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Abstract

This work proposes a human interaction recognition based approach to video

indexing that represents a video by showing when and with whom was interacted

throughout the video. In order to visualize the length of an interaction, it is

required to recognize individuals that have been detected in earlier parts of the

video. To solve this problem, an approach to photo-clustering is extended to

video material by tracking detected faces and using the information from tracking

to improve the recognition of human beings. The results of the tracking based

approach show a considerable decrease of false cluster assignments compared to

the original method. Further, it is demonstrated that the proposed method is able

to correctly recognize the appearance of �ve out of the six individuals correctly.
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1 Introduction

1.1 Project description

With the recent development in digital video camera technology, it becomes fea-

sible for people to record their daily lives from an egocentric point of view. For

example, the company Looxcie currently o�ers a head mountable camera which

can record up to 4 hours of 480p video data at a price of no more than 100$. An-

other supplier of head mounted cameras is GoPro. While their products focus on

higher quality but less battery life, it is just a matter of time until more of these

or similar devices will provide enough battery power to record a whole day's ac-

tivities. The probably most spectacular product of this category are smart glasses

like Google Glass. Next to being a consumer product, body worn cameras are

also used in the public sector, especially by the police like for example in the

United Kingdom. Altogether one can say that a growth of egocentric videos can

be expected in the near future.

Opposed to conventional recording devices like hand-held cameras, body worn

cameras are not used to record speci�c actions, plots or events. Instead, they

are commonly used to record a whole mission, trip or even all day long. The

recordings are typically archived in order to be referred to later on, for example

by a consumer who wants to remember the experience of a particular day or by

a police o�cer who wants to analyze a particular mission. In order to extract

the meaningful parts of the videos later on, a possibility is needed to structure or

summarize videos e�ciently. Without such techniques, searching for particular

moments or events can become a di�cult and long lasting task. Many di�erent

approaches to this problem can be imagined, and many ideas have already been

put into practice. This work speci�cally focuses on detecting and summarizing

the social interactions observed in the video material, in order to aid users that

search for particular interactions with other people.

In the remainder of this section, �rst the detailed goals of this project are de-

scribed. Second, the approach that has been taken is discussed, as well as related

work and its shortcomings that this project aims to overcome. Last, the structure

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: An example of an interaction is the interaction of the movie maker
with a cashier when paying groceries at a shop.

of the remaining text is given.

1.2 Project goals

The goal of this project is to automatically generate a visual index from egocentric

video material. This index should give an overview of the people that interacted

with the �lmmaker. By interaction any interaction between the �lmmaker and

a person that is visible in the video is meant, which includes social interactions

like meeting friends as well as non-social interactions like paying the groceries at

the store. In �gure 1.1, several frames are presented that show the cashier of a

store interacting with the �lmmaker who is paying groceries.

Particularly, only interactions between the �lmmaker and other individuals are to

be indexed, not interactions between other people in the scene. This restriction

is made because the index should help summarizing �lm-maker's interactions,

opposed to recognizing interactions between unknown people.

In �gure 1.2 the exemplary output is drafted. The output should show a photo

that is extracted from the video, together with a bar that indicates when the

interaction started and how long it lasted.

11:36 12:28 12:51 13:07 13:33
13:39

Figure 1.2: Example of an index
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It should be possible to automatically generate an index given the recordings of a

whole day. The index visually summarizes to which people one has talked to on

a given day and thus gives a overview over video material that can be browsed

at a glance. With a visual index it becomes possible to search through archived

videos e�ciently. For example, one can locate the recording of a longer lasting

conversation one had with a certain person without the need of watching hours of

videos, but by looking for an index showing that person for the expected length

of time.

1.3 Approach

Analyzing self recorded egocentric videos revealed that social interactions, for

example having lunch with someone, talking to each other or paying groceries

at the supermarket, often coincide with looking at each others faces. Vice versa,

in egocentric videos, when a particular face is observed in multiple consecutive

frames, usually some interaction with that person actually occurred. The detec-

tion of frontal faces will therefore be used as an indicator for social interactions

with the person belonging to the detected face.

Next to the detection, the system is required to recognize the �rst and the last

frame in which a particular person is detected. This requires the system to

recognize if any other person that is detected in a di�erent frame is the same

individual as detected before or not.

This identi�cation is approached in two di�erent ways: First, each detected face

is visually tracked as long as it remains visible in consecutive frames. Tracking is

a reliable technique to answer the question whether a detected face belongs to the

same person as a detection from preceding frames. Nonetheless, face tracking may

be interrupted before an interaction ends. Such interruptions can for example

occur due to head movements of the �lmmaker, leading to the interaction partner

being out of scene for a moment.

To solve to the problem of identifying individuals in consecutive frames in cases

where face tracking had been interrupted, another approach is taken: The de-

tected individuals are visually compared to each other by using a combination

of face recognition and appearance based recognition. Later, all detections are

clustered according to their pairwise distances. In the optimal case, each cluster

contains all detections of a distinct individual.
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1.4 Assumptions

The detection of social interactions is based on face detection. It is assumed that

the interaction partner is facing towards the camera, which means looking at the

face of the �lmmaker. Further more it is assumed, that faces of interacting people

will be recorded more frequent than faces from non-interacting people, so that

it is possible to distinguish between interacting and non-interacting persons by

using a threshold on the number of consecutive detections.

As a consequence, another assumption is that faces of interacting people are

detected successfully by the algorithm to be developed. This will work for the

majority of faces but might fail for people wearing hats, glasses or a scarf that

covers parts of the face. The improvement of face detection algorithms is not

part of this work and is therefor left open as further research.

1.5 Structure

The remainder of this document is structured as follows: In the following chapter,

related research is presented, as well as the distinction to this work. In chapter 3,

background information about the employed methods and technologies is given.

The detailed approach of this work is explained in chapter 4, followed by its exper-

imental evaluation being presented in chapter 5. The text �nishes by discussing

the results and pointing out possible directions of further research in chapter 6.



2 Related work

In the following, related work regarding video indexation is presented as well as

the relation to the proposed approach of this work. First, di�erent approaches

based on key-frame selection are shown. Second, people recognition based ap-

proaches are presented.

2.1 Key-frame selection based indexing

A common approach to summarize egocentric video material is to select a rep-

resentative subset of frames from the complete video. The result of such an ap-

proach is a list of thumbnail images that summarizes the video material. Frames

are selected in such manner that the resulting subset contains the most important

information with the least possible redundancy.

Approaches to video summarization by key-frame selection di�er mainly in the

technique used for selecting the frames. In the following, three approaches are

presented that select key-frames based on image and video features like colors

and motion.

In traditional entertainment movies, the scene is a good indicator if frames are

related to each other or not. A widely used technique in video summarization

is to detect shot boundaries and selecting one or more frames from the resulting

subsets.

Scene based key-frame selection is usually accomplished by looking at the di�er-

ences in color histograms of the frames. Sudden changes in the color histograms

are interpreted as a change of scene, and from each scene one or more representing

frames are selected. In [2] and [3] for example, scenes are grouped by applying

Delaunay clustering to color and texture information, where the cluster centers

are used as key-frames that form the summary.

Another approach to key-frame selection is proposed in [4]: First, a similarity

graph for all frames is constructed. For this graph a minimum spanning tree

5
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is build, from which edges are removed until a stop-criterion is reached, which

depends on the desired number of clusters, as well as the similarity between single

frames. Compared to the former approach this allows the user to control the size

of the summary.

Image features can help to identify changes in scene, but are di�cult to ap-

ply to egocentric video material, because scene changes are less abrupt and less

common. Therefore, in [5], a sub-shot selection approach tailored for egocentric

video material is proposed: Instead of using histograms of colors, the movement

patterns are detected and classi�ed into the three categories static, transit and

head movement. These categories are recognized by a support vector machine

from dense optical �ow and blurriness based feature descriptors. Furthermore,

[5] proposes a new approach to key-frame selection in egocentric video, which

also considers the semantic content. By detecting meaningful objects based on

their position and size in the frames as proposed in [6], [5] detects unique objects

and their relation to each other by looking at their co-occurrence in a sub-shot.

For each detected object one frame is selected, which leads to a object driven

video summary including all objects that are important in a sense as in [6].

While the methods described until here can successfully select subsets of frames

that represent di�erent scenes or objects, they fail to present the di�erent people

shown in the video. Based on the key-frame selection approach, the following

methods are focusing on human beings in video material:

In [7], assuming a static camera position, the number and the position of faces is

used to build clusters of similar scenes and select key-frames from each cluster.

The reasoning behind this is, that the scene is supposed to be unchanged when

the number and position of detected faces remains the same. Similar to this, [8]

uses features like the number of faces, their size and their position in a spectral

clustering approach, in order to select meaningful key-frames from entertainment

videos. As both approaches depend on static view angles, they are not applicable

to egocentric videos: Important people are often near the frame center, because

they are looked at during a conversation. This makes the position and the number

of detected faces a unsuitable attribute for detecting unique scenes and persons.

Similar to this, there are approaches that also utilize techniques of face recogni-

tion, in order to improve the clustering results: In [9] face detection is applied in

order to provide key-frames per person. For face recognition context information

is used, like the position of the face detected in a sequence of frames, as well

as face recognition methods as described in [10]. Together with the positional
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information of face detection, face recognition is used to �nd important people

in a movie by counting their occurrences. As the former approach this method

is not expected to perform well on egocentric video material due to the lack of a

static camera position.

The survey [11] gives a recent and detailed summary of video summarization

techniques similar to the techniques described until here, as well as other sum-

marization approaches that are not considered in this project. However, no other

face detection based methods are mentioned. In the following, approaches of

people based video indexing are listed.

In general, the key-frame selection approach has the general shortcoming of not

being able to construct a concrete index. Instead, a sub-set of all frames is shown.

This requires the user to search through enormous amounts of image material, in

order to �nd certain periods of interactions with speci�ed persons. Furthermore,

the length of any interaction can only be concluded by �nding the �rst and the

last frame showing the person of interest. Compared to this approach, the index

that this project proposes should be able to extract and visualize information

about the interaction partner, as well as the length of the interaction.

2.2 Human being detection based indexing

Opposed to key-frame selection based approaches, this section presents studies

that aimed to also extract and present information about human beings detected

in video material. Instead of just selecting frames, here information is actively

transformed for the purpose of summarization.

For example, the indexing method is given in [15] creates a video index based

on scene change detection using the MPEG-7 visual descriptors. This work also

includes an actor time-line, detecting faces using Viola-Jones, and identifying

actors using face recognition. Faces are normalized using an Active Shape Model

before being matched against a pre-trained face database including known actors.

