
Self-Improving Sparse Matrix
Partitioning and Bulk-Synchronous

Pseudo-Streaming

MSc Thesis

Jan-Willem Buurlage

Scientific Computing Group
Mathematical Institute

Utrecht University

supervised by
Prof. Rob Bisseling

February 23, 2016

C O N T E N T S

i sparse matrix partitioning 9

1 solving systems of linear equations 11

1.1 Optimizing linear solvers 11

1.2 Example: Computed Tomography 12

1.3 Example: Google’s PageRank Algorithm 13

2 operations with sparse matrices 15

2.1 Parallel computing 15

2.1.1 The BSP model 15

2.2 Parallel Sparse Matrix Vector multiplication 18

2.3 Predicting the performance of parallel SpMV 21

2.3.1 Sparse matrix distributions 22

2.3.2 Quality of a distribution 22

2.4 Summary 24

3 partitioning techniques for sparse matrices 25

3.1 Theory and notions 25

3.1.1 Partitioning a graph 26

3.1.2 Modeling a sparse matrix as a (hyper)graph 29

3.1.3 k-way matrix partitionings 34

3.1.4 Vector partitioning 35

3.2 Methods 36

3.2.1 Kernighan-Lin 36

3.2.2 Multi-Level methods 39

3.2.3 Medium-grain method 40

3.2.4 PuLP 41

3.2.5 Hypergraph partitioning software 43

4 self-improving sparse matrix partitionings 45

4.1 A detailed look at the PuLP algorithm 45

4.1.1 Label propagation 45

4.2 Graph Partitioning using Label Propagation 47

4.3 Label Propagation based Partitioning for Hypergraphs 51

4.3.1 Indirect methods, graph representations 52

4.3.2 Direct methods 53

4.4 Parallelizing (Hyper-)PuLP 59

4.4.1 Label propagation with distributed memory 59

4.4.2 Migration costs 60

4.5 Application to SpMV partitioning 61

4.6 Auto-balancing partitioning and application 61

3

4 Contents

4.7 Zee 64

4.8 Results 64

4.9 Summary 69

4.10 Related work 73

4.11 Future work 73

ii matrix algorithms for many-core accelerators 75

5 bulk synchronous streaming and algorithms 77

5.1 Parallella and Epiphany BSP 77

5.1.1 Epiphany BSP 79

5.2 Streaming extension to the BSP model 80

5.2.1 BSP accelerators and hypersteps 81

5.3 Examples of Bulk-synchronous Streaming algorithms 83

5.3.1 Inner-product 83

5.3.2 Multi-level Cannon’s algorithm 85

5.3.3 Streaming implementation of SpMV 89

5.4 The Epiphany processor as a BSP accelerator 94

5.5 Summary 96

5.6 Future work 97

5.7 Acknowledgments 97

iii appendix 99

a krylov subspace methods 101

a.1 Choosing optimal vectors from the subspace 103

a.2 GMRES 104

a.2.1 Arnoldi process 104

a.2.2 Least-squares approach 105

a.2.3 Givens rotations 106

a.2.4 QR decomposition 106

a.2.5 The GMRES algorithm 107

a.3 Conjugate Gradient 107

b zee ; a distributed matrix library and partitioning frame-
work 111

b.1 Introduction 111

b.2 Features 112

b.2.1 Linear algebra; types and operations 112

b.2.2 Partitioning 113

b.2.3 Utilities 113

b.3 Overview of internal structure 114

b.4 Examples 118

b.5 Extending Zee 121

P R E FA C E

This thesis is the result of work done at Utrecht University during the better
part of one year in order to obtain a MSc degree in Mathematical Sciences,
or more specifically in Scientific Computing. It describes a new method to
minimize the runtime of parallel iterative solvers, and a generalization of
the BSP model to a specific type of chip called a many-core coprocessor.

I would like to thank my supervisor prof. dr. Rob Bisseling for all his
effort and support, and in particular for the enjoyable discussions we have
had about this project. I would also like to thank my fellow students, in
particular Abe, Erik, Peter, Tom and Lois, for all the equally enjoyable coffee
breaks.

5

I N T R O D U C T I O N

One of the backbone operations in numerical mathematics is multiplying
a sparse matrix with a vector. In computations involving very large lin-
ear systems, the sparse matrix-vector multiplication (SpMV) can be sped
up tremendously by performing it in parallel. Effective parallelization of a
SpMV requires an efficient distribution of the matrix A over processing ele-
ments. To this end the matrix A is partitioned. Common techniques for this
partitioning rely on the so-called multi-level method.

For many applications the matrix A is reused a number of times, for ex-
ample in an iterative solver. Current partitioners compute an efficient distri-
bution of the matrix completely before it is used in an application. In partic-
ular, a partitioning is commonly computed before the first SpMV operation
involving A is performed, and this partitioning is reused indefinitely. For
some applications this may not be efficient, as the computational time spent
partitioning A should always be less than the time saved by the paralleliza-
tion of the SpMVs that rely on this partitioning. A more flexible approach
would be to instead look at iterative partitioning methods, so that partition-
ings are refined over many iterations. This would allow for an efficient
partitioning method for matrices that are used an indeterminate number of
times.

In this research we will explore self-improving partitioning. We will modify
current techniques to allow for a dynamic partitioning that self-balances the
computational effort with the gain in efficiency by an improved partitioning.
The major goal is to develop a flexible, iterative partitioning technique.

This thesis is organized as follows. In Chapter 1 we discuss numerical
methods to solve linear systems, and some mathematical background of
these solvers is given in Appendix A. In Chapter 2 we will discuss how to par-
allelize the SpMV operation, and in Chapter 3 and Chapter 4 we will discuss
how to optimize the resulting algorithm by finding a good data distribution.

In the second part, consisting only of Chapter 5, we will discuss an ex-
tension of the BSP model to many-core coprocessors. This chapter can in
principle be read separately from the other chapters, but if the reader is
unfamiliar with the BSP model we suggest to first study Chapter 2.

As part of this research we have developed a sparse matrix partitioning
framework called Zee. In Appendix B we provide details on how to use this
framework, discuss its inner workings, and see how it compares to other
available partitioning software.

7

Part I

S PA R S E M AT R I X PA RT I T I O N I N G

1

S O LV I N G S Y S T E M S O F L I N E A R E Q U AT I O N S

Solving a system of linear equations plays an important role in many fields
of science. Mathematically these systems can be formulated as solving the
system Ax = b for a certain matrix A and output vector b. For many applica-
tions the system, and thus the corresponding matrix, is sparse. For example
this is commonly the case for systems deriving from the discretization of dif-
ferential equations. In the upcoming section we will give a short overview
of common methods and also give a number of examples of problem areas
which this research targets. The methods we discuss will serve as a motiva-
tion for our treatment of the optimization of parallel algorithms for sparse
matrix vector (SpMV) multiplication, since this operation dominates the cost
of approximating the solution of linear systems.

1.1 optimizing linear solvers

An important class of linear solvers are Krylov subspace methods. We intro-
duce these methods, as well as two specific algorithms that are included in
this class in Appendix A. For Krylov subspace methods such as CG and GM-
RES, we see that sparse matrix-vector multiplication is a crucial component
of the algorithm. Indeed, the three important kernels of iterative methods
are vector updates, inner products, and matrix-vector products, see also the dis-
cussion on page 181 of [22]. If we manage to keep the dimension of the
Krylov subspace low, then the matrix-vector product will dominate the total
cost of the algorithms. Optimizing the running time of these solvers then
amounts to optimizing the running time of these products.

Much can then be gained by speeding up this operation, or in particular
by parallelizing this operation. Furthermore, we note that in these algo-
rithms the same matrix A is multiplied with many different vectors. The
number of times the matrix A is used in this manner before convergence
is hard to predict. This serves as the main motivation of our research. By
spending a fixed amount of time preprocessing the matrix A, we can speed
up the SpMV operations. Optimizing the time spent between speeding up
the operations and actually performing them requires careful thought and

11

12 solving systems of linear equations

balance in the algorithm. Here we focus on iterative partitioning methods
that accommodate this requirement.

Of course there are many other (iterative) linear solvers, e.g. those that ap-
ply to non-invertible and rectangular matrices. Furthermore, there are many
variations and improvements of CG and GMRES that make the algorithms
faster, more stable, or more general. Indeed, the two methods we have de-
scribed only work for square matrices with specific characteristics. To solve
systems with rectangular matrices A we can instead solve the equivalent
system AT A~x = AT~b. CGLS is an example of a method that solves this
equivalent system without actually forming the matrix product. Instead, it
requires two matrix-vector products per iteration, one with A and one with
AT. All of these algorithms have one thing in common: they revolve around
repeated (sparse) matrix vector multiplication, and this algorithm is thus an
important kernel operation in these solvers.

Balancing the cumulative runtime of solvers and optimization techniques

Optimizing operations such as matrix-vector multiplication takes some ini-
tial effort, in order to obtain a long term gain in the running speed of the
solver. The main question we treat in this part of the thesis is: “How can we
balance the effort that is put into the optimization of the solver, with the ac-
tual gain these optimizations realize?”. After introducing these optimization
techniques themselves, we will discuss a possible answer to this question of
balance in Chapter 4.

1.2 example : computed tomography

As a real-world example of such a sparse linear system of equations, we
consider Computerized Discrete Tomography. This technique is used in CT-
scans to make detailed three-dimensional images of for example the human
brain. In our (somewhat simplified) discussion here, we consider an object
in some pre-determined region of space, and a number of rays that are sent
through this region. For a more detailed exposition see e.g. [32].

We discretize the region into a w× l× h grid of voxels, the three-dimensional
equivalent of pixels. Mathematically this space can be viewed as X =

Zw × Zl × Zh. A total number of m rays are sent through this space ei-
ther parallel to each other (parallel beam tomography), or originating from
a single point source (fan beam tomography). The intensity of the rays is
measured on the other side of the space using a detector. This results in
an m-dimensional vector~b, with one component for each ray, that stores the
so-called weighted line sum of the rays through the space. This vector ~b is
called the projection vector.

1.3 example : google’s pagerank algorithm 13

O
Th

w l

Figure 1.1.: Typical tomography setup. A ray from the origin (O) to a target
(T) is sent through a 3D grid of voxels of size w × l × h. Be-
tween entering (marked with a circle) and leaving the grid the
ray passses through a number of voxels.

