TU Delft DAS4 server is that it is not accessible directly from the Internet. To
be able to establish a connection to the DAS4 server, we used a combination of VPN and SSH tunneling
on the client device. First, we must connect to the TU Delft luchtbrug VPN. This allows us to access the
DAS4 through the eduroam network. However, at this point we still cannot connect to the DAS4 using
a custom port. We then use an SSH tunnel with the DAS4 to achieve this. We have used third-party
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apps to perform both types of connections. We used Cisco’s AnyConnect version 4.0.05016 to connect
to the VPN server and SSH Autotunnel version 1.4.7 by Europe Dev. Group to achieve the SSH tunnel.
Although we could have just used SSH on the Android through the terminal, we used an app to more
conveniently setup each experiment. This roundabout way of connecting might have some impact on
the performance, but in Chapter 5 we will see that this difference is very small.

The ping values to the different servers were measured by pinging each of the servers using the
Nexus 7 device and the same Wi-Fi connection we will be using during our actual experiments. For
each server we sent a total of 240 ping packets with one second between each of them. This ping
measurement duration was chosen to more or less correspond to the planned duration of a single
experiment, which will be explained in Section 4.3.6.

4.3.4. Offloading Strategies
In Section 3.5 we have presented four different types of offloading strategies, which are offload all,
target TPS, max bandwidth and coarse-grained only strategies. For the control tests we disable the
offloading framework part entirely to simulate a situation with no offloading at all.

Several parameters must be set for the target TPS strategy and the max bandwidth strategy. A
common parameter between the two of them is when they should offload more entities. After some
testing around, we have set the following parameters for offloading decision and strategies that give a
fairly stable result but also converges quickly to the right amount of offloaded OEs.

As we have mentioned in Section 4.3.2, we run our offloading decision code every three seconds.
The offloading strategy is part of this code. Each time the decision code of an offloading strategy is
called, it checks whether its conditions have been satisfied to offload more entities. For example, for
the target TPS strategy, this happens when the currently measured TPS does not exceed the given
target TPS. Only after five successive measurements where this condition has been satisfied will the
strategy offload more entities. It will then do so according to the latest measured TPS difference with
the maximum TPS given. The larger the difference, the more entities will be offloaded each time.
We have set that the target TPS strategy will offload 200 entities for every tick below the target TPS
and the maximum bandwidth strategy will offload 90 entities for every 250B/s download rate below
maximum. These parameters were chosen by some trial-and-error to make sure that the strategy does
not overshoot the maximum by too much while still converging fast to the right amount of offloaded
entities.

What remains for these two strategies is to select a target TPS and a maximum download rate. It
is not easy to choose a reasonable target TPS for OpenTTD. Although there has not been extensive
user research on the subject of the impact of FPS on the gameplay experience, it is generally accepted
that the FPS requirements of a game depends on the amount real-time action in it. For example, a
first-person shooter game requires fast and accurate input from the player, so it generally has a high
FPS requirement. Claypool et al. [33] showed that an FPS of 30 is generally enough for these kinds
of games. OpenTTD on the other hand is a much slower game, real-time strategy game. So we think
that a playable FPS for OpenTTD can be lower.

As we have stated in Section 4.1, OpenTTD’s has a maximum FPS of 33 and more often than not,
will be below that number on purpose. This is caused by OpenTTD not having continuous movements
in-game, thus no need to render another frame when nothing has changed. Moreover, the in-game
animations are only updated during a regular game tick. As OpenTTD’s maximum FPS is limited by
its TPS in this way, for the target TPS stretegy, we have decided that a TPS of 20 is a good target in
OpenTTD’s case. From our experience, OpenTTD is still fairly playable at this speed and the animations
are still somewhat smooth.

As for the maximum download rate strategy, we have looked at the bandwidth usage of other RTS
games like StarCraft and some player reports of the bandwidth usage of League of Legends, as well
as using our own experience of bandwidhth usage of online games. We have decided that a maximum
download rate of 5000B/s is the limit our framework should be using on a mobile device. As the upload
rate of our framework is incredibly low (less than 2000B/s), we will only consider download rate here.

The offload all strategy and coarse-grained only strategy both do not need any parameters. The
former will simply offload all entities at all times and the latter all coarse-grained entities from the start.
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4.3.5. Data Recording
During the experiments, we will record a variety of data. Most of the data will be recorded and written
to a file by the client itself. For each run, a data point is created every two seconds. Each of these
data points contains the following data:

• The number of ticks that has passed in the last second (TPS)

• The last measured transmission delay (TD)

• The total number of times up till now that the client had to wait for server tick updates

• The moving average amount of time each wait lasted

• The moving average download and upload rates.

For each run of the experiment, we also measure the CPU usage of the client. This is done by
reading the value of the fourteenth column of the /proc/<pid>/stat file of OpenTTD on the client
device. This column contains the amount of CPU time used by a certain process during its run in jiffies,
excluding the CPU time used for system calls. For all the client devices we use, one second contains
100 jiffies. We normalized the number obtained from the file by dividing it with the number of seconds
OpenTTD was run.

To automate and simplify the extraction of this data, we use an automated script that pulls the CPU
usage from the file at the end of a run of an experiment before OpenTTD terminates. This requires that
the device is connected through an USB connection and the Android Debug Bridge with the machine
that the script will be run from.

