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Abstract

In this thesis, the interaction between a femtosecond laser and glasses in the
ablation regime is studied. A pulsed femtosecond laser setup allows for surface
ablation of glasses under strong focussing conditions. This setup is used to mea-
sure the reflectivity of four different glasses as a function of the laser fluence,
in order to study the self action of the laser pulse. The craters produced by
the laser pulse are examined using atomic force microscopy. These two mea-
surements together are able to provide insights in the energy coupling of the
laser pulse into the material. It is found that for increasing fluences, the sel-
freflectivity and crater depth both rise with increasing slopes. With a similar
experimental setup, which uses a pump and probe technique, the dynamics of
femtosecond laser matter interaction in fused silica are studied under weak fo-
cussing conditions. By illuminating the plasma generated by the pump beam at
different times using a delayed probe beam, its evolution can be observed by its
reflectivity. It is seen that in ∼ 1 ps, the plasma reaches its maximum reflectiv-
ity. The plasma’s reflectivity remains constant for several picoseconds, before
recombining with the glass. Well after the laser has interacted with the glass,
signs of material ablation can be observed. A one-dimensional finite-difference
time-domain simulation is performed to replicate the experiment’s results. The
simulation applies the Drude model and the often used single rate equation de-
veloped by Stuart et al. to model ionization. The simulated results do not agree
with the experimental results, due to an overestimation of the ionization rate by
the single rate equation. Instead, implementation of a multiple rate equation is
suggested to model ionization.
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Introduction

1 Introduction

Ever since its invention by Theodore Maiman of Hughes Laboratories in May 1960[1],
lasers have found wide-spread applications in academia, healthcare, industry, house-
hold appliances and even art. In laboratories all over the world lasers are used in
imaging techniques, laser cooling[2], and waveguide writing[3, 4], just to name a few.
A world without lasers is unimaginable these days, and the laser has come a long way
since the first pulsed laser from the sixties. Nowadays, many laser characteristics,
such as wavelength, power, pulse duration, pulse shape and more can be chosen with
only few constraints. This has lead to multiple distinct subfields of research.

One of these fields considers laser pulses of extremely short durations and thus
extremely high peak intensities. Pulse durations of the order of 10−15 s and intensities
of the order of 1014 W/cm2 are not uncommon. This type of pulse is interesting because
they consist of electric fields of the same order of magnitude as the fields that electrons
in an atom experience due to the Coulomb field of an atom’s nucleus. Hence they
are capable of changing the morphology of even high-band gap materials in a well-
confined region.

One generic application of ultrashort laser pulses is ablation, where material is
removed by the pulse. Because of the low pulse duration, the electromagnetic in-
teraction is well separated from any thermal interaction in the material, and abla-
tion happens deterministically. This can be used to remove tumor material[5], write
waveguides, and for surface modification.

For this thesis the interaction of single femtosecond laser pulses incident on glass
surfaces under ablating conditions is studied. The project is a collaboration between
Utrecht University and University of California, Davis, enabled by professor Denise
Krol. The motivation for this study is to understand the energy coupling of a laser
pulse into insulator material, and how this affects the surface nanostructuring due
to the laser action. Specifically three zinc-phosphate glasses doped with different
aluminiumoxide concentrations and fused silica are studied. Earlier works in the
group of Dr. van Oosten done by dr. Hao Zhang and Stephan Wolbers, MSc have
studied the interactions of a femtosecond laser pulse with a semiconductor[6] and
a metal[7], respectively. This work on insulators will contribute in understanding
femtosecond laser-matter interaction more completely. The laser-matter interaction
is studied by looking at the changes in reflectivity of the glasses due to the pulse,
both temporally resolved and temporally integrated. Also the craters produced by
the laser pulse are observed and their morphology is measured.

In the second section of this thesis, the general theory of a femtosecond laser
pulse interacting with an insulator is discussed. This will introduce relevant aspects
of laser pulse propagation, laser-matter interaction through the dielectric constant,
and plasma formation through different ionization mechanisms. In the third section,
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Introduction

the experiment ablating nano-craters on the glass surfaces is explained and its results
are presented. The fourth section considers the transient reflectivity measurements
obtained via the pump-probe experiment performed in Davis. Next, in the fifth
section, a simulation of the pump-probe experiment is explained. Lastly, in the final
section the most important conclusions are summarized and an outlook of possible
follow-up research is discussed.
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2 Theory of femtosecond laser-matter interaction

In this section, the theory that describes the interaction of an intense laser pulse
with a glass material is introduced. In order to understand the energy coupling of
an intense laser into glass, first electromagnetic wave propagation will be considered.
Inside the glass, there will be nonlinear laser-matter interaction. Because the photon
energy of the 800 nm laser that is used is 1.55 eV, but the bandgap of e.g. fused silica
can be up to 9 eV, only very intense fields interact significantly. This results in a
hot electron plasma through several ionization mechanisms, which will be discussed.
The plasma affects how the laser pulse propagates through the glass and how it
is partially reflected back. The theory about electromagnetic fields, ionization and
pulse propagation in the plasma will be used mostly in the simulation described in
Section 5. As a result of the plasma, the surface material is ablated. This surface
ablation is thought to happen well after the pulse is over, so it does not have to be
considered during the simulated laser-matter interaction.

2.1 Electromagnetic wave propagation

Consider the propagation of the electromagnetic wave. In both vacuum and glass,
the behaviour of the electromagnetic fields is described by Maxwell’s equations[8]

∇ ·D = ρf, (2.1)

∇ ·B = 0, (2.2)

∇×E = −∂B

∂t
, (2.3)

and

∇×H = Jf +
∂D

∂t
, (2.4)

where E, B, D and H stand for the electric field, magnetic field, displacement field
and magnetizing field respectively. Jf denotes the current of free charges and ρf

denotes the free charge density. The constitutive relations for isotropic and ho-
mogeneous media are expressed using the relative dielectric function ε and relative
permeability µ as

D = εε0E (2.5)

and

H =
1

µµ0
B. (2.6)

Here ε0 and µ0 denote the permittivity and permeability of the vacuum respectively.
Eqs. 2.1-2.6 govern all behaviour of the electromagnetic field in- and outside the
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glass material, and therefore also the laser pulse propagation. Since for any optical
material µ = 1, only ε need be considered. In this model, the complex quantity ε
incorporates all effects that the laser pulse has on the material, and how the material
in turn influences the propagation of the pulse. For a plasma inside a glass, a Drude-
like model is used to parameterize the relative dielectric function

ε = n̄2 − e2τ

meffωε0 (i+ ωτ)
ρ. (2.7)

Here n̄ stands for the glass’ index of refraction, e the elementary electron charge,
τ the electron collision time, meff the effective mass of a free electron, ω the laser
frequency and ρ the free electron number density. The glass’ index of refraction is
calculated using the ordinary refractive index n0 and a contribution due to the Kerr
effect, namely

n̄ = n0 + n2I. (2.8)

Here n2 is the Kerr-effect coefficient and I the laser intensity. Eq. 2.8 is valid for
centrosymmetric materials as long as the nonlinear contribution remains small com-
pared to the ordinary contribution. From Eqs. 2.7 and 2.8 it can be seen that in
the absence of a pulse and a plasma (I = 0,ρ = 0), the dielectric function re-
duces to the well-known relation ε = n2

0. Since in the experiments the prefactor
e2τ

meffωε0
= 1.35× 10−27 m3, very large free electron densities are required to affect the

propagation of light (estimating τ = 1 fs, meff = 1 me).

2.2 Ionization mechanisms

There are three relevant ionization mechanisms that create a plasma during the
experiments. They are multi-photon ionization (MPI), tunneling ionization (TI) and
avalanche ionization (AI), illustrated in Fig. 2.1. MPI loosely speaking corresponds
to when an electron in the valence band absorbs enough photons simultaneously to
bridge the band gap of the material. TI is possible when the applied electric field
lowers the molecules’ Coulomb potential enough for an electron to tunnel through
the remaining potential. For over-the-barrier ionization the Coulomb potential is
lowered enough that the electron has a significant probability of crossing over to
the conduction band freely. For the intensities applied in our experiments, over-the-
barrier ionization need not be considered. Avalanche ionization happens in two steps:
first, an electron in the conduction band absorbs incoming radiation through inverse
Bremsstrahlung. Then when this electron has gained enough energy, it can collide
with an electron in the valence band to excite it to the conduction band.

2.2.1 Keldysh’ theory of strong field ionization

Both MPI and TI are two examples of a more general strong field ionization (SFI) pro-
cess. The rates at which SFI occurs was first theoretically described by Keldysh[11],
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Figure 2.1: Different possible ionization mechanisms for insulators. Solid red lines indicate the
conduction band, solid blue lines indicate the valence band. (a) Multi-photon ionization. (b)
Tunneling ionization. (c) over-the-barrier ionization, which does not occur significantly for our
intensities. (d) Intraband absorption through inverse Bremsstrahlung. (e) Impact ionization.

