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Abstract

AAA game development studios often use continuous integration to monitor the state of

development. The continuous integration processes usually run on a build farm. To prevent

faulty changes from reaching the build farm the developers have the option to compile and

test their work locally. Developers do not always consistently test. Faulty work can cause

company-wide delays.

We present a novel framework that distributes and performs these personal tasks on a

remote machine. This makes it easier for developers to test their work. Only a limited

amount of machines are available for the remote personal tasks. This presents a scheduling

problem. We build a framework to facilitate both the distribution and scheduling of these

tasks. The framework allows for comparison between different scheduling algorithms, is

light-weight, scalable, and can reliably distribute tasks to remote build machines.

We ask what scheduling algorithm presents the lowest average time a task spends in the

scheduling queue. Three scheduling algorithms are implemented to answer this question.

Random scheduling, the Highest Response Ratio Next algorithm (HRRN), and a derivative

of the Heterogeneous Earliest Finish Time algorithm (NHEFT). We test these scheduling

algorithms to determine which has the shortest average waiting time. Experiments are run

using different amounts of build machines and different orders in which requests are made. A

second experiment is run using five times the amount of tasks to find further data comparing

random scheduling to HRRN.

The first experiment shows significantly longer average waiting time for NHEFT com-

pared to both other algorithms. No significant differences are found between HRRN and

random scheduling. The second experiment shows significantly shorter average waiting time

for HRRN. We conclude that HRRN results in shorter average waiting time than random

scheduling. NHEFT was implemented with a bug which caused higher average waiting time.

No conclusions can be made regarding NHEFT.
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1 Introduction

1.1 Onset

Software and game developers alike spend a lot of their time waiting on builds and tests.

This waiting is often inefficient and can be experienced as frustrating. We research a possible

solution to a part of this problem. This research is done at Guerrilla Games (Guerrilla).

Guerrilla Games is a AAA game development studio based in Amsterdam. At Guerrilla

200+ developers work on a single software product which takes several years to complete.

All the developers contribute to a single source base in version control. The source-base

contains all code, audio and graphical assets for the game Guerrilla creates. The source-

code and assets in this source base are continuously built and tested. These builds and tests

are performed on a build farm. The build farm consists of a number of computers with very

high processing and storage capacity.

Whenever an error occurs in the build farm that error causes the build to fail. This build

failure, or build breakage, prevents the creation of new usable versions of the game. The

developers use the latest version to run, test, and debug their work. Build breakage results

in delays throughout the entire company because Guerrilla works on a single product.

To prevent faulty changes from reaching the build farm the developers have the option

to compile and test their work locally. However the process of building and testing personal

changes can take a significant amount of time. During this time the developer’s workstation

can become unusable when the build or test process takes up all of the workstation’s re-

sources. A developer should also not edit anything in his local repository during the building

and testing processes. This is why some developers do not test their changes but submit

them straight into the main source repository. These processes test the current local state

which may differ from the state in version control. More recent changes in version control

may conflict with the changes made by the developer.

We want a system that performs these personal tests on a remote machine. This will

alleviate stress from the user’s workstation and allow him to continue working during the

tests. It is possible to assign several of the build farm’s build machines to this purpose.

However these build machines may not have enough power to easily perform all tests during

peak usage.

1.2 Problem

There are over a hundred developers and less than twenty potential build machines available

at Guerrilla. The developers may execute a large amount of tasks every day. The limited

amount of build machines combined with the high amount of requests presents a scheduling

problem. It is important for the developers to minimize average waiting caused by the

queuing of requests. More or less build machines may become available depending on which

phase development is in. We need to use a scheduling algorithm that can deal with a varying

amount of build machines and a varying amount of requests. All requests must be processed,

starvation of a request is not allowed.

To solve this problem we need to build a framework that can handle the requests, schedule

the requests, and assign the requests to a variable amount of build machines. The framework

should meet the following requirements:
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1. The framework should be able to present the required data for any scheduling algorithm

to run. It should also present the required functions for a scheduling algorithm to

efficiently schedule workflows.

2. The framework should be scalable such that it must be able to handle build machines

being added to or removed from the build environment.

3. The framework should be able to deal with high peak usage. Performance should

remain within acceptable limits.

4. The user’s personal changes need to be reliably integrated into the remote machine’s

local repository. These changes should be tested in an isolated state on the latest

validated source in version control. No other changes should influence testing.

5. The framework should be approachable through a front-end tool. The user should get

timely, meaningful and clear feedback about the state of the processes and any errors.

Either through the front-end tool or other channels.

Most scheduling algorithms require estimates of the duration of a process. Tasks as com-

plex as those in a build system can have a strongly varying duration. The unpredictability of

task duration makes scheduling algorithms like Shortest Job First less reliable. We will need

to test several scheduling algorithms to determine which has the shortest average waiting

time.

1.3 Research Questions

The problem statement brings us the following two research questions:

1. How can we make a framework which can facilitate different scheduling algorithms

whilst adhering to the above mentioned requirements?

2. The use of what scheduling algorithm results in the shortest average waiting time?

1.4 Research method

We describe the framework developed to solve the stated problems. We elaborate on the

ways we implement the framework such that all requirements are met. We explain which

functions have and have not been implemented in the framework. Finally we show which

functionality the framework could and/or should have in other case environments.

To answer the second research question we test the framework using three scheduling

algorithms: Highest Response Ratio Next, a simplified version of Heterogeneous Earliest

Finish Time, and random scheduling. The duration of the tasks in the build system at

Guerrilla Games is quite long averaging between 3 and 30 minutes with outliers nearing four

hours. The changes that cause shorter or longer task duration vary greatly. To fit enough

test sessions within the scope of our experiment we choose to simulate task duration. The

simulation is based on historical task duration from the continuous integration build farm

at Guerrilla.
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1.5 Contributions

We present contributions to the field of science as well as to AAA game development.

• We present a novel framework to enable developers to distribute their personal build/

test/conversion processes to build machines. It is a light-weight alternative to other

tools as can be found in subchapter 3.3, aimed more closely at our given problem.

The framework is built to handle a variable number of requests and resources. It is

scalable as such that it allows resources to be added or removed to the system at any

time. This framework can take into account heterogeneous resources, large amounts

of requests, as well as interdependent tasks and workflows. The framework allows

different scheduling algorithms to be implemented. The framework is created using

Python 2.7.6.

• We have translated higher level complex tasks such that they can be scheduled by lower

level scheduling algorithms. We have compared three scheduling algorithms based on

their ability to minimize average waiting time.

• Contribution to AAA game studio development. We present a light-weight, scalable

framework that can distribute tasks in a manner similar to cloud computing. We

provide a comparison of scheduling algorithms to show which algorithm minimizes

average waiting time. The framework should increase developer efficiency by removing

negative effects caused by waiting on builds/tests.

1.6 Thesis Content

This thesis is organized as follows. Chapter 2 provides a description of the case in which

we implement our solution. In chapter 3 we show related work and previous research on

which our solution is based. In chapter 4 we describe the framework we created to solve

our problem and answer the research questions. Chapter 5 shows our research method.

The results of the experiments are shown in chapter 6. We criticize these results and the

drawbacks of our research and implementation in chapter 7. In chapter 8 we answer our

research questions. In chapter 9 we make recommendations for future work. Appendix A

contains the results for our experiments with 1 and 2 build machines.
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2 Case Description

Figure 1: Guerrilla Games

2.1 Guerrilla Games

Guerrilla Games (Guerrilla) is a Sony owned game development company based in Amster-

dam, the Netherlands, with a branch in Cambridge, U.K. The company was founded in 2000

by joining three small Dutch studios and was acquired by Sony in 2005. Guerrilla Games

is known for the Killzone game series, which can be played on most of Sony’s console and

hand-held platforms. This thesis will not contain any further references to the Cambridge

studio.

Since it was founded Guerrilla has grown as a company with currently around 200 em-

ployees. The entire company works on a single product, the game ”Horizon: Zero Dawn”.

The game was announced at the Sony’s press conference during the E3 2015 conference in

Los Angeles. All employees work on the same version of the game, there are usually no

branches. Contrary to common practices in the software industry everyone at Guerrilla

Games adds to the same source in version control. This means that everyone works and

tests in the most recent version of the full game, be they programmers, artists, or design-

ers. The source is managed using the version control system Perforce. The version control

system has since been renamed to Perforce Helix. Perforce is used by many large electronic

entertainment companies e.g., Disney-Pixar, Ubisoft, Nvidia [13].
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2.2 Continuous Integration

New versions of the game are continuously built and tested to ensure that all employees can

test their work on the latest version of the game, while using the latest tools, all without

any errors. At Guerrilla Games this process of building and testing is performed by the

build farm. The build farm consists of a set of over 40 build machines each with a very high

processing capacity. These machines have been assigned one or more specific tasks. Each

of these tasks is necessary in the process of building the full game product, from the main

executable to a deliverable package.

Several of the build farms main processes are:

1. Compiling and building the game’s executable.

2. Checking linked references between game assets.

3. Converting art assets into data which the game can interpret.

4. Run tests to verify basic gameplay and AI functionality.

There are many more processes run by the build farm. However, in this thesis we focus

on these four main processes. The build farm runs these processes continuously whenever a

build machine is free and relevant changes have been submitted to Perforce.

Because of the many changes that are submitted each day there is a high possibility of

mistakes and bugs making its way into the source. These bugs and mistakes create errors.

These errors indicate problems that make the latest version of the game unfit for testing.

This unfit new version will not be submitted into Perforce and thus it will take at least until

the next round of builds/tests for a new version to reach the developers. This can create

delays in the development. When this happens to the entire company it can add up to a lot

of lost time.

2.3 Local Build

It is possible for all members of the team to test their changes locally. This can be done by

using the local build tool (LBT). The local build tool is currently a batch script that allows

the user to select a build or test process and performs this selection. The tool then returns

the process output and will communicate whether the process was successful. It does this by

turning the command window background color green or red respectively for successful and

erroneous results. Using the LBT is not mandatory within Guerrilla Games. Developers do

occasionally skip this step and submit their work without verifying whether it may break

the build.

The LBT presents a large subset of the processes that can be run on the build farm.

