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Abstract

In loop quantum gravity space is assumed to consist of finite-size
building blocks. Spin networks are used to model this micro-
scopic structure of space. The goal is to create spin networks that
have the properties of classical space as it is described by general
relativity. Currently this is not possible. This thesis introduces
a model such that it is possible to construct spin networks that
have the properties of a classical metric. It uses spin networks
with 6-valent nodes in a cubic structure and all links have spin 1.
This choice is based on the interpretation of the volume operator
of loop quantum gravity as the creation operator for volume. A
new set of operators is defined that measure length, area and
volume in a spin network. Spin networks are constructed for
flat space, the Schwarzschild metric and for plane gravitational
waves. The first part of this thesis describes a diagrammatic
version of loop quantum gravity, where wave functions are rep-
resented by diagrams and operators have a graphical action on
these diagrams. The interpretation of the volume operator as a
creation operator is based on its graphical form.
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1 Diagrammatic Loop Quantum Gravity

The goal of loop quantum gravity is to give a description of general relativity
in the language of quantum mechanics. According to general relativity, a
mass curves the space that surrounds it and this influences the movement
of objects through this space. General relativity does not describe a force of
gravity, but the geometry of spacetime. A theory of quantum gravity should
define the structure of spacetime on a small scale.

Spin networks are used in loop quantum gravity to model the microscopic
structure of space. They are discussed in section 1.1. Section 1.2 summarizes
of the formalism of loop quantum gravity. Wave functions are defined that
are based on spin networks. These wave functions can be represented by a
diagram. Section 1.3 contains the rules to construct and manipulate such
diagrams. Section 1.4 gives three examples of how a spin network defines a
wave function and how this wave function can be represented by a diagram.

In the remainder of the first part the rules for diagrammatic manipu-
lation are used in various calculations. The inner product between node
states of a spin network is evaluated diagrammatically in section 1.5. The
two basic operators of the theory have a graphical action on the wave func-
tion diagrams. These graphical actions are defined in sections 1.6 and 1.7
and it is shown that the commutation relations between these operators are
implemented in the diagrammatic version of the theory. The eigenvalues of
the volume operator are calculated diagrammatically in section 1.8.

1.1 Spin Networks

In general relativity space and time are treated equally, but in quantum
mechanics time is a passive parameter: for every value of the time t, proba-
bilities for outcomes of measurements are predicted. To give time the same
passive role in loop quantum gravity the 4-dimensional spacetime is cut into
3-dimensional spacelike slices that are labeled by the parameter time. The
part of loop quantum gravity that studies the properties of these timeslices
is called the kinematics, in contrast to the dynamics, which describes the
time evolution. In this thesis only the kinematics of loop quantum gravity
will be discussed.

In loop quantum gravity a spin network represents a piece of the 3-
dimensional space in a timeslice. A spin network is a collection of nodes
that are connected to each other by links. The number of links that is
connected in a node is called the valence of the node, which is at least three
and there is no maximum. A link must start and end in a node, there are no
open ends, and a link can run between any two nodes in a network. Every
link carries a half-integer spin value: 0, 1/2, 1, 3/2, etc.

A spin network defines the microscopic structure of space as it is per-
ceived by one observer. The nodes are interpreted as indivisible pieces of
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1.1 Spin Networks
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Figure 1: On the left a 2-dimensional picture of a spin network that is con-
nected to the continuous space that surrounds it by open links.
On the right the same spin network where the open links are now
collected by the special node n0. The spin networks that are used
in loop quantum gravity are 3-dimensional.

volume that are the building blocks of space. There is no spatial resolution
inside such a volume. The links of a spin network show how these pieces of
volume are connected to each other and a link represents the contact sur-
face between two pieces of volume. Spin networks were introduced into loop
quantum gravity in [Rovelli and Smolin].

It is assumed that a building block of space that is represented by one
node in a spin network has a size close to the Planck length (10−35m). A
closed spin network with a limited number of nodes is then a very small
piece of space that is not connected to the rest of space. Alternatively, a
spin network can be drawn with open links that represent the connection
between the network and the continuous space that surrounds it. Since
open links are not allowed in a spin network, one can use a special node
n0 that collects all the links to the external space. This node can not be
interpreted as a piece of volume, but the links to this node do represent
the boundary between the continuous space and the spin network. This is
shown in figure 1.

A spin network can be constructed as the dual of a triangulation of space.
In a triangulation, space is divided into polyhedra, which are volumes that
are bounded by at least four faces. Every polyhedron is represented by a
node in the spin network and every face that connects two polyhedra is
represented by a link between two nodes. It is not required that a spin
network is constructed in this way. In general, a link can connect any two
nodes in a network. A spin network that is the dual of a triangulation has
no long distance connections, no microscopic “wormholes”.
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1.2 The Fundamentals of Loop Quantum Gravity

Loop quantum gravity is an attempt to construct a quantum theory that
has general relativity as its classical limit. This section describes the struc-
ture of this quantum theory and its relation to general relativity. This
section is based on [Rovelli and Vidotto], [Thiemann], [Dah-Wei Chiou],
[Jinsong Yang and Yongge Ma], [Rovelli], [Wald] and [Misner, Thorne and
Wheeler].

The Quantization of a Free Particle

The quantization of general relativity in loop quantum gravity follows the
same steps as the quantization of classical mechanics. Some elements of the
quantization of the free particle in one dimension are repeated here to show
the similarities.

In classical mechanics a point mass can be described by its place and
its momentum. These canonically conjugate variables are the coordinates
on the phase space for the point mass, which means that they completely
describe the point mass at any point in time. In quantum mechanics the
variables position and momentum are converted to operators on a state
space. The formalism of quantum mechanics requires that the commutation
relation between these operators equals i~ times the Poisson bracket of their
classical counterparts:

{x, p} = 1 → [x̂, p̂] = i~ (1)

The fact that the operators x̂ and p̂ do not commute means that the posi-
tion and momentum of a particle can not be known at the same time with
infinite precision. A particle with a definite momentum p is described by
the momentum eigenket |p〉. At one moment in time the wave function for
this state is

ψp(x) = 〈x|p〉 ∼ exp(ipx/~) (2)

This is the wave function for a free particle with a definite momentum, but
totally unknown position.

The ADM Formulation of General Relativity

The same quantization path will now be followed for general relativity. The
first step is the Hamiltonian formulation of classical general relativity, where
a configuration variable and momentum variable are identified. This formu-
lation requires that spacetime is treated as a stack of 3-dimensional spacelike
slices. In this (3 + 1)-split of spacetime, the time coordinate t is chosen such
that the 3-dimensional slices are slices of constant t. The description of grav-
ity in the (3 + 1)-split is called the ADM formulation. It was introduced in
[Arnowitt, Deser and Misner]. The 4-dimensional metric gµν(xµ) is written
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1.2 The Fundamentals of Loop Quantum Gravity

in terms of the 3-dimensional metric of the slices qab(x
µ), a lapse function

N(xµ) and a shift function Na(xµ):

gµν =

(
NcN

c −N2 Na

Nb qab

)
(3)

Latin indices are 3-dimensional, a = 1, 2, 3, and they are raised and lowered
by the 3-metric: Na = qabN

b. The meaning of the shift function is as follows:
In each slice a 3-dimensional coordinate system is defined. A 4-vector that
is normal to the slice Σt connects a point in Σt to a point in Σt+dt. These
points do not necessarily have the same coordinate values. Nadt is the
difference between these coordinate values. The shift function describes
how the coordinate systems in different timeslices are shifted relative to
each other. The lapse function relates the proper time along the normal
vector to the coordinate time: dτ = Ndt.

The Einstein equation follows from the variation of the Einstein-Hilbert
action. This action can be written in the 3-metric and the lapse and shift
functions as follows:

S =
1

2κ

∫
d4x
√
−g (4)R =

1

2κ

∫
dt

∫
d3x
√
q N
(

(3)R+KabK
ab −K2

)
(4)

Here is κ = 8πG/c4 and g and q are the determinants of the 4-metric and
the 3-metric. Kab(x

µ) is the extrinsic curvature that describes how the 3-
dimensional slices are curved in the 4-dimensional spacetime and K = Ka

a.
When a 4-vector that is normal to a slice is parallel transported along an
infinitesimal path inside the slice, then the resulting vector is not necessarily
equal to the normal vector at the new location. The difference between the
two vectors is proportional to the displacement, this difference is Ka

bdx
b.

The extrinsic curvature expressed in terms of the variables of the (3+1)-split
is

Kab =
1

2N
(q̇ab −DaNb −DbNa) (5)

The dot indicates the derivative with respect to the time coordinate and Da

is the covariant derivative defined by the 3-metric.
The configuration variables in this formulation are the constituents of

the 4-metric in equation (3): the 3-metric and the lapse and shift functions.
The momentum that is conjugate to a configuration variable follows from the
Lagrangian density. The action (4) defines the momentum that is conjugate
to the 3-metric:

πab =
∂L
∂q̇ab

=
√
q(Kab −Kqab) (6)

The lapse and the shift functions do not have a conjugate momentum, since
their time derivatives are not present in the Lagrangian density. The ac-
tion can be expressed in the configuration variables and the momentum of
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1.2 The Fundamentals of Loop Quantum Gravity

equation (6) as

S =
1

2κ

∫
dt

∫
d3x
(
πabq̇ab −NC − 2NaCa

)
(7)

The variation of this action with respect to the lapse and the shift func-
tions results in the requirement that the Hamiltonian constraint and the
diffeomorphism constraint vanish:

C = −(3)R+ πabπab/q − π2/2q = 0 Ca = Da(π
ab/
√
q) = 0 (8)

For a fixed value of t, the variables qab(x
µ) and πab(xµ) describe a slice

of spacetime. The constraints are relations between qab and πab such that
the way that a slice is embedded in spacetime as defined by the extrinsic
curvature is not independent of the internal structure of a slice as defined
by the 3-metric. The Poisson brackets on the phase space for the t-slice are:

{qab(t, ~x), πcd(t, ~y)} = κδa(cδ
b
d)δ

3(~x, ~y) (9)

{πab(t, ~x), πcd(t, ~y)} = {qab(t, ~x), qcd(t, ~y)} = 0

The Ashtekar Variables

New variables will now be introduced in the 3-dimensional timeslices. A
triad is a set of three vector fields eai (~x) that are orthonormal, qabe

a
i e
b
j = δij ,

where the index i = 1, 2, 3 labels the three vector fields. The triad vectors
are the spatial coordinate axes of a local laboratory frame. The eai ’s map
spacetime indices to indices of the local frame, for example eai va = vi The
index i is raised or lowered with the delta function δij or δij . The 3-metric
can be expressed in the inverse of these fields, eia:

qab = eiae
j
bδij (10)

A vector vi in the local frame also defines an SU(2) element. vi can be
contracted with the generators of SU(2) to form an element of su(2), viτi ∈
su(2), and this element of su(2) can then be exponentiated to an element of
SU(2), see appendix A. A version of the extrinsic curvature with one local
index can be defined as follows:

Ki
a = Kabe

b
jδ
ji (11)

There is a covariant derivative for an object with a local index:

DaB
i
b = ∂aB

i
b − ΓcabB

i
c + δijεjklΓ

k
aB

l
b (12)

The spin connection Γka defines parallel transport for a vector with a local
index. The Ashtekar variables that were introduced in [Ashtekar] are a
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1.2 The Fundamentals of Loop Quantum Gravity

connection Aia, which is a linear combination of the spin connection and the
extrinsic curvature, and the densitized triad field Eai :

Aia = Γia + βKi
a Eai =

√
q eai (13)

β is called the Immirzi parameter. The Hamiltonian constraint C and the
diffeomorphism constraint Ca of the ADM formulation, equation (8), can be
written in these variables as

C =
1√
|detE|

(
Eai E

b
jε
ijkδklF

l
ab −

2(1 + β2)

β2
E

[a
i E

b]
j (Aia − Γia)(A

j
b − Γjb)

)
Ca = F iabE

b
i F iab = ∂aA

i
b − ∂bAia + εijkA

j
aA

k
b (14)

F iab is the curvature of the connection Aia. The spin connection Γia can be
expressed in Eai . The original idea was to choose β = i, which removes the
second term from the Hamiltonian constraint. Nowadays a real β is used
to keep the Ashtekar connection real, but this gives a more complicated
Hamiltonian constraint.

A new phase space can be defined with the variables Aia and Eai and the
constraints of equation (14). The Poisson brackets between these variables
are then by definition:

{Aia(~x), Ebj (~y)} = κβδab δ
j
i δ

3(~x, ~y) (15)

{Aia(~x), Ajb(~y)} = {Eai (~x), Ebj (~y)} = 0

The variables of the ADM phase space are functions on this new phase space:
qab(E

a
i ) and πab(Aia, E

a
i ). According to [Thiemann] the Poisson brackets be-

tween these functions on the (A,E)-phase space are the same as the original
ADM Poisson brackets of equation (9), if the additional Gauss constraint is
satisfied:

Gi = ∇aEai = ∂aE
a
i + εijkδ

klAjaE
a
l = 0 (16)

The ADM phase space is now replaced by a phase space with variables
Aia and Eai . The constraints (14) and (16) reduce this phase space to the
physical configurations.

Holonomy and Flux Vector

The variables Aia and Eai are not the ones used in loop quantum gravity,
because they are still functions on a continuous space. The variables are
adjusted to be used with spin networks.

Instead of the connection Aia, the holonomy Ul is used. A holonomy
is a rotation matrix that rotates a vector in the same way as the parallel
transport of this vector along a path does. Here the path is a link of the
spin network and the parallel transport is defined by the connection Aia. In
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1.2 The Fundamentals of Loop Quantum Gravity

every point in the timeslice, Aia(~x)τi is an element of su(2). The holonomy
associated to the link l is the path ordered exponent of the integral of Aia(~x)τi
along the link:

Ul = P exp
( ∫

l
Aiaτids

a
)

(17)

This SU(2) matrix defines the 3d rotation of a spinor. The set of these
holonomies Ul is a discretization of the continuous field Aia.

The Ashtekar connection does not define parallel transport of a vector
in space. This is defined by the Christoffel symbols Γcab in equation (12).
The spin connection Γia in the same equation defines the parallel transport
of a vector with a local index. The holonomy of equation (17) describes
the effect of the connection Aia = Γia + βKi

a, which is a combination of the
spin connection and the extrinsic curvature of the timeslice. The physical
interpretation of this connection and the holonomy Ul is unclear.

The second variable that is defined on spin networks is based on the
continuous variable Eai . As discussed in section 1.1, a spin network can be
constructed as the dual of a triangulation of space. A node represents a
polyhedron and a link represents a face that is shared by two polyhedra. In
this way a surface is associated to each link. The area of this surface S can
be expressed in the variable Eai :

Area(S) =

∫
S
d2u
√
Eai naE

b
jnbδ

ij (18)

The vector na is normal to the surface. The 3-metric is related to Eai as

(det q)qab = EiaE
j
bδij and the expression in the integral under the square

root is equal to the determinant of the induced metric on the surface. The
flux of the E-fields through the surface S defines a vector Li with a local
index:

Lil =

∫
S

~Ei · d~S (19)

For a small surface, such that Eai is constant, this vector is

Lil = δijEaj nad
2u (20)

From equation (18) it follows that the length of this flux vector,
√
LiL

i, is
equal to the area of the surface:

Area(S)2 = LliL
i
l (21)

The volume of a tetrahedron of the triangulation can also be expressed in
the flux vectors. For each face of a Euclidean tetrahedron a vector ~v can
be constructed that is normal to the face and which length is equal to the
area of the face. The square of the volume of the tetrahedron is then equal
to 2/9 times ~v1 · (~v2 × ~v3). Up to a sign this holds for any three of the four
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1.2 The Fundamentals of Loop Quantum Gravity

vectors associated with the tetrahedron. Here the vector nad2u is normal to
a face and its length is equal to the coordinate area of the face. The square
of the coordinate volume of a tetrahedron of the triangulation is then

(d3x)2 =
2

9
εabcn1an2bn3c d

2u d2v d2w (22)

The volume of the tetrahedron can now be expressed in the flux vectors that
correspond to three faces of the tetrahedron:

Volume2 =
2

9
εijkL

i
1L

j
2L

k
3 =

2

9
εijkEai E

b
jE

c
k n1an2bn3c d

2u d2v d2w (23)

=
2

9

1

3!
εijkεabcE

a
i E

b
jE

c
k ε

defn1dn2en3f d
2u d2v d2w

=
1

3!
εijkεabcE

a
i E

b
jE

c
k (d3x)2 = det(Eai )(d3x)2 = det(qab)(d

3x)2

In the step from the first to the second line the same sum of terms is written
in a different way.