Images adapted from Balling[9] and Mao[10].

and later corrected by Gruzdev[12]. Keldysh’ theory assumes the dispersion relation

E(p) = ∆

(
1 +

p2

mred∆

)1/2

, (2.9)

where E(p) denotes the energy of an electron as a function of its momentum p,
reduced effective mass mred and band gap ∆. Whether MPI or TI is the dominant

process depends on the so-called Keldysh parameter γ = ω
√
mred∆
eE (E-electric field

strength), which is roughly the ratio between the tunneling time and one optical
period. When the tunneling time is bigger than the optical period, the electron
will simply not have enough time to cross the lowered barrier before the field stops
lowering the barrier sufficiently. Thus when γ � 1 TI dominates and when γ � 1
MPI dominates. The expression for the resulting ionization rate, as corrected by
Gruzdev[12], is

WSFI =
4ω

9π

(
mredω

~√γ1

)3/2

Q(γ, x)× exp

(
−πbx+ 1cK(γ1)− E(γ1)

E(γ2)

)
, (2.10)

with

Q(γ, x) =

√
π

2K(γ2)
×
∞∑
n=0

exp

(
−nπK(γ1)− E(γ1)

E(γ2)

)
× Φ

(
π

√
bx+ 1c − x+ n

2K(γ2)E(γ2)

)
.

(2.11)
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Here γ1 = γ2

1+γ2 , γ2 = 1
1+γ2 and x = 2

π
∆
~ω
E(γ2)√
γ1

(the effective band gap in units

of photon energy). K and E denote the complete elliptic integrals of the first and
second kind, Φ is the Dawson integral, and bxc stands for the floor function of x. For
an 800 nm laser hitting a material with a band gap of 9 eV, the strong field ionization
rate is plotted against electric field strength in fig. 2.2.

Figure 2.2: Keldysh ionization rates as a function of electric field strength. A fit to WMPI =
σ6I

6 is also shown, and σ6 = 8.188 × 10−65 (W/m2)−6 m−3s−1 is found.

Note the bumps in the Keldysh ionization rates, which are caused by the floor
function in Eq. 2.11. They correspond to the increase of the effective band gap
U ′eff = x~ω as a result of the ponderomotive energy Up. Since[13]

U ′eff =
2∆

π

E(γ2)
√
γ1
' ∆ + Up = ∆ +

e2E2

4mredω2
, (2.12)

the higher the field, the larger the effective band gap.

It can be shown[9] that in the low field limit, the Keldysh ionization rates will
scale with I6. In Fig. 2.2 a fit is also plotted, and it can be seen that this fit is no
longer valid for field strengths higher than 50 MV/cm. The highest electric field of the
laser pulse reached during our experiments is near 200 MV/cm , which corresponds to
γ = 0.84, meaning we are in the cross-over regime between MPI and TI. Only the
full expression 2.10 is thus applicable.

It should be noted that several authors have found and applied different val-
ues for the ionization rates in experiments in the MPI limit. Lenzner et al. have
found that σ6 = 6.0 × 10−70 (m2/W)

6
m−3s−1, while Li et al. found σ6 = 3.0 ×

10−74 (m2/W)
6

m−3s−1 , in contrast to the fitted value of σ6 = 8.2×10−65 (m2/W)
6

m−3s−1.
The values for the MPI coefficient differ several orders of magnitude from each other
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and from the one derived form Keldysh’ theory. Nonetheless, Keldysh’ theory has
been used in several works considering ionization of dielectrics by intense lasers[13–19].

2.2.2 Avalanche ionization

The other relevant ionization mechanism is AI. An often used expression for the AI
rate was derived by Stuart et al. based on the solution of the Fokker-Planck equation
for the electron distribution function[18]. A rate linearly proportional to the intensity
and free electron density was found:

WAI = βIρ, (2.13)

where the prefactor β is a constant calculated by solving their kinetic equations
numerically. Stuart et al. found a value of 11 cm2/J for fused silica with a band gap
of 9 eV. Other authors have applied Joule heating to an electron gas to come to the
same conclusion, namely an AI rate linearly proportional to the laser intensity and
free electron density. For this derivation, see appendix A. The resulting formula for
β is

β =
Ω

Ueff
. (2.14)

Here

Ω =
1

n0cε0

e2τ

mred(ω2τ2 + 1)
(2.15)

(with c the speed of light) is the single electron inverse Bremsstrahlung cross section,
and

Ueff =

(
2− mred

me

)(
∆ +

e2E2

4mredω2

)
(2.16)

is the critical energy necessary to collisionally excite a conduction band electron across
the band gap ∆while fulfilling energy and momentum conservation[13] . Intuitively it
makes sense that the AI rate depends on the free electron density (more electrons to
absorb radiation means more electrons to collisionally excite valence band electrons)
and the laser intensity (more radiation to be absorbed).

For our experiment, the scattering time and effective mass are estimated to be
τ = 1 fs and meff = 1 me. The theoretical value of the avalanche ionization coefficient
is then β = 7.7 cm2/J, which is in reasonable agreement with Stuart’s value. However,
more discrepancies between these avalanche ionization coefficients can be found, as
is displayed in Table 2.1. The differences among the three coefficients calculated
with Eq. 2.14 lie in the choices of τ and meff. Even though the scattering time τ
is temperature-dependent, a pulse-averaged value is often assumed. Similarly, the
effective electron mass meff depends on the potential landscape in the neighbourhood
of the conduction electrons, but is often assumed to be meff = 1 me.
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Author β [cm2/J] Method of calculation

Stuart et al. 11 Numerical calculation of Fokker-Planck equation

Lenzner et al. 4.0 Experimentally found

Sudrie et al. 9.0 Joule heating calculation (Eq. 2.14)

Wu et al. 7.9 Joule heating calculation (Eq. 2.14)

This work 5.2 Joule heating calculation (Eq. 2.14)

Table 2.1: Values for the avalanche ionization coefficient β as found by different authors.
Note that when the Joule heating calculation is applied, that Ueff = Ug = 9 eV.

2.2.3 The rate equation

Including both the SFI and AI rates, the evolution of the electron density is described
with the rate equation

dρ

dt
= (WSFI + βIρ)

(
1− ρ

ρmax

)
− ρ

τs
. (2.17)

Here saturation of the plasma is accounted for by only allowing a maximum electron
density of ρmax. This term could be chosen to correspond to the glass molecule
density[16], the glass’ atom density[20], or other specific criteria[21]. Recombination
and self-trapping[22] may also be considered by including exponential decay with the
last term − ρ

τs
. Here τs denotes the 1/e decay time of electrons decaying back into the

valence band and/or self-trapping states. Whether these effects are actually taken
into account in the performed simulations is discussed later in Section 5.

2.3 Experiments: reflectivity and ablation

In the experiments, the glasses’ reflectivity is measured, both time-integrated and
time resolved. Theoretically, the reflectivity R of the glass-air interface under normal
incidence can be calculated using the Fresnel equation[23]

R =

(
|k̃1 − k̃2|
|k̃1 + k̃2|

)2

. (2.18)

Here k̃1 and k̃2 denote the complex wavenumbers of the wave in air and in excited glass
respectively. Hence the reflectivity depends on the dielectric function and therefore
the free electron density of the material. The higher the electron density, the higher
the reflectivity. However in both the time-integrated case and the time-resolved case,
the reflectivity cannot be calculated as straightforwardly as Eq. 2.18 suggests. The
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reason for this is that both the pulse intensity and thus also the dielectric function are
a function of time. Since the lifetime of the plasma is longer than the pulse duration
and the reflectivity is not constant during the pulse, the actual amount of reflected
light has to be calculated with a more complicated integral of the form

Frfl =

T̂

0

I(t)R(t)dt. (2.19)

Here the time-dependent intensity I(t) and reflectivity R(t) would have to be mul-
tiplied and integrated over a suitable time interval T to find the reflected fluence
Frfl. To complicate things even further, the depth dependent electron density causes
a depth dependence in reflectivity as well. In order to fully take into account the
effects of space- and time-dependent reflection off of the plasma, the entire plasma
generation and pulse-plasma interaction are modelled in a Finite-Difference Time-
Domain (FDTD) simulation. This will be discussed in greater detail in Section 5.

After the laser pulse has interacted with the glass, thermal effects will come into
play. The plasma is in a non-equilibrium state of high pressure and high temperature,
leading to an unstable lattice. Separation of charges due to ionization causes high
Coulomb repulsion. These effects result in a Coulomb explosion, ejecting matter from
the surface and leaving behind a crater. Because the electromagnetic interaction is
thought to happen much sooner than any thermal process, craters are created deter-
ministically instead of statistically. This is summarized in Fig. 2.3, which also shows
the timescales and intensity-dependency leading up to ablation for semiconductors
and metals.

