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Abstract

It is universally agreed that independently the theory of general relativity and quantum field theory
are very successful theories. When static black holes are considered, it seems natural, that quantum
field effects should have an impact on it without invoking quantum gravitational effects due to the scale
of the problem. The general result is that the black hole, which was though to be static, is actually
evaporating by slowly emitting particles with charge, angular momentum and energy. In this paper we
consider transition of scalar field transition through a collapsing shell of matter, which latter forms a
static spherically symmetric black hole. Analysis includes the use of Heun functions, which generalize
hypergeometric functions.
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Chapter 1

Introduction

It has been over a century since Einstein introduced his theory of General Relativity. The
premises of it are well known and are agreed upon as long as the theory of quantum particles
and fields is not included. Its validity has been tested on the scales ranging from as small as
one milimeter up to the size of the whole universe. It is no doubt that these are classical effects,
as fully quantum effects are expected at scales many orders of magnitude tinier than those we
can observe in laboratories. On the other hand, at scales 25 orders of magnitude larger than
those the world is already quantum. From these two facts one can conclude that there exists
a situation where gravity is still classical but matter, which is creating it or moving in a given
classical geometry is fully quantum.
There are many different possibilities when these cases are real. One of them is the formation
of a black hole. In 1975 Stephen Hawking [1] discovered that the black holes are not completely
black, but instead are slowly evaporating. Since then many different arguments in favor of
the existence of Hawking radiation have been introduced. Some of them consider the whole
gravitational collapse with all the details like the origin of the aforementioned radiation, others
still manage to show the same with a completely static situation [2], [3].
In this paper we trace the steps of the original paper since it appears that the differential
equation the scalar field satisfies is of the form of the so-called Heun function, which gener-
alize hypergeometric functions. Recently, many more appearances of this function have been
discovered [4], mostly because of the books ([5], [6], [7]) dedicated to the properties of these
functions being published and their implementation in computer algebra programs [8]. How-
ever, the quality and flexibility of any numerical work is still lagging behind. Therefore, only
very rudimentary analysis can be carried out. Hence, it is the goal of this paper to find out
what sort of difficulties may arise by attempting the full investigation of Hawking radiation in
the simplest case.
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Chapter 2

General Relativity

The modern explanation for the force of gravity is given by the theory of General Relativity
([9], [10], [11]). The main difference between it and all previous gravitational theories is the fact
that space-time becomes dynamical, i.e. distances measured on it no longer follow the rules of
flat space-time. Hence, particles (or fields) travel on curved manifolds, and any deviation from
flat space-time predictions are assigned to the force of gravity.
The curvature of space-time is sourced by the so-called stress-energy-momentum (STM) tensor.
It contains information about density and flux of energy and momentum of all fields except
those of gravity. This is a result of equivalence principle, which states that at each point there
exists a frame for which STM of gravity vanishes. STM tensor is conserved, meaning that its
covariant divergence vanishes.

2.1 Metric formulation of gravity

Before we introduce Einstein’s equations of motion, several basic results from differential geome-
try will be mentioned. A tensor is a multidimensional array which transforms according to a rule

T
β1β2...βp
α1α2...αq(x

1, x2, ..., xn) = T
β
′
1β
′
2...β

′
p

α
′
1α
′
2...α

′
q
(x1, x2, ..., xn)

∂xβ1

∂xβ
′
1

∂xβ2

∂xβ
′
2

...
∂xβp

∂xβ
′
p

∂xα
′
1

∂xα1

∂xα
′
2

∂xα2
...
∂xα

′
q

∂xαq
(2.1)

where Einstein summation convention has been implemented.
Let us mention several frequently seen tensors and their properties.
Kronecker delta:

δµν =

{
1, µ = ν

0, µ 6= ν
, Tα1...µ...αpδµν = Tα1...ν...αp , δµν = δνµ (2.2)

Metric tensor is an array of coefficients appearing in the expression for a length element:

ds2 = gµνdx
µdxν (2.3)

Its properties are

gµν = gνµ, Tα1...αn−1µαn+1...αpgµν = T
α1...αn−1 αn+1...αp

ν , g = det
{
gµν
}
, gµνg

νρ = δρµ (2.4)

Levi-Civita tensor:

εα1...αp
=
√
|g|ε̃α1...αp

, εα1...αp =
1√
|g|
ε̃α1...αp (2.5)

where

ε̃ =


1, if (α1, α2, ..., αp) is an even permutation of (1, 2, ..., p)

−1, if (α1, α2, ..., αp) is an odd permutation of (1, 2, ..., p)

0, otherwise

(2.6)
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To preserve tensorial character, a covariant derivative has to be introduced, which maintains
all covariant properties of tensors. For a general tensor its effect can be expressed as

∇µT
β1β2...βp
α1α2...αq = ∂µT

β1β2...βp
α1α2...αq +

p∑
i=1

Γ
βi
λµT

β1...βi−1λβi+1...βp
α1α2...αq −

q∑
i=1

ΓλαiµT
β1β2...βp
α1...αi−1λαi+1...αq

(2.7)

From this definition it is easy to notice that when tensor has no indices, i.e. if it is a scalar,
then covariant derivative simplifies to an ordinary one.
Another straightforward result is noncommutativity of covariant derivatives. Not only it is in
general nonvanishing, it actually represents curvature of manifold. This information is contained
in the curvature tensor defined by a commutation relation

[∇µ,∇ν ]V ρ = RρλµνV
λ (2.8)

Substitution of expression for covariant derivative leads to explicit form of curvature tensor:

Rρλµν = 2∂[µΓρν]λ + 2Γρ[µ|σ|Γ
σ
ν]λ (2.9)

Notice that the curvature tensor is antisymmetric with respect to last two indices. Due to this
fact there exists two independent contractions:

Rµν = Rρµρν , Qµν = Rρρµν (2.10)

The former is called Ricci tensor, while the latter is known as the segmental curvature tensor.
It can be shown that the segmental curvature satisfies relation

Qµν = −N αβ
[µ ,ν]gαβ, where Nµαβ = −∇µgαβ (2.11)

andNµαβ is the non-metricity. Non-vanishing non-metricity neither preserves lengths nor angles.
Therefore, even in flat spacetime, tensorial contractions of constant fields may be coordinate
dependent. This is in discordance with Einstein equivalence principle. Hence, for future discus-
sion nonmetricity will be set to 0. This leaves only one curvature scalar, namely, Ricci scalar
as a result of further contraction of Ricci tensor:

R = gµνRµν (2.12)

Einstein-Hilbert action with matter fields and a cosmological constant reads as

S =

∫
d4x
√
−g
{

1

2κ
(R− 2Λ) + Lm

}
. (2.13)

Here κ is an abbreviation defined as κ = 8πGN/c
4, and GN is Newton’s constant of gravity.

In the case of flat spacetime, gµν = diag(+1,−1,−1,−1) convention will be followed. Einstein
field equations emerge as a result of variation of Einstein-Hilbert action with respect to metric
provided that connection is symmetric with respect to lower indices. If this is not the case,
instead as an outcome Einstein-Cartan equations pop out. Connection symbol is not fully
independent from metric. Consider a sum of 3 covariant derivatives of the metric. Then it
follows that

∇νgµλ +∇µgλν −∇λgµν = 0 → Γρµν = {ρµν}+Kρ
µν (2.14)

where contorsion is defined by

Kρ
µν = S ρ

νµ + S ρ
µν + Sρµν (2.15)

and Sρµν = Γρ[µν] is the so-called torsion tensor and {ρµν} is the Christoffel symbol. Substitution
of 2.14 into 2.13 results in

S =

∫
d4x
√
−g
{

1

2κ
(
◦
R+ (2

◦
∇ρK

ρν
ν −K

ρ
β ρK

βν
ν +KρβνKνβρ)− 2Λ) + Lm

}
(2.16)
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The circular accent denotes pure christoffelian connection being used. Variation with respect
to metric produces Einstein equation:

◦
Rµν −

1

2
gµν

◦
R+ Λgµν = κ(Tµν + Uµν) (2.17)

where

Uµν =
1

κ
(Kρ

µρK
λ
νλ −K

λ
µρK

ρ
νλ −

1

2
gµν(Kρ

βρK
λβ
λ −K

ρβ
λK

λ
βρ)) (2.18)

and

Tµν =
−2√
−g

δ(
√
−gLm)

δgµν
. (2.19)

On the other hand, varying with respect to contorsion gives rise to Cartan equation:

Kν[µρ] + gν[µKρ]γ
γ =

κ

2
Πρµν (2.20)

where Π µν
ρ is the spin tensor defined as

Πρµν =
−2√
−g

δLm
δKρµν

(2.21)

Cartan equation is an algebraic one, thus an immediate conclusion is a vanishing contorsion
outside of spin matter fields. Therefore, in absence of contorsion 2.17 with Uµν = 0 simplifies
to field equations of General Relativity.