The above variables U and Li are defined on the discrete structure of a
spin network. Associated to every link is an SU(2) element U and a vector
Li that defines an su(2) element through Liτi. U and Li are functions on
the phase space with variables Aia and Eai and the Poisson brackets between
them are

{Ul, Ul′} = 0

{Ul, Lil′} = κ δll′ Ul,1 τ
i Ul,2 (24)

{Lil, L
j
l′} = κ δll′ ε

ijkδkmL
m
l

On the right hand side of the second bracket a generator τ i of SU(2) is
inserted in the holonomy Ul = Ul,1Ul,2. This generator is inserted at the
point where the surface S of equation (19) cuts the link l. To obtain a
result that does not depend on an embedding in a continuous space, the
generator can be inserted at an endpoint of the link, resulting in a right
hand side that is proportional to τ i Ul or Ul τ

i. Here the choice is made to

cut the holonomy into two equal parts: Ul,1 = Ul,2 = U
1/2
l . This gives a

more appealing graphical action of the L-operator in section 1.6.
The second Poisson bracket in (24) can be calculated from the expres-

sions of U and Li in Aia and Eai . One would think that the third Pois-
son bracket vanishes since the flux vector does not depend on the con-
nection Aia, but in the literature this Poisson bracket is justified by the
fact that the structure of the phase space of the discretized variables is
(Ul, L

i
lτi) ∈ SU(2) × su(2). This third Poisson bracket is identical to the

Poisson bracket between two angular momenta.
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1.2 The Fundamentals of Loop Quantum Gravity

The Quantization of General Relativity

As discussed at the beginning of this section, the first step in construct-
ing a quantum theory is to identify a canonical pair of variables. For loop
quantum gravity the Ashtekar variables (13) form this canonical pair and
the Poisson brackets between them in equation (15) are equivalent to the
Poisson brackets (1) for the position and momentum of a particle. Subse-
quently functions of these variables were created that are defined on spin
networks. These are the holonomy U and the flux vector Li. In the case of
the quantization of the particle the position and momentum variables are
converted to operators that obey the commutation relation in equation (1).
Similarly, the operator versions of the holonomy and the flux vector should
obey commutation relations that are derived from the Poisson brackets (24):

[Ûl, Ûl′ ] = 0

[Ûl, L̂
i
l′ ] = i~κ δll′ Û

1/2
l τ i Û

1/2
l (25)

[L̂il, L̂
j
l′ ] = i~κ δll′ εijkδkmL̂ml

Operators U and Li that act on the same link do not commute. This means
that the quantities that they measure can not be known at the same time
with infinite precision. In the case of the quantization of the particle two
classical observables become non-commuting operators, the position and the
momentum. Here the flux operator is connected to the classical observables
of area and volume, but the holonomy does not correspond to a clear physical
observable.

The wave functions of loop quantum gravity are based on spin networks.
As described in section 1.1 these spin networks consist of two elements: First
there is the graph Γ, which defines the number of nodes and links, and which
nodes are connected to each other by which links. The links are oriented.
The graph is a combinatorial structure, not an embedded structure. Second,
there is a spin j assigned to every link.

Given the state |Γ, jl〉 an attempt can be made to create a wave function
for such a state in the following way: Assign a holonomy to each oriented link
and multiply these holonomies with each other as prescribed by the graph,
where the spin on a link determines the representation of the SU(2) element
on that link. The indices of SU(2) matrices in spin jl representations are
contracted as defined by the graph:

“ ψΓ,jl({Ul}) = 〈{Ul}|Γ, jl〉 = ⊗l,ΓDjl(Ul) ” (26)

The notation Dj(U) means the matrix representation of the group element
U in the spin j representation. This definition is between quotation marks,
because the index contraction is not possible in this way.
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1.2 The Fundamentals of Loop Quantum Gravity

Intertwiners and Node Decomposition

The object that allows for a multiplication of multiple group elements in
different representations and that is itself invariant under the group action
is called an intertwiner:

i
(j1j2···jN )
m1m2···mN Dj1(U1)m1

n1
Dj2(U2)m2

n2
· · · DjN (UN )mN

nN
(27)

SU(2) matrices in the spin j representation are square matrices with dimen-
sion 2j + 1. m and n are here the matrix indices expressed as magnetic
numbers: m = j, j − 1, . . . ,−j. The j’s in this expression are not indices
and the summation convention does not apply to them.

The only object that connects SU(2) matrices like this in a way that is
invariant under the action of SU(2) is the Wigner 3j-symbol:(

j1 j2 j3
m1 m2 m3

)
Dj1(U1)m1

n1
Dj2(U2)m2

n2
Dj3(U3)m3

n3
(28)

The 3j-symbol connects three SU(2) matrices. It is a real-valued function
of the six numbers listed. Its values can for example be found with the
function ThreeJSymbol[] in Wolfram Mathematica. The 3j-symbol can
only be nonzero if these conditions hold: the sum of the spins is integer, no
spin is larger than the sum of the other two and the sum of the magnetic
numbers is zero:

j1 +j2 +j3 = integer |j1−j2| ≤ j3 ≤ j1 +j2 m1 +m2 +m3 = 0 (29)

If the Wigner 3j-symbol is contracted on every index with the same SU(2)
element, in different representations, then its value is unchanged. This is
the SU(2) invariance of the 3j-symbol:(

j1 j2 j3
m1 m2 m3

)
Dj1(U)m1

m′
1
Dj2(U)m2

m′
2
Dj3(U)m3

m′
3

=

(
j1 j2 j3
m′1 m′2 m′3

)
(30)

In the sketch of the wave function, equation (26), the intertwiner for a 3-
valent node of the spin network is the 3j-symbol. Since the 3j-symbol is the
only invariant object, all intertwiners have to be constructed using only the
3j-symbol. Therefore for nodes with more than three links a decomposition
into 3-nodes is introduced. For example, a 4-valent node can be decomposed
into two 3-valent nodes and an internal link between them:

j1

j2

j3

j4

−→ k
j1

j2

j3

j4

(31)
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1.2 The Fundamentals of Loop Quantum Gravity

In an embedding of the spin network the two nodes of the decomposition
are in the same point and the internal link covers no distance. The spin k
on the internal link is restricted by the conditions of equation (29) on both
nodes of the decomposition. The possible values for k start at kmin and go
in integer steps to kmax:

kmin = max {|j1 − j2|, |j3 − j4|} kmax = min {j1 + j2, j3 + j4} (32)

The holonomy on an internal link is the identity element, because in an
embedding an internal link has zero length. The intertwiner for the 4-node
of equation (31) is then a product of two 3j-symbols which are contracted
over one index:

i(j1j2j3j4)
m1m2m3m4

=
∑
m

(
j1 j2 k
m1 m2 m

)(
m j3 j4
k m3 m4

)
(33)

The second 3j-symbol contains a raised index m. Equation (57) is the
definition of a 3j-symbol with a raised index. More properties of the Wigner
3j-symbol are discussed in section 1.3.

The Quantization of General Relativity - Continued

The spin network states have now acquired more structure. Next to the
oriented graph Γ and the spins j, every node has an internal structure.
Such a node state |n〉 consists of a certain decomposition of the node into
3-valent nodes and spins on the internal links. In total, a spin network state
is:

|SNW〉 = |Γ, jl, |n〉〉 (34)

A spin network state contains a spin for every link and a node state for every
node. As discussed in section 1.8, a spin network state represents a piece of
space with well defined geometric properties area and volume. Spin network
states are analogous to the momentum eigenkets |p〉 for the free particle in
equation (2).

The spin network wave function that is based on this spin network state
is a function of holonomies, one for each link. It is defined as the multipli-
cation of these holonomies with the intertwiners for the nodes, where the
holonomies are in the representations defined by the spins on the links and
the index contraction follows the graph of the spin network:

ψSNW({Ul}) = 〈{Ul}|SNW〉 = CSNW

(∏
l

Djl(Ul)

)
·Γ
(∏

n

in

)
(35)

This is the wave function for a spin network in the well-defined spin network
state |SNW〉. In the classical discretization of the Ashtekar variables on a
spin network a holonomy was assigned to each link. For the spin network
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1.2 The Fundamentals of Loop Quantum Gravity

state |SNW〉, the holonomies on the links are not well-defined. The wave
function is a function of the holonomies. This wave function is analogous to
the free particle wave function of equation (2), which is a function of x and
describes a particle with definite momentum but totally undefined position.
CSNW is the normalization constant for the spin network wave function. Its
value is given in equation (42). Examples of spin network wave functions
are given in section 1.4.

For the free particle it is postulated that a complex-valued function of
the position describes the state of the particle at every moment in time.
The Schrödinger equation determines which function describes the particle
in a given situation. Here it is postulated that functions of the form (35)
describe the state of a piece of space, but there is no equation that connects
a certain spin network state to a given situation.

Inner Product

In quantum mechanics an inner product has to be defined on the state space.
For the spin network states an inner product is defined that is based on the
following integral over SU(2):∫

SU(2)
dµH(U)D∗j′(U)m

′
n′ Dj(U)mn =

1

2j + 1
δj,j′ δ

m,m′
δn,n′ (36)

The components of an SU(2) matrix are orthogonal with respect to this
integral defined by the Haar measure on SU(2), dµH(U). The inner product
between spin network states is defined as

〈SNW′|SNW〉 = δΓ,Γ′

∫
SU(2)L

∏
l

dµH(Ul) 〈SNW′|{Ul}〉 〈{Ul}|SNW〉

= δΓ,Γ′

∫
SU(2)L

∏
l

dµH(Ul)ψ
∗
SNW′({Ul})ψSNW({Ul}) (37)

Due to the δΓ,Γ′ this inner product can only be nonzero when the graphs of
the spin networks are the same. A node of Γ can then be identified with a
node of Γ′. When the spin network wave function of equation (35) is entered
in this integral, the terms in the integral that belong to one N -valent node
are

i
′(j′1···j′N )

m′
1···m′

N
D∗j′1

(U1)
m′

1

n′
1
· · · D∗j′N (UN )

m′
N

n′
N
i
(j1···jN )
m1···mN Dj1(U1)m1

n1
· · · DjN (UN )mN

nN

(38)
The primed intertwiner has no star, because the intertwiners are constructed
from Wigner 3j-symbols, which are real-valued. The integral is evaluated
by using equation (36) and the terms of the last equation reduce to(

N∏
l=1

1

2jl + 1
δjl,j′l δnl,n

′
l

)
i
′(j1···jN )
m′

1···m′
N
δm

′
1,m1 · · · δm′

N ,mN i
(j1···jN )
m1···mN (39)
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1.2 The Fundamentals of Loop Quantum Gravity

The terms after the brackets are identified as an inner product between node
states, which is denoted as 〈n′|n〉. The inner product between spin network
states is then

〈SNW′|SNW〉 = CSNW′CSNW δΓ,Γ′
∏
l

1

2jl + 1
δjl,j′l

∏
n

〈n′|n〉 (40)

The products run over all the links and over all the nodes of the spin network.
The inner product between node states will be evaluated diagrammatically
in section 1.5. The result is equation (99):

〈n′|n〉 = Cn′Cn
∏

internal
links

1

2k + 1
δk,k′ (41)

The product runs here over all the internal links of the node and the k’s
are the spins on these internal links. The node states are orthogonal with
respect to this inner product in the sense that the inner product is always
zero when the node states are not identical. The spin network states are
orthogonal with respect to the inner product of equation (37). The spin
network states and the node states are orthonormal with the normalization
constants

CSNW =
∏
l

√
2jl + 1 Cn =

∏
internal

links

√
2k + 1 (42)

The inner product between normalized spin network states is

〈SNW′|SNW〉 = δΓ,Γ′
∏
l

δjl,j′l

∏
n

∏
internal

links

δk,k′ (43)

An inner product between spin network states is defined and the spin net-
work states are orthonormal with respect to this inner product.

Operators

The next step is the construction of a pair of operators, a holonomy op-
erator and a flux operator, that act on spin network wave functions and
that satisfy the commutation relations of equation (25). In the quantum
mechanical description of the free particle there are the position operator
and the momentum operator and one of them is a multiplicative operator
and the other one is a derivative operator. The same is true here.

The holonomy operator acts on a function of the holonomy as a multi-
plicative operator:

(Ûl)
m
n f(Ul) = D1(Ul)

m
n f(Ul) (44)
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1.2 The Fundamentals of Loop Quantum Gravity

The operator multiplies the function by the holonomy in a fixed representa-
tion. Commonly this representation is chosen to be the fundamental spin-
1/2 representation, but in view of the model of the second part of this thesis
the spin-1 representation is chosen here.

The flux operator acts on the same function as a derivative operator:

L̂il f(Ul) = −i
d

dt
f
(
U

1/2
l exp(tτ i)U

1/2
l

)∣∣∣
t=0

(45)

The τ i’s in this definition are the generators of SU(2). The commutation
relations between these two operators will be analysed in sections 1.6 and 1.7.

Constraints

Earlier in this section the classical phase space of the Ashtekar variables was
discussed. On this phase space three constraints were defined, the Hamil-
tonian and diffeomorphism constraints of equation (14) and the Gauss con-
straint of equation (16). In general a constraint C is a function of phase
space variables q and p and only the configurations that satisfy the con-
straint equation C(q, p) = 0 are physical. In the quantum version of the
theory the phase space variables become operators that act on a wave func-
tion and the constraint also becomes an operator. Only the wave functions
that satisfy Ĉψ = 0 describe physical states of the system.

First there is the Gauss constraint. It requires that the spin network
wave functions are invariant under local SU(2) transformations. If a link
l is oriented from a node n1 to a node n2, then the holonomy of this link
transforms under a local SU(2) action Λ as

Ul → U ′l = Λ(n2)Ul Λ(n1)−1 (46)

Spin network wave functions were defined in equation (35). In these wave
functions a holonomy is contracted with two Wigner 3j-symbols:

· · ·
(
j4 j5 j1
m4 m5 m′1

)
Dj1(U)

m′
1
m1

(
m1 j2 j3
j1 m2 m3

)
· · · (47)

Equation (30) showed that the 3j-symbol with three lower indices is invari-
ant under an SU(2) transformation. A 3j-symbol with an upper index is
invariant if this upper index is contracted with the inverse of the locally
acting SU(2) element:

Dj1(Λ−1)
m′

1
m1

(
m1 j2 j3
j1 m2 m3

)
Dj2(Λ)m2

m′
2
Dj3(Λ)m3

m′
3

=

(
m′1 j2 j3
j1 m′2 m′3

)
(48)

This shows that a wave function that is constructed as in equation (47) is
invariant when all the holonomies transform as in equation (46). The Gauss
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1.2 The Fundamentals of Loop Quantum Gravity

constraint is implemented by representing a 3-valent node by the 3j-symbol
and by using a decomposition into 3-valent nodes for nodes with more than
three links.

The second constraint is the diffeomorphism constraint. When a spin
network is embedded in a continuous space, a diffeomorphism deforms the
spin network in a smooth way. The diffeomorphism constraint requires that
the wave function is invariant under this deformation of the spin network.
This is indeed the case, since the spin network state of equation (34) does
not contain information about a specific embedding. The spin network state
depends only on the combinatorial structure of the spin network and the spin
labels on the links. The wave function of equation (35) is based on this spin
network state and does also not depend on a specific embedding.

The spin network wave functions satisfy the Gauss constraint and the dif-
feomorphism constraint. The last constraint is the Hamiltonian constraint.
According to [Wald], the origin of this constraint is the freedom one has in
choosing the slicing in the (3 + 1)-split of spacetime. The expression for
the Hamiltonian constraint C in equation (14) has to be converted to an
operator expression that acts on the spin network wave functions and only
the wave functions that are annihilated by this operator are physical:

Ĉ ψSNW({Ul})physical = 0 (49)

The spin network states that were described in this section form an extended
state space that still has to be restricted by the Hamiltonian constraint
operator. The inner product defined in equation (37) is an inner product
on this extended state space. How the Hamiltonian operator acts on the
quantum states and which states it selects is an open problem.
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1.3 Rules for Diagrammatic Calculations

In the last section the spin network wave function was defined as a product
of SU(2) matrices and Wigner 3j-symbols, see equation (35). The way that
these elements are multiplied is defined by the structure of a spin network.
The 3j-symbol has a graphical representation as a node with three links,
see equation (50). The properties of the 3j-symbol can be translated into
rules for the manipulation of diagrams. In this way expressions involving
3j-symbols can be simplified by applying graphical rules. Since the spin
network wave function contains 3j-symbols, it can be represented a diagram,
which is called here a wave function diagram:

3d spin network −→ spin network
wave function

−→ 2d wave function
diagram

This section describes the wave function diagrams, which are also called an-
gular momentum diagrams, and the rules for manipulating them. In the fol-
lowing sections these rules will be used to do calculations. The next section
contains examples of wave functions and wave function diagrams. The dia-
grammatic method for Wigner 3j-symbols was developed by I. B. Levinson
and was first published in English in [Yutsis, Levinson and Vanagas]. This
section is based on [Wormer and Paldus] and [Jinsong Yang and Yongge Ma].
There are differences between the diagrammatic notations in these three ref-
erences. Here every link has an arrow as in the first and second reference.
The direction of the arrow is defined here as in the third reference.

The basics of wave function diagrams are:

• A wave function diagram is a graphical representation of a product of
SU(2) matrices and Wigner 3j-symbols.

• A node is a Wigner 3j-symbol and a link is an SU(2) matrix. The
graphical structure determines how indices are contracted.

• A plus sign at a node means that indices are read off counterclockwise
and a minus sign means clockwise.

• An arrow on a link points from an upper index of a 3j-symbol to a lower
index of a 3j-symbol. In short, an arrow points away from an upper
index.

• If a link represents the identity matrix, then a single arrow is used. If it
represents an other SU(2) matrix, then a double arrow is used. If this
SU(2) matrix is replaced by its inverse, then a triple arrow is used.

• A wave function diagram is a 2-dimensional object. Its meaning does
not change if it is turned in the plane.