Figure 2.3: Processes and their timescales leading to ablation for different material types.
Image taken from Rethfeld[24].

In the following two sections, the experimental results on ablation and reflectivity
will be presented.
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3 Ablation and selfreflectivity under strong focussing
conditions

For this study the interaction of an intense laser with glasses is studied via two ways.
One way is by looking at the reflectivity of the glass, which changes as a result of
plasma formation in the glass. This provides us with fundamental insight into plasma
formation and thus information on how energy couples into the glass. The other way
to study the interaction is by considering the ablated craters resulting from the
laser pulse. Studying these craters is important for application in nanofabrication.
Additionally, it provides lots of insight into the underlying physics that lead to crater
formation and thus again energy coupling. In this experiment the laser is tightly
focussed onto the material. This has the advantage that less power is needed to obtain
high peak intensity. It also allows for sub-diffraction-limited features, since the laser
only creates a plasma where the local fluence crosses a certain ablation threshold.
Only past this threshold will the plasma be dense and hot enough for ablation to
occur. In this section, first the experimental setup allowing us to study these glasses
and their ablated surface nanostructures is described. Next the experiments’ results
and conclusions are presented, and finally suggestions for improvements to the setup
are discussed.

3.1 Experimental setup and parameters

The experimental setup used is shown in Fig. 3.1. A Titanium Sapphire regenera-
tive amplifier system (Hurricane, Spectra-Physics) fires single 800 nm, 450 fs linearly
polarized laserpulses with a maximum energy of 1 mJ and maximum repitition rate
of 1 kHz. One such pulse passes a half-wave plate (λ/2) and consequently a polar-
izing beamsplitter cube (PBS), which allows us to control the energy that passes
through. One part of the pulse is then split off and blocked by a beam block (BB).
The other part, after passing a mechanical shutter (Uniblitz Electronic VS14S2T1),
is then aimed through a telescope. Here it is collimated in such a way that the laser
pulse’ focus coincides with the camera’s focus. After the telescope the pulse is split
up again into a reference beam (ref. beam, dotted red line) and a pump beam. The
reference beam does not hit the sample, but instead is aimed at a 12 bit CCD cam-
era (Qimaging RETIGA 1300) directly after passing a neutral density (ND, OD =
0.62) filter and a tube lens (TL, 300 mm). The pump beam passes another beam
splitter, a pellicle mirror (PM) through its non-reflective side, and then finally a mi-
croscope objective (MO, Nikon CFI60, NA = 0.8, 100x, working distance 3.5 mm)
which focusses the pulse on the sample surface. The MO has a numerical apperture
of 0.8, resulting in a very tight focus (focal diameter ~1µm). The MO can be moved
with a translation stage (Zaber Tech T-LSM025A) in the vertical (Z) direction, the
sample can be positioned in the horizontal plane (XY) with another stage (PIline
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Figure 3.1: Experimental setup allowing for controlled fabrication of surface nano-craters and
observation of reflected beamprofiles of glass. Dashed rectangles represent mirrors, blue ovals

represent lenses.

M-686.D64). The laser pulse is reflected off the glass sample surface (dotted purple
line), reflected by the reflective side of the pellicle mirror, and finally focussed onto
the CCD camera by the tube lens. Additionally, a white light source illuminates the
sample surface to aid with targetting and focussing.

The experimental parameter that is being varied for this study is the pulse energy,
and therefore the fluence. The fluence F is defined as the time-integrated intensity.
Peak fluence for Gaussian pulses can be calculated using F = E

Aeff
, where E is the

pulse energy and Aeff is the effective spotsize of the laser. This effective spotsize
is determined by the radius where the 1/e intensity value of the spot is attained.
It is found to be of the order of 0.5µm during our experiments. Fluence is the
quantity of interest, since ablation is a result of a high electron density. This density
is caused by a transient intensity (Eq. 2.17) over the course of a pulse. Hence just
the pulse energy does not provide enough information about the type of pulse used.
Instead, the peak fluence and pulse duration are specified. Both the pulse energy and
effective spotsize can be determined with the CCD camera, which captures both the
reflected beamprofile and the reference beamprofile. These results will be discussed
in more detail in Section 4. By moving the MO in the Z direction, the sample
surface is brought into focus. By moving the sample with the XY translation stage
a fresh spot without visible surface defects is picked. For several different pulse
energies, twenty irradiations are performed in a row. If the fluence is above the so-
called ablation threshold, craters are produced, resulting in an array of craters with
increasing energies along one of its sides. After each irradiation the sample is moved
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Sample reference Composition Refractive index

ZAP1 60% ZnO 40% P2O5 1.458

ZAP2 51% ZnO 44% P2O5 5% Al2O5 1.458

ZAP3 42% ZnO 48% P2O5 10% Al2O5 1.458

FS SiO2 (Fused silica, Corning 7980) 1.4533[25]

Table 3.1: Glass sample properties.

by 2µm to ensure the pulse hits a fresh spot. The frequency of irradiations is 2 Hz,
so that the translation stages are no longer vibrating from moving at the time the
sample is irradiated[6]. The samples chosen for this study are three zinc-phosphate
glasses doped with aluminium (ZAP glasses) and fused silica. The ZAP glasses are
chosen because they may be suitable for waveguide writing, and fused silica is chosen
because it is a good model dielectric that has been studied much before. The band
gap for fused silica is 9 eV, and for the ZAP glasses it is < 5 eV. The samples’ other
properties are listed in Table 3.1.

3.2 Powercalibration

Using the reference beam, it can be determined how much energy arrives at the
sample. For this, the pixel values of the reference beam are summed up and related
to a pulse energy (for an example of a reference beam as captured by the CCD camera,
see Fig. 3.3). This relation is determined by putting a power meter (Newport 818-
SL) in place of the sample. By setting the repetition rate of the laser to 1 kHz, the
average power of 1000 pulses is measured. For different measured powers, twenty
reference beam profiles are captured by the CCD camera. These twenty profiles are
averaged and a pixel sum is taken. The value of this pixelsum is then paired with
the power measured by the power meter. This power can be converted into a pulse
energy by dividing by the repetition rate. This calibration is performed twice, where
the second time an extra ND filter (OD = 0.3) is put in the reference beam path in
order to prevent saturation of the camera at high intensities. The resulting (summed
pixel intensity, pulse energy)-plot is shown in Fig. 3.2. Theoretically, a linear relation
between pixelsum (which is supposedly a time- and space-integrated intensity) and
pulse energy is expected. Obviously this is not the case, and we attribute this error
to the use of a faulty power meter. Nonetheless, an approximate relation between
the quantities can still be established. The summed pixel intensity is fitted to the
pulse energy using f(x) = ax2 + bx, and the fits are shown the same figure as the
data.
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Figure 3.2: Calibration of the power meter against the reference beam’s summed pixel intensity.
The inverse relation is fit to f(x) = ax2 + bx and used to calibrate the pulse energy arriving at
the sample during our experiment. The one filter fit parameters are a = 3.3× 104 ± 0.6× 104

and b = 4.3 × 104 ± 1.4 × 104. The two filters fit parameters are a = 3.2 × 104 ± 0.2 × 104

and b = −3.0 × 105 ± 5.6 × 104.

3.3 Results: selfreflectivity

The way electromagnetic energy from the laser couples into the glass is largely affected
by how the laser’s action on the material. One way of studying this energy coupling
is by looking at the amount of light that is reflected off of the sample. This was done
for different energies for the four samples described in Table 3.1. Fig. 3.3 shows an
example of a captured reflected beam profile and its corresponding reference beam
profile. Here a background subtraction was already applied. Using the reference
beam and the power meter calibration, the pulse energy ariving at the sample is
determined. For the fluence, the beam waist is also required. This is found by fitting
the beam profile to a Gaussian profile

G(x, y) = A exp

[
−
(
x− x0

wx

)2

−
(
y − y0

wy

)2
]
−B. (3.1)

Here A corresponds to the peak value of the laser pulse, x0 and y0 are the spatial
offsets of the laser, wx and wy are the beam waists, and B is the background value
(which, after background subtraction, should be zero). On average, the beam waist
of the focussed laser is 510 ± 4 nm. The effective area is then Aeff = πwxwy. For
every individual pulse, the fluence is calculated using the area from a Gaussian fit
and the energy observed using the reference beam. For high energies, the reflected
beam profiles have flattened tops as can be seen in Fig. 3.4. This could either be due
to a distored reflection of the Gaussian profile, or due to camera saturation. During
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Figure 3.3: In the top two images, beam profiles as captured by the CCD are shown. On the
axes is the distance in µm. In the bottom two graphs, cross sections of the reflected beam
profile (red dots) and their Gaussian fits (blue line) are shown. The considered sample is ZAP1.

