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Interactive Sequence Mining
Providing Valuable Insight into Application Usage by Exploring Usage Patterns
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Rutger Kerkhoff

Abstract

Understanding how people use a program is vital for proper development and support
of any application. Numerous ways to gain this insight exist, but those often require user
feedback or further adjustments to the program. In this thesis we run multiple pattern
mining techniques on existing program traces to reveal patterns in application usage. This
process is illustrated and verified by taking existing log files of the application TeleDIA
which is currently used in production in various healthcare institutions. To make numerous
algorithms available to users new to the field of pattern mining we created an interactive
tool. The tool supports the user by providing sensible default parameters and inferring
others from the dataset. To further support the user the program provides an interactive
graph-view that visualises patterns. The view also allows the user to interactively grow
the patterns to specific interesting sequences he is interested in, which are then used as a
highly-effective filter on all pattern suggestions. With this method we tackle part of the
ever-present problem of pattern explosion in pattern mining. Experiments show we are
able to mine almost all patterns present in the trace files. Next to quantitative results we
interviewed key users to confirm that the mined patterns are interesting, and in some cases
novel. This is supported by the fact that changes were made to TeleDIA, changes based on
insight gained using our interactive sequence mining prototype.
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1 Introduction

1.1 Problem description

We all use software daily; from simply reading email and browsing Facebook to using a com-
plicated stock brokering system. With the rise of smartphones, software has been even more
intertwined with our daily activities. The ubiquity of software makes that everyone can identify
different kinds of software. Some software helps us efficiently perform a task, while others take
painstakingly many interactions before getting anything done. For some tasks this might be
impossible to avoid, but often this is due to the fact that we use the software in a different way
than intended by its creators [22].

Problems or inefficiencies can arise because of this mismatch, and may go unnoticed. This can
partly be explained by the fact that developers do not always have sufficient domain knowledge
or have to deal with changing requirements [7]. Providing insight into how users interact with the
software can help build towards a better match between intend and actual usage, and ultimately
towards an increase in software quality [16].

In this thesis the web-application TeleDIA will be examined. TeleDIA is an application
with a central server and is accessed by its users via a browser and the HTTP protocol. The
application was created to streamline the process of patient diagnosis for examinations. There is
an expected mismatch between intended usage by TeleDIA developers and the way the system
is used by their users. The application was developed with a certain workflow in mind, but it is
unclear if this still fits daily practice. On the other hand the intended workflow could be efficient
but the training they give their users might not be adequate.

To solve this problem the actual usage is modelled. The data available for analysis is a
clickstream, which consists of requests made to the application server. To model the usage from
these traces, algorithmic data analysis techniques can be applied.

The process in the application is not linear: depending on the choices made different input
fields are presented, replacing part of the screen. However, on a high level the process is strictly
defined. Regardless of the choices made on a single page, there is a fixed set of buttons to finish
or proceed in a task. Different groups of users can be identified in the application which will
each perform different, sometimes overlapping, tasks.

The intended goal of the thesis is to answer the question: How can valuable insight into
application usage be provided by modelling interaction using application traces?

1.2 Research questions

Specifying what needs to be modelled exactly is required to further specify the problem. There
are many possible paths to take through the TeleDIA. To grasp general usage it is not interesting
to model how a single user works with the application, but rather how the application is used
by the majority. This however does not mean that a single users flow can be ignored, as in some
cases it can provide valuable insight into more fine grained usage. Three kinds of usage patterns
can be identified that, for our needs, together adequately model how an application is used [].
They will be listed in the next paragraph and be elaborated upon in the paragraphs thereafter.

The first kind of patterns in the application consists of actions that are shown by the majority
of the users, general usage. More specifically, the general usage consist of patterns that are general
and reliable, possibly novel and surprising. Secondly, possible unintended usage in the form of
exceptions to the general patterns will be identified. Together with the general patterns these
will describe what happens in the application. Lastly the co-occurrence of these patterns, to
model when patterns occur in a session, will need to be identified. The descriptive pattern terms
are used as defined by Geng and Hamilton [14].
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1.2 Research questions 1 INTRODUCTION

The first kind of patterns that will receive focus are those that model the general application
usage. Specific actions, which are supposed to vary often, will be ignored. The value of these
patterns lies in the fact that this represents the majority of the users, and should closely follow
the intended use.

The unintended usage will be defined as usage that does not agree with the frequent episodes,
but does describe a similar use case or sub-pattern in the application. For this a similarity
measure will have to be defined. A sequence will be deemed similar if the steps deviate only
slightly and the sequence achieves the same goal. We suspect that most deviations from a pattern
are based on significant events, encoding alternate workflows. While some might be valid, and
again confirm intended usage, other patterns can show erroneous or inefficient paths. The fact
that they are still similar to intended patterns is required to filter out completely different use
cases and isolate probable errors.

The associated patterns will give a higher level view of the usage. It will show what a
user typically does in a session by correlating the patterns describing use cases identified in the
previous two steps. These correlations will also be checked against intended usage.

A common problem with mining patterns is that, depending on parameter settings, either
too few or to many patterns are mined. While frequency and other constraints can be used to
filter these, the results are still too overwhelming for a user to grasp. To tackle this problem
we will take a user-centred approach. The knowledge a user already has about an application is
invaluable and can be used as a highly effective filter []. Note that this means that we do not
aim to exhaustively model all the traces, just the set required for insight.

What remains are the rare patterns which do not show any similarity to other patterns. While
these can still be valuable, the logs unfortunately contain inadequate information to directly infer
any conclusion from them. Complementing the log files with the knowledge of the user can reveal
them, but will depend heavily on user input.

The last problem that needs to be tackled is the complexity of the pattern generating soft-
ware. The analysis performed is preferably repeated regularly and preferable no data mining
expertise is required for this. The application should be usable by developers. While some might
have in-depth knowledge about patterns, most do not. To make the application accessible the
usual pattern mining parameters that have to be defined will be provided. To provide these auto-
matically, the running time, space requirement and usability of the results need to be controlled.
Ultimately achieving parameterless pattern mining, for our domain.

To formalise; the main research question and sub-questions are listed below.

How can valuable insight into application usage be provided by modelling usage patterns in
application traces?

(a) How can insight into general application usage be provided?

(b) How can similar patterns be identified?

(c) How can patterns be associated?

(d) How can these patterns be used in an user centred mining application?

(e) Can we achieve parameterless mining for program traces?

To evaluate the results both synthetic test data and the TeleDIA logs will be used as input.
The synthetic test data will show the correctness and performance of the algorithms. The
TeleDIA logs will show the real-life relevance of the results found by the algorithm. Due to
the fact that interestingness for patterns is subjective the test performed on the TeleDIA logs
is empirical. The identified interesting patterns will be reviewed by key users. The key users
should be able to identify mismatches from both the TeleDIA developers point of view and the
users’ their viewpoint.
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1.3 TeleDIA

In this section the application that initiated this thesis is discussed. Next to showing practical
usability of the results this case will be used for examples to clarify theory throughout this report.

TeleDIA is an application developed to streamline the process of patient diagnosis. We can
identify four steps in the process that are also present in the software: acquisition, assessment,
administration and feedback.

1.3.1 Workflows

Figure 1: A screenshot of TeleDIA, showing the list of patient scheduled for acquisition

Acquisition consists of collecting patient personal data, possible medical history and actual
test results in the system. The TeleDIA software connects with various other computer programs
and physical devices to collect data needed for assessments. A few of the connections include,
but are not limited to, getting ECG-, spirometry- and fundus photography-data. Most of these
results are stored within the system, in a few cases the data is stored in a third party database.

The next step in the diagnostic process is assessment. A specialist can log in from any
remote location and directly access all the collected data. All of this information can be viewed
in the browser used to connect to the system. Like in acquisition, it is possible to launch external
applications to analyse specific results. The specialist will input his assessments, possibly consult
colleagues within the system, and finishes by finalising the assessment.

The administration step consist of checking reports and handling so called ’no shows’. For
this use case TeleDIA shows an overview of all planned appointments and current cases. The
view also provides an overview of progress and possible external assessments. Administration
also allows a user to instruct the system to send messages to other systems.

In the last step, feedback, a physician can view the assessment and case data and discuss this
with the patient. Again the user can view the collected data within TeleDIA. External tools are
not available in this step.

The application is completely web based, which means administrative procedures and settings
are also configured through a browser, and also show up in the log data.

1.3.2 TeleDIA logs

The fact that TeleDIA is a client-server application using the HTTP protocol makes it very
similar to a traditional webserver. Like a traditional web server we have a central log file which
logs all requests made to the server. A lot of work has already been done in this area, see related
work Section 2.4 for an overview. For a sample of a log file please see Appendix A.

Where TeleDIA differs from an website is that it visually and functionally represents a more
classical administration program. A lot of AJAX-requests (Asynchronous javascript and XML
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requests) are implemented to prevent the browser from refreshing often. This results in a log
file that is lot more elaborate, with information as specific as what button has been clicked or in
some cases even if a character has been typed.

A problem that we encounter is that not all lines have a similar structure, and not all variables
are always included. Another peculiarity in the data is that some fields and actions generate
multiple requests, even though they are triggered by a single user action. The solution for this
and all of the other problems specifically related to interpreting the logfile can be found in Section
3.

One thing to keep in mind is that the software is tailored for the specific customers, healthcare
facilities. Each customer has its own diagnostic process, which is captured in TeleDIA. While
there are definitely similarities there exist many differences as well, this makes direct comparison
of instances problematic and each instance and thus logfile unique.

1.3.3 Patterns in TeleDIA

A pattern in the case of TeleDIA is a set of sequential user actions. For example, with a user at
the patient overview table, the user selects a patient. Fills in various fields and checkboxes, some
of these trigger a new request, others do not. These fields and check-boxes concern the specific
symptoms of a patient, and are thus highly likely to vary. A user can start an external program
by clicking a button in TeleDIA, use the program, and then load the results with another click
in TeleDIA. In this case we do not have data about the external program. Finally, if the user
has filled the necessary fields, he can click on the ’finish’ button. In this example the log will
contain at least 6 requests, most likely more. In the above example it is clear that we can have
wildly different traces. However, not all checkboxes and fields trigger requests, only those that
later influence the process. Thus while we might have patient specific variation, this will likely
be still the same for larger groups of patients.

A common problem in pattern mining is the question ’what entails a sequence?’. We have a
couple of options, from using whole TeleDIA-sessions, to manually identifying steps that indicate
the start and end of use cases. Note that to find correlated patterns we always have to consider
the sessions as a variable.

Another known problem is that some pages are encoded by multiple different URLs. This
can hide patterns as infrequent in the logs if the spread is too high. During preprocessing we
will attempt to mitigate this problem.

When performing sequence mining algorithms we often employ a window, as mentioned in the
related work Section 2.2. What size of window should we use, and should we enforce a minimal
length? More about this in Section 4.1.1.

A final peculiarity about the data is that the diagnostic process heavily involves human
interaction, and there are a multitude of reasons a user can take a lot more or less time for some
specific step. We will have to keep this in mind when defining minimum and maximum sequence
lengths.

1.3.4 Analysis goals

From the view of TeleDIA developers we want to achieve several practical goals. As a start
they want the general and most frequent patterns to be easily generated and viewed. Deviating
patterns should be visible, and for every action they want to know the frequency.

Both general and specific patterns are deemed interesting. Specific checkboxes and field
depending on the symptoms of a patient should be visible if required, but not prevent the
system from suggesting the general overlying pattern.
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Furthermore it is suspected that administration procedures can be optimized. Due to the
lack of insight into the actual usage, the trade-off between possible gain and needed investment
is often unclear. Most administrative procedures only happen sporadically, there should however
be a way to surface them.

To effectively use TeleDIA training is provided for the users. Training is needed because the
application can perform quite complex and critical functions. Not all individuals are directly
trained by experts, but rather a small group of a company acquiring the software is trained.
This group will in turn train the rest of the users. It is within the realm of possibilities that an
error in training occurs, and that they can affect a relatively large group of people if this happens
early on. To tackle this use case it, should be possible to validate expected patterns against the
log file.

Finally there was an interest voiced in specific use cases. Specific pattern statistics for these
use cases can be used to predict impact of changes to the code base.
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2 Related work

The basis of this research is derived from various theories from the field of pattern mining. In
this section various related work is compared. We start with the origin of the field and how
our problem is present from the start in Section 2.1. In Section 2.2 we will zoom in on various
frequent sequence mining methods. Section 2.3 discusses alternatives to mining on frequency.
Related working concerning application log mining is described in Section 2.4. Finally existing
work on interactive mining of patterns is compared in Section 2.5.

2.1 Pattern mining

The field was introduced by Agrawal et al. [1], by discussing transaction mining on itemsets. We
will concern ourselves with events in sequences, instead of itemsets in transactions. The added
time element is elaborately explained by Manilla et al. [26]. The main topic we will discuss has
been ever present. However, as often as it is discussed it is overlooked: What are the patterns
that the result set should contain?