18
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+

j1

j3j2

=

−

j1

j2j3

=

(
j1 j2 j3
m1 m2 m3

)
(50)

A link carries a half-integer spin value j = 0, 1/2, 1, 3/2, etc. The spin
value determines the representation of the SU(2) matrix. The three spins
that are connected in a node must satisfy the Clebsch-Gordan conditions:
Their sum is integer and no spin is larger than the sum of the other two:

j1 + j2 + j3 = integer |j1 − j2| ≤ j3 ≤ j1 + j2 (51)

Sign factors that depend on spins that connect in one node are often en-
countered, for example:

(−1)4j = 1 (−1)2j1+2j2+2j3 = 1 (−1)2j1+2j2 = (−1)2j3 (52)

The three magnetic numbers m = −j,−j + 1, . . . , j in one 3j-symbol must
satisfy m1 + m2 + m3 = 0. An even permutation of the columns of the
Wigner 3j-symbol leaves its value unchanged, while an odd permutation
gives a sign: (

j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j3 j2
m1 m3 m2

)
(53)

Graphically this is:

+

j1

j3j2

= (−1)j1+j2+j3

−

j1

j3j2

(54)

First the diagrammatic rules are considered where the links represent the
identity matrix, such that the 3j-symbols are connected directly to each
other. A link that runs between two nodes represents a contraction over one
index. The magnetic numbers are the indices of a 3j-symbol, so a closed
link implies a sum over m:

+ −j

m
j2
m2

j1

m1

j4
m4

j3
m3

=
∑
m

(
j1 j2 j
m1 m2 m

)(
m j3 j4
j m3 m4

)
(55)

19
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Here a 3j-symbol with an upper index is used and this is defined as follows:(
j j1 j2
m m1 m2

)
= (−1)j+m

′
δm,m′

(
−m′ j1 j2
j m1 m2

)
(56)(

m j1 j2
j m1 m2

)
= (−1)j−m

′
δm,m

′
(

j j1 j2
−m′ m1 m2

)
(57)

Any one of the indices of the 3j-symbol can be raised or lowered in this way.
Above equations are the same as contracting the 3j-symbol with

C
(j)
mm′ = (−1)j−m

′
δm,−m′ Cmm

′

(j) = (−1)j+m
′
δm,−m

′
(58)

The arrow on a link points from a lower index to an upper index. By raising
and lowering the m index in equation (55) the arrow on the link can be
reversed at the cost of a sign (−1)2j :

+ −

j2

j1

j4

j3

j
= (−1)2j + −

j2

j1

j4

j3

j
(59)

The closed diagrams that can be build with zero, two and four 3j-symbols
are:

j = j = δmm = 2j + 1 (60)

− +

j1

j2

j3

= 1 (61)

j6

−

− −
−

j3 j2

j1j5

j4

=

j5

+

+ +

+
j3 j2

j1 j6

j4

=

{
j1 j2 j3
j4 j5 j6

}
(62)

Diagram (62) is the definition of the Wigner 6j-symbol, which is a contrac-
tion of four 3j-symbols, see (B.8). Diagram (61) is the normalization of the
3j-symbol: (

j1 j2 j3
m1 m2 m3

)(
m1 m2 m3

j1 j2 j3

)
= 1 (63)
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Here the summation convention applies and the sum over the magnetic num-
bers is not written explicitly. The summation line combines two links into
one:

j2

j1

=
∑
l

(2l + 1) + −
j1

j2

j1

j2

l (64)

It is the graphical version of this property of the 3j-symbol:

δ
m′

1
m1 δ

m′
2

m2 =
∑
l

(2l + 1)

(
j1 j2 l
m1 m2 m

)(
m m′1 m′2
l j1 j2

)
(65)

The sum over the spin l is limited by the Clebsch-Gordan conditions (51).
This rule can be applied to any two links in a diagram. The open boxes in
equation (64) represent parts of a diagram, possibly with open links. The
links that connect to an open box can be open links themselves. The open
boxes can also be connected to each other.

If a product of Wigner 3j-symbols forms a loop, then this loop can
be removed from the diagram. These are the rules for the removal of loops
with two, three and four nodes. The first two are preceded by their algebraic
version: (

j1 j3 j4
m1 m3 m4

)(
m3 m4 m2

j3 j4 j2

)
=

δj1j2
2j1 + 1

δm2
m1

(66)

+−
j1 j2

j3

j4

=
δj1j2

2j1 + 1

j1
(67)

(
j1 m5 j6
m1 j5 m6

)(
j4 j2 m6

m4 m2 j6

)(
m4 j5 j3
j4 m5 m3

)
=

{
j1 j2 j3
j4 j5 j6

}(
j1 j2 j3
m1 m2 m3

)
(68)

++

+

j1

j2j3 j4

j5 j6
=

{
j1 j2 j3
j4 j5 j6

}
−

j1

j2j3

(69)

−−

−

j1

j2j3 j4

j5 j6
=

{
j1 j2 j3
j4 j5 j6

}
+

j1

j2j3

(70)
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−+

+ −

j1

j2

j3

j4

j5

j6

j7 j8 =

∑
l(2l + 1){
j1 j2 l
j5 j6 j7

}
{
j3 j4 l
j5 j6 j8

} − +

j1

j2

j3

j4

l (71)

On the right hand side of the last equation terms are placed above one
another. This means a product between these terms from the top to the
bottom. To derive (71), first insert a summation line (64) in the horizontal
links and then remove the two loops with three nodes. Loops with more
nodes can be removed in the same way, by inserting summation lines to
reduce the number of nodes in a loop.

The rules for cutting a diagram into two pieces are given below. If a
diagram consists of multiple disconnected pieces, then this implies a product
between the algebraic expressions for these pieces. A closed box represents
a connected part of a diagram that has no open links and is not connected
to the other box. These identities are only valid if the closed box consists
only of 3j-symbols that are connected by identity matrices. The 3j-symbols
can not be connected by other SU(2) elements inside the box. These rules
are not valid if the resulting diagram is still connected.

j1

j2 =
δj1j2

2j1 + 1

j1 j1

(72)

j1

j2

j3

=
+ −

j1

j2

j3

j1

j2

j3

(73)

j1

j2

j3

j4

=
∑
l

(2l + 1)

+

+

−

−
j1

j2

j3

j4

l l

j1

j2

j3

j4

(74)
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The cut over two links is derived from the cut over three links by first
inserting a loop in one of the links of (72) with equation (67). To derive the
cut over four links, first insert a summation line (64) in two of the links and
then apply the cut over three links. Cuts over more links can be done by
using more summation lines. What remains is the proof of identity (73):

If a closed box with three links consists of a connected diagram that is
build from 3j-symbols that are connected by identity matrices, then this
diagram is proportional to a single node, since all the loops inside such a
diagram can be removed:

j1

j2

j3

= C
−
j1

j2

j3

C =
+

j1

j2

j3

(75)

The two closed boxes on the left and the right are the same. The propor-
tionality constant C is equal to the given diagram on the right, because the
reduction of that diagram follows the same steps as the reduction of the
closed box on the left and results in the theta diagram (61), which is equal
to one. �

If one of the spins in a 3j-symbol is zero, then the 3j-symbol is propor-
tional to the delta function in its other indices. Diagrammatically the link
with spin zero can be removed from a node or between two nodes:(

j1 m2 j = 0
m1 j2 m = 0

)
=

δj1j2√
2j1 + 1

δm2
m1

(76)

+

j2

j1 j = 0
=

δj1j2√
2j1 + 1

j1 (77)

+ +

j2

j1

j4

j3j = 0
=

δj1j2√
2j1 + 1

δj3j4√
2j3 + 1

j1 j3 (78)

Up to this point the Wigner 3j-symbols were connected directly to each
other, but a spin network wave function is a product of 3j-symbols and SU(2)
matrices, see equation (35). The SU(2) matrices are the holonomies defined
in equation (17). If there is an SU(2) matrix between two 3j-symbols, then
this is indicated in a diagram by a double arrow on the link. This arrow
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defines both the way how the indices are contracted and the direction of the
transport defined by the holonomy. The rule for reversing the arrow on such
a link is calculated by raising and lowering an index in the 3j-symbols with
(56) and (57):(

j1 j2 j
m1 m2 m3

)
Dj(U)m3

m4

(
m4 j5 j6
j m5 m6

)
=

(
j1 j2 m′3
m1 m2 j

)
×

× (−1)2j δm′
3,m3

(−1)−m3+m4 Dj(U)−m3
−m4

δm4,m′
4

(
j j5 j6
m′4 m5 m6

)
= (−1)2j

(
j1 j2 m3

m1 m2 j

)
Dj(U

−1)m4
m3

(
j j5 j6
m4 m5 m6

)
(79)

Here it is used that a magnetic number m that is summed over can be
replace by −m. In the last step it is used that an SU(2) matrix in any
representation satisfies

(−1)−m3+m4 Dj(U)−m3
−m4

= (Dj(U
−1)T )m3

m4
(80)

The conclusion is that the cost of reversing an arrow on a link with an
SU(2) element is (−1)2j and the SU(2) element is replaced by its inverse,
which is the correct element for transport in the new direction of the arrow.
Reversing the arrow on a link that represents the identity element also gives
the sign (−1)2j , see equation (59). A link with an SU(2) element has a
double arrow and its inverse is indicated by a triple arrow. Graphically the
arrow reversal is

+ −

j2

j1

j6

j5

j
= (−1)2j + −

j2

j1

j6

j5

j
(81)

In the following sections these rules for diagrammatic calculations will be
applied, first to examples of the wave function.
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1.4 Examples of Spin Network Wave Functions

A spin network state defines a wave function, which is a product of SU(2)
matrices and Wigner 3j-symbols. The general definition of this spin network
wave function was given in equation (35). In this section three examples are
given of simple spin networks and their corresponding wave functions.

In a wave function the order of the spins in a 3j-symbol is not defined by
the spin network state. Different orderings can lead to wave functions that
differ by a minus sign. Here the following choice is made for the construction
of a wave function from a spin network state:

Order of Spins in 3j-symbols: The lowest link number goes first. Nor-
mal links go before internal links.

Example 1

The most simple spin network state that can be constructed, consists of two
3-valent nodes that are connected to each other by three links. Each link
carries a spin value:

|SNW〉 = n2 n1

j1

j2

j3

(82)

The wave function for this spin network state is

ψSNW(U1, U2, U3) = C

(
j1 j2 j3
m′1 m′2 m′3

)
2

×

×Dj1(U1)
m′

1
m1Dj2(U2)

m′
2
m2Dj3(U3)

m′
3
m3

(
m1 m2 m3

j1 j2 j3

)
1

(83)

A subscript is added to the 3j-symbols to indicate which node they represent.
The normalization constant C was given in equation (42):

C =
√

(2j1 + 1)(2j2 + 1)(2j3 + 1) (84)

The wave function itself can again be represented by a diagram. Such di-
agrams were described in section 1.3. A 3j-symbol is represented by a
node and a SU(2) matrix is represented by a link with a double arrow.
This diagram is 2-dimensional, in contrast to the spin network, which is
3-dimensional. The diagrammatic version of the wave function of equation
(83) is

ψSNW(U1, U2, U3) = C − +

j1

j2

j3

(85)
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Example 2

In this second example the spin network consists of two 4-valent nodes that
are connected by four links. The spin network state defines an internal
structure for each node: a decomposition into 3-valent nodes and for the
internal links it defines orientations and the spin values k1 and k2:

|SNW〉 = n2 n1

j1

j4

j2

j3
=

n2b n1b

n2a n1a

k1k2

j1

j2

j3

j4

(86)

The wave function:

ψSNW(U1, U2, U3, U4) = C

(
j1 j2 m′

m′1 m′2 k2

)
2a

(
j3 j4 k2

m′3 m′4 m′

)
2b

×

×Dj1(U1)
m′

1
m1Dj2(U2)

m′
2
m2Dj3(U3)

m′
3
m3Dj4(U4)

m′
4
m4×

×
(
m1 m2 m
j1 j2 k1

)
1a

(
m3 m4 k1

j3 j4 m

)
1b

(87)

The normalization constant:

C =
√

(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)(2k1 + 1)(2k2 + 1) (88)

The wave function diagram:

ψSNW(U1, U2, U3, U4) = C

− +

− +

k1k2

j1

j2

j3

j4

(89)
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Example 3: Superposition Principle for Wave Functions

The spin network in this third example is the same as in the second example:
two 4-valent nodes that are connected by four links. Now the node n1 does
not have a definite spin value on its internal link, instead the node is in a
superposition of node states with different internal spins:

n1 =
∑
k1

a(k1) k1

n1a

n1b

(90)

The spin network state is

|SNW〉 = n2 n1

j1

j4

j2

j3
=
∑
k1

a(k1)

n2b n1b

n2a n1a

k1k2

j1

j2

j3

j4

(91)

The wave function in diagrammatic form:

ψSNW(U1, U2, U3, U4) =
∑
k1

a(k1)C(k1)

− +

− +

k1k2

j1

j2

j3

j4

(92)

The wave function is now a sum of terms and each term itself is also a wave
function for this spin network. This is the superposition principle for wave
functions. The sum of two wave functions that are both based on the same
spin network is again a wave function for that spin network.
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1.5 The Node Inner Product

In section 1.2 an inner product between spin network states was discussed
and in this context an inner product between node states was defined below
equation (39) as

〈n′|n〉 = C ′C i
′(j1···jN )
m′

1···m′
N
δm

′
1,m1 · · · δm′

N ,mN i
(j1···jN )
m1···mN (93)

The i’s are the intertwiners for the nodes and the C’s are the normalization
constants for the node states. This is an inner product between two node
states of the same node. The nodes n and n′ have the same number of
external links and the same node decomposition, only the spin values on the
internal links can be different. This node inner product can be evaluated
diagrammatically, but not in the current form, because the delta’s with two
upper indices do not have a diagrammatic representation. The node inner
product is first evaluated for the 4-valent node and then the general case is
discussed.

4-Valent Node

Section 1.4 contains examples of spin network wave functions. The wave
function for a spin network with two 4-valent nodes was given in equa-
tion (87). A 4-node is represented in a wave function as an intertwiner such
as the one on the right in equation (94). Its diagrammatic version in a wave
function diagram is on the left:

+

+

k

j1j2

j3 j4

i(j1j2j3j4)
m1m2m3m4

=

(
j1 j2 k
m1 m2 m

)(
m j3 j4
k m3 m4

)
(94)

The link with spin k is the internal link of the node. To create a diagram-
matic version of the node inner product (93) for this node, the indices of the
primed intertwiner need to be raised:

i
′(j1j2j3j4)
m′

1m
′
2m

′
3m

′
4

=

(
j1 j2 k′

m′1 m′2 m′

)(
m′ j3 j4
k′ m′3 m′4

)
=

δm′
1,m

′′
1
δm′

2,m
′′
2
δm′,m′′

(
m′′1 m′′2 m′′

j1 j2 k′

)
(−1)k

′+nδm
′,−n

(
k′ j3 j4
n m′3 m′4

)
= ∆4

(
m′′1 m′′2 m′′

j1 j2 k′

)
(−1)k

′+n′
δm′′,−n′

(
n′ m′′3 m′′4
k′ j3 j4

)
= ∆4

(
m′′1 m′′2 k′

j1 j2 n′

)(
n′ m′′3 m′′4
k′ j3 j4

)
(95)

∆4 = δm′
1,m

′′
1
δm′

2,m
′′
2
δm′

3,m
′′
3
δm′

4,m
′′
4
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1.5 The Node Inner Product

The 3j-symbols are turned upside down with equation (B.4). Additionally,
equation (57) is used in the first step and equation (56) is used in the last
step to lower the index of the internal link. The result is that the internal
indices stay the same, while the external indices have been raised. When
(94) and (95) are entered in (93), the node inner product is

〈n′|n〉 = C ′C

(
m1 m2 k′

j1 j2 m′

)(
m′ m3 m4

k′ j3 j4

)(
j1 j2 k
m1 m2 m

)(
m j3 j4
k m3 m4

)
(96)

This expression for the node inner product has a diagrammatic version and
it can be evaluated with the techniques of section 1.3:

〈n′|n〉 = C ′C

− +

− +

kk′

j1

j2

j3

j4

j1

j2

j3

j4

= C ′C

− +

− +

kk′

j1

j2

j3

j4

=

C ′C (−1)2k′

(−1)j1+j2+k

(−1)j1+j2+k′

δk,k′

2k + 1
− +

k

j3

j4

= C ′C
δk,k′

2k + 1
(97)

The bra node is the mirrored image of the ket node, where the node signs
are changed, the arrows on the open links are reversed and the arrows on
the internal links stay the same. To reduce this diagram the arrow on the
k′ link is reversed with equation (59) and the node signs of the two nodes
at the top are changed with equation (54). The loop with two nodes at
the top is then removed with equation (67) and the resulting diagram is
the theta diagram (61), which is equal to one. The sign factor disappears
because the sum of the spins j1, j2 and k is integer, since they connect in
the same node. The node states are orthonormal in this inner product with
the normalization constant C =

√
2k + 1.

General Case

Above, a diagrammatic version of the node inner product for the 4-valent
node was constructed. Now this will be extended to a node inner product for
any node. The inner product of equation (93) is defined for intertwiners with
only lower indices, so for nodes with only incoming links. An outgoing link
appears in the node inner product as an upper index on the intertwiners and
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1.5 The Node Inner Product

these are upper indices in 3j-symbols that can be lowered with equation (57):

i′m
′

(j) δm′m i
m
(j) =

(
m′

j

)
δm′m

(
m
j

)
= (−1)2j−2n

(
j
−n′

)
δn

′n

(
j
−n

)
= (−1)2j+2n i

′(j)
n′ δ

n′n i(j)n (98)

Only the relevant indices and the relevant columns in 3j-symbols are shown.
It is used that a magnetic number m that is summed over can be replaced
with −m. The final sign factor is +1, since the sum of a spin and its
magnetic number is always an integer. The result is that the upper indices
on the intertwiners can be moved down for free and this makes equation (93)
the most general form of the node inner product.

The next step is to raise the indices of the primed intertwiner to obtain
an expression that has a diagrammatic version. This was done for the 4-node
in equation (95) and for any intertwiner the result is similar: The external
indices are raised while the internal indices stay the same and no sign factor
is picked up.