To reconstruct the object within the space we have to solve a system of
equations. Indeed, a ray passes through a fixed number of voxels, and if
this voxel contains material that reduces the intensity of the ray, then the
resulting component in~b should reflect this. We can model this as a matrix
A of size m×whl, called the projection matrix, where we have a row for each
ray, and a non-zero for each voxel that a ray passes through. We find the
problem of the type A~x = ~b, where ~x is the density profile of the object as
seen by the rays within the space X – which contains exactly the information
we require. See also Figure 1.1 for a schematic depiction of this setup.

Finally we note that this matrix will necessarily be very sparse. If we
consider for example a cubic region of size k× k× k, then any straight line
will go through at most O(k) voxels, which implies that the majority of the
matrix elements will be zero. In applications this matrix is almost never
stored explicitly, but is instead generated on demand [23].

1.3 example : google’s pagerank algorithm

The PageRank algorithm was introduced in 1998 as a way to measure the
interest in webpages [38]. Here we discuss a simplified version of this idea.
This will serve as a different kind of example that motivates the techniques
we develop, because it does not take the form of a linear system of equa-
tions directly. It does however, revolve around the repeated application of a
matrix-vector multiplication.

14 solving systems of linear equations

We can model the world wide web as a collection of webpages pi which
can reference (or link to) other webpages. The collection of all webpages can
be considered as a vector ~p. We define the matrix A with elements aij as:

aij =

{
1 if pj links to pi

0 otherwise.

We can repeatedly apply A to the vector e = (1, 1, 1, . . . , 1)T, i.e. we con-
sider the vectors:

~Pn = Ane.

These vectors can be considered as encoding the importance or popularity
for each webpage. In the first iteration, webpages ~pi that have many in-
coming references, will see their corresponding component (~Pn)i increased
more than webpages with fewer incoming references. In subsequent itera-
tions, pages that were deemed more important than others will count more
strongly towards the importance of websites that they link to compared to
less popular webpages that link to the same pages.

With appropriate modifications such as normalizing after iterations, and
introducing damping terms, we can let this process converge to a unique
vector ~Pn → ~P, the components of which will each encode the PageRank of a
webpage pi.

summary

Solving systems of linear equations has many important applications in sci-
entific computing. Therefore, much can be gained by optimizing the tech-
niques that are used in this process. Instead of finding new methods and
iterative techniques to solve these systems, we can also try to optimize exist-
ing solvers by looking at parallel algorithms. However, efficiently paralleliz-
ing the operations involved is not trivial and it takes some initial investment
before they can be employed. The efficient parallelization of iterative solvers
is exactly the subject of the first part of this thesis.

2
O P E R AT I O N S W I T H S PA R S E M AT R I C E S

In this chapter we will describe some basic operations with sparse matrices,
and introduce some notation which we will use throughout this thesis. A
sparse matrix A ∈ Mm×n is a matrix with a low density. The density of a
matrix is defined as its number of nonzeros divided by its size:

ρ =
nz(A)

mn
,

so that for a sparse matrix we have that ρ � 1. In this work we will focus
primarily on multiplying a sparse matrix with a dense vector, or sparse matrix-
vector multiplication (SpMV for short). The dense in-vector is denoted with
~v ∈ Rn, and the out-vector with ~u ∈ Rm. We are then interested in computing:

~u = A~v, (2.1)

as efficiently as possible. For us, this will mean that we use a parallel algo-
rithm to evaluate Equation 2.1. Before we discuss this algorithm we will first
recall some facts and notions from parallel algorithms.

2.1 parallel computing

Large-scale computations can be sped up greatly by using multiple process-
ing units. Parallel algorithms have been studied and used for many years.
Recent developments in technology have enabled both the industry as well
as the scientific community to more easily scale up simulations, data pro-
cessing etc. by targeting large clusters of computers. These methods are
popularly referred to as Big Data technology, and are gaining widespread
adoption.

2.1.1 The BSP model

A popular class of parallel algorithms are algorithms that are either di-
rectly or indirectly based on the bulk-synchronous paradigm. In the bulk-
synchronous processing (BSP) model, introduced by Valiant in 1990 [47], the
computer is assumed to have a collection of p identical processing units (or

15

16 operations with sparse matrices

processors for short) and a communication network so that these units can
communicate. A BSP algorithm is structured in a number of supersteps.
Each superstep consists of a computation phase and a communication phase. At
the end of each step a barrier synchronization is performed between the co-
operating processing units, so that the next superstep is initiated only after
each unit has finished communication completely.

Each processor runs the same program, but on different data. This is
referred to as SPMD for Single Program Multiple Data. Therefore an impor-
tant aspect of a parallel algorithm is the data distribution. This distribution
needs to be optimized in two different ways. First of all, we want to divide
the complete set of data equally so that each processor roughly performs the
same amount of work; this keeps them from wasteful idling. Secondly, we
want to minimize the amount of communication between processors, since
in realistic systems communication can be very time-consuming.

Example 1 (BSP algorithm for the inner product). As an example of a BSP
algorithm we will compute the inner product between two vectors:

α = ~v · ~w =
n−1

∑
i=0

~vi~wi,

so that it is computed in parallel using the BSP model. First we must decide
how we want to divide the data (i.e. the n components of both vectors) of
the processors. As an example we will distribute them cyclically, so that the
ith component of each vector will be sent to processor s = i mod p.

The algorithm then consists of two supersteps:

1. Each processor s computes the partial sum:

αs = ∑
i

~vi~wi,

where i are the local indices of the vector as seen by the processor, i.e.
the ith element that is stored on processor s. It then sends this partial
sum to processor s = 0.

2. Processor s = 0 then sums over all the received partial sums to obtain
the final value for the dot product:

α = ∑
s

αs.

To predict the gain of using a parallel algorithm, we need specific infor-
mation on the actual hardware on which the program runs. We can however
approximate the total running time of a parallel algorithm by introducing
a number of parameters for an abstract BSP computer. This leads to the so-
called BSP cost model.

2.1 parallel computing 17

Our basic unit of time, as is standard in the field of numerical computing,
is the FLOP for Floating Point OPeration. For an actual system this can
be measured in seconds as the time necessary to carry out a single FLOP.
This is captured in the BSP computing model as a parameter r, the FLOP
rate, which is defined as the number of FLOPs that can be carried out every
second.

Next we want to relate this computation speed to the cost of communica-
tion. We assume that there is a fixed cost of starting up communication and
performing a barrier synchronization. This can be viewed as the latency of
the system, and the number of equivalent FLOPs that could be performed in
this time is called l. Finally we introduce the communication-to-computation
ratio g, which is the number of FLOPs that could be performed while send-
ing a single data word (in this discussion we will assume one floating point
number is one word).

Another important concept in the BSP model is that of an h-relation. The
deciding factor in the running speed of a parallel algorithm is not the total
amount of communication or work done. Indeed, every operation that gets
performed in a sequential algorithm must also be performed in the parallel
version. What is important is the maximum amount of work and/or commu-
nication done by any processor. This motivates the following definition:

Definition 1. An h-relation is a superstep in which each processors sends
and/or receives no more than h data words, and at least one processor sends
and receives h data words. Thus we can write:

h = max
0≤s<p

(max{hs,send, hs,receive}) ,

where hs, send/receive is the number of data words sent and received respec-
tively by a processor s in a given superstep.

We can define a similar quantity for the maximum amount of work done
in a superstep:

Definition 2. We define w as the workload, the maximum number of flops
done by a processor in any given superstep.

The total cost T of the ith superstep can then be written as:

T(i) = wi + ghi + l

For the dot product we see that the running time in terms of flops is 2n
in the sequential algorithm. Ignoring the cost of the initial distribution, and
using the parameters introduced above we can show that in the parallel
version this gets reduced to:

2
⌈

n
p

⌉
+ 2p + pg + 2l.

18 operations with sparse matrices

Depending on the specific system, i.e. values for g, l and p, this can be a
significant speed-up.

For an extensive introduction on the subject of parallel computing, and
the BSP model in particular we refer to [6].

2.2 parallel sparse matrix vector multiplication

In this section we will describe a parallel algorithm to evaluate the right-
hand side of Equation 2.1. We assume that A,~v and ~u are distributed. This
means in particular that each of their nonzero entries are assigned to some
processor. In the next chapter we will focus on developing techniques that
compute and optimize this distribution. We assume we have p processors,
and we capture the distribution using the following assignment maps:

PA : Zm ×Zn → Zp,

P~v : Zn → Zp,

P~u : Zm → Zp.

These maps are completely defined by the data distribution. We can view
PA and P{~u,~v} as sending a pair of indices (i, j) or an index i respectively, to
some processor 0 ≤ s < p. Note that we are only interested in the behaviour
of PA on the subset of (i, j) ∈ Zm ×Zn such that aij 6= 0.

As we will see, the parallel SpMV algorithm consists of 4 phases. Let us
identify these phases by working back from the end result. We want the
correct value of ui to be stored by P~u(i). This means we need to compute the
value:

ui = ∑
j

Aijvj

on this processor. However, for general partitionings not all the entries Aij
and components vj will be local to the processor P~u(i) for all j’s. We therefore
decompose this sum:

ui =
p−1

∑
s=0

(~ui)s,

where (~ui)s is the contribution of processor s to ui. If we define for a set A the
function accumulate(⊕, A) as a1 ⊕ . . . ⊕ an where ai ∈ A, then this partial
sum can be written as:

(~ui)s = accumulate(+, {Aijvj | P(i, j) = s}).

Here again, we note that vj is not necessarily local to s. We solve this by
requesting the assigned processor P~v(j) to send the value to the processor
s. We are now ready to describe the algorithm in detail. We describe it in
SPMD style. In particular, the algorithm is described as it should be executed

2.2 parallel sparse matrix vector multiplication 19

A

~v

n

~u

m Aij

Figure 2.1.: Visualization of (parallel) SpMV. The location of a nonzero el-
ement Aij is shown with a red circle. Vertical and horizontal
communication are shown with a thick black arrow. For every
non-zero element Aij we require the vector component ~vj, which
induces vertical communication, and we contribute to ~ui, induc-
ing horizontal communication.

by an arbitrary processor s. See Figure 2.1 for a schematic depiction of the
communication involved.

Phase I: Vertical communication. First we obtain vj for each nonzero Aij as-
signed to us:

for all j such that PA(i, j) = s for some i do
get vj from P~v(j).