2.2 Riemann normal coordinates

The theory of general relativity was developed with an idea that locally an observer could not
tell about the presence of gravitational forces. Therefore, it should be possible to choose a point
in the spacetime such that gradients of the metric tensor vanish. These statements can be cast
into two conditions, namely ([12], [13]):

gµν |p = ηµν (2.22)

∂ρgµν |p = 0. (2.23)

The second relation sets values of Chritoffel symbols to zero. Note that this condition does
not hold for their derivatives. Actually, higher derivatives of metric at a point can be related
to derivatives of Christoffel symbols, and these can be related to covatiant derivatives of the
Riemann tensor. Introduce Riemann normal coordinates yα with respect to the point p, for
which previous two conditions hold. Then, up to the forth power in yα it holds that [16]

gµν |p = ηµν +
1

3
Rµανβy

αyβ − 1

6
Rµανβ;γy

αyβyγ +

[
1

20
Rµανβ;γδ +

2

45
RαµβλR

λ
γνδ

]
yαyβyγyδ

|g|p = 1− 1

3
Rαβy

αyβ − 1

6
Rαβ;γy

αyβyγ +

[
1

18
RαβRγδ −

1

90
R κ
λαβ Rλδγκ −

1

20
Rαβ;γδ

]
yαyβyγyδ

(2.24)
where all products and derivatives of the Riemann tensor are evaluated at the point p. Semicolon
stands for the covariant derivative with rightmost index being the index of last applied covariant
differential operator. This expansion is one of the main tools used in the evaluation of quantum
field Green functions in general spacetimes.
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2.3 Frame fields

Einstein equivalence principle tells us that locally all metric tensors can be described by the
Minkowski geometry. Hence it should be possible to project all tensors onto a tangent space
were Lorentz transformations hold. The problem is solved with an implementation of tetrads.
They should map any metric tensor to a minkowskian one:

e A
µ e B

ν ηAB = gµν (2.25)

where e A
µ is the tetrad field ([10], [11]). here greek index represents curved manifold, while

latin index stands for local tangent space. Hence, tetrads transform according to a rule

e A
µ = ẽ B

ν
∂x̃ν

∂xµ
ΛAB (2.26)

with ΛAB denoting the local Lorentz transformation matrix. A tensor containing an arbitrary
number of indices of both types follows analogous transformation rules. Greek indices are raised
and lowered with the help of metric tensor while latin ones are managed with Minkowski metric
tensor.
Tetrads contain same number of entries, like the metric tensor. However, in general they are not
symmetric and thus have more degrees of freedom. This fact can be concluded from eq.(2.25),
since Lorentz-transformed tetrads satisfy same equation as untransformed ones, therefore, the
presence of additional freedom is attributable to rotations and boosts.
Even though tetrads allow us to project various tensors onto local Minkowski space, this is valid
only for point being in consideration. Thus, parallel transport between different points is not
equivalent to that in a globally flat space, and should be reflected in a similar manner as in the
case of the covariant derivative. The covariant derivative of a tensor projected on a local flat
space is defined as

∇µT
A1...An
B1...Bm

= ∂µT
A1...An
B1...Bm

+
n∑
i=1

ω
Ai
CµT

A1...C...An
B1...Bm

−
m∑
i=1

ωCBiµT
A1...An
B1...C...Bm

(2.27)

where ωABµ is called the spin connection. It plays a similar role like the affine connection. If a
tensor is partially projected on a tangent space, it will contain both latin and greek indices. In
that case the covariant derivative will contain a mixture of both connections. We will state an
example in case of a tetrad:

∇µe
A
ν = ∂µe

A
ν − Γρνµe

A
ρ + ωACµe

C
ν (2.28)

However, specifically for tetrads there is an exact relation, namely

∇µe
A
ν = 0 (2.29)

which, although is often called ”a postulate”, is an exact constraint. It provides a way to
calculate the spin connection if the affine connection is known and a tetrad representation
has been chosen. Similarly to general metric compatibility, Minkowskian metric compatibility
should hold:

∇µηAB = 0 → ω(AB)µ = 0 (2.30)

Manipulation of eq.(2.29) results in an explicit formula for spin connection, which in the presence
of torsion, is equal to

ωαµν = [αµν ] +Kαµν (2.31)

where,
[αµν ] = Ωαµν + 2Ω(µν)α (2.32)
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and, under the name of Ricci rotation coefficients,

Ωαµν = eαA∂[µe
A
ν] . (2.33)

Analogously to the metric formulation of all the curvature tensors and scalars, tetradic formu-
lation can be written down where tetrads and spin connections act as fundamental building
blocks.

2.4 Fermions in a curved spacetime

Recall that in a flat space-time Dirac equation for fermions reads as

(iγµ∂µ −m)ψ = 0 (2.34)

where gamma matrices satisfy the anticommutation relations

{γµ, γν} = 2ηµν . (2.35)

In order to generalize Dirac theory for a curved space-time, two changes have to be applied.
Firstly, covariant gamma matrices become space-time dependent due to an arbitrary metric
tensor:

{γµ, γν} = 2gµν (2.36)

Secondly, partial derivative should be replaced by a covariant one, defined by

∇µψ = ∂µψ + Γµψ, ∇µψ
† = ∂µψ

† + ψ†Γ†µ (2.37)

where Γµ is required for covariantisation. It should not be confused with once contracted
Christoffel symbol. We would like to impose several conditions on Γµ. From quantum field

theory of fermions it is known that ψψ and ψγλψ transform as a scalar and a vector respectively.
For these two transformation properties it follows that

∇µ(ψψ) = ∂µ(ψψ) → γ0Γµγ
0 = −Γ†µ (2.38)

and

∇µ(ψγνψ) = ∂µ(ψγνψ) + Γνλµ(ψγλψ) → ∇µγ
ν = ∂µγ

ν + Γνλµγ
λ + [Γµ, γ

ν ] (2.39)

Usually it is assumed that gamma matrices are covariantly conserved (∇µγ
ν = 0). Then it

follows, that one can write a solution of the form

Γµ = −1

2
ωABµ[γA, γB] (2.40)

Since eq.(2.29) allows us to compute the spin connection, the covariant derivative of fermionic
fields can be readily evaluated.
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Chapter 3

Black holes, coordinate charts,
conformal diagrams

3.1 Schwarzschild black hole

The first nontrivial solution for Einstein field equations ever found was discovered by Karl
Schwarzschild. It describes gravitational field in vacuum generated by a spherically symmetric
matter configuration. Its most known representation in terms of metric tensor reads as

gµν = diag

(
−
[
1− RS

r

]
,

1

1− RS
r

, r2, r2 sin2 θ

)
, (3.1)

where RS is the so-called Schwarzschild radius. Comparison with Newtonian potential reveals
that it is equal to double the mass of the gravitational field generating body. The physical
interpretation of this chart is best explained by an example of a stationary observer far away
from the black hole, using asymptotic set of coordinates {t, r, θ, φ}.

Figure 3.1: Lightray trajectories in Schwarzschild t-r coordinates. r is measured in units of RS

Curves in the figure (3.1) represent lightray trajectories. Blue lines stand for infalling light
rays, while red lines represent outgoing lightrays. At each intersection of these two trajectories
a lightcone can be drawn which locally defines future domain of spacetime accessible through a
timelike or null travel. All lines are asymptotically tangent to the horizon surface denoted by
r = 1 line. This agrees with the interpretaion of infalling object gradually slowing down and
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eventually halting at the horizon, since the projection of the lightcone onto r axis is arbitrary
small. Furthermore, inside the blackhole all lightcones are tilted towards the singularity, dis-
allowing the possibilty of escaping the black hole, at least classically. Notice the sudden tilt
of the lightcone when passing the horizon. This is a sign of singular coordinate system used,
which is in accord with the existence of unbounded components both at r = RS and r = 0.
Since we require the solution to asymptotically resemble the flat space, the region r < RS is
not described by this chart.

3.2 Eddington-Finkelstein coordinate chart

Upon solving radial eq.(2.3) in Schwarzschild coordinates in the case of light, i.e. ds2 = 0, one
discovers that there are 2 solutions to this equation, namely

v = t+ r∗, u = t− r∗ (3.2)

where r∗ is called the tortoise coordinate and is defined as

r∗ = r +RS log

[
r

RS
− 1

]
(3.3)

such that it satisfies the differential relation

dr∗
dr

=
1

1− RS
r

. (3.4)

It maps a semi-infinite interval r ∈ [RS ,∞) onto an infinite interval r∗ ∈ (−∞,∞). Hence, the
horizon has been pushed to minus infinity. Constant v solutions penetrate the future horizon,
while constant u solutions penetrate the past horizon. Eddington-Finkelstein coordinates are
obtained by using v or u rather than t.

Figure 3.2: Lightray trajectories in incoming Eddington-Finkelstein v-r coordinates (t∗ has the
same meaning as v; r is measured in units of RS)

This results into ingoing or outgoint Eddington-Finkelstein coordinates:

ds2 = −
[
1− RS

r

]
dv2 + 2dvdr + dr2 + r2dΩ2

S
2 (3.5)
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ds2 = −
[
1− RS

r

]
du2 − 2dudr + dr2 + r2dΩ2

S
2 (3.6)

where dΩ2
S
2 = dθ2 + sin2 θdφ2.

Figure 3.3: Light ray trajectories in outgoing Eddington-Finkelstein u-r coordinates (t has the
same meaning as u; r is measured in units of RS)

Figures (3.2) and (3.3) show light ray world lines in corresponding coordinates. Straight
lines are either radially ”incoming” or ”outgoing” light rays, while the curved ones travel in an
opposite direction. Notice that outside of the horizon lightcone projects onto both increasing or
decreasing values of r, while inside the projection is limited to one direction. Finally, outgoing
coordinates represent a whitehole instead of a black hole, because lightcones always have a
projection outwards. Since metric is finite everywhere except at the central singularities, these
coordinates can be used everywhere.