This means that the diagrammatic version of a general node inner prod-
uct has the same features as the diagram of equation (97). It is constructed
as follows:

• Draw the node as it appears in the wave function diagram, but with
incoming external links and bring all these external links to the left
side. This is the ket diagram.

• Mirror the ket diagram. Change the node signs and reverse the arrows
on the open links, but not on the internal links. The internal links have
a primed spin number. This is the bra diagram.

• Combine the open links of the bra and the ket diagram and multiply the
diagram by normalization constants for the bra and the ket node.

The resulting diagram can again be reduced with the techniques of sec-
tion 1.3. Node decompositions have no loops in them, they are tree struc-
tures. It seems to be the case that the diagrammatic reduction of the node
inner product for any node with a tree structure leads to a result that is
similar to the result in equation (97):

〈n′|n〉 = C ′C
∏

internal
links

δk,k′

2k + 1
C =

∏
internal

links

√
2k + 1 (99)

For the given value of the normalization constant the node states are or-
thonormal in the sense that the inner product is one if all the internal
spins of the two node states are equal and zero otherwise. In appendix A.3
of [Jinsong Yang and Yongge Ma] this result is obtained graphically for a
special class of node decompositions, where every 3-node of the decomposi-
tion has at least one external link.
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1.6 The Graphical Action of the Flux Operator

In section 1.2 general relativity was defined on the discretized structure of a
3-dimensional spin network. In this description the configuration variables
are an SU(2) matrix and a flux vector, both defined for each link of the spin
network. Loop quantum gravity is the quantum theory that is based on
this description, where a wave function contains the information about the
state of the timeslice and where the configuration variables are promoted to
operators that act on this wave function.

In sections 1.3 and 1.4 it was described how a spin network wave function
can be represented by a diagram and how such diagrams can be manipulated.
Operators act on the wave function and they have a graphical action on the
wave function diagrams. This results in a diagrammatic version of loop
quantum gravity where calculations are reduced to manipulating diagrams.

The subject of this section is the graphical version of the flux operator
and the next section treats the holonomy operator. The goal is to shown
that the commutation relations of equation (25) between these two operators
are implemented in the diagrammatic version of the theory.

The Flux Operator

The action of the flux operator on a wave function was defined in equa-
tion (45). It acts on a holonomy as

L̂i U = −i
d

dt
U1/2 exp(tτi)U

1/2
∣∣∣
t=0

= −iU1/2 τi U
1/2 (100)

The holonomy is an SU(2) matrix in the spin j representation. The τi is a
generator of SU(2), also in the spin j representation, see appendix A. This
equation can be written in a semi-graphical way as

L̂i
j

= −i
j

τi
j

(101)

An SU(2) matrix is represented by a link with a double arrow. The flux
operator obeys the correct commutation relation of equation (25) if the
repeated action of this operator on the same link is as follows:

L̂iL̂j U = (−i)2 U1/2 τjτi U
1/2 (102)

L̂iL̂j
j

= (−i)2
j

τjτi
j

(103)

The first operator Lj divides the holonomy in two equal parts and inserts
a τj between these parts. The second operator Li also inserts a τi in the
center of the holonomy, but upstream of the τj that is already present, with
respect to the direction of the arrow on the link. With this definition the
commutation relation between two flux operators is:
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1.6 The Graphical Action of the Flux Operator

[L̂i, L̂j ]
j

= (−i)2
j

[τj , τi]
j

= εijkδ
km

j
τm

j
= i εijkδ

kmL̂m
j

=⇒ [L̂i, L̂j ] = i εijkδ
kmL̂m (104)

Here the commutation relation between the generators of SU(2) is used,
[τi, τj ] = εijkτ

k. Equation (104) is the same commutation relation as in
equation (25) for a dimensionless L-operator.

Graphical Action

In section 1.3 a diagrammatic representation of the spin network wave func-
tion was defined where Wigner 3j-symbols were represented as nodes and
SU(2) matrices as links. The semi-graphical action of the flux operator in
the form of equation (101) does not follow the rules of the wave function
diagrams, since the right hand side is not completely diagrammatic. In ap-
pendix B of [Jinsong Yang and Yongge Ma] a graphical action of the flux
operator on wave function diagrams is derived. This result is repeated here:

The generators τi of SU(2) are labeled by the index i = 1, 2, 3. The
spherical versions of these generators are labeled by the magnetic number
mi = +1, 0,−1 and are defined as

τ+1 = − 1√
2

(τ1 + i τ2) τ−1 = +
1√
2

(τ1 − i τ2) τ0 = τ3 (105)

The τm’s are proportional to the Wigner 3j-symbol and thus have a graph-
ical representation as in equation (50). The matrix elements and graphical
versions of the τm’s are

Dj(τmi)
m′
m = −iα(j)

(
m′ 1 j
j mi m

)
(106)

Dj(τ
mi)m

′
m = −iα(j)

(
m′ mi j
j 1 m

)
(107)

α(j) =
√
j(j + 1)(2j + 1) (108)

Dj(τmi)
m′
m = −iα(j)

−
j

m′

j

m

1 mi

= −iα(j)
+j

m′

j

m

1 mi

(109)

Dj(τ
mi)m

′
m = −iα(j)

−
j

m′

j

m

1 mi

= −iα(j)
+j

m′

j

m

1 mi

(110)
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1.6 The Graphical Action of the Flux Operator

Equation (106) can be derived from the definitions (105) together with the
expressions for the matrix elements of the τi’s in (A.3) and the expressions
for the 3j-symbols that are involved, given in (B.5) to (B.7). Equation (107)
defines the spherical τ ’s with upper indices. The index mi of the 3j-symbol
can be lowered with (57) to give

τmi = (−1)1−m′
i δmi,m

′
i τ−m′

i
τ+1 = τ−1 τ−1 = τ+1 τ0 = −τ0

(111)
The following relations between the τi’s and τm’s can be checked by entering
(105) and (111) in the right hand sides:

τiτ
i = −τmiτ

mi (112)

εijkτ
iτ jτk = i εmimjmk

τmiτmjτmk = i εmimjmkτmiτmjτmk
(113)

ε+10−1 = +1 (114)

In equations (102) to (104) there is a matrix product between the τ ’s, but
in equations (112) and (113) there is no matrix product. There is only an
index contraction over the indices that are shown. This means that the full
expression for equation (112) is

Dj(τi)
m
nDj′(τ

i)m
′
n′ = −Dj(τmi)

m
nDj′(τ

mi)m
′
n′ (115)

The ε-symbol with magnetic indices is also proportional to a 3j-symbol.
The 3j-symbol has the same permutation properties, for both the sum of
the three magnetic numbers must vanish and(

1 1 1
+1 0 −1

)
= − 1√

6

(
1 1 1
0 0 0

)
= 0 (116)

This means that the graphical version of the ε-symbol as defined in (114) is

εmimjmk
= −
√

6

(
1 1 1
mi mj mk

)
= −
√

6
+

1 mi

1
mj 1

mk

(117)

The goal was to construct a graphical version of the action of the flux opera-
tor. This is possible when the action of the flux operator can be expressed in
the τm’s and εmimjmk

. When the semi-graphical action of the flux operator
of equation (101) is combined with equations (112) and (113) it turns out
that there is a graphical version of the following combinations of L-operators:

L̂iL̂
i ∼ (−i)2τiτ

i = τmiτ
mi (118)

εijkL̂
iL̂jL̂k ∼ (−i)3εijk τ

iτ jτk = −εmimjmk
τmiτmjτmk (119)

Again there is no matrix product between the τ ’s. Consider now the inner
product between two flux operators, L · L = LiL

i, where the two operators
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1.6 The Graphical Action of the Flux Operator

act on different links. With the diagrammatic versions of the τm’s of (109)
and (110), the graphical action of this inner product is

L̂1 · L̂2

j1

j2 = (−i)2
∑
i

j2 j2
τ i

j1 j1
τi

=
∑
mi

j2 j2
τmi

j1 j1
τmi

= (−i)2α(j1)α(j2)

−

+

1

j1 j1

j2 j2
(120)

The labels on the L’s indicate on which link they act. In the last step the
τm’s create a node with an open link in the links 1 and 2 and the sum over
the magnetic number is represented by connecting these open links, as was
defined in equation (55). The link with spin 1 has a single arrow because
an index is contracted directly between two 3j-symbols without an SU(2)
matrix in between. The graphical version of equation (119) is shown in
(127).

The Square of the Flux Operator

The graphical method described above will now be applied to the square of
the flux operator. The operator L2 is LiL

i, where both L’s act on the same
link. When (120) is combined with the ordering rule of equation (103) the
graphical action of L2 is

L̂2
j

= (−i)2α(j)2

− −j

j j
1

= −(−1)2j+1(−1)2jα(j)2

+ −j

j j
1

=
α(j)2

2j + 1

j
= j(j + 1)

j
(121)

A node sign is changed with rule (54) and the arrow on a link is reversed
with (59). The loop with two nodes is then removed with (67). This result
is the expected result for the square of an angular momentum operator.

Commutation Relation

As a second application of the graphical method, a diagrammatic calculation
will be done that shows that the commutation relation between the flux
operators is implemented on the spin network wave functions. Instead of

34



1.6 The Graphical Action of the Flux Operator

the commutation relation (104), the following operator expression will be
investigated:

[L̂1i, L̂1j ]L̂
i
2L̂

j
3 = i εijkL̂

k
1L̂

i
2L̂

j
3 = i εijkL̂

i
1L̂

j
2L̂

k
3 (122)

Both sides of equation (104) are multiplied by L̂i2L̂
j
3 to create combinations

of flux operators that have a graphical action on the wave function diagrams.
The numerical labels of the L-operators indicate on which link they act. The
operators L1, L2 and L3 act on any three links of a wave function diagram.
Flux operators that act on different links commute. Using (120) and the
ordering rule (103), the first term of the commutator acts as

(
L̂1 · L̂2

)(
L̂1 · L̂3

) j1

j2

j3

= (−i)4α(j1)2α(j2)α(j3)× diagram A

(123)

A =

−

+

−

+

1 1

j1 j1 j1

j2 j2

j3 j3

=
∑
l

(2l + 1)

−

+

−

+

+

−

1

1

1 1

l

j1 j1 j1

j2 j2

j3 j3

=

∑
l(2l + 1)

(−1)l+2

(−1)2l

(−1)2j1

−

+

−

+

+

+

1

1

1 1

l

j1 j1 j1

j2 j2

j3 j3

=

∑
l(2l + 1)

(−1)3l

(−1)2j1{
j1 j1 l
1 1 j1

}
−

−

+

−

1

1

l

j1 j1

j2 j2

j3 j3

=

∑
l(2l + 1){
1 1 l
j1 j1 j1

}
(−1)3l(−1)2j1

(−1)2j1+l(−1)l+2

(−1)2l(−1)2j1︸ ︷︷ ︸
=(−1)2j1 (−1)3l

−

−

−

+

1 1

j1
l

j1

j2 j2

j3 j3

← diagram B
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1.6 The Graphical Action of the Flux Operator

First a summation line (64) is entered in the vertical links. The sum is
limited to l = 0, 1, 2 by the Clebsch-Gordan conditions (51). A loop with
three nodes is removed from the diagram with the graphical rule (69). Node
signs are changed with (50) and (54) and arrows are reversed with (59) and
(81). The constants that multiply the diagrams are placed on top of each
other and this should be read as a product from the top to the bottom. The
last diagram is called diagram B. The second term of the commutator in
(122) is

(
L̂1 · L̂3

)(
L̂1 · L̂2

) j1

j2

j3

= (−i)4α(j1)2α(j2)α(j3)× diagram C

(124)

C =

−

+

−

+

1 1

j1 j1 j1

j2 j2

j3 j3

=
∑
l

(2l + 1)

−

+

−

+

+

−

1

1

1 1

l

j1 j1 j1

j2 j2

j3 j3

= (−1)l+2 × diagram A

The two spin 1 links of the central +-node are interchanged at the cost of a
node sign change, using (50). Diagram C is then proportional to the second
version of diagram A in equation (123). The complete commutator is now

(
L̂1 · L̂2

)(
L̂1 · L̂3

)
−
(
L̂1 · L̂3

)(
L̂1 · L̂2

) j1

j2

j3

= α(j1)2α(j2)α(j3)

×
∑
l=0,1,2

(2l + 1)(−1)2j1
[
(−1)3l − (−1)4l

]{ 1 1 l
j1 j1 j1

}
× diagram B

= α(j1)2α(j2)α(j3) (−1)2j1(−6)

{
1 1 1
j1 j1 j1

}
× diagram D

= −
√

6 α(j1)α(j2)α(j3)× diagram D (125)

The terms inside the square brackets reduce the sum to the l = 1 term.
Diagram D is diagram B with l = 1 and it is given below in equation (127).
In the last step the following expression for the 6j-symbol is used. It can be
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1.6 The Graphical Action of the Flux Operator

found with the function SixJSymbol[] in Wolfram Mathematica.{
1 1 1
j1 j1 j1

}
= (−1)−2j1 1√

6

1

α(j1)
(126)

For the graphical action of the right hand side of equation (122), (119) is
used in combination with the graphical version of τm in equation (110) and
the ε-symbol in equation (117). The τm’s create a node with an open link
in the links 1, 2 and 3 and the ε-symbol is a new node that collects these
open links. The result is

i εijkL̂
i
1L̂

j
2L̂

k
3

j1

j2

j3

= −
√

6 (−i)4α(j1)α(j2)α(j3)× diagram D

D =

−

−

−

+

1 1

j1
1

j1

j2 j2

j3 j3

(127)

The left hand side of the commutation relation, equation (125), is equal to
the right hand side (127). A diagrammatic calculation has confirmed that
the commutation relation (122) between the flux operators holds for the
graphical action of the flux operator on wave function diagrams.
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1.7 The Graphical Action of the Holonomy Operator

In the last section the graphical action of the flux operator on wave function
diagrams was discussed. The holonomy operator has also a graphical action,
which will be used in this section to calculated the commutation relations
that involve the holonomy operator: [U,U ], [U,L] and [U,L2].

The holonomy operator is a multiplicative operator on the spin network
wave function. Its action was defined in equation (44):

(Ûl)
m
n ψSNW({Ul}) = D1(Ul)

m
n ψSNW({Ul}) (128)

On the right hand side the wave function is multiplied by an SU(2) matrix
in a fixed representation. This representation does not depend on the wave
function. Here the spin 1 representation is chosen. Graphically the holon-
omy operator acts as follows on a wave function diagram, of which only the
relevant part is shown:

(Û1)mn
j1

=
j1

U1

j = 1

m n

(129)

The link with the double arrow and labeled by spin j1 represents the SU(2)
matrix U1 in the spin j1 representation that is contracted with two Wigner
3j-symbols. The holonomy operator copies this element U1 in the spin 1 rep-
resentation and the open ends of this new link carry the magnetic numbers
m and n.

The right hand side of equation (128) is again a function of Ul, so ac-
cording to (44) the repeated action of U on the same link is

(Ûl)
m′
n′(Ûl)

m
n ψSNW({Ul}) = D1(Ul)

m′
n′ D1(Ul)

m
n ψSNW({Ul}) (130)

The action of the holonomy operator commutes with itself and this gives
the required commutation relation of equation (25):[

(Ûl)
m
n , (Ûl′)

m′
n′
]

= 0 (131)

Commutation Relation [U,L]

The commutator between the holonomy operator and the flux operator will
now be calculated. First the action of the flux operator on an SU(2) matrix
of the spin network wave function is repeated here from equations (45) and
(100):

L̂i f(Umn) = −i
d

dt
f
(

(U1/2)mp exp(tτ i)pq (U1/2)qn

)∣∣∣
t=0

(132)

L̂i Umn = −i (U1/2)mp(τ
i)pq (U1/2)qn
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1.7 The Graphical Action of the Holonomy Operator

To obtain a shorter notation the matrix representation is not explicitly writ-
ten. The complete notation is Umn = Dj(U)mn and a matrix in the spin
1 representation will be denoted below as Ůmn = D1(U)mn. The indices
m,n, p, q, r, . . . are magnetic numbers.

The action of U after L on the same link is

(Û1)mn L̂
i
1 (U1)pq = −i (Û1)mn (U3)pr(τ

i)rs (U2)sq

= −i (Û3)mu (Û2)un (U3)pr(τ
i)rs (U2)sq

= −i (Ů1)mn (U3)pr(τ
i)rs (U2)sq (133)

The L-operator cuts U1 into two equal parts: U1 = U3U2 where U2 = U3 =

U
1/2
1 . Next it is assumed that if the link on which U acts is made up of

multiple segments, l1 = l2 + l3, that then the operator U can be written as
a multiplication of the operators for each segment:

(Û1)mn = (Û3)mu (Û2)un (134)

In the semi-graphical notation of equation (101) the action of U after L is

(Û1)mn L̂
i
1

j1
= − i

j1 j1

U3 U2

U1

j = 1

m n

τ i (135)

When evaluating the action of L after U , it turns out that the product rule
applies to the flux operator, since it is a derivative operator, see equation (132):

L̂i Ûmn U
p
q = L̂i Ůmn U

p
q = (136)

− i
d

dt

(
(Ů1/2)mr exp(t̊τ i)rs (Ů1/2)sn(U1/2)pu exp(tτ i)uv (U1/2)vq

)∣∣∣
t=0

= −i (Ů1/2)mr (̊τ
i)rs (Ů1/2)sn U

p
q − i Ůmn(U1/2)pu(τ i)uv (U1/2)vq

The second term is equal to the result of equation (133). The commutator
[U,L] is then equal to minus the first term of (136) and in semi-graphical
form this is:

[
(Û1)mn, L̂

i
1

] j1
= i

j1

U
1/2
1 U

1/2
1

j = 1m nτ i

(137)

The right hand side of this equation is also realized by the following operator
expression: [

(Û1)mn, L̂
i
1

]
= i (Û3)mrD1(τ i)rs (Û2)sn (138)

The assumption of equation (134) is used here to split the operator U1 into
two parts. This commutation relation between the holonomy operator and
the flux operator is the one that was required in equation (25).