Another type of data that will be recorded separately is the power consumption. The equipment
to measure this data is only available for the Nexus 3 device. This is because using the equipment
requires a modified battery and therefore, requires adjustments to the device itself. The equipment we
use to do the actual power measuring is the Power Monitor by Monsoon Solutions Inc. [34]. It allows
us to directly measure the power draw of the device with a sampling rate of around 5000Hz. The input
voltage we have used for these experiments was 4.6 V, which corresponded to a fully charged battery
on the Nexus 3.

4.3.6. Experiment Sets

Set Nr Client Server Strategy Save Goals
1 All None No offload All Baseline
2 All All Offload All All Performance
3 All Amazon EC2 t2.micro TPS + Bandwidth + Coarse All Strategies
4 Nexus 3 Amazon EC2 t2.micro No offload + Offload All + Coarse All Power consumption
5 Nexus 3 Amazon EC2 t2.micro Offload All + Coarse All Power consumption with limited ticks

Table 4.4: Description of all the experiment sets and the parameter combinations that they consist of.

Table 4.4 shows the conducted experiments by combining the different parameters mentioned in
previous subsections. The experiments are organized into different sets to better differentiate between
them. Each combination of parameter will be tested individually by running the game for a short while.
Each run of an experiment lasted three to four minutes. Each combination of the Set 1 and Set 2
experiment parameters were run three times each while Set 3, Set 4 and Set 5 experiments were each
run only once. We observed from some initial test runs of longer duration that the data we record
do not change much over time, as long as it is not too long to give the AIs enough time to build a
significant number of additional vehicles. A three to four minute run gives us stable data for a single
run while still staying close to the computational load at the start of each save game. However, we also
observed that the result of each individual run can differ a bit from each other. This is likely caused by
network flunctuations and maybe even other apps running on the client device. We would have liked
to have run more than three times for each parameter combination, but due to time constraints we
have settled with just three.

To illustrate the idea of the table, the Set 2 experiments consist of the combination of the three
different client devices, the four different server devices, the single type of strategy and the six different



4.3. Setup 25

saves for a total of 72 different combinations. Each combination will be run three times and each run
will last three to four minutes. The combinations of experiments of other sets can be obtained in the
same way.

For the Set 3, Set 4 and Set 5 we have chosen to use the Amazon EC2 t2.micro server, as that
server is considered not only computationally sufficient, but also realistic as it is in the cloud. This is
based on our analysis of the Set 1 and Set 2 results, which were performed first.

Both the Set 4 and Set 5 experiments were to measure the power consumption of offloading. We
initially only had the Set 4 experiments, but after analyzing the results from the Set 4 experiments,
we have concluded that our setup was slightly flawed. This was because our offloading framework
increased the performance of OpenTTD, but OpenTTD would use the saved CPU time to perform more
simulation ticks, effectively increasing the amount of work that needs to be done every second com-
pared to not using offloading, thus also effecting the power consumption measurements. You can find
a more detailed analysis of this result in Section 5.6. To solve this problem, we have designed the
Set 5 experiments, where the experiments of Set 4 were performed again, except that we lowered
the maximum number of ticks per second of OpenTTD to the number of ticks per second the Nexus 3
could achieve for each save game without offloading. Normally, OpenTTD has a maximum number of
ticks per second of 33, which is achieved by setting the minimum duration of a tick to 30ms. Table 4.5
shows the ticks per second limits we have set for the Set 5 experiments.

Save Ticks Per Second Milliseconds Per Tick
1 26 37
2 26 37
3 21 46
4 15 70
5 9 109
6 7 141

Table 4.5: The ticks per second limitations of the Set 5 experiments. The Ticks Per Second column shows the which ticks per
second we tried to achieve while the Milliseconds Per Tick column shows the actual minimum duration of a tick we have set for

OpenTTD.





5
Results

In this chapter we analyze and discuss our experimental results to see whether our framework for
fine-grained computation offloading is a viable solution to increase the performance of sophisticated
mobile games. For this to be true we need to see a significant increase in performance (Section 5.1),
without too much of a decrease in game smoothness (Section 5.2) and responsiveness (Section 5.3).
We also look at the influence of offloading on the bandwidth usage (Section 5.4) and overall power
usage (Section 5.6) of the client. Finally, in Section 5.7 we give a few comments on the consistency of
the game state during our experiments.

5.1. Performance
Figure 5.1 shows the average ticks per second results and the CPU usage results from our Set 1 and
Set 2 experiments. These two types of data are relevant for our performance analysis.

From the average TPS results we see that our offloading method significantly increases the per-
formance of OpenTTD on all computational loads on all devices. The TPS results of the baseline tests
were mostly beneath the acceptable TPS threshold we have determined in Section 4.3.4, while with
offloading, it is mostly above this threshold. From this point of view, offloading can make an unplayble
slow game acceptable and sometimes even smooth again. The difference between no offloading and
offloading becomes increasingly larger as the computational loads increase, which means our solution
scales very well. The difference is more than an 100% increase for all devices, although this is only
possible when a significant portion of the game can still be offloaded as the game progresses. The
game progress of OpenTTD consists mostly of increase in the number of vehicles, stations, infrastruc-
ture and cities. As we have offloaded a significant portion of the vehicle code, this seems to have
resulted in good scalability.

The impact on performance between the four different servers has been minimal. The slight dif-
ferences are small enough to be natural tick fluctuations of the device and the network. However, the
difference between the DAS4 server and the other servers during the experiments with Nexus 3 has
been larger. We think that something went wrong during those experiments that resulted in the lower
performance increase. We are planning to redo those experiments to see whether the numbers are
correct.