Figure 3.4: Saturated beam profiles and attempted fits. In the top two plots, all axes display
the distance in µm. Note also the appearance of an extra peak left of the reflected beam

profile.
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Figure 3.5: Selfreflectivity plotted against fluence for the four samples.

the experiment, saturation of the camera is prevented by checking the highest pixel
value in an image. Since the camera is 12 bit, saturation is expected expected at a
value nearing 212 − 1 = 4095 (before background subtraction). However, the images
show saturation at a much lower value (note: the background subtraction lowers
the pixel values by less then 100 ADU). Overlapping supposedly saturated peaks
however, shows they all have the same pixel values. This makes it very likely that
the camera is actually saturated. The same occurs for the beam profiles used in the
power calibration. However, the saturation only happens when the pixelsum is larger
than 2× 107 ADU, so this doesn’t fully explain the parabolic behaviour.

From the beamprofiles, the selfreflectivity is calculated as well. This is defined as
the ratio between the incoming and the reflected energy (Eincand Erfl respectively)
by the sample. Regardless of the nonlinear behaviour of the reference beam, the
reflected beam is assumed to display a linear relation between pixelsum and energy.
The selfreflectivity is then calculated by

Rself =
Erfl

Einc
=

pixelsum reflected beamprofile

Einc
× Crfl, (3.2)

where Crfl is a calibration factor. This calibration factor is determined by having low
fluence pulses result in the Fresnel reflectivity, calculated using the refractive indices
in Table 3.1. Excluding the beamprofiles which saturated the camera, the resulting
(fluence, selfreflectivity)-plots are shown in Fig. 3.5.

For increasing fluence, higher selfreflectivities are observed. Note however that
there are datapoints with impossibly high selfreflectivities (i.e. > 1). The calculated
fluences are also very low, and the change in reflectivity at these low fluences is not
predicted to happen to high band gap materials by other authors[16, 26]. From this, it
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can only be concluded that the calibration of the pulse energy with the reference beam
failed, either due to a broken power meter or incorrect allignment of the reference
beam (which seems to be clipped). Furthermore there is much more spread in the
data at high fluences. This may be caused by the spacing between two consecutive
shots. If a crater is ablated at the surface, debris will scatter around it. If the spacing
is too smal, this debris will land and shot at by the following laser pulse.

3.4 Results: nanocraters

Using Atomic Force Microscopy (AFM), the sample’s surfaces are observed. As an
example, Fig. 3.6 shows the crater array of ZAP1. In these figures, every column is
produced with the same laser energy (up to non-neglible pulse-to-pulse variations).
The highest energy craters are near x = 0µm, the lowest energy craters that still
fitted within this AFM field are near x = 95µm. It can be seen that higher energy
pulses lead to deeper craters (as expected), but that there are still big variations in
the crater depth for a single pulse energy. The bottom image in Fig. 3.6 seems to
suggest that there may be regions on the glass itself that are more or less suitable
for crater fabrication. Compare for instance the top half to the bottom half of the
image.

In Fig. 3.7, the horizontal and vertical cross section of one crater are shown.
A structure resembling a rimmed crater can be seen, which was also found for the
semiconductor silicon by Zhang[6]. Sub-micron sized craters are found with high
aspect ratios, such as for the crater shown in Fig. 3.7, diameter

depth ≈ 845 nm
69 nm ≈ 12. The

craters are wider than they are deep, contrary to what the aspect ratio in Fig. 3.7
suggests.

As is done in[6], the craters are tried to fit to

Z (x, y) = −B exp

{
−

[
(x− xcrater)

2

w2
crater,x

+
(y − ycrater)

2

w2
crater,y

]}
+B

+A exp

−
√(x− xrim)2

w2
rim

+
(y − yrim)2

w2
rim

− ∆d

wrim

2 (3.3)

−A exp

{
−
[

∆d

wrim

]2
}
.

In this form, the bottom of the crater is defined at Z = 0 and the depth of the
crater is parameterised by B. For the crater in Fig. 3.7, the data is fitted reasonably
well. Especially in the horizontal direction (which coincides with the direction of
movement of the AFM tip), there is good agreement. However, not all craters were
smooth enough to fit to Eq. 3.3. The rough surface and overall noisy data also
support the hypothesis that there may have been debris in the way. This makes
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Figure 3.6: Nanocrater arrays of ZAP1. These are two parts of the same AFM image, but
the original is split up to increase contrast. The direction of movement of the AFM tip is

approximately horizontal. Note the difference in colorbars.
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Figure 3.7: Cross sections and fit of the crater at position (41µm, 34µm). In the top two
plots, the axes show distance in in µm and the colorbar shows depth in nm. In the bottom

two plots, the black line indicates the average local height of the glass.

it difficult to make more quantitative statements about the crater shapes for now.
Instead, the crater depth is defined in the following way. The local height of the
glass is defined as the average of the outermost 12 nm (or 5 datapoints) of the square
region in which a crater lies (50x50 datapoints). From this average, the minimum
value of the square region is subtracted. This defines the depth of the crater. The
crater depths, for all four samples, are plotted in Fig. 3.8 as a function of fluence.
Because of camera saturation, there is no information about the beamwaists for
high energy pulses. There is however information about the pulse energy, since the
energy calibration was performed with the same saturation. Therefore it is chosen
to calculate the fluence for high energy pulses using the average effective area. As
expected, the depth of ablated craters increases with fluence. In this fluence range
the increase in depth seems exponential with fluence for the ZAP glasses. The ZAP
glasses allow for greater craters than fused silica, which is to be expected from their
respective band gaps.
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Figure 3.8: Crater depth plotted against pulse energy for the four samples.

3.5 Conclusions and outlook

This experiment shows craters with high aspect ratios can be produced using single
shot femtosecond laser ablation, with various depths. It can be concluded that both
the selfreflectivity and the crater depth increase with fluence. Even though more
of the incoming laser pulse is reflected by the surface plasma, the laser’s energy
penetrates deeper into to surface for higher fluence. In order to make more quantative
statements about the selfreflectivity and crater morphology, the experiment needs to
be redone with the following considerations in mind. First of all, a proper energy
calibration needs to be performed. Secondly, camera saturation must be avoided,
preferably by using a camera that does not saturate at ∼ 80% of its maximum pixel
intensity. Thirdly, the correct fluence range needs to be studied. For instance, at
very high fluences the plasma will have reached its maximum electron density. Here
it is expected that the reflectivity will drop due to electron heating. Similarly, it
would be interesting to study how deep ablated craters can get. Finally, the flatness
and purity of the glass surfaces should be ensured. For this the spacing between
adjecent craters needs to be sufficiently big so that no debris ends up at possible
crater locations.
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4 Reflectivity under weak focussing conditions

After studying the laser’s self-action through selfreflectivity, there are still questions
about the energy coupling into glasses. In the previous chapter our experiment pro-
vided information about the time-integrated, partially reflected laser pulse, which
means it did not provide information about the dynamics of the laser-matter inter-
action. In order to study the dynamical interaction between femtosecond laser pulses
and glass a different type of experiment needs to be performed. A setup with a
pump beam to interact with the glass, and a probe beam to act as a camera flash
and illuminate the glass surface is used. By varying the temporal delay between the
pump and probe beam, the dynamics of the resulting plasma can be studied. This
pump-probe setup was realized at UC Davis in California, and is shown in Fig. 4.1.
This setup allows for imaging the surface plasma of the glass as a function of the
delay time of the probe beam. In this experiment, only fused silica (FS, see Table 3.1)
was studied.