Afterwards we perform a barrier synchronization to ensure that all the
data is available for the next phase. This phase is also called the fan-out
phase.

Phase II: Compute contributions. We then compute the contributions (ui)s on
every processor.

for all i such that PA(i, j) = s for some j do
ui ← 0

for all (i, j) such that PA(i, j) = s do
ui ← ui + Aij~vj

20 operations with sparse matrices

Phase III: Horizontal communication. Next we communicate the contributions
(ui)s to the assigned processor P~u(i).

for all i such that PA(i, j) = s for some j do
send ui to P~u(i)

We again perform a barrier synchronization before proceeding to the
next phase. This is also called the fan-in phase.

Phase IV: Adding partial sums. Finally we compute the components ui:

for all i such that P~u(i) = s do
ui ← 0
for all t such that PA(i, j) = t for some j do

ui ← ui + (ui)t

such that the result ~u has been computed and is available at the pro-
cessors according to the distribution P~u.

We have skipped over specific implementation details here, which can
prove to be hard to do right. Here we list some of the details that we have
assumed or ignored:

• We assume that P~u and P~v is available at each processor. Note that
storing the necessary information for these functions takes O(n) stor-
age, which is something we want to avoid. In general, for parallel
algorithms, we want both computation and communication to scale as
O
(

nk

p

)
for some k, such that the algorithm scales well with the number

of processors.

• Efficient storage is required for the matrix elements, since we want to
exploit the sparsity of the matrix. The most straightforward approach
is to store only the triplets (i, j, aij), but more memory-efficient schemes
have been developed

• We need to relate local indices i used for efficient computation to
global indices i used for communication. Alternatively we need to
relate local indices of processor s to indices of processors t that are the
targets of communication.

• We have to find an efficient distribution PA, P~v, P~u that minimizes the
total communication needed.

2.3 predicting the performance of parallel spmv 21

The first three of these points will not be discussed further in this thesis.
Finding an efficient distribution will be the subject of Chapter 3.

for all j such that PA(i, j) = s for some i do . (I)
get vj from P~v(j).

for all i such that PA(i, j) = s for some j do . (II)
ui ← 0

for all (i, j) such that PA(i, j) = s do
ui ← ui + Aijvj

for all i such that PA(i, j) = s for some j do . (III)
send ui to P~u(i)

for all i such that P~u(i) = s do . (IV)
ui ← 0
for all t such that PA(i, j) = t for some j do

ui ← ui + (ui)t

Algorithm 2.1: A parallel algorithm that computes the SpMV between a ma-
trix A and a vector ~v resulting in a vector ~u. These objects are
assumed to be distributed according to the assignment maps
P{A,~u,~v}.

For reference we give the full SpMV algorithm that we developed in this
chapter in Algorithm 2.1.

2.3 predicting the performance of parallel spmv

In this section we analyze the (expected) performance of the algorithm de-
scribed in Algorithm 2.1. The running time of the SpMV kernel is highly de-
pendent on the distribution P = P{A,~u,~v}, because this directly influences the
number of floating-point numbers that have to be communicated between
processors.

Efficient parallelization of the SpMV operation therefore requires a good
distribution of the matrix A over the processors. There is a delicate bal-
ance between the efficiency gain because of a lower computational load per
processor (i.e. a lower number of FLOPs to be performed on a single pro-
cessor), and the added cost because of the necessary communication and
coordination between processors. We can more easily reason about this by

22 operations with sparse matrices

introducing some quantities that specifically relate to the distribution of a
sparse matrix. This is the content of this section. Finally we will relate them
to the BSP cost function introduced at the beginning of the chapter.

2.3.1 Sparse matrix distributions

We distinguish between one-dimensional and two-dimensional distributions
PA. A one-dimensional distribution depends on only one of the indices, e.g.
if we can write PA(i, j) = φ(i) we call the distribution a row distribution. A
column distribution is defined similarly. An important class of distributions
are Cartesian distributions, where we think about the processors as being laid
out in a grid of size M× N such that MN = p. For a Cartesian distribution
we have PA(i, j) = (φ(i), ψ(j)). Note that this limits the number of processors
that have a nonzero in a row or column by M and N respectively.

In the standard SpMV algorithm, there are two phases in which commu-
nication happens, namely phase I and III. The total communication needed
in the first phase (fan-out) for any processor s is the number of non-local
vector components vi that are required because processor s owns a nonzero
aki for some k. The total communication needed in the second phase (fan-
in) for any processor s is equal to the number of contributions from remote
processors to every vector component uj assigned to the processor s.

The vector distributions P{~v,~u} do not influence the total number of com-
munications done, as long as the vector components are assigned to a proces-
sor owning at least one nonzero in the corresponding row or column. We as-
sume here that we can distribute P~v and P~u independently, which as we will
see may not always be the case. Note also that under this assumptions we
have that for row distributions the fan-out phase is free of communication,
while for column distributions the fan-in phase is free of communication.

2.3.2 Quality of a distribution

As we have seen in our discussion on the BSP model, we distinguish between
sending, and receiving data. Ultimately, in our model, the deciding factor for
the communication in a parallel algorithm is the value for h in any superstep.
Ideally we want to minimize the value of h for our two communication
phases. However, we can also introduce the total amount of communication
done, which is also an important measure of the quality of a distribution.
As we will see, it will be easier to optimize distributions with respect to this
measure.

Definition 3 (Communication Volume). Given a partitioning P = (PA, P~u, P~v),
the communication volume is defined as the total number of floating point
numbers to be communicated during a single SpMV operation.

2.3 predicting the performance of parallel spmv 23

For an arbitrary distribution we can write for the communication volume:

V =
m−1

∑
i=0

(pi − 1) +
n−1

∑
j=0

(qj − 1), (2.2)

where we define pi as the number of processors holding a nonzero in row i,
and qj as the number of processors holding a nonzero in column j. We sub-
tract one from pi and qi, because we assume that the vector partitionings are
such that the assigned processor for some vector component holds at least
one nonzero in the corresponding row or column. Note that this volume,
like all the other quantities we introduce in this section, only depends on
the sparsity pattern of a matrix, and not the actual values.

The first term corresponds to the total communication done in the fan-
out phase, while the second term corresponds to the total communication
done in the fan-in phase. Note that we only count each number that gets
communicated once (i.e. we consider sending and receiving independently).

The actual communication cost is the sum of the two values for h for the fan-
out and fan-in phases. This value depends on both the vector distributions
and the matrix distribution. We introduce Is and Js as the collection of rows
and columns respectively, in which s holds at least one nonzero.

Using these sets we can write for the h values for each processor in the
two phases:

hfan-out, s, send = ∑
j s.t. P~v(j)=s

(
qj − 1

)
,

hfan-out, s, receive = |{j ∈ Js | P~v(j) 6= s}|,
hfan-in, s, receive = ∑

i s.t. P~u(i)=s
(pi − 1) ,

hfan-in, s, send = |{i ∈ Is | P~u(i) 6= s}|.

Taking the maximum value over the processors s then gives us the value for
h of both communication phases.

Let us now consider the workload of any processor performing the SpMV
algorithm. This is completely decided by the maximum number of nonzeros
assigned to a processor s, and the number of different processors owning
nonzeros in the same row.

Definition 4 (Workload). Recall that the workload w is the maximum amount
of computational work done by a processor. For the SpMV algorithm it is
the sum over the maximum number of flops over all processors 0 ≤ s < p of
the two computational phases. This amounts to:

W = max
0≤s<p

|{(i, j) | PA(i, j) = s}|

+ max
0≤t<p

∑
i s.t. P~u(i)=t

|{s | ∃jPA(i, j) = s}|

24 operations with sparse matrices

Here the first term corresponds to the computation of the partial sums,
and the second term corresponds to the accumulation of the partial sums.
Note that the second term is usually much smaller than the first. Further-
more it is bounded by the communication volume, since each contribution
has to be communicated over the network. Since communication is usually
much more expensive than addition, i.e. g � 1 for common computer sys-
tems, it is commonly ignored [51]. Therefore we will simply write for the
workload:

W = max
0≤s<p

|{(i, j) | PA(i, j) = s}| (2.3)

Note that our working definition of the workload, like the communication
volume, does not depend on the specific vector distribution. For this reason
we will focus mostly on optimizing the matrix distribution PA.

2.4 summary

In this chapter we have introduced the standard SpMV algorithm, as well
as the BSP framework in which we consider this algorithm. To optimize
the running time of this parallel algorithm, we need to optimize the distri-
bution of the matrix and the relevant vectors. To make this more concrete
we have introduced concepts such as the communication volume and the work-
load, which will play an important role in our discussion on partitioning
algorithms that will lead to good distributions.

3

PA RT I T I O N I N G T E C H N I Q U E S F O R S PA R S E M AT R I C E S

In this chapter we discuss finding a good distribution for a given sparse
matrix A to optimize the running speed of the parallel SpMV algorithm.
Various methods have been developed to tackle this particular problem. In
general, finding the optimal partitioning is unfeasible, although attempts
have been made to compute optimal distributions for small sparse matrices
[40]. Therefore heuristic methods are applied instead that try to find good
partitionings within reasonable time constraints. Many of them rely either
directly or indirectly on underlying (hyper)graph models of the sparse ma-
trix A. We will introduce some of these models and methods, and compare
them in terms of partitioning cost and expected quality.

3.1 theory and notions

We will first make concrete what problem we are trying to solve. We let A
be some sparse matrix, which in general can be very large. The methods
we treat in this research try to efficiently minimize the total communication
volume, while assigning the nonzeros equally over the processors.

Instead of considering the distribution maps directly we can view the
problem as partitioning A into p mutually disjoint submatrices:

A = A0 ∪ A1 ∪ . . . ∪ Ap−1, Ai ∩ Aj = ∅.

From this viewpoint, the requirement of equal distribution can be made
concrete by letting the matrix partitioning A =

⋃
s As satisfy a load balance

constraint:

nz(As) ≤ (1 + ε)
nz(A)

p
, 1 ≤ s ≤ p, (3.1)

where ε is the tolerance level of the load imbalance, which decides how strictly
we want the nonzero assignment to happen equally over the processors. We
have defined the communication volume as the total number of words that
need to be communicated between two different processors. The problem
we will treat in various forms in the upcoming chapters, the sparse matrix par-
titioning problem, is to minimize the communication volume while satisfying

25

26 partitioning techniques for sparse matrices

Equation 3.1 for some fixed load imbalance ε. Under reasonable assump-
tions about the computer that performs the SpMV operation, a distribution
with a low communication volume with a roughly equal distribution will
lead to good running times of the SpMV algorithm.