That there is no difference in performance between the servers is good news. This means that a
user of a game using our framework can setup and rely on a personal home computer to perform the
offloading for a single client. This allows for more flexible use of this technology as well as reducing
the ping between the client and the server. This ability fits well with the vision of [35] of using cloudlet
machines for offloading, which perform services just like real cloud machines, but which are physically
in close proximity with the client.

As we have not tested multiple clients connecting with a single server, we do not know what the
influence is on the performance when the server is overloaded. Our current research mainly focuses
on the client-side effects of offloading. Looking into the server-side is left for future work.

Looking at the CPU usage, we see that the CPU usage of not offloading and offloading is more or
less the same. We think that this is not because our offloading setup does not save CPU time, but
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Figure 5.1: The average ticks per second and CPU usage results of the Set 1 (baseline) and Set 2 experiments.
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rather that the saved CPU time has been used again by increasing the TPS, effectively increasing the
amount of work that needs to be done in the same time frame.

We also see that for the first two computational loads, the CPU usage of the experiments with
offloading of both the Nexus 3 and the Nexus 7 devices are lower than the experiments without of-
floading. We think this is caused because the TPS of those computational loads without offloading is
already high. Adding offloading on top increases the TPS to the maximum of 33. The rest of the time
saved by using offloading is not further consumed, unlike in the experiments with the higher compu-
tational loads where the TPS cannot reach 33 even with offloading. However, we do not know why we
do not see the same results that clearly from the results of the experiments with the Nexus 6 device,
which even has the highest TPS without offloading.

The question remains why the CPU usage is not 100% when the TPS has not reached the maximum
of 33 yet. A 100% CPU on a single core usage should be 100 jiffies a second. None of the devices
could reach the maximum TPS of 33 of OpenTTD even at the lower computational loads, despite not
reaching 100% CPU utilization either. One reason that we do not see a 100% CPU utilization may be
because we only read the application level CPU usage of the proc/<pid>/stat file that did not include
the CPU usage of system calls by that application. This means that even when all the CPUs of the
mobile client were fully utilized, the value we read could still be lower than 100% of a single core. Our
framework does some logging to the flash memory of the device, which are system calls that take some
CPU time. However, when we were doing the baseline tests this logging was turned off, so the reason
that the CPU usage of the baseline tests did not reach 100% must be due to other I/O operations like
rendering. This also explains why the CPU usage increases as the computational load increases; the
device spends most of the time simulating a tick, which uses CPU time at the application level and so
it does less other types of I/O in the same amount of time.

Works like Li et al. 2001 [21], Chu et al. 2004 [22], Kemp et al. 2010 [5] and Cuervo et al. 2010 [23]
were also able to achieve similar performance increase results, although the amount thereof signifi-
cantly depended on the game and the amount of functions that were offloaded. Unlike these frame-
works however, our framework does not need to send an offloading request and wait for its result at
every call of an offloaded function. The many benefits of this was explained in detail in Section 3.1.
One of the benefits is that we can do fine-grained offloading with this, because even functions that
the client could do very fast itself are worth offloading. This is because we do not need to take into
account the waiting time and the overhead required to send an offloading request for a call to a single
offloadable function.

5.2. Game Smoothness
To analyze the smoothness of the game, we look at the average number of times the client had to wait
for the server and the average duration of those waits. Both results are shown in Figure 5.2. A smooth
game experience either has a very low number of waits or if it has a high number of waits, we imagine
that the game can still be perceived as smooth if the average wait time is consistent and low.

We expected that the number of waits would increase when using a faster client device, due to it
being able to simulate more ticks in a shorter time, increasing the likelihood of server tick updates not
arriving on time. Although this seems to be the case when comparing the results for the Nexus 6 and
Nexus 7, it is not clear why the results for the Nexus 3 show that it has waited more times than both
other devices, while being the slowest of the three. This result could be a coincidence caused by the
unreliability of network connections and the low number of experimental runs.

Similarly, we also expected that the number of waits would decrease as the computational load
increases, because at high computational loads, the client would not be able to simulate very fast. This
hypothesis does not seem to be true either as the results show that the number of waits is not really
influenced by the amount of computational load at all. Instead, it will mostly stay at the same level
for a single client and server combination with random spikes here and there. Although the results of
the experiments with the Nexus 3 does seem to show a general downward trend, we do not think that
alone is enough to prove the hypothesis.

Lastly, we expected that the number of waits would increase as the distance to the server becomes
larger. A larger distance means that packages have a higher chance to become lost or unexpectedly
delayed. The results show that there is no relation at all between this distance and the number of
waits. This may be caused by the relatively low ping between the client and all of the different servers
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Figure 5.2: The average number of times the client had to wait for the server and the average duration of those wait results of
the Set 2 experiments.
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we have used. The small diffferences in the ping between these servers may be too small to make a
significant difference, especially considering the update speed of OpenTTD is at 30ms a tick at max,
which is slow compared to most modern games which run at 60 FPS, which means around 16ms a tick.

From the above results, it seems that the number of waits is mainly influenced by the condition of
the network connection at that moment. If we look at the results of every individual run of a parameter
combination instead of looking at the average of three runs, we also see large variances in results. This
means that under the same conditions, the player experience of using offloading can vary wildly. To
properly test our hypotheses however, a much larger number of runs must be performed to eliminate
these variances.

The number of waits mostly varied from 5 to 60 waits per run. Each run of the experiment lasted
nearly four minutes. This means that on average the client had to wait for the server around every
4-50 seconds. We think that a wait every 4 seconds is still an acceptable value, but will also depend
on the duration of those waits.

