NN

7 N w Utrecht University
N

MASTER THESIS
ICA-3644383

REAL-TIME SIMULATION AND
VISUALIZATION OF CUTTING WOUNDS

AUTHOR

ing. M.H.J. Lam

SUPERVISORS

dr. ir. J. Egges
dr. ir. A.F. van der Stappen

March 3, 2016

Abstract

Many modern computer games and medical computer simulations feature skin injuries such as cutting
wounds. These fields often approach this topic in different ways, where medical simulations commonly
have a minimal visualization, and most games rely heavily on artistic influence. As far as we know, no
methods currently exist that combine mesh cutting simulation with skin visualization techniques in order
to synthesize cutting wounds during runtime. Previous literature fails to describe a complete remeshing
scheme that can handle arbitrary cuts while maintaining the topology and parameterization of an input
surface mesh. Additionally, the appearance and synthesis of cutting wounds has not been sufficiently
addressed. In this thesis, we explore the feasibility of constructing a damage model that simulates and
visualizes natural-looking cutting wounds by generating new geometry and textures maps on the fly.
We describe a cutting simulation approach which merges a cutting line into the mesh surface that is
subsequently opened to reveal interior wound geometry generated at runtime. For visualizing the surface
injury we generate a wound texture during runtime and propose an extension to subsurface scattering to
locally discolor the skin surface around the cut. Our approach is lightweight: using a mid-range desktop
computer, cuts can be created in about 45 milliseconds on average, and a typical frame is rendered in
about 2.5 milliseconds. We think that our approach can be attractive for increasing the realism of cutting
wounds in real-time applications without having to rely on specific artistic input.

Contents

1 Introduction

2 Related work

2.1 Mesh cutting
2.2 Skin rendering e e e
2.3 Wound visualization e
2.4 Motivation and overview L L e e e e e e e

3 Mesh representation

3.1 Polygon meshes
3.1.1 Mesh elements
3.1.2 Polygon mesh representations oL oo Lo

3.2 A novel mesh representation for simulating and visualizing cutting wounds
3.2.1 Requirements L. oL e
3.2.2 Evaluation of traditional representations L.
3.23 Definitiono

3.3 Mesh construction and extraction oL
3.3.1 Meshloading
3.3.2 Generating the topological mesh 0oL
3.3.3 Extracting a renderable mesh L Lo Lo

4 Simulating cutting wounds

4.1 Cutselection e
4.1.1 Selecting surface points using ray casting L.
4.1.2 Cutting line formation

4.2 Cutting line fusion L
4.2.1 Cutting line segment configurations 0oL,
4.2.2 Two-split e e e
4.2.3 Three-split oL e

4.3 Incision carving e e e e e e e e e e
4.3.1 Opening the cutting line L
4.3.2 Generating the cutting gutter L oL oo oL

5 Visualizing cutting wounds

5.1 Reproducing the appearance of cutting wounds

5.2 Visualizing the cutting gutter Lo

5.3 Visualizing the surface woundo L L
5.3.1 Wound patch generation oL L
5.3.2 Wound patch mapping e

5.4 Local skin discoloration e

6 Implementation and performance
6.1 Scene description L e e
6.2 Texture maps e e e e e e e

6.3 User interface

6.4 Libraries used L e e e
6.5 Performance e e e e
6.5.1 Test 1: Per-stage running time oL oo Lo
6.5.2 Test 2: Frame rendering time L L Lo
6.5.3 Test 3: Subsurface scattering rendering time

Conclusion and discussion
7.1 Future work

References

Appendix A Common mesh representations

A1 Adjacency lists e e
A.2 Face-based representations e
A2 1 Faceset e e e
A.2.2 Face-vertex table e
A.2.3 Triangle lists/strips/fans L. Lo L
A.2.4 Face-based connectivity
A.3 Edge-based representations e
A3 1 Winged-edge e
A3.2 Half-edge o e
A3.3 Directed-edge e
A.4 Render-optimized representations oo
A.4.1 Tobler and Maierhofer mesh representation
A.4.2 Corner table e
Appendix B Skin rendering
B.1 Surface reflection L
B.1.1 Physically-based reflectance L o oo
B.1.2 Global illumination e
B.2 Subsurface scattering L oL
B.2.1 Subsurface reflection Lo
B.2.2 Transmittance L e

Appendix C Class diagram

73

79
79
80
80
80
81
81
81
81
82
82
83
83
84

85
85
85
87
88
88
94

97

1. Introduction

Achieving photorealism is one of the pinnacles of computer graphics, particularly in the case of rendering
human characters. One the most important aspects when rendering humans is the appearance of skin.
This has long been a challenging topic, and high-fidelity skin rendering has only become viable for
high-performance real-time applications in recent years.