39



1.7 The Graphical Action of the Holonomy Operator

Commutation Relation [U,L2]

The last commutation relation that will be evaluated is the one between
the holonomy operator and the square of the flux operator. The opera-
tor L2 = LiL

i of equation (121) commutes with the flux operator, but it
does not commute with the holonomy operator. Using equation (138) the
commutation relation is[

(Û1)mn, L̂
2
1

]
=
[
(Û1)mn, L̂1i

]
L̂i1 + L̂1i

[
(Û1)mn, L̂

i
1

]
= i (Û3)mpD1(τi)

p
q (Û2)qn L̂

i
1 + i L̂1i (Û3)mpD1(τ i)pq (Û2)qn (139)

When the first term on the right hand side acts on a link of a wave function
diagram as before, the result is

− i2 τ i

j = 1

m n
τi

= −(−i)2α(1)α(j1) −

+

1

m n

j1 j1

11

(140)

There is a sum over the index i on the left hand side. The graphical expres-
sion on the right hand side is obtained from (120). When the last term of
equation (139) acts on a wave function diagram, the product rule applies to
the action of the L-operator and the result is, again with a sum over i:

iL̂1i
j1

j = 1

m n
τ i

= −i2
j1

j = 1

m n
τ iτi

− i2 τi

j = 1

m n
τ i

= −2
j1

j = 1

m n

− (−i)2α(1)α(j1) −

+

1

m n

j1 j1

11

(141)

In the first step the ordering rule (103) is used to position the τi in the top
link. The first term is equal to the action of −L2 on the top link. In (121)
it was calculated that the eigenvalue of L2 is j(j + 1). The second term is
equal to equation (140), since the arrow on a link with integer spin can be
reversed for free, see equation (59).

The action of the complete commutator on a link is then

[
(Û1)mn, L̂

2
1

] j1
=
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− 2
j1

U1

j = 1

m n

+ 2
√

6α(j1)

1

m n

j1 j1

U3 U2

U2U3

11

(142)

It was checked numerically that these terms do not cancel each other. The
right hand side can also be obtained by acting with the following operator
expression:[

(Û1)mn, L̂
2
1

]
= −2(Û1)mn + 2 i (Û3)mpD1(τi)

p
q (Û2)qn L̂

i
1 (143)

The holonomy operator and the square of the flux operator do not commute,
[U,L2] 6= 0. The formalism of quantum mechanics states that the physical
properties that correspond to these operators can not known together at the
same time with infinite precision.

Conclusion

In the last two sections it was shown that the classical Poisson brackets of
equation (24) are implemented as the commutation relations between the
operators L and U when they act on the spin network wave functions. The
assumptions that were made to achieve this were the ordering rule for the
L-operator of equation (103) and the ability of the U -operator to be split
into multiple operators for segments of a link, as defined in equation (134).
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Spin networks were described in section 1.1 and it was stated there that the
nodes of a spin network represent pieces of volume and that links represent
the contact surfaces between these pieces of volume. In a quantum theory,
operators that correspond to observables determine the physical interpreta-
tion of the theory, so the geometrical interpretation of spin networks is only
justified if this is supported by geometrical operators. These geometrical
operators exist and in this way loop quantum gravity succeeds in creating a
quantum version of space, but the classical limit that connects this quantum
space to a classical space has not been established. In this section the con-
ventional area and volume operators of loop quantum gravity are described
and the spectrum of the volume operator is calculated diagrammatically.

Area operator

In section 1.2 classical general relativity was rewritten in the Ashtekar vari-
ables. From these Ashtekar variables new variables were constructed that
were defined on spin networks. For every link there was an SU(2) holonomy
Ul and a flux vector Lil. A link of a spin network represents a surface that
connects two pieces of volume and the length of the flux vector Lil is equal
to the area of this surface, see equation (21).

In the quantum theory, a link of a spin network carries a spin number j
and the link is an eigenstate of the operator L2

l with eigenvalue j(j+ 1), see
equation (121). These eigenvalues are interpreted as the square of the area
of the surface that is represented by the link. The area operator that acts
on a link l and its eigenvalues are

ˆArea(l)2 = (l0)4L̂2
l Area(j) = (l0)2

√
j(j + 1) (144)

l0 =
√

8πγ lP =

√
8πG~γ
c3

Here is γ the dimensionless Immirzi parameter that sets the length scale l0
relative to the Planck length lP .

The spectrum of the area operator is discrete. This means that indi-
visible pieces of area can only have one of these discrete area values. Any
surface is composed of multiple of these pieces, such that the area of any
surface can only take discrete values.

Volume operator

A tetrahedron is a volume that is bounded by four triangular faces. In a
spin network it is represented by a node with four links, see figure 2. Such a
4-valent node is the most simple building block of volume in a spin network.
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1.8 The Area and Volume Operators

Figure 2: On the left a tetrahedron with arrows that are normal to the faces.
On the right the 4-valent node of a spin network that is dual to
this tetrahedron.

The volume of a tetrahedron was expressed in the flux vectors in equation
(23). Following sections 1.3 and 7.5.3 of [Rovelli and Vidotto] the same
expression can be reached in the following way: Consider a tetrahedron in
Euclidean space. Construct for every face of the tetrahedron a vector ~L
that is normal to the face and which length is equal to the area of the face.
Express the volume of the tetrahedron in these vectors ~L. The operator
expression for the volume of a 4-valent node is then obtained by replacing
the vectors ~L by the operators (l0)2L̂i.

The volume of a tetrahedron in terms of the vectors ~L is

Volume2 =
2

9

(
~L1 × ~L2

)
· ~L3 =

2

9
εijkL

i
1L

j
2L

k
3 (145)

The labels 1, 2 and 3 indicate to which face the vectors belong. This equation
is valid for any combination of three L-vectors, since ~L1 + ~L2 + ~L3 + ~L4 = 0.
The square of the volume can be positive or negative depending on the
combination of L-vectors.

The vectors are now replaced by operators such that the volume operator
acts on three of the four links that connect in a 4-valent node. An operator
Q with eigenvalues q is defined for convenience. The volume operator and
the volume eigenvalues of a node n are

Q̂n = εijkL̂
i
1L̂

j
2L̂

k
3 (146)

ˆVolume(n)2 =
2

9
(l0)6 Q̂n Volume(n) =

√
2

3
(l0)3

√
|qn|

Volume Calculation

In section 7.5.3 of [Rovelli and Vidotto], the spectrum of the volume opera-
tor is calculated by placing the volume operator of equation (146) inside a
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node inner product: 〈n′|V̂ |n〉. This is done because volume is a property of
a node.

Here the volume spectrum will be calculated in a different way. The vol-
ume operator consists of L-operators and here these L-operators are defined
to act on spin network wave functions, not on node states. The L-operator
has a graphical action on wave function diagrams, which was described in
section 1.6, and this defines also a graphical action for the volume operator
on wave function diagrams. This graphical action is used here together with
the techniques for diagrammatic manipulation of section 1.3 to calculate the
spectrum of the volume operator.

However, there is a problem. The diagrammatic manipulation of sec-
tion 1.3 is only possible when the links represent the identity matrix and
not when the links represent a general SU(2) matrix. This can be solved
by letting the L-operator act at the end of a link, near the node, but here
the choice was made to let the L-operator act in the middle of a link, see
equation (45). The calculation can still be done if the volume operator acts
on a spin network wave function where all the holonomies are the identity
element:

Q̂n ψSNW({Ul = 1}) (147)

This is not the most general spin network wave function and in this sense the
calculation is incorrect, but this approach does lead to the usual spectrum
for the volume operator.

The graphical action of the Q-operator was given in equation (127). It
is a 3-valent node that grasps three links. Here it acts on a 4-valent node
with an internal link with spin k. Diagrammatic manipulation is then used
to reduce the diagram back to the form of the initial 4-node. The diagram is
multiplied by the normalization constant for the node, which is

√
2k + 1, see

equation (97). The diagrammatic evaluation of the action of the Q-operator
is shown on the next page, where only one node of the wave function diagram
is shown.

The links with spin j1 to j4 have a single arrow to indicate that these
links represent the identity matrix, U1 = U2 = U3 = U4 = 1. To reduce the
diagram, two times a loop with four nodes is removed with (71). On the
third line the calculation is continued with only the diagram. During the
calculation, node signs are changed at the cost of (−1)j1+j2+j3 and arrows
on the links are reversed at the cost of (−1)2j , see equations (54) and (59).

The limits on the sums are set by the Clebsch-Gordan conditions (51).
The spins l and h take integer steps between these values:

lmin = max {|j1 − 1|, |j2 − k|} hmin = max {|j1 − j2|, |j3 − j4|} (148)

lmax = min {j1 + 1, j2 + k} hmax = min {j1 + j2, j3 + j4}

The limits on the final internal spin h are the same as on the initial internal
spin k.
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εijkL̂
i
1L̂

j
2L̂

k
3√

2k + 1

+

−

k

j1 j2

j3 j4

=

i
√

6α(j1)

α(j2)α(j3)
√

2k + 1
+

−

+

+ −
+

k

j1

j1

j2

j2

j3

j3
j4

11

1 (149)

=

i
√

6α(j1)

α(j2)α(j3)
√

2k + 1

(−1)2j1∑
l(2l + 1){
1 j1 l
j1 1 1

}
{
j2 k l
j1 1 j2

} +

+

+

−

k

l

j1
j2

j3

j3
j4

1 ← diagram E

E =

(−1)2j3+1

(−1)j3+j4+k

(−1)2j3

−

+

−

+

1 k

lj1 j2

j3 j3
j4

=

−(−1)j3+j4+k∑
h(2h+ 1){
j2 j1 h
1 k l

}
{
j4 j3 h
1 k j3

}
+

−

h

j1 j2

j3 j4

The complete action of the Q-operator is:

Q̂
√

2k + 1 k =
∑
h

ch(k)
√

2h+ 1 h (150)

ch(k) = −i
√

6α(j1)α(j2)α(j3) (−1)2j1+j3+j4+k
√

2k + 1
√

2h+ 1 ×

×
{

1 k h
j4 j3 j3

}∑
l

(2l + 1)

{
1 1 1
l j1 j1

}{
1 j1 l
k j2 j2

}{
1 k h
j2 j1 l

}
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The spins in the 6j-symbols are rearranged using equation (B.10). The
action of the volume operator is not diagonal in the sense that the resulting
node does not have the same spin on the internal link. The result is a sum
over nodes with different internal spins. This results in a matrix for the
volume operator. The eigenvectors of this matrix are the superpositions of
node states on which the volume operator is diagonal. An eigenvalue gives
the physical volume of such a volume eigenstate.

The matrix notation associates the unit vector ~e1 with kmin and column
(k− kmin + 1) of the Q-matrix is the standing vector ch(k). When the spins
j are specified, the 6j-symbols in the coefficients ch(k) can be calculated.
For the following matrices the Java source code that is available with the
article [Mathar] was used to calculate the values of the 6j-symbols.

For the monochromatic node, where all spins j are equal, the Q-matrices
for the lowest three spin values are

Qj=1/2 =

√
3

4

(
0 −i
i 0

)
Qj=1 =

1√
3

 0 −2 i 0

2 i 0 −
√

5 i

0
√

5 i 0



Qj=3/2 =


0 −2.165 i 0 0

2.165 i 0 −3.098 i 0
0 3.098 i 0 −2.662 i
0 0 2.662 i 0

 (151)

The values in the last matrix are rounded to three decimal places. These ma-
trices are the same as the ones found in section 7.5.3 of [Rovelli and Vidotto].
The node state of the 4-valent node is denoted as |k〉 where k is the spin on
the internal link. The eigenvalues and the eigenstates of the Q-operator for
the lowest three spin values are:

j = 1/2 : q± = ±
√

3/4 |q±〉 = i/
√

2 |0〉 ∓ 1/
√

2 |1〉 (152)

j = 1 : q0 = 0 |q0〉 =
√

5/3 |0〉+ 2/3 |2〉
q± = ±

√
3 |q±〉 = ±

√
2/3 |0〉+ i/

√
2 |1〉 ∓

√
5/3
√

2 |2〉
j = 3/2 :

q1,± = ±1.299 |q1,±〉 = 0.645 i |0〉 ∓ 0.387 |1〉+ 0.289 i |2〉 ∓ 0.592 |3〉
q2,± = ±4.437 |q2,±〉 = −0.289 i |0〉 ± 0.592 |1〉+ 0.645 i |2〉 ∓ 0.387 |3〉

Volume Eigenvalues

The volume eigenvalues are related to the eigenvalues of the Q-operator as
described by equation (146). Monochromatic 4-nodes with integer spin have
a zero eigenvalue. The nonzero volume eigenvalues are double degenerate,
the zero eigenvalues are not degenerate. The volume eigenstates are the
same as the eigenstates of Q̂. A 4-valent node in a volume eigenstate is a
linear combination of 4-nodes with different internal spins k.
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Figure 3: Volume eigenvalues of the monochromatic 4-valent node (crosses)
and the volume of a regular Euclidean tetrahedron (line).

Figure 3 is a plot of the volume eigenvalues for the monochromatic 4-
valent node, up to spin j = 10. Similar plots can be found in chapter 4
of [Haggard]. Section 7.3 of [Brunnemann and Rideout] contains a formula
for the characteristic polynomial of the Q-matrix for any spin j. This for-
mula was used to calculate the volume eigenvalues for this plot.

The monochromatic 4-node represents an equal-sided tetrahedron. The
tetrahedron that has six edges of equal length is equal-sided and is called
the regular tetrahedron. The relation between the face area and the volume
for a regular Euclidean tetrahedron with edge length a is:

Face Area =

√
3

4
a2 Volume =

a3

6
√

2

Volume =
23/2

37/4
(Face Area)3/2 (153)

When the area eigenvalues of equation (144) are entered here for the face
area, the result is an expression for the volume of a regular Euclidean tetra-
hedron in terms of j:

Area/(l0)2 =
√
j(j + 1) Volume/(l0)3 =

23/2

37/4
(j(j + 1))3/4 (154)

This relation is plotted as the line in figure 3. All the quantum volume
eigenvalues are below this line.
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Interpretation

How should this volume spectrum be interpreted? A triangle is uniquely
defined by the lengths of its three edges. A Euclidean tetrahedron is not
uniquely defined by the areas of its four faces. A tetrahedron has six de-
grees of freedom, for example the lengths of the six edges. This means that
the volume is still a free parameter when the areas of the faces are fixed.
In the case that is treated here, where all four faces have equal area, the
volume is maximal for the regular tetrahedron, but it can be arbitrarily
small. Consider for example the following tetrahedron that is defined by
the coordinates of its four corners and that is pictured here as seen from
the positive z-direction. This tetrahedron has four faces of equal area and
a small volume:

v1

v2

v3

v4

x

y

~v1 = (0; 0; 0) ~v2 = (1; 0; 0)

~v3 = (0.001; 1; 0) ~v4 = (0.999; 0.998; 0.06)

Area = 0.5 Volume = 0.01

This means that every point in the area below the line and including the line
in figure 3 corresponds to a valid classical tetrahedron. Every point below
the line corresponds in fact to a 1-dimensional family of tetrahedra. When
the face areas and volume are specified, there is still one degree of freedom
left, for example the length of the edge from ~v1 to ~v2.

This is different in the quantum theory. The area operator limits the
face areas of a quantum tetrahedron to discrete values, because the spin
values are discrete. The volume operator limits the allowed tetrahedra to
the ones that have one of the discrete volumes that are plotted as the crosses
in figure 3. All these quantum tetrahedra are Euclidean tetrahedra. A spin
network that consists of only 4-valent nodes resembles then the piecewise
flat geometry of a 3-dimensional Regge space, except for the following:

The state of a node is uniquely determined by the observables area and
volume. This state is labeled by the spins on the links that connect in the
node and by the internal structure and internal spin of the node. Therefore,
the area operator and the volume operator form a complete set of observables
for a node of a spin network. This means that you can know at the same
time the face areas and the volume of a quantum tetrahedron precisely,
but the last degree of freedom is then quantum spread. A classical angular
momentum vector ~L has three degrees of freedom. Quantum-mechanically
only two degrees of freedom can be known at the same time: L2 and Lz. Here
the classical tetrahedron has six degrees of freedom and for the quantum
tetrahedron only five of these can be known at the same time.
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To sum up, the area and volume operators of loop quantum gravity
define quantum building blocks of 3-dimensional space that are Euclidean
tetrahedra with discretized values for face area and volume that are quantum
spread in at least one degree of freedom.

In this formalism the building blocks of quantum space do not have a
well defined shape. As a result it is difficult to construct meaningful spin
networks. The goal is to construct spin networks that have the geometrical
properties of a spatial slice of a classical spacetime, but there are no results
in this direction. It is not clear how spin networks should be used.

The second part of this thesis describes a model for quantum space that
is based on a different interpretation of the volume operator and in this
model it is possible to make the connection to classical metrics.
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Figure 4: On the left a 6-valent node of a spin network and the piece of
volume that it represents. On the right a 3-dimensional sketch of
the node decomposition, where the dashed lines are internal links.