Traditionally, as in the above mentioned papers, the result set contained frequent patterns.
Simply take the most occurring sequences and add them to the result set. This leads to another
problem: Next to defining a criteria we need to define at what level this criteria becomes relevant.
Usually this is handled by setting parameters, in the frequent pattern case a support threshold.
This approach, next to requiring domain knowledge, is error prone, and can lead to missing true
patterns or finding sporadic patterns as explained by Keogh et al. [23]. Next to identifying the
problem Keogh et. all try to solve this by using techniques based on Kolmogorov complexity,
an approach we also take. Where they concern themselves with clustering, classification and
anomaly detection, we will pursue a complete model of the database.

Various other ways of tackling the previously defined problems have been proposed. From a
pattern mining point of view the non-redundant closed patterns are defined by Pasquier et al.
[27]. In the paper the authors improve efficiency of the algorithms by only considering the closed
itemset lattice. In practice this means that completely redundant itemsets are not evaluated.
This works especially well on dense datasets. The even more succinct maximal patterns as
described by Zaki et al. [41] can improve efficiency even more. However, as opposed to closed
patterns, maximal patterns are not lossless: information about frequency is lost to increase
performance. We will only use closed patterns to obtain lossless results. Another approach was
published by Knobbe et al. [24], their pattern team approach consider patterns together, instead
of trying to quantify their individual interestingness. Pattern team discovery is done as a second
step, a way to filter a large result set. We will provide different ways of filtering the results, but
our method could be extend to include one or more of the heuristic pattern team definitions.

Restricting the result set, for example by filtering early in the process, is often performed by
applying constraints to the result set. Note that this is often done to increase performance, not
improve the result set. Pei et al. [29] describe this well. They allow for both monotone and
anti-monotone constraints, giving the ability to highly specify the result set. Bonchi et al. [3]
extend this to a pre-processing approach. Their algorithm, named ExAnte, aims to reduce the
search space and the input dataset based on constraints. Both approaches can be highly efficient
and provide interesting result sets. Due to efficiency it would be possible to iteratively run and
adjust the parameters and get the request information. They are however, too involved. Our
mining algorithms will be run by possibly inexperienced dataminers, who will not be able to
correctly define parameters not to mention correct constraints.
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2.2 Frequent sequence mining

In sequence mining we see similar approaches to restrict the result set. Though not all methods
translate directly; events in a sequence have an order as opposed to being just a set. Work
has been done on this, for example Tatti et al. [36] developed a new method for closed strict
episodes. We can also identify a few methods specific to sequences, like using various windows as
implemented by Hirate et al. [20]. The algorithms we include are build upon the same principles
as portrait in those papers.

There are numerous other ways of restricting the number of results. The interested reader
is referred to Garofalakis et al. [13], describing how to apply regular expressions constraints to
sequential pattern mining. This could be a useful addition to our approach, giving more control
to the expert user. However, inexperienced users are our main target, and we shift our focus to
less involved methods. Han et al. [17] provide an algorithm for mining top-k patterns without
minimum support. While removing the need for minimum support Han et al. require a minimum
k to be defined as well as minimum length, replacing one parameter with two others. It can be
interesting to test what novice users prefer, for our approach we suspect the single parameter is
preferred and thus leave this for future research. As a final note on the different kind of patterns
we refer to multidimensional frequent patterns and patterns containing valued items, for example
as defined by Pino et al [32] respectively Fournier et al. [12]. These two methods allow to use
more data then just the events themselves. This allows for new analysis, new quality measures
and thus new ways of filtering. While we do not implement them in our approach, it could easily
be extended to support them. This is one of the most promising extensions, as it allows to use
extra information in the analysis and goes beyond sequence mining.

2.3 Sequence mining variations

To cover a larger area than just frequent patterns we borrow an algorithm from DNA sequence
alignment. Sequence alignment is a closely related field; DNA can be seen as a very long sequence
of a restricted set of events. We implement a Smith-Waterman [34] like algorithm. While this is
often too slow for DNA sequence comparison it suffices for our relatively short sequences. More
advanced ideas about combining frequent patterns and similarity is explained by Laxman et al.
[25]. They model frequent patterns with a specific type of hidden Markov models (HMM), an
Episode Generating HMM. While this seems similar to our approach, this method again results
in giving a limited set of answers to the pattern mining problem.

A different family of pattern mining algorithms is based on minimum description length
(MDL). Instead of counting frequency or applying other constraints, the MDL approach works
towards compressing the database. This was introduced by Vreeken et al. [38] with their KRIMP
algorithm. KRIMP compresses transaction databases, whereas we consider sequences. We there-
fore will use an implementation based on KRIMP, the SQS algorithm. SQS, Summarising event
seQuenceS, was proposed by Tatti et al. [37]. Next to providing a way to use SQS as a filter the
paper also introduces a parameterless approach for sequence databases, again maximising the
compression. We will use the latter of the two algorithms.

Lastly we touch upon the subject of associated pattern mining, in our case sequential rules.
We base our solution on the algorithm presented by Agrawal et al. [2] to generate all rules based
on frequent itemsets. These itemsets will be found using Zaki et al. their CHARM algorithm to
find closed itemsets [40]. As a novelty we do not find rules for our itemsets, but rather between
our previously found closed sequential patterns.
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2.4 Existing log mining applications

Pattern mining has a lot of practical applications, one relatively large group of applications
concerns web log mining. This is often concerned with predicting what page will be visited next
[21, 31, 4] or clustering pages [35]. Other times the goal is one more general of website structure
optimisation [6]. As our test case TeleDIA is a web application, the similarity is evident. Both
the previous research and this thesis deal with click streams of users, and attempt to model
them. A subtle difference is that an analysis is usually more coarse than our approach. We will
analyse detail down to single buttons as opposed to only requested of pages. A bigger difference
is that they mine towards specific goals, predicting a next page, improving structure efficiency,
and we will attempt to provide a model for the whole system.

Another application is mining user interfaces (UI mining), more about this can be found in
the paper by El-Ramly et al. [9]. El-Ramly et al. concerned themselves with recreating an old
UI. Another use they also explored is extracting use case models [10] from the found patterns.
While we will not explicitly mine towards these goals, it is likely that mined patterns will be
used to improve the TeleDIA UI and further specify use cases.

Finally our work is related to the field of process mining. For example Chan et al. [5]
developed a similarity neighbourhood algorithm taking into account, amongst others, order con-
straints and frequency. They used the mined data to create new processes. We will employ a
few ideas seen in process mining, like the importance of the time factor. Unlike Chan et al, our
focus is on modelling, not to create, the processes in the application under analysis.

2.5 Interactive data mining

A different solution was proposed by Hipp et al. [19]. They focus on the idea that the amount
of returned results is not actually the problem, but the fact that they can not be filtered or
recomputed quickly. To solve this they present an approach with an initial almost unconstrained
mining run, and later use the results of that to answer further question. This is important as
pattern mining should, in their view, allow to gain more insight into the data without changing
to hypothesis testing. An excellent explanation of this problem can be found in an article by
de Bie [8]. Next to an explanation de Bie also suggests a framework to formalise subjectiveness.
The ideas expressed in the last two papers closely relate to the topic of this research: we do not
aim to filter and present a succinct and interesting result set, but rather allow for exploratory
mining. Key differences are that both Hipp and de Bie require a high level of understanding
from the user, that the user can formulate his own wishes. We will focus on an even more general
approach.

While this specifically, to the extend of our knowledge, has not been done before, there have
been similar ideas. Goethals et al. [15] at the Advanced Database Research and Modelling
(ADReM) in Antwerp have developed an application called MIME (Making Interactive Mining
Easy) to interactively mine itemsets, this was extended1 to support classification trees by Pauwels
et al. [28]. The general approach is the same; like Goethals et al. we will provide the user with an
interface in which he can manually grow his model. In growing his model the user is supported
by various mining algorithms and presented with up to date statistics according to the choices
made. The obvious difference is that they do not support sequences, which is the focus of our
application. This introduces new challenges like how to deal with gaps, repeating patterns,
multiple occurrences etcetera. A less significant difference is that in their application statistics
have a more prominent role, whereas we focus on the actual patterns.

1At the moment of writing only the original MIME software is available on http://adrem.ua.ac.be/mime
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3 Datasets

The data we have at our disposal are the standard TeleDIA logs. They contain all kind of
requests to the system. The entries that we are interested in are all triggered by requests. Other
entries include messages from various system TeleDIA connects to, nightly processing and other
messages not trigged by user actions. They have to be filtered out. Requests are generated
by various UI elements: buttons, table rows, links, text fields, radio buttons and drop down
menus. Along with the element the log contains a timestamp, session ID, available and used
server memory, the time it took to process the request and various other technical variables.
There are more than 30 variables saved. A sample of the log file can be found in Appendix A.

The patterns we can and will find depend for a part on the preprocessing steps. What
we include and exclude but also how we represent the data to our input influences the mining
algorithms. In the following subsections the choices made in the preprocessing step are described
and motivated.

3.1 Events

The obvious candidate for identifying an event is the URL. A webserver with the HTTP protocol
does not usually have a state, and TeleDIA is no different. Every request the user must send
all information required to handle that request. This is largely done based on a URL (uniform
resource locator), it tells the server what to do. The first problem we encounter when analysing
the URLs is that because of the underlying structure different URLs can encode the same ac-
tion. This problem can be fixed by identifying these URLs. Most of the time it can be done
automatically, i.e. if only a prefix differs, sometimes this has to be done manually. A case that
happens often in TeleDIA is that, when a user clicks on a table, the row number is included in
the URL. While it might be interesting to see if all user only use a specific row, this creates too
much variety to successfully identify patterns. As they all encode the same action, open a table
row, the end of the url identifying this part will be stripped.

The next case is that a single URL can encode multiple actions. Based on the user input
the server might respond differently, and follow a different path in the code utilizing different
functionality. The server does this based on added information in the request. We tackle this
by talking to the developers and analysing the log file. This resulted in using more of the logged
data, componentClass and componentPath, to find exactly what functionality (component) is
called. Note that these are also not unique, but when combined they are.

Finally we have some uninteresting URLs, when the user is typing in a certain text field this
can produce a request every letter. This will quickly obfuscate larger patterns, and increase the
runtime of the mining process. This was solved by manually identifying these URLs and adding
them to a list to filter, only the first request is kept. This problem sometimes occurred for every
letter, sometimes twice for a click. Note that it is undesired to filter all duplicate request, as it
can indicate an erroneous path or not responding UI element.

3.2 Sequences

While some algorithms can work on a long single sequence, most work on multiple sequences.
One way to split into multiple sequences is that we identify each use case as a single sequence.
This however hides inter-usecase correlations, and might split up erroneous paths. In practice
the mining algorithms are able to work on longer sequences and we do not have to split the
sequences in such small parts. We opted to split on an identifier already in the log data, the
session variable. The session variable is used by the application to identify logged-in users.
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The session data is also used to identify different users using the application for the traces. The
events occur interleaved in the log file, and we use the session ID to identify distinct sequences.
Splitting on session gives us a natural and efficient way to split the log file into transactions.

Note that we assume patterns between users are merely a coincidence. This assumption
does not strictly hold for TeleDIA: after an acquisition an evaluation will always occur, these
sequences are directly cause and effect. However, this is done by design and embedded in the
core of the application.

3.3 Resulting entries

After filtering irrelevant information based on the observations in the previous subsections, mostly
leaving out information that is intended for debugging the application, we are left with the
variables as listed in Table 1.

Variable Description Example
time Timestamp recorded by the server,

can define an absolute ordering.
2015-06-01 06:25:13,151

URL The complete request URL, not al-
ways uniquely defining an action

http://teledia.example.nl/

componentPath The exact path of a component, not
always uniquely defining an action

studieWerklijstPanel:filterForm
:filterSelector

componentClass The exact path of the class that was
called, solely not defining an action,
but combined with the two above it
does.

nl.topicuszorg.teleDIS.web.login
.LoginPage

duration How long it took to process the re-
quest in milliseconds

19

memory The memory available, maximally
used and currently used by the
server

maxmem=1050M, total=1050M,
used=248M

Table 1: Relevant variables

The duration and memory variables do not describe the path a user takes nor contain infor-
mation needed to identify a session. However, they can contain valuable information for further
analysis. We therefore keep them available, just for presentation. It is possible to use this infor-
mation as extra dimensional data for the mining process, for example finding patterns that take
an excessive amount of memory. However, as initial analysis showed no promise (see Section
8.2), we did not focus on this.
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4 Methods

In this section both the underlying algorithms (Section 4.1) and the actual implemented appli-
cation (Section 4.2) will be discussed. Even though we do discuss values for parameters, they
are not definitive. All parameters are adjustable by the user in the final application.