4.1 Pump probe setup

A Titanium Saphire laser amplifier (Spitfire LCX, Spectra Physics) delivers 800 nm
pulses with Gaussian temporal and spatial profiles (with a nominal pulse duration of
150 fs (FWHM) and maximum pulse energy of 250µJ). A pulse passes a mechanical
shutter (MS, Uniblitz), a zero order lambda half-wave plate (λ/2), and a polarizing
beamsplitter cube (PBS). Here the pulse is divided in a pump and a probe pulse.
The pump pulse passes an apperture with a diameter of 7.5 mm, then another λ/2
and PBS where its energy can be controlled, and is lastly loosely focussed onto the
glass sample’s surface. A lens with a focal distance of 200 mm is used, in contrast to
the strongly focussing microscope objective used in the previous experiment. Due to
the weak focussing, the submicron sized features from before are no longer obtained.
However, the physics involved in weak-focussing conditions is much less complex and
easier to interpret. The beam impinges on the sample at an angle of roughly 55◦, so
that it reflects away from the nearby microscope objective (MO). This pump beam
is the highly energetic beam that interacts strongly with the glass. The probe beam
however is made sufficiently weak in order to have negligible interaction with the
glass. After the PBS it is guided through a temporal delay line. Here it can be
tuned to arrive at the sample at a different time than the pump beam. The delay
line consists of a retroreflector, whichs reflects a beam at exactly 180◦ with a slight
offset in position. This retroreflector is mounted on a linear motor stage, where it
can move in steps of 7µm, which corresponds to 46 fs. After the delay line, the
probe beam passes through a telescope with a barium borate crystal (BBO) in its
center. This BBO crystal frequency-doubles the laser pulse from the infrared to the
visible blue (400 nm). Next it is filtered by a blue filter to reduce any infrared light
still present. After the telescope, the now blue pulse is guided to the sample by
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Figure 4.1: Pump-probe setup, namely the fs microscope, for studying transient reflectivity.
Again, dashed rectangles represent mirrors and blue ovals represent lenses.

another PBS, through a lambda quarter-wave plate (λ/4). This waveplate circularly
polarizes the light, which then passes through an MO (Mitutoyo 20x, NA=0.25)
and arrives at the sample under normal incidence. Here it illuminates the plasma
created by the pump beam and is reflected back through the MO, λ/4, and PBS. The
lambda quarter-wave plate linearly polarizes the reflected probe beam and circularly
polarizes any blue light emitted by the laser-induced plasma. The PBS filters out
this plasma emission while remaining the reflected probe beam. This passes a blue
filter (transmission curve centered at 400 nm with a 10 nm FWHM) to surpress white
light emitted by the plasma. Finally, this light is focussed onto a triggered CCD
camera (PCO Pixelfly).

With this femtosecond microscope setup, the laser-induced plasma can be imaged
as a function of delay time of the probe pulse. What the camera observes is a
convolution of the plasma’s reflectivity and the probe pulse. This allows for a dynamic
study of the plasma evolution by changing the delay time. The first step in the
experiment is determining the ’zero delay’. The zero delay could be defined as when
the pump pulse and probe pulse arrive at the sample simultaneously. However,
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determining when this happens is difficult since it does not correspond to e.g. the
maximum reflected intensity. It is also practically impossible to accurately measure
the exact pathlengths of both pulses. Therefore the zero delay is defined as the delay
at which the probe pulse first has an increased reflectivity at the spot where the
pump beam hits the glass sample. In other words, the zero delay is defined as the
delay where the pump beam has significantly interacted with the glass sample.

4.2 Results: transient reflectivity of fused silica

For this experiment, the pulse duration is set to 360 fs (FWHM, as measured by a
commercial single-shot autocorrelator) by detuning the compression stage of the laser
amplifier. The same fused silica sample is used as in the ablation experiment (see
Table 3.1). The pump pulse energy arriving at the sample is 121µJ, resulting in a
peak fluence of 21 J/cm2. Fig. 4.2 shows the images as captured by the CCD camera
when the probe beam is delayed by 1 ps. Shown in (a), a background image is taken
before pump-beam irradiation. This only shows the glass sample surface. Next, an
image is taken when the pump beam is interacting or has interacted with the glass
(depending on delay time). The plasma created by the pump has a higher reflectivity,
as can be clearly seen in (b). In (c), the images from (a) and (b) are divided by
eachother, pixel by pixel, to normalize the amount of light captured by each pixel.
The average background has a value of 1, whereas the reflective plasma has a value
> 1. In order to analyze the reflectivity, the image is contracted horizontally by a
factor of 1.8 (i.e. the plasma’s ellipticity) using a bicubic interpolation algorithm from
the image processing software ImageJ1. Now the ellipsoidal plasma looks circular, and
its reflectivity is approximately constant for a certain distance from the center of the
plasma. A radial averaging is performed2 to obtain the reflectivity as a function
of the distance to the laser spots center. Different radial positions correspond to
different values of the local fluence.

1ImageJ 1.49p99, http://imagej.nih.gov/ij/
2Using the Radial Profile Extended plugin for Imagej, http://rsbweb.nih.gov/ij/plugins/

radial-profile-ext.html
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(a) (b)

(c) (d)

Figure 4.2: Example of an image taken with the fs microscope setup at a delay of 1 ps, and
the steps taken for data processing. The contrast varies per image for clarity, which leads to
perceived saturation of some images. Also note that the camera has some dead pixels, as can
be seen in (a) and (b). (a) First, a background image is taken before irradiation. (b) Secondly,
the plasma illuminated by the delayed probe pulse and imaged. (c) The image in (b) is divided
by the background shot from (a), pixel by pixel. (d) The normalized image of the plasma is

contracted horizontally by a factor of 1.8 to obtain a radially symmetric plasma.
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Before moving on to that quantative data, Fig. 4.3 shows the phases the plasma
goes through during and after irradiation by the pump beam. During the first pi-
coseconds the plasma is generated and reaches its peak density after about 1.5 ps.
After this phase, the electrons in the plasma start to recombine with the glass, de-
creasing the reflectivity. Peculiarly though, a plasma ring remains when the bulk of
the plasma has already recombined. This observation was also made by Puerto et
al.[23] If recombination is assumed to happen, the plasma ring requires electrons from
somewhere to remain more reflective than the surrounding plasma. Thus this effect
may indicate the importance of electron diffusion at least at these higher timescales.
Around this same time the process of ablation starts, as indicated by the debris that
can be seen in the 9 ps-delay image. This debris, in the form of irregularities in the
image, can be seen to be present at this specific delay, but not in the image shot after
the interaction (the afterimage). In the next nanosecond, ablation occurs untill the
crater finally settles in its final form. The laser creates a crater with a rim, both with
a rough surface, so that the reflectivity is lowered in this region due to scattering.

24



Reflectivity under weak focussing conditions

Figure 4.3: Different phases of the plasma during and after the laser-matter interaction. First
electron plasma generation, which increases the reflectivity. Secondly the onset of ablation and

formation of a plasma ring. Lastly ablation and the ablated crater.

In contrast to several metals[27], semiconductors[27], and other dielectrics[28], no
Newton rings are observed. These Newton rings were observed in silicon and three
metals in the pioneering work by Sokolowski-Tinten et al.[27], and indicated a liquid
state of matter during short pulse laser ablation. The lack of Newton rings in this
experiment with dielectrics can be attributed to the low refractive index contrast
between the liquid-gaseous phase and bulk of fused silica.

Using the method explained earlier, this data is quantified for several delay times.
For several radial distances from the plasma’s center, the reflectivities are plotted ver-
sus probe beam delay time in Fig. 4.4. Note that the horizontal axis has a logarithmic
scale, and the vertical axis is normalized to unexcited silicon. For reference, the re-
flectivity of unexcited silicon for 400 nm is 3.6 %. From these plots it can be seen
that the plasma’s risetime is about 500 fs. The reflectivity decreases after about 500 fs
near the center, but only later on near the edge, after up to 2 ps. This suggests that
the electrons from the center of the plasma move outward before recombining and
likely later on form the observed plasma ring. After 10 ps, ablation occurs, indicated
by a lower reflectivity due to scattering. Because of the rough surface of the crater,
the final reflectivity is lower than 1.
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Figure 4.4: Reflectivity of the plasma as a function of probe delay time normalized to unexcited
fused silica. The different plots correspond to different radial positions in the plasma. Note
that 0.19µm is practically the center of the plasma, and that 14.8µm corresponds to the

plasma ring.

4.3 Conclusions

The temporal and spatial dependence of reflectivity can be summarized in a two
dimensional colormap, which is shown in Fig. 4.5. It shows the conclusions of this
experiment:

� The risetime of the plasma density is about 500 fs, which is longer than the
pulse duration of 360 fs (FWHM). This means that nonlinear photoionization
cannot be the only reason for plasma generation, since the head and/or tail
of the Gaussian laser pulse contribute as well. This suggests that avalanche
ionization plays a significant role for this pulse duration and intensity.

� The lifetime of the plasma is in the order of 10 ps. The reflectivity decreases
first in the center of the plasma and later at the edges, where a plasma ring can
be observed. This ring remains at the same radial position. It could be that
electrons from the center move outwards (instead of recombining) to form the
plasma ring.

� The refractive index contrast is too low to observe Newton rings in fused silica.
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Figure 4.5: Colormap of the plasma’s reflectivity. The spatial plasma evolution, peak reflec-
tivity, rise- and lifetime of the plasma, the plasma ring, and the resulting crater can all be
identified in this plot. The plot has been made symmetric around the spatial zero position for

the sake of illustration.

27



FDTD simulation of the transient plasma

5 FDTD simulation of the transient plasma

In the previous chapter the dynamic evolution of laser-induced plasma in fused sil-
ica was studied. In chapter 2 the theory necessary to understand this process was
detailed. Using the experimental results, the theory can be tested in a simulation.
In this chapter, a simulation of a fs laser pulse interacting with fused silica as in the
experiment of the previous chapter is described.