2 A New Model for Quantum Space

In this part a new model for quantum space in loop quantum gravity is
introduced. In this model it is possible to put the information of a metric
into a spin network. The spin network defines then the microscopic struc-
ture of this metric. It uses spin networks with 6-valent nodes in a cubic
structure and all the links have spin 1. First the 6-valent node is studied in
section 2.1. In section 2.2 the conventional volume operator is re-interpreted
as the creation operator for volume. New operators that measure the geo-
metrical quantities length, area and volume in a spin network are defined in
section 2.3. In this new formalism, spin network states can be constructed
that have the geometrical properties of the spatial part of a classical metric.
How this can be done is discussed in section 2.4. This method is used to
construct spin networks for flat space in section 2.5, for the Schwarzschild
metric in section 2.6 and for plane gravitational waves in section 2.7.

2.1 The 6-Valent Node

In loop quantum gravity a spin network represents a piece of a 3-dimensional
spacelike slice of spacetime. Nodes represent pieces of volume and links
indicate how these volumes are connected to each other and they represent
the contact surface between the pieces of volume. This was discussed in
section 1.1.

The volume eigenvalues of a 4-valent node, the quantum version of a
tetrahedron, were calculated in section 1.8. A disadvantage of using the
tetrahedron as the fundamental building block is the fact that the regular
tetrahedron can not fill 3-dimensional Euclidean space. The only regular
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polyhedron that can fill R3 is the regular hexahedron, the cube. For this
reason the 6-valent node is an interesting object to study.

The 6-node is the dual of a hexahedron, which is a volume that is
bounded by six faces. The general hexahedron is a complicated object. For
example, a hexahedron can be constructed as follows: Start with a tetrahe-
dron and cut off one corner. This is a pentahedron. Then cut off one of the
corners of the pentahedron. The resulting object is a hexahedron. In general
the six faces are a mix of triangles, squares and pentagons. Because of its
complexity, the physical relevance of such a general hexahedron is unclear.

More interesting than the general hexahedron is the parallelepiped, which
has six faces that are parallelograms. One can fill 3-dimensional space by
repeating the same parallelepiped in all directions. It is also always clear
which two faces are opposite faces, because they are parallel to each other,
and these opposite faces have the same area.

It was discussed in section 1.2 that a node of a spin network state carries
an internal decomposition into 3-valent nodes. Multiple decompositions are
possible for a 6-valent node, but the properties of the parallelepiped lead to
a natural choice: Connect two links that represent opposite faces together in
a 3-valent node. For the three pairs of opposite faces this gives three internal
links that can be joined in an internal node. This is shown in figure 4 for a
special parallelepiped, the cube.

This is the natural choice for the decomposition, since no additional
information is needed to decide which two links are connected to each other
in the decomposition.

Spin Network Wave Function

A spin network state was defined in equation (34) as an unembedded spin
network where the links are oriented and carry a half-integer spin value,
and where every node has an internal decomposition into 3-valent nodes. A
6-valent node with the decomposition of figure 4 looks as follows in a spin
network state:

|SNW〉 ∼
ni

kx
kz

ky

nx
jx1

jx2

nyjy1 jy2

nz

jz2

jz1

(155)

The j’s are spins on normal links and the k’s are spins on internal links.
The n’s label the nodes. The spin network wave function was defined in
equation (35). It assigns an SU(2) element to each link of a spin network.
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Every 3-valent node is represented in the wave function by a Wigner 3j-
symbol and a link with spin j is represented by an SU(2) matrix in the spin
j representation. An internal link is represented by the identity matrix.
The arrows of the orientation of the links determine the index contraction:
An arrow points away from an upper index. The order of the spins in a
3j-symbol was defined in section 1.4: The lowest link number goes first
and normal links go before internal links. The 6-node of equation (155) is
represented in a spin network wave function as

ψSNW({Ul}) ∼
(
jx1 mx2 mx

mx1 jx2 kx

)
x

(
jy1 my2 my

my1 jy2 ky

)
y

×

×
(
jz1 mz2 mz

mz1 jz2 kz

)
z

(
kx ky kz
mx my mz

)
i

(156)

This expression does not include the links that are connected to the node.
The internal links are represented by the summations over the indices mx,
my and mz.

In section 1.3 it was described how a spin network wave function can be
represented by a 2-dimensional diagram. Section 1.4 contains examples of
these wave function diagrams. A 3j-symbol is represented by a node with
three links. A node sign indicates how the indices are read off from the
node, where a +-sign means counterclockwise. The arrows point again away
from an upper index and if a link has a single arrow, then it represents the
identity matrix. If it has a double arrow, it represents an SU(2) matrix.
The diagrammatic version of the wave function of equation (156) is

ψSNW({Ul}) ∼
+

+

ky

jy1 jy2

+

kz jz1

jz2
+

kx

jx1

jx2 (157)

The spin of a link is a measure for the area of the surface that it represents,
see equation (144). For a 6-node that represents a parallelepiped, the two
non-internal links that are joined in a 3-node of the decomposition need to
have the same spin, since opposite faces of a parallelepiped have the same
area. For example, jx1 = jx2 = jx. The spin values on the internal links
are limited by the Clebsch-Gordan conditions of equation (51): The sum of
three connected spins must be integer and no spin can be larger than the
sum of the other two. The possible spins on the internal links are

ka = 0, 1, . . . , 2ja (158)
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2.1 The 6-Valent Node

The three internal links are connected in a node, so kx, ky and kz also have
to satisfy the condition

|kx − ky| ≤ kz ≤ kx + ky (159)

The representation of a 6-valent node in a wave function diagram as in
equation (157) will be important in section 2.2.

Volume

The volume eigenvalues of a 4-valent node were calculated in section 1.8.
First the classical volume of a tetrahedron was expressed in the vectors ~L
that are normal to the faces of the tetrahedron and have a length that is
equal to the area of the face. Then these vectors were replaced by the
L-operators that were discussed in sections 1.2 and 1.6, to arrive at the
expression for the volume operator.

The volume of a Euclidean parallelepiped is related to the volume of
a tetrahedron. Three edges that connect in one point define both a par-
allelepiped and a tetrahedron. The faces of the parallelepiped have twice
the area of the faces of the tetrahedron and the parallelepiped has six times
the volume of the tetrahedron. The expression for the volume of a tetra-
hedron in equation (145) leads then to an expression for the volume of a
parallelepiped:

Volume2 = 62 2

9

(
1

2

)3 (
~L1 × ~L2

)
· ~L3 =

(
~L1 × ~L2

)
· ~L3 (160)

The vectors ~L are here the vectors that belong to three faces of the paral-
lelepiped that connect in one corner. They are normal to these faces and
their length is equal to the area of the face. When the vectors ~Ll are replaced
by the flux operators L̂il the volume operator for a parallelepiped is

ˆVolume2 = (l0)6 Q̂ = (l0)6 εijkL̂
i
1L̂

j
2L̂

k
3 (161)

The calculation of the volume eigenvalues of section 1.8 can be repeated for
the parallelepiped by acting with the diagrammatic version of this volume
operator on the wave function diagram of equation (157). The result for the
4-valent node was given in equation (150) and similarly the result for the
parallelepiped is:

Q̂ Ckxkykz
+

ky

kzkx =
∑
lx,ly ,lz

alxlylz(kx, ky, kz)Clxlylz
+

ly

lzlx

(162)
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Figure 5: Volume eigenvalues of the monochromatic 6-valent node (crosses)
and the Euclidean volume of a cube (line).

The normalization constant for this node is Cjkl =
√

2j + 1
√

2k + 1
√

2l + 1,
see section 1.5. The coefficients are

alxlylz(kx, ky, kz) = i
√

6α(jx)α(jy)α(jz) (−1)2jx+2jy+2jz (−1)lx+ly+lz ×

×
√

2kx + 1
√

2ky + 1
√

2kz + 1
√

2lx + 1
√

2ly + 1
√

2lz + 1 ×

×
{

1 kx lx
jx jx jx

}{
1 ky ly
jy jy jy

}{
1 kz lz
jz jz jz

}
×

×
∑
h

(2h+ 1)

{
1 kx lx
ly lz h

}{
1 ky ly
kx h kz

}{
1 kz lz
h 1 1

}
(163)

The sum over h goes in integer steps from hmin to hmax:

hmin = max {|lz − 1|, |kx − ly|} hmax = min {lz + 1, kx + ly} (164)

The monochromatic 6-valent node connects six links that carry the same spin
value, jx = jy = jz = j. In that case is the matrix version of the operator Q
a Hermitian matrix with real eigenvalues q. The volume eigenvalues of the
monochromatic 6-valent node are then

Volume = (l0)3
√
|q| (165)

The Euclidean cube has a certain relation between the area of its faces and
its volume. With the area spectrum of equation (144) the relation between
the spin j and the volume of a Euclidean cube is

Area = (l0)2
√
j(j + 1) Volume = Face Area3/2 = (l0)3(j(j + 1))3/4

(166)
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2.1 The 6-Valent Node

The volume eigenvalues of the monochromatic 6-valent node up to spin j = 3
are plotted in figure 5 together with this relation.

The interpretation of this volume spectrum is similar to the interpreta-
tion of the volume spectrum of the 4-valent node. There is no equal-sided
parallelepiped with more volume than the cube, given a certain face area,
and the volume can be as small as zero. Every equal-sided Euclidean par-
allelepiped corresponds to a point on or below the line in figure 5. The face
areas are discretized by the area operator and the volume operator again
selects the Euclidean parallelepipeds that correspond to the crosses as the
volume eigenstates of the monochromatic 6-node in the quantum theory.
The parallelepiped and the tetrahedron both have six degrees of freedom,
since they are both defined by three edges that connect in one corner. Again
the area and volume operators do not describe all these degrees of freedom.
When these 6-valent nodes are used as the quantum building blocks of space
is it again unclear how one can make the connection between spin networks
and classical space in an appropriate classical limit.
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2.2 The Volume Operator creates Volume

It is difficult to construct physically meaningful spin network states based
on the building blocks defined by the volume spectra of section 1.8 and the
last section. Therefore, a different interpretation of the volume operator
could be justified.

The diagrammatic approach to loop quantum gravity makes the follow-
ing observation possible: The volume operator for the parallelepiped was
defined in equation (161). It is proportional to εijkL̂

i
1L̂

j
2L̂

k
3. The graphi-

cal action of this operator on a wave function diagram was derived in sec-
tion 1.6. This graphical action is a 3-valent node that grabs three existing
links. Equation (127) is repeated here:

ˆVolume2 ψSNW({Ul}) = (l0)6εijkL̂
i
1L̂

j
2L̂

k
3

j1

j2

j3

= i
√

6 (l0)6α(j1)α(j2)α(j3)

−

−

−

+

1 1

j1
1

j1

j2 j2

j3 j3

(167)

On the other hand, a 6-valent node with the decomposition of the figure on
page 50 is represented in a wave function diagram as in equation (157):

ψSNW({Ul}) ∼
+

+

ky

jy jy

+

kz jz

jz
+

kx

jx

jx (168)

When these two diagrams are compared it turns out that the diagrammatic
version of the volume operator has the same structure as a 6-valent node.
Three links connect in a 3-valent node and the other ends of these links
connect to three different links. The conclusion is that the volume operator
adds a 6-valent node to a spin network. Since a node of a spin network
represents a piece of volume, the volume operator adds volume to a spin
network. In this way the volume operator does not measure the volume, it
can be interpreted as the creation operator for volume.
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2.2 The Volume Operator creates Volume

The volume operator adds a node to a spin network as follows: The
volume operator in equation (167) grabs three links. The spin 1 links in
that diagram are interpreted as internal links. In an embedding of a spin
network, the internal structure of a node is not visible. This means that the
links on which the volume operator acts are pulled together to form a new
node. For example, the volume operator that acts on the links l1, l3 and l5
of the following spin network creates the new 6-valent node at the center:

V̂135

l6

l1

l2l3

l4

l5

→

l6

l2

l4 →

l6

l2

l4

The expression for the volume operator for the 6-valent node was derived
from the classical expression for the volume of a Euclidean parallelepiped,
see equation (160). Therefore, the next assumption is that the node that
is created by the volume operator represents a piece of Euclidean space. It
follows from the diagram in equation (167) that the 6-valent node with spin
1 on the three internal links is a piece of flat space.

This interpretation of the volume operator is only possible when the
L-operator acts inside a link and not at an endpoint of a link. This is the
reason why this choice was made in equation (24).

To summarize, this new interpretation of the volume operator is:

• The volume operator does not measure the volume, it is the creation
operator for volume, since it adds a 6-valent node to a spin network.

• The 6-valent node with the decomposition of the figure on page 50 with
spin 1 on the three internal links represents a piece of flat space.

Two remarks have to made. The graphical version of the volume operator is
interpreted as the creation operator for volume, but this graphical operator
is not derived from the expression for the volume, but from the expression
for the square of the volume. Also the numerical constant in front of the
last diagram in equation (167) is not used in this interpretation.

In the next section a new set of operators that measure area, volume
and length in a spin network will be defined in such a way that the 6-valent
node with spin 1 on the internal links has the geometrical properties of a
piece of flat space.
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Figure 6: A 2-dimensional picture of a spin network with a cubic structure.
The real spin network is 3-dimensional. All the links have spin 1.
The dashed lines are the boundaries of the cubic regions repre-
sented by the nodes.

2.3 New Geometrical Operators

In the last section the standard volume operator of loop quantum gravity was
interpreted as the creation operator for volume. It creates a 6-valent node
that has spin 1 on the internal links and this node is interpreted as a piece
of flat space. Because of this alternative interpretation there is no longer an
operator that measures volume. In this section a new set of operators will
be defined that measure the geometrical quantities length, area and volume
in a spin network.

The goal of the following construction is to create spin networks that have
the geometrical properties of classical space. General relativity differentiates
between coordinate distances and physical distances. The 6-valent nodes are
placed in a cubic structure as in figure 6. The distances in this figure are
coordinate distances, where the coordinates are chosen such that coordinate
distances are equal to physical distances when the masses go to zero and
space is flat. The spins on the internal links of a node define the node state
and these node states determine the physical distances in the spin network.
Operators extract this geometrical information from the spin network. But
regardless of the node state, a node always represents a cube in coordinate
distances as in figure 6.

The 6-valent node with spin 1 on the internal links that is created by the
volume operator is interpreted as a piece of flat space and this node state is
assumed to be the central state of the spectrum. This is realized if all the
links carry a spin 1. That is, all the normal links that are visible in figure 6,
not the internal links of the node decompositions. The spins on the internal
links are then limited to k = 0, 1, 2, see equation (158), and the 6-node with
spin 1 on the internal links is at the center of the spectrum.
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Length(y)
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Figure 7: On the left a 6-valent node and the definitions of length, area
and volume. On the right a 3-dimensional sketch of the node
decomposition, where the dashed lines are internal links.

The node with spin 1 on the internal links must be physically a Eu-
clidean cube, while the other possible node states allow the nodes to have
physical volumes that differ from the Euclidean volume, while these nodes
still represent a cube in coordinate distances. A spin network can represent
flat space in this way and it can also deviate from it as is allowed in general
relativity.

Length, Area and Volume

A set of geometrical operators will now be constructed that implement the
above ideas. On the right in figure 7 the decomposition of the 6-valent node
is shown. The three internal links are each associated with one of the three
orthogonal directions defined by the cube. For example, the internal link
that is labeled by y is connected to the two links that run in the y-direction.
The following model is based on this assumption:

The spin on the internal link that is labeled by y is related to
the physical length in the y-direction inside the cube between
the two opposing faces.

The definition of the length in the y-direction is shown on the left in the
figure 7. Suppose that there is a length operator that measures this distance.
It acts on an internal link and its eigenvalue is a function of the spin on that
link. This length operator defines an area operator that measures the area
in the x-y plane inside the node. Let the length operator act on the internal
links labeled by x and y and take the product:

ˆArea(x, y) =
∏
a=x,y

ˆLength(a) (169)
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2.3 New Geometrical Operators

This area operator is also defined for the combinations (x, z) and (y, z). The
area that is measured by the operator Area(x, z) is shown in figure 7.

Let the length operator act on all three internal links. The product is
the physical volume represented by the node:

ˆVolume =
∏

a=x,y,z

ˆLength(a) (170)

This volume is shown as the cube in figure 7.

Length Operator

An area and volume operator are now defined in terms of a length operator.
The next step is to construct this length operator. It should act on a link
and its eigenvalues should be a function of the spin on that link. The most
simple form for this operator is a linear combination of the square of the
flux operator and the identity operator:

ˆLength = lP a
(
L̂2 + b1̂

)
lP =

√
~G
c3
≈ 10−35m (171)

The Planck length lP is included, since the granulation of space is expected
to happen around this length scale. a and b are free parameters. a sets the
scale relative to the Planck length.

A link that carries a spin k is an eigenstate of the operator L̂2 with
eigenvalue k(k + 1), see equation (121). This link is then also an eigenstate
of this length operator and the length eigenvalue is:

Length(k) = lP a
(
k(k + 1) + b

)
(172)

The parameter b can be fixed by making an assumption about the spectrum
of the length operator. Internal links can have spin 0, 1 or 2 and spin 1 is
associated with flat space. At the beginning of this section it was assumed
that the Euclidean length element is the center of the spectrum. Now it
is assumed that the length eigenvalues for the spins 0 and 2 are inversely
proportional to each other. The reason for this choice will be given on
the next page. Inverse proportionality means that if the maximum length
is twice the Euclidean length, that then the minimum length is half the
Euclidean length:

Length(k = 2)

Length(k = 1)
=

Length(k = 1)

Length(k = 0)
(173)

Equation (172) gives the following length eigenvalues:

Length(k = 0) = lP ab

Length(k = 1) = lP a(2 + b) (174)

Length(k = 2) = lP a(6 + b)
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With these length eigenvalues, the requirement of equation (173) leaves only
one possible value for b:

6 + b

2 + b
=

2 + b

b
⇒ b = 2 (175)

An equidistant length spectrum is not possible with the linear combination
of equation (171). If the length scale of the theory is defined as lLQG = 4 lP a,
the operators for length, area and volume are

ˆLength(n, a) = lLQG

(
L̂2
a + 21̂

)
/4 (176)

ˆArea(n, a, b) =
∏

2 internal links
c= a,b

ˆLength(n, c) ˆVolume(n) =
∏

3 internal links

ˆLength(n, a)

These operators act on a node n and on internal links of that node that are
labeled by a = x, y, z.