Looking at the average wait time, we see that this data is more consistent than the number of
waits, although some spikes are also visible here. Again, there does not seem to be a clear relation
between the the average wait time and the client device used, the server device used and the amount
of computational load.

With the average wait time, we expected that the computational power of the device itself and the
amount of computational load would not influence the average wait time. This is because during a
wait, the device will stop simulating the game world, allowing it to poll the network interface at a fast
rate for server tick updates. All of the devices would be able to poll at the same rate in a situation with
such low computational loads. This hypothesis seems to be confirmed by the results, as the average
wait time for all three devices is in the 50-100ms range.

We did expect that the difference in distance to the different servers would effect the average wait
time. In particular, we expected that as the distance to the server increased, the chance of sudden
packet delays would be larger. Like the number of waits, the results show that there is no relation
between the server we use and the average wait time. Again, we think that this is caused by the
minimal difference in distance between the different servers.

Combining the two types of data and thinking from the players’ perspective, we think that the waits
will certainly be noticeable by the player. Some of the waits can even be fairly annoying as they can
be frequent and long enough to be noticed. However, we also think that the average wait time is fairly
low so most waits will not really be noticeable. Moreover, we think that in games that have a higher
simulation speed than OpenTTD, which is quite normal, the impact of the waits will be smaller. This is
because that despite that in such a situation the number of waits might increase, the duration of those
waits will decrease, making each wait having less of an impact on the game smoothness and might
not even be noticed at all by the player.

5.3. Game Responsiveness
The responsiveness of a game using our framework depends on the chosen LTD, UTD and ITD values.
Whatever the values chosen, the minimum delay is directly related to the measured TD value, which
in turn depends on the ping between the client and the server and also the processing speed of both
machines.

As we already mentioned in Section 4.3.2, for our experiments we have set LTD to 2 ⋅ 𝑇𝐷, UTD to
3 ⋅ 𝑇𝐷 and ITD to 2 ⋅ 𝑇𝐷. From the results of the Set 2 experiments, we have observed that for all
our different servers we measured a TD value of mostly 1, sometimes 2. Using these values we can
calculate the time in milliseconds the player has to wait to see the result of an input.

In the best case scenario where 𝑇𝐷 = 1 and the client tick is as close to the server tick as possible
at LTD, the client will schedule a user input event 4 ⋅ 1 = 4 ticks in the future. Assuming a simulation
speed of around 30 TPS for the client, the resulting perceived delay by the player will be at 132 ms. A
similar calculation of the worst case scenario with 𝑇𝐷 = 2 and the client UTD number of ticks behind
the server, we get 5⋅2 = 10 ticks input delay. Which results in 330 ms perceived delay. In other words,
for our offloading setup of OpenTTD, the perceived delay of the player can range from 132-330ms.

Video game players start to notice delays above 100ms [36], which our method greatly exceeds.
These response times of our method are worse than those of existing cloud gaming systems [37]. A
delay of 330ms is unacceptable in fast paced games, but for some genres of games like RTS games,
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players may be able to adjust to the delay [38]. The user input response time delays created by our
framework are generally too high to create a good game experience.

Our delays could be decreased if we chose the margins tighter. Although we have not tested it,
we think that in our network conditions, we could have chosen the LTD, UTD and ITD values tighter.
However, the LTD value has a minimum value of TD, which is the minimum number of ticks required
on the client-side before the client receives a message sent by the server.

Another potential way to increase the responsiveness of our framework is as follows. We explained
in Section 3.2 that it might have been a better idea to measure TD in milliseconds in a separate thread
other than the game loop of the game. This eliminated the inaccuracy caused by the dependency
of TD with the speed of the game. Furthermore, we explained that we could have the server tell
the client of its current TPS, so we can then use this value to better predict how far ahead we can
schedule user input events. Combining these two ideas results that we can convert the transmission
time in milliseconds to the number of ticks that the server can do in that time. This way we can more
accurately schedule user input events, which will likely result in better game responsiveness.

All in all, keeping the ping between the client and the server as low as possible will become one of
the most important factors when increasing game responsiveness. The possibility of our framework to
be able to use home computers as servers is very beneficial in this situation, as those machines are
almost always relatively nearby, even when the user is not at home.

5.4. Bandwidth Usage
Figure 5.3 shows the average download and upload rate results of the Set 2 experiments. The data
shows that the download rate remains very consistent throughout the different servers and computa-
tional loads, but that the upload rate using the Amazon EC2 servers suddenly becomes very unstable
as the computational load increases. Looking at the logs of those runs it seems that this is caused
by a bug that causes the client to resend offloading requests of entities that are already marked as
offloaded. We could not find the cause of this bug nor explain why this does not always happen and if
it happens it is with the Amazon EC2 servers. When analyzing the upload rate, we will thus only look
at the upload rate results of the experiments using the laptop and DAS4 servers during our analysis.

Claypool et al. [39] have measured the upload rate of each player for the first StarCraft game. For
eight players in Starcraft, Claypool et al. have measured an upload rate of 8000 B/s for each player.
The upload rate of our offloading framework for OpenTTD is only around 300 B/s, which we think is
at a very acceptable level. Claypool et al. have not measured the download rate of each player in
Starcraft, but we can try to estimate this value. Starcraft is a peer-to-peer game, which means every
message of each player should have been sent to all other players. With eight players and an upload
rate of 8000B/s for each of them, this means that every player sends around 1143B/s to the seven
other players. So every player will also receive 1143B/s from seven players, putting the download rate
of every player to 8000B/s too.