These processes are run on the users local machine, ergo local build tool. Some of the

processes can not be run on local machines as they lack processing power compared to the

build farm. In these cases the build farm process is replaced with a light-weight version

of that process. These local tests give a very reliable indication whether personal changes

contain any errors or bugs. Note that it is important to perform these tests only after

obtaining the latest working version from source control. This will likely ensure that the

personal changes do not cause bugs because of changes that have been made since the last

synchronization between the user’s local machine and Perforce.
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The personal changes can be submitted to Perforce after the user has run the relevant

processes locally and if none of those processes were erroneous. After submission the build

farm will run its extensive processes and verify the changes together with the changes of

other users. The newly built executable is only submitted to Perforce when all processes in

the build farm finish successfully.

2.4 Simplification of the build tasks

The tasks performed by the LBT are of a complex nature. Any task is run by executing

a single script. However, this script may contain many executable calls. These steps differ

for each task but are equal for all LBT users. To be able to schedule these tasks we choose

to view each task, however complex, as a single process with a beginning and an end. This

approach is valid for all the tasks in the LBT as they all start and end. For our new

framework there is a desire to run multiple tasks instead of having to run tasks one by one.

2.4.1 Workflows

We call a set of these tasks a workflow. A workflow can contain any number of tasks but

should contain at least one task. Each task can occur only once in each workflow. Tasks

within a workflow can be dependent on other tasks but this is not required. Workflows can

be interdependent. This interdependence of tasks must never be cyclic to avoid deadlocks

in a workflow. The dependency between tasks will prescribe whether some tasks can be

executed in parallel or whether they should wait until one or more other tasks are complete.

Example:

A workflow contains three tasks: 1. Compiling the game executable 2. Converting game

assets and 3. Checking links between game assets. ’Checking links between game assets’ does

not depend on the completion of the other tasks and it can thus be completed in parallel.

’Converting game assets’ requires the ’Compiling the game executable’ to be complete. In

the case that executing in parallel is disabled all tasks will be executed in order.

The next chapter shows the relevance of simplifying complex build tasks into tasks and

workflows.

11



3 Related work

In this chapter we present the ways the industry has solved problems similar to the problem

addressed in this thesis. In subchapter 3.1 we elaborate on Continuous Integration. We show

Grid Computing and two of its derivative forms, Cloud Computing and Public Resource

Distribution in subchapter 3.2. We explain why currently available software is not sufficient

to solve our problem within the case environment in subchapter 3.3. In subchapter 3.4 we

show different scheduling algorithms that could be used. Finally we explain how we use

simulation and how to verify the credibility of a simulation in subchapter 3.5.

3.1 Continuous Integration

Continuous Integration (CI) is the automated continuous compiling, building, converting

and testing of software source code and (art) assets. One or more processes continuously

build and test the game, using the latest source code and assets available.

The paper by Fowler [8] presents a clear description of what CI is and what is needed to

make a successful product. We describe the requirements presented by Fowler that relate

to the requirements in subchapter 1.2:

• When using continuous integration it is important to maintain a single source reposi-

tory to build from. This source repository should have as few branches as possible.

• It is important to automate the build to be able to continuously compile executables

in an efficient manner. The automated system should test the builds to a certain level

and commit the tested executables. This way all developers get access to the latest

successful build.

• Considering the problem in this thesis Fowler [8] marks that it is very important that

personal or branched changes should be tested before merging with the main branch.

• Fowler suggests that the integration tests in the previous point should be performed

on a separate integration machine.

We intend to meet these requirements in our solution. However, the problem of scalability

and the limited amount of build machines remain.

Stolberg [16] presents a review of the implementation of continuous integrated testing

in an existing agile development environment using the guidelines presented by Fowler [8].

The paper shows the practical demands needed to take into account when implementing the

required baseline on which this thesis is built. It confirms the importance of continuously in-

tegrated builds and shows a case in which only post-build tests are performed. The question

of implementing a distributed and scheduled pre-build testing system remains unsolved.

3.2 Grid-based technologies

3.2.1 Grid computing

Grid computing solves problems very similar to the problem in this thesis. Grid computing

uses a set of possibly heterogeneous computers as nodes. These nodes can be accessed either

locally or remotely. The nodes are used to execute a set of one or more processes. These
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processes are executed on a subset of a large data-set. To be able to account for higher and

lower process load, nodes can be allocated to the grid dynamically. This way the grid is able

to scale up and down according to its usage [10].

Grid computing can be implemented to offer different services like data services, compu-

tational services, or application services. Baker et al. [3] describe these services and present

the necessary requirements for grid computing. The four base requirements presented are:

• ”Grid fabric”, the hard- and software resources that the grid consists of. The grid

fabric is already in place in our case environment.

• ”Core Grid middleware”, the remotely accessible portal on the grid machines.

• ”User-level Grid middleware”, middleware that channels and schedules user requests

to the grid machines.

• ”Grid applications and portal”, user interface tools to assign work and receive feedback.

The Core and User-level Grid middleware as well as the user interface will be implemented

in our solution.

To be able to find the data necessary for a scheduling algorithm to work, we need to

look at implementations of grid computing. Zhang et al. [20] present a recent approach to

grid computing optimization scheduling. This approach combines a random-based algorithm

with a genetic algorithm (NSGA-II) where grid nodes compete to maximize their output.

This paper contains many variables that are needed to efficiently schedule grid processes.

These variables help us to determine what information and data the scheduling algorithms

will need to be able to receive.

We wish to make a system that allows the scheduling of a set of tasks on a scalable set of

heterogeneous build machines. However, grid computing is a relatively old technology. Next

we investigate technology that is derived from grid computing to see how it has evolved.

This gives us the opportunity to see where those evolutions present solutions to our problem.

3.2.2 Cloud computing

In 2003 Figueiredo et al. [6] published a paper presenting a way to schedule virtual machines

as grid nodes. This makes it possible to have as many nodes as are required without being

dependent on machine specific variables. Cloud computing is essentially based on these

principals.

Cloud computing is a popular term in the current IT business. Similar to grid computing,

cloud computing offers processing capacity as a service. Cloud computing brings us closer

to the future where computing resources are available in the same universal manner as

electricity. Buyya et al. [4] give a thorough early overview of cloud computing. It also

explains the underlying principles, uses, and risks. Foster et al. [7] give a clear comparison

between grid computing and cloud computing. The virtualization of the process capacity is

important in cloud computing. Computing, data resources, and applications are offered as a

service. This service is paid for based purely on usage and is very scalable. Grid computing

is created to be able to deal with heterogeneous systems while in cloud computing this is

handled by the provider. As a user, scheduling in a cloud computing system could consist

of as little as assigning fewer or more virtual machines.
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Recent research aims to optimize the usage of the cloud machines and improve the

autonomous automation of the cloud computing process. Imai et al. [9] present a middleware

system that can autonomously scale the amount of cloud virtual machines to deal with high

load. This is done by migrating applications away from systems with a high load when

more processing power is made available. Xiao et al. [18] present an alternative to the

aforementioned approach. This approach aims to lower power cost by intelligently assigning

virtual machines. This is achieved by migrating processes to keep machine temperatures

between certain thresholds.

3.2.3 Public volunteer distributed computing

Public volunteer distributed computing (PVDC) is another alternative to grid computing.

Where cloud computing is a business driven technology, PVDC is based on unused processing

power available on user work stations. Work stations are often idle and do not use their

computing capacity. These work stations may be part of a university, a company, a science

lab, or they are volunteered by private individuals. Idle computing time is often available

when a computer is left running but the user does not use it. PVDC aims to use this

idle processing time. Part of the available processing capacity is used to make various

calculations. These calculations contribute to a larger centralized project. A good example

of PVDC technology is the application BOINC. BOINC is developed by Berkeley University

[1]. BOINC hosts the calculations of several huge public projects, e.g. filtering radio noise

from space which is collected by telescopes. Volunteers can install BOINC on their home,

work, or university computer and contribute computing power to their choice of projects.

Anderson et al. [2] give a deeper explanation of BOINC and the challenges it has to

deal with, for example reliability and connection instability. More research has been done

to improve the speed of the individual BOINC calculation. For example Costa et al. [5]

use the bittorrent networking infrastructure to reduce time lost on network I/O. Both these

papers take into account specific requirements aimed at solving problems with the nature

of the grid nodes. Because the nodes in a PVDC system are inherently unreliable, a lot of

redundancies need to be implemented. For example, nodes can have hardware failure, the

network connection can fail, or the node may go offline for an unknown amount of time.

The systems in place to reduce errors based on these problems are overly redundant for our

problem. However, we kept these systems in mind when designing our solution.

3.3 Available tools

In this subchapter we discuss several existing technologies that are currently available. We

describe what these technologies do and why they are not optimal as a solution to our

problem within our case environment. We will not provide an example for grid computing

systems as cloud computing and PVDC are evolutions of grid computing.

3.3.1 Ownership

First we want to state that regardless of the advantages and disadvantages of any retail

software package there is one important reason to build a tool from scratch: ownership.

Building a software tool is usually more expensive than buying a working retail alternative.

We assume an acquired tool has a community that uses the tool, extensive documentation,
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and continued support after purchase. However, there are downsides to this. It is more

difficult to debug when encountering a bug in a licensed tool than when one is found in

an in-house tool. Without strict Service Level Agreements the user is dependent on the

vendor’s priorities to fix bugs. The retail tool may have features that remain unused and

the tool may require extensive configuration before the tool works as desired.

Creating an in-house tool gives the advantage of access to the tool’s creators. This can

make debugging and fixing problems a much easier and quicker process. With the source

code available debugging the tool’s code becomes possible. More importantly, by building

the tool internally it is possible to create a tool that matches the specifications exactly.

Only those features that are needed are implemented, thus avoiding unnecessarily complex

tools. The common practice within Guerrilla Games is to build tools in-house for most

minor functionalities. Major software packages like Perforce, Visual Studio, and Maya are

exceptions to this rule as well as several proprietary software packages that are part of Sony.

3.3.2 Distributed continuous builds Jenkins

Jenkins is used by companies like eBay, Sony, bol.com, and NASA. It is an open source

application for assigning and monitoring continuous integration. Jenkins can automatically

run builds, sync source versions, and return feedback in multiple ways. Jenkins is open

source, supports several build languages, and has extensive documentation. Jenkins seems

like a very good solution to our problem. However, Jenkins is not scalable and it does not

schedule a large set of requests. Most importantly Jenkins will not be easily compatible with

the current build system at Guerrilla Games. The tool is created to perform tasks that are

also handled by Guerrillas in-house build system. This in-house system would be replaced

when Jenkins is used which is undesirable.