5.1 The FDTD algorithm

The method used to simulate the laser-matter interaction in the experiments is the
Finite-Difference Time-Domain (FDTD) method in one dimension (1D). It relies on a
so-called leap frog scheme to calculate the electric and magnetic field alternatingly[29].
It is convenient to redefine the electric and displacement field according to

E→
√
ε0
µ0

E, D→ 1
√
ε0µ0

D, (5.1)

so that their magnitudes are much closer to the magnetic and magnetizing field
magnitudes, which increases numerical accuracy[30]. The 1D fields can be discretized
as

E(z, t)→ E(k∆z, n∆t)→ En(k).

Applying the central difference approximation

df

dx

∣∣∣∣
x=x0

=
f(x0 + δ/2)− f(x0 − δ/2)

δ
(5.2)

to Maxwell’s Eqs. 2.3 and 2.4 for plane wave propagation in the z-direction, and
applying the transformation from Eq. 5.1 yields
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y (k + 1
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E
n+ 1

2
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2
x (k)

∆z
. (5.4)

Here ∆t and ∆z denote the temporal and spatial stepsizes, respectively. These equa-
tions can be rearranged into two explicit iterative equations
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(5.5)
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and

Hn+1
y (k +

1

2
) = Hn

y (k +
1

2
)− 1
√
ε0µ0

∆t

∆z

[
E
n+ 1

2
x (k + 1)− En+ 1

2
x (k)

]
. (5.6)

As can be seen from the offset of 1
2 in the indici k and n between the two equations, a

discretization like this leaves the spacetime grid for the D- and E-fields interweaved
with the spacetime grid for the H-and B-fields. The two type of fields are offset by
half a stepsize, both spatially and temporally, with respect to eachother. Another
important fact is that the future D-field depends on its past value and the values
of the H-fields on the gridpoints closest to it in space. The dependence of the
future H-field on the past H-field and adjacent E-fields is completely analogous.
The relation connecting Eq. 5.5 to Eq. 5.6 is given by[8]

D(ω) = ε(ω)E(ω), (5.7)

where ε(ω) denotes the relative dielectric function, and the fields are already trans-
formed according to Eq. 5.1. With this set of equations and a source term to simulate
the laser pulse, the propagation of the electromagnetic wave can be described.

5.2 The dielectric response and reflectivity

In the experiments, the laser changes many of the glass’ optical properties. Every one
of these changes is governed by the dielectric function, and hence Eq. 5.7 is the only
equation needed to incorporate the effects of the laser on the glass. This equation,
however, is formulated in the frequency domain whereas Eq. 5.5 and Eq. 5.6 are
formulated in the time domain. In order to apply Eq. 5.7 in the time domain, it has
to be Fourier transformed. First the dielectric function 2.7 is expressed in the Debye
form as

ε(ω) = (n0 + n2I)2 − σDrude

iω
+

χ

1− iωτ
, (5.8)

where σDrude = ε0ω
2
pτ is the Drude model conductivity, χ = −ω2

pτ
2 is the Debeye

dispersion term, and ω2
p = ρe

meffε0
is the plasma frequency. In this form the effects

of conductivity and dispersion in general on the electric field are clearer. Using the
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convolution theorem, Eq. 5.7 can be inverse-Fourier transformed as
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Here the two convolutions, denoted by a ∗, are calculated as
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Eq. 5.9 can then be evaluated numerically as
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In order to obtain an expression for the new value of the E-field Eq. 5.12 needs to
be solved for En. This results in

En =
Dn − σDrude

ε0
∆t
∑n−1

i=0 E
i − χ

τ ∆t
∑n−1

i=0 e
−∆t

τ
(n−i)Ei

(n0 + n2I)2 + σDrude
ε0

∆t + χ
τ ∆t

. (5.13)

Note that the new value for the E-field depends on the new value for the D-field and
all previous values of the E-field.

30



FDTD simulation of the transient plasma

In this form, only the Drude model is taken into account. The effects of strong
field ionization have not been accounted for yet. Clearly, the incoming wave should
attenuate even more due to SFI because this process takes energy out of the wave.
Consider a Lambert-Beer-like law for the attenuation of intensity inside a material[31]

dI

dz
= −α(I)I(z), (5.14)

where α(I) the inverse penetration depth. This means the intensity approximately
scales according to I ∝ exp (−α(I)z). The validity of this approximation is discussed
in appendix B. Within the same approximation, intensity scales according to I ∝
exp (−2Im(n)k0z), with k0 the wavenumber of the incoming wave in vacuum. Now
both formulas can be equated and the inverse penetration depth can be identified as

α(I) = 2Im(n)k0. (5.15)

The imaginary part of the refractive index Im(n) relates to the imaginary part of
the dielectric function via Im(ε) = 2Re(n)Im(n). In turn, the imaginary part of the
dielectric function relates to the conductivity via Im(ε) = σ

ωε0
. Conclusively, the

conductivity due to SFI is
σSFI = Re(n)ε0cα(I). (5.16)

On the other hand, we can use the continuity equation[32]

dΩ

dt
+
dI

dz
= 0, (5.17)

where Ω is the energy density, to find an expression for α(I). The time derivative
of the energy density is nothing more the rate of electrons being ionized, times the

energy per electron. Hence dΩ
dt = UeffWSFI

(
1− ρ

ρmax

)
. Solving then the continuity

equation for α(I), and plugging in results in I = 1
2Re(n)εc|E|2, results in

α(I) =
2UeffWSFI

(
1− ρ

ρmax

)
Re(n)ε0c|E|2

. (5.18)

Our final expression for the conductivity of the glass due to SFI is

σSFI =
2UeffWSFI

(
1− ρ

ρmax

)
|E|2

. (5.19)

Now field attenuation as a result of SFI can be accounted for by changing σDrude in
Eq. 5.13 to σDrude + σSFI.

Using Eqs. 5.5, 5.6, and 5.13 the propagation of all fields can be calculated. The
corresponding intensity is calculated using I = 1

2nεc|E|
2. Note that this implies that

when E is time-dependent, so is I. This would drastically complicate the inverse
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Fourier transform in Eq. 5.9 and the explicit calculation of En in Eq. 5.13. Therefore
the slowly varying envelope approximation is applied, which assumes that the electric
field amplitude does not change much on small time scales. In this case, it is taken
to be constant over the duration of half a wave, so that Eq. 5.13 is still correct. How
the amplitude (and phase) of the electric field can be extracted from the electric field
during half a wave is explained in appendix C.

After the simulation has propagated all fields through the simulation space and
time, the reflectivity can be extracted from this data. This is done using the Poynting
vector S = Re

(
ExH

∗
y

)
(which is scalar for a planar wave in one dimension), where

∗ denotes a complex conjugate. A certain point in the simulation space acts as
a detector point. By integrating the Poynting vector at this point over time, the
energy passing this point is found. The simulation is run twice, once in the absence
of any material (so just a wave in vacuum) and once in the presence of the glass. The
energy directed to the glass can be calculated by integrating S over the duration of
the simulation. To calculate the energy reflecting off the surface, the fields that are
reflected need to be known. They can be calculated by subtracting the incoming fields
(Einc, Hinc, obtained from the simulation in absence of glass) from the total fields
(Etot, Htot, obtained from the simulation in presence of glass). The energy reflected of
the surface can then be calculated by integrating the accompanying Poynting vector
at the detector plane. The reflectivity R can then be calculated as the ratio of the
reflected energy to the incoming energy at the detector point

R =

´
Sout(xdetector)dt´
Sinc(xdetector)dt

∼=
∑

n Re [(Entot − Eninc) (Hn∗
tot −Hn∗

inc)]∑
n Re [EntotH

n∗
tot]

, (5.20)

where the integration and summation are limited by the simulation duration.

5.3 Simulating the pump probe experiment

The FDTD algorithm now allows for simulating both the pump and the probe pulse
from the experiment. The simulation for the pump pulse works of course with a
1D temporally Gaussian pulse with a duration of 360 fs (FWHM) and wavelength
of 800 nm. It affects the glass by increasing its free electron density according to
Eq. 2.17, and therefore changes its dielectric function according to Eq. 2.7. This
interaction is calculated once every half optical period, since the intensity is only
properly defined after one such duration. The very similar simulation for the probe
pulse also starts with a 1D temporally Gaussian pulse with a duration of 360 fs,
but a wavelength of 400 nm. To compensate for the zero delay position from the
experiment, it is given a (somewhat arbitrary) temporal offset of 2 pulsedurations
with respect to the pump pulse simulation. On top of this, it is delayed by whichever
temporal delay is beying simulated. The probe pulse does not affect the material,
but instead uses the properties of the material as calculated by the pump simulation.
Fig. 5.1 shows the course of the simulations schematically.
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Figure 5.1: Flowchart of both the pump and probe simulation.