3.1.1 Partitioning a graph

The sparse matrix partitioning problem is closely related to the partitioning
problem on graphs. This is because a sparse matrix admits various graph
models that can represent the structure of the sparse matrix. In this section
we will introduce this similar problem, and in the upcoming sections we will
relate these problems to sparse matrices.

Before we talk about graph representations of our sparse matrix, we will
introduce the partitioning problem in the context of graphs. We will see
later how we can apply the techniques that have been developed for graph
partitioning to sparse matrix partitioning. To fix notation we first recall some
basic concepts from graph theory, starting with the definition of a graph.

Definition 5 (Graphs). A graph G = (V, E) is a collection of vertices V =

{vi} and a collection of ordered pairs called edges E = {(vi, vj)} such that
vi, vj ∈ V. If for u, v ∈ V we have (u, v) ∈ E ⇐⇒ (v, u) ∈ E we call the
graph undirected, otherwise we call the graph directed.

A graph is called bipartite if there exists a decomposition V = L ∪ R with
L∩ R = ∅ such that every edge e ∈ E is of the form e = (l, r) with l ∈ L and
r ∈ R. Two vertices u and v are said to be neighbours if there exists an edge
E 3 e = (u, v). The degree of a vertex v is equal to the number of neighbours
of v. We will also require the notion of a weighted graph.

Definition 6 (Weighted graph). A weighted graph G = (V, E, w) is a graph
G = (V, E) together with an edge weight function w : E → R. Sometimes we
will also talk about vertex weights, in the form of a function ω : V → R, in
which case we will write G = (V, E, w, ω).

Because we want to apply graph partitioning methods to sparse matrix
partitioning, we introduce graph partitionings.

Definition 7 (Graph partitioning). A k-way partitioning of a graph G =

(V, E) is a partitioning of the vertices V into k ≥ 1 disjoint subsets V =

V0 ∪ V1 ∪ . . . ∪ Vk−1. Equivalently, we can represent this with a surjective
function π : V → {1, . . . , k}. If k = 2 we call the partitioning a bipartitioning.

The corresponding load balance constraint for a weighted graph requires
that the weighted sum over each of the subsets are roughly equal:

∑
v∈Vi

ω(v) ≤ (1 + ε)
∑u∈V ω(u)

k
0 ≤ i < k. (3.2)

3.1 theory and notions 27

We can also think of a partitioning as assigning a label (often represented
with a colour) to each vertex. Indeed, every partitioning takes the form of
a surjective function, which can be seen as assigning a label to each vertex.
If we talk about a labeling of vertices we will use a function CV : V → Zk
and call it a k-labeling on the vertices of the graph. Similarly CE : E → Zk
denotes a k-labeling on the edges of the graph. This will prove to be a
convenient way to think about graph partitionings.

We are now ready to state the partitioning problem for graphs. A quality
metric Θ assigns a number to a partitioning representing the quality of the
partitioning. For example, in the sparse matrix partitioning problem our spe-
cific metric was the communication volume. In the case of graphs we want
to minimize Θ(π) for an arbitrary quality metric. Here π is some surjective
function π : V → Zk that defines a partitioning. The graph partitioning
problem can then be stated as minimizing Θ(π) while satisfying the graph
load balancing constraint Equation 3.2. As an example of a metric, we will
introduce the edge cut metric for graphs.

Definition 8 (Edge-cut). Let G = (V, E, w) be a graph, and Θ a quality
metric. The edge cut of a partitioning π of G is the weighted sum over all
edges between different parts:

EC(π) = ∑
e=(u,v)

π(u) 6=π(v)

w(e).

We could now ask ourselves the question just how hard it is to solve the
graph partitioning problem if we use the edge cut as a metric. It turns out that
it is very unlikely that an optimal solution to this problem can be tackled
efficiently, in fact it has been shown that for an arbitrary load imbalance the
partitioning problem for unweighted graphs with k = 2 is NP-complete. The
following theorem summarizes this:

Theorem 1 (Bui-Jones). Let G = (V, E) be a graph. Let ε ∈ Q≥0 be a tolerance
level for the load imbalance. Let 0 ≤ b < |E| be some maximum number of edges
cut. It is NP-complete to decide whether there exists a bipartitioning π of G that
satisfies Equation 3.2, and such that EC(π) = b.

Proof. Theorem 3.1 of Bui and Jones [11].

Hypergraphs

A hypergraph is the generalization of an (undirected) graph. As it will turn
out, a hypergraph is able to model completely the communication volume
resulting from a sparse matrix partitioning. Here we introduce these objects,
and carry over our notions for graphs to these more general structures.

28 partitioning techniques for sparse matrices

Definition 9 ((Weighted) hypergraphs). A hypergraph H = (V ,N) is a col-
lection of vertices V , along with a set of nets (or hyperedges) N such that
ni ∈ N is a subset of V . Two vertices u 6= v ∈ V are said to be connected or
neighbours, if there exists a net ni such that u ∈ ni and v ∈ ni. Similarly to
graphs, we often make use of weight functions in the form of vertex weights
ω : V → R and net weights w : N → R.

Definition 10 (Hypergraph partitioning). A partitioning of a hypergraph
has the same definition as the partitioning of a graph, with G substituted by
H.

The hypergraph partitioning problem is also stated completely analogous
to the graph partitioning problem. Instead of the edge cut metric, we define
a similar cut-net metric:

Definition 11. The cut-net metric for a hypergraph H = (V ,N , w) with a k-
way partitioning π, is the weighted sum over all nets which contain vertices
of different parts:

CN(π) = ∑
n∈N

∃u,v∈nπ(u) 6=π(v)

w(n).

An alternative metric that is often used in the context of sparse matrix
partitioning is the (λ− 1)-metric.

Definition 12. We define λ(n) to be the number of parts in which a net
n ∈ N is divided: λ(n) = |{j | ∃v∈nπ(v) = j}|. The (λ− 1)-metric is then
given by the following expression:

LV(π) = ∑
n∈N

w(n)(λ(n)− 1).

For bipartitionings the LV and CN metrics are identical. Furthermore,
they reduce to the edge cut metric in the case of graphs – such that we
can immediately conclude that the hypergraph partitioning for both metrics
with k = 2 is also NP-complete.

Coarsenings of (hyper)graphs

Since the (hyper)graph partitioning problems are NP-complete, it is often in-
feasible to find optimal partitionings for large graphs. We therefore employ
two strategies to tackle this problem. The first one is to find good heuris-
tics that run in polynomial time, and produce good partitionings. The other
strategy is to reduce the problem size by coarsening the graph.

Definition 13 (Graph coarsening). Let G = (V, E) be a graph. A coarsening
of the graph is a pair (χ, G′ = (V ′, E′)) such that |V ′| < |V| and:

3.1 theory and notions 29

• χ : V → V ′ is a surjective function. This implies that V ′ is not larger
than necessary.

• E′ = {(χ(u), χ(v)) | (u, v) ∈ E}. This means the graph structure of G
is maintained.

If G is edge- or vertex-weighted, then the corresponding weights of edges
and vertices G′ are equal to the sum over their pre-images.

Hypergraph coarsenings are defined similarly. The main difference is that
the edges are replaced by nets. If the coarsening results in self-edges (v, v) ∈
E′ (or trivial nets |n′| = 1 in the case of hypergraphs) then we will remove
them from the graph G′.

An important tool used to find good graph coarsenings χ, is graph match-
ing.

Definition 14. A matching M ⊆ E is a set of edges that are disjoint (i.e. each
vertex is part of at most a single edge in M), and that contains no self-edges.
A matching is maximal if there exists no matching M′ of G such that M (M′.
It is a perfect matching if |M| = |V|

2 . The weight of a matching is the weighted
sum over its edges.

We will define a matching for a hypergraph H = (V ,N) as a matching for
the graph G defined by V = V and e = (u, v) ∈ E ⇐⇒ ∃n∈N s.t. u, v ∈ n.
We will revisit these ideas when we introduce the multi-level hypergraph
partitioning approach.

3.1.2 Modeling a sparse matrix as a (hyper)graph

In this section we will describe the various graph structures that are used in
the sparse matrix partitioning problem (in particular for optimizing SpMV).
A major advantage of reducing the sparse matrix partitioning problem to
that of a graph partitioning problem, is that partitioning methods (as well as
developed software) can be reused for either application.

We will first look at natural (undirected) graph representations for a sparse
matrix A. Recall that every graph G has an associated adjacency matrix of size
V × V, for which aij 6= 0 ⇐⇒ (vi, vj) ∈ E. For symmetric sparse matrices
A = AT, we can then consider the unique graph that has the matrix A as its
adjacency matrix. We will call this the symmetric graph representation.

One graph structure of particular interest to us is what we will call the
bipartite graph representation of a sparse matrix.

Definition 15. Given a sparse matrix A ∈ Mm×n, we define the bipartite
graph representation as the bipartite graph with vertices V = R ∪ C where
ri ∈ R represent the rows of A, and cj ∈ C represent the columns of A.

30 partitioning techniques for sparse matrices

A

~v

~u

v4

v3

v2

v1

v0

u4

u3

u2

u1

u0

Figure 3.1.: The distribution of a sparse 5× 5 matrix and the two vectors ~v,~u
is represented by a colouring of the elements and components.
The bipartite graph representation of this matrix is shown on
the right, with the associated colouring. Each edge represents a
contribution of a nonzero aij together with the component vj, to
the component ui.

Alternatively these can be viewed as the components of the vectors ~u and ~v
respectively. The edges of the graph are E = {(ri, cj) | i ∈ I , j ∈ J , aij 6= 0}.

For an example of a distributed sparse matrix and its associated bipartite
graph representation, see Figure 3.1.

A labeling CV : V → Zp (i.e. partitioning) of the vertices of the bipartite
graph representation corresponds to the vector distributions P~v and P~u by
letting for example P~v(j) = CV(cj). An edge labeling CE : E → Zp of this
graph corresponds to a a distribution PA of our sparse matrix. With this
identification we can make the following observations:

• The number of processors that require the vector component ~vi is equal
to the number of distinct labels of the incident edges of the correspond-
ing vertex.

• Similarly, the number of processors contributing to the vector compo-
nent ~uj is equal to the number of distinct labels of the incident edges
of its corresponding vertex.