3.3 Painlevé-Gulstrand coordinates

It can be shown using invariants of general relativity (such as Kretschmann scalar, i.e. RµνρλR
µνρλ),

that r = RS is not a true singularity. Therefore, there should not be any physical difference
for an observer who is crossing the horizon. Of course, this is a classical result. Inclusion of
quantum effects can change this picture considerably. This is the case if the firewall hypothesis
is true 1. Assuming the observer is radially infalling and requiring that his/her time matches
the proper time, one gets

ds2 = −
[
1− RS

r

]
dt2r + 2

√
RS
r
dtrdr + dr2 + r2dΩ2

S2
(3.7)

where

tr = t+ 2R

(√
r

RS
+

1

2
log

∣∣∣∣ r
RS
− 1

r
RS
− 1

∣∣∣∣) (3.8)

Indeed, r = RS has no special effect on the observer or his/her measurements. Furthermore,
hypersurfaces of constant tr represent a flat geometry. It means that the spacetime diagram
would differ from Schwarzschild one by having its infalling trajectory continuous through the
horizon.

1
J. Polchinski et al. Black holes: Complementarity of Firewalls. arXiv:1207.3123v4 [hep-th], 2013
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3.4 Lemâıtre coordinates

Again, begin with Schwarzschild spacetime and apply the following transformation:

dτ = dt+

√
RS
r

1

1− RS
r

dr

dρ = dt+

√
r

RS

1

1− RS
r

dr.

(3.9)

The resulting metric acquires the following form:

ds2 = −dτ2 +
RS
r
dρ2 + r2Ω2 (3.10)

The metric is singular only at the center of black hole. The coordinates correspond to a freely
falling observer which starts with vanishing velocity at spatial infinity. At every point this
observer moves with a velocity equal to the escape velocity at that point. For constant ρ
trajectories τ is the proper time for the chosen trajectory.

3.5 Kruskal-Szekeres coordinates

One more example of a coordinate system valid everywhere except for central sigularity is
Kruskal-Szekeres coordinate chart {T, X, r, θ}:

ds2 =
4R3

S

r
e
− r
RS

(
−dT 2 + dX2

)
+ r2dΩ2, X2 − T 2 =

(
1− r

RS

)
e
− r
RS (3.11)

Figure 3.4: Kruskal-Szekeres spacetime diagram in T-R coordinates. Thin red hyperbolas depict
points of constant radius, blue lines are slices of constant time. Blue-red lines are the horizons,
while thick red hyperbolas are singularities of both white and black holes.

In addition to this, this chart also maximally extends the solutions. In other words, all
geodesics can only end at true gravitational singularities, unlike in previous cases, where validity
of coordinates is limited by physical reasons. The price of this extension is an addition of a
white hole and another ”Universe” outside of both black and white holes.
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3.6 Conformal diagrams

Space-times of various geometries can be comfortably analyzed using Carter-Penrose (or con-
formal) diagrams. Consider an infinite diagram with respect to an ingoing and outgoing null
rays. Then the transformation is made using

tan(uconformal) = uinfinite, (3.12)

where u is any of null coordinates. This map brings points infinitely far away into a diagram of
a finite size. Some regions in the diagrams have standardized abreviations. The following is a
list of those abreviations:

• spacelike infinity i0; all spacelike curves terminate at this point

• future timelike infinity i+; all timelike curves eventually terminate there, unless they cross
the future horizon

• past timelike infinity i−; all timlike curves originate there unless they come out of the past
horizon

• past horizon H−; denotes the outer limit of a white hole

• future horizon H+; denotes the outer limit of a black hole

• past null infinity I −; all ingoing null lines originate on this line

• future null infinity I +; all outgoing null lines terminate on this line.

To illustrate the use of conformal diagrams, consider first a flat spacetime.

i+

i−

i0

J +
v

=
0

J −u
=

0

r = 0

This is a conformal diagram for the Minkowski spacetime. Straigth vertical line stands for some
central point of reference. Curves converging at i0 are hypersurfaces of a constant time, while
the ones emerging from i− and merging at i+ are hypersurfaces of constant radius. Since there
are no singular points in the metric or corresponding invariants, the conformal diagram does
not contain inaccessible or inescapable regions.
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Let us dive now into the case of formation of a black hole due to a collapsing timelike shell.

i−

i0

i+r = 0

I +

I −

r = 0

H+

Vertically aligned curve denotes the position of the timelike shell of collapsing matter. Dashed
diagonal line stands for horizon, while the zigzag line on the top is the singularity. The singu-
larity zigzag is horizontal, since it is singularity in spacetime, no just space. Namely, any object
that crosses the horizon H+ will eventually reach singularity in a finite amount of time. Future
timelike infinity in this diagaram is where all timelike curves, which do not cross the horizon,
terminate.
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Chapter 4

Quantum field theory

4.1 Canonical quantisation of the scalar field on the flat space-
time

Consider a massive scalar field on a flat spacetime. It is described by the following Lagrangian:

L =
1

2
ηµν∂µφ∂νφ−

1

2
m2φ2. (4.1)

Extremisation of the action S =
∫
dnL for this field leads to

(�−m2)φ = 0 (4.2)

which, in Cartesian coordinates, is solved by

φk =
1

(2π)
3
2

eik·x−iωt√
2ω

, (4.3)

where ω =

√
|k|2 +m2 and the bold product stands for scalar inner product of respective

vectors. The numerical factor in front is chosen in such a way that the following normalization
holds ([14], [15]):

(φ
k
, φ

k
′) = i

∫
dx3{φ

k
∂tφ
∗
k
′ − ∂tφkφ

∗
k
′} = δ3(k− k′) (4.4)

Define the canonical momentum

π =
∂L

∂(∂tφ)
(4.5)

Quantisation proceduce is continued by employing the equal time canonical commutation rela-
tions:

[π(t,x), φ(t,x′)] = 0

[π(t,x), π(t,x′)] = 0

[φ(t,x), φ(t,x′)] = iδ3(x− x′)

(4.6)

Functions (4.3) and their complex conjugates form a complete basis with respect to (4.4). Thus
we can expand any φ in this basis:

φ =
∑
k

(akφk + a†kφ
∗
k
) (4.7)
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Equal-time commutation relations for φ imply that

[a
k
, ak′ ] = 0

[a†
k
, a†

k
′ ] = 0

[a
k
, a†

k
′ ] = δn−1(k− k′).

(4.8)

In the Heisenberg picture time-independent quantum states span a Hilbert space. We will use
Fock representation, where a multiparticle state is construced by acting with creation operators
of various momenta on the so-called vacuum state, which is defined by

ak |0〉 = 0,∀k, (4.9)

where ak is an anihilation operator, which reduces the number of particles with momentum k
by one. Analogously, the creation operator a†k increases the number by one.
Any Fock state with the implementation of Bose statistics is expressible as

∣∣∣nk1
, ..., nkj

〉
=

j∏
i=1

(a†ki)
nki√

nki !
|0〉 (4.10)

and is normalized according to

〈
nk1

...nkj

∣∣∣mk
′
1
...mk

′
l

〉
= δj,l

∑
P

j∏
i=1

δnki
,m

k
′
P(i)

δki,k
′
P(i)

, (4.11)

where we sum over all permutations P(i).

4.2 Fock states in observables

Fock states can be used to construct observables like particle number, energy and momentum
of the field. Number operator is defined as

Nk = a†kak (# of particles with momentum k)

N =
∑
k

Nk (# of particles over all momenta) (4.12)

From eqs. (4.9) and (4.10) if follows that

〈0|Nki
|0〉 = 0, ∀i〈

nk1
...nkj

∣∣∣Nki

∣∣∣nk1
...nkj

〉
= nki .

(4.13)

The symmetric energy-momentum tensor of the scalar field reads as

Tµν = ∂µφ∂νφ−
1

2
ηµν(ηρλ∂ρφ∂λφ−m

2φ2) (4.14)

The momentum density of the field is the Tti component of the energy-momentum tensor. For
the scalar field it is equal to ∂tφ∂iφ. Hence, after the substitution of plane wave expansion, the
total momentum for a constant time hypersurface is

Pi =

∫
t
dx3Tti =

∑
k

a†kakki (4.15)
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and vanishes when the field is in its vacuum state. The energy density of the field is defined
as Ttt component of the energy-momentum tensor. In the case of the scalar field it equals to
1
2{(∂tφ)2 + (~∇φ)2 −m2φ2}. The aforementioned substitution of plane wave expansion leads to
the following form of the total energy on a spacelike hypersurface:

H =

∫
t
dx3Ttt =

∑
k

{
a†kak +

1

2

}
ωk. (4.16)

This quantity is infinite even in the field’s vacuum state. However, for flat spacetime physics
this is not important, because only excitations are physically observed. Therefore some renor-
malization method should be used to define the relevant part of the total energy. Most popular
method is normal ordering procedure, where all creation operators are placed to the left of all
annihilation operators and vice versa. Basically, an infinite term

∑
k ωk/2 is subtracted. Then

it is said that we observe this normal ordered total energy:

: H :=

∫
t
dx3 : Ttt :=

∑
k

{a†kak}ωk. (4.17)

4.3 Generating functional of Green function

Consider a functional integral

Z[J ] = 〈out, 0|in, 0〉 =

∫
D[φ] eiS[φ]+i

∫
d
4
xJ(x)φ(x). (4.18)