Since the approach can only recognize faces that are known from a training set,

it is not applicable to indexing unknown people from egocentric recordings.

In the following, three di�erent approaches to detecting distinct people by apply-

ing clustering to detected faces are presented. Compared to the former approach

they do not require the people to be known afore.
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In [12], �[...] frames of a video sequence are scanned for faces by a Neural Network-

based face detector. The extracted faces are then grouped into clusters by a

combination of a face recognition method using pseudo two-dimensional Hidden

Markov Models and a k-means clustering algorithm� ([12]). The resulting clusters

are supposed to represent the di�erent individuals shown in the video.

Conceptual similar to this, [13] summarizes videos based on people shown in the

frames. Faces are detected using Viola-Jones and tracked by a particle �lter us-

ing histograms of oriented gradients (HOG). From the resulting sequences those

faces are selected that are useful for face recognition. After calculating a pair-

wise distance matrix, faces are grouped by applying constrained agglomerative

clustering.

Another approach to clustering faces based on face recognition using two dimen-

sional principal component analysis is made in [14]. Based on face recognition,

a pair-wise distance matrix for all detected faces is constructed and clustered

by spectral clustering. The results however show that current face recognition

alone cannot provide precise information: For a full length video, only 25% of

the labeled faces were recognized correctly.

This work approaches the problem of detecting distinct people in a very similar

way, namely by spectral clustering. Opposed the former methods, this work aims

to extend the face recognition based approach by including context based informa-

tion to improve the clustering results. Earlier, [16] has used a similarity measure

based on clothes, but without including any information from face recognition.

As [1] shows, the performance of clustering family pictures can be improved by

combining such di�erent information sources, motivating this project to research

if such a combination can also improve person based video indexing approaches.



3 Background knowledge

3.1 Face detection

For face detection the OpenCV implementation of the well known method pro-

posed by Paul Viola and Michael Jones is used ([17]).

3.1.1 Cascade classi�er

The method uses three di�erent haar features, which are shown in �gure 3.1:

1. Horizontal and vertical two-rectangle feature (�gure 3.1a and �gure 3.1b)

2. Three-rectangle feature (�gure 3.1c)

3. Four-rectangle feature (�gure 3.1d)

Before calculating the features, the image is transformed into a gray scale image,

since haar features do not take colors into account. Every feature is then calcu-

lated by subtracting the sum of all pixels in the white rectangles from the sum

of all pixels in the black rectangles.

These features are calculated at any possible position and scale in a 24 by 24

pixel rectangle in order to build a detector of that size. This will result in more

(a) Horizontal
two-rectangle
feature

(b) Vertical two-
rectangle feature

(c) Three-
rectangle feature

(d) Four-
rectangle feature

Figure 3.1: Haar features used by Viola-Jones

9
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than 180.000 di�erent values, and using all of them for classi�cation would result

in very low e�ciency. To overcome this limitation during classi�cation, a small

subset of features is selected during the training phase. Given an annotated (face

yes or no) training set with images of size 24 by 24 pixels, from all possible haar

features that one will be selected, which separates most negative images. The

feature type, location and size, as well as the threshold are saved and will be used

in the resulting classi�er to reject negatives as early as possible.

The resulting classi�er is called a cascade classi�er, because an image has to

pass a sequence of so called weak classi�ers in order to be classi�ed as a face.

The term weak classi�er originates from boosting. In machine learning, boosting

means selecting a set of weak classi�ers that have high error rates when used

isolated, but when combined result in a string classi�er with good precision.

C
1

C
2

C
3

T T T

F F F

Figure 3.2: Cascade of weak classi�ers

Given a 24 by 24 pixel image and the trained classi�er, the decision if the image

represents a face or not is made as follows: The �rst haar feature that has been

selected in the training phase is applied to the candidate image. If the resulting

value is higher than the threshold that has been selected during training, the

next feature will be tested. This process is repeated until either one feature is

below the threshold given by the classi�er, or until there are no features left.

When a value that results from a haar feature being applied to the candidate

image is below the threshold, the image is immediately classi�ed as a negative,

not showing a face. If all resulting values are above the required thresholds, the

image is classi�ed as a face. �gure 3.2 visualizes this process.
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3.1.2 Sliding window

With the classi�er described so far it is only possible to classify images of constant

size. In order to use the classi�er to detect faces in images of variable size a

sliding window is used. A rectangular window is moved along the image and

possibly overlapping patches are extracted. Every patch is resized to the size of

the classi�er and then tested by it. Every time the rectangle used for extracting

those patches reaches the end of the image, its size is increased and the rectangle

placed back in the beginning. This process is repeated until the window size

cannot be increased anymore, for example because it already has the same size

as the whole image, or because it exceeds a given maximum size for expected

faces. In �gure 3.3 this process is visualized. The patches will not detect any

face until their size has been increased enough after several runs.

F

F T

Figure 3.3: Sliding window sequentially tests all possible con�gurations

Usually, a single face can lead to more than one patch being identi�ed as a face

because the sliding window is moved in overlapping steps. In order to provide

unambiguous results, OpenCV's implementation of this algorithm will combine

detected faces that have large overlaps and return a single detection. By requiring

a certain number of such overlapping detections, one can also �lter out false

alarms.

3.2 Face tracking

For face tracking, three di�erent approaches were tested: Mean shift, particle

�lter and optical �ow.

First the mean shift algorithm implemented in OpenCV has been applied to the

video data. The mean shift algorithm works with a color based appearance model

which position is updated according to the most likely matching appearance found
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in the next frame. In practice di�culties were experienced in detecting whether

a face has disappeared or not: When the tracker loses the face, the change of

appearance is often not distinguishable from the changes in appearance due to

movement and changes of light. Furthermore, if the background has a color

model that is similar to model of the face, the tracking is not accurate and

returns wrong locations. For this reasons, mean shift has not been used in the

�nal implementation presented in this work.

Another approach to tracking faces are particle �lters. Opposed to mean shift, a

particle �lter modi�es the search range based on the con�dence that the tracked

object is represented by the current position. For each new frame, so called

particles are sampled around each original particle from the preceding frame

and each particle evaluates the con�dence at its position. Particle with high

con�dence will sample more particles at random positions in short distances to

its own location while particles with low con�dence will sample less particles

at greater distances. The particle with the highest con�dence represents the

position of the object to be tracked. For the evaluation of the con�dence a

color based model has been tried as well as a cascade classi�er as discussed in

section 3.1.1, where the ratio of passed tests to remaining tests is interpreted as

the con�dence. The color based approach experienced similar problems as the

mean shift algorithm and is thus not used in this work. The cascade classi�er

based approach also was inaccurate: The classi�er reached relatively high values

at regions showing no faces, meaning its output is not representing the con�dence

of a face being shown at a given position well enough. Therefore, this approach

has also not been included in the remainder of this work.

Instead of tracking a face, a method of recognizing faces that have been detected

in preceding frames is used. To be able to recognize a face in a later frame, points

with distinctive features are selected at the region where the face initially was

detected. Those points are easy to track with optical �ow and do not su�er from

the problems experienced with the face tracking methods described above. In the

following is explained how those prominent points can be detected and tracked.

In section 4.4 will be described how this approach can be used to identify faces

from earlier detections.
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3.2.1 Optical �ow

The optical �ow between two images is the relative displacement of any object

observed by the camera or any other observer. In computer vision there is a

distinction between dense optical �ow and sparse optical �ow. Dense optical

�ow computes the displacement based on every pixel of the image, for example

by using a grid. One popular method for calculating the dense optical �ow is

described in more in detail in [18]. Sparse optical �ow rather computes the optical

�ow of a selected point. In this work, sparse optical �ow is used to track faces

through several frames.

Sparse optical �ow is used to calculate the displacement vector d of a given

sub window between two subsequent images. A sub windows is used, because a

single pixel value might not be unique in its neighborhood. When including a

small window around a given location, it is less likely that the pattern is repeated.

In order to �nd the optical �ow between two points, di�erent algorithms exists.

Here, the Pyramidal Implementation of the Lucas Kanade Feature Tracker is

used, as described in [19], due to the availability of the robust implementation in

OpenCV.

The points that are to be tracked must have speci�c characteristics for the al-

gorithm to work, which is having a gradient within their neighborhood in the

vertical as well as the horizontal direction. In [20] a method is proposed that

selects such points by �nding features that have a distinct gradient, which is

implemented in OpenCV as well.

3.3 Face recognition

In this section, an approach to face recognition based on facial feature localiza-

tion from [21] is explained. This approach �rst detects facial features and than

extracts local appearance based descriptors at where the features were found.

When facial features are located successfully, this approach can better deal with

di�erent face orientations and transformations.

The facial features are located by combining an appearance model with a part-

based "pictorial structure" model. Assuming the appearance of a feature is in-

dependent of its positions and the appearance of other features,
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"[...] the con�dence in an assignment F of positions to each facial

feature can be written as a likelihood ratio

P (F |p1, . . . ,pn) = p(p1, . . . ,pn|F )
n∏

i=1

p(ai|F )

p(ai|F̄ )
(3.1)

where pi denotes the position of feature i in the detected face re-

gion and ai denotes the image appearance about that point. The

joint position of the features p(p1, . . . ,pn|F ) is modeled as a mixture

of Gaussian trees. The likelihood-ratio of the appearance terms is

modeled using a discriminative classi�er" ([21]).

In [21], nine facial features are used, which are the inner and outer corners of the

eyes, the left and the right corners as well as the center of the tip of the nose and

the left and right corners of the mouth. For each facial feature a binary classi�er

is learned by using multiple instance AdaBoost learning. The multiple instance

variant of AdaBoost can update the location of the labels in the training set in

order to prevent localization errors corrupting the classi�er ([22]). The output of

the classi�er is interpreted as the log-likelihood ratio and substitutes p(ai|F )
p(ai|F̄ )

in

equation (3.1). The joint positions of the features are represented by a Gaussian

mixture model which is learned by Expectation Maximization and tested with

distance transform methods [21].

The descriptor representing the face is build by extracting pixels from an elliptical

region around each feature. To reduce the e�ect of pose variation, the face

is transformed so that the features are located at the positions of an average

frontal face. The extracted pixels for each feature are �rst normalized to have

zero mean and unit average and then are concatenated. The distance between

two descriptors is represented by their Euclidean distance.