4.1 Algorithms

As defined in the introduction various kind of patterns are required. Rather than finding one
algorithm that does all, various well known algorithms can be combined to achieve all goals. The
core of the application therefore consists of the various sequence mining algorithms. As they
are all largely based on previous work this section is mainly concerned with choices made and
deviations from the original implementations.

One important consideration when mining sequences is if we allow gaps. Especially in our
case allowing gaps can result in impossible sequences, there is a certain order in which pages
must be traversed. When allowing gaps it can also happen that we find too general patterns
which are uninteresting, for example: ”log in” followed by ”log out”. Taking these two problems
into account advocates for disallowing gaps in patterns. However, we do not want to miss a
pattern if a few steps are different every time, a likely situation when filling in a form. We’ll
have to allow gaps, but to a certain extend.

4.1.1 Frequent patterns

General application usage is what the majority of the user does. For this classical frequent
patterns are a good fit, with a cut-off below a minimum support. We choose to use closed
patterns to not overwhelm the user with redundant information. For added flexibility Philippe-
Fournier [12] algorithm was chosen. The algorithm gives us the ability to define the sizes of gaps
in patterns and sizes of patterns themselves, next to minimum support. The algorithm is based
on work by Hirate and Yama [20] which is in turned based on the PrefixSpan algorithm [30]. This
means that instead of traditional candidate generation the algorithm uses projected databases,
the original authors describe it well: Sequence databases are recursively projected into a set of
smaller projected databases based on the current sequential pattern(s), and sequential patterns
are grown in each projected databases by exploring only locally frequent fragments. Our chosen
algorithm also uses backscan pruning, as defined and described by Wang et al [39]. The pruning
is done by growing a sequence with an item in front and after using the projected database to
see if it is still frequent. If it is, with equal support, it can be pruned as being a closed item. In
practice this algorithm is very fast.

Frequent patterns are considered relevant if their frequency, or so called support, is above a
certain threshold. The support is defined as the number of database transactions, sessions in
our case, contain the pattern. This minimum frequency threshold varies for every dataset, and
can therefore not always be easily defined. It is a tradeoff between mining speed and size of the
result set, but the amount of patterns a user can comprehend is also a factor here. We found
that for our datasets a support of 10 respectively 5 percent work well. The difference can be
explained by how the application is used, in one case this is a much more uniform usage than
the other. A problem that arises is that it is very likely this value can change for future log files,
we therefore attempt to automatically mine this value. This is explained in Section 4.1.5.

An advantage of the Philippe-Fournier algorithm compared to the classical sequence mining
algorithms is that we can define four parameters for the windows: Minimum- and maximum
time between two consecutive events, and minimum- and maximum total time. The first two
parameters are the most interesting, as they define if we do or do not allow for gaps. We opted
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to make the default values minimum = 1 and maximum = 1, as we found that allowing gaps
quickly caused an explosion in the number of unrealistic paths. Disallowing the gaps did result
in incomplete paths, but it however successfully captured the parts around the gaps. A user
with domain knowledge can easily put these back together if required. The maximum length is
set to 100, to have a default behaviour of no maximum length, as we do not wish to miss an
unexpected long pattern. A reason to reduce this would be if the running time becomes to long,
this can significantly reduce the search space if large gaps are allowed. The minimum window
length is not set at one, but rather at 2. This means at least 3 events are included in a pattern.
This prevents the enormous amount of insignificant correlated item-pairs to show up, and rather
surface the more complete sequences.

A final note about the implementation of the algorithm that it finds a pattern at most once
in a sequence. This has rather large implications, as it is not uncommon in the logs for a pattern
to occur more then once in a sequence. However, as we defined in our research question, we are
looking for general patterns. This means that if a single user repeats a set of actions a lot this
is not considered interesting. By only counting a pattern once in a sequence, and thus a user
session, we prevent this from influencing the results. Note that if a user logs out and in again
this is counted as a new session. Combining these is a different problem altogether. An empirical
analysis done on combined sessions showed this does not have any significant impact.

4.1.2 Similar patterns

Similar patterns are introduced to tackle the problem of mining unintended usage. Small devi-
ations can point towards inefficient patterns, or possibly wrong and unintended usage. Where
we ignored gaps altogether when mining for frequent sequences we will allow them for similar
patterns. We match a part of the sequence exactly and allow for gaps or mismatches to find devi-
ations. To define similarity we leverage sequence alignment algorithms from the area of biological
data mining. Nucleotide or protein sequences alignment to be specific. Our problem is slightly
different, we do not have the problem of length as is common in nucleic acid sequences. With
our relatively short sequences we can do an exhaustive match using a dynamic programming
approach. We implemented the Smith-Waterman [34] algorithm.

Instead of point mutations in a nucleic sequence our events mutate. While ideally we assign
a match score between all possible events, this is infeasible for our case. Both because we have
not much to base this on and also because our number of events is a lot larger then possible
nucleotides encoding DNA sequences. For DNA sequences a common approach is to base a match
score on a substitution matrix, for example the BLOSSUM62 matrix [18], which is defined for
every pair. We opted to count a fixed match score. Future work could include a matrix of
events based on which events occur in a page together, this would however be very specific to
the application.

As with the match score we also define a fixed mismatch and gap score. Fixed in the sense
that they are the same for all combinations of events. They will be adjustable in the program
interface.

Ideally all unintended usage is mined and presented to the user. However, as it is suspected
this usage will not always show up in the patterns, it is insufficient to align the previously mined
patterns for comparison. Aligning the traces itself will give an enormous amount of results and
is of little use for the user. Instead we leverage the interactive element of our solution and let the
user define what sequence to match. This sequence is in turn compared to the whole database.
Similar patterns are returned with support, providing the user immediate insight if it is worth
investigating. The interactive element should make it easy to quickly test patterns and deviations
thereof, adjusting it frequently with the newly computed patterns. This can create a thorough
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understanding of the usage around a specific pattern which can easily be based on a use case.
As we are looking for similar sequences compared to a specific sequence, and we have no

definition of correct sequence, we allow gaps in both the created pattern and the sequences in the
database. The dynamic programming approach returns the specific subsequence that matched
the defined pattern, which is ideal in our case.

While a session in the database can be rather long, the defined sequence is mostly likely
short, and thus the runtime is dominated by the database. In practice this is negligible for
various patterns.

On a final note we discuss the parameters previously mentioned. The default values are based
on reason and practical tests. The reasoning is as follows: A lot of events are specific to a specific
path, even a single occurrence of such an event indicates the same use case. We therefore want
to deem sequences similar if they only have a few events in common. Furthermore an extra event
is less of a problem then a complete different action. Therefore the gap penalty, the same as an
extra event in another sequence, has a default of −1. The mismatch penalty is −2. To allow for
numerous deviations for every match the match score has been set at 4. Finally the threshold
is defined as 8. This reasoning requires at least 3 events to match, with possibly a gap and a
mismatch. For more deviations it should also have another exact match. In practice this works
well. Having the options easily accessible makes it possible for a user to define this more liberal
or strict if required, without needing an expensive mining run.

Note that we only find similar patterns in between two defined events, the algorithm will
never end with a gap or mismatch, and therefore can not find similar endings. While this might
seem as a disadvantage, this prevents completely unrelated matches with sequences that happen
after the one under consideration.

4.1.3 Associated patterns

With the algorithms in the previous two sections we already largely model what happens. Next
we want to look at when they happen. For this we can mine associated rules on our patterns.
We first identify frequent patterns, and then we find frequent rules. The set of frequent co-
occurring patterns does not suffice as we want to mine only significant correlation with a certain
confidence. For this we employ another algorithm from the SPMF library, a closed association
rules algorithm. We start with mining frequent patterns, using CHARM [40]. CHARM uses a
vertical database format, i.e. keeps track of items2 with a list of the transaction3 ids they occur
in. It then goes on to compute a prefix-tree utilizing both the items and transaction ids, they
define it as the Itemset-Tidset Search Tree. The tree is computed in a depth first manner. When
mining closed patterns the algorithm can skip several levels of the tree, and experiments show it
is several orders of magnitude faster then other closed association rules algorithms [40].

The association rules are then computed using a fast algorithm as defined by Agrawal et
al in [2] which is based on the classical association rules algorithm described in earlier work
[1]. The difference being that in the latter only a single item can be in the antecedent, and in
the former multiple items are allowed. In our application we do not expect multiple items in an
antecedent, a correlation between more then two patterns in the database, but if it occurs it must
not be missed. An optimisation included in the new version concerns only checking consequents
consisting of already found frequent consequents.

Using patterns as items allows us to zoom out, forget about order. It however does not allow
us to take similar patterns into account. The application could be extended by allowing for
specific patterns to be added before the mining, either manually or automatically.

2These items represent previously found frequent patterns
3A transaction is synonym to a sequence
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For this algorithm we define both support and confidence. We leverage support as usual to
drastically reduce the amount of possible combinations. High support of an itemset however
does not indicate a high correlation. Consider a pattern that occurs in every sequence, it will
have a high support together with another pattern that occurs above the threshold. To tackle
this we will use the confidence measure. Most easily explained in an equation:

confidence(A→ B) = support(A ∪B)/support(A)

The confidence of a set is the support of the complete itemsetdivided by the support of the
precedent. This will prevent the earlier described uninteresting rule from showing up. However,
the rule the other way around is still possible. This is desired behaviour, if we adjust the previous
example to the first pattern occurring in half of the patterns then A→ B is still not interesting,
but if confidence of B → A is high the correlation can be interesting.

By default the support is set rather low while the confidence is just below half. In our dataset
there are quite some patterns that happen in every session, and they tend to hide the interesting
results. It is not possible to, a priori, say what patterns are interesting and which are not. This
could be tackled by hiding uninteresting items from the database or blacklisting patterns. We
opted for a different solution making use of the interactiveness of our solution. By creating a
pattern in the application and selecting it the large list of patterns can quickly be filtered. We
therefore prefer to have a few uninteresting patterns that are easily filtered, instead of missing
out interesting patterns.

We list both from the precedent and antecedent and do not distinguish in this. While it
might be useful to know if one happens before the other, it most often does not. In the cases
that it does it is likely the domain expert can deduce it from the actual steps in the pattern.

4.1.4 Summarising Sequences

While frequent and associated patterns already produce a large set of patterns, they both rely
heavily on the support measure. This is no coincidence, as it is an anti-monotone constraint
which is both intuitive and highly effective for pruning. Many other measures can be defined,
which can be pushed into a mining algorithm, they however consider each pattern on its own.
Completely different approaches are possible, we opted for the Summarising Event Sequences
by Tati et al. [37]. The algorithm they define, SQS, is build upon the idea that sequences
who describe the database well together are interesting. Describing the database is taken as
compressing the database. The set of patterns that makes the database the smallest without
loss of information must be the most interesting set. For the details of the algorithm we refer to
the previously mentioned paper, a short description of its functioning will follow here.

For compressing the database the minimum description length (MDL) principle is used, two
part MDL to be exact. This means that both the database and compressing patterns are encoded
separately. The patterns are encoded in the so called code table. This table holds a unique
identifier for a pattern, the events in the pattern, a gap identifier and a non-gap identifier. Note
that all singletons are also in the table. The database is encoded as pattern stream and a gap
stream, from which the original database can be rebuild. Note that we do not allow overlapping
occurrences of patterns, just gaps in singletons. This also means that if a pattern occurs it is
not by definition encoded by the exact pattern.

For our use we do not need to explicitly compute the encoding size or the pattern streams,
the set of patterns suffices. As the size of a pattern identifier directly depends on the chance of
it occurring using the optimal universal code for integers enables us to compute this an encoding
from the usage.
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While this already reduces the computation time somewhat, the complete problem of finding
the unique best set of patterns is practically infeasible. Testing all possible combinations of all
possible patterns would be required. We can not build a solution incrementally because it is
not possible to say if a pattern that is good at compressing the database combines well with
other patterns. To tackle this problem the authors describe two solutions. First they use a seed
set of patterns and select the best combination of those. While this is an efficient approach it
disregards a large part of the search space. We could choose the frequent patterns as input for
the algorithm, but this would be nothing more than a filter.

The other solution the authors suggest is a heuristic approach, which we opted to implement.
This approach does grow the pattern table incrementally. It start outs with only the single-
tons and continues by estimating how well the combinations of two singletons as a pattern will
compress the database. The best combination is chosen and added to the codetable. This com-
bination step is iteratively repeated, every time for all the combinations of the current codetable,
with all singeltons. Note that computations can not be reused, as each time the code table is
different and the estimated score will differ. Each time a pattern is added there is a step that
tests each pattern to be pruned, while it might have been a good pattern to add early on, its
usage in the database can be replaced by a different pattern.

When combining patterns we allow gaps, because of the natural limiting of returned patterns
and the negative impact of overlap this does not cause the often seen pattern explosion. However,
sometimes erroneously gaps are estimated. To prevent this from happing, we test a pattern with
the gaps filled, after adding a pattern.