• If we label each vertex with the label of one of the incident edges, then
the communication volume of the corresponding matrix distribution is
equal to a (µ− 1)-metric, where µ(v) : V → Zp is equal to the number
of distinct labels incident to a vertex v, i.e.:

µ(v) = |{j | ∃(v,u)∈E CE((v, u)) = j}|

3.1 theory and notions 31

(c.f. also the (λ− 1) metric introduced earlier)

We conclude that we can define a metric on the bipartite graph, such that
the graph edge partitioning problem with a corresponding balance constraint,
reduces to the sparse matrix partitioning problem.

Hypergraph models

We have found a way to reduce our sparse matrix partitioning problem to
a partitioning problem on the edges of a specific graph, but we ultimately
want to reduce it to an ordinary graph partitioning problem. It turns out
that hypergraphs are required in order to find such a reduction. Below we
introduce three common hypergraph models of sparse matrices.

1. The row-net model was introduced by U. Catalyurek and C. Aykanat in
1996 [14]. In this model each column j is represented with a vertex
vj ∈ V . For each row i we have a net ni that is defined with:

ni = {vj | A 3 aij 6= 0},

i.e. a column is in the ith net if the corresponding matrix entry is
nonzero.

2. The column-net model introduced in the same article is defined iden-
tically to the row-net model with the roles of the columns and rows
reversed.

3. In the fine-grain model [16] each nonzero matrix entry is represented with
a vertex vij ∈ V . For each row i and each column j there is a net of all
the nonzero entries in that row/column, i.e.:

rk = {vij ∈ V | i = k},
cq = {vij ∈ V | j = q}.

The various graph representations of a sparse matrix are summarized in
Table 3.1.

The row net and column net models together with the (λ− 1)-metric for
hypergraphs, model the communication volume of one-dimensional parti-
tionings exactly, under the assumption that the vector distribution is such
that the vector components are needed at least once by the assigned proces-
sor.

Indeed, consider without loss of generality a column-distribution, such
that we can write PA(i, j) = PA(j). Then the communication between proces-
sors is equal to the number of partial contributions (~ui)s minus the number
of rows, since for each i one of the partial contributions will already be at the

32 partitioning techniques for sparse matrices

A
1

2

3

4

5
A

1 2

3 4

5 6

7

8
1 2

5

8

3

4

7

6

Figure 3.2.: A sparse 5× 5 matrix and the corresponding hypergraphs using
the row-net model (top) and the fine-grain model (bottom). Here
we number the columns from 1 to 5, and the vertices in row-
major order from 1 to 8.

3.1 theory and notions 33

name vertices V nets N
symmetric {0 ≤ i < m} {(i, j) | aij 6= 0}
bipartite {ri} ∪ {cj} {(i, j) | aij 6= 0}
row-net {0 ≤ j < n} {ni = {j | aij = 0}}

column-net {0 ≤ i < m} {nj = {i | aij = 0}}
fine-grain (vij | aij 6= 0) {{akj 6= 0 | i = k} | i} ∪

{{aik 6= 0 | k = j}| j }

Table 3.1.: The graph representations we consider of a sparse matrix A of
size m× n. See also [7].

correct location. Recall that the number of partial contributions to a given
component of ~u is exactly equal to the number of distinct processors in each
row, which we have called pi. The communication volume then reduces to
only the first term in Equation 2.2.:

V =

(
m−1

∑
i=0
|{s | ∃j aij 6= 0 and PA(j) = s}|

)
−m ≡

m−1

∑
i=0

(pi − 1) .

Let us now consider this system as a hypergraph using the row-net model,
and assign each vertex corresponding to a column j to a part PA(j). The
(λ− 1)-metric for this partitioning will yield a sum over

LV(π) =
m−1

∑
i=0

(
|{k | ∃j∈ni s.t. π(j) = k}| − 1

)
=

(
m−1

∑
i=0
|{k | ∃jaij 6= 0 and π(j) = k}|

)
−m,

which is identical to the expression above by our choice of π.
For two-dimensional partitionings we have to resort to the fine-grain method,

which will yield a similar correspondence. The communication volume for
a general 2D distribution is given by Equation 2.2. Using the fine grain
method, together with the vertex partitioning π that is defined by assign-
ing π(vij) = PA(aij) we see that the (λ − 1)-metric reduces exactly to the
communication volume:

LV(π) = ∑
n∈N

w(n)(λ(n)− 1)

=
m−1

∑
i=0

(λ(ri)− 1) +
n−1

∑
j=0

(λ(cj)− 1)

=
m−1

∑
i=0

(pi − 1) +
n−1

∑
j=0

(qj − 1).

34 partitioning techniques for sparse matrices

We conclude that our sparse matrix partitioning problem can, by a good
choice for a model, be reduced to a hypergraph partitioning problem.

3.1.3 k-way matrix partitionings

Before we end our theoretical discussion on graph partitioning, we will
prove a convenient theorem which ensures that we only need to focus on
bipartitioning methods. These can then be applied recursively to find gen-
eral k-way partitionings. This theorem states essentially that when splitting a
part of the matrix, we need only consider the affected submatrix.

Theorem 2 (Theorem 2.2 in [51]). Let A be a sparse matrix, and suppose we have
some k-way partitioning of A = A0 ∪ A1 ∪ . . . ∪ Ak−1. We denote the correspond-
ing communication volume with:

V(A, {A0, . . . , Ak−1}) =
n−1

∑
i=0

(pi(A, {A0, . . . , Ak−1})− 1)

+
n−1

∑
j=0

(qj(A, {A0, . . . , Ak−1})− 1).

Let Ak−1 = A′k−1 ∪ Ak, such that A′k−1 ∩ Ak = ∅ (i.e. a bipartitioning of the
k-th part). Then we have the following equality:

V(A, {A0, . . . , A′k−1, Ak}) = V(A, {A0, . . . , Ak−1}) + V(Ak−1, {A′k−1, Ak})

Proof. It is sufficient to prove that this holds for each term separately, i.e. that
the values for pi and qj in the left- and right-hand side are identical. Without
loss of generality we treat the case of pi.

We split into two cases: either the ith row in Ak−1 is non-empty (i.e. it
contributes to pi) or it is empty. If it is empty, the equality immediately
follows from:

pi(A, {A0, . . . , Ak−1}) = pi(A, {A0, . . . , Ak−2})

and
pi(Ak−1, {A′k−1, Ak}) = 0.

If it is non-empty then we know that the ith row in A′k−1 and Ak is non-
empty for at least one of the two. If both parts contain an element in the ith
row then we see:

pi(A, {A0, . . . , A′k−1, Ak}) = pi(A, {A0, . . . , Ak−2}) + 2

= pi(A, {A0, . . . , Ak−1}) + 1

= pi(A, {A0, . . . , Ak−1}) + pi(Ak−1, {A′k−1, Ak})

3.1 theory and notions 35

If only one of the two has a non-empty row i then we find:

pi(A, {A0, . . . , A′k−1, Ak}) = pi(A, {A0, . . . , Ak−2}) + 1

= pi(A, {A0, . . . , Ak−1}) + 0

= pi(A, {A0, . . . , Ak−1}) + pi(Ak−1, {A′k−1, Ak})

Thus we can conclude that the equality holds in each case.

In light of this theorem, we will only discuss bipartitioning methods. These
can be applied recursively to obtain general k-way partitionings by setting
appropriate load balance constraints in the recursion steps.

3.1.4 Vector partitioning

Before we discuss specific partitioning methods, we need to consider the
vector partitionings. In our derivation of the communication volume we have
assumed that a vector component gets sent to a processor that holds at least
one nonzero in the corresponding row or column. This requires in particular
that we can distribute ~u and ~v independently.

However, in practice, we often require P~u = P~v. In linear solvers for ex-
ample, the output vector is often the input vector in the following iteration.
If these distributions are completely independent then we require a large
amount of communication between different iteration steps to prepare the re-
sulting vector ~ui as the next input vector ~vi+1. This requirement complicates
the vector partitioning. Indeed, sometimes the communication volumes we
find can not be realized under these constraints.

We define P(i, ∗) as the collection of processors holding a nonzero in row
i and P(∗, j) as the collection of processors holding a nonzero in column j. If
the diagonal element akk is nonzero, then we know that P(k, ∗)∩ P(∗, k) 6= ∅
such that we can assign P~v(k) = P~u(k) = PA(k, k), but in general the inter-
section might as well be empty. If the collection of processors in the row or
column k are mutually disjoint, then we can not realize the communication
volume under this constraint.

In this research, where in our experiments we require that the input and
output distributions are identical, we will apply the following heuristic to
decide P~v(k). If akk 6= 0 it is natural to assign the vector component to
PA(k, k). Otherwise we assign it to some some processor in the intersection
of P(k, ∗) and P(∗, k), while trying to balance the number of vector compo-
nents assigned to the processors. Otherwise we assign it to some proces-
sor in P(k, ∗) ∪ P(∗, k), also while greedily balancing the vector components
assignment. Computing good matrix and vector distributions specifically
under the constraint P~v = P~u is left for further research.

36 partitioning techniques for sparse matrices

3.2 methods

3.2.1 Kernighan-Lin

The Kernighan-Lin heuristic (KL) is a procedure for finding a locally optimal
partitioning of a graph [34]. It is used extensively in methods that target
the sparse matrix partitioning problem. Here we recite the basic ideas of
the algorithm. The KL algorithm finds a partitioning of a graph G, while
attempting to minimize the total edge cut, with constraints on the maximum
size of subsets. We first specify more precisely the problem that we want to
solve.

Given a weighted, directive graph G = (V, E, c), we want to find p subsets
V =

⋃p−1
i=0 Vi (i.e. a partitioning π of V) such that |Vi| ≤ M for some given

M > 0, that minimizes the total edge cut. For a fixed M, we can find an
appropriate load imbalance ε, and vice versa, so we can view this problem
as the graph partitioning problem introduced before.

Considering all possible p-way partitioning of V is not an option, even
for a relatively small number of vertices. Indeed, if M = n

p , we have (n
n/p)

options for V0, (n−n/p
n/p) options for V1 etc, so that there are:

1
p!

p−1

∏
k=0

(
n− kn/p

n/p

)

options in total, which grows very fast as n increases.
As we have seen, this problem is in NP, so that we consider heuristics

instead. One may attempt to use λ-Opting techniques. In this context, a
λ-change is the (best possible) exchange of λ vertices between different sets
Vi for any current state of a graph partitioning. A partitioning is said to be λ-
opt(imal) if there is no λ-change possible that reduces the edge cut. However,
we note that for λ = 1 and p = 2 we need to consider every possible swap,
and this already leads to an O(n3) algorithm, so that we need to look for
even more efficient heuristics.