Z[J] is a generating functional, which gives the transition amplitude of propagation from |in, 0〉
to 〈out, 0| with a particle production present and described by J(x). In the absence of sources
we have the transition between two Minkowski vacuum states. Functional differentiation of Z
with respect J results in

〈0| T
n∏
i=1

φ(xi) |0〉c =
δZ[J ]

inδJ(x1)...δJ(xn)

∣∣∣∣
J=0

, (4.19)

where on the left we have time ordered, connected Green functions.
For a scalar field the generating functional does not converge, hence a regularization is needed.
Examples of this technique are dimensional, Hadamard, Zeta function, Pauli-Villars and lattice
regularization. In this paper Feynman regularization will be used, which is achieved by an
additional term −1

2εφ
2. Furthermore, action can be rewritten as

iS =
i

2

∫
d4x(∂µφ∂µφ−m

2φ2 + iεφ2) = − i
2

∫
d4x φ(x)[∂µ∂µ +m2 + iε]φ(x) + b.t. (4.20)

Here ”b.t.” stands for boundary terms, which vanish for fields vanishing at the boundary. The
objective now is to group operator in brackets with currents J instead of fields. Shift φ→ φ+φ0

such that [� +m2 − iε]φ0 = J . Then, after integration by parts, it boils down to

Z[J ] = ei
∫
d
4
xJφ0

∫
D[φ]e−

i
2

∫
d
4
x(φ[�+m

2−iε]φ) =
N√

detK
ei

∫
d
4
xJφ0 , (4.21)

where N is a numerical factor with a value that sets Z[0] = 1 and K is related to Feynman
propagator through

1√
detK

=
√

det(−GF ) = exp

[
1

2
Tr log(−GF )

]
. (4.22)
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Since Feynman propagator satisfies [� +m2 − iε]GF (x) = −iδ(x), the solution for φ0 is

φ0(x) = i

∫
∆(x− y)J(y), (4.23)

hence the final form of the generating functional is

Z[J ] =
√

det(−GF )Ne−
i
2

∫
d
4
x
∫
d
4
yJ(x)GF (x−y)J(y). (4.24)

Feynman propagator is recovered by

GF (x− y) = 〈0| T φ(x)φ(y) |0〉 =
δZ[J ]

i2δJ(x)δJ(y)

∣∣∣∣
J=0

(4.25)

4.4 Scalar field quantisation on an arbitrary spacetime

Assume that a spacetime is an infinitely differentiable, pseudo-Riemannian, globally hyperbolic
manifold. This is required for an existence of differential equations and Cauchy hypersurfaces.
For an arbitrary metric lagrangian of the scalar field becomes

L =

√
−g
2
{∇µφ∇µφ−m

2φ2}. (4.26)

By following the action extremisation procedure, one arrives at an equation, which formally
looks like eq.(4.2). However, �φ in general stands for

�φ =
1√
−g

∂µ(
√
−ggµν∂νφ). (4.27)

The normalisation (4.4) is generalised to

(φ1, φ2) = −i
∫

Σ

√
−gΣ(φ1∂µφ

∗
2 − ∂µφ1φ

∗
2)dΣµ. (4.28)

Here integration is carried over a spacelike hypersurface. dΣµ stands for nµdΣ and nµ is a future-
directed unit vector orthogonal to Σ. gΣ stands for an induced metric, which is evaluated on
the hypersurface Σ. Apart from covariant generalisation, (φk, φk′) = δ3(k− k′) still holds.
Like in flat case, there exists a basis in which general configuration of φ could be expanded.
However, since in principle the spacetime can be lacking any symmetries whatsoever, the vacuum
state defined by operators of some expansion will not be the same as the one of the flat case.
Furthermore, if the spacetime does not contain a timelike Killing vector, then even for the
same spacetime vacua defined for different instants of time will differ. Consider two different
expansions in the same spacetime with their corresponding vacua:

φ =
∑
i

(aiφi + a†iφ
∗
i ), ai |0a〉 = 0

φ =
∑
j

(bjψ + b†jψ
∗
j ), bj |0b〉 = 0

(4.29)

Since both basis are complete, it is possible to expand basis functions of one expansion in term
of basis functions of the other expansion, namely

ψi =
∑
j

(αijφj + βijφ
∗
j )

ψ∗i =
∑
j

(α∗ijφj − βijφ
∗
j ).

(4.30)
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α and β are complex numbers and are known as Bogolyubov coefficients. From orthonormality
as well as eqs. (4.29) and (4.30) similar relations for creation and anihilation operators can be
devised:

ai =
∑
j

(αjibj + β∗jib
†
j)

bj =
∑
i

(α∗jiai − βjia
†
i )∑

k

(αikα
∗
jk − βikβ

∗
jk) = δij∑

k

(αikβjk − βikαjk) = 0.

(4.31)

Different vacua result in different notions of particles. Assume, that there no particles with
respect to vacuum |0a〉. It means that 〈0a|Ni |0a〉 = 0. Then in vacuum |0b〉 it holds that

〈0b|Ni |0b〉 =
∑
j

|βji|
2, (4.32)

thus, if β is different from 0, then there are particles even in the vacuum state. The aforemen-
tioned examples assumed that expansion basis was discrete, which resulted into discrete sums.
For continuous basis expansions integrals should be used, and ultimately, the most general
expansion will include both discrete and continuous sums.

4.5 Expectation value of the stress-energy tensor

In a semiclassical approach, stress-energy tensor is replaced with its expectation value, i.e.

Rµν −
1

2
gµνR+ Λgµν = κ 〈ψ|Tµν |ψ〉 , (4.33)

where the expectation value is calculated in some state |ψ〉 of the matter field. In a classical
case the right-hand side is defined as a variational derivative of matter action with respect to
the metric tensor. Similar definition will be used for its expectation value. To see why this
is the case, let us remember that Z[0] = 〈out, 0|in, 0〉J=0, which was equal to unity in a flat
spacetime. But we know, that in general vacua are not different, therefore 〈out, 0|in, 0〉 6= 1.
Actually, the problem of in- and out-states can be addressed only in spacetimes where these
states can be defined, namely asymptotically flat and time independent. An obvious setting
where this does not hold is the case of expanding universe, so the following technique will not
be valid in this regime. Suppose we can define such states. Then in state is the state at the
infinite past, and the out state is the state at infinite future. Let us vary Z[J ] like we would do
in the case of action:

2√
−g

δZ[0]

δgµν
= i

∫
D[φ]

2√
−g

δSm
δgµν

eiSm[φ] = i 〈out, 0|Tµν |in, 0〉 (4.34)

Identify
Z[0] = eiW such that W = −i log 〈out, 0|in, 0〉 (4.35)

where W is an effective action. Then

2√
−g

δW

δgµν
=
〈out, 0|Tµν |in, 0〉
〈out, 0|in, 0〉

(4.36)

Z[0] above is calculated as usual except for a few changes due to covariantisation, namely

d4x→ d4x
√
−g(x), δ4(x− y)→ δ4(x− y)√

−g(y)
(4.37)

and, of course, a different Green function due to arbitrary geometry.
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4.6 Adiabatic expansion of Green functions

General spacetime does not admit momentum representation due to symmetries not necessarily
matching those of Minkowski spacetime. However, it is possible to compute corrections to the
flat spacetime Green functions locally, which what is more useful in practise, since higher energy
experiments probe more local properties. Denote

√
−g(x)GF (x, x′) = GF (x, x′) and transform

to momentum space [16]:

GF (x, x′) =
1

(2π)4

∫
d4keikyGF (k), ky = ηαβkαyβ. (4.38)

Starting from (� − m2)GF (x, x′) = − δ
4
(x−x′)√
−g(x)

and using normal coordinates, one can write

down expansion up to any number of derivatives of metric. Below we limit the expansion with
4 derivatives of metric:

GF (k) ≈ 1

k2 −m2 −
R

6[k2 −m2]2
+

i

12
R;α∂

α 1

[k2 −m2]2
−
aαβ
3
∂α∂β

1

[k2 −m2]2
+

+

(
R2

36
+

2

3
a λ
λ

)
1

[k2 −m2]3
,

(
∂α =

∂

∂kα

) (4.39)

with

aαβ = − 1

40

[
3R;αβ −R

λ
αβ;λ

]
− 1

60

[
2R λ

α Rλβ −R
κ λ
α βRκλ −R

λµκ
αRλµκβ

]
(4.40)

Given expansion in momentum space have to be used to find out the form of Feynman propa-
gator. From eqs.(4.39) and (4.40) one finds out that

GF (x, x′) =

∫
d4k

2π

4

e−iky
[
a0(x, x′) + a1(x, x′)

(
− ∂

∂m2

)
+ a2(x, x′)

(
∂

∂m2

)2
]

1

k2 −m2

(4.41)
with

a0(x, x′) = 1

a1(x, x′) =
R

6
− 1

12
R;αy

α − 1

3
aαβy

αyβ

a2(x, x′) =
1

72
R2 +

1

3
aλλ

(4.42)

and all geometric quantities are evaluated at x′. By using an integral representation

1

k2 −m2 = −i
∫ ∞

0
ds e−is(k

2−m2
) (4.43)

integration with respect to momenta can be replaced with integration along s, which ends up
with a differently looking expansion

GF (x, x′) =
−1

(4π)2

∫ ∞
0

ds

s2 e
−ims2+ σ

2isF (x, x′; is) (4.44)

where σ(x, x′) = 1
2yαy

α, namely, one half of a square of proper distance between points x and

x′, and yα =
(
dx
α

dλ

)
x(λ=0)

λ. Function F can be expanded in a series of the following form:

F (x, x′; is) =

N∑
j=0

aj(x, x
′)(is)j (4.45)
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Reinserting GF back results into general coordinate expansion due to DeWitt and Schwinger

GDSF (x, x′) =
∆(x, x′)

(4π)2

∫ ∞
0

ds

s2 e
−ims2+ σ

2isF (x, x′; is). (4.46)

∆(x, x′) = − det[∂µ∂νσ]√
g(x)g(x

′
)

stands for van Vleck-Morete determinant, which in the case of Riemann

normal coordinates reduces to 1√
−g(x)

.