Because this development is relatively new, realistic rendering of skin is not yet ubiquitous in real-time
software. In this thesis we look at how we can leverage these techniques to produce a more realistic
representation of skin injuries, in particular cutting wounds. Many surgical simulators and modern video
games depict cutting wounds in some manner, although they approach them in very different ways.

Surgical simulators attempt to simulate the interactivity of surgical tools with the geometry of the
skin tissue as closely as possible. The visual quality of skin is often sacrificed in lieu of improving the
mechanical simulation. See Figure 1.1 (left). However, we assume that in certain cases it can be valuable
to account for high-fidelity visual responses as well.

Video games on the other hand are usually focused on conveying an artistic vision. Skin injuries are thus
often reproduced artistically rather than physically simulated. See Figure 1.1 (right). Creating wounds
this way requires a great deal of artistic input which can be both time-consuming and laborious.

We have discerned various approaches to synthesizing skin injuries in video games. In the most basic
approach, an artist creates a number of skin textures with varying degrees of injury, which are swapped
out during runtime when a character takes damage. A more sophisticated model applies pregenerated
injuries (textures and possibly mesh modifications) to parts of the character model based on criteria
determined during runtime. An even more elaborate damage model makes local modifications to a

Figure 1.1: Left: cutting a liver mesh in a surgical simulator (from [WDW13]).
Right: cutting wounds in the video game Max Payne 3 (2012).

character based on precise damage information collected during runtime, where the appropriate textures
and mesh modifications are generated on the fly.

Most games visualize character injuries using either the first or second model, where artistic influence is
the deciding factor for the appearance of wounds. Only in the third model are injuries synthesized during
runtime, and consequently less artistically dependent and thus usable for a broader array of applications.

There is a surprising lack of academic work on the topic of skin injuries in video games and surgical
simulators. Any technical details of elaborate damage models in interactive software are often not
published in the public domain, making research into this topic both difficult and valuable.

In this thesis we look at the requirements and feasibility of constructing an elaborate damage model for the
specific case of cutting wounds. We present a novel solution for simulating and visualizing cutting wounds
in real-time. Our approach interacts directly with a three-dimensional polygon mesh and generates new
geometry during runtime. This is coupled with a simple but effective texture synthesizer to create natural
looking wounds on the fly.

This thesis is organized as follows. Chapter 2 summarizes previous research and provides an overview
of our solution. The following three chapters describe the method in detail: Chapter 3 presents the
mesh representation used in our solution, Chapter 4 describes our wound cutting simulation in detail,
and Chapter 5 describes our approach of visualizing cutting wounds. In Chapter 6 we treat some
implementation-specific details. Finally, Chapter 7 summarizes the results and contributions of this
thesis and presents suggestions for future research.

2. Related work

Simulating and visualizing cutting wounds involves three areas of research: mesh cutting, skin rendering,
and wound visualization. Mesh cutting techniques change the topological and geometrical structure
of three-dimensional shapes. Skin rendering is a topic in computer graphics that is concerned which
rendering photo-realistic images of human skin. We introduce the term wound visualization for the
process of examining and reproducing the appearance of wounds in skin tissue.

2.1 Mesh cutting

Reproducing cutting wounds involves modifying polygonal or volumetric meshes using mesh cutting
techniques. Mesh cutting is part of the broader research area of mesh editing that also includes topics
such as deformation, simplification, remeshing, merging, and smoothing. The majority of research into
mesh cutting is approached from the field of medical simulation and surgery, where three-dimensional
scanning and volumetric mesh representations are commonplace. However, most software outside of
the medical field exclusively uses polygonal meshes, making techniques that operate on surfaces more
suitable. Not only does using surface meshes improve the ease of integration of the presented techniques
into existing polygonal-based rendering engines, but it will also benefit the performance, which is an
important requirement for real-time applications such as simulators and computer games.