One practical problem encountered is that, especially at the start, patterns can get the same
estimated score. We have no way of knowing what pattern will be better later, and being a
heuristic this might still not even be the correct choice. So we can pick one at random. A user
however likes to have consistent results, if he restarts the program with the same log he expects
to see the same patterns. For this we sort on other, irrelevant, pattern data to get an absolute
order. In this case we use item ids and pattern size.

The patterns are presented to the user sorted on compression size, best describing patterns
first. They are not listed with how many times they are used in the encoding but with their
actual occurrence count, which is computed in a final pass. This makes it consistent with the
other pattern suggestions in the application, and the compression importance can be deduced
from the order.

The patterns provides an new perspective and in practice work quite well. The computation
time is however still rather long, especially for big databases. Another perk is that the algorithm
does not have parameters to be defined, and is thus suitable for novice users. However, the exact
encoding chosen can be seen as an implicit parameter, experimenting with different encodings
can possibly improve results and is future work.

4.1.5 Inferring parameters

One of our aims is to make the program usable by users without any experience in pattern
mining. A problem with traditional algorithms is that they all require one or more parameters
to be set, before the user is presented with a list of results. The wrong parameters can result
in not finding any patterns, or, in the worst case, make the program run without terminating.
Providing a manual with the explanation of the parameters in layman’s terms can guide the
user, but we do not consider this very user-friendly. We will therefore attempt to provide the
parameters for the user.

The application we are analysing is not being used uniformly by all customers, and the
resulting log files therefore also show different characteristics. The differences can be quite
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significant, an in-depth explanation is provided in Section 5.1. For the similar and associated
patterns we fill the parameters based on the reasoning explained in Section 4.1.2 respectively
4.1.3. Unfortunately, for the frequent patterns we can not perform such a reasoning.

To tackle this problem we can leverage the parameterless algorithm for summarising sequences
as defined in Section 4.1.4. While the algorithm optimises towards a different goal, it will use
more patterns for a large heterogeneous database than a small one. We can analyse this resulting
set of patterns to make an educated guess on a suitable minimum support. To make this guess
the first approach was to simply take the minimum support from the least occurring pattern of
SQS. A quick analysis however showed that SQS tends to return long patterns with low support.
Using this low support as minimum support for frequent patterns would result in the pattern
explosion we are trying to avoid4.

We found that we can get a good estimate by taking the support of the least supported pattern
belonging to the top 30% of most supported patterns returned by SQS. This can be explained by
the distribution found in Section 5.1, as SQS does not encode an event twice it is expected that
the 20% of frequent events account for most patterns. The other patterns will contain the less
frequent events, which will have a lower support. Because the algorithm is rather fast compared
to SQS the support was slightly decreased to that of the top 30%. We will show in Section 6.6
that for our datasets this approach gives us a estimate in the right order of magnitude, which
can be fine tuned by the user if required.

4.2 The interface

To be able to use the core algorithms in an efficient and intuitive way a set of other tools will be
implemented. In this section these tools will be briefly described and motivated.

Figure 2: A screenshot of the main interface

First of all the main interface, shown in Figure 2. The main interface was inspired by the

4This explosion does not occur for summarising patterns as it does not encode events twice and also takes into
account the frequency of which an event occurs.
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extended version of MIME for classification trees [28]. The interface consists of two main parts.
The graph (originally tree) in the top part and patterns (rules) below are a clear commonality
between the two. A difference is that the MIME interface allows more choice in algorithms and
measures, where we limited ourselves to a few algorithms. This could still be extended but is
beyond our scope.

Figure 3: A selected node with its two successors shown

Next to the pattern suggestions the ability to manual grow the graph in a specific direction
has a prominent place in the interface. The search space of the log is enormous, a user can not
comprehend it at once, and in contrast to building classification trees we do not wish to build
an exhaustive classifier. After selecting a node both predecessors and successors are available
quickly, in one click. All the other nodes can be added in two clicks. A selected node and its
successors are shown in Figure 3.

Figure 4: Frequency

The graph is annotated with frequency, both relative and absolute
an example label can be seen in Figure 4. This important part of the
graph provides much needed context. Sporadic paths can be easily
recognized and dealt with accordingly. The frequency label shows,
in order: absolute-, relative forward- and relative backward support.
Relative forward and backward are based upon the currently created
graph. The nodes also have two relative frequencies listed, summing
the incoming respectively outgoing edges. This gives a quick overview
of the completeness of the created patterns.

Another aid the user has in filtering the suggestions is selecting nodes, this will show only
the patterns directly related to the nodes from the various algorithms. This is one of the most
powerful features, and allows the user to filter all suggestions to the specific set he is currently
interested in. An example is shown in Figure 5.
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Figure 5: The graph with suggestions filtered on selection

Figure 6: The graph with created patterns listed

While the graph is an intuitive way to view and build a pattern, once it becomes complex
it can become unclear what pattern accounts for how much of the usage. For this there is an
overview with a more classical view of the patterns, shown in Figure 6, a simple list. These only
include the maximal patterns from the graph, meaning they start at nodes without parents, and
end in nodes without children.

Figure 7: Undo / redo

While we focus on sequential user actions and the patterns therein,
there is more to understanding application usage. Both on a technical
and an interactive level. For this we can annotate the nodes with
extra information. We have chosen to include the average relative
times between actions, these are visible in the graph overview pane in
Figure 6. This information was included because it was specifically
requested, but it also shows the possibilities available. This is easily
extended or replace with for example application memory usage.

To make the application directly usable for the key users we also
included a parser, both for specific TeleDIA log files and generic item
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sequences. The common undo and redo user actions are also included, to encourage the user
to try out different configurations without fear of losing a promising pattern. This is shown in
Figure 7. The other actions, selection, dragging etc. are also implemented as in many common
applications.

An interesting problem that surfaced is graph layout. Laying out nodes is not a trivial task,
and beyond the scope of this application. While libraries are available they often required an
extra layer of complexity or changed the interaction possibilities. Graph consistency was also
preferred, and thus moving existing nodes to create graphs more pleasant to the eyes was not an
option. We therefore opted for a simple heuristic placement, at an offset from a neighbouring
node, depending on the node its size. Usually this works relatively well, and in the other cases
the user can easily drag the nodes to a more suitable location.

Figure 8: A pattern selected with a similar pattern suggested

A note to make about the graph is that we do not allow for loops to occur. While it is
definitely something that happens in our patterns, repetitive action, this increased program
complexity. Even worse, the frequency annotations were not unambiguously defined any more.
The patterns are suggested and can still be created, but are unrolled when displayed.

As an advanced feature a dialog to configure the algorithms is available, to allow compensating
for different log files or choose a different trade-off between speed and number of patterns. A
screenshot can be seen in Figure 9.

For a more thorough explanation of how the application should be used the reader is referred
to Appendix G, which contains the user manual.

Lastly we discuss a non-interactive feature. Users do not like to wait, but when loading a log
file and the algorithms are run the application can freeze for tens of minutes. And while mining
is and will stay an expensive task, we can mitigate some of the waiting time by saving the results.
After an expensive mining run the found frequent and summarising patterns are saved to a file.
This file with patterns is saved in the same directory and with a similar name as the original log
file. A next time the file is loaded these patterns can be loaded almost instantly. We save a file
with summarising patterns and one with frequent patterns. Note that if the user changes the
parameters for the frequent pattern algorithm the computations are repeated and the frequent
pattern file is overwritten.

A final note is that the program was written in the Java programming (version 8) language,
making it cross platform. The newest Java technologies were used to create a pleasing interface
with easy possibilities of extensions. An added bonus was the availability of a library with an
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Figure 9: The parameters dialog

enormous amount of mining algorithms [11]. We implemented only a few, but it is trivial to
extend the application with more algorithms of the library. The application is a prototype, but
it is written with clean code and documentation. It should be possible to improve upon and
finalize the application into a stable one.

23



5 Evaluation methods

To test the validity of our approach we set up a series of experiments. The goal of this research
is to find interesting sequences. Capturing the subjective element can not be done directly, and
thus this evaluation will not be exhaustive. We can test if the various algorithms combined find
a set of interesting sequences that we manually identified in a dataset. We define measures to
quantify the quality of our approach in Section 5.3. To get a set of interesting sequences our main
test will be performed on sequences injected into real world data, as described in Section 5.2.
Finally, to subjectively test the performance of the application, we perform a series of tests with
key users. Key users are those actively working on the TeleDIA application. This is described in
Section 5.5 and will indicate the quality of the prototype overall. We start out with describing
our base datasets in Section 5.1.

5.1 Original database

The domain under consideration deals with traces of how humans interact with an application.
Because of the complex characteristics of this domain it is infeasible to create a completely
representative synthetic database. We therefore resort to using a real world trace file as a base.
We will start our analysis by running our algorithms on the original trace file and use the found
results as a base line.

We have two datasets at our disposal, from two different TeleDIA instances. As described in
the introduction (Section 1.3) TeleDIA is a flexible application and is used differently by different
customers. We therefore have two unique datasets, which in turn contain two different sets of
interesting sequences.

The first dataset contains 15385 events, in some other literature called items. In those events
we count 204 unique events, with about 20% of them accounting for 80% of all event occurrences.
See Figure 10a for a cumulative frequency graph of the events. Those 15385 events are spread
over 675 sessions. The median session length is 9, with the longest session having 354 events,
and the shortest only 1. On average a session has 22 actions.

(a) Dataset A (b) Dataset B

Figure 10: Cumulative frequency

For the second database we calculate the same characteristics. See Figure 10b for the cumu-
lative frequency graph. A comparison of the characteristics of the two databases can be found
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in Table 2.

A B A’ B’
Total events 15385 7993 14450 3077
Sessions 675 380 620 159
Unique events 204 152 202 115
Median |S| 9 8 11 7
Average |S| 22 21 23 19
Maximum |S| 354 177 354 169
Minimum |S| 1 1 1 1
Timespan 8.5 days 16.5 days 7 days 7 days

Table 2: Original database characteristics. Note that |S| is the length of S and can be computed
for all S ∈ D

To get consistent results and get a relatively low run time, allowing for numerous tests, we
took one week of data from both datasets. See the characteristics in the table in column A′ and
B′. Note that this includes a weekend, where the system is used less. Both weeks are regular
representative weeks, without any holiday or other event that could influence the usage.

5.2 Test paramaters

After performing our initial runs for a baseline we will continue by injecting sequences into the
dataset. Statistics from the baseline are shown in Table 3. We make sure all injected sequences
are disjunct, meaning they do not overlap. Sequences will consist of a random sample of events
already existing in the current database to form a consecutive series. We will inject them into
existing transactions, keeping the support of existing patterns the same. When injecting patterns
with gaps we include random extra events.

A’ B’
Number of frequent sequences 331 236
Number of summarising sequences 64 32
Length of longest frequent sequence 28 14
Length of longest summarising sequence 24 7
Support of maximum supported frequent sequence 375 90
Support of maximum supported summarising sequence 728 115
Relative automatically computed support in percent 0.015 0.025
Absolute automatically computed support 10 4

Table 3: Baseline run statistics

Injecting sequences will be done while varying four parameters: number of sequences, sequence
length, number of gaps and support in database. A brief explanation follows.

We start with the support parameter. As you can see in the previous section most events
happen sporadically. The goal of this research is to model complete usage, and we are still
interested in those events. We are however not immediately interested in unique user paths, so
we do not wish to find sequences that happen only once. We will vary the support parameter
from a single occurrence to the maximum support found for a sequence in the original database.
As you can see in Table 3 this is 728 for dataset A′. For computational reasons we will not take
increments of one in this case.

25



5.3 Measures 5 EVALUATION METHODS

Secondly we will consider the sequence length parameter. We will vary this from the minimum
length, two, till the maximum length of a mined sequence in the original database. We choose
these values to keep the sequence as realistic as possible. We will consider all possible integer
values in this range.

Next we vary the number of gaps. We start out with zero gaps, and will increase this number,
one at a time, until we have as many events in the sequence as gaps. Note that these gaps will
be placed randomly, and can result in both a singular large gap or many small gaps.

Lastly we consider the number of sequences to inject in our dataset. We start with injecting a
single sequence, and keep increasing until we have the original number of summarising sequences
in our dataset. As this will be a rather large range of values we will increase with increments of
ten. Note that in the originally mined frequent sequences we still have quite some redundancy,
our injected sequences will be random and most likely not overlap significantly. We therefore take
the number of summarising sequences, which should better represent non-overlapping sequences,
instead of the number frequent sequences.

All of these parameters will be varied individually. The parameters that are not varied will
be kept at their default value (see Table 4). After analysing the individual results we will select
varying combinations for further exploration. We take this approach to reduce the search space.