4.7 One loop efective action

Since we have associated W with an effective action, in principle we could define an effective
lagrangian as usual, namely

W =

∫
d4xLeff =

∫
d4x
√
−gLeff . (4.47)

On the other hand, we have expressions (4.24) and (4.35) telling us that

W = −i log
√

det(−GF ) + const = − i
2

Tr log(−GF ) + const. (4.48)

Here const stands for metric-independent terms, which do not affect equations of motion, and
from now on will be neglected. To establish connection between last two equations, a clarification
on trace operation is needed. For an operator M we define trace as

TrM =

∫
d4x
√
−g(x)M(x, x) =

∫
d4x
√
−g(x) 〈x|M |x〉 . (4.49)

Then if Feynman propagator is defined as

GF (x, x′) = 〈x|GF
∣∣x′〉 (4.50)

where GF is an operator, then GF (x, x) is easily acquired by taking the limit x′ → x. Following
DeWitt and Schwinger, the effective action reads like

W =
i

2

∫ ∞
m

2
dm2

∫
d4x
√
−g GDSF (x, x) (4.51)

m is the mass of the field. Effective Lagrangians can be read off easily now:

Leff (x) = (
√
−g(x))−1Leff (x) =

i

2
lim
x
′→x

∫ ∞
m

2
dm2GDSF (x, x′) (4.52)

However, it is divergent. Inspection of (4.45) & (4.46) reveals that terms up to s2 diverge in the
limit of x′ → x when the σ term vanishes. To be more exact, the divergent part of the action is

Ldiv = − lim
x
′→x

√
∆(x, x′)

32π2

∫ ∞
0

ds

s3 e
−i(m2

s− σ
2s

)[a0(x, x′) + a1(x, x′)is+ a2(x, x′)(is)2] (4.53)

Coefficients in the equation are composed of purely geometric objects which are local. This
makes sense because expansion was valid for high frequency modes, which can not capture
infrared features of the universe.
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4.8 Renormalisation of the effective action

Since the divergence of the effective action has been established, an attempt to renormalise
cosmological and gravitational constants can be pursued. This will be done by using dimen-
sional regularistion. For that we have to begin with an effective action in arbitrary number of
dimensions:

Leff = lim
x
′→x

√
∆(x, x′)

2(4π)n/2

∞∑
j=0

aj(x, x
′)

∫ ∞
0

(is)j−1−n/2e−i(m
2
s−σ/2s)ids (4.54)

In the limit x′ → x first n
2 + 1 terms diverge. Assume that n can be continuosly varied. Then

formally the expression is integrable:

Leff =
1

2
(4π)−n/2

∞∑
j=0

aj(x)(m2)n/2−jΓ(j − n/2). (4.55)

Next a new mass scale µ has to be introduced to fix dimensions of the lagrangian to (length)−4:

Leff =
1

2
(4π)−n/2

(
m

µ

)n−4 ∞∑
j=0

aj(x)m4−2jΓ(j − n/2) (4.56)

One can notice that divergence arrises from Gamma functions. First three of them diverge as

Γ
(
−n

2

)
=

4

n(n− 2)

(
2

4− n
− γ
)

+O(n− 4)

Γ
(

1− n

2

)
=

2

2− n

(
2

4− n
− γ
)

+O(n− 4)

Γ
(

2− n

2

)
=

2

4− n
− γ +O(n− 4).

(4.57)

Similarly, (m/µ)n−4 can be expanded:(
m

µ

)n−4

= 1 +
1

2
(n− 4) log

(
m2

µ2

)
+O((n− 4)2). (4.58)

Finally, the isolated divergent part of action is

Ldiv = −(4π)−n/2
{

1

n− 4
+

1

2

[
γ + log

(
m2

µ2

)]}(
4m4a0(x)

n(n− 2)
− 2m2a1(x)

n− 2
+ a2(x)

)
. (4.59)

Recall that coefficients a0, a1, a2 depend on various contractions of curvature tensor up to the
second power in R. Therefore, even though this addition arrises from the quantum matter part,
it should be moved to the geometrical side of Einstein equations. Adding together divergent
Lagrangian density with the gravitational part results in

√
−g

[(
B +

1

16πGb

)
R−

(
A+

Λb
8πGb

)
− a2(x)

(4π)n/2

{
1

n− 4
+

1

2

[
γ + log

(
m2

µ2

)]}]
. (4.60)

Here Λb and Gb are bare values appearing in the original Lagrangian, while A and B depend
only on n, m and µ. A and B diverge by themselves, so by assuming that bare values of physical
constants were infinite in the very beginning, absorption of A and B into redefinition makes the
total values finite.
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The third term, however, can not be combined with any of preexistent parameters. In order to
keep analysis consistent, the gravitational lagrangian has to be modified apriori. To be more
specific, the left side of Einstein field equations should have the form

Rµν −
1

2
gµνR+ Λgµν + αAµν + βBµν + γHµν (4.61)

α, β and γ are constants which are as important as Λ and G are. Now they can be renormalised
in the same way as done previously. New tensors appearing are defined as

Aµν =
1√
−g

δ

δgµν

∫ √
−gR2dnx = 2R;µν − 2gµν�R−

1

2
gµνR

2 + 2RRµν

Bµν =
1√
−g

δ

δgµν

∫ √
−gRαβRαβd

nx = R;µν −
1

2
gµν�R−�Rµν

− 1

2
gµνR

αβRαβ + 2RαβRαβµν

Hµν =
1√
−g

δ

δgµν

∫ √
−gRαβγδRαβγδd

nx = −1

2
gµνR

αβγδRαβγδ + 2RµαβγR
αβγ
ν

− 4�Rµν + 2R;µν−4Rµα
+ 4RαβRαµβν

(4.62)

We are interested in 4 dimensions, and it happens that Gauss-Bonnet theorem holds, a corollary
of which is

δ

δgµν

∫
d4x
√
−g(RαβγδR

αβγδ +R2 − 4RαβR
αβ) = 0, (4.63)

thus not all of eq.(4.62) are independent. To conclude, gravitational plus effective lagrangian
minus divergent part of it governs the physics of the semiclassical theory of gravity.
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Chapter 5

Scalar field in Schwarzschild
spacetime

We are considering a spherically collapsing shell as a generator of spacetime geometry. Massive
scalar field is traveling in this spacetime without affecting it. According to Birkhoff theorem, any
spherical dynamics of gravitational fields have exactly the same metric in the vacuum outside
of matter, and it is described by Schwarzschild geometry. Due to shell-like configuration of
matter, inside part is actually a flat spacetime.
In Eddington-Finkelstein coordinates, outside of collapsing shell, scalar field travels according
to the following equation of motion:[(

1− RS
r

)
∂2
r + 2∂v∂r +

2

r
∂v +

1

r

(
2− RS

r

)
∂r +

1

r2

(
∂2
θ + cot θ∂θ +

1

sin2 θ
∂2
φ

)
−M2

]
φ = 0

(5.1)
The procedure of expansion will be used here. Factorise φ into eiωvY m

L (θ, φ)fωLm(r). First two
factors satisfy following eigenvalue equations

∂ve
iωv = iωeiωv(
∂2
θ + cot θ∂θ +

1

sin2 θ
∂2
φ

)
Y m
L = −L(L+ 1)Y m

L

(5.2)

Notice that eigenvalue m does not contribute to radial equation, which acquires the form[(
1− RS

r

)
∂2
r + 2iω∂r +

2iω

r
+

1

r

(
2− RS

r

)
∂r −

L(L+ 1)

r2 −M2

]
fωL(r) = 0 (5.3)

The solutions to this differential equation including eigenfunctions defined above are:

φωLm(r) = eiωvY m
L (θ, φ)e−iωrer

√
M

2−ω2

(C1ωLmHC1ωLm(r)+C2ωLmHC2ωLm(r)(RS−r)
−2iωRS ).