3.4 Bag of visual words

Bag of Visual Words (BoW) is a technique from image classi�cation were an image

is represented by a histogram of so called visual words. In order to generate a

codebook containing the visual words, local features are extracted from all images

and are combined to visual words by some clustering algorithm. An overview of

the algorithm is shown in �gure 3.4, taken from [23]. Which features to use and

the choice of the clustering algorithm are up to the user and strongly depend on
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the situation. In [1] BoW is used to recognize clothes. Based on this example,

the following will explain the details of the BoW approach, as well as the choices

made in [1] regarding their speci�c implementation.

Figure 3.4: Visualization of the Bag-of-Words algorithm, taken from [23]

In [1] clothes of people are detected as described in section 4.5.2. Every detection

is represented as a rectangular part of the whole image, containing the clothes of

a person. In order to use clothes as an indicator for the identity of a person, a

similarity measure between two detections is needed. An simple approach is to

just build a histogram of all colors contained by a detection. Although this will

work for clothes with distinct colors, it omits any information about the structure

and texture on the clothes.

Instead of using the color values, small patches are extracted from all detected

clothes. These patches are approximately 7 by 7 pixels and will overlap about 3

pixel. These are the values that have been used by [1], but since no experiments

with di�erent values are shown, experimenting with other settings might improve

the performance. Each patch is transformed into one vector by concatenating the

color values and the pixels after each other. With the settings given here, each

patch is thus represented by 147 values. Those vectors represent the local features

from the BoW approach.

Before clustering the extracted features, principle component analysis is applied.

This has the advantage of removing noise and reducing the length of the features
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during clustering. For the next step, the generation of the codebook, the 15 �rst

principle components of the original vectors are used.

To all these features represented by their �rst principal components k-means

clustering is applied. The resulting clusters build the codebook for the BoW. In

[1] the Mahalanobis distance is used as the distance measure in k-means which

is de�ned as follows:

DM =
√

(x− µ)TS−1(x− µ) (3.2)

where x is a vector of values x = (x1, x2, . . . , xn)T , µ is a vector of means µ =

(µ1, µ2, . . . , µn)T and S is the covariance matrix.

Compared to the Euclidean distance, the Mahalanobis distance returns small dis-

tances for points that have a high Euclidean distance but also a high standard

deviation. As a consequence, k-means is able to restore clusters with variances.

�gure 3.5 visualizes the results of k-means with the two di�erent distance mea-

sures.

(a) k-means clustering using Eu-
clidean distance

(b) k-means clustering using Maha-
lanobis distance

Figure 3.5: K-means applied to a dataset consisting of two di�erent distributions
with di�erent deviations.

In �gure 3.6 the back-projected visual words are shown for di�erent settings.

To �nally get a descriptor for detected clothes, each patch is assigned to its nearest

cluster. The assignment is also done in PCA space, just as the clustering. For

each detection a histogram of cluster references is build, or in other words a

histogram of visual words.
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(a) 5 Visual Words with L2 distance

(b) 5 Visual Words with Mahalanobis distance

(c) 10 Visual Words with L2 distance

(d) 10 Visual Words with Mahalanobis distance

Figure 3.6: Back-projected Visual Words for di�erent settings

3.5 Spectral clustering

Spectral clustering is very di�erent to other clustering algorithms like Expectation

Maximization or k-means because the clustering is done in a subspace of the

original input data. Basically, spectral clustering does a principal component

analysis of the a�nity matrix of the dataset and than performs k-means clustering

on the �rst K principal components, where K is the number of clusters. This has

the advantage, that clusters are built based on the distance of the data points

between each other, and not based on the location in original input data space.

[24] gives an overview of di�erent approaches to and detailed information about

spectral clustering.

In spectral clustering, the dataset that is to be clustered is represented as a sim-

ilarity graph. Given a dataset with data points X1, X2, . . . , Xn and a similarity

measure s(Xi, Xj) ≥ 0, a similarity graph G = (V,E) can be constructed from a

dataset as follows:
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• Each data point X1, . . . , Xn becomes a vertex V of graph G.

• Between every two vertices Vi, Vj an weighted edge is added, with the weight

equal to the similarity of the two vertices wi,j = s(Xi, Xj).

The weight matrix W of this graph is de�ned as the matrix W = (wij)i,j=1,2,...,n,

containing the pairwise similarities. Furthermore, the degree matrix D of graph

G is the diagonal matrix containing the degree of all vertices v ∈ V . The degree
of a vertex in a weighted graph is de�ned as di =

∑n
j=1wi,j .

A graph with weight matrix W and the degree matrix D can be represented

as a single matrix, called its Laplacian. There are di�erent de�nitions of the

Laplacian, one of those being the symmetric normalized Laplacian de�ned as

Lsym = I −D−1/2WD−1/2, (3.3)

which is used in the clustering algorithm in [1].

Given k, the number of clusters to build, and the matrix Lsym, the dataset can

be clustered as follows:

• Compute the �rst k eigenvectors v1, . . . , vk of Lsym.

• Create a matrix T = <n×k that contains the eigenvectors v1, . . . , vk as

columns.

• Row normalize T so that
√∑k

j=1 t
2
i,j = 1 ∀i ∈ (1, . . . , n).

• Cluster the rows of T using k-means.



4 Approach

The goal of this project, as explained in section 1.2, is to detect any social inter-

actions that are observable in a video from egocentric perspective. The detected

interactions are to be visualized in a time based index, to o�er a visual summary

of long lasting video material.

In this chapter, �rst the requirements to the algorithm to be developed are

pointed out. Second, an overview of the di�erent stages of the approach is given.

Following the overview, the three stages detection, tracking and clustering are

explained in detail. Last, in section 4.6, several extensions to the methods on

which this work is based are presented.

4.1 Requirements

In order to create a visual index of interactions in egocentric video data (as

sketched in �gure 1.2), �rst, the program is required to detect interactions in

general. Furthermore, for every detected interaction, the following data is re-

quired:

1. Visual representation of the interaction partner

2. The frame index at which the interaction is observed for the �rst time

3. The frame index at which the interaction is observed for the last time

Given this data, it is possible to create a visual index of the people that were

interacted with.

4.2 Algorithm overview

The algorithm is divided into three parts, detection, tracking and clustering. The

input and output to and from the three parts is shown in �gure 4.1.

19
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Cluster 2

Cluster 1

Detection

Tracking

Clustering

Frames

Detection Group

Detection Group

Algorithm Detections

Figure 4.1: Algorithm Overview

The �rst part, detection, is responsible for detecting interactions in each frame

of the video. The output are so called detections, indicating if and where people

are detected in the di�erent frames. This part is explained in more detail in

section 4.3.

Second, in tracking, the algorithm uses face tracking in order to recognize con-

secutive detections of the same individual, resulting in detection groups. The

tracking phase is described in section 4.4.

Finally, in clustering the detection groups are clustered, so that each cluster

contains all detection groups that represent the same individual. Opposed to

detection groups, a cluster is expected to contain the complete set of detections

belonging to an interaction with someone. That means, the set of detections

within a cluster is suitable to extract the �rst and the last frame in which a

particular individual occurred. Hence, the required information about when an

interaction had begun and when it had ended are contained within a cluster.

Clustering is dealt with in section 4.5.

4.3 Detection

To detect faces within single frames of a video a cascade classi�er as proposed

in [17] is used. This technique is explained in more detail in section 3.1. By

requiring a certain minimum detection size it is possible to �lter people at higher

distances as they are more unlikely to be interaction partners.
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- ID
- first frame seen
- last frame seen
- all detections

Does face contain 
feature points?

Create new 
detection group

Add detection to 
detection group

detection 
group #1

detection 
group #2

TRACKING

yes no

...

Detection group

- ID
- first frame seen
- last frame seen
- detections

Detections

Figure 4.2: Build detection groups from tracking

Although [17] can detect frontal faces as well as pro�le faces, in this approach

only frontal faces are searched for. Pro�le faces cannot easily be recognized by

face recognition techniques and therefor they do not add information required to

construct a person based index.

4.4 Tracking

This section explains how faces can be tracked through several frames by us-

ing optical �ow. An overview of the detection and tracking part is depicted in

�gure 4.2.

For each new detection it is �rst checked if it belongs to a person that is already

tracked by the tracking module. If a face is not tracked yet, within the rectangular

area which is returned from the face detection method, a couple of feature points

as described in section 3.2.1 are sampled and stored together with the detection.
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In the following frames, these points are tracked using optical �ow, also described

in section 3.2.1.

The feature points will move together with the face, as they are translated ac-

cording to the optical �ow between the frames. Due to changes in light, as well

as rotation or partial coverage of the head, some points can be lost during track-

ing. Therefore, for each detection, the number of associated feature points can

decrease over time. If a faces leaves scene, all points are lost immediately.

Any new detection is considered to be tracked, if a minimum number of feature

points from another already tracked detection lie within the new detection. If the

detection belongs to a tracked interaction, the new detection will be added to the

interaction. Di�erent detections that are known to represent the same individual

from tracking, are called detection groups. As it turned out during the progress

of this work, the same approach for tracking faces has been used in [21].

4.5 Clustering

As discussed, detection and tracking of faces will produce a set of many short

interactions, so called detection groups, which usually last about several seconds.

In order to give a clear summary of such interactions, it must somehow be de-

tected which of these segments belong to the same interaction and which do not.

To accomplish this, an extended version of the clustering approach from [1] is

used.

The clustering framework proposed by Song was meant to sort a set of photos

according to the people that are shown on them. Given a photo album containing

100 photos of �ve di�erent people, the algorithm can successfully detect the indi-

viduals on the photos and is able to cluster most detections into bins containing

the same person. The goal of [1] was to help people to order their photo albums

and �nd pictures of the same person quickly.

In order to recognize whether two persons are the same individual or not the

algorithm uses both face recognition and clothes recognition. Both techniques

provide a distinct measure of similarity between two detections and are combined

to single scalar value before spectra clustering is applied.

The problem of clustering photos showing the same person is quite similar to the

problem that needs to be solved in order to provide a timeline representing social
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Figure 4.3: Clustering Pipeline

interactions: Some algorithm is required that can decide whether two detections

represent the same person or not. That is why in this work [1] is adapted and

extended to proposed approach to video indexing.

In the following, �rst an overview of the clustering algorithm from [1] is given.

Afterwards, in section 4.5.2 it is explained how clothes are detected. Next, the

feature extraction and comparison with respect to clothes recognition is discussed

in section 4.5.3. section 4.5.4 deals with the combination of the distinct similarity

measures from clothes and face recognition. Last, in section 4.5.5, the clustering

procedure is shown.