Although we do not know the number of units that were in the StarCraft games of Claypool et al. [39],
based on our knowledge of StarCraft, a game with eight players likely does not have more than 1000
units on the map at the same time. Our experiments have far more entities that require network com-
munication. The download rate we measured for our framework when offloading this high number of
entities is 12000 B/s. We think that the download and upload rates of our framework are both at very
reasonable levels.

Another thing to consider is that users of our offloading framework may often not be using a Wi-Fi
connection. Instead, they will be relying on mobile connections like the 3G network. Our bandwidth
usages are well within the capabilities of 3G networks. With the advance of 4G networks, these levels
of bandwidth usage should not be a problem at all. The increase in the number of free Wi-Fi hotspots
in public areas is also beneficial for future use of offloading.

Looking at the upload rate results, we further see that the upload rate goes down as the compu-
tational load increases. This is because the upload rates of the client in the Set 2 experiments were
mainly dominated by client tick update messages. A higher computational load means a lower simula-
tion speed, which results in less tick update messages being sent, causing the average upload rate to
slightly decrease.

Although a lower simulation speed also decreases the rate at which offloaded events happen and
thus the required download rate on the client-side, we still see an increase in download rate as the
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Figure 5.3: The average download and upload rate results of the Set 2 experiments.
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computational load increases. This is likely because the extra download rate required to synchronize
more OEs outweighed the decrease in download rate due to a slower simulation speed. This is more
apparent in the experiments with the Nexus 6 device, where the overall TPS does not decrease by
much even at the highest computational load. For the experiments with the Nexus 3 and Nexus 6
devices, we see that the download rate barely increases when going from the computational load of
Save 5 to Save 6.

In the end, the required download rate of our offloading framework mainly depends on the size and
frequency of the offloaded event messages. This is turn depends on the game itself and how optimized
the network code in with respect to message sizes. The download and upload rates will also slightly
depend on the selected tick update interval. OpenTTD only runs at 33 TPS. When offloading a game
that runs at 60 TPS, which is pretty normal for modern games, the bandwidth usage caused by the
tick update messages will increase significantly. We think that even in this case, setting the tick update
inteval to 1 will still result in a very manageable bandwidth usage.

5.5. Offloading Strategies
The Set 3 experiments were set up to test the three different offloading strategies we have created.
Section 4.3.4 goes into detail about the parameters we have chosen for each strategy. Basically, we
have set the target TPS of the target TPS strategy to 20 and the max download rate of the max
bandwidth strategy to 5000B/s.

Figure 5.4 shows the results of the Set 3 experiments along with the results from the Set 1 exper-
iments with the control (no offload) and the offload all strategies. Despite the different lines in the
graph looking chaotic at first and some of the data being slightly unstable due to the low sample size,
the results do make sense at closer look. During the calculation of the average ticks per second of the
Set 3 experiments, we have only taken into account the data points after the corresponding strategy
has converged to a stable number of offloaded entities. The time the strategies need to converge range
from 30 to 120 seconds depending on the save game. We think that this convergance time is accept-
able, as a playing session of a sophisticated game tend to be much longer than a simple game. That
said the convergence time can be more optimized in the future by automatic profiling of the program
to get a better estimation of the effects of offloading a certain entity.

We have decided to only look at the average ticks per second and the download rate to compare the
strategies. This is because we think that in a realistic scenario, the player would be making the tradeoff
between these two parameters. On the one had the player wants the best gaming experience with the
highest ticks per second possible but on the other hand might not want to use too much bandwidth
as it may come with additional fees. Ideally, one would also consider the power consumption, but we
could not develop a strategy for this as not every device has an easy way to accurately measure power
consumption.

The results of the target TPS and the max bandwidth strategy both show that they do what they
are supposed to do. Both of them only offloads entities when their respective conditions are not met
and both of them tries to maintain just enough offloaded entities to satisfy their conditions. From the
results we see that the target TPS strategy is slightly better at keeping the average ticks per second
close to the target than the max bandwidth strategy keeping the download rate close to the max.
However, both of them manage to maintain it fairly well. Which one is better mostly depends what the
player values the most; a high ticks per second or a low download rate. The results show that these
two strategies are customizable enough for the player to use the mand making the tradeoff.

The results of the coarse-only strategy is interesting, as it shows that in the early save games, the
effects of this strategy in increasing the performance is very good, almost the same as offloading all
entities in fact. But as the number of entities increase, the effects of offloading only the coarse entities
drops rapidly, almost to the point that there is barely any difference between offloading them and not
offloading them. We think that this results is an OpenTTD specific phenomenon. It says something
about the ratio between how much of the computation is cause by coarse entities and how much by
regular entities. How well this strategy performs will thus depend on the game itself. That said, we
think that in a practical scenario, this strategy will do a very good job at minimizing the bandwidth
usage while maximizing the ticks per second.
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Figure 5.4: The ticks per second and download rate results of the Set 3 experiments using the target TPS, max bandwidth and
coarse-only strategies. The baseline results from Set 1 and the results with the offload all strategy of Set 2 are also included.
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Figure 5.5: The various results from the Set 4 experiments measuring the power consumption of the Nexus 3 device with
offloading.

5.6. Power Consumption
Figure 5.5 shows the results from the Set 3 experiments measuring the power consumption of the
Nexus 3 device with offloading. Aside from the power consumption itself, we have also included the
ticks per second, CPU usage and the download rate data from the experiments. These will be analyzed
to see how they relate to the power consumption itself.