With such a large body of work available, a number of surveys highlight the various techniques that
have been developed over time. Delingette [Del98] describes a number of characteristics that surgical
simulators should have: 1) reasonably accurate deformability of the manipulated object, 2) a real-time
dynamic collision detection mechanism, 3) interactive computation times and low input latency, and
4) the ability to interactively cut tissue. Moreover, Delingette remarks that the visualization of the
simulator is important as well: “the quality of the visual rendering greatly influences user immersion and
therefore the effectiveness of the simulator.” This is one of the motivators for the objective of this thesis.

A surgical simulator can have different deformation models. This field of research is also called soft
body dynamics. Traditionally, the two main approaches are spring models and finite element methods.
Although spring models have the advantage of ease of implementation, they suffer from accuracy problems
causing the range of possible dynamic behaviors to be limited. Finite elements methods are accurate
and can model complex dynamic behavior, but consume much computational power during runtime, and
often require an extensive precomputation phase [Del98, AKR05]. Soft body dynamics are not treated
in this thesis, but it should be noted that it is a prominent aspect of surgical cutting simulators.

In a survey by Bruyns et al. [BSMT02] mesh cutting techniques are classified based on a number of
criteria: definition of the cut path, creation of new primitives (polygons), and remeshing. They describe
that a cut path can be defined by either placing points on the surface of the mesh, by moving a predefined
template shape through the mesh, or by directly tracing the path onto the mesh. In both the first and
third method successive planes are constructed between either the selected points or between interval
points [BS01, BSMT02]; the only difference between these methods is how the cut path is created. The
second method requires specific collision detection between the template shape and the mesh primitives.

There are a number of ways to deal with primitive creation and remeshing after creating a new cut.
A common strategy is to keep the creation of new primitives to a minimum, because the running time

of dynamic solvers for physics simulation is influenced by the number of primitives in a mesh. This
requirement is especially critical when finite element methods are used [MV00]. On the other hand, the
topological quality of the mesh influences the stability of dynamic solvers. It is thus important to achieve
a balance between the number of primitives and the topological quality of a mesh.

Most works focus on keeping the number of new primitives minimal by creating new vertices at tool-
primitive intersection points and then performing additional steps to maintain mesh quality; this process
is called remeshing. Another approach is to reposition neighboring nodes onto the cutting path in order to
maintain the same number of primitives as before the cut; this is called node-snapping [SHS01, NvdS01].
Finally, if the quality of the mesh is an extremely important requirement, near-minimal methods can be
used to maintain topological symmetry around the cutting path, such as in [BG00].

Local remeshing can occur either during tool-primitive intersection, or when the tool leaves a primitive
or changes direction. The first approach is also called progressive cutting [MKO00], which means that
primitives are remeshed along the cut path as soon as the cutting tool intersects with them. In the
second, non-progressive cutting approach there is a delay before primitives are being remeshed, which
may be noticeable depending on the relative size of the primitives.

Various works provide a description of the workflow and features that a common mesh cutting simulator
should have [Del98, BSM 02, BG00, BMG99, WZW 05, SSL*07]. Generally, the simulation loop con-
sists of five main stages; see Figure 2.1. The response to input polling depends on the definition of the
cut path as described above. Whenever a change in input (such as tool motion) is detected, the collision
detection stage becomes active. This stage is responsible for finding out whether or not the cutting tool
intersects with an object, and if so with which primitive. In the case of a positive collision detection
the collision response stage will modify the topology and geometry of the mesh. Geometry changes are
followed by mesh deformation, a physically-feasible response to the cutting action. Finally, the render-
ing stage presents the results to the screen. Both the input polling stage and the rendering stage are
preferably executing asynchronously from the simulation, so that the system remains interactive at all
times.

asynchronously asynchronously
Input on Change; ! Collision on collision Collision)

3 — . Deformation
polling i1 | detection response

every logical frame

asynchronously

Rendering

every graphical frame

Figure 2.1: Stages of a mesh cutting simulator.