4.5.1 Overview

In �gure 4.3 an overview of the clustering framework from [1] is shown. The �gure

shows the original approach, which was designed to process sets of photos. In

order to adapt the framework for this approach, in this implementation the face

detection step has been replaced with the detection and tracking phase described

in section 4.4.
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4.5.2 Clothes detection

For every detected face, the clothes descriptors are calculated based on the area

below the detected face. While faces usually have not much overlap, or else

will not be detected by the face detection module, clothes can often be covered

partly by people standing near to each other. By simply drawing a rectangle as

just described, such overlap will result in clothes of other people being wrongly

included in the descriptor of the detected person. To prevent this issue, [1]

applies a simple method to segment the clothes after the initial detection: For

all detected clothes on the same image, histograms of the colors are built. The

rectangles are shifted and scaled within a prede�ned range in order to maximize

the di�erence of the histograms.

4.5.3 Clothes recognition and skin detection

All detected clothes are described by a histogram of visual words, as described

in section 3.4. The steps Extract clothes patches, Learn visual words for clothes

and Build histograms of visual words for clothes from �gure 4.3 deal with the

construction of such descriptors.

While the general process is based on the typical bag of visual words approach

one extension has been made in [1]: While clothes can help to distinguish between

di�erent people, often parts of skin will overlap with the parts of an image where

clothes are detected. For example, when someone wears a t-shirt, her arms would

also be considered clothes. As a result, skin will be included in the codebook of

visual words and also in the histograms. Since skin color of di�erent people often

is similar, this decreases the ability of the resulting descriptors to distinguish be-

tween di�erent clothes. To prevent skin from corrupting the descriptors, patches

that are assumed to be skin are neither used for the generation of the codebook

nor be included during generation of the histograms.

To be able to decide whether a given patch is part of someones skin or her clothes,

a skin detector is used which also is based on the bag of words approach. The

codebook for this skin detector is learned by detecting eyes with a cascaded haar

�lter classi�er as described in section 3.1 and taking patches from below the eyes.

Patches are collected from all detected persons on all images. In contrast to the

word generation for clothes where PCA was used to �lter noise, for skin patches

simply the mean of all color channels is taken. Each patch will thus result in
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three numbers, the mean value for each color channel. The codebook for skin

is than generated by applying k-means to all those average color values of the

patches, clustering them into ten clusters.

Each patch that is extracted from the clothes needs to ful�ll the following two

constraints to be considered skin: First, the variance of illumination of the given

patch must be below a certain threshold. Second, the minimum distance between

the mean of each color channel of the current patch and one of the skin words

must be below a threshold, too. The �rst condition models the fact that skin

is usually smooth and illuminated uniformly, in opposite to textiles, which often

have wrinkles. The second condition ensures that only those patches which have

a similar color than one of the learned skin words are considered to be skin.

After all descriptors are calculated, each bin of each descriptor is reweighted by

being multiplied with log( 1
wi

), with wi being the fraction of all patches that has

been assigned to the ith bin of all descriptors. This adjustment emphasizes rare

patches as they contain more information compared to patches that are frequent

in all detections.

4.5.4 Similarity measure

Each detected individual is described by two descriptors: A histogram of visual

words representing the clothes and a vector normalized pixel values extracted

from the detected feature points as explained in section 3.3.

The similarities between the faces and the clothes of two detections can be mea-

sured separately, but for the clustering step a single value describing the similarity

between two individuals is required. In [1], linear logistic regression is used to

combine the two descriptors.

Linear regression is used to predict a single target variable by linearly combining

one ore more input parameters:

y(x,w) = w0 + w1x1 + w2x2 + · · ·+ wnxn (4.1)

Linear regression can model continuous target variables well, but is not suitable

to express binary variables: The target variable represents the similarity between

two individuals and should be between one (same person) and zero (di�erent

persons). When using equation (4.1) it is not guaranteed that its outcome will
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be between zero and one. Any out-liner in the data can result in higher or lower

values.

To force the model to produce results between zero and one the logistic sigmoid

function, shown in �gure 4.4, is used:

y(x,w) =
1

1 + exp(w0 + w1x1 + w2x2 + · · ·+ wnxn)
(4.2)

The probability that two detections are the same person is given by

P (Y = 1|xf , xc) =
1

1 + exp(−wfxf − wcxc − w0)
, (4.3)

where xf is the similarity between the faces and xc is the similarity between

clothes. The weights wf and wc control how much in�uence each of the similar-

ities has on the combined outcome, and w0 provides an o�set. Given a labeled

training set, the values for w0, wc and wf can be learned by applying iterative

reweighted least squares. In this work the values has been chosen experimentally

due to the lack of an appropriate data set.

4.5.5 Spectral clustering

After having explained the detection and comparison of individuals, the last step

required to identify photos or frames of videos that show the same individual is

to cluster the resulting detections by similarity. Each resulting cluster represents

one individual and all detections contained by one cluster should show the same
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person. For this step spectral clustering is used, which is explained in section 3.5.

As shown, spectral clustering requires an a�nity matrix, containing all pairwise

similarities between all detections. To construct the a�nity matrix, the similarity

measure given in section 4.5.4 is used. Based on this a�nity matrix, spectral

clustering will return a set of K clusters, where K is required to be given.

4.6 Video speci�c extensions

From the possibility of tracking people through several frames, prior knowledge

about the individual's identity is gained. In [1], no possibility to integrate such

prior knowledge is given. In this work, two di�erent approaches are made to

integrate the knowledge that is gained from tracking.

One approach is to build detection group speci�c dictionaries of visual words.

This allows the dictionaries to include visual words that are speci�c to a single

individual. When using a global dictionary, the visual words represent the most

frequent and most distinct features that are found regarding the complete dataset.

Individuals with a similar appearance are likely to be represented by the same

visual words as in k-means the extracted patches will have a small distance to

each other and thus are likely to be assigned to the same cluster center. Using

detection group speci�c dictionaries instead would lead to both individuals being

represented by their own local visual words. Furthermore, this approach allows

to calculate dictionaries on-line, not requiring the recording to be �nished before

starting with the calculation of the descriptors. The resulting descriptors can

of course not be compared to each other without including the visual words

into the measure of distance. In section 4.6.1, di�erent approaches to including

the dictionaries into the distance measure between the descriptors of clothes are

shown.

Another approach to integrate the additional information from tracking is to

build a statistical model of the appearance per detection group. By including

information about the deviation of the appearance within one detection group,

the descriptors should be able to better scope with occluding objects and changes

in illumination. Furthermore, when representing the detection groups by a single

descriptors, the number of descriptors to cluster can be reduced signi�cantly, com-

pared to having a descriptor per detection. The approach to modeling descriptors

that include information from multiple detections is described in section 4.6.2.
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4.6.1 Multiple dictionary bag of words

When using separate dictionaries per detection group, it is not possible to com-

pare descriptors to each other directly when they refer to di�erent dictionaries.

In the following, three di�erent approaches are presented that can solve this issue

by integrating the dictionaries into the distance measure between two descrip-

tors. All of the following approaches do not support the global reweighting to

emphasize rare patches that is described in section 4.5.3, because the bins do not

reference a global dictionary anymore.

Separate dictionaries with earth mover's distance

The �rst possibility is to change the distance measure used to compare the de-

scriptors. Instead of using the dot product between two descriptors, the Earth

Mover's Distance (EMD) can be used, which allows to take into account the dis-

tance between the dictionaries as well. The EMD can be though of the minimum

amount of work that is required to �ll holes in the ground with earth from piles

in some distance to the holes.

In [25], the EMD between two signatures P = {(p1, wp1), . . . , (pn, wpn)} and

Q = {(q1, wq1), . . . , (qn, wqn)} is de�ned as

EMD(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

, (4.4)

where D = [dij ] is the ground distance matrix, with dij holding the distance

between pi and qj , and F = [fij ] being the �ow matrix, holding the �ows between

weights wpi and wqj that minimize the overall cost

WORK(P,Q,F) =

m∑
i=1

n∑
j=1

fijdij , (4.5)
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subject to

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑

j=1

fij ≤ wpi 1 ≤ i ≤ m

m∑
i=1

fij ≤ wqj 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

wpi,
n∑

j=1

wqj)

(4.6)

Intuitively, applying the EMD to compare descriptors of visual words can be

explained as follows: When comparing two descriptors, the visual words of the

dictionaries they refer to represent the location of the piles and holes that are to

be �lled. The visual words of the �rst descriptor represent the location of the

piles and the visual words of the second descriptor represent the location of the

holes that are to be �lled. The distance between two visual words is the di�erence

in their appearance. As the descriptors being histograms of visual words, their

entries represent the size of the holes and the weight of the piles. Consequently,

high values in the histograms can only be moved to the other descriptor at low

cost when the visual words they represent have a similar appearance and similar

size.

Formally speaking, the �rst part of the signature, p1, . . . , pn, are the back-

projected visual words. The visual words are back-projected because each detec-

tion group uses an individual PCA transformation vector. As a result, the prin-

cipal components cannot be compared with each other in PCA space, because

the principal components of each group have a completely di�erent meaning in

original space. The second part of the signature, the weights w1, . . . , wn, are the

histograms of visual words. The ground distance matrix F is calculated by taking

the L1-distance between every two visual word vectors pi and qj . By normalizing

the histograms to sum up to 1, all descriptors have the same amount of weight

and the EMD between them becomes a metric.

Multiple dictionaries bag of words uni�ed dictionaries

Another possibility to deal with local dictionaries of visual words is to combine

the dictionaries of di�erent descriptors and recalculate the descriptors based on
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the combined dictionary. The resulting descriptors can be compared with each

other since they refer to the same combined dictionary. In [26], two di�erent

approaches of merging dictionaries are introduced. One possibility is to merge

di�erent dictionaries into one dictionary and recalculate the histograms based on

the new dictionary, called multiple dictionaries bag of visual words with uni�ed

dictionaries (MDBoWUD).

For example, given two detection groups A and B, when comparing descriptors

from detection group A to descriptors from detection group B the steps are as

follows: A new dictionary AB is built including all visual words from dictionary of

detection group A, as well as all visual words of detection group B. All descriptors

that are to be compared from detection groups A and B are rebuilt based on the

combined dictionary AB. The descriptors are built, as described in section 3.4,

by assigning each extracted patch to the closest visual word from dictionary AB.

The resulting histograms refer thus to the same dictionary and can be compared

without regarding the underlying visual words. This approach, together with

MDBoW with separate dictionaries, is visualized in �gure 4.5.