From the results, we see that using offloading has significantly increased the power consumption
of the device by around 20%. This is most certainly caused by the additional usage of the network
hardware of the device when using offloading compared to not using offloading.

However, we expected that offloading would decrease the overall power consumption as it was
the case for other frameworks [21, 23]. We thought that if offloading could decrease the CPU usage,
the power saved by using less CPU might outweight the extra power used by using the networking
hardware. From the results in Figure 5.5 we see that the CPU usage when using offloading is only
lower than the control for the first two computational loads, which is in line with what we have seen
from the Set 1 experiments results in Section 5.1. In that Section we also explained that the cause
of this is that OpenTTD uses the saved CPU time from offloading to perform more ticks per second,
effectively increasing the overall workload each second.

We thought that if we forced the ticks per second of the experiments of using offloading to stay the
same as in the control experiments, we would get a more accurate measurement of whether offloading
can save power. To test this, we have set up the Set 5 experiments as explained in Section 4.3.6.
Figure 5.6 shows the results of these experiments.
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Figure 5.6: The results from the Set 5 experiments measuring the power consumption of the Nexus 3 device with offloading
while limiting the maximum number of ticks of OpenTTD.

From these results, it is clear that offloading can save a significant amount of batter power when the
workload remains the same. This also shows that it even offloading fairly fine-grained functions like the
path-planning and collission detection of vehicles in OpenTTD is benificial to the power consumption
of the device. This means that with our framework, it is very easy to find functions that would benefit
from offloading

However, the results of the first two save games show that there needs to be enough computation to
be offloaded before offloading can save power. In our experiments, the number of offloadable entities
in the first two save games are relatively low. The amount of computation that can be offloaded
through them compared to the rest of the game that cannot be offloaded is also low. This has resulted
that the power consumption of using the Wi-Fi of the device even at low bandwidth usages exceeds
the amount of power saved by reducing CPU usage. This does not mean one should never offload in
these situations though, as we have seen in 5.1, offloading will still significantly increase performance
in these situations.

Another observation from the results is is that the power consumption of the Wi-Fi interface likely
uses significant amount of power by just turning it on, while actually using it with increasing download
and upload rates only marginally increases its power consumption. This is based on the increased
power consumption of offloading at the first two save games, the decreased power consumption in the
latter save games and the difference in power consumption of the offload all and coarse-only strategies.
If this is true it would mean that it will often be very beneficial to offload as much as possible. Further
research is needed to determine how much power different network interfaces of a mobile device
consume at different download and upload rates.

Combining the results of the Set 4 and Set 5 experiments, we can conclude that offloading for
mobile games will only save power when the game does not add more work because of the increased
performance due to offloading. This is only true when the device can run the game at or almost at
the maximum number of ticks set for the game. This means that our framework either increases
performance by increasing the number of ticks per second of the game while consuming more power,
or the performance of the game will more or less stay the same but using less CPU and thus power.

5.7. Game Consistency
As we have previously stated, our current implementation of the offloading framework cannot recover
from desynchronizations caused by late or faulty messages. To be able to use the framework despite
these shortcomings, we have chosen relatively large margins for LTD and UTD. For each arrived mes-
sage we check whether it has arrived too late and if so, record it in the data. From all our experiments,
we have not detected any such messages. Most desynchronizations in OpenTTD would also result in a
crash rather soon, which would have been noticed immediately during the experiments.
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Our reasoning with the TD are based on a fairly pessimistic expectation of the network connection.
More research is needed to see whether the margins can be chosen tighter.



6
Conclusions and Future Work

In this chapter, we will first summarize the work we have done and the results we have gotten in this
thesis in Section 6.1. We will then discuss potential future research directions for offloading for mobile
games in Section 6.2.

6.1. Conclusions
In this thesis, we have investigated the viability of performing fine-grained offloading to increase the
performance of sophisticated mobile games. We have done so by first establishing what is required
of such framework and analyzing the current state of the art in offloading. We have discovered that
existing offloading frameworks do not meet the requirements that comes with fine-grained offloading
for games. We then created our own offoading framework that uses a combination of offline and online
partioning to achieve dynamic and fine-grained control of the offloading process. The framework auto-
mates the synchronization process by using our own variation of the lockstep system. The framework
also defines class interfaces to abstract the framework from the actual game and to guide and simplify
the implementation process for game developers. Finally, our framework supports different offloading
strategies that enables smart guidance of the dynamic offloading process depending on the situation.

Our experiments were performed by implementing our framework to an existing game called
OpenTTD. We have done this by implementing the interfaces defined by our framework. We partioned
OpenTTD by making offloadable entities out of OpenTTD’s roadvehicles and AI companies. For roadve-
hicles we were able to offload its collission detection and path-finding functions and for AI companies,
we could offload its whole decision making process.

We have performed experiments using three different mobile devices acting as clients, four different
machines acting as servers, six different save games, representing increasing degrees of progress of
an OpenTTD game with increasingly higher computational loads, and four different offloading strate-
gies. During these experiments we have measured a vareity of data that we could use to analyse the
performance of our framework. These types of data include the number of simulation ticks per second,
the CPU usage, the download and upload rates and the number and duration of the time the client had
to wait for the server. Additionaly, we have also measured the influence of offloading for the power
consumption of the device. We could only do this for one of our devices, namely the Nexus 3 device,
as it was the only device we had a setup for.