(5.4)
C1ωLm and C2ωLm are integration constants. HC1 and HC2 are Heun functions, which in Maple
are of following forms:

HC1ωLm = HeunC

(
− 2RS

√
M2 − ω2, 2iωRS , 0, R

2
S(M2 − 2ω2),

− L(L+ 1) +R2
S(2ω2 −M2), 1− r

RS

)
HC2ωLm = HeunC

(
− 2RS

√
M2 − ω2,−2iωRS , 0, R

2
S(M2 − 2ω2),

− L(L+ 1) +R2
S(2ω2 −M2), 1− r

RS

)
(5.5)
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These two functions correspond to an outgoing and ingoing waves. Since it is difficult to
observe this fact, we will consider the limitting case of vanishing RS and L, which corresponds
to spherical waves in flat spacetime. Then the radial differential equations simplifies to(

∂2
r + 2iω∂r +

2iω

r
+

2

r
∂r −M

2

)
f = 0, (5.6)

a full solution to which is

φ = eiωv

C1
e−ir(ω+

√
ω
2−M2

)

r
+ C2

e−ir(ω−
√
ω
2−M2

)

r


= C1

ei(ωt−r
√
ω
2−M2

)

r
+ C2

ei(ωt+r
√
ω
2−M2

)

r

(5.7)

and indeed it is a linear combination of spherical ingoing and outgoing waves.
Ingoing and outgoing waves constitute 2 independent solutions, i.e. one can not be expressed
in terms of the other. However, this is exactly what we want to achieve. The comparison
of properties of outgoing waves with respect to those of ingoing waves is the main goal. The
previous fact is true, but it is valid only before or only after they cross the collapsing matter,
while we are aiming at situation when an ingoing wave becomes and outgoing one.
The ”black box” which transforms one into the other is the geodesic equation for lightlike
trajectories. The general equation for this reads

d2xλ

dλ2 + Γλµν
dxµ

dλ

dxν

dλ
= 0 (5.8)

For each coordinate we can define conjugate momentum. Say, Lagrangian equals L = 1
2gµνx

µxν .

Then the conjugate momentum is defined as pµ = δL
δx
µ = gµνx

ν . Since in Eddington-Finkelstein
metric there is no dependence on v and φ, two of momenta should be assigned constant values
([15], [16], [17]):

−
(

1− RS
r

)
dv

dλ
+
dr

dλ
= −E, E ≥ 0 (energy)

r2dφ

dλ
= L, L ≥ 0 (angular momentum).

(5.9)

If angle θ is fixed, say, to the equatorial plane, then the lightlike line element reads

−
(

1− RS
r

)(
dv

dλ

)2

+ 2
dv

dλ

dr

dλ
+ r2

(
dφ

dλ

)2

= 0. (5.10)

We are considering motion through the center of symmetry, hence the angular momentum is
null. By the use of eqs.(5.9) and (3.3) we uncover that

−dv
dλ

(
1− RS

r

)[
dv

dλ
− 2

dr∗
dλ

]
= 0. (5.11)

Thus the lightlike purely radial motion is satisfied by equations dv
dλ = 0 or d

dλ(v− 2r∗) = 0, and
the latter brackets can be denoted as u from the outgoing Eddington-Finkelstein coordinates.
To make sure that these two equations make sense, substitute either of them into eq.(5.9). What
we get is

dr

dλ
= −E (ingoing)

dr

dλ
= E (outgoing)

(5.12)
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which are the properties of corresponding motions.
Now that the properties of radial motion has been introduced, dependence of u and v on λ will
be analysed. The main point of this consideration is the continuity of the affine parameter λ,
since motion in a straight line is smooth. This fact will allow us to express u as a function of v
and vice versa.
Let us start from an equation for u, i.e. we want to write down an equation for an incoming
lightlike trajectory as a function between u and v:

du

dλ
=
dv

dλ
− 2

dr∗
dλ

=

(
1− RS

r

)−1

E − dr∗
dλ

= 2

(
1− RS

r

)−1

E, (5.13)

where we used eqs.(5.12) and (5.9). Since r as a function of λ is just a line, all we have to do
is to define the value of the integration constant. We choose it in such a way that r(0) = RS ,
i.e. r = RS − λE. Let us limit ourselves to an interval λ < 0. Then

u = 2Eλ− 2RS log
λ

K1
, K1 < 0 (5.14)

where, again, K1 is an integration constant. Due to diffeomorphism invariance, we can apply
any linear transformation to λ without affecting the result. For convenience we choose K1 = −1
At first the significance of λ is amiguous. Apriori it is just an abstract parameter which orders
values of u in some way. We assign it a value of v in the following way. It seems reasonable
that the later the motion for some constant v is initiated the higher value of u it corresponds to
through the crossing of the center of symmetry. By taking v to be the parameter of reference we
can write down a linear relation between v and λ. Also, in our case the spacetime is dynamic,
i.e. in the beginning the is no black hole, thus no penalty should arise from travelling through
the center. There is, though, one moment, when the black hole is formed. This corresponds to
one specific value of v, which we call v0, after which any ingoing motion will cross the horizon
and will be lost. With all this in mind we state that v0−v = K2λ with K2 < 0 being a constant.
Like in the previous equation, we choose K2 = −1. Then the obvious substitution results in

u = −2E[v0 − v]− 2RS log(v0 − v), (5.15)

which is valid for v < v0. We know what happens when v = v0 - the horizon is formed so any
object that was travelling on a lightlike trajectory gets trapped right on the horizon as it leaves
the shell. For anything incoming later no value of u can be associated, because this motion ends
up at the singularity instead of future infinity.
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Figure 5.1: Spacetime diagram of a collapsing shell

Previously we have found solutions for a motion of a free scalar field. Also we managed to
relate coordinates v and u. Now we are ready to quantify changes at past and future spatial
infinities. This requires the use of Bogolyubov coefficients. We are interested in the comparison
of asymptotic forms of solutions, since we expect various effects to kick in as the scalar field
approaches the horizon. To fully describe the scalar field we need to choose some hypersurface
which would carry information enough for the reconstruction of history of the whole spacetime.
Obviously, one such hypersurface is the hypersurface of past null infinity. However, at the
infinite future the future null infinity is not enough, because part of the information will enter
the black hole. Therefore, the second Cauchy surface is defined as the future null infinity with
the horizon included.
Along with these surfaces, several bases of functions have to be introduced. We denote the
basis on the past hypersurface by pωLM and its complex conjugate together with anihilation and
creation operators âωLm and â†ωLm. Similarly, the basis of the future null infinity is composed
of fωLM and qωLm and hermitian conjugate thereof, while at the surface of the black hole we
have qωLm and cωLm and their hermitian conjugates.
Now we have to define the meaning of pωLm and the rest. Therefore we say that pωLm are
ingoing solutions, while fωLm and qωLm are outgoing solutions. Then any configuration of the
field φ can be expanded as

φ =

∫ ∑
(aωLmpωLm + a†ωLmp

∗
ωLm)

=

∫ ∑
(bωLmfωLm + b†ωLmf

∗
ωLm + cωLmqωLm + c†ωLmq

∗
ωLm)

(5.16)

Furthermore, modes at the horizon and at the null future infinity should be completely inde-
pendent from each other, i.e.

(fω1L1m1
, qω2L2m2

) = 0. (5.17)

All the functions are normalised according to

(pω1L1m1
, pω2L2m2

) = δ(ω1 − ω2)δL1,L2
δm1,m2

(fω1L1m1
, fω2L2m2

) = δ(ω1 − ω2)δL1,L2
δm1,m2

(qω1L1m1
, qω2L2m2

) = δ(ω1 − ω2)δL1,L2
δm1,m2

.

(5.18)

For pairs of complex conjugate functions an additional minus sign appears, while for a pair of
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a function and its complex conjugate the normalisation condition vanishes. Canonical quanti-
sation of the field φ implies that

[aω1L1m1
, a†ω2L2m2

] = δ(ω1 − ω2)δL1,L2
δm1,m2

[bω1L1m1
, b†ω2L2m2

] = δ(ω1 − ω2)δL1,L2
δm1,m2

[cω1L1m1
, c†ω2L2m2

] = δ(ω1 − ω2)δL1,L2
δm1,m2

[bω1L1m1
, cω2L2m2

] = 0

(5.19)

Other types of commutations are equal to 0. We already know about the ambiguity of the
vacuum state. In our consideration we define a vacuum state which corresponds to the absence
of particles, incoming from I−, i.e. aωLm |0〉 = 0. Also, define Bogolyubov coefficients, which
relate fields at I− and I+ according to

fωmL =

∫
dω′

∞∑
L
′
=0

L
′∑

m
′
=−L′

(αωω′LL′mm′pω′L′m′ + βωω′LL′mm′p
∗
ω
′
L
′
m
′). (5.20)

By simply using normalisation conditions (5.18), Bogolyubov coefficients can be extracted
straightforwardly:

αωω′LL′mm′ = (pω′L′m′ , fωLm)

βωω′LL′mm′ = −(p∗
ω
′
L
′
m
′ , fωLm).

(5.21)

To find out the values of Bogolyubov coefficients, exact forms of functions pωLm and fωLm have
to be inserted.
As it was previously agreed, pωLm is one specific mode, appropriately normalised, representing
ingoing solutions, which has the form

pωLm = NωLme
iωvY m

L (θ, φ)e−iωrer
√
M

2−ω2

HC1ωLm(r) (5.22)

with NωLm being the normalisation constant. To determine its value, insert the given function
into a generalised version of normalisation condition:

(pωLm, pω′L′m′) = i

∫
Σt

d3x
√
−g
{
pωLm∂vp

∗
ω
′
L
′
m
′ − ∂vpωLmp

∗
ω
′
L
′
m
′
}

(5.23)

The first product in the curly brackets reads

−iω′NωLmN
∗
ω
′
L
′
m
′eiv(ω−ω′)Y m

L Y m
′∗

L
′ eir(ω

′−ω)er
√
M

2−ω2
(
er
√
M

2−ω′2
)∗

HC1ωLmHC1∗
ω
′
L
′
m
′

(5.24)
while the second one looks like

iωNωLmN
∗
ω
′
L
′
m
′ei(ω−ω

′
)vY m

L Y m
′∗

L
′ eir(ω

′−ω)er
√
M

2−ω2
(
er
√
M

2−ω′2
)∗

HC1ωLmHC1∗
ω
′
L
′
m
′ .