With all the basics of FDTD theory outlined, the simulation space can be formed.
In order to safe time, and since the experiment was performed in weak focussing
conditions, a one dimensional space is used. It consists of a small vacuum region
where the source will be modeled, and a region with the properties of the glass. The
finite simulation space needs to be terminated, which is not as straightforward as
it may seem. If, for instance, at the edge of the simulation space the electric field
is defined to be zero, the edge will be no different than a perfect conductor. The
electromagnetic wave will see the edge of the simulation as a perfectly conducting
metal wall and completely reflect back. A more effective simulation boundary would
not reflect any part of the wave, but negate it completely. The way this is done
in this simulation is by formulating a perfectly matched layer (PML). PMLs do not
reflect any part of the wave, but do make it decay. Therefore at the end of the PML,
only a small part of the wave is reflected back. Because the decay of the PML is
big enough, this reflected part will have a neglegible effect on the simulation. For
more details about PMLs, see Sullivan[30] or Schneider[33]. A PML with a thickness of
about two times the wavelength is used. The simulation space is shown schematically
in Fig. 5.2. The next step in designing the simulation space is determining suitable
spatial and temporal stepsizes. A necessary (but not sufficient) condition for the
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Figure 5.2: Simulation space with the location of the laser source. The distances displayed
are not to scale.

∆z [nm] 2 5 10 20 40 80

Reflectivity [fraction of r0] 0.996 1.00 1.00 1.01 1.05 1.23

Table 5.1: Simulation results for the reflectivity of ordinary fused silica (in the absence of
plasma formation).

stability of an FDTD simulation is the Courant condition[33]. This condition states
that the Courant number Sc , in one dimension, should obey the relation

Sc =
c∆t

∆z
< 1. (5.21)

For this work the typical value of Sc = 0.5 is chosen. The spatial stepsize is de-
termined by considering the reflectivity of unexcited fused silica, r0. This can be
theoretically calculated with Eq. 2.18 which gives r0 = 0.034 for 800 nm light. For
several stepsizes and an abundantly large PML (as to negate the effect of reflections
off the simulation boundary for sure), the reflectivity of ordinary fused silica is cal-
culated with the simulation. The results are shown in Table 5.1. Using Table 5.1, a
spatial stepsize of ∆z = 10 nm is chosen. This corresponds to a temporal stepsize of
∆t = 0.017 fs. Now the PML size can be determined. The PML size determines how
much a wave decays in the PML, and thus how much is reflected off of the simulation
boundary. Table 5.2 shows the dependence of reflectivity on PML size, and it tells
us that a PML of 150 points is the smallest number that still gives very accurate
results.
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PML [gridpoints] 10 100 150 200 250 300

Reflectivity [fraction of r0] 2.75 0.967 1.00 1.00 1.00 1.00

Table 5.2: Simulation results for the reflectivity of ordinary fused silica (in the absence of
plasma formation).

5.4 Results and discussion

The simulation is now ready to test whether the Drude model (Eq. 2.7) in combination
with the single rate equation

dρ

dt
= (WSFI + βIρ)

(
1− ρ

ρmax

)
− ρ

τs
(5.22)

accurately predicts the plasma reflectivies that are observed. First the parameters
of these equations have to be chosen. Values for both refractive indices are well-
known, namely n0 = 1.4533[25] for infrared light, n0 = 1.4701[25] for blue light, and
n2 = 3.54 × 10−20 m2/W[14]. There exists a bigger discrepancy in literature for the
values of the effective mass of an electron meff, and for lack of a better alternative
it is taken to be meff = 1 me, as is often done in fused silica simulations[13, 17–19,34].
Similarly, the value for the electron scattering time τ is not well-known. In this work
it is taken to be constant, which means that it is effectively a pulse-averaged value.
This makes it rather sensitive to the exact experimental conditions. For this reason,
several different values are tested.

Now, consider the influence of the scattering time on reflectivity theoretically. For
the three tested scattering times, the reflectivity is calculated as a function of density
using Eq. 2.18. The resulting curves are plotted in Fig. 5.3. For low free electron
densities and high enough scattering times, the reflectivity decreases. Then as the
density increases, reflectivity increases, and moreso for high scattering times. A high
scattering time results in almost steplike behaviour of the reflectivity. For the simu-
lation, this would require very accurate predictions of free electron densities in order
to get correct results. In the single rate equation that is employed, the avalanche ion-
ization coefficient β is calculated by the Joule heating equation and Eq. 2.14. Four
different values for the maximum allowed plasma density are also tested. Namely
ρmax = 5.0×1029 m−3, corresponding to the electron density where all electrons with
an ionization potential < 500 eV are ionized[21], ρmax = 6.6×1028 m−3, corresponding
to the electron density where one electron per atom is ionized, ρmax = 2.2×1028 m−3,
where one electron per molecule is ionized. The case without plasma saturation (or
an infinite maximum density) is also considered. Lastly, the recombination term − ρ

τs
is neglected, since no decrease in electron density is observed in the experimentally
observed plasma for the first 1.5 ps. For several combinations of these initial param-
eters, the simulation is run. Table 5.3 shows the maximum density reached during
each of these simulations.
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Figure 5.3: Influence of scattering time on reflectivity, calculated with the Drude model and
the Fresnel equation.

From this table, a few things become clear. First of all, when AI is included but
plasma saturation is not, the density reached can become unphyscially high. The
maximum density that could possibly be reached in fused silica is 6.6 × 1029 m−3,
since that is the total electron density present in the material. Not including AI
however leads to a low density, which results in a decrease in reflectivity. This leads
to three possibilities:

1. The scattering time is rather high. Only for τ = 23.3 fs, acceptable electron
densities occur. However, this requires that the densities predicted by the single
rate equation will have an error margin of smaller magnitude than the width
of the step of the green curve in Fig. 5.3.

2. Plasma saturation needs to be taken into account, and which for now can only
be done phenomenologically, invoking unfundamental maximum densities.

3. The AI term is overestimated with this approach. Either the values for β
during our experiment are much lower than predicted by Joule heating, or AI’s
dependency on the total free electron density (ignoring the energy distribution
of these conduction band electrons) is incorrect.

Before expanding on these points, consider the transient reflectivities resulting from
these simulations, and compare to the experimental data. These data are plotted
in Fig. 5.4. As mentioned, only SFI results in too low electron densities and thus
too low reflectivies. Modelling SFI and AI without plasma saturation results in
way too high densities and reflectivies. Only when plasma saturation is taken into
account values for reflectivity comparable to values found in our experiment are
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ID Rate equation ρmax[m−3] τ [fs] Maximum density [m−3]

00 dρ
dt = WSFI - 1.0[16, 35] 8.51× 1027

01a dρ
dt = WSFI + βIρ - 0.1[21, 36] 1.36× 1030

01b ” - 1.0[16, 35] 5.81× 1029

01c ” - 23.3[14] 5.08× 1028

02a dρ
dt = (WSFI + βIρ)

(
1− ρ

ρmax

)
5.0× 1029 1.0[16, 35] 3.61× 1029

02b ” 6.6× 1028 1.0[16, 35] 6.60× 1028

02c ” 2.2× 1028 1.0[16, 35] 2.20× 1028

03a ” 5.0× 1029 23.3[14] 4.83× 1028

03b ” 6.6× 1028 23.3[14] 3.54× 1028

03c ” 2.2× 1028 23.3[14] 1.98× 1028

Table 5.3: Maximum free electron densities reached during the simulation for different initial
parameters.

obtained. However, even though the maximum reflectivities may agree, the slope of
the simulated curves is much higher than of the experimental one. This suggests that
the rise in free electron density is too rapid when modelled like this. The rapid rise to
high free electron densities reached can be explained the following way. The AI rate
in Eq. 5.22 does not take into account the energy distribution of the electrons in the
conduction band. It considers all conduction band electrons for AI, instead of just
the electrons which have enough energy to cross the band gap. It ignores the time
that electrons at the bottom of the conduction band need to gain enough energy to
collisionally excite a valance band electron. This time delay could result in less steep
slopes for the transient reflectivity curves. Furthermore, the same constant value
for the scattering time is used for each delay of the probe beam simulation. This
scattering time depends on electron temperature, which will surely rise as the delay
between pump and probe increases. Even if a constant scattering time is suitable for
the pump beam simulation, this does not mean that the same scattering time applies
to probe beam simulations at a different delay.

5.5 Conclusions and outlook

For the purpose of modelling the transient reflectivity of a plasma during a pump-
probe experiment, the Drude model with constant scattering time in combination
with the single rate equation does not correctly predict reflectivies of the plasma. The
correct maximum reflectivity of the plasma could be predicted by picking suitable
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Figure 5.4: Simulated normalized transient reflectivity of the plasma for different initial pa-
rameters.

values for the scattering time and the maximum electron density, but likely more
than one combination for these two parameters would suffice. Preferably, a model
that takes into account (1) the free electron energy distribution and (2) a variable
electron scattering time could be used.