The results from the experiments show that our framework performing fine-grained offloading sig-
nificantly increases the performance of OpenTTD across all computational loads. The increase in per-
formance is much larger when the computational load is high, showing that our framework scales up
pretty well. The number of ticks per second with offloading compared to not using offloading can
become as high as 250%, which significantly increases the playability of the game when either the
device is not as powerful or the computational load is exceptionally high or both. The results also show
the computational power of the server is not of that importance when it is only providing offloading
services for a single client. The only requirement for the server is that it should be able to simulate
the game faster than the mobile client, which is easily achieved as even old computers can outperform
the most modern commercial smartphones and tablet computers. The results show that even a simple
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home laptop can be easily setup and used as an offloading server with equally good results compared
to using more powerful machines. Using computers nearby the user also has the advantage of lowering
the ping between the client and the server.

Our framework also allows guided control over which entities to offload and how many using offload-
ing strategies. The offload all, target TPS, max bandwidth and coarse-only strategies we have created
show that it is possible for the user to tune these strategies to his liking and can choose between them
to make a prefered trade-off between performance and bandwidth usage.

We also see that using our offloading framework can also decrease the power consumption of the
device. However, this is only possible when the game itself does not use the saved CPU time from
offloading to actually increase the simulation speed of the game. This situation is possible when the
device can already run the game at nearly its maximum simulation speed without offloading. When
the device cannot do this however, performing offloading both increases the simulation of the game as
well as the power consumption of the device. This is caused by that the CPU usage remains the same
while the device also needs to make use of its network hardware to perform offloading.

Offloading makes a distributed system out of a game and also requires the use of Internet. This does
come with a few drawbacks. Our framework is no exception. The bandwidth usage of our framework
is fairly manageable even when the number of offloaded entities is very high and should be even less
a problem as mobile networks keeps developing in the future. Due to the design of our offloading
framework, it is possible that the client must sometimes pause the game and wait for the server. This
can create short hiccups in the game that can be fairly annoying to the player. Our results show that
these hiccups exist in our framework and are sometimes long enough to be noticeable by the player.
However, we also think that the average wait time is low enough that most of these waits will not annoy
the player. A more serious problem is the long responsive times for user input caused by our framework,
which can be as high as 330ms for our current implementation with OpenTTD. Although we think that
both wait times and input response times can be improved in the future by more accurately prediction
of the network condition. The possibility of using home computers as offloading servers also helps
minimizing the ping to the server. Moreover, we think that using a game that has a higher simulation
speed than OpenTTD, which should be pretty common nowadays, will also significantly alleviate these
problems.

Despite these drawbacks, we think that performing fine-grained offloading for sophisticated mobile
games has significant potential to be used in the future. Our current implementation of the framework
is very experimental and only includes the core features, but even it can drastically improve the perfor-
mance of the game. Our current framework can easily be improved to be less experimental and more
user-friendly by adding features like automatic sending of save games to the server, being able to input
the server address in-game, being able to change offloading parameters in-game and creating a server
side program that relaunches after an offloading session. These changes are simply implementation
problems and do not require further scientific research.

That said, even after our experiments and analysis, there are still many open questions regarding
the optimization of the core of the framework as well as the influence of offloading on the client.

6.2. Future Work
The first potential research direction is whether the margins of our lockstep scheme can be chosen
tighter and more smartly. Our current implementation uses a rather pessimistic view of the Internet,
especially when scheduling user input events. Further research is needed to determine how many
ticks the known server tick of the client is behind the actual server tick in practice. Furthermore, more
investigation can be done to see how accurate our measurements of TD actually are to the actual time
needed to send and receive a packet. We also concluded that the accuracy of our TD measurements is
influenced by the simulation speed of the, but also does not consistently increase as simulation speed
increases as there can be a point where a measurement package arrives just after a single tick. Further
research is needed to determine what the influence is of the simulation speed on the accuracy of TD
measurement and whether there is an alternative way to predict message traveling times so it can be
used to schedule in-game events. Furthermore, our TD measurement is done at the client-side, which
does not give us a good estimate of how many ticks ahead we should schedule user input events at
the server-side. This could potentially be solved by letting the server also calculate its TD and sending
the value to the client for use.
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The framework also needs to be thoroughly tested under different network conditions. Although
our framework is designed for mobile use, we currently have only tested it with relatively stable Wi-
Fi connections. During our experiments, we noticed that the stability of this connection significantly
impacts the performance of our framework. It is interesting to see how our framework performs
under other mobile networks like 3G and 4G, which most users of the framework will eventually use.
Research that have compared Wi-Fi and 3G networks have discovered that 3G uses more power than
Wi-Fi [40]. Moreover, works that measure the power consumption of mobile network interfaces like
Balasubramanian et al. [40] and Perruci et al. 2011 [41] only measure the power consumption of the
interface when downloading or uploading a static amount of data at a certain transferring speed. The
situation of gaming is different as increasing the transferring speed does not shorten the time needed
to finish the job. Therefore, reserach is needed to see what the power consumption is of different
network technologies when transferring data at a certain speed for a static amount of time. Both
of the above aspects have implications for the point when offloading will either increase or decrease
power consumption. Experiments to test the framework under network conditions can also be useful to
determine what kind of networks can support a playable offloading experience and which ones cannot.
These experiments can also determine what the maximum ping is of a playable session and thus how
close the server must be to the client. This will have influence on the deployment of the service by
potential game developers that want to use offloading.