(5.25)
The product of spherical harmonics can be readily integrated to obtain Kronecker deltas:∫ 2π

0
dφ

∫ π

0
dθ sin(θ)Y m

L Y m
′∗

L
′ = δm,m′δL,L′ . (5.26)

Hence, the inner product of scalar fields at past infinity is diagonal in m and L space. The main
contribution comes from the radial part. Analytic form can not be found since orthogonality
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relations weighed with the square-root metric determinant are not known. There are still exact
relations, though, which are weighed by singularities.

(pωLm, pω′L′m′) = (ω′ + ω)δm,m′δL,L′ |NωLm|
2eiv(ω−ω′)×

×
∫ ∞

0
r2dreir(ω−ω

′
)er
√
M

2−ω2
(
er
√
M

2−ω′2
)∗

HC1ωLmHC1∗
ω
′
Lm

= δ(ω − ω′)δm,m′δL,L′ .

(5.27)
Similarly, functions at the infinite future can be normalised. One crucial difference, though,
stems from the fact that all incoming fields for v > v0 pass the horizon, therefore for these
values of v Bogolyubov coefficients will bind functions pωLm and qωLm, while for v < v0 qωLm
should be replaced with fωLm. Namely, for fωLm we have

fωLm = AωLmΘ(v0 − v)eiωvY m
L e−iωrer

√
M

2−ω2

HC2ωLm(RS − r)
−2iωRS , (5.28)

where Θ is Heaviside step function and AωLm is a normalisation constant. Before we dive into
normalisation of fωLm, we should show that it can be simplified by introducing variable u as
before:

eiωve−iωr(RS − r)
−2iωRS = eiωve−2iωre

−2iωRS log[ r
RS
−1]
eiωrR

−2iωRS
S = eiωueiωrR

−2iωRS
S . (5.29)

Therefore, fωLm can also be written as

fωLm = BωLmΘ(v0 − v)Y m
L eiωueiωrer

√
M

2−ω2

HC2ωLm. (5.30)

Its normalisation condition, with angles already integrated out, can be written as

(fωLm, fω′L′m′) =

∫ ∞
0

r2dreiu(ω−ω′)eir(ω
′−ω)er

√
M

2−ω′2
(
er
√
M

2−ω2
)∗

HC2ωLmHC2∗
ω
′
Lm
×

× δL,L′δm,m′(ω
′ + ω)|BωLm|

2Θ(v0 − v)2 = δ(ω − ω′)δL,L′δm,m′
(5.31)

Clearly, this normalisation holds only for v < v0. Since fωLm vanishes for the rest of values of v,
normalisation condition can not be enforced there. Normalisation is accomplished by requiring
the right-hand side to be equal to δ(ω − ω′)δm,m′δL,L′ . Also, for simplicity we choose Θ(0) = 0
With both past and future functions in hand both Bogolyubov coefficients can be calculated.
We will use Fourier transform due to the simplicity. We begin with the α coefficient. After the
expression (5.15) is inserted, the left-hand side becomes

δL,L′δm,m′BωLmN
∗
ω
′
L
′
m
′e−2iωEv0

∫ v0

−∞
dve−iv(−2Eω+ω

′)(v0 − v)−2iRSω×

×
∫ ∞

0
r2drei(ω+ω

′
)rer
√
M

2−ω2
(
er
√
M

2−ω′2
)∗

HC2ωLmHC1∗
ω
′
L
′
m
′

(5.32)

while the right-hand one is

∫ ∞
0

r2dr

∫ ∞
−∞

dω′′
∞∑

L
′′

=0

L
′′∑

m
′′

=−L′′
αωω′′LL′′mm′′δ(ω

′ − ω′′)δm′′,m′δL′,L′′×

×Nω
′′
L
′′
m
′′N∗

ω
′
L
′
m
′eir(ω

′′−ω′)
(
er
√
M

2−ω′2
)∗

er
√
M

2−ω′′2HC1∗
ω
′
L
′
m
′HC1ω′′L′′m′′ =

=
αωω′LL′mm′√

2ω′

(5.33)
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and by caring out the integral with respect with v we finally get

αωω′LL′mm′ =
√

2ω′δL,L′δm,m′BωLmN
∗
ω
′
L
′
m
′e−iv0ω

′ [
−i
(
−2Eω + ω′

)]−1+2iωRS ×

× Γ(1− 2iRSω)

∫ ∞
0

drr2eir(ω+ω
′
)er
√
M

2−ω2
(
er
√
M

2−ω′2
)∗

HC2ωLmHC1∗
ω
′
L
′
m
′ .

(5.34)

Similarly, for the β coefficient the right-hand side is∫ ∞
0

r2dr

∫ ∞
−∞

dω′′
∞∑

L
′′

=0

L
′′∑

m
′′

=−L′′
βωω′′LL′′mm′′δ(ω

′ − ω′′)δm′′,m′δL′,L′′×

×N∗
ω
′′
L
′′
m
′′Nω

′
L
′
m
′e−ir(ω

′′−ω′)er
√
M

2−ω′2
(
er
√
M

2−ω′′2
)∗

HC1ω′L′m′HC1∗
ω
′′
L
′′
m
′′ =

=
βωω′LL′mm′√

2ω′

(5.35)

and the left-hand side equals

(−1)m
′
δL,L′δm,−m′BωLmNω

′
L
′
m
′e−2iωEv0

∫ v0

−∞
dve−iv(−2Eω−ω′) (v0 − v)−2iRSω ×

×
∫ ∞

0
drr2ei(ω−ω

′
)rer
√
M

2−ω2

er
√
M

2−ω′2HC1ω′Lm′HC2ωLm.

(5.36)

Notice that β is continuous in ω and ω′ even though all mode labels were denoted in the same
way. Then coefficient β reads

βωω′LL′mm′ =
√

2ω′(−1)m
′
δL,L′δm,−m′BωLmNω

′
L
′
m
′eiv0ω

′ [
−i
(
−2Eω − ω′

)]−1+2iωRS ×

× Γ(1− 2iωRS)

∫ ∞
0

drr2ei(ω−ω
′
)rer
√
M

2−ω2

er
√
M

2−ω′2HC1ω′L′m′HC2ωLm.
(5.37)

After all the tedious calculations we find that both Bogolyubov coefficients are in general non-
vanishing, so the number of particles is not conserved. To find the number of particles, square
of absolute values is needed:

|αωω′LL′mm′ |
2 = 2ω′δL,L′δm,m′ |BωLm|

2|Nω
′
L
′
m
′ |2
∣∣∣[−i (−2Eω + ω′

)]−1+2iωRS
∣∣∣2×

× |Γ(1− 2iRSω)|2
∣∣Intα[ω, ω′, L, L′,m,m′,M ]

∣∣2 (5.38)

|βωω′LL′mm′ |
2 = 2ω′(−1)mδL,L′δm,−m′ |BωLm|

2|Nω
′
L
′
m
′ |2
∣∣∣[−i (−2Eω − ω′

)]−1+2iωRS
∣∣∣2×

× |Γ(1− 2iωRS)|2|Intβ[ω, ω′, L, L′,m,m′,M ]|2
(5.39)

Intx stands for the radial integral belonging to the coefficient x. To help us find the number of
particles in the future infinity, we can generalize eq.(4.31) with the use of eq.(5.31):

(fωLm, fω′L′m′) =

∫
dω′′

∞∑
L
′′

=0

L
′′∑

m
′′

=−L′′
(α∗

ωω
′′
LL
′′
mm

′′αω′ω′′L′L′′m′m′′ − β
∗
ωω
′′
LL
′′
mm

′′βω′ω′′L′L′′m′m′′) =

= δ(ω − ω′)δL,L′δm,m′
(5.40)

In order to use this, we have to express α through β. The ratio of absolute squares is( |αωω′LL′mm′ |
|βωω′LL′mm′ |

)2

= (−1)−m
(
|Intα[ω, ω′, L, L′,m,m′,M ]|
|Intβ[ω, ω′, L, L′,m,m′,M ]|

)2

×

×
∣∣∣[−i (−2Eω + ω′

)]−1+2iωRS
∣∣∣2 ∣∣∣[−i (−2Eω − ω′

)]−1+2iωRS
∣∣∣−2

.