Compared to the approach from section 4.6.1 where the EMD is used to measure

the distance between the visual words, this has the advantage of not requiring to

compare the visual words to each other. Hence, this method is expected to be

more exact and better be able to distinguish di�erent individuals. A disadvantage

is an decrease of performance, as for every possible combination of detection

groups, all descriptors have to be recalculated.

Multiple dictionaries bag of words separate dictionaries

Another approach to multiple dictionaries from [26] is multiple dictionaries bag

of visual words with separate dictionaries (MDBoWSD). Instead of merging two

dictionaries, for each detection a second descriptor is built, based on the other

descriptor's dictionary. The detection is then described by a new concatenated

descriptor, containing the two individual histograms. The resulting descriptors

reference both dictionaries and thus are comparable. This approach is also visu-

alized in �gure 4.5.

The main di�erence to the approach of merging dictionaries is that now each

patch is represented by two bins, referring two the di�erent dictionaries. By

having to calculate one half of the descriptor only, the performance of this method

is better compared to merged dictionaries.
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Dictionary BDictionary A

Dictionary A
Detection 01

Detection ...

Detection 10

extract features

Detection Group A

WA1 ... WA5

Dictionary B
Detection 11

Detection ...

Detection 20

extract features

Detection Group B

WB1 ... WB5

Dictionary A

WA1 ... WA5

Dictionary B

WB1 ... WB5

Dictionary AB

WAB1 ... WAB5 WAB6 ... WAB10

WA1 ... WA5 WB1 ... WB5

Detection 01

Detection 11

HA1 ... HA5 HB1 ... HB5

HA1 ... HA5 HB1 ... HB5

HAB1 ... HAB5 HAB6 ... HAB10

HAB1 ... HAB5 HAB6 ... HAB10

MDBoW Separate Dictionaries MDBoW Unified Dictionaries

Figure 4.5: Multiple dictionaries bag of words approaches
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4.6.2 Descriptors from multiple detections

In the original approach by [1], the appearance of each detection is modeled

as a histogram of visual word frequencies. To build a descriptor that contains

information of more than one of such descriptors, this work evaluates a way of

modeling multiple histograms as a single descriptor.

The most simple and straight forward approach is to build a vector containing

the average values of each bin. The advantage of this approach is that the e�ect

of outlining values is reduced signi�cantly. On the other hand, bins with a high

variance within one detection group will not be represented appropriately, as the

information about the variance is lost.

A better approach is to use two vectors containing not only the average, but

also including the standard deviation for each histogram bin. In opposite to

histograms or a vector of average bin values, the values of each bin cannot be

compared by simply subtracting the values. Instead, each bin is interpreted as

a Gaussian distribution and the distance between two bins is the probability of

them describing each other. For this, the normalized L2 distance between to

Gaussian distributions is used, which is described in [27] as

dnL2(p1, p2) =

∫
(p′1(x)− p′2(x))2dx, (4.7)

where

p′i = pi(x)/

√∫
pi(x)2dx (4.8)

In the implementation,
∫
pi(x)2dx is approximated by sampling 1000 linear data

points between 0 and 1.



5 Evaluation

In this chapter, the di�erent approaches proposed in chapter 4 are evaluated ex-

perimentally. In the following, the data that is used for the evaluation is described

in section 5.2. Next, in section 5.3, the setup of the experiments is explained. In

section 5.4, the results of the experiments are given, and the discussion can be

found in section 5.5.

5.1 Datasets

For the experimental evaluation, two di�erent datasets are used. The �rst dataset

consists of a set of photos and is used to compare the results of the implementation

to the results from [1]. The second dataset consists of egocentric video data and

is used to evaluate the performance of the proposed framework with respect to

the project goals. In the following, both datasets are described in more detail.

5.1.1 Dataset 1

Dataset 1 is selected to be comparable to the data that has been used in the

evaluation of [1]. With this dataset, the results of the implementation of the

parts detection and clustering are compared to the results of [1].

In [1], a set of photos of 3-10 people has been used, annotated with the date on

which the picture was taken. When the pictures were taken on the same day,

clothes recognition was used in [1]. To imitate the characteristics of the data,

dataset 1 is assembled from di�erent press photos taken during the coronation

of the dutch king Willem Alexander on April 30th, 2013: The photos show three

di�erent individuals (Willem Alexander, his wife and his mother) with a promi-

nent visual distinction. To prevent other individuals than the three mentioned

from being included in clustering, all other faces were blurred and hence not

detected by face detection. Clothes recognition can be used for all photos from

dataset 1 since they were taken on the same date and the individual's appearance

33
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does not change. The dataset contains 15 photos showing three di�erent indi-

viduals, as listed in table 5.1. From such a small set with clearly distinguishable

appearances, the algorithm is expected to cluster the detections with very high

accuracy.

Individual #1 #2 #3

Detections 12 10 4

Table 5.1: Characteristics of dataset 1.

5.1.2 Dataset 2

For the purpose of evaluating the clustering performance of the proposed frame-

work with respect to video material, a new video dataset has been collected.

First, a set of 6 interactions with cashiers of di�erent shops were recorded. The

interactions were than concatenated sequentially to create a test video. The video

material was recorded with the camera of a mobile phone, mounted in a chest

pocket, as in the beginning of the project no head mountable camera was avail-

able. The recordings show characteristics very similar to videos recorded with a

head mounted camera.

The resulting clips are summarized in �gure 5.1. From the video, detections

and detection groups were extracted as is described in section 4.3. The number

of detections and detection groups resulting from applying face detection and

tracking the detected faces with optical �ow are shown in table 5.2.

Individual #1 #2 #3 #4 #5 #6

Detections 59 201 52 44 81 66

Detection Groups 3 3 3 2 3 5

Table 5.2: Characteristics of dataset 2.

5.2 Evaluation measures

To evaluate the proposed framework, two methods are used to measure its per-

formance. First, receiver operating characteristics (ROC) is used to measure the

quality of the clusters resulting from applying the proposed approached. sec-

tion 5.2.1 describes how the ROC are extracted from the results as well as how

it can be interpreted with respect to the project's goal. Second, k-nearest neigh-
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Individual #1, 00:00:09 - 00:00:30

Individual #2, 00:00:34 - 00:01:05

Individual #3, 00:01:26 - 00:02:00

Individual #4, 00:02:37 - 00:02:49

Individual #5, 00:03:00 - 00:03:34

Individual #6, 00:03:43 - 00:04:33

Figure 5.1: Looxcie 2 dataset part 2
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bor analysis (k-NN) is used to compare the ability of the di�erent descriptors to

distinct between the individuals of dataset 2. section 5.2.2 explains how k-NN is

applied in more detail.

5.2.1 Receiver operating characteristics

The receiver operating characteristics curve (ROC curve) visualizes the trade-o�

between the true positive rate (TPR) and the false positive rate (FPR). In this

project, ROC curves are used in order to evaluate the quality and usability of

the clustering part of the proposed framework.

With respect to the index that this projects aims to create, this trade-o� would

re�ect as follows: The higher the TPR is, the more overview the index can o�er.

That is because the higher the TPR, the more detections are assigned to the same

correct interaction. This is important because the �rst frame and the last frame

found in one cluster are used to determine when an interaction has started and

when it ends. Vice versa, given a low TPR, many detections that belong to the

same interaction will be classi�ed as di�erent interactions, leading to a cluttered

index.

On the other hand, the FPR represents the fraction of detections that is incor-

rectly assigned to a interaction they do not belong to. A high FPR can results

in a wrong indication of when an interaction starts or ends, or interactions not

being displayed by the index at all, for example when all detections of at least

two individuals are contained by a single cluster.

In clustering, the TPR and the FPR can be measured by counting the number

of correct and incorrect decisions made during cluster assignment. To calculate

the fractions, the following terms are used:

• True Positives (TP) is the number of correct decisions to put two items

into the same cluster.

• False Positives (FP) is the number of incorrect decisions to put two items

into the same cluster.

• True Negative (TN) is the number of correct decisions to put two items

into di�erent clusters.

• False Negative (FN) is the number of incorrect decisions to put two items

into di�erent clusters.
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The TPR and the FPR are de�ned as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(5.1)

As proposed in [1], the Rand index ([28]) is used to calculate the TPR and FPR:

Given a set of N detections,

"[...] any clustering result can be seen as a collection of N(N −
1)/2 pairwise decision. A false alarm happens when a pair actually

from di�erent individuals, but the algorithm claims they are the same

individual. A true positive (detection) is when a pair actually from

the same individual and the algorithm also claims so" ([1]).

To evaluate the clustering algorithm, the resulting TPR and FPR values are given

for an increasing number of clusters. Although usually the ROC is visualized in

a graph, in most experiments the values for TPR and FPR are given tabularly,

since many values are closed to each other and are di�cult to distinguish in a

visual representation.

An optimal algorithm will lead to TPR = 1 and FPR = 0, when given the correct

number of classes. Increasing the number of clusters above the number of classes

from ground truth would decrease the TPR, while the FPR would remain 0.

The deviation of the experimental results from these values shows how well the

implementation performs compared to an optimal solution.

5.2.2 K-nearest neighbor analysis

To analyze the quality of the di�erent bag of words based visual descriptors, the

average precision of the �rst K neighbors is looked at. An appropriate descriptor

should have a small distance compared to descriptors of the same class and a

high distance to descriptors of other classes. Since all detections from the same

detection group are already known to belong to the same cluster, only those

detections are considered which are in di�erent detection groups than the original

detection, when retrieving the nearest neighbors. Given a set of detections D

and the K nearest neighbors of each detection KD, the average precision p is the
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number of correct neighbors divided by the total numbers of neighbors, given by

p =

∑
d∈D

∑
k∈KD

knn(d, k)∑
D

∑
KD

1
, where knn(d, k) =

{
1 if same person

0 otherwise

(5.2)

5.3 Experiments

Before describing the setup of each experiment beginning from section 5.3.2,

section 5.3.1 introduces several parameters which refer to the di�erent approaches

to be evaluated, as well as their default values.

5.3.1 Parameter description

The following enumeration lists all parameters that have been changed by either

one or more of the experiments:

• Included Descriptor

This parameter controls which information should be used during cluster-

ing: The possible values are faces, clothes or combined. Faces means only

face recognition as described in section 3.3 is used, clothes means only vi-

sual appearance as described in section 4.5.3 is used, and combined uses a

combination of both, as explained in section 4.5.4.

• Visual Word Clustering

This parameter controls which clustering algorithm is used to build the vi-

sual word dictionary used for clothes recognition. The parameter can either

be k-means, meaning regular k-means clustering is used, or mahalanobis,

meaning k-means clustering is used but using the Mahalanobis distance to

�nd the nearest cluster center, as explained in section 3.4.