3.3.3 Cloud computing Amazon web services EC2

Amazon web services (AWS) EC2 is Amazons cloud computing product. EC2 stands for

Elastic Compute Cloud. The user can assign different size virtual machines and a different

amount of virtual machines on demand. This could prevent the problem of queue overflow.

These virtual machine instances are used to run software assigned by the user. The instances

are accessible like any other machine thus providing the ability to debug remotely. Using

EC2 is relatively cost efficient and will guarantee sufficient build machines as long as the

financial budget allows it. At Guerrilla Games processing power is already available which

lowers the necessity for a cloud solution. Because the build machines are located very close

to the Perforce repository syncing data within the company is potentially much faster than

pushing the necessary data over an internet connection to the cloud. Cloud computing has

high potential for future build farms but an in-house solution is preferred as it will be easier

to integrate with the current build farm and local build tool.

3.3.4 Public Volunteer Distributed Computing - BOINC

BOINC is the textbook example of a PVDC system. It allows companies and research stud-

ies to set up distributable projects and delivers a user-friendly client for volunteer machines.

BOINC is created to take into account many variables that are not present in our current

study. As the content of the product being developed at Guerrilla Games and most other
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AAA game development studios is top secret it is unwise to distribute calculations to volun-

teers. BOINC projects perform a single type of processing over a very large data set. This

means that every step in the build process requires a separate project. This is inefficient

and doing so defeats the purpose of using the PDVC architecture. In conclusion PDVC is

not a usable solution to our problem.

3.4 Scheduling algorithms

We have shown the evolution of grid computing and recent scheduling algorithms. These

scheduling algorithms often solve problems that are not relevant to our current problem.

For example Xiao et al. [18] solve for environmental issues that apply on a much larger scale

than the Guerrilla Games build farm. Although the focus of Imai et al. [9] on requesting

resources can be a great asset to our framework we have chosen not to implement it. An

explanation why can be found in paragraph 4.7.4.

We want to find scheduling algorithms that are more suited to our specific problem. We

are able to use more simplistic scheduling algorithms because we simplified the tasks per-

formed by local build as shown in subchapter 2.4. The book Metaheuristics for Scheduling

in Distributed Computing Environments contains a chapter on Workflow Scheduling Algo-

rithms for Grid Computing by Yu et al. [19]. This chapter contains a clear overview of which

algorithm would fit which scenario. The HEFT algorithm presents itself as a logical choice

because our workflows have dependencies between tasks and the workflows are scheduled

individually.

Based on the requirement to minimize average waiting time we also look into other algo-

rithms. The Min-Min heuristic in the chapter by Yu et al. gives shorter tasks or workflows

a higher priority. Shortest Job First (SJF) scheduling provides exactly this heuristic. Fin-

ishing the shortest jobs before the longer jobs should decrease the overall waiting time when

the number of users is high. SJF does risk starvation of tasks with a long execution time.

Scheduling algorithms like Highest Response Ratio Next (HRRN) solve this problem by

prioritizing using a combination of expected execution time and the time a task has already

spent in a queue.

3.5 Simulation

Simulation is the process where a randomized model is used to imitate real world events.

Based on the model the simulation can generate output. The randomization of the output

is based on parameters within the model. Chapter 5 of the book Simulation modeling and

analysis explains how to create a valid simulation model and how to verify this model [11].

Simulation is used when it is not realistic to perform real testing. For example when

launching expensive rockets into space or when a large amount of experiments should be

performed within limited time and budget. A simulation must present output that resembles

the real version of the experiment as closely as possible. To be able to achieve this we take the

following steps: determine what output to generate, determine what variables the simulation

is based on, create a simulation program and validate the output. Validation is important

to verify whether the simulation is an acceptable representation of a real envirnoment.
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3.5.1 Variables

The first step in creating a valid simulation is selecting what output the simulation should

have. What variables should be randomized? Which aspects of the system would normally

be measured? In case the simulation will be used to substitute a part of an already existing

experiment the answers to these questions are straight forward. When this is not the case

it is important to design an experiment. Data needs to be measured to produce results for

the experiments. These data will define the output of the simulation. By determining which

variables the output is based on it is possible to control which variables are randomized and

which are not. The level of simulation detail must be determined when all the variables are

known. The variables in the simulation should be of a relevant level of detail. Too precise

or complex variables can lead to errors or may not attribute any significant changes to the

output. However, variables that do not have enough detail may cause the output to be

too imprecise to analyze. Once all the variables and their level of detail are determined a

simulation program can be created that randomizes the variables and generates output. [11]

3.5.2 Validation

It is necessary to verify whether the simulation program’s output is a valid representation of

what the output would be in a real environment. This way the credibility of the simulation

can be confirmed. A simulation program can be inaccurate in many ways. No simulation

can ever compare to the real environment it models. However, by validating its credibility

it can be determined whether the simulation is acceptably close to reality. [11]

Validating a simulation can be performed using different approaches. Because our sim-

ulation is not very complex we present two of the techniques that could be used to validate

the simulation in our experiment. The simulation program needs to be tested regularly

during its development. Doing so ensures separate parts of the software work as intended.

By tackling problems early on it should also prevent bugs that are complex and difficult

to debug from forming. Another method of validation is verifying the distribution of the

simulation results against historical data. In cases like our experiment where historical data

are available these data can be compared to the simulation output. The simulation can be

validated by comparing the distribution of the output to the historical distribution. Exam-

ples of important variables to compare are the mean, variance and the range of the data.

[11]

Our simulation is based on an empirical set of data measurements and the simulation

strongly resembles an empirical cumulative distribution. The Kolmogorov-Smirnov Z test

(KSZ test) is used to test whether the hypothesis that two data sets originate from the

same distribution or data set is true. When the two sets of data points differ too much the

hypotheses is rejected. We compare the mean and variance of our simulation as well as using

the KSZ test. The KSZ test compares the historical and simulated data. An implementation

of the KSZ test can be found in the work by Marsaglia et al.[12]
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4 Framework

In this chapter we describe the proposed framework with which to solve the requirements

in subchapter 1.2. We present a brief overview of this chapter in subchapter 4.1 and a

technical description of the framework in subchapters 4.2 to 4.6. Finally, we present several

possibilities to expand the framework in subchapter 4.7.

4.1 Overview

Our solution is built in two parts. The TLocalBuild tool replaces an old command line batch

file with a user friendlier GUI application. The old batch file only allowed for one task to

be requested at a time. TLocalBuild allows the user to select a workflow of tasks. Task

output is enriched and shown in separate tabs per task. The GUI offers the user the option

to build remotely. The Validation System is the framework that manages these remote build

requests (workflows) from all users in the company. It stores these workflows in a queue

and lets an assigned scheduling algorithm assign the workflows to a pool of build machines.

Each build machine is assigned to the pool as a single Validation Builder. The framework

allows different scheduling algorithms to be implemented. The following three algorithms

have been implemented for our experiment: a simplified version of Heterogeneous Earliest

Finish Time (NHEFT), Highest Response Ratio Next (HRRN) and a scheduling algorithm

that randomly assigns tasks to Builders.

The Validation System consists of four parts. The Validation Coordinator (Coordina-

tor), the Validation Builder (Builder), The Validation Client (Client) and the scheduling

algorithm running within the Coordinator. Here we shortly illustrate the function of each

part. The Validation Coordinator is available as a service. It runs the scheduling algorithm

when a request is submitted or cancelled, when tasks or workflows are completed by the Val-

idation Builder, or when a Validation Builder assigns or removes itself from the queue. The

Validation Builder runs tasks when they are assigned to it and manages the local repository

of the build machine it runs on. The Validation Client is run by TLocalBuild when the user

chooses to build remotely or cancel a request.
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4.2 TLocalBuild

Figure 2: TLocalBuild UI Interface

The original way to locally run the Continuous Integration’s (CI) tasks at Guerrilla Games

is via batch file. The program contained in the batch file allowed for a single task to

be run simultaneously. The resulting output was presented in a command line window.

The command line window’s background was colored red or green when the task executed

unsuccessfully or successfully respectively.

TLocalBuild is created to improve the usability when running CI tasks on a local machine.

This tool allows the user to combine tasks to create a workflow. The tool is written in C#

and is integrated on all work machines company-wide. Figure 2 shows the layout of the tool.

On the left the user can choose a set of tasks, i.e., a workflow. The user can also input a

limited amount of parameters. After selecting the desired tasks, the user runs the chosen

workflow by clicking the Build button. The tool executes the necessary programs in order

and presents the program output on the right. The output for each task is put in a seperate

tab. The output data are presented as text. Lines of output that contain indications of

errors or warnings are highlighted. After the completion of a task the tab clearly shows

whether the task has failed or succeeded. This is done by coloring both the tab and the text

background green or red.

The user can choose to check the Remote option which is not shown in Figure 2. When

this option is chosen and the user clicks Build, the tool will ask the user to choose a changelist.

This changelist should contain all changes that need to be tested. After a changelist is chosen

the tool requests a remote build through the client script of the Validation System. When

the workflow is run on the remote Builder, TLocalBuild will show the task output in a tab.

This output is shown in an identical manner to running locally. There are two differences

for the user between local and remote building. First the user needs to choose a changelist

when building remotely. Second it may take more time before process output is shown.

However, when running remotely the local machine will not be taxed by the task execution.
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4.3 Validation System

Validation
Client

Validation
Builder

Validation
Coordinator

Scheduling
Algorithm

TLocalBuild

execution

Figure 3: Simplified Validation System

To be able to implement and test different scheduling algorithms we create a remote build

validation system called the Validation System. Figure 3 shows a simplified diagram showing

the structure of the system.

When a user chooses to run his workflow remotely TLocalBuild sends a request to the

Validation System. This request is sent by running a client side Python script, i.e., the

Validation Client. This script sends the request to the Validation Coordinator (Coordinator).

The Coordinator puts the request in a queue and schedules all requests to be assigned to

a pool of Validation Builders (Builders). These Builders then perform the tasks in their

assigned workflow and send the task output back to the user. The Coordinator runs a

desired scheduling algorithm. It facilitates all the data needed for scheduling and it provides

the necessary functions for the scheduling algorithm to work.

The sequence diagram in figure 4 shows the main steps of the Validation System. The

main loop in Validation Coordinator runs continuously but it only runs the scheduling

algorithm when the request queue or Builder pool has changed. Unlike the Builder and the

Coordinator the Validation Client does not initialize on start up. It is run only when a

request needs to be sent and exits after the request is complete.