Aside from presenting a survey, Bruyns et al. [BSMT02| also describe a cutting scheme for progressive
cutting. In this method tool-primitive collisions are performed by first constructing a sweep surface
between consecutive positions of the tool edge. This sweep surface is essentially a plane, bounded by
the length of the cutting tool and the positions of two consecutive intervals of the tool motion. Using
such a plane allows collision detection to work even for multilayered objects. Testing the sweep surface
against a primitive produces edge and face intersection points, where new nodes are connected with newly
created edges and faces, thus replacing the original primitive. However, much of the information stored
is redundant for non-progressive cutting methods, and the remeshing scheme only handles face-edge and
edge-edge intersections. Furthermore, cuts leave the interior of the surface mesh exposed, and thus the
method is only useful for a particular set of cases (such as for multi-layered meshes).

Zhang et al. [ZPD02] propose a simple progressive cutting technique for surface models that subdivides
primitives and generates an interior structure along a selected cut path. Separate subdivision algorithms
are devised for end triangles and midway triangles, where the end triangles only have one edge intersection
with the cut path and midway triangles have two. End triangles are subdivided into four new triangles
and have an interior edge coinciding with the cut path through the triangle. Additionally, two new
nodes are created at location of the intersected edge that are initially coincident but are separated
later. This separation leaves a cavity which is filled by four new interior triangles that are oriented
perpendicularly to the surface, and their depth is determined by the penetration depth of the tool tip.
Midway triangles have a similar algorithm. Further, a progressive cutting algorithm is presented that
traces the tool inside triangles by performing temporary subdivisions and constructing groove triangles on
the fly. New geometry is made permanent if the cut path stops in the current triangle, or will be replaced
by midway geometry if the cut path moves on to another triangle. A method to join two progressive cuts
is presented as well, although it is only capable of connecting end triangles. Like the previous method, no
complete remeshing scheme nor a description of the mesh representation is presented, making it difficult
to reproduce the method. Additionally, the width of the cut opening is based on arbitrary spring forces
instead of using physical quantities.

Nienhuys and Van der Stappen [NvdS04]| describe a cutting technique that aims to produce a well-shaped
mesh that produces as few new elements as possible by enforcing primitives not to have large angles or
short edges. This is realized by measuring element quality during remeshing and applying edge-flips to
create a valid Delaunay triangulation. Any cutting tool motion moves an attached active node, and after
each motion the incident triangles are locally remeshed. Remeshing consists of removal of nodes that
are too close to each other, edge flips, and creation of nodes that approximate the cut path. In this way,
nodes are removed in front of the tool and inserted behind it. The primary characteristic of this method
is that the resolution of the mesh does not change because new nodes always lie on a line that connects
existing mesh nodes. This can be an advantage whenever the number of primitives should be kept to
a minimum, but can also be a disadvantage because the accuracy of the cut path is determined by the
resolution of the starting mesh.

Lim et al. [LJDO7] present a progressive cutting algorithm that is based on node snapping. At first
contact the nearest node is snapped to the initial collision point between the tool and the object. As the
cut progresses the nodes nearest to a tool-edge intersection point are snapped to the cut path, thereby
approximating the motion of the tool. Next, each node that lies on the cut path is split into two nodes,
displaced perpendicularly to the cut by equal amounts in opposite directions. Finally, a cutting gutter
is created to give the illusion of volumetric cutting, as in Zhang et al. [ZPDO02]. They also describe a
physically-based solution for determining the width of the cut opening. A major problem with the node-
snapping technique is that the resolution of a cut depends on the level of refinement of the mesh around
the cut path. To alleviate this problem, a local subdivision algorithm is applied that subdivides triangles
within a certain radius of influence with different levels of detail. This local refinement technique allows
the cut path to be more accurately represented, but increases the memory footprint, mitigating the main
advantage of using a node snapping method in the first place.

2.2 Skin rendering

Realistically rendering skin is both a traditional and an ongoing research area in computer graphics.
In physically based rendering, radiative transfer theory [Cha60] and the rendering equation [Kaj86]
provide formulae to compute the appearance of a material. For skin, light propagation consists of surface
reflectance, subsurface reflectance, and transmittance [KB04]. Only about 4% to 7% of the incident light
is reflected directly at the surface [INN05|. The remaining fraction of incident light particles enter the
skin, undergo scattering and absorption effects, and are either fully absorbed or get scattered outwards.
Light particles scattered back towards the incident surface account for subsurface reflectance, and those
that scatter forward and exit the surface at the other side account for transmittance. Figure 2.2 shows
how scattering can produce subsurface reflectance and transmittance at the top and bottom interfaces.