Inverse Proportionality

The minimum and maximum length eigenvalues were required to be the
inverse of each other in equation (173). This choice is based on the fact
that one often encounters inverses when working with general relativity.
For example in the following situation: An observer A at infinity in the
Schwarzschild space uses coordinates such that coordinate distances are
equal to physical distances in his vicinity. At different locations this is no
longer the case. In particular the relation between the coordinate distance
and the physical distance on the radial line through the observer’s location
is

ds2 = grr(r)dr
2 =

dr2

1− rs/r
(177)

A second observer B who is located along the same radial line and is sta-
tionary at the location r = r0, uses a different coordinate z along this radial
line. The radial length element in this coordinate is

ds2 = grr(r)dr
2 = grr(r(z))

(∂r
∂z

)2
dz2 = gzz(z)dz

2 (178)

Observer B chooses the coordinate z such that he is at the location z = 0
and such that coordinate distances are equal to physical distances in his
vicinity. The linear coordinate transformation that achieves this is

z(r) =
r − r0√
1− rs/r0

r(z) = z
√

1− rs/r0 + r0 (179)

The metric component that observer B uses to describe radial distances is

gzz(z) = grr(r(z))
(∂r
∂z

)2
=

r0 + z
√

1− rs/r0

r0 + z/
√

1− rs/r0

(180)
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B A

r = r0 ∞
grr = 1/(1− rs/r0) 1

gzz = 1 1− rs/r0

Figure 8: Two observers A and B on the same radial line in Schwarzschild
space and the values of the metric components that they use.

This metric component has the property that gzz(z = 0) = 1 as required
and in the limit where z goes to infinity it is

lim
z→∞

gzz(z) = 1− rs/r0 (181)

When this limit is compared to grr(r0) in equation (177) the conclusion is
that the deformation of the length element that the two observers see at each
other’s location is the inverse of each other. This is illustrated in figure 8. It
seems therefore appropriate to use a length spectrum where the eigenvalues
are inversely proportional to each other.

Spectra

Operators that measure the physical length, area and volume in a spin
network are now defined. These operators commute with each other and
the node states are simultaneous eigenstates of length, area and volume.
The eigenvalues are given on page 63.

Some remarks about these spectra. The length operator measures the
physical distance inside a coordinate cube between two opposing faces. The
spins on the three internal links contain this length information for the three
pairs of opposing faces. The length operator acts on a node n and on an
internal link of that node with spin ka. It is denoted as Length(n, a). The
spin on an internal link can be 0, 1 or 2 and the length eigenvalues are
respectively 1/2, 1 and 2 times the loop quantum gravity length scale. A
higher spin value gives more length in that direction.

A special node decomposition was defined for the nodes of the cubic
spin network in section 2.1. Once the decomposition of a node is given,
the node states are labeled by the three spins on the internal links. These
three internal spins have to satisfy the Clebsch-Gordan conditions, since the
internal links connect in an internal 3-node. One internal spin can not be
larger than the sum of the other two, see equation (159). This leads to
the fifteen volume eigenstates for a node that are listed in the table. The
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2.3 New Geometrical Operators

Eigenvalues for Length, Area and Volume

Length(n, a) = lLQG
(
ka(ka + 1) + 2

)
/4

Area(n, a, b) =
∏

2 internal links
c= a,b

Length(n, c) Volume(n) =
∏

3 internal links

Length(n, a)

Length

Spin k Length/lLQG
0 1/2
1 1
2 2

Area

Spins (ka, kb) Area/(lLQG)2

(0, 0) 1/4
(0, 1) 1/2
(1, 0) 1/2
(1, 1) 1
(0, 2) 1
(2, 0) 1
(1, 2) 2
(2, 1) 2
(2, 2) 4

Volume

Number of states = 15
State |kx, ky, kz〉 Volume/(lLQG)3

|0, 0, 0〉 1/8

|0, 1, 1〉 1/2
|1, 0, 1〉 1/2
|1, 1, 0〉 1/2

|1, 1, 1〉 1

|0, 2, 2〉 2
|2, 0, 2〉 2
|2, 2, 0〉 2

|2, 1, 1〉 2
|1, 2, 1〉 2
|1, 1, 2〉 2

|1, 2, 2〉 4
|2, 1, 2〉 4
|2, 2, 1〉 4

|2, 2, 2〉 8
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2.3 New Geometrical Operators

physical volume that is measured by the volume operator is equal to the
product of the three length eigenvalues of the node.

An area eigenvalue depends on the spins on two internal links. The
physical area is the product of the length eigenvalues of these two links.

In the previous section it was argued that the 6-valent node with spins
1 on the three internal links should be a piece of flat space. This is indeed
implemented by these geometrical operators. A node in the node eigenstate
|1, 1, 1〉 has a volume of (lLQG)3, the distance between the three pairs of
opposing faces is lLQG and the cross-sections have an area of (lLQG)2. This
describes a Euclidean cube with edge length lLQG. When an internal spin
differs from 1, the length, area and volume eigenvalues change in sync. The
node states other than |1, 1, 1〉 do not give the node a different shape in
a coordinate picture. These nodes represent pieces of space that are not
Euclidean.

Discussion

This model is based on the interpretation of the conventional volume op-
erator as the creation operator for volume. In this section the following
elements were added: The 6-valent nodes are placed in a cubic structure,
the the non-internal links have spin 1, there is a connected set of operators
for length, area and volume, a length operator was constructed and the free
parameter in this operator was fixed. Only the length scale lLQG remains
undetermined.

In conventional loop quantum gravity, nodes represent pieces of volume
and links represent the contact surfaces between these pieces of volume. The
conventional area operator measures the area of these contact surfaces. In
this model, areas are not defined for the contact surfaces, but inside the
volume that is represented by a node. This construction seems justified for
the following reason: A surface is a collection of points in space. When
space is granulated, the smallest element in space is no longer a point, but
a small volume. A surface is then a collection of these building blocks and
it is no longer infinitely thin, but it has a finite thickness. The area can
then be defined inside a building block. In the same way, the thinnest line
in a granulated space still has a finite cross-section. In this model a link
represents only the way that building blocks are connected, not a contact
surface between them.

In section 1.2, around equation (49), the Hamiltonian constraint oper-
ator of loop quantum gravity was discussed. This constraint describes an
unknown reduction of the state space. The model that is described in this
section is defined on a reduced state space. The original state space consists
of all spin networks with nodes of arbitrary valence, with links that can run
between any two nodes in the network and with any spin value on the links.
In the model of this section all the nodes are 6-valent nodes that have only
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2.3 New Geometrical Operators

connections with their direct neighbours in the cubic structure and all the
links have spin 1. It is unclear whether the Hamiltonian constraint describes
this reduction, but the node states of this section have interesting properties:

The gravitational field has two degrees of freedom in each point of space.
This is discussed for example at the end of chapter 10 in [Wald]. The node
states on page 63 have also two degrees of freedom. First there are seven
distinct node states and second, these node states have an orientation. They
can be oriented in three possible ways. For example, the node state |2, 1, 1〉
can also be oriented as |1, 2, 1〉 or |1, 1, 2〉.

A plane gravitational wave is invariant under a rotation of π around its
direction of propagation, see for example section 35.6 of [Misner, Thorne
and Wheeler]. This property is related to the spin 2 of the graviton. The
node states have this same property. An internal spin is connected to an
axis, not to a vector. The node state |kx, ky, kz〉 is unchanged if it is rotated
over π along the x, y or z-axis.
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In the last section an operator was defined that measures physical lengths
in a spin network. In general relativity it is the metric tensor that contains
information about physical distances in space. A connection can now be
made between classical metrics and spin networks. A spin network is a model
for the microscopic structure of a 3-dimensional timeslice of spacetime. The
goal is to construct spin network states that have the geometrical properties
of the spatial part of a classical metric.

The Metric Operator

The components of the metric are functions of the coordinates. These func-
tions have two influences: the coordinate system and the curvature of space.
For distances in the timeslice, these two contributions can be split when the
spatial part of the metric is diagonal:

ds2 =

3∑
a=1

gaa(~x)(dxa)2 =
∑
a

qa(~x)fa(~x)(dxa)2 (182)

The functions fa(~x) contain the information about the coordinate system.
They are the metric components of flat space in these coordinates. The
functions qa(~x) describe the deviation from flat space. For example, for the
Schwarzschild metric these functions are

fr(~r) = 1 fθ(~r) = r2 fφ(~r) = r2 sin2 θ (183)

qr(~r) = 1/(1− rs/r) qθ(~r) = qφ(~r) = 1

A length operator was defined in the last section that measures the length
in a node in one of three directions. The eigenvalue of this operator depends
on the spin of one of the internal links of the node. A node in the node state
|1, 1, 1〉 is a piece of flat space and a deviation of a spin from 1 gives the node
more or less length in that direction. The operator version of the function
qa(~x) is the operator that measures the square of the length divided by the
square of the Euclidean length. It acts on a node n:

q̂a(n) =
ˆLength(n, a)2

Length(k = 1)2
=

ˆLength(n, a)2

(lLQG)2
(184)

The length eigenvalues of a node are defined for three orthogonal directions.
If the coordinate system that is used is orthogonal and the six links that con-
nect to a node n at the coordinate location ~x are aligned with the coordinate
directions, then the metric operator for this node is

ĝaa(n(~x)) = fa(~x) q̂a(n) (185)

When this operator acts on a node eigenstate of page 63, the eigenvalues
are the three components of the metric that are defined for the node.
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2.4 From a Classical Metric to a Spin Network

From a Classical Metric to a Spin Network State

In general relativity a mass-energy distribution determines the geometry of
spacetime. Similarly, a theory of quantum gravity should relate a mass dis-
tribution to the quantum structure of space. This is currently not possible,
but if a spin network is constructed that has the geometrical properties of
a classical metric, then this spin network defines the microscopic structure
of the classical space.

In this model the connection between a classical metric and a spin net-
work state can only be made when the coordinate system that is being used
satisfies two requirements in the region of interest:

• The coordinate system must be orthogonal.

• The metric must be diagonal in these coordinates.

Since the metric is a symmetric tensor, the orthogonal coordinate system can
always be rotated at every point such that the metric is diagonal everywhere.

Given such a coordinate system, replace in a region of space the contin-
uous space by a cubic spin network, such that the orthogonal directions of
the links in the spin network are aligned with the coordinate directions. The
geometrical properties of a spin network are not encoded in the structure
of the spin network, since this structure is always cubical. The geometrical
properties are encoded in the node states of the spin network.

A spin network state has the geometrical properties of the spatial part of
a classical metric if, for all three orthogonal directions, the expectation value
of the length operator is equal to the square root of the classical curvature
function qa(~x):

〈n| ˆLength(n, a)|n〉
lLQG

=
√
qa(~x) (186)

This equation connects the node states of a spin network to a classical metric.
It can be used to construct a spin network state that has the geometrical
properties that are described by the metric. The expectation value is taken
with respect to the node state |n〉, which is a superposition of the node
eigenstates that are listed on page 63:

|n〉 =
∑

cn(k1, k2, k3) |k1, k2, k3〉 (187)

The eigenvalue of the length operator on an internal link with spin ka were
also given on page 63 for the three possible spin values:

ka 0 1 2

Length(n, a)/lLQG 1/2 1 2
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= |1, 1, 1〉

Figure 9: A 2-dimensional picture of a spin network in the e = 0 flat state.
One small square is a building block of space that is represented
by one node in the cubic spin network. All the nodes are in the
state |x, y, z〉 = |1, 1, 1〉.

2.5 Flat Space

The formalism of the last section can be applied to flat space. Cartesian
coordinates are orthogonal coordinates in a spatial slice of constant time and
the metric of flat space is diagonal in these coordinates, gaa(~x) = fa(~x) =
qa(~x) = 1 for a = x, y, z. All nodes are assumed to be in the same superpo-
sition of node eigenstates. Equation (186) is satisfied if this superposition
leads to the following probability distribution for the internal spins:

ka =


0 2ea

1 with probability 1− 3ea

2 ea

(188)

The parameters ex, ey and ez have values in the interval [0, 1/3]. The prob-
ability for spin 0 is twice the probability for spin 2 because the length eigen-
values for these spins are 1/2 and 2 times lLQG. The expectation value for
the length operator is

〈n| ˆLength(n, a)|n〉/lLQG = 2ea · 1/2 + (1− 3ea) · 1 + ea · 2 = 1 (189)

Uniformity in the directions x, y and z requires that ex = ey = ez = e. There
are multiple possibilities for the flat state. If e = 0 then all the internal links
have spin 1. This means that all the nodes are in the state |x, y, z〉 = |1, 1, 1〉
and the spin network contains only flat nodes, see figure 9. This e = 0 flat
state will be used in the following sections.

The other possibility is a flat state with e 6= 0. The nodes are then in a
superposition of node eigenstates. After the collapse of these superpositions,
the spin network contains a mix of nodes in different node eigenstates, in
such a way that the contributions to a length measurement of internal spins
that differ from 1 cancel each other out for large distances.
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2.6 The Quantum Schwarzschild Metric

Section 2.4 introduced a method to construct spin networks that have the
geometrical properties of a classical metric. In this section this method
will be applied to the Schwarzschild metric. The usual coordinates for the
Schwarzschild metric are orthogonal except for the (θ = 0)-axis. The metric
is diagonal in these coordinates:

ds2 = −(1− rs/r)c2dt2 +
dr2

1− rs/r
+ r2(dθ2 + sin2 θ dφ2) (190)

The curvature functions qa(~x) for the Schwarzschild metric were given in
equation (183):

qr(~r) = 1/(1− rs/r) qθ(~r) = qφ(~r) = 1 (191)

The node states are determined from equation (186):

〈n| ˆLength(n, r)|n〉
lLQG

=
√
qr(~r) =

1√
1− rs/r

(192)

〈n| ˆLength(n, θ)|n〉/lLQG = 〈n| ˆLength(n, φ)|n〉/lLQG = 1 (193)

When the e = 0 flat state of section 2.5 is used, equation (193) states that
kθ = kφ = 1. The superposition of node eigenstates |r, θ, φ〉 that can solve
equation (192) is

|n〉 = a(~r) |1, 1, 1〉+ b(~r) |2, 1, 1〉 (194)

There are two equations for the coefficients a and b. First, the node eigen-
states are orthonormal, see section 1.5, and the node state |n〉 is normalized:
|a|2+|b|2 = 1. Second, |a|2 and |b|2 are the probabilities that a node collapses
to the state |1, 1, 1〉 or |2, 1, 1〉:

〈n| ˆLength(n, r)|n〉
lLQG

= |a|2 · 1 + |b|2 · 2 =
1√

1− rs/r
(195)

The solution for a and b is

|a(~r)|2 = 2− 1√
1− rs/r

|b(~r)|2 = −1 +
1√

1− rs/r
(196)

The probabilities |a|2 and |b|2 for finding a node in a certain node eigenstate
are plotted in figure 10. For r → ∞, |a|2 = 1 and |b|2 = 0 and this is the
e = 0 flat state. For r = 4rs/3, |a|2 = 0 and |b|2 = 1 and this this is also
the case for r < 4rs/3, since probabilities are limited to the interval [0, 1].

Figure 11 shows spin networks for different values of the radial coordi-
nate. A piece of continuous space is replaced by a cubic spin network that
is aligned with the coordinate directions. One small square in the figure is
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2.6 The Quantum Schwarzschild Metric
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Figure 10: The probabilities for finding a node in the state |r, θ, φ〉 = |1, 1, 1〉
(line) or the state |2, 1, 1〉 (dashed line) in a spin network that
represents a piece of the Schwarzschild metric, as a function of
the radial coordinate r. Plotted are the coefficients |a|2 (line) and
|b|2 (dashed line) of equation (196). The dotted line is

√
−gtt.

r

φ

r →∞ r = 4 rs r = 2.5 rs

r = 2 rs r = 1.5 rs r ≤ 4rs/3

= |r, θ, φ〉 = |1, 1, 1〉 = |2, 1, 1〉

Figure 11: 2-dimensional pictures of spin networks for the Schwarzschild
metric for different values of r. One small square is a building
block of space that is represented by one node in the cubic spin
network. A white square is a node in the state |r, θ, φ〉 = |1, 1, 1〉
which is a piece of flat space and a gray square is a node in the
state |2, 1, 1〉 which has more length in the radial direction.
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2.6 The Quantum Schwarzschild Metric

a building block of space that is represented by one node. These building
blocks are cubes in coordinate distances, while their physical geometrical
properties are determined by the node states. The probabilities |a|2 and
|b|2 are treated as constants for each spin network, since the size of the spin
networks is much smaller than the distances over which the metric changes.
Initially, all the nodes of a spin network are in the same superposition that is
described by equations (194) and (196). When these superpositions collapse
to node eigenstates following the probabilities |a|2 and |b|2, the result is a
random pattern of nodes in the states |r, θ, φ〉 = |1, 1, 1〉 and |2, 1, 1〉. This
is shown in the figure. The spin network states in the figure are chosen such
that the number of |2, 1, 1〉-nodes is close to the expectation value of 64|b|2.