The KL heuristic avoids having to try each possible swap, instead it asso-
ciates to every vertex an internal and external cost. First we consider 2-way
partitioning of V into V = A∪ B. Furthermore we assume |V| = 2n and put
M = |A| = |B| = n.

As we will show afterwards, the technique we develop can be extended to
p-way partitionings, and to arbitrary values for M. For an a ∈ A we define
the external cost as the total weight of edges going from a to B:

Ea = ∑
b∈B

cab,

3.2 methods 37

and we define Eb similarly. We also introduce the internal cost as the sum of
the weights of edges in A:

Ia = ∑
a′∈A

caa′ ,

and denote their difference with Da = Ea − Ia. If we then interchange ã ∈ A
and b̃ ∈ B, i.e. our new partitioning becomes Ã = A − {ã} + {b̃} and
B̃ = V \ Ã then the reduction from the old edge cut T to the new edge cut T̃
is equal to:

gãb̃ ≡ T − T̃ = ∑
a∈A

Ea + ∑
b∈B

Eb − ∑
a∈Ã

Ea − ∑
b∈B̃

Eb

= Dã + Db̃ − 2cãb̃.

With these definitions in place, we are now ready to describe the algorithm.
In the first phase we compute all the value Dv for each v ∈ A ∪ B = V. We
then find the a1 ∈ A, b1 ∈ B. such that gab is maximal:

g1 = max
a∈A,b∈B

gab = max
a∈A,b∈B

Da + Db − 2cab.

We will call the pair that maximizes the gain (a1, b1). We then remove these
from A, B and repeat the procedure for V = A \ {a1} ∪ B \ {b1}, finding
pairs (a2, b2). We continue until we have found n pairs of vertices which we
can exchange. We then choose the value of 1 ≤ k ≤ n that maximizes the
total gain:

G =
k

∑
i=0

gi,

and interchange {a1, . . . , ak} and {b1, . . . , bk} between A and B. If G = 0 we
have found a locally optimal partitioning.

Partitioning with general values for M

We want to relax the constraint M = |A| = |B| = n. We consider graphs
of arbitrary size |V|, and let M > 0 be arbitrary. We can generalize the
procedure described above for this problem by adding additional vertices d
to the graph that have no connections whatsoever, i.e. cdv = 0 for all v ∈ V
until the graph has 2M elements. Note that 2M − |V| elements have to be
added. These vertices are referred to as dummy vertices. If we apply the
procedure above to this system, then these dummy vertices will have no
influence on the different costs. Both A and B will have at most M elements.
After removing the dummy vertices we will have found a solution to our
original graph partitioning problem.

38 partitioning techniques for sparse matrices

p-way partitionings

We conclude our discussion on the KL algorithm for the graph partitioning
problem by discussing p-way partitionings for some p > 0. Again we will
assume |V| = pn, and start with some initial partitioning V = ∪i Ai where
|Ai| = n. Now we apply the 2-way partitioning algorithm described above
to pairs of subsets. There are (k

2) pairs of sets Ai, Aj to consider, such that
we have to run our 2-way algorithm at least as many times as that. Of
course, when we first run the algorithm for a pair (Ai, Aj) and next for a
pair (Aj, Ak), then the pair (Ai, Aj) need no longer be relatively optimal. It
turns out that in practice only a few passes are required for complete pair-
wise optimality.

KLFM for hypergraphs

To apply the KL heuristic to the SpMV partitioning problem we need to gen-
eralize the procedure to hypergraphs. For a hypergraph H we can rephrase
the partitioning problem as finding a partitioning V = A ∪ B such that as
few as possible nets n ∈ N have elements in both A and B.

Definition 16 (Hypergraph partitioning problem). Given a hypergraph H =

(V ,N) (for simplicity we consider here unit weights w ≡ 1), find a p-way
partitioning V =

⋃p−1
i=0 Vi such that |Vi| ≤ M for some given M > 0 that

minimizes the (λ− 1)-metric LV.

Vertices of the hypergraph that share a net are called neighbours. A net
is cut if it contains elements belonging to different parts Vi and Vj and is
called uncut otherwise. In general a net has some distribution of elements
(i.e. number of elements from A and B resp.). The size si of a vertex i is the
number of nets it sits in, and the size of some set X is |X| = ∑i∈X si.

Note that we can rewrite our constraint |Vi| ≤ M as |Vi| ≤ (1 + ε) |V|p ,
where ε is some maximum load-imbalance. To keep our discussion clear, we
consider here p = 2 only. The method we discuss here is due to Fiduccia
and Matthyses [21], and is often referred to as the KLFM heuristic. As we
will see it greatly improves the efficiency of the algorithm by choosing an
appropriate data structure, a technique that can also be applied to the graph
partitioning problem.

In order to extend KL for this hypergraph problem, we need to introduce
the concept of vertex gain. This gain g(v) for v ∈ V is defined as the change
in the LV metric if we move the vertex v from the set V1 to the set V2. If we
denote with Nv = {n ∈ N |v ∈ n} the collection of nets of v, then we have
−|Nv| ≤ g(v) ≤ |Nv|, since the move of v can only impact the nets in which
it is contained. If we denote Nmax = maxv′∈V |Nv′ | then we have for all v:

−Nmax ≤ g(v) ≤ Nmax (3.3)

3.2 methods 39

The KLFM procedure simply chooses at iteration i the vertex vi among all v
which maximizes the gain, given that the move does not violate the balance
criterion. It can happen that this gain is positive, however we will still allow
the vertex to be moved in order to get out of local minima.

If we find the vi naively, then this would take O(|V|) time in each iteration,
which would lead to a slow execution time. However the KLFM algorithm
uses a convenient data structure called a bucket list which can find this max-
imum, and update the data structure after a move in O(1) time. Because of
the observation (3.3), this data structure only takes takes O(Nmaxn) storage.
In short, the idea is to group the vertices by their respective gains, using an
array of maximum size 2Nmax + 1 whose kth element is a doubly-linked list
of vertices that have gain −Nmax + k.

This algorithm is usually run a fixed number of iterations, and we keep
track of the best partitioning found so far (since the best vertex gain is not
guaranteed to be negative). This leads to a heuristic for hypergraph parti-
tioning that is linear in the input.

3.2.2 Multi-Level methods

For very large matrices, the corresponding hypergraphs are too large to ap-
ply KLFM to directly. Instead, they are first reduced in size (or coarsened),
before a partitioning heuristic is applied. These methods are called multi-
level methods, and were first developed by Bui and Jones [10]. They have
been introduced as a heuristic for reducing the fill-in of sparse matrix fac-
torization. It is similar in nature to the multigrid method used to solve
(discretized) differential equations which was introduced by Brandt [9].

The multi-level method consist of three phases. In the first phase the (hy-
per)graph is coarsened by repeatedly merging vertices. In the second phase
an initial partitioning is applied to the coarse graph. Since this graph is rel-
atively small, more expensive methods may be used. In the third and final
phase, the graph and the partition are uncoarsened, or refined.

In this section we will describe each of these phases specifically for the
graph partitioning problem. These ideas apply equally well to hypergraph
partitioning problems.

Phase 1: Coarsening

In order to coarsen the graph we need to identify collections of vertices that
are ‘close’ in a certain sense, for example if they are neighbours in the graph.
As we have discussed in Section 3.1.1, matchings are often employed for this
task.

40 partitioning techniques for sparse matrices

1

2

3

..

n

Coarsening

1

2

3

..

n

Initial partitioning

Re
fin

em
en

t

Figure 3.3.: An overview of the multi-level method. On the left, the graph is
gradually reduced in size. Then an initial partitioning is applied.
The graph is then refined to its original size, while the partition
is relaxed at each step.

Phase 2: Initial partitioning

On the smaller graph a partitioning algorithm such as the KLFM heuristic is
run to obtain a good initial partitioning. Because in this graph the number
of vertices is limited, it is feasible to use more computationally expensive
partitioners than usual. For example, the Mondriaan partitioner [51] runs
the KLFM heuristic 8 times, and chooses the best result among these runs.

Phase 3: Refinement

After a good initial partitioning is obtained, the coarsening is undone step-
for-step. After each uncoarsening the partitioning is relaxed using e.g. an-
other run of KL. This process is called refinement.

Multi-level methods rely ultimately on the quality of the coarsening and
initial partitioning.

3.2.3 Medium-grain method

The medium grain method (MG) [39] is a partitioning method that first tries
to capture the structure of the matrix in a larger matrix B, and then partitions
this matrix using a 1D partitioner on a coarse-grain model leading to a very
efficient partitioning method. Because the method is 1-dimensional, but the
resulting partitioning is 2D in nature, we can consider the method as being
pseudo-2D.

In the MG method the matrix A is first split into two mutually disjoint
parts Ar and Ac, i.e. A = Ac ∪ Ar and Ac ∩ Ar = ∅ using some heuristic.

3.2 methods 41

The part to which a vertex is assigned is decided by a cost function. An
example of a successful cost function is assigning a nonzero to Ar if there
are less elements in the row of the matrix containing the nonzero, and to Ac

otherwise.
Once the parts Ar and Ac have been constructed, a matrix B is formed

which has the form:

B =

(
In AT

r
Ac Im

)
,

where Ik is the k-dimensional identity matrix. To this matrix a relatively
cheap column-based 1D partitioning method is applied; for example the
KLFM method can be applied to the row-net model of the matrix B. The re-
sulting partitioning of B = B1 ∪ B2 is then projected back to a corresponding
partitioning of the matrix A = A1 ∪ A2 in the following fashion: if a nonzero
(i, j) has been assigned to Ac then we simply assign the nonzero to A1 if the
column j is assigned to B1, and to A2 otherwise. If a nonzero (i, j) has been
assigned to Ar then we assign it to A1 if the column n + i is assigned to B1,
and we assign it to A2 otherwise.

This method is very intuitive, in that in general we should always prefer
to keep groups of nonzeros in the same row or column together. However
since every nonzero is both in a row and column we can not always satisfy
this constraint since we can only assign a limited number of nonzeros to the
same processor. Therefore we try to keep e.g. the smallest of the two (in
terms of the number of nonzeros) together.