The Validation System is written completely in Python. The current implementation is

built upon a Remote Procedure Call (RPC) system which is also written in Python. Python

scripts can call certain functions on other machines using RPC. The RPC system used in our

experiments was built in-house by Guerrilla Games. The system notifies the caller whether

their recipient still exists. In other words the Coordinator can recognize whether Builders

or Clients are still online and available as a service.

Figure 5 shows the three Validation System modules. Their internal classes are shown

in boxes with the class name underlined. The Validation Coordinator starts a loop in Init

which runs one of the three scheduling algorithms. The arrows indicate where functions

call each other using RPC. The RequestQueue contains WorkflowRequests with a set of

Tasks. The BuilderPool contains Builder objects which contain a Validation Builder RPC

object. The NHEFT algorithm is implemented using the Python version of HEFT created by

Matthew Rocklin [15]. To be able to implement as much of HEFT as possible in NHEFT we

have three extra functions. ComputationCost to compute the cost of a workflow on a given

Builder, CommunicationCost to compute the cost of transferring a process to a different
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Builder, and CreateDAG to create a DAG for a given set of tasks. The HEFT algorithm

requires the ability to transfer a currently running process from one machine to another.

Although NHEFT does not have this feature it is available through TransferToBuilder to

facilitate the first requirement of our problem statement.

Init

Validation BuilderValidation CoordinatorValidation Client

Load scheduling algorithm

Start main loop

Send request Assign builder

Init Init

RPC Event

Update Queue & Pool

Schedule if anything changed

Assign task to machine

Receive request

Clean & Sync

Rerun main loop

Perform task

Send feedback

Task finished

Change in Queue/Pool?

No

Yes

Main loop

TlocalBuild runs script...

Figure 4: Validation System Sequence Diagram
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BuilderPool
List<Builder>

RequestQueue
List<WorkflowRequest>

Figure 5: Validation System Class Diagram

4.4 Validation Client

To facilitate communication between the Validation System and TLocalBuild we use a client-

side script. In our implementation of the Validation System this client-side script is called

the Validation Client (Client). This script parses workflow requests and sends these requests

to the Coordinator. The Client can also request cancellation of the user’s current workflow

request. Cancellation is possible for workflows still in the queue as well as for workflows

being executed on Builders.

The Validation Client is a simple communication script. Besides translating and sending

workflow requests it can act as a service to relay data. For example: expected queue times,

task output, or the request’s location in the queue. To prevent complications we have chosen

not to include these communication channels in our implementation. However, when the

Client exits it does return the Coordinator’s unique identifier for the request. TLocalBuild

can use this identifier to cancel the request.

4.5 Validation Builder

The Validation Builder (Builder) is essentially a straight-forward script. A single instance

of the Builder script runs on each build machine. It executes tasks and sends its output to

a recipient. However, to do this correctly the Builder needs to do more.

Because the goal of the Validation System is testing whether a set of changes will break

the Continuously Integrating build the Builder needs to stay up-to-date. When the Builder

receives a new task and this task does not belong to the same workflow as the previous

task all personal changes should be reverted. However, the changes made in the same

workflow must be retained. Reverting the previous changes will prevent those changes from

contaminating the results of the next task. Contamination could lead to false positive or

negative results. It would also make it very difficult for users to analyze the output and

debug their changes. After reverting the previous changes the Builder also synchronizes to
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the latest working version of the source code. This ensures the local source code is up-to-

date. The Builder then applies the changes in the changelist associated with the workflow

request to the local source code. Only then does it execute the requested task.

While executing the task the Builder sends the task output to TLocalBuild. The output

can be sent through the Coordinator, directly to the Client when it acts as a service, or

straight to the user tool. We have chosen to implement the latter. TLocalBuild sets up

a TCP listener to receive the task output directly from the Validation Builder. It may be

more robust to use the Coordinator or Client because handling connection issues may be

more straight-forward within the Validation System. Finally, after the Builder finishes a

task it notifies the Coordinator and becomes available for a new task request.

4.6 Validation Coordinator

The Validation Coordinator is the heart of the Validation System. The Coordinator manages

a queue of workflow requests and a pool of Builders. It runs a scheduling algorithm and

assigns workflows and tasks to Builders. The Coordinator also contains a set of settings

and stores data that are needed for the scheduling algorithms to function. The Validation

Coordinator allows us to use and compare different scheduling algorithms.

The Validation Client can request or cancel workflows via RPC. The Coordinator adds

these workflow requests to a queue. The Validation Builder script will assign itself to the

Coordinator upon which the Coordinator adds the Builder to a pool. Within the Validation

Coordinator a loop runs which checks whether the queue or pool has changed. When a

change has occurred the Coordinator runs the assigned scheduling algorithm to schedule or

reschedule the Builders and the requests. If the scheduling algorithm does not directly assign

workflows and tasks to Builders the Coordinator will do so after scheduling has occurred.

Scheduling algorithms can be added to the Coordinator as long as they are written in

Python. The algorithm can use all the Coordinator’s available data and functions. It should

contain a function that is called every cycle of the scheduling loop called MainLoop. Only

when the queue or pool have changed will MainLoop be called. In our current implemen-

tation we have integrated ”random assignment” of workflows, the Highest Response Ratio

Next (HRRN) algorithm, and a simplified version of the Heterogeneous Earliest Finish Time

algorithm called Not-HEFT (NHEFT). The details regarding the implementation of NHEFT

can be found in paragraph 5.1.3.

Because the tasks in our case are either linearly dependent or independent of other tasks

we have chosen to assign a single workflow to a single Builder. That Builder then runs the

tasks in the workflow in sequential order.

4.7 Framework Potential

The framework as tested in our experiments is created to specifically cater to the build

farm at Guerrilla Games. There is more potential in the framework than has currently

been implemented. The following paragraphs show some of the potential contained in the

framework.
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4.7.1 Estimates

Various scheduling algorithms require to know the estimate time a process will take to

run. The current state of the framework uses manually set estimates for each task. These

estimates are based on prior experience with the Continuous Integration system at Guerrilla

Games.

The execution time of each task after completion of said task should be stored. By

doing this a more accurate average time to completion can be calculated. The size and

complexity of the source repository will change. This is why it is important to weight newer

measurements more strongly than older measurements. Removing measurements older than

a certain length of time is advised, e.g. measurements older than two months.

4.7.2 Heterogeneous build machines

The current Validation Coordinator has its estimates stored per known Builder. This be-

comes very useful when heterogeneous build machines are used. During the experiments at

Guerrilla Games build machines with identical specifications were used. Scheduling algo-

rithms like HEFT become much more useful when build machines have different specifica-

tions.

The available resources may also differ from build machine to build machine when parallel

computation is possible. This would require scaling the estimated time to finish a task by

the expected percentage of available resources. Parallel computation or resource sharing

is not feasible in our case environment. However, adding less used build machines to the

Validation System can be beneficial in other environments.

4.7.3 Build Interruption & Transfer

Preemptive scheduling algorithms can stop or halt a process to allow higher priority processes

to run in their stead. Stopping a running task is a part of the current framework. However,

transferring the data on which the task is performed to a different machine is not feasible.

Neither is storing the state of a task at the time of interruption. The build machines at

Guerrilla Games have a single local repository from which they build. This repository is

many gigabytes in size thus transferring costs would be very high. So high that transferring

the local repository would never be considered in the scope of our experiments.

4.7.4 Resource requesting

In Cloud Computing it is possible to automatically allocate extra resources during times

of high system load. The case environment build farm consists mostly of machines with a

dedicated purpose. These machines can therefore not be allocated to the Validation System

unless their purpose is sacrificed. We did not add resource requesting functionality to the

framework for this reason. However, it becomes an important part of the Validation System

when using cloud scheduling algorithms.

4.7.5 Queue time communication

It would be useful for users to have an insight in the length of the queue. For the user’s time

scheduling purposes it is important to have an estimate of when the results of the requested
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workflow are available. The estimates should be available to calculate using most scheduling

algorithms. When estimates per workflow or per task are not available, for example when

using random assignment, the size of the queue itself could be communicated to the user.

Communication should very likely occur via the client UI which is TLocalBuild in the case

environment.
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5 Research Method

In this chapter we describe our research method. First, we explain which scheduling al-

gorithms are implemented in subchapter 5.1. Second, we shortly describe what data are

measured and how in subchapter 5.2. Third, in subchapter 5.3 we describe how and why

we simulate task duration. Finally, we describe how the experiment is set up in subchapter

5.4.

5.1 Scheduling algorithm implementation

In order to determine the best scheduling algorithm for our case environment we compare

three scheduling algorithms. We decided to compare three different types of scheduling algo-

rithms. To set a baseline we implement an algorithm which uses as little information about

the tasks as possible: the naive scheduling algorithm. We then implement an algorithm

which intuitively seems to be the best fit for the case scenario: the intuitive scheduling algo-

rithm. As a requirement the intuitive algorithm should use some of the data available in the

Validation Coordinator. Finally we implement an algorithm that shows the Validation Sys-

tem can support complex scheduling algorithms: the complex scheduling algorithm. This

algorithm should use as much information and functions as can realistically be expected

within the case environment.

5.1.1 Naive scheduling: Random

Several common scheduling algorithms can be classified as naive scheduling algorithms based

on our criteria. Possible candidates are First In First Out (FIFO), First In Last Out (FILO),

and purely random scheduling. Of these three, random scheduling requires the least known

data. The order in which the workflows/tasks enter the queue is required for FIFO and

FILO. Random scheduling only requires to know how many workflows/tasks are in the

queue.

Random scheduling is implemented in its simplest form. For each available Builder

the algorithm randomly picks a workflow from the queue and assigns it to the Builder.

Randomization is achieved by using the random.choice() function in Python 2.7.6.

5.1.2 Intuitive scheduling: Highest Response Ratio Next

Users expect a long task to take longer than a short task. Waiting ten minutes in a queue

is less frustrating when the task will approximately take an hour compared to a task that

takes only thirty seconds. The shortest workflows/tasks should be at the front of the queue

to avoid long waits for short jobs. The Shortest Job First (SJF) algorithm is an optimal

fit for this problem. However, this could theoretically lead to starvation of jobs with a

long estimated running time. To avoid starvation we use the Highest Repsonse Ratio Next

algorithm.