The framework must also be made robust against temporary network outages and desynchroniza-
tions to be of any practical use. Currently, a disconnection will pause the game for both the client and
the server without a possibility to recover. This is not acceptable in a practical case. The client should
at least try to reconnect to the server after reobtaining a network connection. If the network outage
lasts too long, the client should give up entirely on the current session, create a new save game of the
current game state to try again later. The server should also quit its session after a certain time has
elapsed.

A more difficult question is how to cope with desynchronizations. Desynchronizations can be caused
by late or lost packets or wrongly implemented offloadable entity interfaces. The result of a desyn-
chronization is also very game specific, so it is very hard to solve the problem in a very general way.
The question here is not only how to handle a desynchronization, but also how to detect it in the first
place. Of course, desynchronization from a late packet is easy to detect, but desynchronization caused
by lost or faulty implementation are less trivial.

It might be possible to let the both the client and the server create save games at certain intervals
and comparing them either directly or through hash. The question is whether all relevant state can be
captured in a regular save game or not and if not, how much extra work does the developer need to
do to incorporate the missing state in the save game. Another question is how much of a performance
impact regularly making save games will have on the client. Creating a save game is a pretty heavy
operation for a game and will create a significant slowdown each time the operation is performed. It
is possible to do this in parallel, but this will require even more work from the game developers.

Even when you can create save games without disturbing the regular gameplay, the next question
is what to do after detecting a desynchronization. The good news is that the same save games could
be used as rollback points. After detecting a desynchronization, both the client and the server will then
rollback to the last save game that was still synchronized. However, this will have a huge impact on
the gameplay experience of the user, as not only must the regular gameplay be interrupted to perform
the rollback, the player will also lose some progression. How seamless the rollback can be performed
will unfortunately again fall into the hands of the game developer, as the framework does not directly
control the state of the game. The interval of the save games must also be carefully chosen to minimize
the loss of player’s progress when rolling back after a desynchronization while keeping the performance
cost under control.

Our current framework gives game developers relatively a lot of freedom to structure their game
however they want. However, as we have seen above, to generalize solutions it might be neccessary
for the offloading framework to have more control over the structure of the game. This way, it will
have more control over the state of the game and be able to generalize solutions for creating save
games and coping with desynchronizations. Therefore, it might be interesting in the future to try to
come up with a more complete framework. One that not only controls the offloading part, but also
controls the whole gameloop and the game state. It will be interesting and challenge to see whether
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such a framework can be designed in such a way to still give developers plenty of freedom to create
their own games.

A solution must also be found for how to support multiplayer games. OpenTTD is actually a mul-
tiplayer game, but our framework only works for single player games. The challenge of offloading in
a multiplayer session is how to schedule user input events in the future so all parties, including the
offloading servers, is able to receive the messages on time to perform them at the same tick. This
requires a complicated communication scheme where all parties must know the ticks of all other parties
as well as the transmission delay of each party. It will be interesting to see whether the current core
of our framework can be adjusted to enable multiplayer sessions with offloading and whether it is still
worth doing offloading with the extra synchronization overhead.

Our current research has mainly focused on the effects of fine-grained offloading on the client side.
For commercial use, it will also be neccessary to see what the requirements are on the server side.
Specifically, it will be interesting to see how many clients a single server can offload for and what
happens when the server is overloaded. Such experiments might be hard to perform with real mobile
devices. It might then be neccessary to use virtual machines to simulate a high and varying number of
mobile clients. As the focus of such experiment will be on the server side, such a method will probably
still give valid results. However, it would also be interesting to see what the effects are on the client
side when using an overloaded server. These aspects all need to be investigated before the framework
can be deployed for commercial use.

Other research directions include looking into the possibility of doing more than just computation of-
floading. Other resources that could potentially be offloaded are graphics, memory, disk and network.
Out of these, we think that the most promising and most beneifical resources to offload for mobile
games are graphics and network offloading. Graphics is similar to computation offloading, but involves
reducing the GPU usage instead of the CPU usage. As the computational power of the graphics hard-
ware on a mobile device is also fairly limited, we think that being able to properly offloading graphics
will significantly increase the amount of games mobile devices can play. Network offloading involves
reducing the bandwidth usage of the mobile device by gathering and preparing data for it. From a
gaming perspective, this can be useful in peer-to-peer games where the mobile client is only connected
to and uses its network offloading server as a proxy as a peer in the network. This way, it might be
possible for the server to preprocess, filter and reduce the size of all the incoming messages before
passing them to the moblie client. The other way around, the offloading server can help multicasting
messages the mobile clients wants to send to its peers, so the client itself does not need to send them
to its peers one at a time.

There is also an interesting opportunity to extend the game running on the server side with addtional
features, like logging and the detection of in-game achievements. These types of features can benefit
from the fact that the game state at the server represents the game state at the client. Such an
extension can in principle be added automatically, for example, through load-time instrumentation.
The benefit of doing this is that it does not cost extra resources at the client side. A feature such as
logging can be useful for diagnosis purposes, or for continuous model inference as in Vos et al. 2014 [42]
for the purpose of mining test cases.

Our current framework requires that the game using it simulates its state in ticks of equal length.
In these kinds of games, the state may not change between two ticks and the delta-time of each tick
is the same no matter how much time has past since the last one. Most modern games however, use
a more dynamic game loop. These games change their delta-time according to the time elapsed since
the last tick. This allows the state to be changed in a more continuous way, allowing slower machines
to simulate the game at the same speed as a faster one, although with a lower frame rate. Supporting
offloading for these types of games will be a big step towards having a framework that can work for
all types of games.
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