• Number of Visual Words

This parameter controls the size of the visual words dictionary, used for

clothes recognition.

• Visual Word Dictionary

This parameter controls which kind of visual word dictionary is used for
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clothes recognition. The possible values are listed in table 5.3.

Value Description

global Build a single global dictionary of visual words. All clothes
descriptors refer to the same dictionary. This approach is
described in section 3.4.

MDBOW EMD Build a local dictionary for every detection group. Use the
EMD to compare to descriptors referencing di�erent
dictionaries. This approach is described in section 4.6.1.

MDBOW SD Build a local dictionary for every detection group. The
clothes descriptors are built by concatenating the
histograms of each dictionary. This approach is described
in section 4.6.1.

Table 5.3: Possible values for parameter Visual Word Dictionary.

The default value of each parameter is shown in table 5.4.

Parameter Original Value

Included descriptor combined
Visual Word Clustering mahalanobis
Number of Visual Words 30
Visual Word Dictionary global

Table 5.4: Parameter values used in the original approach

5.3.2 Experiment 1

This experiment is designed to compare the results of the implementation that has

been written for this project to the results of the approach from [1]. The clustering

part is evaluated by clustering dataset 1, and measuring the resulting ROC. The

experiment shall show whether the implementation works as expected, given a

simplistic dataset. The performance of each possible combination of descriptors is

measured separately, which are either descriptors for clothes, descriptors for faces,

or a combination of both. This shall show the performance of each descriptor

individually, as well as the performance of the combined descriptor.

5.3.3 Experiment 2

The second experiment measures the clustering performance of the original ap-

proach when given detections from dataset 2. The results of this experiment are
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the benchmark for the evaluation of the extensions proposed in this work. The

performance of descriptors for clothes only, faces only, as well as descriptors for

a combined distance measure are tested individually.

5.3.4 Experiment 3

As proposed in section 4.6.1, an approach to multiple dictionaries of visual words

based on the EMD is implemented, MDBOW EMD. In this experiment, the clus-

tering performance of MDBOW EMD is measured. As discussed in section 4.6.1,

reweighting the histogram bins is not applicable when local visual word dictio-

naries are used, and is thus turned o�.

5.3.5 Experiment 4

Another approach to local dictionaries is MDBOW SD, as explained in sec-

tion 4.6.1. As in experiment 3, in order to determine the performance of the

new clothes descriptors as well as the in�uence on the combined distance, the

clustering results when using clothes descriptors and the combined descriptors

both are measured. The clustering results are compared to those of the original

approach.

5.3.6 Experiment 5

While the experiments 2, 3 and 4 measure the resulting clustering performance

of di�erent descriptors for clothes, this experiment is designed to evaluate the

ability of the descriptors to retrieve other detections of the same class. Therefor,

for each detection in Dataset 2, the �rst 10 most similar detections that do not

belong to the same detection group are retrieved, the so called nearest neighbors,

as described in section 5.2.2. Opposed to the prior experiments, these results are

independent of the clustering algorithm used. A high precision rate in retrieving

nearest neighbors while measuring low detection rates in clustering could indicate

that the currently used clustering algorithm is not suitable for the given task.
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5.3.7 Experiment 6

In experiment 6, the performance of regular k-means clustering is compared to the

performance of the original approach, which is using spectral clustering. Opposed

to building a global distance matrix as in spectral clustering, in k-means the

descriptors are interpreted as multidimensional data points. The combination of

the di�erent descriptors of faces and clothes is done by just concatenating both

vectors.

5.3.8 Experiment 7

Another new approach, as described in section 4.6.2, is to build descriptors per

detection group, calculated from the data of all detections within that group.

In this experiment, the resulting clustering performance of these descriptors is

measured. Again, the individual outcomes for using solely clothes descriptors or

face descriptors, as well as the combined descriptors are given. The resulting

performance is compared to the original approach.

5.3.9 Experiment 8

While the analysis of the preceding experiments allows for a quantitative measure,

the given numbers do not let conclude if an approach will be able to create an

suitable index of a given video. In this experiment an actual timeline is produced

to demonstrate the degree of usability of the presented approach for summarizing

video material.

As one can see from the following section, the quantitative results from the exper-

iment 7, shown in section 5.4.7, suggest that the settings used in that experiment

have the lowest false alarm rate while maintaining a high precision. Consequently,

in this experiment descriptors per detection group will be used.

The number of clusters is set to 8 in this experiment. This decreases the chance

that an individual is not shown in the timeline due to an false assignment of more

than one distinct individual to a single cluster. Since only one representative

detection is shown per cluster, in such case one individual would remain unseen.

In general one can say that the higher the number of clusters, the more entries

the timeline will show, making the timeline less clear. On the other hand, an

increased number of clusters reduces the chance of false assignments of di�erent
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individuals to the same cluster.

5.4 Results

5.4.1 Experiment 1

In �gure 5.2, the results of clustering dataset 1, described in section 5.1.1, are

presented as an ROC curve. For the correct number of clusters, C = 3, the

precision is 1 and no false assignments appear.
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Figure 5.2: ROC curve comparing clothes, faces and combined descriptors. The
ROC curve for the number of clusters being 1, 2, 3 and 4, whereas 3 is the correct
number of clusters. The point in the top right represents the results for a single
cluster. From right to left the number of clusters increases.

5.4.2 Experiment 2

The results of clustering dataset 2 with the original approach are shown in ta-

ble 5.5.

For each descriptor type, the resulting cluster assignment is shown. The resulting

assignment for face descriptors only is shown in �gure 5.3, for clothes descriptors
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Approach
C=2 C=4 C=6 C=12 C=18

P F P F P F P F P F

Orig Cloth. 0.99 0.72 0.99 0.43 0.98 0.43 0.97 0.42 0.93 0.11

Orig Faces 0.98 0.49 0.94 0.08 0.63 0.05 0.39 0.00 0.27 0.00

Orig Comb. 1.00 0.73 0.99 0.28 0.98 0.28 0.98 0.29 0.97 0.29

Table 5.5: Experiment 2: The resulting precision (P) and false alarm rate (F) of
the original approach. The correct number of clusters is 6.

only in �gure 5.4 as well as for combined distances in �gure 5.5.

From the cluster assignment for face descriptors only, as shown in �gure 5.3,

can be seen that the individuals 3, 4, 5 and 6 are correctly assigned to separate

clusters, with nearly all detections of those individuals being in the correct cluster.

Wrong assignments are found for individuals 1 and 2, as both individuals are split

into at least two clusters, whereas at least one third of the detections wrongly

being assigned to a separate clusters.

In comparison, when using clothes descriptors only as shown in �gure 5.4 or

integrating both distances as shown in �gure 5.5, the algorithm wrongly assigns

most detections of individuals 2, 3, 4 and 6 to a single cluster. Nonetheless, for

individuals 1 and 5, most detections are assigned to the correct clusters 2 and 3.

When using the combined distance measure, also individual 4 is assigned correctly

to a separate cluster. As a result, the precision for clothes descriptors only as

well as for a combined descriptors is better, since the detections of individuals 1

and 2 are not divided into several clusters. On the other hand, more detections

of di�erent individuals are assigned to a single cluster, leading to an increase of

false alarms compared to using face descriptors only.

Although it is di�cult to see from the �gures, several single detections of indi-

viduals 4 and 5 are assigned to incorrect clusters as well. In �gure 5.6, detections

of individual 4 from di�erent clusters are shown, in order to visualize the appear-

ance of those detections that are assigned correctly and those detections that are

assigned incorrectly. For individual 5 samples are shown in �gure 5.7.

5.4.3 Experiment 3

The results of clustering dataset 2 using the MDBOW EMD approach are com-

pared to the results of the original approach in table 5.6. For the correct number

of clusters C = 6, the MDBOW EMD approach has a 21% lower FPR than the



44 CHAPTER 5. EVALUATION

1 2 3 4 5 6
0

20

40

60

80

100

120

140

cluster

n
u
m
b
er

in
d
iv
id
u
al
s

Individual 1
Individual 2
Individual 3
Individual 4
Individual 5
Individual 6

Figure 5.3: Experiment 2: The resulting assignment of individuals to clusters
when using face descriptors only, applied to dataset 2.
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Figure 5.4: Experiment 2: The resulting assignment of individuals to clusters
when using clothes descriptors only, applied to dataset 2.
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Figure 5.5: Experiment 2: The resulting assignment of individuals to clusters
when using a combined distance measure, applied to dataset 2.
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Figure 5.6: Experiment 2: Outliers of individual 4 from clustering based on
clothes.
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Figure 5.7: Experiment 2: Outliers of individual 5 from clustering based on
clothes.

Approach
C=2 C=4 C=6 C=12 C=18

P F P F P F P F P F

EMD Cloth. 0.99 0.48 0.95 0.23 0.94 0.22 0.98 0.47 0.92 0.22

EMD Comb. 0.99 0.47 0.94 0.22 0.93 0.22 0.98 0.47 0.96 0.46

Orig Cloth. 0.99 0.72 0.99 0.43 0.98 0.43 0.97 0.42 0.93 0.11

Orig Faces 0.98 0.49 0.94 0.08 0.63 0.05 0.39 0.00 0.27 0.00

Orig Comb. 1.00 0.73 0.99 0.28 0.98 0.28 0.98 0.29 0.97 0.29

Table 5.6: Experiment 3: The resulting precision (P) and false alarm rate (F) of
the MDBOW EMD approach, compared to the original approach. The correct
number of clusters is C = 6.

original approach, while the TPR only decreases about 4%. When the detections

are clustered into C = 12 clusters, the FPR of the same approach is 62% higher,

which show the importance of having the correct number of clusters.

The resulting cluster assignment is shown in �gure 5.8 and �gure 5.9. In opposite

to the cluster assignment of the original approach, the MDBOW EMD approach

fails to create clusters with only one individual. Instead, the majority of the

detections of individuals 1 and 5 is assigned to clusters 2, while individuals 3 and

6 are assigned to cluster 3. Although clusters 2 and 3 contain more detections

from di�erent distinct individuals when compared to the results from experiment

2, the decreased maximum number of distinct individuals in a single cluster lets

the false alarm rate decrease.
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Figure 5.8: Experiment 3: The resulting assignment of individuals to clusters
when using clothes descriptors only, applied to dataset 2.
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Figure 5.9: Experiment 3: The resulting assignment of individuals to clusters
when using a combined distance measure, applied to dataset 2.
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Figure 5.10: Experiment 3: Samples from individual 3 from clustering based on
clothes.