HRRN prioritizes workflows/tasks based on two variables. First, their estimated exe-

cution duration and second the time the workflow/task has spent in the queue. This way

longer workflows/tasks gain priority as they remain in the queue longer. This ensures their

eventual execution. HRRN does not interrupt running processes in our implementation.
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5.1.3 Complex scheduling: ”Not” Heterogeneous Earliest Finish Time

Finding complex scheduling algorithms is not a difficult task. Finding a complex scheduling

algorithm that applies well to our case environment presented more of a challenge. Many

grid-based and cloud-based algorithms use very short processes using small amounts of

data. These processes must execute independent from each other in most algorithms. An

algorithm that takes into account these process dependencies is HEFT. HEFT relies on a

heterogeneous set of processors. This is useful in our case environment because not all build

machines have equal specifications. HEFT allows processes to be paused and transferred

to a more suitable processor when necessary. The amount of time this transfer takes is

integrated in the algorithm.

HEFT is an algorithm that makes full use of the capabilities of the Validation System.

However, its implementation in the experiment is limited such that we can not call it HEFT.

This is why we name the algorithm that is currently implemented in the Validation System:

Not HEFT (NHEFT).

NHEFT uses the Python implementation of HEFT created by Matthew Rocklin [15].

However, there are several important differences between HEFT and NHEFT. First, NHEFT

does not allow for transfers between Builders. Estimated transfer time between Builders is

required to run the HEFT algorithm. To ensure no transfer is ever considered Communica-

tionCost returns a high value. Second, the estimated time to complete a task is equal for

all Builders because the build machines they run on have equal specifications.

Finally NHEFT has an issue in the code. The two shortest tasks in the queue are per-

formed latest because of a bug in the ComputationCost. HEFT calculates which task in the

queue would finish the fastest on which machine and schedules all active Builders accord-

ingly. Builders that are currently running a task are taken into account even though they

are not available. When a Builder is not available ComputationCost returns an extremely

large negative number. For example: in the case that three Builders are active and one

Builder becomes available the scheduling algorithm will assign the two shortest tasks to

the two unavailable Builders. The third shortest task is assigned to the available Builder.

NHEFT does not allow transfers and thus assigns the third shortest task to the available

Builder. The two shortest tasks are processed last. This results in very long queue times.

This is reflected in the results which can be found in chapter 6.

5.2 Measurements

We compare the different scheduling algorithms based on the time that workflows are in the

queue and how long it takes to complete them. The time it takes for workflows to progress

through the Validation System is measured from the moment that a workflow enters the

Validation Coordinator until the moment its last task is completed. This information is

stored within the Validation Coordinator. The data are stored in an XML file.

First we store events from external factors. This includes Builders assigning themselves

to the pool as well as workflows being requested. Second we store workflow events: when

the workflow enters the queue, when it gets assigned to a Builder, and when its last task

finishes. Finally we store events for the tasks: the moment a task is run and the moment a

task finishes. All data are collected and stored by the Validation Coordinator. Comparing

Coordinator measurements with Builder measurements is not relevant because transfer and
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function call times between the Validation scripts are near zero. Measurements made on the

Builders are discarded because of this.

Measurements are taken with microsecond precision for all experiments as described in

subsection 5.4.

5.3 Simulation of build behavior

Measuring the time needed for workflows as they would be tested in full production is not

feasible. To achieve a realistic representation of actual use of the system a varied amount

of programmers, artists, and designers would need to provide changelists with non-trivial

changes. The type and amount of changes in those changelists have great influence on the

execution times of each task. E.g.: A programmer’s changes will have different effects on

different tasks when compared to an artist’s changes. At the time of testing the Validation

System was not sufficiently finished for professional use in the case environment. This

presents a challenge when testing the Validation System. A solution needed to be found to

test the Validation System other than user-based testing.

One solution would be to create non-trivial changelists. However, this would not be

realistic within the scope of the experiment. The tasks themselves do not necessarily need

to be executed because we measure time spent on workflows and tasks. We therefore simulate

the tasks by running processes with a simulated duration instead of the actual tasks. This

presents the question how to simulate the build behavior.

5.3.1 Distribution data

No data on personal build tasks executions have been collected at Guerrilla Games. No

systems were in place to do so. However, the Continuous Integration system does collect the

duration of every task performed. These data go back for many months with a multitude of

tasks performed each day. The build tasks are performed on build machines similar to the

build machines in the Validation System.

The main difference between the build farm and a build in the Validation System is the

amount of changelists. Before a build task is performed by the build farm many changes

are applied. These changes come from many changelists submitted by different users. The

amount of changes is usually higher than the amount of changes in a single user’s changes.

There is a lesser variety of changes in the Validation System. We choose to disregard these

differences based on the following:

A Continuous Integration task has an execution time T , where T = T0 + Tc. Each

build task has a base execution time of T0. The execution time increases with more changes

thus increasing Tc. The length of both T0 and Tc can vary. Unless a previous change

reverts a certain change it may be assumed that an increase in changes will always increase

Tc. The Validation System user can add any amount of changes to a single changelist.

Perforce allows the user to combine multiple changelists into a single changelist to be tested

using the Validation System. The amount of users submitting changes and the amount

of changelists containing changes do not define an amount of changes. Changelists have a

minimum amount of one change. The amount of changelists has no direct influence on Tc.

Only the amount of changes do.

28



Because we miss data for the number of changes submitted in a personal test we resort

to the data we do have at hand. We want to be able to simulate use of the Validation

System based on the Continuous Integration data. To do so we assume the distribution of

task execution duration between these two systems is congruent.

5.3.2 Simulation basis
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Figure 6: Conversion
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Figure 7: LinkChecker
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Figure 8: Game Main
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Figure 9: Test Singleplayer

For our simulation we’ve chosen four distinguishable tasks to simulate. A short, a medium,

and two long tasks. The latter two are grouped in one workflow. The short task is based

on Conversion, the medium length task on LinkChecker, and the longer tasks are based on

Game.Main and Tools.Verify. The task execution time of these tasks has been parsed for a

period of two months. These two months contain periods of lower and higher workload. The

data are divided into a histogram with 20 bins. Figures 6 to 9 show these histograms. Data

points that show clear signs of outside influences, for example build farm failure resulting

in extremely long or extremely short builds, have been removed as these data points do not

reflect valid task execution.

We base the distribution model for our simulation on the histograms. To make the
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experiment shorter we divide the simulated data by a factor of six. We use algorithm 1

to determine how long a simulated task should run. Bins in the histogram represent a

certain length of time. The height of the bin represents how many times the measured task

execution time falls within the range of that bin. All bins are weighted by their amount of

occurrences and a bin is then randomly chosen. The simulated time is randomly generated

from within the range of the chosen bin.

Algorithm 1 Randomized task execution time simulation

Input: TaskType
Output: Time

1: Histogram = GetHistogram(TaskType)
2: TotalValue = 0
3: for Bin in Histogram do
4: TotalValue += Bin.Value
5: RandomValue = Random.Choose(0, TotalValue)
6: CurrentBinIndex = 0
7: CurrentValue = Histogram[CurrentBinIndex].Value
8: while CurrentValue < RandomValue do
9: CurrentBinIndex++

10: CurrentValue += Histogram[CurrentBinIndex].Value
11: Time = OffsetTime + TimePerBin * CurrentBinIndex + Random.Range(0,

TimePerBin)
12: return Time

5.3.3 Verifying simulation credibility

We use the Kolmogorov-Smirnov Z (KSZ) test to verify the simulation. The KSZ test is

used to verify empirical distribution functions. See subchapter 3.5 for further details.

5.4 Experiment set-up

Our research consists of two experiments. A set of simulated experiments and a simulated

experiment with an increased number of tasks. The first set of experiments compares the

three scheduling algorithms on different amounts of Builders and different orders of work-

flows. The amount of workflows is predetermined. The second experiment is performed in

the same manner but with five times the amount of workflows. With this experiment we

try to determine whether the limited amount of workflows in the first experiment has an

influence on the results.

5.4.1 Physical setup

The Validation Builder scripts are run on three identical build machines at Guerrilla Games’

build farm. A fourth identical machine is used to run the Validation Coordinator. The RPC

service used for the experiment is run on the same machine as the Validation Coordinator.

The simulation script runs on a work machine inside the office.

The average task execution time for the selected tasks is added to the settings storage

of the Validation Coordinator. When the simulation script is run the experiment starts.

The simulation script requests a set of workflows. One mock client process is started for

each workflow. This client acts as if it is TLocalBuild in such that it listens to the feedback
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it receives from the Validation Builders. Instead of running a task the Builders start a

mock process. This mock process generates a randomized duration based on our simulation

distribution and executes for that amount of time.

5.4.2 Broad experiment

The first and largest of our experiments consist of 49 test runs. The tests are a combination

of scheduling algorithms, the amount of Builders, and the order of workflows.

The three scheduling algorithms are random scheduling, HRRN, and NHEFT. The three

Builder set-ups are 1, 2, and 3 Validation Builders on seperate machines. We also have five

different sets of 20 workflows. These sets consist of three types of workflows: a workflow

with one short task (S), a workflow with one medium task (M), and a workflow with two

longer tasks (L). Each set of workflows contains two long, four medium, and fourteen short

workflows. This division is based on expert knowledge on the expected amount of tests

performed company-wide.

Table 1: Workflow request ordered sets

Even distribution SMSSLSSMSSSSMSSLSSMS

HRRN specific distribution MMLSSSSMMLSSSSSSSSSS

HEFT specific distribution SSLSMSLMSSSSSSSSMMSS

Long tasks in the front LMMLMMSSSSSSSSSSSSSS

Long tasks in the back SSSSSSSSSSSSSSMMLMML

Table 1 shows the order of the workflows in the ordered sets. The HEFT and HRRN

distribution are based on the behavior of both algorithms in an environment where three

Builders are available. For HRRN we first fill all three Builders with longer processes so

the queue can fill with a set of shorter and longer workflows. All shorter workflows that

come after the first three should then get priority over the medium and long workflows. For

HEFT we ordered the workflows in such a way that interruption and transferring can be

considered. NHEFT does not take this int account so both interrupting a workflow/task

and transferring it to a different Builder is not possible in the current implementation.