Tested parameter Number of patterns length gaps support
Number of patterns 1-64 5 0 11

A’ Length 1 2-28 0 11
Gaps 1 28 0-28 11
Support 1 5 0 1-375
Number of patterns 1-32 5 0 5

B’ Length 1 2-14 0 5
Gaps 1 14 0-14 5
Support 1 5 0 1-90

Table 4: Initial test parameters

The last parameter we consider does not concern the injection of sequences into the dataset.
We will vary the the used algorithms. The frequent, associated and summarising sequences can
always be found. For the similar patterns we will ’select’ the first and the last node and half of
the intermediate nodes randomly selected, and see if we find the original sequence again. Varying
the used algorithms can provide insight into how the algorithms augment each other.

5.3 Measures

To quantify our results we define a set of performance measures. The measures mainly concern
the injected patterns. Note that we do not always wish to find an injected sequence, as short
infrequent sequences should be considered noise. We keep this in mind when evaluating our
results. We also define the well-known precision and recall measures for our context to summarise
the measures.

Measure 5.3.1. Sub-sequences: The number of injected sequences not exactly present in the
result set, but with a sub-sequence of the injected sequence present.

The first is computed by comparing the set of injected sequences with the result set and
counting the number of injected sequences which only have a sub-sequence present. If multiple
sub-sequences are present we take the longest. If there are both an exact match and a subsequence
it is not counted for this measure.
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Measure 5.3.2. Equal sequences: The number of injected sequences found exactly in the result
set.

As with the first measure we look at the longest sequence containing an injected sequence. If
a super-sequence is found we do not count the pattern as an exact match.

Measure 5.3.3. Super-sequences: All injected sequences contained by a larger sequence in the
result set.

If an injected sequence is present as a sub-sequence of a sequence found in the result set we
count it as a super-sequence.

Measure 5.3.4. Missed: All injected sequences that are not present as either sub-sequences,
equal sequences or super-sequences in the result set.

Sequences that we are not able to identify but did inject are counted in this measure. We
only count it if it is not present in any form.

Lastly we keep track of patterns that do not concern the injected sequences. We keep track
of how many of the patterns mined on the original database are still available after injecting.
We merely compute this to keep track of information we might lose, a possible indication of how
reliable the results are.

When counting we consider both the number of sequences and their injected support, if we
find the sequence but with lower support this is reflected in the measures. This also means a
single sequence can count towards multiple measures.

The measures can be computed using the set of patterns returned by the algorithm mining
frequent patterns, the set returned by the summarising sequences algorithms and using the two
sets combined. As on the single set we will try to get the best possible match on the combined
set. This will provide us with insight into the individual performance of the algorithms and if
they possibly supplement each other.

5.4 Procedure

Automated tests are performed to generate a sufficient set of tests. Each tests will be repeated
six times, to minimise the impact of outliers. Outliers can, for example, be the effect of injecting
a pattern with characteristics which make it easier or harder to find. After varying the individual
parameters initially a first analysis will be done to identify interesting values for the parameters.
A second round of testing will be done by varying parameters simultaneously by setting their
interesting values.

Finally we are also in the position to directly compare the different mining algorithm on
returned pattern quality. We will attempt to identify a preferred algorithm in our domain or
conclude the combination is required.

5.5 Qualitative tests

To capture the subjective element we perform two qualitative tests. The first one evaluates the
quality of the returned sequences and the second evaluates the interactive solution as a whole.

5.5.1 Sequence quality

To evaluate the quality of the individual sequences we run the program on our datasets at default
parameters. The mined sequences will be analysed one by one with a key user. For each sequence
we will mark if the sequence is new, correct, incomplete, irrelevant/incorrect or redundant.
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New sequences are sequences the key user did not know about and finds interesting. Correct
sequences are known information confirmed by the application. Incomplete sequences are defined
as sequences that are part of an interesting pattern but missing events. Irrelevant or incorrect
sequences are sequences which do, according to the key user, not contain any information, or
even contradictory information. The redundant sequences are (perceived as) duplicate patterns.

5.5.2 Program quality

As a last test we will evaluate the designed application as a whole. We will attempt to capture
the quality perceived by the key users. For this we employ a questionnaire as defined by Pu
et al. [33] for recommender systems. One can see the application as a sequence recommender.
The questionnaire also concerns the application as a whole. The wording in the questionnaire is
slightly adjusted to better suit our domain. The full questionnaire can be found in Appendix F.

We ask the user to use the application in an exploratory fashion and in a hypothesis testing
way. For the latter, to guide the user in the program, we first ask him to define a set of goals,
sequences or cases the key user wants to analyse.

This test was done with limited help to prevent biased results. The help that was provided
is in the form of the general application documentation, present in Appendix G.
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6 Experiments

The experiments are all run as described in Section 5. All of the results are averaged over 6 runs.
In the first four sections we vary a single parameter, keeping the others at their defaults. For the
detailed values and motivation see Section 5.2. The graphs in this section all have the parameter
that is being varied on the X-axis, and for each value at most 5 visible bars. The first bar shows
the sum of the number of injected patterns we found, either a super-pattern, exact pattern or a
sub-pattern. The next three bars show the individual numbers for these three kind of patterns
(Measures 5.3.1 - 5.3.3). The last bar shows the number of completely missed patterns (Measure
5.3.4). As described in Section 5.3 these individual measures are disjunctive and sum to the
total number of injected patterns. The Y-axis always shows the number of injected patterns.
The counts on this axis are individual occurrences of the sequences, for example: injecting 3
patterns 5 times means we get at most 15 exact matches, and thus the value 15 on the Y-axis.
To prevent clutter the labels have been omitted in the graphs. The only exception is in Section
6.6, in this section we consider the computed support. Instead of the number of patterns we
have the minimum support threshold on the Y-axis, which is labelled.

6.1 Varying number of patterns

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 11: Varying number of injected patterns on dataset A’

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 12: Varying number of injected patterns on dataset B’

We start by analysing the influence of the number of patterns injected. We can see that both
on dataset A’ and dataset B’ the set of mined frequent patterns (sub-figures a) contain almost all
injected patterns exactly. Only a few patterns are missed, most likely because in such a case two
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patterns are injected into the same transaction, a situation the frequent patterns are designed to
miss. To confirm this suspicion a few randomly chosen cases where this problem surfaced were
chosen and analysed. The injected sequences were manually located in the resulting database,
and they where indeed found to be in a single transaction in those cases. The frequency of this
matched exactly the number of missed sequences. On dataset A’ this occurs more often than
on dataset B’, most likely due to different rounding of the minimum support parameter in the
algorithm. This most likely resulted in another slack pattern in dataset B’, an injection above
minimum support. This allows missing a single injection without completely losing the pattern.

The summarising patterns (sub-figures b) are also able to identify almost all injections. In
some cases it however finds a subsequence, this is most likely because of the heuristic approach.
Another possible explanation, involving the frequency of the missed events, shows more in another
test and is discussed in Section 6.2.

A difference we notice between frequent and summarising patterns is that the former also
find super-sequences. This is due to noise that combines with patterns to become a bigger,
frequent pattern. More injections increase the odds of this occurring. We do not observe this for
summarising sequences. This can be explained by the fact that adding another sequence to the
codetable increases the size of this table. If the new encoding doesn’t reduce the database with
more then than the code table is increased, the new sequence will not be added.

The graphs combining the two sets (sub-figure c) show no misses and less subsequences,
indicating that it are not the same patterns the algorithms have problems with identifying.

6.2 Varying length

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 13: Varying length of injected patterns on dataset A’

The next experiments tests the influence of varying the length of the injected sequence. The
frequent pattern algorithm shows similar results for both dataset A’ and B’ compared to the
previous section. In the result-set most patterns are found as exact matches. Some are even
found as super sequences on dataset B’, and some are missed on dataset A’. The same reasoning
applies here as in the previous section.

We see more differences between the result-sets of the summarising sequences algorithm for
dataset A’ and B’. The summarising sequences algorithm has difficulty with very short sequences,
of size two. This is because the gain of encoding these is small, especially if support is not
high enough. The very long sequences are more often found as subsequences. This is somewhat
surprising, as once a pattern is partly found it should be grown by the heuristic. Closer inspection
of the mined sequences shows that almost the complete sequence is found, only missing a single
item somewhere. This item was to be found frequent itself. A possible explanation is that
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(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 14: Varying length of injected patterns on dataset B’

including this item in the pattern, and in the pattern-stream, does not include enough gain
compared to including it in the gap-stream. Another possible explanation is the occurrence of a
coding bug in an edge case, as the problem does not occur in most of the test-runs. Inspection
of the code was however inconclusive, a pattern is always tested without gaps, after adding a
pattern based on a gapped estimate to the code table.

The combining graphs show that all injections where covered by at least one of the algorithms.
Because on dataset B’ the frequent patterns found more exact results the combined set of dataset
B’ only shows exact and super-sequences, whereas on A’ in some cases only sub-sequences are
recovered.

6.3 Varying gaps

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 15: Varying gaps of injected patterns on dataset B’

Varying the amount of gaps in the injected sequences results in the graphs shown in Figure 15.
The results on dataset A’ are similar and can be found in Appendix B. As expected the frequent
patterns, which do not allow for any gaps with the chosen configuration, only find the patterns
when no gaps are present. Most of the injected patterns are found in that case, except for some
runs when a supersequence or miss is selected. This behaviour is identical to the injection of a
single sequence as seen in Section 6.1.

Summarising sequences also show comparable results on sets A’ and B’. On both datasets not
all patterns are recovered, and often sub-sequences are found. When the number of gaps is low
however we see that about half of all injections are found exactly. Keep in mind that this is an
average over 6 tests, and closer inspection showed that in some cases all injections where found,
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where in others not a single exact match was made. In all cases all injected patterns do have
some part that is found. Next to most likely having a low support the length parameter plays
a role here. To allow for more gaps to be injected while still retaining some of the pattern this
parameter has been set at 28. This makes it possible that the heuristic does not even consider
the whole pattern, or does not find enough improvement compared to a encoding a subsequence.
For follow-up tests with shorter injected patterns see Section 6.7.3.

The combined graphs have the most in common with the summarising patterns, except for
when no gaps are included, then the frequent patterns clearly perform better.

6.4 Varying support

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 16: Varying support of injected patterns on dataset A’

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 17: Varying support of injected patterns on dataset B’

Varying support shows good results for both algorithms on both datasets. In Figure 16 we
see the graphs for dataset A’, dataset B’ is shown in Figure 17.

For the frequent patterns we only miss sequences in the case that they are below minimum
support, as is expected. Interestingly, when support is increased almost only supersequences
are found. The random injection of events makes the events in front and after a sequence also
random, but because 80% of the actual events are caused by 20% of possible events it is likely
some pre- or post-events are similar in random cases. This chance increases when more of the
same patterns are injected, as can be seen in the graph.

For the summarising sequences we do not see similar behaviour. Interestingly it finds almost
only exact patterns. Sometimes a few subsequences can be observed, sometimes a few superse-
quences, but most of the time the match is exact. Clearly the algorithm is less susceptible to
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noise in the dataset. On dataset A’ a few more supersequences are found, this is because this
dataset includes a lot more transactions with only the startpage event, when increasing injections
the injected pattern with this event appended is also picked up.

The combined graph is similar to the frequent graph almost exactly the same. However, in
this case it does not mean that it performed better, this graph is a result of how the measures
where defined. One can argue that exact matches are in fact better.

6.5 Original patterns after injection

(a) Frequent patterns (b) Summarising patterns

Figure 18: Original patterns after injecting varying support on dataset B’

A factor not considered in the previous sections, when testing the various parameters, is if
the originally mined patterns are still present. The graphs in Figure 18 are representative for all
tests when numerous sequences are injected. We observe that the frequent patterns only miss
a few pattern occurrences when more sequences are injected, this is completely the result of
injected sequences breaking up original sequences. One thing to note is that we do not start new
transactions, in our case sessions, when injecting patterns. The minimum support thus does not
change and all originally mined patterns will still be above minimum support, if not broken up.

Figure 19: Original summarising
patterns when varying length on
dataset B’

The summarising patterns algorithm misses more of the
original patterns. A first note to make is that originally the
set of summarising patterns only returned about a quarter
the number of patterns the frequent pattern algorithm did.
For this reason broken up patterns are more visible in the
graph. We see however more variation as opposed to a linear
decrease. As the heuristic used in summarising patterns de-
pends on the frequency of the events and the order in which
they occur, an injection can completely change this. This
can result in a pattern in the original set being excluded and
a (similar) pattern being included. Another factor in the al-
gorithm is the number of patterns used, every added pattern
requires more bits to encode, and at some point adding a
pattern does not outweigh the negative effect of encoding it.
Still more than half of all the original patterns remain.
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Figure 19 shows the original summarising patterns when only a few patterns are injected.
The graph shows the results while varying the length of the injections on dataset B’. In the graph
we can see that a lot of the original patterns are retained. While there are still more patterns lost
than of the original frequent patterns, the performance is stable. Overall the effect of patterns
breaking up is more visible on summarising patterns as the algorithm is more sensitive to the
actual occurrences of the injections.