To investigate possible causes for the incorrect assignment of individual 3 to the

two di�erent clusters 1 and 3, samples of the individual from both clusters are

shown in �gure 5.10. Samples from individual 4 and 6, also taken from clusters

1 and 3, are shown in �gure 5.11 and �gure 5.12.

5.4.4 Experiment 4

The results of clustering dataset 2 using theMDBOW SD approach are compared

to the results of the original approach in table 5.7. When using clothes descriptors

only, the precision as well as the false alarm rate of the original approach and

the MDBOW SD achieve approximately the same values when the number of

clusters matches the number of individuals. On the contrary, the resulting false

alarm rate of the combined measure for the MDBOW SD approach is noticeably

higher than the value of the original approach, while the precision is still about

the same in both cases.

In �gure 5.13, the assignment of the samples to the di�erent clusters is shown

for the MDBOW SD approach using clothes descriptors only. The MDBOW SD

approach e�ectively assigns the samples of the 6 individuals to only two clusters

in the clothes descriptors experiment: While the original approach is able to

distinct individuals 1 and 5, the MDBOW SD method assigns both individuals

to the same cluster. The outliers of individual 4 that are wrongly assigned to

cluster 2, as well as the outliers of individual 5 that are wrongly assigned to
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Figure 5.11: Experiment 3: Samples from individual 4 from clustering based on
clothes.
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Figure 5.12: Experiment 3: Samples from individual 6 from clustering based on
clothes.
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Approach
C=2 C=4 C=6 C=12 C=18

P F P F P F P F P F

SD Clothes 0.97 0.47 0.99 0.47 0.99 0.47 0.97 0.47 0.95 0.46

SD Comb. 0.97 0.46 0.97 0.45 0.96 0.45 0.96 0.44 0.95 0.44

Orig Cloth. 0.99 0.72 0.99 0.43 0.98 0.43 0.97 0.42 0.93 0.11

Orig Faces 0.98 0.49 0.94 0.08 0.63 0.05 0.39 0.00 0.27 0.00

Orig Comb. 1.00 0.73 0.99 0.28 0.98 0.28 0.98 0.29 0.97 0.29

Table 5.7: Experiment 4: The resulting precision (P) and false alarm rate (F)
of the MDBOW SD approach, compared to the original approach. The correct
number of clusters is C = 6.

cluster 1 are the same samples as in experiment 2 when using the combined

distance measure. For the visualization of those samples please refer to �gure 5.6

for individual 4 and �gure 5.7 for individual 5.

The resulting assignment from the MDBOW SD approach with a combined dis-

tance measure is visualized in �gure 5.14. In contrast to the assignment resulting

from the clothes descriptors only approach, the samples of the fourth individ-

ual are wrongly assigned to multiple clusters, namely cluster 1 and 2. This

phenomenon also occurred when applying the MDBOW EMD approach. For a

visualization of the samples of individual 4 from clusters 1 and 2 please refer to

�gure 5.11.

5.4.5 Experiment 5

The average precision of retrieving the �rst 10 nearest neighbors for each detection

is shown in �gure 5.15. The precision of the original approach for K = 1 is 0.82

and decreases approximately linearly to 0.68 for K = 10. The MDBOW EMD

approach and the MDBOW SD approach have an overall better precision, which

is about the same for both approaches. For K = 1 the precision for the two new

approaches is about 0.95 and decreases to 0.8.

5.4.6 Experiment 6

In table 5.8, the resulting precision and false alarm rate are shown for the ap-

proach of using k-means instead of spectral clustering, compared to the values

of the original approach. When using k-means, the resulting false alarm rate is

signi�cantly lower. At the correct number of clusters C = 6, the false alarm rate



5.4. RESULTS 51

1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

cluster

n
u
m
b
er

in
d
iv
id
u
al
s

Individual 1
Individual 2
Individual 3
Individual 4
Individual 5
Individual 6

Figure 5.13: Experiment 4: The resulting assignment of individuals to clusters
when using clothes descriptors only, applied to dataset 2.
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Figure 5.14: Experiment 4: The resulting assignment of individuals to clusters
when using a combined distance measure, applied to dataset 2.
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Figure 5.15: Experiment 5: The average precision of di�erent clothes descriptors
when retrieving the K nearest neighbors for each detection in dataset 2.

Approach
C=2 C=4 C=6 C=12 C=18

P F P F P F P F P F

k-means 1.00 0.40 0.92 0.11 0.90 0.04 0.38 0.02 0.30 0.01

Orig. 0.99 0.72 0.99 0.43 0.98 0.43 0.96 0.11 0.97 0.43

Table 5.8: Experiment 6: The resulting precision (P) and false alarm rate (F) of
the approach of clustering the descriptors with k-means, compared to the original
approach. The correct number of clusters is C = 6.

for k-means is 0.04, compared to 0.43 when using spectral clustering. The preci-

sion on the other hand is better when using spectral clustering. When building

12 clusters, k-means results in a precision of no more than 0.38, while spectral

clustering has a precision of 0.96.

5.4.7 Experiment 7

The results of clustering dataset 2 by using the approach of detection group based

descriptors are compared to the results of the original approach in table 5.9. For

the correct number of clusters C = 6, clustering detection groups results in a TPR

decreased by 1% and a FPR decreased by 89%. When increasing the number of
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Figure 5.16: Experiment 6: The resulting assignment of individuals to clusters
when using clothes descriptors only, applied to dataset 2.
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Figure 5.17: Experiment 6: Samples from cluster 1 from clustering based on
clothes.
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Figure 5.18: Experiment 6: Samples from cluster 3 from clustering based on
clothes.
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Figure 5.19: Experiment 6: Samples from cluster 3 from clustering based on
clothes.
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Approach
C=2 C=4 C=6 C=8 C=10

P F P F P F P F P F

DG Clothes 1.00 0.37 0.95 0.11 0.95 0.12 0.93 0.09 0.93 0.04

DG Faces 0.83 0.91 0.81 0.88 0.54 0.52 0.52 0.41 0.51 0.19

DG Comb. 1.00 0.37 1.00 0.09 0.97 0.03 0.96 0.02 0.95 0.00

Orig Cloth. 0.99 0.72 0.99 0.43 0.98 0.43 0.96 0.11 0.97 0.43

Orig Faces 0.98 0.49 0.94 0.08 0.63 0.05 0.53 0.01 0.42 0.01

Orig Comb. 1.00 0.73 0.99 0.28 0.98 0.28 0.98 0.29 0.97 0.28

Table 5.9: Experiment 7: The resulting precision (P) and false alarm rate (F)
of the approach of detection group based descriptors, compared to the original
approach. The correct number of clusters is C = 6.

cluster to 10, which is 1.6 times the correct number of clusters, the FPR becomes

zero and the TPR is 0.95, meaning that there are no clusters containing more

than a single distinct individual.

As can be seen from the assignment diagram in �gure 5.20, the reason of the

decreased false alarm rate is that there are no more outliers in the clusters,

with outliers meaning small numbers of detections being assigned to the wrong

clusters. Furthermore, the detections of the individual with the highest number

of detections, individual 2, are assigned to a separate cluster, reducing the total

number of detections in the least homogeneous cluster, being cluster 2.

In contrary, the false alarm rate is considerably higher when using the detection

groups based approach with face descriptors only. From the assignment diagram

in �gure 5.20 can be seen that the algorithm produces wrongly assigns samples

from all six individuals to a single cluster, in this case cluster 1.

Nonetheless, when integrating the faces descriptors and clothes descriptors to a

combined descriptor, the resulting cluster assignment has a lower false alarm rate

than for clothes descriptors only. As can be observed in �gure 5.22, individuals

1, 2 and 5 are perfectly assigned to distinct clusters. For individual 6, also most

detections are within a distinct cluster, except about 15% of its samples being

assigned to cluster 2, together with all detections from individuals 3.

5.4.8 Experiment 8

The ground truth timeline for dataset 2 is depicted in �gure 5.23. Each horizontal

rectangle represents the presence of the depicted individual within the video.
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Figure 5.20: Experiment 7: The resulting assignment of individuals to clusters
when using face descriptors only, applied to dataset 2.
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Figure 5.21: Experiment 7: The resulting assignment of individuals to clusters
when using clothes descriptors only, applied to dataset 2.
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Figure 5.22: Experiment 7: The resulting assignment of individuals to clusters
when using a combined distance measure, applied to dataset 2.

In �gure 5.24, the timeline is shown that is constructed by the framework. In-

dividuals 1,2 and 5 are detected at the correct position and with approximately

the correct number of frames. Individual 6 is detected at the correct position,

although clearly several occurrences are not recognized, letting the timeline en-

try begin later and end earlier than the entry in the timeline representing ground

truth. For individuals 3 and 4, two separate timeline entries are shown. While

individual 4 is represented correctly, the 3rd individual's last frame is wrongly

recognized at the end of the video.

5.5 Discussion

5.5.1 Experiment 1

The results of the �rst experiment show that the implementation is working

according to the expectations: The combined approach results in a perfect clus-

tering of dataset 1. The better results of using clothes descriptors only, compared

to using face descriptors only can be explained by the characteristics of dataset 1:

The individuals were clothes with a distinctive appearance. That a combination
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Figure 5.23: Experiment 8: The timeline produced for ground truth clustering
results of dataset 2.

of both descriptors results in more homogeneous clusters con�rms the results of

[1].

5.5.2 Experiment 2

For the comparison of the generated results with former work, the results of

the experiments with the dataset family 1 from [1] has been used, because the

number of seven individuals matches the number of individuals in experiment

two the best. In comparison to the results in [1], the detection rate as well as the

false alarm rate achieved in the second experiment are about the same when using

face descriptors only. When using the combined distance measure, experiment

two results in a better detection rate (0.98 in experiment two and 0.65 in [1]) but

also more false positive assignments (0.28 in experiment two and 0.05 in [1]).

A possible cause for the good detection rate lies in the nature of the dataset: The

detections are taken from sequential frames of a video meaning that the visual

changes between consecutive detections are small. Since spectral clustering is

based on the connectivity between the data points, consecutive frames are likely

to be assigned to the same cluster.