Each experiment session starts with an empty Coordinator with clean log files. The

Coordinator is set to use the required scheduling algorithm for that session. The required

number of Builders are then started. The Builders automatically assign themselves to the

Coordinator. After the Validation System is fully running, the simulation script is started

and then requests a workflow every 5 seconds. The script does this for an entire ordered set

of workflows and then waits for that ordered set to fully finish. After an ordered set has

finished it starts the next ordered set until all five above mentioned sets finish. After each

experiment session the logs are stored and then cleaned manually. Next the Coordinator

and Builders are reset and the next session is run.

The 5 second delay between workflows allows workflows to enter the queue at different

times and thus have shorter or longer queue times. This also allows longer workflows to be

assigned to Builders earlier on.
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5.4.3 Longer experiment

The second experiment is a continuation of the first experiment. We anticipate the pos-

sibility that the relatively low amount of 20 workflows in each ordered set is too low to

find significance in the data. To verify this problem and possibly remedy it we change

the amount of workflows in each ordered set. The simulation script now requests each or-

dered set 5 times. This results in 100 workflows for each ordered set. The order of the

set is maintained and repeated. For example: the first ordered set is run five times, so

[Even][Even][Even][Even][Even] is requested during 495 seconds. Only after all workflows in

that multi-set is completed will five of the next distribution ordered set be requested.

For the second experiment we choose to only run on three Builders because we focus

on comparing the scheduling algorithms and not on scalability of the Builder pool. We

also exclude NHEFT. NHEFT misses important features from HEFT like task transfer

and heterogeneous build machines. The results from the broad test run experiment show

no significant differences between HRRN and random scheduling. NHEFT is significantly

slower than both HRRN and Random. NHEFT will not be tested in the second experiment

because NHEFT is a custom scheduling algorithm, because it is already shows significant

data in the broad tests, and because we have limited time to perform the longer test runs.
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6 Results

We show the results of the KSZ test in subchapter 6.1. We then show the results gathered

from our broad experiment in subchapter 6.2. Finally we show the results of the long

experiment in subchapter 6.3.

6.1 Verifying the simulation

The simulated task durations are validated against the durations collected from the Guerrilla

Games build farm. We input both data sets into the KSZ test. The test is performed using

R. The original data set is put in as is. The simulated data are changed to account for

two discrepancies. First the simulation results are six times smaller than the original data.

Second there is a bug in the simulation code. This bug is described in paragraph 7.1.3.

Adjustments are made to account for both these discrepancies. These adjustments make the

simulated data comparable to the original data. Figure 10 through 13 show the distribution

of the durations in seconds. The results of the KSZ test can be found in table 2. Only

LONG A appears to originate from its original distribution.

Table 2: KSZ test results

Original Conversion LinkChecker Game.Main Tests Singleplayer

Simulation SHORT MEDIUM LONG A LONG B

D value 0.491 0.139 0.063 0.189

p value < 0.01 < 0.01 0.466 < 0.01
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Figure 10: Short (based on Conversion)
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Figure 11: Medium (based on LinkChecker)
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Figure 12: Long A (based on Game.Main)
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Figure 13: Long B (based on Tests Singleplayer)

6.2 Experiment 1: Broad experiment

In this experiment we measure workflow duration and the time a workflow resides in the

queue without being executed.

We expect an environment in which the framework is used to have a multitude of Builders.

The use of 3 Builders most closely resembles such an environment. Therefore, we focus on

the results of the 3 Builder set-up. Results for 1 and 2 Builders can be found in Appendix

A.

It is important to note that the average [run] time should not differ significantly between

algorithms for any set of data. This must not be because the [run] time of running workflows

increases the [queue] time of all other workflows in the queue. Average [queue] time increases

when average [run] time is higher. When [run] time between algorithms differs significantly

that data set should be dismissed.

Table 3 shows the mean and standard deviation of our results. The results are grouped

by algorithm and by order of workflows. The description of each order of workflows can be

found in section 5.4.2. Measurements are taken for the workflow’s total running time (run)

and the time the workflow spent in the queue while not running (queue). The total time is

an addition of run and queue (total). Table 4 shows the measurements normalized by run

time. To show significant differences between the various measurements we use Student’s

t-test. Tables 5 through 7 show these comparisons. Each table compares two algorithms.

Significant differences have been highlighted. Differences with p < 0.05 have been made

italic while differences with p < 0.01 have been made bold.
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Table 3: Results for 3 Builders

NHEFT HRRN Random

Order type mean std dev mean std dev mean std dev

Even run 84.871 57.982 82.115 50.584 83.978 68.393

queue 208.013 173.166 143.454 117.387 146.009 120.853

total 292.885 172.574 225.569 154.347 229.987 158.820

HRRN run 123.138 186.376 77.871 51.255 76.013 51.970

queue 296.937 244.079 174.011 117.260 182.648 145.595

total 420.075 254.339 251.881 132.172 258.661 144.613

HEFT run 78.776 52.554 76.722 60.580 80.575 39.742

queue 218.254 146.026 154.330 117.090 188.284 159.275

total 297.030 129.065 231.051 144.223 268.859 163.056

Front run 88.193 70.539 76.636 62.870 71.890 51.734

queue 212.386 177.004 167.374 117.149 185.528 140.634

total 300.579 181.641 244.009 139.319 257.418 135.357

Back run 94.449 70.020 84.397 61.564 74.091 45.782

queue 204.727 166.158 156.815 105.420 160.529 140.833

total 299.175 177.700 241.212 139.024 234.620 142.021

Overall run 93.886 99.898 79.548 56.529 77.309 51.523

queue 228.063 183.878 159.196 113.116 172.600 140.066

total 321.949 190.153 238.745 139.427 249.909 146.871

Table 4: Normalized results for 3 Builders

NHEFT HRRN Random

Order type mean mean mean

Even run 1.000 1.000 1.000

queue 2.451 1.747 1.739

total 3.451 2.747 2.739

HRRN run 1.000 1.000 1.000

queue 2.411 2.235 2.403

total 3.411 3.235 3.403

HEFT run 1.000 1.000 1.000

queue 2.771 2.012 2.337

total 3.771 3.012 3.337

Front run 1.000 1.000 1.000

queue 2.408 2.184 2.581

total 3.408 3.184 3.581

Back run 1.000 1.000 1.000

queue 2.168 1.858 2.167

total 3.168 2.858 3.167

Overall run 1.000 1.000 1.000

queue 2.429 2.001 2.233

total 3.429 3.001 3.233
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Table 5: t values for 3 Builders: NHEFT vs HRRN

Order run queue total

Even 0.160 1.380 1.300

HRRN 1.047 2.030 2.624

HEFT 0.115 1.527 1.525

Front 0.547 0.948 1.105

Back 0.482 1.089 1.149

Overall 1.249 3.190 3.529

Table 6: t values for 3 Builders: NHEFT vs Random

Order run queue total

Even 0.045 1.313 1.199

HRRN 1.089 1.798 2.467

HEFT -0.122 0.620 0.606

Front 0.833 0.531 0.852

Back 1.088 0.907 1.269

Overall 1.475 2.399 2.998

Table 7: t values for 3 Builders: HRRN vs Random

Order run queue total

Even -0.098 -0.068 -0.089

HRRN 0.114 -0.207 -0.155

HEFT -0.238 -0.768 -0.777

Front 0.261 -0.444 -0.309

Back 0.601 -0.094 0.148

Overall 0.293 -0.744 -0.551

6.3 Experiment 2: Long experiment

In the second experiment we attempt to find more differences between the algorithms by

entering more workflows into the request queue. With this experiment we focus on a more

specific subset of the previous experiment. We compare the HRRN and random algorithms

using 3 Builders. The results are presented in the same manner as the first experiment found

in subsection 6.2. Because the difference in run time of both algorithms is almost none we

present them without normalizing.
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Table 8: Long experiment results for 3 Builders

HRRN Random

Order type mean std dev mean std dev

Even run 85.149 68.358 85.891 88.516

queue 843.502 643.018 1015.629 710.868

total 928.652 683.668 1101.520 730.444

HRRN run 79.000 49.751 86.189 60.674

queue 866.466 577.054 1193.805 804.131

total 945.466 603.991 1279.994 801.512

HEFT run 95.875 102.080 92.509 87.679

queue 1167.155 760.327 1182.726 903.345

total 1263.029 783.450 1275.235 914.204

Front run 92.350 96.768 85.267 60.419

queue 1038.052 728.640 1264.364 812.514

total 1130.402 758.743 1349.632 802.895

Back run 86.050 62.000 91.062 82.926

queue 873.583 634.732 1158.438 884.011

total 959.633 673.404 1249.500 891.009

Overall run 87.685 78.362 88.184 76.861

queue 957.752 681.056 1162.992 826.527

total 1045.436 712.889 1251.176 831.407

Table 9: Normalized long experiment results for 3 Builders

HRRN Random

Order type mean mean

Even run 1.000 1.000

queue 9.906 11.825

total 10.906 12.825

HRRN run 1.000 1.000

queue 10.968 13.851

total 11.968 14.851

HEFT run 1.000 1.000

queue 12.174 12.785

total 13.174 13.785

Front run 1.000 1.000

queue 11.240 14.828

total 12.240 15.828

Back run 1.000 1.000

queue 10.152 12.721

total 11.152 13.721

Overall run 1.000 1.000

queue 10.923 13.188

total 11.923 14.188

39



Table 10: t values for long

Order HRRN vs Random

run queue total

Even -0.066 -1.796 -1.728

HRRN -0.916 -3.307 -3.333

HEFT 0.250 -0.132 -0.101

Front 0.621 -2.074 -1.985

Back -0.484 -2.617 -2.595

Overall -0.102 -4.285 -4.201
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7 Discussion

Before reaching conclusions based on the results we address several points of interest in our

research. In this chapter we discuss possibly incorrect assumptions. We address mistakes

that have been made during the experiments. We also discuss the presumed effects of these

assumptions and mistakes. We explain what impact these points of interest have on our

results and their scientific credibility.

7.1 Simulation

The framework’s run time simulation has several flaws. First, the simulation is based on

data that may not be representative of actual use. Second, the implemented distribution

of workflow durations differs significantly from the data we use for the simulation input.

Finally, there is a bug in the simulation code resulting in an incorrect offset in the data.

7.1.1 Distribution base

In chapter 3.5 we explain why we use data from the build farm as the basis for our simulation.

In short, we can not test our framework in a fully operational professional environment.

Therefore we simulate the duration of the workflow’s tasks. The simulated task durations

are based on the distribution of process duration measurements. Each task in our experiment

is based on one of these measured processes. These processes are part of the build farm used

for continuous integration at Guerrilla Games. In subchapter 5.3.1 we elaborate on why it

is possible to assume the build farm process duration distribution can be used to simulate

workflow duration.