6.6 Computed support

In all our tests the heuristically computed minimum support seemed sufficient. While this is no
proof it will always work, our tests show that the variance is low and negligible. For dataset A’
the standard deviation was 0.00133 over all tests, and for dataset B’ this was 0.00294. These
values are negligible, in the datasets they will not trigger a change in the actual number of
patterns required. The computed support obtained while performing the test of injections with
increasing support (Section 6.1) can be seen in Figure 20. Statistics over all runs are available
in Table 5.

(a) Dataset A’ (b) Dataset B’

Figure 20: Heuristicly computed minimum support when varying number of patterns

Dataset Minimum Maximum Average Standard deviation
A’ 0.0097 0.0177 0.0133 0.00133
B’ 0.0314 0.0440 0.0325 0.00294

Table 5: Computed support statistics over all tests

6.7 Varying various

Overall frequent pattern seems to recover almost all injected patterns. Because we can make
no statements about the quality of the patterns without inspecting every single one manually,
we can not say if any pattern recovered is better or worse. We will simply focus on finding all
patterns. The quality of the patterns is further discussed in Section 7.1.

We will continue our tests by selecting areas where the algorithms did not perform well. We
know that below the minimum support of the frequent patterns we do not find any frequent
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patterns, we will test if we can cover those with summarising patterns. The other situation is
where gaps are present. We will start by increasing support, and see if relatively more patterns
are found. Another possible way to improve, based on the previous tests, is to reduce the length
of the patterns, both with default and increased support. As frequent patterns will not be able to
find gapped injections with the current configuration, these tests will also focus on summarising
sequences.

6.7.1 Below minimum support

The following experiment will cover injecting sequences below the computed minimum support.
We also vary the length as we suspect this can positively influence the ability to find patterns,
encoding long sequences compresses more.

(a) injected length 3 (b) injected length 10

(c) injected length 18 (d) injected length 28

Figure 21: Varying support below minimum support on dataset A’, algorithm summarising
patterns

In both Figure 21 and Figure 22 we observe that when we have short sequences we find exact
and superpatterns. Increasing the sequence length shows more sub-sequences in the result set.
As expected the frequent patterns algorithm finds nothing exact below minimum support, see
Appendix C.

Summarising patterns can find patterns, or parts thereof, from a support of two. This is
fundamental to the algorithm as at least one time a pattern has to be included in the code table,
the overhead is not compensated if it can not be used more then once. We omitted the single
injection from the graphs for A’. Note that in some cases a pattern will be matched, this is purely
a coincidence with the patterns already present in the database. This can be seen in the graphs
for B’. Note that a support of 4 is already frequent in B’, on this dataset we hope to detect
sequences at support 2 and 3.

Increasing the length increases the chance a subpattern naturally occurs in the data, which
can bee seen in frequent patterns (Appendix C). In the two tests with the longest sequences, in
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(a) injected length 4 (b) injected length 7

(c) injected length 10 (d) injected length 14

Figure 22: Varying support below minimum support on dataset B’, algorithm summarising
patterns

A’ length 18 and 28 in B’ length 10 and 14, we start to find subpatterns. Therefore this isn’t
necessarily anything new for summarising with long patterns. However, the set of summarising
patterns is significantly larger and thus covers new information. Surprisingly, if pattern length
is increased, less exact patterns are found. Most likely this happens as a result of a sub-pattern
being encoded with more benefit. We find short low support patterns in some cases, and longer
patterns usually show a subsequence. On both dataset A’ and B’ this is the case. Note that the
behaviour described in Section 6.2, discussing pattern length, is also part of the reason we find
sub-patterns in long injections.

6.7.2 Gaps: higher support

(a) injected support 16 (b) injected support 32 (c) injected support 60

Figure 23: Varying gaps on dataset B’, length 14, algorithm summarising patterns
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We find a lot more gapped patterns when support is increased. For dataset B’ this is shown
in Figure 23. Dataset A’ has similar results, the graphs for A’ are included in Appendix D. This
improvement continues when we increase support even more. However, when we increase the
amount of gaps we still only find subpatterns in the best case. Intuitively this can be understood,
as the long-split up sequences easily encode a few still long enough frequent sequences when split
up. With more gaps it is more likely similar splits are made. In this case it seems more beneficial
to encode two patterns as opposed to including a long gap-stream.

In both datasets we see that exact patterns aren’t found after about 1/3 of the pattern
becomes a gap. This limit seems to hold when increasing support. Note that in both cases we
consider very long sequences. Close inspection often revealed long matched patterns, with all
but a few events of the injection included.

6.7.3 Gaps: shorter sequences

(a) injected support 10 (b) injected support 30 (c) injected support 60

Figure 24: Varying gaps on dataset A’, length 5, algorithm summarising patterns

(a) injected support 5 (b) injected support 16 (c) injected support 30

Figure 25: Varying gaps on dataset B’, length 5, algorithm summarising patterns

When decreasing sequence length we directly observe an improvement in the number of exact
matches found. Even with low support the patterns are exactly matched. Increasing the support
in this case seems to decreases the performance of the algorithms. One explanation is that when
we get a high support and many randomly chosen gap events we introduce a lot of noise. Take
for example the case of dataset A’, with a sequence injected 60 times and each sequence having
5 gaps. This already results in 300 events randomly injected events.

When support gets high, the subsequences of a pattern, separated by gaps in some injections,
become a good candidate to encode themselves. It is clear that on dataset A’ even higher support
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makes it turn into super and subsequences, accompanied with a few misses.
On dataset B’ the effect can also be observed, we already match a pattern with 4 gaps in

some cases at the lowest support, of 5. Increasing support makes it more reliably detect patterns
with 1 or 2 gaps, but decreases the ability to match more gaps. In a short sequence there are
only so many places a gap can be placed, and the subsequence become frequent themselves.

In these tests, with sequence length 5, exact matches on both datasets seem to be limited
around 3 to 4 gaps.
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7 Qualitative experiments

In this section we will discuss the qualitative test results. Note that the group of interviewed
key users is relatively small, namely three, so we do not claim to have conclusive results. We can
however already describe some interesting findings.

7.1 Pattern quality

We tested pattern quality as described in section 5.5.2. The patterns where listed using the
Logan application. The test was only done on the larger of the two databases, A, with default
parameters. The results are shown in Table 6 and Table 7 for summarising- respectively frequent
patterns.

Kind Number Percentage
New 3 4.6%
Correct 24 36.9%
Incomplete 16 24.6%
Redundant 11 16.9%
Irrelevant 11 16.9%
Total 65

Table 6: Summarising patterns quality

Kind Number Percentage
New 7 4.4%
Correct 52 32.2%
Incomplete 7 4.4%
Redundant 20 12.4%
Irrelevant 75 46.6%
Total 161

Table 7: Frequent pattern quality

A first observation is that for summarising patterns the largest group consists of correct
patterns, and for frequent patterns this is the second largest group. This is a first indication
that the patterns mined are in fact interesting. Upon closer inspection we see that both also
returned new patterns, triggering the key user to further inquire. In both cases this is only a
small percentage, but this is expected, as upon further inquiry with they key user these were not
optimal paths, which were not supposed to even occur in the data.

These two groups, together with the incomplete patterns, are the most interesting patterns
to the key user. Incomplete belongs to this group as even though the patterns are not complete,
they do contain useful information. Ideally these patterns include further steps, the algorithm
fails to recognize the larger pattern, it can still be a useful start for further manual pattern
expansion.

The redundant and irrelevant patterns are the ones a user does not deem interesting at all,
and would rather not see. Especially the frequent patterns include a lot of these, over 50%. Upon
further inspection the irrelevant patterns are mostly patterns concerning logging in and general
sequences which contain mostly technical events. Note that these technical events might be
interesting to a programmer, but are of little meaning to the key user evaluating. The redundant
patterns are sub-sequences of other returned sequences, either exact or with small meaningless
deviations.

The summarising patterns algorithm has more than 50% of relevant patterns and is clearly
more concise. It did however return less than half the amount the frequent patterns returned,
and most likely missed a few. This is supported by the experiments in the previous sections.

In practice the key user was able to quickly see which patterns are and which are not relevant,
and able to ignore the irrelevant patterns. It would however be more user-friendly if those were
not shown at all.

Because the summarising algorithm returned more relevant patterns this was the preferred
view of the key-user, even if the frequent pattern returned more correct and new patterns in the
absolute sense.
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7.2 Program quality

The final tests we perform, as described in Section 5.5.2, covers program quality. The latest
version of the prototype, along with the user manual and questionnaire, was given to our three
key-users. All three used the application until they felt confident they got a good understanding
of the application, and filled out the questionnaire. The answers are discussed in the following
paragraphs, in the order the questions appear on the questionnaire.

The first set of answers showed that the patterns are deemed interesting. They matched
the persons’ interest and were reported to be, on some occasions, novel. The diversity was also
appreciated, with the drawback that quite some of the found patterns are similar.

The question regarding the explanation of the patterns was answered quite varied. The
variance is explained by the different levels of experience of the users. For those that had more
knowledge about the area of pattern mining the descriptive names were good enough. Those
who did not have the knowledge found the program lacking in this area. This is an indication
that the program does not explain the kinds of patterns well.

When it came to the interface adequacy the users were neutral. The basic functionality is
present in a way that can be understood easily, and the interface is clear enough. However, the
overall attractiveness of the program is something that can be improved. This can include both
visual aspects and locations of interface elements the user wants to interact with.

All of the respondents agreed on the fact that the program was easy to use. Finding a
sequence to analyse was easy with the tools provided. Next to the suggested patterns the tools
of manual pattern creation are needed for this. This result is an indication that the growing of
patterns by picking neighbours, available after selecting a node, is indeed an intuitive approach.

The patterns scored well when it came to perceived usefulness. Note that this concerns the
suggested sequences, not the one the user creates. The patterns where both useful as a starting
point, especially in the case of novel patterns, but also to quickly grow a bigger sequence from
specific, selected, nodes.

The questions concerning the attitude towards the overall program were answered in a positive
manner. All respondents liked the program, and found the recommended patterns convincing.
This is an interesting result, as some of the respondents answered in an earlier question that
they did not understand why a pattern was suggested. The fact that they are still convinced of
the patterns is most likely due to some patterns confirming what they suspected. The users are
more neutral when it comes to expectations of liking the suggested patterns. Most likely this is
an effect of having numerous similar patterns suggested, only one of those is usually interesting.

The behavioural intentions show that the users will definitely use the program again, and
even inform colleagues about the program. Most of the respondents will act on the information
gathered with the program. The program created the insight the users wanted to get from the
log file and the users are overall satisfied.
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8 Conclusion

Interviews with the application users showed that they are enthusiastic about the program. The
user centred interactive pattern mining approach combining the strengths of various algorithms
is a valuable tool for general application developers. Using the tool they gained valuable insight
into the actual usage as performed by the real-world users. This is supported by the fact that
they have already acted on information obtained with the program: the layout of a page in
TeleDIA was adjusted. This was done because the patterns showed that the order of how this
page was filled in was not in line with the location of the fields and buttons, resulting in users
having to scroll down and up multiple times.

The synthetic experiments show that the implemented algorithms are able to recover all
patterns in the database, patterns with a large variety in characteristics. Frequent patterns still
seem to be the most complete, however overzealous at times. Summarising patterns returned
a set that was not only smaller, the set also described the fabricated database more exactly as
it was less influenced by noise. Furthermore the summarising patterns were perceived by the
key users as a concise representation of the user actions stored in the analysed log files. The
algorithms together cover all of the database well.

Not only were all patterns in the trace files recovered, we also achieved creating an application
that was usable by novices in the field of pattern mining. Using both reasoning and an automated
heuristic to supply various parameters made the algorithms accessible. The interactive nature
of the application provided the user with an intuitive way to filter the enormous sets of patterns
and focus on specific areas. This is important as finding all patterns is not an end-goal, with
the right parameters one can always construct an algorithm finding these exact patterns. What
the user really requires is relevant patterns, a subjective measure that changes over time. The
questionnaire showed that the program achieves this goal.

Supplying more than just patterns was key in the application. Simple successors and prede-
cessors and more advanced sequence alignment algorithms both helped the user enormously to
explorer the search space.

Another aspect of understanding usage is getting a grasp on what use cases are performed
by a single user in a session. By performing another mining run on the mined patterns we are
able to uncover correlations between the patterns themselves.

Our main research question: How can valuable insight into application usage be provided
by modelling usage patterns in application traces?, is answered by the resulting program. In
this research we identified all the patterns in the log file, presented them to the user in an
interactive application and, according to the users, created valuable insights. The unique way of
making pattern mining interactive was received well and is intuitive enough for users without any
experience in the field of pattern mining. The only goal that is partly reached is parameterless
mining, while we do supply all parameters it is likely that this will not work in all situations. To
truly reach parameterless mining more work is required.