For further research, one way to take into account the free electron energy distri-
bution is the multiple rate equation (MRE), as developed by Rethfeld[37]. Here, the
conduction band is approximated as having discrete energy levels seperated by one
photon energy. Electrons at the bottom of the conduction band (getting here through
SFI or AI) gain energy through one photon absorption, untill they have enough en-
ergy for collisional excitation. This model is shown to agree well with the full kinetic
approach from Kaiser et al.[13]. It would be very interesting to see whether this model
does correctly predict reflectivies. Implementing this method, in combination with a
two-dimensional FDTD algorithm, would make it suitable for simulating the laser in
strong focussing conditions as well.
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6 Conclusions and outlook

In this work, the energy coupling of a femtosecond laser pulse into glasses is studied.
In summary, the following conclusions can be drawn.

� In Section 3, the glasses’ selfreflectivity and ablated nanocraters are studied.
It is found that for increasing fluence, the selfreflectivity and crater depth both
rise. High aspect ratio craters can be produced of various depths on all four
glass surfaces.

� In Section 4, the transient reflectivity of fused silica is studied. Due to a dense
electron plasma, the glass’ reflectivity rises within a timespan less than 1 ps.
For 360 fs pulses with a fluence of 21 J/cm2 , avalanche ionization is seeded by
strong field ionization, in order to create the electron plasma. After several
picoseconds, a plasma ring can be observed on the glass surface at a stationary
position. Surface ablation sets in when the laser pulse has passed and is no
longer interacting with the material.

� In Section 5, the transient reflectivity of fused silica is modelled using the Drude
model with a constant scattering time, Keldysh’ model for strong field ioniza-
tion, and a single rate equation modelling avalanche ionization. Results of a
one-dimensional finite-difference time-domain simulation do not agree with the
experimentally obtained results. This disagreement is mainly due to an overes-
timation of avalanche ionization and the lack of an exact value for the scattering
time, and potentially due to a lack of understanding of plasma saturation. The
effects of the electron temperature may also be underestimated in this model.

While a qualitative understanding of the energy coupling into glass is achieved, a
more quantitative understanding would be better. For this, the ablation experiment
of Section 3 needs to be redone. By spacing the craters further apart no debris will
occur at different craters. Likewise, use of a glass with a more homogeneous and flat
surface will reduce noise in the AFM data. Quantities of interest would be depth
and width of the craters as function of fluence. More control over the modification
of glass may lead to technical applications.

Measurements on selfreflectivity at very high fluences, where the plasma is sat-
urated, may indicate the roll of electron temperature. As an extension of this, the
FDTD simulation can be made with a temperature-dependent scattering time. As
a suggestion, the MRE by Rethfeld[37] could be used to model AI. Expanding the
simulation into two dimensions, the effects of strong focussing can be accounted for.
This would allow the simulation to predict results from the ablation experiment, and
a relation with the ablated crater depth and width could be studied.
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Appendix A Avalanche ionization through Joule heat-
ing

In this appendix an expressions for the absorbed power per unit volume of an electron
gas irradiated by a laser will be derived. This absorbed power relates directly to the
avalanche ionization rate.

Consider a free electron gas in an electromagnetic field. The Lorentz force

F = q (E + v ×B) (A.1)

can be used to calculate the work done on a charge q by the electric field E and
magnetic field B. The infinitesimal amount of work dW corresponding to moving a
charge an infinitesemal distance dl is then given by

dW = F · dl (A.2)

= q (E + v ×B) · dl (A.3)

= q (E + v ×B) · vdt (A.4)

= qE · vdt (A.5)

Here it is assumed that magnetic contributions are negligible. If a spatially constant
electron density ρ is assumed, the work per unit volume w can be expressed as

dw = ρE · vdt (A.6)

= E · Jdt (A.7)

= σ‖E‖2dt. (A.8)

Here Ohm’s law for the current density J = σE is used, where σ stands for the
conductivity. With this, the instantaneous power per unit volume p absorbed by an
electron gas is p = σ‖E‖2. It can now be applied to free electrons in a material
irradiated by a laser. Assume that whenever the gas absorbs enough energy for one
electron to excite another across the band gap, an electron collision actually happens.
Also assume that the incoming wave is sinusoidal. Then the avalanche ionization rate
WAI is

WAI = 〈p〉 /Ueff (A.9)

=
σ

2Ueff
‖E‖2. (A.10)

where Ueff is the effective band gap. According to the Drude model for conductivity,
σ = e2τ

meff(ω2τ2+1)
ρ, with the electron charge e, the effective mass meff, the scattering
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time τ and the laser frequency ω. The avalanche ionization rate is then

WAI =
e2τ

meff(ω2τ2 + 1)

‖E‖2

2Ueff
ρ (A.11)

=
1

n0cε0

e2τ

meff(ω2τ2 + 1)

I

Ueff
ρ (A.12)

= βIρ. (A.13)

Here the refractive index n, the permittivity of the vaccuum ε0 and the speed of light
c are used to write the absolute value of the electric field in terms of the intensity I.

Appendix B Extracting the amplitude and phase from
the FDTD simulation

This appendix will show the validity of the approximation made in solving the
Lambert-Beer-like law dI

dz = −α(I)I(z) in Section 5.2. It shows that the inten-
sity can scale according to I ∝ exp (−α(I)z). Differentiating the test solution
I(z) = A exp (−α(I)z) results in

dI

dz
= I(z)

(
d

dz
[−α(I)z]

)
(B.1)

= −I(z)

(
α(I) +

dα

dz
z

)
(B.2)

= −I(z)

(
α(I) +

dα

dI

dI

dz
z

)
. (B.3)

Carrying over the dI
dz term from the right side to the left gives

dI

dz

(
1 + I(z)

dα

dI
z

)
= −α(I)I(z), (B.4)

hence the approximation is valid only if I(z)dαdI z � 1. The factor dα
dI is hard to

calculate exactly, due to the Keldysh ionization rate that is in α =
UeffWSFI

(
1− ρ

ρmax

)
I .

However, Ueff, WSFI, and I are all calculated numerically for the simulation. There-
fore the numerical approximation of dα

dI ≈
α[i+1]−α[i]
I[i+1]−I[i] can be calculated. Fig. B.1

shows the values that the approximation term I(z)dαdI z attains over the course of the
simulation, where ρmax →∞ and z = 500 nm. As can be seen, the approximation is
not strictly valid, especially during the peak of the pulse. This means the conductiv-
ity that is calculated is not correct for the full duartion of the simulation. However,
comparing the SFI conductivity to the Drude conductivity, is can be seen that it is
not of great influence anyway. For this, the simulation is run and the conductivity
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Figure B.1: In blue, the values of the approximation term I (z) dα
dI
z during the simulation. In

green, the normalized intensity.

is monitored. Between 500 fs and 9000 fs, where the approximation fails, the ratio of
σDrude to σSFI is at most 0.02. Hence the influence of SFI conductivity is neglible
during this time, and the approximation is taken to be valid for the entire pulse
duration.

Appendix C Approximating the Lambert-Beer law

Here it is shown how to extract the amplitude and phase of the time-varying electric
fields as they occur in the FDTD simulation of Section 5. Assume that the amplitude
of the electric field E0 slowly varies in time (slow wave approximation), and assume
that the electric field has frequency ω0 and phase φ. Then the electric field can be
approximated by

E (t) = E0 cos (ω0t+ φ) (C.1)

for short enough time scales where E0 can be taken to be constant. Now integrating
E2(t) over half an optical period T/2 yields

T/2ˆ

0

E2(t)dt =

T/2ˆ

0

E2
0 cos2 (ω0t+ φ) dt (C.2)

=
1

4
TE2

0 . (C.3)

Therefore

E0 =

√
4
´ T/2

0 E2 (t) dt

T
, (C.4)
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in which the integral can be approximated numerically by

T/2ˆ

0

E2(t)dt ∼=
a+m∑
n=a

En 2∆t. (C.5)

Here a is the starting time’s index, m is the number of time steps contained in half
an optical period and ∆t is the temporal step. This way an amplitude of the electric
field can be defined for every half optical period.

For calculating the phase φ of the electric field the integral´ T/2
0 E (t) exp (−iω0t) dt is considered,

T/2ˆ

0

E(t) exp (−iω0t) dt =

T/2ˆ

0

E0 cos (ω0t+ φ) exp (−iω0t) dt (C.6)

=
E0

2

T/2ˆ

0

[exp (i (ω0t+ φ)) + exp (−i (ω0t+ φ))] (C.7)

× exp (−iω0t) dt (C.8)

=
E0T

4
exp (iφ) . (C.9)

Hence the phase of the electric field is equal to the phase of the integral´ T/2
0 E (t) exp (−iω0t) dt, which can be evaluated numerically via a sum.
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