The high false alarm rate on the other hand is presumably caused by objects that

temporarily occlude the individuals' appearance. For example, often the objects

to be bought are handed to the recorded individual, occluding a major part of

the individual's appearance. The same problem occurs during the payment of
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Figure 5.24: Experiment 8: The timeline produced for ground truth clustering
results of dataset 2.

the groceries, where frequently the payment terminal overlaps the area detected

as clothes. Consequently, these objects are wrongly interpreted as an individual's

appearance. As occlusions emerge over multiple frames, the change of appearance

per frame is small and such changes are likely to be included in the same cluster

as other neighboring frames. In such cases the cluster is not only likely to include

detections with a high a�nity to the individual's appearance, but also detections

with a small distance to the occluding object's appearance. In other words,

occlusions can increase the connectivity between detections of di�erent clusters,

leading to an increased false alarm rate.
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5.5.3 Experiment 3

Detections from one individual that have correctly been assigned to a distinct

cluster when using the original approach being assigned to di�erent clusters when

using the MDBOW EMD approach can have two causes. First, the visual words

are not global but calculated per detection group. Detection groups contain sig-

ni�cantly less frames and are likely to include samples of a single individual. If an

individual is occluded by an object for a signi�cant number of frames, the visual

words are likely to re�ect the object's visual appearance. As a consequence, the

visual words of two detection groups of the same individual can di�er decisively.

Hence, the descriptors of two detections from neighboring frames can possibly

refer to quite di�erent visual word dictionaries. If one dictionary fails to repre-

sent the common visual features with the other dictionary, the EMD will result

in a high distance between two otherwise similar detections. Since spectral clus-

tering depends on the linkage between single frames, such di�erences can cause

the algorithm to wrongly assign the detections to di�erent clusters.

The second possible cause of individuals being assigned to wrong clusters is the

change of how the distance between two histograms is calculated. Normally, when

comparing two histograms h1 and h2, the values for each bin of the histograms

are compared separately. When using the EMD, values of one histogram can

be compared to all bins from the other histogram, taking account the distance

between the two bins. This can be of great e�ect on visually similar detections

of two distinct individuals: When the visual features of each individual are cap-

tured as distinct visual words during dictionary generation, similar features may

correctly be assigned to distinct bins. For example, h1 will hold the magnitude

of the features in bin 0, while h2 will hold the magnitude of its features in bin 1.

Considering usual histogram comparison, the distance between h1 and h2 will be

high because the values of bin 0 as well as the values of bin 1 show great di�er-

ence. Contrary the EMD will see the values as weight and the distance between

the bins as the work required to move the values between the bins. Thus, when

the distance between the bins is short, resulting in a short distance between the

two histograms.

Considering these disadvantages, it is questionable if the proposed methods still

has any advantage over using simple color histograms.
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5.5.4 Experiment 4

The MDBOW SD approach results in less false alarms than the MDBOW EMD

approach. The possible reason is that although having local dictionaries per

detection group, each histogram bin is still only compared to its corresponding

bin within the other descriptor. Thus, the loss of information occurring when

using MDBOW EMD does not occur when using MDBOW SD.

Nonetheless, another problem emerges, which can explain why the MDBOW SD

approach still results in a higher false alarm rate than the original approach: The

descriptors consist of two separate parts which are concatenated, each part based

on one of the two dictionaries according to the detection groups. Thus, each

feature is assigned to the nearest word twice, once per dictionary. Consequently,

when both detections have similar features, as well as similar visual words, both

parts of each descriptor are expected to be alike as well, as are the two result-

ing descriptors. The MDBOW UD approach is thus expected to better distinct

between two similar detections, as it assigns each feature to only one of the two

dictionaries.

5.5.5 Experiment 5

The average precision in retrieving the �rst K nearest neighbors is better when

either the MDBOW EMD approach or the MDBOW SD approach is used, com-

pared to the original approach. A possible explanation is that the MDBOW

approach results in dictionaries that are very speci�c to a detection group. They

can model the appearance of each detection group more precisely since the visual

words are generated from detections of the same individual only. Concluding,

in case of existing information about subgroups within a dataset, both proposed

approaches are attractive choices for a color based descriptor. Nonetheless, they

do bring disadvantages has been is discussed previously in section 5.5.3 and sec-

tion 5.5.4.

5.5.6 Experiment 6

Using k-means instead of spectral clustering results in a decreased false alarm

rate but also a decreased precision. While with spectral clustering often clusters

are left empty, k-means is better able to divide the detections into 6 distinct
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clusters. A possible explanation is that k-means does not regard the connectivity

between all frames as does spectral clustering. Instead, detections are assigned

to the closest cluster center. As a result, sequences which contains changes in

appearance are not recognized by k-means while spectral clustering does.

On the other hand, for the same reason k-means is less frail to the in�uence of

objects overlapping the appearance of the individual. In case of spectral cluster-

ing, because of the relatively small change in appearance per frame, occluding

objects have strong linkage to their neighboring frames. Next to the neighbor-

ing frames, the occluding object has a strong linkage to other detections with a

similar appearance. With k-means, the linkage between multiple frames is not

considered. Thus the occlusion of an individual's appearance by any object only

a�ects the frames in which that object is visible.

To conclude one can say that spectral clustering can better scope with a change

of appearance but is prone to corruption from occluding objects.

5.5.7 Experiment 7

The approach of aggregating detections to detection groups results in a signif-

icantly lower false alarm rate compared to the other approaches. With this

approach the decrease of false alarms does not lead to a decrease of precision

either.

In search for reasons of the improvement experienced in this experiment it comes

to mind that the number of data is signi�cantly reduced. Instead of 501 detec-

tions the algorithm has to assign only 18 detection groups to the correct clusters.

Nonetheless, if the chances of making the correct choice are unchanged, the al-

gorithm would still be expected to perform at a similar error rate. Thus, the

observed decrease in false alarms must arise from an improved availability of

making the correct choice, based on the aggregation of information from multiple

detections within a detection group.

Interestingly, the decrease of the false alarm rate within the combined approach

is not re�ected when using face descriptors only. Still, the combined approach

works better than regarding clothes descriptors alone. This demonstrates the

bene�t of a combination of di�erent kind of descriptors, as can be seen when

looking at the assignment diagram in section 5.4.7: In �gure 5.20, the assignment

diagram for face descriptors only, one can see that individual 1 and individual
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2 are wrongly assigned to three di�erent clusters, each. On the contrary, when

looking at the assignment diagram for approach using clothes descriptors only in

�gure 5.21, both individuals are correctly assigned to a single cluster each but

instead individual 6 is incorrectly assigned to three clusters. When combining

the two descriptors, shown in �gure 5.22, those three individuals nearly perfectly

clustered into three di�erent clusters, except for several detections of individual 3.

Furthermore, even individual 5 is assigned a separate cluster now. As discussed in

section 5.5.6, spectral clustering is prone to occluding objects which may lead to

inter-cluster linkages, resulting in a high false alarm rate. By combining di�erent

descriptors this e�ect is expected to be of less impact, since the occlusion might

a�ect only one of the descriptors. Also, ambiguities in one of the descriptors are

not necessarily found in the other descriptor. For example when two individuals

were similar clothes they can still have di�erent facial characteristics.

To conclude, the proposed method of combining individual descriptors into a

probability distribution is an attractive choice.

5.5.8 Experiment 8

The generated timeline shows all individuals by picture and all but one individual

are detected at the correct position and length. The index thus provides reliable

information about who is in the video and can for example be used when searching

for a video showing an speci�c individual.

Furthermore, the provided information can help to give a clue about the content

of the video by showing at which time each individual appears. Although the

latter information is not correct for one individual, the timeline still can help

people to get an approximate impression of who appears when in the video.
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6 Conclusion

6.1 Summary

The main goal of this work is to create a framework which can summarize video

data based on the individuals appearing in it. The approach taken is to use

spectral clustering while integrating face recognition and context information,

like the appearance of the individuals, as proposed in [1] regarding photographic

material. Next to the method from [1], di�erent extensions that include context

information speci�c to video material are evaluated. Last, it is demonstrated to

what extent the proposed framework is able to create a person based index of a

short video including the sequential appearance of six di�erent individuals.

6.2 Contributions

The contributions of this work are the proposed extensions to [1] that include

video speci�c context information:

First, with MDBOW EMD an approach to multiple dictionaries of visual words

by using the earth movers distance is proposed and evaluated. MDBOW EMD

allows to build dictionaries of visual words from subsets of the complete dataset

and allows descriptors referring to di�erent dictionaries to be compared without

further recomputation. The experiments show that using multiple dictionaries

with the Earth Mover's Distance results in a 21% lower false positive rate than

the original approach, while the true positive rate only decreases 4%.

Second, the MDBOW SD approach from [26] is evaluated in the context of au-

tomated video indexing. In this context the approach to multiple dictionaries by

concatenating the descriptors is less e�ective than the original approach, but the

k-NN experiment suggests that both methods perform better than the original

approach when used to query for similar detections. In other words, the methods

might render very useful in other applications.

65
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Third, a method that integrates prior knowledge by modeling multiple descrip-

tors as Gaussian distributions of bins is presented. When used in clustering,

the resulting false alarm rate is considerably decreased, leading to much more

homogeneous clusters compared to the original BOW approach from [1]. The

false positive rate is reduced by 89%, given the correct number of clusters. With

this method the proposed framework is able to automatically render a human

interaction based visual index of the dataset that has been recorded in the scope

of this work.

6.3 Limitations

The proposed framework for video indexing still has several limitations. As one

can see from section 5.4.4, when using descriptors based on detection groups, the

algorithm is not able to produce perfect clusters that represent exact one single

individual. As a result, the timeline produced by the algorithm does not yet

match the ground truth of the dataset, as has been demonstrated in section 5.4.8.

Furthermore, the dataset used for the evaluation of the framework is very limited

regarding its structure and size. During the research, no suitable dataset was

found available that ful�lled the requirements of being recorded from an egocen-

tric perspective and at the same time showing frequent interactions with other

individuals. As a consequence, the dataset for the evaluation has been recorded

within the scope of this work with the available time constraining its complexity.

The resulting experimental evaluation is thus limited with regards to real world

data as well as comparability with other work.

6.4 Future work

Referring to the discussion of experiment 4 in section 5.5.4, implementing MD-

BoW UD could help to further decrease the false alarm rate within the clusters.

Consequently, the timeline generated based on such clustering results is expected

to be more precise.

Another direction of research could be to extend the context of the information

that is included by the framework. To state one example, voice based recognition

of individuals could add valuable information. Since this work focuses on social

interactions, it can be expected that speech is a common component.
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Last, to allow the results to be compared to recent work in the �eld as well as

measure the degree to which the approach is able to deal with real life data,

it would be necessary to extend the dataset. Such an dataset should include

recordings of interactions with di�erent individuals, but also the time in between

these interactions, as one would expect from non-arti�cial video material.
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