Next to answering the main questions the research provides various other insights. First of all
concerning the sensitivity of the frequent patterns. With a minimum support too low it is likely
spurious patterns are picked up in the form of frequent patterns combined with noise. Simply
increasing the minimum support will not suffice, as various other patterns would then also be lost.
Summarising patterns did not have this problem. Secondly, the importance of representation.
It is an area we did not focus on, but one that became more relevant the more crystallized our
ideas became. Users can benefit greatly from visual cues and comprehend information faster
when properly displayed. With small adjustments like shortening names and adding redundant
percentage displays the key users became a lot more self reliant.

As a final note the users showed a great interest in general, gaining more insight into the
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actions of TeleDIA users proved to be valuable. Both by word of mouth and after attending a
demonstration various other application developers inquired how the mining application can be
adjusted for their log files, indicating that it is indeed a widespread problem.

8.1 Future work

While we were able to take important steps the main problem still persists. Filtering what is
relevant from a result-set is hard. Further directions of research should focus on including pre-
processing in the interactive process, to better capture what the specific user is interested in.
For our application simply filtering the more technical and irrelevant actions could be a large
improvement. This does however require manual intervention and, due to the knowledge required
to decide if an action is irrelevant, is error prone. Another problem that can arise is that which
is irrelevant now might become relevant later.

Furthermore, performance became an issue. This was solved for our case by simply running
the expensive mining run once and storing the patterns on disk. When the application is closed
and launched again it suffices to just load the patterns from file. But in this case changing the
parameters becomes problematic, as in that case computations have to be done again. Smarter
representations of the database, allowing quick filtering before running the algorithms, can be
the dramatic improvement we require. For example; a structure where every represented node
contains a pointer to all traces in the database was a considered improvement.

An obvious improvement could be the inclusion of more algorithms and more measures.
For example one could add more fuzzy mining algorithms, that can work on a less exact log,
if required. The extra algorithms can also consider extra meta-data, for example as multi-
dimensional pattern mining, or as added constraints during the process.

Another direction further research can take is to uncover differences between log files. In our
case we could load log files from different application instances and run algorithms mining the
differences between the files.

Related to this is the real time adding of log-entries. This introduces all kinds of new problems,
most importantly: how long is a pattern relevant?. In our current approach we implicitly assume
the user loading the log file selects a relevant timespan.

Finally we suspect a lot can be gained by focussing more on the representation of the results.
Not only the way the data is displayed, but also how the user can interact with it can be expanded
to make it easier for a user to extract the required information. This is supported by the results of
our questionnaire. Various other visual cues should be tested, both for displaying and interacting
with the data.

8.2 Alternative methods

The chosen method of solving the problem is not the only possible approach. In this section
alternative methods will be discussed, with their advantages and disadvantages, and why they
were not selected. We start with discussing process mining in Section 8.2.1. In Section 8.2.2
we describe a classic approach which was initially attempted, and while the approach was not
sufficient it inspired the final solution. In Section 8.2.3 multidimensional mining is discussed,
which turned out to be a future direction.

8.2.1 Process mining

As mentioned in the related work Section 2.4 the research in this thesis has similarities with
process mining. Process mining is, as the name suggested, data mining applied to processes.
Usually this is done on bigger, real world, processes. For example, a whole chain from product
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development to distribution can be modelled, exposing at various levels the underlying processes.
This model can then be used to identify bottlenecks and extract other kinds of valuable infor-
mation. Process mining can range from information on an organisational level to, at the other
end of the spectrum, a single users’ workflow. Most of the process mining techniques are able to
handle logs of human action, which is often more varied and ambiguous.

Figure 26: A screenshot of ProM tools

A popular and open source process mining tool is the ProM framework5 shown in Figure 26.6

This general purpose framework supplies a varied set of process mining tools and algorithms. At
first sight this framework seems to support a lot of mining options suitable for our application.
The biggest problem with this application is that it requires quite some knowledge from the user.
It would be possible to do an analysis of current log files with the application, but the developers
would not be able to repeat this in the future. They would require training, and be able to
at least identify the relevant options from the enormous amount of options ProM supplies. For
example, the software supports showing social relations between various users in the process, but
that is something that is not supported by our dataset.

A problem that all process mining tools handle is that there is no formal description of the
process available. For us however this is not the case. We have an application that logs factual
data. The fuzzy or heuristic methods of calculating the underlying process are not relevant for
our case.

Process mining is a powerful method that has proven itself for business. However, the plethora
of cases it can handle adds unnecessary complexity for our goal. This is partly due to the fact that
process mining originates from business intelligence, and therefore has a different focus. We aim
to create a more simple tool for application developers and product owners, which only provides
the information they require. Note that it is within the realm of possibilities to transform the
implemented algorithms to be usable with ProM, as it they are both written in Java.

5http://www.promtools.org/doku.php
6Screenshot source: http://www.promtools.org/doku.php?id=gettingstarted:prom6ui
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8.2.2 Initial tool

Ideally a user just runs a program and is presented with the information he wants, without any
further interaction. This thought triggered the development of the first prototype. The datasets
were analysed and various algorithms were tested. With the help of key users the most relevant
results were identified. An application was created that ran the algorithms against a log file,
computing these relevant results, and listed the found patterns. Listed both as a simple list and
a graphical network. An example is shown in Figure 27.

Figure 27: A screenshot of the first prototype

The prototype provided the key users with initial valuable insight about how the application
is being used. However, it also created more questions: why wasn’t a certain pattern included?
How often do they deviate from a path? How long does the whole process take? The main
problem was that the results were static. Iteratively adjusting the parameters solved part of
this problem, showing some alternates, but this became too intensive and was a hit and miss
process. It also required intimate knowledge of the algorithms and how the parameters influence
the outcome, knowledge the users do not have.

The biggest problem turned out to be the initial wish, a static overview of the log. Once
the user was aware of a pattern he did not wish to see this any more, and wanted to focus on a
different part of the log file. A clustering algorithm was implemented to group relevant patterns
together, but this was merely a symptom fix and did not solve the underlying problem.

While the first approach allowed for initial insight, it did not give the user the control he
needed. As mentioned in related work Section 2, it is hard to define interesting patterns a-priori.
One possible solution to filter the interesting patterns is to include the knowledge of the user.
Therefore the initial program was abandoned and the final approach was taken, where the latter
is especially superior to the initial approach on the level of interaction.

8.2.3 Multidimensional

Instead of an interactive approach to get more relevant results we could also attempt to use more
data. The log files contain more information than we currently use, and possibly information
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can be added in the future. Including or identifying additional information specific for our cause
could make it possible to determine what pattern is interesting and what is not.

One example could be to log what kind of user is logged in, at what location and possible
how long he has been using the application. Incorporating this information into the mining
process can create natural groups of patterns specific to use cases. This can, for example, surface
patterns taken by administrators, which do happen very infrequently in the whole dataset, but
are suspected to be inefficient. It could also show, of all users with a acquisition role who perform
similar patterns, differences between locations. Possibly this would automatically pinpoint users
that require extra training.

The biggest drawback of this approach is that first the extra information has to be identified.
For this an initial understanding of the domain and application is required. While we speculate
a few use cases in the previous paragraph, they might not actually be relevant. Combined with
the fact that the data was not available yet let us to our chosen approach. With the knowl-
edge gathered using this research it might be possible to identify the relevant extra parameters,
and expand the application to include this multi-dimensional information. This could be an
interesting direction for future work.
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A Example log line

04−06−2015 09 : 42 : 04 INFO [ ] − RequestLogger − startTime
=”2015−06−04 07 : 42 : 04 , 124” , durat ion =10, u r l=”http :// t e l e d i a .
voorbee ld . n l / wicket /page ?9−1. IBehav io rL i s t ene r .0− a c q u i s i t i e P a n e l−
acqui s i t i eForm−studieGes laagdButton& =1433403724105” , event={
handler=Li s t ene r In te r f aceReques tHand l e r , data={pageClass=nl .
t op i cu s zo rg . te l eDIS . web . a c q u i s i t i e . a c q u i s i t i e w e r k l i j s t .
Acqui s i t i ePage , pageId =9, pageParameters ={} , renderCount =1,
componentClass=nl . t op i cu s zo rg . te l eDIS . web . a c q u i s i t i e .
a c q u i s i t i e w e r k l i j s t . Regul ie rAcquis i t i eForm$2 , componentPath=
a c q u i s i t i e P a n e l : a cqu i s i t i eForm : studieGeslaagdButton , behaviorIndex
=0, behav iorClas s=nl . t op i cu s zo rg . te l eDIS . web . a c q u i s i t i e .
a c q u i s i t i e w e r k l i j s t . Regul ie rAcquis i t i eForm$3 , inter faceName=
IBehav io rL i s t ener , inter faceMethod=onRequest }} , r e sponse={handler=
AjaxRequestHandler , data={pageClass=nl . t op i cu s zo rg . te l eDIS . web .
a c q u i s i t i e . a c q u i s i t i e w e r k l i j s t . Acqui s i t i ePage , pageId =9,
pageParameters ={} , renderCount =1}} , s e s s i o n i d=”
j r7ht fdh79dk1szx9z7h1 lha l ” , s e s s i o n s i z e =−1, s e s s i o n s t a r t =”2015−06−04

06 : 12 : 37 , 779” , r e q u e s t s =159 , t o t a l t i m e =12718 , a c t i v e r e q u e s t s =0,
maxmem=1030M, t o t a l =1030M, used=302M

49



B Varying gaps

(a) Frequent patterns (b) Summarising patterns (c) Combined

Figure 28: Varying gaps of injected patterns on dataset A’

C Below minimum support

(a) injected length 3 (b) injected length 10

(c) injected length 18 (d) injected length 28

Figure 29: Varying support below minimum support on dataset A’, frequent patterns
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(a) injected length 3 (b) injected length 10

(c) injected length 18 (d) injected length 28

Figure 30: Varying support below minimum support on dataset B’, frequent patterns

D Gaps: higher support

(a) injected support 30 (b) injected support 60 (c) injected support 120

Figure 31: Varying gaps on dataset A’, length 28, summarising patterns

(a) injected support 30 (b) injected support 60 (c) injected support 120

Figure 32: Varying gaps on dataset A’, length 28, frequent patterns
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(a) injected support 30 (b) injected support 60 (c) injected support 120

Figure 33: Varying gaps on dataset B’, length 28, frequent patterns

E Gaps: shorter sequences

(a) injected support 10 (b) injected support 30 (c) injected support 60

Figure 34: Varying gaps on dataset A’, length 5, frequent patterns

(a) injected support 10 (b) injected support 30 (c) injected support 60

Figure 35: Varying gaps on dataset B’, length 5, frequent patterns
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Quality of recommended patterns:

1. The patterns recommended to me matched my interests

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

2. The patterns recommended to me are novel and interesting

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

3. The patterns recommended to me are diverse

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

4. The patterns recommended to me are similar to each other

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Interaction adequacy

5. The program explains why the patterns are recommended to me

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Interface adequacy

6. The layout of the program interface is attractive and adequate

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Perceived ease of use

7. Finding a sequence to analyse with the help of the program is easy

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Perceived usefulness

8. The recommended patterns effectively helped me find the ideal sequence

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

9. I feel supported to find what I like with the help of the program

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Attitudes

10. Overall, I am satisfied with the program

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

11. I am convinced of the patterns recommended to me

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

12. I am confident I will like the patterns recommended to me

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Behavioural intentions

13. I will use this program again

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

14. I will tell my colleagues about this program

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

15. I will act on the sequences recommended, given the opportunity

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

1

F Questionnaire
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Introduction

This document is intended for the users of the application Log Analyser (Logan).
It will describe how to use the application. For the inner workings and further
development please see the Design document.

The application Logan is tailored to provide insight into usage patterns of
an application by analysing a log file. While other types of sequential logs may
be possible to be loaded and analysed, these will not be explicitly supported.

A pattern is a sequence of events. An event may be a click of a user, other
user input or the (automatic) loading of a page. Both are included, one can
argue that loading of a page is usually triggered by user action. However, what
page is loaded can differ, for example in the case of incorrect form input.

The pattern will be visualised as a directed graph. A directed graph is a set
of nodes, which in our case correspond to events, connected by directed edges. A
directed edge indicates a transition from one node to the other, in other words;
indicates that an event follows the other. The edges are visualised using arrows.

The graph is annotated by various measures. These measures concern ab-
solute and relative frequency of the patterns, nodes and edges as they occur in
the log file.

The algorithms to automatically mine the data vary from traditional se-
quence mining algorithms and minimum description length based mining meth-
ods to sequence alignment methods. The algorithms extract patterns that can
help the user with understanding the program usage. Patterns are mined with
certain characteristics, for example with high frequency. The mined patterns
can then be used to interactively expand the graph.