The MG method can be seen as a preprocessing step. In this context it is
convenient to look at it as simply applying a pre-coarsening to the fine-graph
model, which makes the model almost one-dimensional. The particular pre-
coarsening that is applied is a direct result of the choice for the cost-function.

3.2.4 PuLP

So far the methods we have discussed rely on the KL method to do the ac-
tual partitioning of the (hyper)graph. Here we discuss a different method
for graph-partitioning. This alternative approach to the graph partitioning
problem is the PuLP method, which stands for Partitioning using Label
Propagation [44]. As the name states, it is based on the idea of label propa-
gation for graphs. Label propagation is commonly used for cluster detection
in graphs.

Let G = (V, E) be a graph, and let L be a label function L : V → Zk. Label
propagation consists of the following steps:

(i) We begin with a random label function L, for some fixed value of k.
Intuitively this can be seen as assigning labels uniformly at random to
each vertex from a set of k distinct labels.

42 partitioning techniques for sparse matrices

(ii) We begin with an arbitrary vertex v ∈ V, and update its label to the
most common label among its neighbours, that is to say we set:

L(v) = argmax0≤j<k|{u ∈ V | (v, u) ∈ E and L(u) = j}|

(iii) We repeat step (ii) while iterating over all vertices v ∈ V until some
stopping criteria is met. For example after a fixed number of iterations,
or when no updates happen after one complete cycle over the vertices
in V.

Assuming we stop after c|V| iterations, we see that (after preprocessing the
initial label counts of the neighbours of V), the running time of the algorithm
is linear in |V|, which makes it very efficient.

This algorithm can be adapted to find a partitioning of G that attempts
to minimize the edge cut, which leads to the PuLP method. This method is
capable of minimizing multiple objectives, for example: both total edge cut,
and maximal per-part edge cut (i.e. the maximum number of edges cut for
a single part of the partitioning π), under multiple constraints, for example
balance constraints on the size of the parts. It consists of three stages:

1. Initialize data structures, and perform an initial partitioning into parts
using label propagation.

2. Label propagation based balancing step, that minimizes one of the objec-
tives. For example, as explained below, the number of vertices in each
part can be balanced using weighted label propagation.

3. An optional refinement step, that further improves upon a given objective.
For example the KL method can be used to further improve upon the edge
cut.

The second and third phases are repeated cycling through different tech-
niques that focus on different objectives, for example balancing the number
of edges per part while minimizing the per-part edge cut, or constrained
refinement using the KL method. Furthermore, by using weights with our
label propagation we can make ’bulky parts’, i.e. parts that have already
been assigned a lot of vertices, less likely to be chosen.

The PuLP algorithm will be the starting point from which we will build
a self-improving partitioning method for sparse matrices. Therefore we will
spend some time in the next chapter to look at each of these phases in detail,
in preparation for generalizing the method to hypergraphs, and turning it
into a self-improving method for the sparse matrix partitioning problem.

3.2 methods 43

3.2.5 Hypergraph partitioning software

name sequential / parallel ref.
hMETIS sequential [33]
ML-Part sequential [12]
PaToH sequential [15]
Mondriaan sequential [51]
Zoltan parallel [20]

Table 3.2.: Here we give a selection of different software packages available
that target the hypergraph partitioning problem. For a complete
overview we refer to [7].

There exist many software packages that target the graph partitioning and
hypergraph partitioning problems. We give an overview in Table 3.2, which
is taken from [7]. These existing partitioners are pieces of software that are
separate from applications, and may be viewed by users as black boxes that
provide good partitionings for hypergraphs that may arise in their models.

As part of this thesis we have written a unified software package Zee that
targets applications (linear algebra, iterative solvers) and the partitioning
problem together. We discuss this software further in Section 4.7, and an
extensive overview is given in Appendix B.

4

S E L F - I M P R O V I N G S PA R S E M AT R I X PA RT I T I O N I N G S

In the previous chapter we have introduced a number of methods that op-
timize matrix partitionings for the parallel SpMV algorithm. For some ap-
plications, the more involved methods can become prohibitively expensive.
In many applications, matrices A arise that are specific to the problem, and
are used as input to linear solvers an indefinite number of times. How-
ever, sometimes the matrices that show up only have a limited lifetime, or
are generated ad-hoc and therefore a completely different system has to be
considered by the solver every time. How much time we want to spend
partitioning the matrix, which is only used throughout the lifetime of a par-
ticular solver run, should never be more than the performance we gain by
using a parallel algorithm, since this would be counter-productive. Ideally
we would stop improving the partitioning of a sparse matrix when the gain
of any additional partitioning effort does not outweigh the added cost of
partitioning further. We introduce the concept of self-improving partitioning
methods, which automatically balance the computational effort put in parti-
tioning with the actual application, in our case SpMV operations that arise
in linear solvers.

4.1 a detailed look at the pulp algorithm

The PuLP algorithm was discussed in the previous chapter. Here we will
generalize this algorithm to hypergraphs and discuss its parallelization so
that it can target distributed systems. To this end we will first discuss each
of the phases of the original algorithm in detail.

4.1.1 Label propagation

Label propagation is used for finding communities (groups of vertices that
are in some sense related) in networks. An advantage of this method over
other methods is that it is very cheap, in that it is a near-linear algorithm
[37]. It also does not require any prior knowledge about the size of the

45

46 self-improving sparse matrix partitionings

1

2

3

4

5

6

red green blue
1 0 0 2

2 2 1 0

3 2 0 0

4 0 1 1

5 0 1 2

6 1 1 0

Figure 4.1.: An example of a labeled graph. The label of each vertex is one of
{red, green, blue}. On the right we show a table with the label
count of the neighbors for each vertex.

communities. In the following we denote with L : V → Z the labeling. The
label propagation algorithm can be separated into a number of steps [41]:

1. Each vertex is initially given a unique label. If we number the vertices
vi ∈ V with i ∈ {1, . . . , n} we can write:

L(vi) = i.

2. We apply a random permutation π to {1, . . . , n}, and call the resulting
index set X.

3. We visit each x ∈ X in order and update the label:

L(vx) = argmax1≤i≤nCi(N(vx)).

where N(v) is the set of neighbours of v, and Ci(X) is the number
of elements in the set X with label i. This is to say we set the label
of a vertex to the most common label among its neighbours. Ties are
broken in a random manner. An example of a labeling after a number of
iterations is given in Figure 4.1.

4. If each of the vertices v have label L(v) equal to the most common label
among its neighbours then we terminate the procedure. Otherwise we
repeat step 3 until some other stopping criterion has been met (e.g.
maximum number of iterations).

Intuitively this algorithm slowly grows groups of vertices of the same color.
At first there are many different groups of vertices, but usually a number of
dominating groups with the same label will start to grow increasingly large
clusters within the graph.

4.2 graph partitioning using label propagation 47

4.2 graph partitioning using label propagation

When applying the ideas of label propagation to the graph partitioning prob-
lem (note that we treat here the general case of directed graphs), we identify
a number of challenges:

• We need a way to force the formation of k communities, where here
and in the following k denotes the number of parts we want to partition
the graph in.

• These k resulting parts have to be of roughly equal size, such that we
satisfy our load-balance constraints.

• We have multiple metrics that we want to optimize for (e.g. edge-cut,
per-part edge cut, etc.), and our method should be able to incorporate
all of these.

The PuLP algorithm [44] was introduced as a modification of the label prop-
agation algorithm that is able to overcome these issues. We distinguish again
a number of steps in the PuLP algorithm, which we will discuss one-by-one.
The version of PuLP we present here is a somewhat simplified version of the
original algorithm.

1. Initialization of the labels. Initial partitioning using minimal-constraint
label propagation.

2. Iterative improvement

a. Balancing by propagation of the labels.

b. Refinement using an external method (such as KL)

The first initialization step differs from the standard label propagation algo-
rithm in that it does not assign to each vertex a unique label, but instead
chooses a label uniformly at random from the set {1, . . . , k}, such that we
start with k random parts that are each initially scattered throughout the
graph. Furthermore, in this step we initialize the total counts C : Zk → N,
and the degree-weighted neighbor counts for each vertex Nv : Zk → N as
an array of size k and |V| arrays of size k respectively. See also Algorithm
4.1.

In the minimal-constraint label propagation phase the labels are updated, and
in the process clusters are created of vertices that lie adjacent. The only
constraint we put during this phase is that we make sure that each of the k
parts is of a certain minimum size smin. This will make it easier in later stages
to let the resulting partitioning satisfy the load-balance constraints. In the label
propagation algorithm the most common label among the neighbours of a
vertex is chosen as the new label, in PuLP the degree of a neighbour is taken

48 self-improving sparse matrix partitionings

for all v ∈ V do
L(v)← rand(1, k).
C(L(v))← C(L(v)) + 1.

for all e← (v, u) ∈ E do
Nu(L(v))← Nu(L(v)) + degree(v)

Algorithm 4.1: Initializing the labels and their counts. Here rand(a, b) is a
function that returns an integer in the interval [a, b] for a, b ∈
Z. Note that since we consider directed graphs, we only
update one of the vertices.

into account in the propagation phase. The idea behind this degree-based
weighted propagation is that clusters will form around elements of high degree,
such that the boundary of a part consists of vertices that are of relatively
low degree which will be beneficial for the edge-cut metrics. In general the
vertices are considered in a random order by shuffling the list [1, ..., |V|], but
we will not explicitly write this here. See also Algorithm 4.2.

After this initial partitioning phase, the partitioning π of G that we have
obtained is iteratively refined in order to satisfy the load-balance constraint
and to minimize our choice of metric(s), for example the total edge-cut,
or the maximum per-part edge-cut. To satisfy the load-balance constraint
|πi| ≤ (1 + ε)(|V|/k) for all labels i, we put two constraints on changes dur-
ing the iterative process. First, we set a maximum part size smax. If the size
of a part exceeds this maximum size then it will not receive any additional
vertices. Secondly, we introduce a weight function W : N→ R+ which takes
the size of a part πi, and assigns to it a positive real number. This weight
function satisfies W(x) = 0 for all x ≥ smax, and W tends to infinity as x
goes to zero. For example we can choose:

W1 = max(smax/x− 1, 0),

or if we want exponential behaviour we can choose

W2(x) =

− log
(

x
smax

)
if x < smax

0 otherwise
.