Figure 2.2: Subsurface scattering in a material.

Although subsurface light transport can be accurately simulated by solving the full radiative transfer
equation, this is computationally extremely expensive, even for offline rendering [JMLHO1|. Hanrahan
and Krueger [HK93] presented an analytic first-order approximation to the rendering equation in the
form of a bidirectional reflectance distribution function (BRDF), as well as a Monte Carlo method for
simulating radiative transfer in layered media. However, this approximation gives very crude results and
is still computationally expensive. Some practical models that simulate light transport in tissue include
Kubelka-Munk theory, the adding-doubling method, discrete ordinates, path integrals, and especially
the diffusion approximation equation [INNO5].

Jensen et al. [JMLHO1] describe how the diffusion approximation equation can be derived from radiative
transfer theory. Although this equation does not generally have an analytic solution, it can be approx-
imated with the dipole method as proposed by Eason et al. [EVNT78] and Farrell et al. [FPW92|.
This leads to the formulation of a diffuse bidirectional surface scattering reflectance distribution func-
tion (BSSRDF) [NRH'77| that can be used to achieve much faster offline rendering speeds. Jensen’s
final BSSRDF model is a sum of the diffusion approximation and the single scattering term computed
by Hanrahan and Krueger. Donner and Jensen later extend the dipole approximation to the multipole
model that can more accurately capture the effects of thin translucent slabs and multi-layered materials
[DJO5].

Unfortunately, the diffusion approximation presented by Donner and Jensen is still on the order of several
seconds per frame, which means that it is too computationally expensive to use for real-time rendering.
However, both Green [Gre04] and Gosselin et al. [GSM04, Gos04] describe methods to simulate diffusion
in texture space based on the work by Borshukov and Lewis [BL03]. They proposed to simply collect
the incident light on a 3D model into an irradiance texture and then to blur it by convolving it one
or multiple times with a rapid falloff kernel whose width varies per color channel. Although fast, the
downside of these approaches is that they use ad hoc parameters that are not directly based on the
properties of a translucent material, and additionally only use a single Gaussian kernel, resulting in an
unrealistic look.

D’Eon et al. [dL07, dLEOT7] resolve this issue by starting at Donner and Jensen’s multipole model and
making the key observation that a diffusion profile can be approximated well by a weighted sum of
Gaussians. This allows irradiance diffusion to be more efficiently evaluated while still accounting for
the physical properties of a material. The Gaussian sum is separated into a hierarchy of irradiance
diffusion texture maps, where each texture represents a Gaussian blur. D’Eon notes that six Gaussians
can accurately represent the three-layer model for skin presented in [DJ05]. The series of irradiance
textures is combined in a final pass to approximate the convolution of irradiance by the original diffusion
profile with real-time performance. To account for transmittance effects in thin regions of tissue, d’Eon
et al. use modified translucent shadow maps, which were first proposed by Dachsbacher and Stamminger
[DS03].

Recent work by Jimenez et al. [JSG09, JG10, JWSG10, JJG12a| translate the texture-space subsur-
face scattering simulation by d’Eon into a screen-space diffusion approximation that is applied as a
post-processing filter. This approach ensures that real-time frame rates are maintained when render-

ing multiple models by alleviating the performance deterioration caused by having to process more and
more textures. The idea is to directly apply the diffusion profiles to an already rendered diffuse image
in screen-space, instead of to an irradiance texture [JSG09]. Jimenez et al. also describe a method for
adding transmittance effects to the screen-space method [JWSG10].

Although there have been extensive investigations into the appearance of skin (such as [INN05]), research
about the influence of external factors on skin rendering is scarce at best. There appears to be some
research about skin color change due to emotion (and deformation) [JSBT10], but we were unable to
locate any works in the field of computer graphics that treat the appearance of skin due to injuries. As
such, it is currently unknown how subsurface scattering methods can be leveraged for rendering injured
skin.

2.3 Wound visualization

Aside from occasional remarks in academic sources of medical or forensic science, very little information
on the topic of the appearance of wounds is available. This is because medical sciences are primarily
interested in the mechanics and processes associated with the healing of injured skin. The appearance
of wounds is only relevant when its properties can be used for diagnosis. On the other hand, forensic
scientists concern themselves with collecting facts from perceptible clues, and although a basic description
of skin injuries can be helpful in assessing a crime, a full explanation of how skin visually reacts to trauma
is usually not relevant.