Discussion

In figure 11 coordinate distances are shown. The physical distances are
determined by the node states. The spin network for r → ∞ is the same
as the spin network for the e = 0 flat state. All the nodes are in the
|1, 1, 1〉-state. The other spin networks in the figure also contain nodes in
the |2, 1, 1〉-state. These nodes have twice as much physical length in the
radial direction as the |1, 1, 1〉-nodes, while the physical length in the θ and
φ direction is the same. Every column in the figure represents the same
amount of coordinate length. When there are more |2, 1, 1〉-nodes there is
more physical length in the same piece of radial coordinate length. This is
what the Schwarzschild metric describes.

The smaller the value of r, the more |2, 1, 1〉-nodes there are in the spin
network. For r ≤ 4rs/3 the spin network is saturated with |2, 1, 1〉-nodes.
The microscopic structure defined by this model limits the deformation of
the length element. The length element is constant inside r = 4rs/3. This
means that there is a deviation from general relativity in the macroscopic
region r < 4rs/3.

This picture of space is similar to the picture in the perturbative ap-
proach to quantum gravity, where the metric is split into a flat part and a
small deviation:

gµν = ηµν + hµν (197)

The cubic spin network provides a flat background. With |1, 1, 1〉-nodes
this is flat space. When a node excitation, an excitation of the gravitational
field, is present this changes the geometrical properties. A difference with the
perturbative approach is that the deviations from flat space are not small. A
node in the |2, 1, 1〉-state is not close to flat space. Every node in these spin
networks represents a piece of space that is either flat or maximally curved.
Another difference is that in the perturbative approach the excitations of the
gravitational field have a well defined momentum and here the excitations
have a well defined position.
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2.6 The Quantum Schwarzschild Metric

The distance between two nodes in the spin networks of figure 11 is only
well defined when the two nodes are in the same row or column. For two
nodes that are not in the same row or column the Pythagorean theorem
can be applied to a path between the two nodes along a row and a column.
The resulting physical distance is different for different paths because of the
random pattern of node states. For larger distances the fluctuations average
out and the Pythagorean theorem holds approximately.

Weak Field Limit

It is interesting to see that in the weak field limit r � rs, the probability to
find a |2, 1, 1〉-node is proportional to the gravitational potential:

|b|2 = −1 +
1√

1− rs/r
≈ −1 + 1 +

rs
2r

=
rs
2r

=
GM

c2r
= −Φ(~r)/c2 (198)

Here it is used that the Schwarzschild radius is rs = 2GM/c2. In the same
limit the probability to find a |1, 1, 1〉-node is related to the time component
of the classical metric:

|a|2 = 2− 1√
1− rs/r

≈ 2− 1− rs
2r

= 1− rs
2r
≈
√

1− rs
r

=
√
−gtt(~r) (199)

√
−gtt is plotted as the dotted line in figure 10. This relation can be in-

terpreted as follows: The lapse function of equation (3) is an average over
many nodes, like the smooth classical metric, and its value is equal to the
fraction of |1, 1, 1〉-nodes. Alternatively, if every node has its own eigentime
like a stationary observer, then this eigentime advances only when the node
is in the flat state |1, 1, 1〉:

dτ =
√
−gtt(~r) dt ≈ |a(~r)|2dt (200)

The expressions for the weak field limits of |a|2 and |b|2 depend in fact on
the spectrum of the length operator. If α is the maximum length eigenvalue
relative to the flat length eigenvalue, then |a|2 and |b|2 are

|a|2 ≈ 1− 1

2(α− 1)

rs
r

|b|2 ≈ 1

2(α− 1)

rs
r

(201)

α =
Length(k = 2)

Length(k = 1)

The weak field limits of (198) and (199) are only obtained when α = 2.
The spectrum of the length operator was obtained in section 2.3 from the
most simple expression for the length operator, equation (171), and the
requirement of inverse proportionality. The value α = 2 was not put in by
hand.
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2.6 The Quantum Schwarzschild Metric

Variation in Length Measurements

The node states are constructed such that the Schwarzschild metric is repro-
duced for distances that are much larger than the length scale lLQG. This
means that in this model the classical limit is the limit where distances get
large and consist of many nodes. The smooth classical metric is retrieved
as the average over many nodes. The probabilistic nature of the collapse
of the node superpositions causes deviations from the Schwarzschild metric
on smaller length scales. When the physical length of a radial coordinate
distance is measured in the spin networks of figure 11, different columns give
different results because of the random pattern. When the physical length
of a certain radial coordinate distance is measured, the probability function
for the possible outcomes is the binomial distribution, since there are two
different node states.

If the radial coordinate distance l consists of N nodes and A is the
number of nodes that are found in the state |1, 1, 1〉, then the standard
deviation in the binomial distribution for A is

∆A =
√
N |a|2|b|2 N = l/lLQG (202)

The coordinate distance l is assumed to be much smaller than the scale on
which the probabilities |a|2 and |b|2 change, such that they can be treated
as constants. The physical length of this coordinate distance as a function
of the number of flat nodes is

Length(A) = (2N −A) lLQG (203)

The standard deviation in the distribution for this length is

∆Length =

∣∣∣∣dLength(A)

dA

∣∣∣∣∆A = lLQG∆A (204)

The expectation value for the physical length of l is

〈Length(l)〉 = l
√
qr(~r) = l/

√
1− rs/r (205)

Finally the relative standard deviation for the physical length is

∆Length

〈Length(l)〉
=

√
lLQG
l

f(r) f(r) =

(
2
rs
r
− 3 + 3

√
1− rs

r

)1/2

(206)

When the measured distance gets larger the relative standard deviation
drops as l−1/2. It is interesting to see that the relative standard devia-
tion depends on the length scale lLQG. This makes the length scale of the
microscopic structure of space potentially measurable.
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Figure 12: The embedding of the radial component of the quantum-adjusted
Schwarzschild metric (line) and the classical Schwarzschild metric
(dashed line).

Quantum Schwarzschild Metric

In this model the deformation of the length element away from the flat length
element is limited. This can be seen directly from the spectrum of the length
operator on page 63. The maximum length in one direction in a node is two
times the Euclidean length. In the classical metric this maximum change to
the radial length element is reached at√

grr(~r) =
1√

1− rs/r
= 2 ⇒ r =

4

3
rs (207)

The length element is constant for r smaller than 4/3 times the Schwarzschild
radius. The radial length element of the quantum-adjusted Schwarzschild
metric is then

ds2 =


dr2

1− rs/r
r > 4rs/3

4 dr2 r ≤ 4rs/3

(208)

This metric can be visualized by drawing an embedding in the usual way,
where the coordinate distance is along the horizontal axis and the physical
distance is along a curve, see for example section 23.8 of [Misner, Thorne
and Wheeler]. The distance along the curve w(r) is the physical distance if

ds2 =

[
12 +

(
dw(r)

dr

)2
]
dr2 (209)
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2.6 The Quantum Schwarzschild Metric

The function w(r) that reproduces the metric of equation (208) is

w(r) =

 2rs

√
r

rs
− 1 r > 4rs/3

(3r − 2rs)/
√

3 r ≤ 4rs/3

(210)

The embedding of the radial length element is shown in figure 12, for the
classical and the quantum-adjusted metric.

The radial length element of equation (208) is finite everywhere. It does
not diverge at the Schwarzschild radius or at r = 0. This leads to an
embedding in figure 12 that is continuous everywhere. This does not mean
that the black hole does not exist. The time component of the metric still
goes to zero.

The time component of the classical metric gtt(~r) becomes zero at the
Schwarzschild radius, while the radial component of the quantum metric
changes its behavior at r = 4rs/3. Equation (199) showed that |a|2 and√
−gtt approach each other for large r. Both the radial and the time com-

ponent of the metric change their behavior at r = 4rs/3 when gtt(~r) is
replaced by −(|a|2)2. With this adjustment to the time component, the
quantum-adjusted Schwarzschild metric is

ds2 =


−
(

2− 1√
1− rs/r

)2

dt2 +
dr2

1− rs/r
+ r2 dΩ2 r > 4rs/3

0 dt2 + 4 dr2 + r2 dΩ2 r ≤ 4rs/3

(211)

Outside r = 4rs/3 this is approximately equal to the Schwarzschild metric
and inside r = 4rs/3 the time component and the radial component of this
metric are constant.
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2.7 Gravitational Waves

In this section the method of section 2.4 will be applied to gravitational
waves. The spacetime metric of the plane gravitational wave solution of
linearized general relativity is, see for example chapter 35 of [Misner, Thorne
and Wheeler]:

gµν(xµ) = ηµν +


0 0 0 0
0 0 0 0
0 0 A+ A×
0 0 A× −A+

Re[e−iω(ct−x)] (212)

Minkowski coordinates are used and the wave propagates in the positive
x-direction. A+ and A× are the amplitudes for the plus polarization and
the cross polarization, A+, A× � 1. The metric of a cross-polarized wave
is not diagonal, but it can be made diagonal by rotating the spatial part of
the coordinate system counter-clockwise around the x-axis over an angle of
π/4:

R = R(θ = π/4) =

(
cos θ − sin θ
sin θ cos θ

)
=

1√
2

(
1 −1
1 1

)
(213)

R−1

(
1 A×
A× 1

)
R =

(
1 +A× 0

0 1−A×

)
If both amplitudes A+ and A× are nonzero, then the coordinate system
can still be rotated such that the metric is diagonal. In that case the angle
depends on the ratio of the two amplitudes. The metric of a circularly
polarized wave can be made diagonal by rotating the coordinate system
differently for every value of x.

The metric of a plus-polarized wave, A× = 0, is diagonal in equa-
tion (212). In the (t = 0)-slice, the spatial part of this metric can be written
in the product form of equation (182):

gaa(~x) = fa(~x)qa(~x) a = x, y, z (214)

fa(~x) = (1, 1, 1) qa(~x) = (1, 1 +A+ cosωx, 1−A+ cosωx)

There is no summation over the index a in the first equation. The node
state is determined from equation (186):

〈n| ˆLength(n, a)|n〉
lLQG

=
√
qa(~x) ≈ (1, 1 +

1

2
A+ cosωx, 1− 1

2
A+ cosωx) (215)

The approximation in the last step is valid since A+ � 1. The superposition
of node eigenstates |x, y, z〉 that can solve this equation is

|n〉 = a |1, 1, 1〉+ b |1, 0, 1〉+ c |1, 2, 1〉+ d |1, 1, 0〉+ e |1, 1, 2〉 (216)
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2.7 Gravitational Waves

The coefficients a to e are functions of x. The node eigenstates are orthonor-
mal. The equations that follow from equation (215) are then

|a|2 + |b|2 + |c|2 + |d|2 + |e|2 = 1

(|a|2 + |d|2 + |e|2) · 1 + |b|2 · 1

2
+ |c|2 · 2 = 1 +

1

2
A+ cosωx (217)

(|a|2 + |b|2 + |c|2) · 1 + |d|2 · 1

2
+ |e|2 · 2 = 1− 1

2
A+ cosωx

A solution is

|x, y, z〉 = |1, 1, 1〉 : |a|2 = 1− 3

2
A+ (218)

|1, 0, 1〉 : |b|2 =
1

2
A+(1− cosωx) = A+ sin2

(ωx
2

)
|1, 2, 1〉 : |c|2 =

1

4
A+(1 + cosωx) =

1

2
A+ cos2

(ωx
2

)
|1, 1, 0〉 : |d|2 =

1

2
A+(1 + cosωx) = A+ cos2

(ωx
2

)
|1, 1, 2〉 : |e|2 =

1

4
A+(1− cosωx) =

1

2
A+ sin2

(ωx
2

)
After the superpositions of equation (216) have collapsed to the node eigen-
states, the spin networks are in states as the ones plotted in figure 13. In this
figure the amplitude A+ = 4/36 is used, such that the expectation value for
the number of non-flat nodes is 6 for every 36 nodes. For ωx = 0 and ωx = π
the physical length exceeds the coordinate length in one direction and there
is less physical length than coordinate length in the other direction. For
ωx = π/2 and ωx = 3π/2 the effects of the nodes that are not in the flat
state cancel each other out for large distances, such that space appears flat.
Two nodes in the state |1, 0, 1〉 cancel one node in the state |1, 2, 1〉, since
the length eigenvalues of these nodes in the y-direction are 1/2 and 2 times
lLQG. Since |b|2 + |d|2 = A+, the sum of the probabilities to find the node
eigenstates |1, 0, 1〉 and |1, 1, 0〉 is the same for all x. The same is true for
|c|2 and |e|2. When a node excitation is present inside a ring of test masses,
this changes the physical distance between the test masses.
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z

y

= |1, 1, 1〉 = |1, 0, 1〉 = |1, 2, 1〉 = |1, 1, 0〉 = |1, 1, 2〉

ωx = 0 ωx = π/2 ωx = π ωx = 3π/2

Figure 13: 2-dimensional pictures of spin networks for a plane gravitational
wave, for different values of the x-coordinate. One small square
is a building block of space that is represented by one node in
the cubic spin network. The different types of squares indicate
different node states. On the top the effect of the gravitational
wave on a large ring of test masses in the y-z plane at the various
values of x. Physical distances are plotted for these rings.
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A SU(2) Representations

An SU(2) matrix in the spin j representation is a square matrix of dimension
2j + 1. There are two possible indices: i is ascending, mi is descending:i = 1 · · · i = 2j + 1

 mi = j · · · mi = −j
 (A.1)

i = 1 + j −mi mi = 1 + j − i (A.2)

SU(2) has three generators τ1, τ2, τ3 and their matrix elements in the spin
j representation are:

Dj(τ1)m
′
m = − i

2

√
j(j + 1)−m′(m′ + 1) δm

′
m−1

− i

2

√
j(j + 1)−m′(m′ − 1) δm

′
m+1

Dj(τ2)m
′
m =

1

2

√
j(j + 1)−m′(m′ + 1) δm

′
m−1 (A.3)

− 1

2

√
j(j + 1)−m′(m′ − 1) δm

′
m+1

Dj(τ3)m
′
m = −im′δm

′
m

The τ matrices for j = 1/2 and j = 1 are:

τ1 =
1

2

(
0 −i
−i 0

)
τ2 =

1

2

(
0 −1
1 0

)
τ3 =

1

2

(
−i 0
0 i

)
(A.4)

τ1 =
1√
2

 0 −i 0
−i 0 −i
0 −i 0

 τ2 =
1√
2

0 −1 0
1 0 −1
0 1 0

 τ3 =
1√
2

−i 0 0
0 0 0
0 0 i


(A.5)

Properties of the τ matrices:
Only for j = 1/2, with σi the Pauli matrices:

τi = − i

2
σi τ2

i = −1

4
1 (A.6)

For all j:

Tr(τi) = 0 τ †i = (τ̄i)
T = −τi (anti-hermitian) (A.7)

[τi, τj ] = εijkτ
k τ i = δijτj (A.8)

The matrix U is special unitary with a real unit vector n̂ and an angle φ:

U = exp(~τ · n̂ φ) ∈ SU(2) U † = U−1 det(U) = 1 (A.9)

Under a change of the angle φ, U transforms as

φ→ φ+ 2π : U → −U (A.10)

φ→ φ+ 4π : U → U (A.11)
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B Properties of the 3j and 6j-Symbols

3j-symbol

The Wigner 3j-symbols are related to the Clebsch-Gordan coefficients:

〈j1j2;m1m2|j1j2; jm〉 = (−1)j1−j2+m
√

2j + 1

(
j1 j2 j
m1 m2 −m

)
(B.1)

An even permutation of the columns does not change the value of a 3j-
symbol. An odd permutation of the columns gives a sign factor:(

j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
(B.2)

The signs of all three magnetic numbers can be changed at the cost of the
same sign factor:(

j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
(B.3)

By combining (B.3) with the raising of one index (56), m1 + m2 + m3 = 0
and j1 + j2 + j3 = integer, all three indices of a 3j-symbol can be raised as
follows:(

j1 j2 j3
m1 m2 m3

)
= δm1,m′

1
δm2,m′

2
δm3,m′

3

(
m′1 m′2 m′3
j1 j2 j3

)
(B.4)

The following 3j-symbols are needed in section 1.6. The source of these
expressions is Wolfram Mathematica:(

j 1 j
−m′ 0 m

)
= (−1)−j+m

′ m′√
j(j + 1)(2j + 1)

δm,m′ (B.5)

(
j 1 j
−m′ 1 m

)
= −(−1)−j+m

′ 1√
2

√
j(j + 1)−m′(m′ − 1)

j(j + 1)(2j + 1)
δm,m′−1 (B.6)

(
j 1 j
−m′ −1 m

)
= (−1)−j+m

′ 1√
2

√
j(j + 1)−m′(m′ + 1)

j(j + 1)(2j + 1)
δm,m′+1 (B.7)

6j-symbol

The 6j-symbol is defined as a contraction of four 3j-symbols:{
j1 j2 j3
j4 j5 j6

}
=

(
j1 j2 j3
m1 m2 m3

)(
m1 m5 j6
j1 j5 m6

)
×

×
(
m2 m6 j4
j2 j6 m4

)(
m3 m4 j5
j3 j4 m5

)
(B.8)
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The following triplets of spins have to satisfy the Clebsch-Gordan condi-
tions (51):

(j1, j2, j3) (j1, j5, j6) (j2, j4, j6) (j3, j4, j5) (B.9)

The 6j-symbol is invariant under any permutation of the columns and it is
invariant if any two columns are turned upside down:{

j1 j2 j3
j4 j5 j6

}
=

{
j1 j5 j6
j4 j2 j3

}
(B.10)
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