The source of the distribution is not based on usage data of the local build tool but on

measurements from the build farm. Therefore we can not say with certainty that the base

distribution is representative of the framework’s usage when the framework is being used in

a professional environment. We hypothesize that the usage of the local test tool will change

significantly when users have the opportunity to test remotely as well as locally. Because

the actual use of the framework is uncertain there is no distribution to base the simulation

on with great certainty. Using build farm data limits the conclusions we can make in our

research. However, it is an efficient solution to the given problem.

7.1.2 Distribution Validity

The KSZ test is used to verify whether a set of data samples is taken from a given dis-

tribution. This base distribution is represented by a separate set of data samples. The

distribution used in the simulation differs significantly from the base data. The KSZ tests

were performed after the experiments. Verification of the simulation should have been per-

formed before the experiments, not afterwards. Because of this it was not possible to create

a more suitable distribution for the simulation. Although we can not scientifically state that

the simulated distribution is equal to its base, both distributions do resemble each other.

Figures 6 to 9 strongly resemble their distributed counterparts in figures 10 to 13 when

looking at them.

The difference between the original and the simulated distribution should have little

influence on the final results. The difference seems to be small when viewed as a histogram.
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The uncertainty surrounding the base distribution, as described in paragraph 7.1.1, has

greater influence than the small yet significant difference between the base distribution and

the distribution of the simulated data. Performing the KSZ test before the experiment would

have made it possible to rectify this problem. However, the impact of this mistake is not

greater than the impact of the distribution base in paragraph 7.1.1.

7.1.3 Distribution bug

We compared the base and simulated data before entering it into the KSZ test. The sim-

ulated data appeared to be consistently greater than the base data. This was indeed the

case. Inspection of the simulation code revealed a bug. Because of this bug the simulation

generates a duration which is exactly the size of one bin too great. The bug is located in line

11 of algorithm 1. The algorithm is correct. However, in the implementation of TimePerBin

* CurrentBinIndex we incorrectly used TimePerBin * CurrentBinIndex + 1.

This mistake has an impact on the total running time of the experiment which becomes

longer resulting in less experiments performed. However, it was possible to account for the

bug when putting the data into the KSZ test. The data samples have all increased accord-

ing to their respective simulation. Because of this global increase the relative distribution

between the data samples has not changed. This is why these differences have no effect on

the results and any conclusions that can be taken from them.

7.2 Variable workflow durations

The simulation of workflow durations results in an extra variable in the experiments, the

workflow duration. Running the experiment using predetermined and non-variable durations

for each ordered set is also an option. These set durations may perfectly conform to the base

distribution and would be equal for each ordered set. We chose not to use preset workflow

durations because we wanted to test the framework in a realistic as possible environment.

This approach can make it harder to find significant differences.

7.3 Framework completeness

The framework as used in the experiment does not make use of the specific functionality the

HEFT algorithm offers, e.g.: taking performance into account when dealing with heteroge-

neous build machines. The case environment does not contain any heterogeneous servers.

Other HEFT specific functions like transferring process data from one build machine to

another were not feasible either. In a different experimental environment HEFT may have

performed better than it did in our experiments.

We believe the current experimental environment, using NHEFT, is relevant to our

research questions. The conclusions that can be made are specific to our case environment

and should be presented as such. To determine which algorithm works best in a different

case scenario this experiment should be performed in that specific environment.

7.4 NHEFT erroneous implementation

In 5.1.3 we describe the bug that resulted in high average queue times for the NHEFT algo-

rithm. The bug occurs when multiple Builders are added to the Validation System. It causes
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the shortest workflows to remain in the queue until all other workflows have completed. This

leads to very long queue times for those workflows and raises the average queue time signif-

icantly. NHEFT has significant longer run times compared to the other algorithms. These

differences are likely caused by this bug. No conclusions about NHEFT can be made based

on the experiments. Consequently we can not make any assumptions about the effectiveness

of the HEFT algorithm.
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8 Conclusion

In subchapter 8.1 we answer the first research question. We answer the second research

question in subchapter 8.2.

8.1 Framework

With the first research question we ask how we can make a framework which can facilitate

different scheduling algorithms whilst adhering to the requirements in chapter 1.2. Here we

present how the Validation System contains the answer to that question.

8.1.1 Accessibility to algorithms

The implementation of the Validation System contains three different scheduling algorithms.

These algorithms require a different type and variety of data which are available in the

Validation Coordinator. HEFT especially requires more functions to for example transfer

a task from one Builder to another. The functions required to do so are available in the

framework although some of this functionality has not been implemented and tested. Figure

5 in chapter 4 shows all the required functions available for both the NHEFT and HEFT

algorithms to run. The data and functions required for HRRN and random scheduling to

run are all present in the data and functions required for NHEFT/HEFT. Requirement 1

has been met for the implemented scheduling algorithms.

8.1.2 Scalable Builder pool

The Validation Coordinator adheres to Requirement 2 by assigning available Builders to a

Builder pool. Builders can be added to and removed from the Builder pool during runtime.

When a Builder is removed from the Builder pool it is necessary to reschedule. If the removed

Builder was actively running a task this task may need to be restarted on or transferred

to another Builder. The task that was last run on a removed Builder may have produced

changes required by other tasks in its workflow. These changes need to be transferred to the

newly assigned Builder as well. This is a very costly process and should be avoided within

our case environment. As long as at least one Builder remains assigned to the Validation

Coordinator the system can stay active and functioning. Although Requirement 2 is met it

is advisable to not remove Builders during runtime unless the entire workflow is run again

from the start on a different Builder.

8.1.3 Peak usage

It is difficult to show that Requirement 3 has been met. Stressing the framework to a break-

ing point is not feasible during our experiments. Neither is proving that this requirement

is met for all possible usage scenarios. We approach Requirement 3 by investigating the

bottlenecks in our current implementation. Creating a peak usage environment would be

difficult given the limited amount of build machines available for the experiment. We can

safely say the requirement is met if the framework can clearly deal with an exaggerated

worst case scenario for the identified bottlenecks.

TLocalBuild can cause a potential bottleneck. When TLocalBuild crashes it may leave

the TCP connection it uses to receive feedback open. When this happens while a Builder is

44



performing a task using that TCP connection, the Builder may enter an infinite loop. We

prevent this using TCP timeout functionality in Python.

Peak load will be caught by the Validation Coordinator before it reaches the Builders.

All superfluous requests are stored in the RequestQueue. A high amount of requests will

result in long queue times. This will not affect the Builders however.

The network at Guerrilla Games is state-of-the-art so we assume that this will not be

a bottleneck. We also assume the RPC system is able to deal with many connection calls

over a short amount of time. These assumptions have held up during the experiments but

should be regarded with caution.

The size of the request queue might be a bottleneck. We consider a realistic worst

case scenario. A large game studio realistically does not consist of more than 500 on-site

developers. If all these developers would simultaneously request several workflows within

a few minutes this would account for no more than 2000 requests. The data stored in the

request queue are very small. Even if the Validation Coordinator would run on a work

machine with only 16GB of RAM the machine would not run out of memory.

Another possible bottleneck could arise when using an inefficient scheduling algorithm.

This is not the case with NHEFT, HRRN, nor random scheduling. No bottlenecks were

encountered during the experiments and the analysis of possible bottlenecks indicates high

robustness. We consider Requirement 3 met within our implementation and within our case

environment given the network and RPC assumptions. However, we can not conclude that

the framework will continue to perform when used on a larger scale.

8.1.4 Reliability of data

Requirement 4 is met by using Perforce. It is possible to use other version control software to

achieve the same goals. The local source repository on a build machine is cleaned using Per-

force commands. The clean is performed before the newly assigned task is executed. When

the new task is part of the same workflow as the previous task, no cleaning is done. Perforce

reverts any changes that were made since the last clean and, after cleaning, synchronizes the

local repository to the latest stable version. It is very important to set up all tasks such that

all files that can be changed are checked out in Perforce. Checked out means that the files

are known and monitored by Perforce. This results in the version control software knowing

which files to revert. This is set up correctly in our case environment.

8.1.5 Front-end tool

Paragraph 4.2 shows the technical description of TLocalBuild. This front-end tool presents

output for each task in a separate tab. TLocalBuild fully fulfills Requirement 5.

8.1.6 Requirements conclusion

We have shown that all Requirements have been met within our current implementation

of the framework given the assumptions for Requirement 3. In the technical description in

chapter 4 we explain how the framework is built. This answers the first research question.

However, there are scenarios in which the Validation System can be used where these

Requirements may not be met. We give several examples: Requirement 3 may not be met

when the framework receives extremely high amounts of requests. Requirement 1 is not
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met when algorithms require information on changes in the workflow request’s changelist.

The Validation System does not force the use of a front-end tool. Therefore, not every

implementation of the framework may meet Requirement 5.

8.2 Algorithms

In the second research question we ask what scheduling algorithm gives the average user the

shortest average waiting time. We discuss the overall performance of the algorithms and

the results of the longer tests to see whether a difference can be found between the three

scheduling algorithms.

We first discuss the experiments set-ups with 1 and 2 Builders. The NHEFT bug does

not occur in the 1 Builder set-up. As expected, HRRN is significantly faster than random

scheduling (p < 0.01). We expect NHEFT to show similar results. However, this is not the

case. No significant differences can be found between NHEFT and both HRRN and random

scheduling. HRRN does seem to show lower average queue times. For the 2 Builder set-up

NHEFT performs almost equal to random scheduling while HRRN has significantly shorter

average waiting times (p < 0.05). The lower performance by NHEFT can be explained by

the NHEFT bug. We base our conclusions upon results that more strongly resemble actual

use of the framework. Therefore we base the conclusions on the 3 Builder set-up.

The results for the broad experiment with 3 Builders show that NHEFT has significantly

longer queue times than the HRRN (p < 0.01) and random scheduling (p < 0.05) algorithms.

There is an indication of longer running times for NHEFT. However, after normalizing the

data for run duration, table 4 clearly shows longer queue times for NHEFT. The difference

between HRRN and random scheduling is minimal.

The results for the longer experiment show that HRRN has significantly shorter (p <

0.01) queue times than random scheduling. From this data we make the preliminary con-

clusion that HRRN produces shorter average wait times than random scheduling. We also

conclude that NHEFT produces longer average wait times than random scheduling.