In this thesis we are mainly concerned with cutting wounds, so understanding their appearance helps
to reproduce them graphically. A cutting wound can be either inflicted or accidental and is always the
result of sharp force trauma. A cut made with a sharp surgical tool is also called an incision, but this
term does not apply to cuts made with other sharp instruments. Incised wounds are often erroneously
used interchangeably with lacerations, but are distinct due to the absence of thin bridges of tissue within
the wound, and show little to no abrasion at the edges of the cut [SSF06, BM10|. Another visual aspect
of cuts is that the skin surrounding the wound turns red. The medical term for this redness is erythema,
and is caused by rupture of small venules and capillaries or by the inflow of blood cells to start the
healing process [SBJ07]. Erythema is usually diffuse and does not have a pattern [BM10].

Research in the fields of computer graphics and game technology on the topic of wound visualization or
wound models is very sparse. Two related sources that give insight into a practical wound model are
by Grimes and Vlachos [Gril0, V1al0]. These two works describe a technique that uses a dynamically
placeable cull volume to denote the extent of an open wound, from which an interior model of flesh
and bones is visible. A projected texture is used to visualize blood spatter and laceration around the
edges of the opening. Although this technique is able to create natural-looking injuries that cut away a
part of a mesh, their applicability is limited due to requiring an interior mesh behind the skin surface.
Additionally, it only allows cutting with ellipsoids or disks, and is thus not appropriate for small cuts.

Lee et al. present a facial wound synthesis system [LC10, LLC11]. The first of these works describes
the practical implications of projecting a wound texture to a three dimensional model. The second work
presents techniques for generating a facial depth map and a map for measuring the spatially-varying
depth of an input wound image. These two texture maps are then used to modify (the depth of) the
local geometry of the facial mesh when applying a wound image to a selected area. Their technique
allows a user to interactively choose the location of the wound image which is then applied to the target
mesh in real time. However, they use pregenerated wound textures and have taken no action to improve
wound blending with the original skin color, making the wounds look very artificial.

2.4 Motivation and overview

We have described three areas of research that have thus far not often been combined in the realms of
computer graphics and game technology. To our knowledge no previous solution exists that accounts
for both simulation and visualization of cutting wounds in equal fashion. In this thesis we will present
a number of techniques for the purpose of simulating and visualizing cutting wounds on skin surface
meshes. We also propose a novel mesh representation to support these techniques.

Figure 2.3 gives an overview of the components and stages that our solution consists of. Note the
similarities between this diagram and Figure 2.1.

Cut selection Cutting simulation
- : ()
Input mouse Selectlng Cu.ttlng Cutting
handlin — surface line -
g |picking pOiIltS B ation ne rusion
every frame (ﬁl
Cut
Wound visualization opening
Wound Wound
Skin dis-
patch patch Y
) . coloration .
generation painting Generating
o £ gutter
e : : \)
Skin rendering
Surface Trans- Subsurface
reflectance mittance reflectance
4 every frame

Figure 2.3: Overview of the stages of our method. Solid arrows indicate work-
flow between stages and dotted arrows between stages indicate that they indirectly
influence each other.

In our method, we allow a user to directly pick two points on the surface of a mesh to define where a new
cut should be generated. The input handling stage, which is performed on every frame, triggers collision
handling whenever such a mouse picking event occurs. Cut selection combines the collision detection
and part of the collision response stages shown in Figure 2.1. A mouse picking event is translated into
a ray-surface intersection test to find a surface point. When two valid selections are made on the same
mesh, a chain of line segments is formed between the two points on the mesh surface that denotes the
cutting wound. The cut selection stage is treated in Section 4.1.

After the cutting line formation stage there are two courses of action: cutting simulation and wound
visualization. Cutting simulation merges the cutting line with the mesh and is consequently opened
to create a mesh cavity. This is then filled up by newly generated cutting gutter geometry. Cutting
line fusion is described in Section 4.2, cut opening in Section 4.3.1, and generating the cutting gutter is
discussed in Section 4.3.2.