In Section 1 the various UI elements will be explained. The various ways of
interacting with the application will be described in Section 2. Finally Section
3 will describe the algorithms, what kind of patterns they mine and how their
parameters can be configured.

2
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1 Interface

When the application is started the user is immediately presented with the main
interface, which can be seen in Screenshot 1.

Image 1: The main interface

In the main interface we identify two main parts: The graph area and the
pattern tables. The graph area, the top half of the program, is where interaction
is possible and patterns can be manipulated. The pattern tables, in the bottom
half, house patterns suggestions to grow the graph. It has seven different tabs,
each with a different table.

At the very top we have a toolbar. From the toolbar the user can load a log
file, add manual items, undo/redo and update the parameters. How this can be
done will be explained in Section 2.

1.1 Graph area

Image 2: Log statis-
tics

When the user loads a file the Session, Clicks and Unique
clicks fields in the top right will be populated. The session
value shows the number of sessions present in the loaded
log file. Usually a session is created every time a user logs
into an application (TeleDIA), and thus links the actions
taken sequentially by a user. The clicks value indicates
the total sum of events in our database, taken by all users
combined. The unique clicks indicate how many distinct
events occur in our log file. This can be translated to
buttons, pages etc.
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1.2 Pattern information

Once the user adds a few nodes and a pattern occurs, the necessary steps will be
explained in the next section, more information will be visible. The application
will then look similar to Screenshot 3.

Image 3: The main interface with some patterns

Image 4: Node statistics

Next to a node two values can be seen, both
are percentages. See Screenshot 4. The percent-
age on the left indicates how many of all pre-
decessors, constrained by the current graph, are
present in the created graph. Being constrained
by the graph means that only predecessors are
shown which occur before the current node and
all added successors in the graph. The percent-

age on the right indicates how many of all successors are present in the graph,
constrained by the nodes its predecessors. More intuitively: The percentage
indicates how complete the current representation is. A low percentage means
that common successors/predecessors for the current pattern are left out.

Image 5: Edge
statistics

An edge is annotated with three values, see Screenshot 5.
All these values are constrained by the graph. The top value is
absolute, how many times this edge occurs in the data (in the
sequence of the created pattern). The second value indicates
the percentage of times this edges is chosen compared to all
other possible edges (again constrained by the graph) from the
origin its point of view. The second value indicates this for
the destination its point of view. Note that the sum of all
outgoing edges equals the percentage described in the previous
paragraph, on the right of the node. The sum of all incoming
edges equals the value on the left.
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1.3 Pattern tables

In large graphs the patterns accounting for the values can become overwhelming,
and for this the Created patterns tab was introduced. It is located in the pattern
table area of the application. The tab is shown in Screenshot 6.

Image 6: The created patterns tab

In the created pattern table we see the patterns created. A pattern consists
of all consecutive steps that can be taken in the graph while traversing connected
edges. These patterns start in the nodes without parents, and end in the nodes
without children. Behind every nodename we see a time in parentheses. This is
the relative time for the pattern in minutes followed by seconds. The first node
always occurs at time 0. For the other nodes the time is the average time that
has passed between clicking the previous node and the node itself, computed
from all occurrences of the pattern in the database. The value in the last column
is the frequency, how many times the exact pattern occurs in the loaded log. If
the pattern does not occur its frequency will be 0, and the time will show NaN
(Not a Number).
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2 Interaction

Logan provides numerous ways to interact with a log file. This section will
describe the various ways in a somewhat chronological order. It is expected
that the user has some preference and will deviate from the order shown here.

2.1 Loading a log file

To load a log file, chose File and select Load. This brings up a dialog with
two options. The first is to load a TeleDIA log file, and the second a general
sequence file. The TeleDIA file can be an unadjusted log file directly from the
application. The sequence file is as defined for the HirateYamana algorithm
of the SPMF library [1]. Note that this is a file with just numbers. To link
the numbers to a name a second file should be provide with comma separated
number-name pairs. In the case of a sequence file this second file is required.

Image 7: The load log file dialog

After the logs are loaded the application will start the mining of patterns.
On larger log files this can take quite some time, and the application will be
unresponsive while the mining is performed. Once the mining is done the pat-
terns will be saved as logname.sqs and logname.frequent, where logname is the
name of the chosen log. The next time the log file is loaded the patterns will be
taken from these files and will be done in seconds.

2.2 Adding nodes

Image 8: The add node dialog
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To start analysis the user can opt to add a single node. To do this the user
selects Edit in the toolbar and click Add. This will bring up a window with all
unique actions in the database. Every event has a listed frequency, how many
times it occurs in the database (Figure 8). The list can be filtered by typing
in the text field. A node can be added either by selecting it and clicking add,
double clicking an action name, or typing its exact name and clicking add.

2.3 Interacting with nodes and edges

Once a node is added to the graph only its short name is visible. To view the
full name simply hover the mouse anywhere on the node, the name will appear
as a tooltip.

Added nodes can be moved around, this is done by a click on the node,
holding the mouse button and dragging. Releasing the mouse drops it at the
current position. Instead of moving the node the whole graph can also be
moved. This is achieved in a similar fashion, by clicking anywhere but a node
and dragging the mouse.

Image 9: Node
right-click

The Reset layout button on the top right (shown in
Screenshot 2) does not reset individual node positions, but
moves the whole graph to the top left of the screen.

A right click on a node (Screenshot 9) brings up two
options: Delete node, which simply deletes the nodes and
all edges connected to it, and Add edge. To create a new
edge click Add edge and then select the destination node by
left clicking on it. The edge will always start at the node
from which the add edge action was initiated.

An edge can be deleted by right clicking on it.

2.4 Selecting nodes

To filter the various tables (and get similar- and associated pattern suggestion)
nodes can be selected. This is done by left clicking the node. The node will turn
blue when selected and added to the list of nodes in the bottom right. Multiple
nodes can be selected, and they will show up in graph order on the bottom
right. Graph order is the order obtained by following the edges in the direction
of the arrows. Selecting nodes for which no order is available, no forward edges
from one to the other, is undefined. However, the order shown on the bottom
right is the order used throughout the rest of the program.

To select all nodes double-click anywhere but on the nodes and edges. To
deselect all nodes a triple click is implemented.

2.5 Adding predecessors and successors

When a single node is selected the two tabs in the graph area called predecessors
and successors list the predecessors and successors of this node. Note that these
are only non-empty when a single node is selected. They simply show all nodes
that either occur before or after the selected node. The frequency is the absolute
number of times this happens in the dataset. These are not filtered based on
what is shown in the graph.
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2.6 Undoing actions

Image 10: Edit menu

All actions can be undone and afterwards re-
done as in most common computer software.
Both the Undo and Redo items are avail-
able under the edit menu in the toolbar. The
shortcuts CTRL+Z (undo) and CTRL+Y
(redo) are also implemented. From the tool-
bar the user can also choose Edit and then
Undo all to undo all actions and end up with
a fresh start.

2.7 Computed patterns

Next we discuss the most powerful feature, adding computed patterns. This
is done from the pattern table area. After selecting a tab with suggestions a
pattern can be added by clicking on the plus sign (+) in front of it, or double
clicking on the chosen pattern in the events column. The patterns can be
sorted on frequency or event name, descending and ascending, by clicking on
the respective header.

The computation of similar patterns can take a few seconds on a large
dataset, so this computation is only performed when the tab is opened. To
quickly select a few nodes without having to wait on the intermediate similarity
computations you can select any other tab.

Finally the algorithm parameters can be edited. There are three groups of
parameters, for the Frequent patterns, Similar patterns and associated patterns.
The exact meaning of the parameters is explained in the next section. The
default values should work well. The format and sign of the parameters should
stay the same, i.e. no fractions where whole numbers are required. The program
will provide an error if a mistake is made providing new parameters. When the
parameters are adjusted the patterns will be recomputed, and the saved pattern
file (see Section 2.1) will be updated.

Image 11: The add node dialog
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3 Algorithms

The pattern area with the various tabs houses the pattern suggestions. We
discuss them from left to right.

3.1 Descriptive patterns

First we have the so called descriptive patterns. The general idea behind the
patterns is that they, as a group, describe the whole database well. A way to
imagine this is that each pattern found is replaced in the database with a unique
number, and in this the size of the database is reduced. The patterns are chosen
to create the smallest database possible. Usually this results in patterns that
are either long or frequent, preferably a combination of the two. The algorithm
has no parameters that can be configured. The frequency column shows how
often they exactly occur, without gaps, in the database, multiple occurrences in
a single session are counted.

3.2 Frequent patterns

The second tab houses the frequent patterns. These patterns are the sequences
that happen most often in the database. They are counted at most once per
session. If a sequence is frequent above the minimum support threshold it is
included in this tab. The frequency column shows the number of session this
sequence occurs in, possibly with gaps.

The algorithm has six parameters. First the previously mentioned minimum
support. This is computed using a heuristic based on the parameterless run of
the previously described descriptive pattern algorithm. Decreasing this will
show more patterns, but can also drastically increase runtime. The minimum-
and maximum interval deal with the time between two consecutive actions.
Default they are at 1, meaning no gaps are allowed. Increasing the minimum
will force gaps between every action, increasing the maximum makes them op-
tional. The minimum- and maximum whole interval deal with the complete
length of the pattern. Increasing the minimum will hide short patterns, while
decreasing the maximum will hide long patterns. Default they are set at 2 re-
spectively 100. The checkbox only closed patterns will hide redundant patterns,
when checked. Redundant patterns are strict subpatterns of other patterns with
equal frequency. If the frequency is higher they will not be counted redundant.
The last parameter, backscan pruning is an optimisation which should be left
checked.

3.3 Associated patterns

The associated patterns is empty by default, until nodes are selected. The tab
will show patterns that occur in the same sessions as the selected pattern occur.
These patterns are any of the patterns found in the previously described frequent
pattern algorithm. The two parameters here are the support and confidence.
The support in this case is similar to the other algorithms, with the exception
that the support is calculated for the combination of patterns, i.e. the number
of times the patterns occur together. The confidence is a measure capturing the
relation between how many times this combination occurs as opposed to how
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many times the patterns occur by themselves. For example, a pattern which
occurs in every session will likely have a high support with various patterns, but
all of them at a low confidence, as most of the time the pattern occurs outside
of the combination. Note that such a pattern can still be included in the results,
because looking from the the view of the other pattern the confidence might be
high enough. Both confidence and support are parameters that can be changed.
A confidence of 0 will list all found combinations.

3.4 Similar patterns

The similar patterns is also empty at the start. Whenever a few nodes are
selected it will test the selected pattern for similar patterns in the database.
This is done by exactly matching two events, and possibly more in between.
Mismatches and gaps are penalized. The penalties can be configured. Next to
the penalties a match score can be supplied, and a minimal match score for a
pattern to be deemed similar. The default minimal score parameter (8) requires
at least two matches (match score 4), more if gaps (−1) or mismatches (−2) are
in between.

The support shown in this table is the number of times the suggested similar
pattern occurs in the database. In practice similar patterns seems most effective
when selecting the first and last node of the pattern under interest, and a few
nodes in between.

4 Notes and issues

4.1 Undocumented features

These are tricks that work in the current application but may break in the
future. Usually to work around an issue.

• When changing parameters −0 is seen as valid negative number. Useful
when you do not want to include a mismatch or gap penalty for the similar
patterns algorithm

• Creating a loop, which would cause a crash, or other erroneous actions
(for example adding an already existing edge) are prevented, however no
real feedback is provided (only in the log file).

• In the graph view the pattern counts are non-overlapping, while the suc-
cessors and predecessors allow overlap. So A-A-A in the database for the
pattern A-A is count 1 in graphview, count 2 in successors-predecessors
for A.

4.2 Bugs

• Immediately after loading a file the algorithms are run (if no pattern files
are available). This will cause the program to be unresponsive, and can
take a long time. No feedback is provided in the application, but it is
shown in the log. (Note: in the case of big files this time grows rapidly,
if it takes longer then an hour its unlikely it’ll complete in time. In this
case split the log).
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• Loading another file without closing the application adds double undo/redo
listeners (so double undo red actions).

• When a pattern is included twice in the graph the frequency percentages
can be counted double (and go beyond 100%). If percentages seem odd
reduce the graph complexity.

• Loading a sequence file instead of a log file disables the time statistics in
the created pattern view, they will always be 0:00.

• Loading a Logan unsupported sequence file (but supported in the SPMF
library) can parse correctly but cause a crash. This definitely occurs when
a SPMF file with time stamps is loaded.

• Clicking in an empty table row causes an error (does not crash the pro-
gram)

• Previously placed nodes with coordinates of 0,0 (default) might jump in
some cases, because of autoplacement, when children/parents are added.
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