(5.41)
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This ratio contains complex powers. Also, here a competition between motion close to and far
away from the formation of a black hole can be observed. A crude way to see it is to see what
happens when the coefficient E disappears. From the ray tracking formula (5.15) one should
notice that at the moment of the black hole formation the logarithmic term dominates, while
for moments of time much earlier than that the E-term takes over. Thus dropping one or the
other would focus the analysis on any of these limiting cases. Through the analytic continuation
of the logarithm the product of complex power terms can be simplified to(

−2Eω + ω′

−2Eω − ω′
)2

e4ωRS [Arg(−i{−2Eω−ω′})−Arg(−i{−2Eω+ω
′})]. (5.42)

To sum up, in principle we can say that |α|2 = F|β|2 with F being a nontrivial function of
various parameters.
This model of a collapsing black hole is a simplified one in one essential way. Namely, the black
hole, once formed, is eternal. Evaporation of the black hole is concluded aposteriori, after fluxes
of particles are compared. Therefore, it seems natural, that the total number of particles of any
frequency should be infinite, because the black hole is eternal and is static in size. This is why

∫
dω′′

∞∑
L
′′

=0

L
′′∑

m
′′

=−L′′
(|αωω′′LL′′mm′′ |

2 − |βωω′′LL′′mm′′ |
2) = lim

ω→ω′
δ(ω − ω′) =∞. (5.43)

It is meaningless to talk about an infinite number of particles. A formal division by an infinite
amount of time allows us to consider fluxes over total number. Consider one of the possible
definitions of the delta function:

δ(ω − ω′) =
1

2π
lim
T→∞

∫ T

−T
ei(ω−ω

′
)tdt =

1

π
lim
T→∞

sin
(
T (ω − ω′)

)
ω − ω′

(5.44)

By taking the limit ω → ω′ now, one ends up with a finite normalization, namely, T/π. Ac-
cordingly, the finiteness of number of particles per unit time can be concluded. The flux of
particles can be determined by solving eq.(5.43) for

∫ ∑
|β|2. Of course, it is also possible just

to integrate (and sum over) the expression of |β|2 itself.
Analytic results for |β|2 are still unavailable due to the complexity of expressions. On the other
hand, some numerical results can be obtained. The appendix contains several examples of such
results in the form of graphs, where various parameters have been varied through discrete values.

30



Chapter 6

Conclusions

In this paper we have analyzed Hawking radiation of a scalar field in the presence of a collapsing
black hole. The radiation was quantified by comparing the number of particles (or fluxes) at the
infinite past with the situation at the infinite future. It was found that creation and annihilation
operators for the initial vacuum state did not match those of the future vacuum state. This
fact was concluded by examining Bogolyubov coefficients, since neither of them truly vanished.

During the process of solution a chart of coordinates valid at all point in spacetime, except
for the central singularity, was chosen to avoid artificial singularities in all the calculations.
Eddington-Finkelstein coordinate chart was picked up as not only it satisfied the previous
condition, but also still allowed a simple interpretation of the results. Apart from spherical
symmetry, no other simplifications or approximations were made. This resulted in the appear-
ance of confluent Heun functions, which are more general than most of analytic functions being
used nowadays. Exact results were expressed as integrals, which cannot be evaluated further
due to limited implementation of their properties in computer algebra programs.

Additionally, technical details of quantization in coordinates different than rectangular ones
do not seem to be well known. Although general principles are understood, by precise state-
ments are not easily constructed because any nonstandard conjugate pairs other than cartesian
coordinates with linear momentum are usually omitted from reasonable examination. There-
fore, it is advisable that any of exact analyses should include a fully developed understanding
in a flat spacetime.
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Chapter 7

Appendix

7.1 Frobenius solutions

Any linear second order homogeneous differential equation has a form of

a(z)
d2y(z)

dz2 + b(z)
dy(z)

dz
+ c(z)y(z) = 0 (7.1)

where a, b, c are arbitrary functions of z. For some a, b, c the differential equation may have
singular points which are the roots of equation a(z) = 0 and, possibly, infinity. At any singularity
the solutions can achieve either a finite or an infinite value. If both linearly independent solutions
are finite at this point, then it is called a regular singularity. Otherwise it is an irregular
singularity.
At any finite regular singularity zj an indicial equation can be constructed:

ρ(ρ− 1) + pjρ+ qj = 0, (7.2)

where

pj = Resz=zj
b(z)

a(z)
, qj = Resz=zj (z − zj)

c(z)

a(z)
. (7.3)

The roots of eq.(7.2) are called characteristic exponents. At a regular singularity at infinity, the
aforementioned relations are modified as

ρ(ρ+ 1) + p∞ρ+ q∞ = 0, (7.4)

where

p∞ = −Resz=∞
b(z)

a(z)
, q∞ = Resz=∞z

c(z)

a(z)
(7.5)

and roots are called as characteristic exponents at infinity.
In the neighborhood of a finite regular singularity two linearly independent Frobenius solutions
can be constructed. If characteristic exponents satisfy

ρ1(zj)− ρ2(zj) /∈ Z, (7.6)

then Frobenius solutions [6] are of the form

ym(zj , z) = (z − zj)
ρm(zj)

∞∑
k=0

cmk (zj)(z − zj), |zj | <∞

ym(∞, z) = z−ρm(∞)
∞∑
k=0

cmk (∞)z−k, |zj | =∞
(7.7)
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and m is an index of a linearly independent solution. However, if eq.(7.6) is not satisfied, then
one of the solutions may acquire a logarithmic term:

y2(zj , z) = (z − zj)
ρ2(zj)

∞∑
k=0

c2
k(z − zj)

k +Ajy1(zj , z) log
(
z − zj

)
, |zj | <∞

y2(∞, z) = z−ρ2(∞)
∞∑
k=0

c2
k(∞)z−k +A∞y1(∞, z) log(z), |zj | =∞.

(7.8)

Aj and A∞ are constants, which have to be determined by insertion of these expansions into
the original differential equation. y1 is the first solution, determined from eq.(7.7) with m = 1.
Also, the index m in cmk does not indicate raising to the m-th power.

7.2 Heun function

Since general form of these functions correspond to very general form of solutions y(z), a subset
of these equations, where a, b, c are polynomials has much simpler structure. Let us denote a,
b, c as

a(z) = Pn(z), b(z) = Pn−1(z), c(z) = Pn−2(z), (7.9)

where Pn denotes polynomial of degree n. For n = 2 the differential equation can be brought to
an equation satisfied by hypergeometric functions, while for n = 3, Heun functions are solutions.
This functions contains 4 regular singularities. Manipulation of parameters allows to shift them
into points z = {0, 1, t,∞}. Then its canonical form is usually presented as

d2y(z)

dz2 +

{
c

z
+

d

z − 1
+
a+ b+ 1− c− d

z − t

}
dy(z)

dz
+

abz − λ
z(z − 1)(z − t)

y(z) = 0 (7.10)

Coefficients a, b, c, d determines characteristic exponents of Frobenius solutions at the singular-
ities. λ is an accessory parameter, usually serving as the spectrum of the differential operator.
Taylor series can be constructed around any of singularities. For a solution of the canonical
equation it holds that y(0)=1, and the series converges within radius min(|t|, 1) Other functions
can be obtained by confluence of singular points. Then singly, doubly and triply confluent Heun
functions come as a result. In the limit of t→∞ a singly confluent Heun function is obtained
with an irregular singularity at the infinity and regular singularities at z = 0 and z = 1. This
function satisfies

d2y(z)

dz2 +

{
−t+

c

z
+

d

z − 1

}
dy(z)

dz
+
λ− taz
z(z − 1)

y(z) = 0 (7.11)

Here a, b, c, d, t describe the form of solutions nearby the singularities and λ is still a spectral
parameter.
There exist software packages that can be used in analysis of Heun functions, but defining
differential equations do not always follow canonical definitions, therefore the reader should be
aware of differences between conventions in literature and computer programs.

7.3 |β|2 dependence on the parameters of the model

Following graphs is a result of numerical calculation of |β|2. The physical meaning of these is
the density of particles in each mode denoted by ω, L and m. The total number of particles
is recovered by summing and integrating over these labels. All units are dimensionless, i.e. ω
actually stands for ωRS and m means mRS , and the distance is measured in units of RS . In
all graphs, Log denotes a natural logarithm with the base e.
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Figure 7.1: Log[|β|2] dependence on ω (ω = ω′ and E
K2

= 0 unless stated otherwise). For
each ω a stack of points is a distribution with respect to L. Values within truncation of these
distributions are shown in figure (7.2). L = 0, 1, ..., 12. Massless field case

Figure 7.2: Log[|β|2] dependence on L. Notice that for higher values of ω the peak is reached
at higher values of L, which is then followed by a decrease. Massless field case.
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Figure 7.3: Log[|β|2] dependence on ω. For each ω values decrease as the mass of the field
increases. For each ω a stack of points represents different values of M , where M = 1, 2, ..., 5.
Within shown values there seems to be an accumulation point at ω = 5. The fact that higher
mass corresponds to lower particle densities agrees with natural expectations.
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Figure 7.4: Log[|β|2] dependence on the mass of the field for ω = 1. For each value of M a stack
of points represents different values of L ∈ [0, 12]. Dependence on L is not straightforward, i.e.
one can not conclude that values increase of decrease monotonically. General trend satisfies
previous expectations that larger mass results in lower densities, but the gap at ω = 5

is unexpected.
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Figure 7.5: Log[|β|2] dependence on L. For all cases except for the first one values decrease
with an increase in L.
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Figure 7.6: Log[|β|2] dependence on M . All values decrease universally. For each value of M a
stack of points is represented by various values of L.
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Figure 7.7: Log[|β|2] dependence on L. Similarly to ω = 1 case, for smaller values of M there
seems to be an extremum, but for larger values a universal drop is observed.
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Figure 7.8: Log[|β|2] dependence on ∆ω. The difference in color represents different ω of
reference, i.e. for top values ω = 1, while for bottom values ω = 2, and ω′ = ω + ∆ω. The
density of particles grows as the difference between frequencies diminishes, but in principle there
is some mode mixing in ω space.
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