Our cutting simulation is based on three works. Like Bruyns et al. [BSMT02] we use a sweep surface
to define the cut selection and to determine where the cut intersects the mesh surface. Our simulation
is augmented by generating interior geometry that represents the groove or gutter of a cutting wound
as described in Zhang et al. [ZPD02|. We improve upon these two methods by describing a remeshing
scheme that accounts for all possible cutting line segment configurations and handles each case in a

consistent manner. In this thesis, we pay special attention to describing the exact mesh operations
performed at every step, something these works neglect to mention. For this purpose we also propose a
novel mesh representation (Chapter 3). Finally, we use the definition of the cut opening displacement
from Lim et al. [LJDO07] to determine the width of a cut.

Note that there are a number of differences between our cutting simulation and other surface-based mesh
cutting approaches. Firstly, we do not represent the tool directly. This means that cuts do not necessarily
have to be defined by a tool motion. Secondly, our current method does not support progressive cutting,
although this is something that could be added in the future. Thirdly, because we assume that creation
of new primitives is acceptable, we have not used the node snapping methods as described in [NvdS04]
and [LJDO7].

After forming the cutting line the other course of action is executing the wound visualization stage.
Because this stage is reliant on the pre-modified mesh, it is actually executed before the cutting simulation
stage. We use the term wound visualization to change the appearance of the target model around a cut
selection. This includes synthesizing and drawing a wound texture onto the model during runtime, as
well as locally changing the color of the skin to simulate skin erythema. These novel techniques are
presented in Sections 5.3 and 5.4, respectively.

Because wound visualization changes the appearance of skin, it is closely related to the skin rendering
stage. This stage, executed on every frame, consists of surface reflectance, subsurface reflectance, and
subsurface transmittance. We use the high-performance screen-space skin rendering methods by Jimenez
et al. [JWSG10, JJG12a] that are easily integrated as a post-process. Surface reflectance is influenced
by wound patch painting due to it modifying the surface color of a mesh. Similarly, skin discoloration
changes the appearance of subsurface reflectance. We modify the subsurface reflectance method by
Jimenez et al. to account for this local skin discoloration. This process is described in Section 5.4, while
the full skin rendering stage is described in Appendix B.

3. Mesh representation

Before we can discuss the mesh cutting process in detail we must first describe our mesh representation.
The mesh representation is an essential part of the mesh cutting simulation that is often not treated in
the discussion of cutting techniques. However, remeshing and geometry generation techniques — as well
as rendering routines — are highly dependent on the exact definition of the mesh representation. One
of our main goals is to define a representation that accounts for the interaction between mesh cutting
and rendering, an issue most traditional mesh representations neglect to account for. In this chapter we
propose a novel mesh representation that is specifically tailored toward simulating cutting wounds.

3.1 Polygon meshes

Making modifications to three-dimensional shapes requires proper organization of its data. At a mini-
mum, a shape consists a collection of points, i.e. a point cloud in R?® [PGK02]. Such a three-dimensional
shape can either be represented as a volume or by a boundary surface [BKP*10].

Because we approach this problem from the field of game technology, where polygon meshes see much
more widespread usage than any other type of representation, we have opted to use surface meshes for
efficient simulation of cutting wounds on three-dimensional shapes.

Polygon meshes describe a continuous boundary that envelops the three-dimensional shape. These
boundaries can be approximated parametrically by connecting the set of points into a polygon mesh.
Polygon meshes are piecewise linear approximations of smooth shapes. They generally have a simple but
versatile data structure that allows them to be used for almost any type of model, and can be transformed
and rendered efficiently [BKP*10].

A polygon mesh M consists of a geometrical and a topological component contained in three sets of mesh
elements: the vertices V, the edges &, and the faces F [BKP*10]. Although mesh faces can consist of
any n-sided polygon (where n > 3), for this thesis we will assume that the surface has been triangulated.
This assumption may appear to be limiting, but there are a number of benefits to exclusively using
triangular faces:

1. Graphics hardware is highly optimized to process and render triangles [Mic16, SSKLK13]. Likewise,
many geometric algorithms can exploit the fact that all faces are triangular and convex, allowing
for simpler and more efficient procedures.

2. Triangles are the smallest possible polygon that can represent a face. This allows the discrete mesh
to approximate the continuous surface as closely as possible — which would, for example, not a