Our preliminary conclusion is rejected for the NHEFT algorithm. We can only conclude

that the algorithm was improperly implemented. Consequently we can not make any as-

sumptions about the HEFT algorithm on which NHEFT is based. However, the difference

between the HRRN and random scheduling algorithms is confirmed. In our case environment

the HRRN scheduling algorithm gives the user the shortest average waiting time. These con-

clusions must be considered with caution as described in chapter 7. Different environments

and implementations may produce different results.
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9 Future Work

9.1 Ordered sets

Of the three scheduling algorithms we compare, HRRN produces the shortest average waiting

time overall. However, the results show that this is not the case for all ordered sets. For

the HEFT specific ordered set HRRN performs equally to random scheduling in the long

experiment. It may be important to analyze the relevance of the order in which requests

enter the RequestQueue.

The data collected in the experiments show both the order in which requests are added

to the RequestQueue and the order in which they are assigned. However, they do not

show based on what data the algorithms choose which request to assign to a Builder. The

weights on which prioritization is based are not stored. These data may provide important

information of the inner workings of the scheduling algorithms.

Knowledge of the internal data of scheduling algorithms may provide insight into the

reasons why certain algorithms perform better than others. It may help in finding more

suitable scheduling algorithms. It may also help in improving business processes such that

the algorithms can perform better. E.g.: Enforcing a rule that long requests can only be

submitted after 17:00.

9.2 Framework expansion

The framework in its current state does not have all the features it could potentially have. In

subchapter 4.7 we discuss several of these features. Implementation of these features could

make the Validation System more effective and better suited to different environments.

Implementing these features makes further research possible.

The framework could be implemented and tested in different environments. Other AAA

game companies would be a good starting point. Especially if these other companies have a

heterogeneous set of build machines available. The similar testing goals in those companies

would be a good match for our framework. To test wider use of the framework it can be

interesting to test it in large non game related technology companies, e.g.: ASML. The size

of this type of organization can be multitudes larger than AAA game companies. This can

present new technical issues.

The framework requires very little resources and it is possible to run it using only one

build machine. Because of this the framework can be implemented at smaller game compa-

nies or for example teams of developers who are located all over the world.

9.3 Further algorithm comparison

The different case environments and the possible additions to the framework discussed in 9.2

can present good opportunities for the implementation of other scheduling algorithms. There

are many algorithms available which could be better suited for the technical- and business

structure of the environment the framework is implemented in. Comparing the average

waiting time for those algorithms can give a clear picture of company-wide efficiency of the

algorithm.
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9.4 Integration in external tools

In the previous subchapters we discussed expanding the Validation System and testing

different scheduling algorithms. A different approach could be integrating the Validation

System in other tools to increase their performance. We illustrate this possibility with an

example.

T3 is a random testing tool for Java created by Prasetya [14]. T3 entered in the 2013

testing tool contest FITTEST [17]. T3 randomly generates test cases for a given Java class.

When the class to be tested increases in complexity, so does the amount of possible tests T3

can perform. T3 could perform its required tests more quickly if it distributes its tasks to

remote machines. It could perform much more tests in the same amount of time it currently

takes to execute. The Validation System is a light-weight solution which makes it more

viable to implement in such a tool as T3 than heavier tools like Jenkins.
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A Builder tables

Table 11: results for 1 Builder

NHEFT HRRN Random

Order type mean std dev mean std dev mean std dev

Even run 104.850 128.882 78.602 61.317 81.501 62.305

queue 1122.319 733.145 517.995 356.538 674.200 498.772

total 1227.169 706.576 596.597 400.237 755.701 510.581

HRRN run 83.955 77.895 92.458 57.504 113.709 129.486

queue 674.514 532.408 764.483 511.427 1272.819 649.364

total 758.468 548.114 856.941 526.868 1386.528 605.295

HEFT run 81.164 62.846 88.768 52.978 83.017 51.220

queue 845.111 513.859 687.848 433.112 896.721 487.311

total 926.274 496.229 776.616 460.736 979.738 461.523

Front run 86.919 66.805 94.974 75.656 108.323 152.054

queue 857.904 423.179 851.350 442.553 1176.885 686.547

total 944.823 409.901 946.324 448.989 1285.208 656.246

Back run 97.745 74.210 97.578 80.322 83.640 53.521

queue 714.274 511.141 673.695 463.237 722.674 511.845

total 812.019 545.457 771.273 507.893 806.314 516.655

Overall run 90.927 84.290 90.476 65.389 94.038 98.239

queue 842.824 563.591 699.074 449.106 948.660 610.588

total 933.751 562.768 789.550 475.878 1042.698 599.667
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Table 12: Normalized results for 1 Builder

NHEFT HRRN Random

Order type mean mean mean

Even run 1.000 1.000 1.000

queue 10.704 6.590 8.272

total 11.704 7.590 9.272

HRRN run 1.000 1.000 1.000

queue 8.034 8.268 11.194

total 9.034 9.268 12.194

HEFT run 1.000 1.000 1.000

queue 10.412 7.749 10.802

total 11.412 8.749 11.802

Front run 1.000 1.000 1.000

queue 9.870 8.964 10.865

total 10.870 9.964 11.865

Back run 1.000 1.000 1.000

queue 7.308 6.904 8.640

total 8.308 7.904 9.640

Overall run 1.000 1.000 1.000

queue 9.269 7.727 10.088

total 10.269 8.727 11.088

Table 13: t values for 1 Builder: NHEFT vs HRRN

Order run queue total

Even 0.822 3.315 3.473

HRRN -0.393 -0.545 -0.579

HEFT -0.414 1.047 0.988

Front -0.357 0.048 -0.011

Back 0.007 0.263 0.244

Overall 0.042 1.995 1.957

Table 14: t values for 1 Builder: NHEFT vs Random

Order run queue total

Even 0.729 2.260 2.419

HRRN -0.881 -3.186 -3.440

HEFT -0.102 -0.326 -0.353

Front -0.576 -1.769 -1.967

Back 0.689 -0.052 0.034

Overall -0.240 -1.274 -1.325
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Table 15: t values for 1 Builder: HRRN vs Random

Order run queue total

Even -0.148 -1.139 -1.097

HRRN -0.671 -2.750 -2.951

HEFT 0.349 -1.433 -1.393

Front -0.352 -1.782 -1.906

Back 0.646 -0.317 -0.216

Overall -0.302 -3.293 -3.307

Table 16: results for 2 Builders

NHEFT HRRN Random

Order type mean std dev mean std dev mean std dev

Even run 81.201 52.260 82.705 51.683 112.455 104.090

queue 331.908 266.345 269.303 184.833 382.741 357.395

total 413.109 264.365 352.008 214.591 495.197 383.756

HRRN run 90.355 83.738 84.855 87.589 75.304 50.664

queue 361.431 293.620 222.500 160.388 268.542 199.360

total 451.786 298.365 307.356 224.680 343.846 217.256

HEFT run 75.911 53.762 75.512 36.134 75.611 51.819

queue 307.441 228.238 251.542 180.546 271.922 232.984

total 383.352 229.448 327.054 203.948 347.533 245.129

Front run 125.423 190.191 85.770 66.978 92.822 71.504

queue 455.632 300.585 335.950 205.257 413.612 276.563

total 581.054 334.401 421.720 218.351 506.434 268.023

Back run 80.276 47.323 94.035 90.216 91.180 55.579

queue 303.192 239.562 249.471 171.317 347.333 282.741

total 383.468 244.323 343.506 232.903 438.513 288.445

Overall run 90.633 100.621 84.575 68.515 89.474 69.645

queue 351.921 267.702 265.753 181.489 336.830 275.706

total 442.554 281.070 350.329 218.155 426.305 289.002
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Table 17: Normalized results for 2 Builders

NHEFT HRRN Random

Order type mean mean mean

Even run 1.000 1.000 1.000

queue 4.088 3.256 3.404

total 5.088 4.256 4.404

HRRN run 1.000 1.000 1.000

queue 4.000 2.622 3.566

total 5.000 3.622 4.566

HEFT run 1.000 1.000 1.000

queue 4.050 3.331 3.596

total 5.050 4.331 4.596

Front run 1.000 1.000 1.000

queue 3.633 3.917 4.456

total 4.633 4.917 5.456

Back run 1.000 1.000 1.000

queue 3.777 2.653 3.809

total 4.777 3.653 4.809

Overall run 1.000 1.000 1.000

queue 3.883 3.142 3.765

total 4.883 4.142 4.765

Table 18: t values for 2 Builders: NHEFT vs HRRN

Even -0.092 0.864 0.803

HRRN 0.203 1.857 1.729

HEFT 0.028 0.859 0.820

Front 0.879 1.471 1.784

Back -0.604 0.816 0.529

Overall 0.498 2.664 2.592

Table 19: t values for 2 Builders: NHEFT vs Random

Order run queue total

Even -1.200 -0.510 -0.788

HRRN 0.688 1.170 1.308

HEFT 0.018 0.487 0.477

Front 0.718 0.460 0.779

Back -0.668 -0.533 -0.651

Overall 0.095 0.393 0.403
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Table 20: t values for 2 Builders: HRRN vs Random

Order run queue total

Even -1.145 -1.261 -1.456

HRRN 0.422 -0.805 -0.522

HEFT -0.007 -0.309 -0.287

Front -0.322 -1.008 -1.096

Back 0.121 -1.324 -1.146

Overall -0.501 -2.153 -2.098

Table 21: Average of queue time normalized by runtime for the broad experiment (seconds)

Algorithm Count Even HRRN HEFT Front Back

HEFT 1 18.460 9.721 14.408 13.342 9.159

HEFT 2 5.066 5.812 5.472 7.159 4.213

HEFT 3 3.343 4.984 3.590 3.188 2.768

HRRN 1 7.219 9.696 8.820 12.040 7.937

HRRN 2 3.720 3.175 3.344 5.069 3.290

HRRN 3 1.821 2.684 2.345 2.802 2.232

Random 1 10.062 17.413 14.755 18.000 10.726

Random 2 5.490 4.319 4.538 6.301 4.297

Random 3 2.056 3.124 2.710 3.314 2.533

Table 22: Average of queue time normalized by runtime for the long experiment (seconds)

Algorithm Even HRRN HEFT Front Back

HRRN 11.004 12.141 14.771 13.750 13.972

Random 15.429 17.691 17.313 19.530 17.051
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