Otherwise this phase is completely analogous to the initial partitioning phase.
Note that we still implicitly minimize the edge-cut by using degree-based
propagation. This is also summarized in Algorithm 4.3.

After this balancing phase, the partitioning is explicitly refined to mini-
mize the edge-cut further. We consider vertices that lie adjacent to another

4.2 graph partitioning using label propagation 49

i← 0, r ← 1
while i ≤ I1 and r 6= 0 do

r ← 0
for all v ∈ V do

p← argmax1≤i≤kNv(i)
if p 6= L(v) and C(L(v)) > smin then

for all (v, u) and (u, v) ∈ E do
Nu(L(v))← Nu(L(v))− degree(v)
Nu(p)← Nu(p) + degree(v)
C(L(v))← C(L(v))− 1
C(p)← C(p) + 1

L(v)← p
r ← r + 1

i← i + 1

Algorithm 4.2: Building an initial partitioning using degree-based label
propagation while keeping the partitionings larger than some
minimum size smin. Here I1 is the maximum number of itera-
tion cycles, and r is the number of vertices that have had their
label updated in the current cycle.

50 self-improving sparse matrix partitionings

i← 0, r ← 1
while i ≤ I2 and r 6= 0 do

r ← 0
for all v ∈ V do

for all 1 ≤ i ≤ k do
if C(i) + 1 ≤ smax then

N′v(i)← Nv(i) ·W(C(i))
else

N′v(i)← 0

p← argmax1≤i≤kN′v(i)
if p 6= L(v) and C(L(v)) > smin then

for all (v, u) ∈ E do
Nu(L(v))← Nu(L(v))− degree(v)
Nu(p)← Nu(p) + degree(v)
C(L(v))← C(L(v))− 1
C(p)← C(p) + 1

L(v)← p
r ← r + 1

i← i + 1

Algorithm 4.3: Weighted degree-based label propagation in order to satisfy
the load-balance constraint while implicitly minimizing the
edge-cut. Here all the parameters have the same purpose as
those of the previous phase, and I2 is the maximum number
of iterations in this phase.

4.3 label propagation based partitioning for hypergraphs 51

part, and call them boundary vertices. In this refinement phase we consider
moving these boundary vertices to adjacent parts, and see if this reduces
the edge-cut. If it does, and adding a vertex to the adjacent part in ques-
tion would not violate our load balance constraints, then we move the vertex
from its current part to its adjacent part. See also Algorithm 4.4.

i← 0, r ← 1
Initialize C without degree-weights
while i ≤ I3 and r 6= 0 do

r ← 0
for all v ∈ V do

for all 1 ≤ i ≤ k do
D(i)← 0

for all (v, u) ∈ E do
D(L(u))← D(L(u)) + 1

x ← argmax1≤i≤kD(i)
if x 6= L(v) and C(x) + 1 ≤ smax then

C(L(v))← C(L(v))− 1
L(v)← x
C(x)← C(x) + 1
r ← r + 1

i← i + 1

Algorithm 4.4: Refining the partitioning to explicitly minimize the edge-cut
by considering moves of boundary vertices to adjacent parts.
Note that here we only consider the number of edges cut,
and ignore the degree of a vertex.

Together these phases form a single-constraint single-objective partition-
ing method, which has been shown to be very efficient and gives good re-
sults on a large number of small-world graphs [44].

PuLP can be extended to optimize for multiple objectives under multiple
constraints. We will not explore this extended method in more detail here,
but instead focus on generalizing these ideas to the partitioning problem for
hypergraphs.

4.3 label propagation based partitioning for hypergraphs

Because PuLP is a relatively inexpensive partitioning method, it makes for
an attractive method when we are interested in obtaining a reasonable good
partitioning that is not necessarily of the highest quality. In the context of

52 self-improving sparse matrix partitionings

1 2 3

4 5 6

n2

n3

n1

1

2

3

4

5

6n1 n2 n3

1

2

3

4

5

6

Figure 4.2.: An example of a hypergraph and its associated clique and star
graph structure.

solving sparse matrix systems (in particular distributing for the SpMV opera-
tion), we have seen that the distribution quality is best modeled when using
a hypergraph instead of a graph. In this section we will discuss possible
generalizations of the PuLP method to hypergraphs.

4.3.1 Indirect methods, graph representations

A straightforward way to apply the PuLP method to hypergraphs is by rep-
resenting our hypergraph as a graph, and run the PuLP partitioner on the
resulting graph. Here we discuss two graph representations, the star graph
G∗ and the clique graph G↔ associated to a hypergraph H = (V ,N).

To construct the star graph, we start with the vertex set V = V , and add
a vertex for each net in H. Then we connect the vertex of each net, with all
the vertices that are in that net. So we write G∗ = (V∗, E∗) where:

V∗ = V ∪ {vni | ni ∈ N}
E∗ =

⋃
ni∈N
{(vni , v) | v ∈ ni}.

We let B be the matrix with a row for every vertex of our hypergraph, and a
column for every net of the hypergraph, and with entries:

bij = 1(vi ∈ nj),

where 1 the indicator function. Then the star graph is precisely the bipartite
graph associated to the matrix B.

4.3 label propagation based partitioning for hypergraphs 53

To construct the clique graph G↔ = (V↔, E↔) we use the vertices of our
hypergraphs, and connect all the vertices that share a net to each other, i.e.
we add a clique for each net in our hypergraph:

V↔ = V
E↔ = {(u, v) | ∃n∈N s.t. u, v ∈ n}.

In terms of the matrix B, this clique graph is exactly the bipartite graph
corresponding to BBT. See also Figure 4.2 for an example of these associated
graphs.

Note that the star graph is much sparser than the clique graph. However,
we expect that the clique graph will yield better results, since vertices that
share a net are direct neighbours in the clique graph, instead of sharing only
a common neighbour (the vertex corresponding to their mutual net) in the
star graph. In particular, for the star graph, this means that when applying
label-propagation, all the information for the distribution of a net has to
pass through the single vertex corresponding to that net. This means that
label propagation will be delayed when compared to the finer structure of
the clique graph. In particular, vertices are only influenced by the majority
color of a net, while in the clique graph they are influenced directly by all
vertices with which they share a net.

4.3.2 Direct methods

In general when applying PuLP to the graph models of the hypergraph that
we introduced, the (hyper)graph partitioning that we obtain minimizes an
edge-cut metric in the graph, which does lead ultimately to a reduction in
the cut-net and (λ− 1)-metric of the hypergraph partitioning. For example,
in the clique graph, vertices that share a net will be neighbours, such that
when an edge is not cut, this means that two vertices in a net have obtained
the same label. In the star graph, minimizing the edge cut means that ver-
tices prefer to have the same label as the majority label in their nets, which
should also end up decreasing the cut-net metric.

However, when optimizing for the cut-net metric (or more generally the
(λ− 1)-metric), we are not interested in obtaining a partitioning where the
majority of vertices in a net share the same label, but where the number of
different labels in a net is as small as possible. Therefore we want to bias the
process towards eliminating a label from a net completely, by reassigning the
vertices to parts that are already well represented in the net. We conclude
that if we want to minimize for the (λ− 1)-metric directly, applying PuLP
to a graph representation of the hypergraph will not suffice. Here we will
describe a possible generalization to hypergraphs which we call Hyper-PuLP.

As in the case of weighted label-propagation we introduce a total weight
function. Let us write Q(v, i) as a total weight function that denotes how

54 self-improving sparse matrix partitionings

preferable it is to (re)assign v ∈ V to part πi. For example, with label propa-
gation (LP) on a graph G = (V, E) we chose:

QLP(v, i) = ∑
(v,u)∈E

1L(u)=i,

where 1 is the indicator function. For weighted label propagation (WLP) we
chose:

QWLP(v, i) = ∑
(v,u)∈E

1L(u)=iw(u),

where in the case of degree-weighted propagation we had w(v) = degree(v).
In the case of minimizing for the (λ− 1)-metric of hypergraphs, the function
Q will be given as a sum over the nets in which a given vertex resides. We
want to encode two simple but key ideas in this function:

• We strongly prefer to not introduce new labels to a net that are cur-
rently not represented in the net. Furthermore when relatively few
vertices in a net have a given label, we prefer not to give this label to
more vertices in the hope that we can eliminate the label from the net
entirely at some later point.

• When a label is already represented a lot of times in a net, we welcome
vertices to take on that label, since we have little hope that we can
eliminate this label from the net entirely.

This means that the contribution of a net n to the total weight function Q(v, i)
should be strongly negative as the number of vertices in n that belong to part
i approaches zero, and should be strongly positive if this number of vertices
approaches the size of the net |n|. Furthermore, we want this behaviour to
be very steep, if a label is almost eliminated, or almost corresponds to the
entire set, we want an exponentially low or high value respectively.

Our initial choice for hypergraph label propagation (HLP) will be:

QHLP(v, i) = ∑
n∈N ,v∈n

wHLP(i, n).

Here the weight function will be taken as the inverse hyperbolic tangent
function:

wHLP(i, n) = log
(

1 + x
1− x

)
.

Here,

x = α

(
2
|n| |{u ∈ n | π(u) = i}| − 1

)
,

which corresponds to the remapping of the interval [0, |n|] to [−α, α]. See
also Figure 4.3. Because the inverse hyperbolic function tends to −∞ and ∞
at the boundary of its domain (−1, 1), we introduce the control parameter α.

4.3 label propagation based partitioning for hypergraphs 55

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

x

lo
g
(1+x 1−

x

)
behaviour of wHLP

Figure 4.3.: The behaviour of the contribution of a net n to the preference
function

In our experiments we found that the precise value of α is not critical for the
behaviour of the partitioner, as long as it is chosen roughly in the interval
[2

3 , 1), which corresponds to the range where the exponential behaviour of
the function becomes apparent. We do not allow for label assignments that
would make a part too large (i.e. moves that would violate the load balance
constraint).

Initialization

In the previous section we have proposed a method to generalize the PuLP
partitioner, in particular the balancing phase, to hypergraphs. Here we will
introduce a method to initialize the hypergraph partitioning.

For graphs it is desired that parts form around vertices of high degree,
so that vertices at the boundary of a part have small degree, which ulti-
mately will lead to a low total edge-cut. For this reason the first phase of
the PuLP algorithm uses degree-weighted propagation. For hypergraphs such
an initial heuristic to form a reasonably good initial partitioning could be
to build a partitioning with parts that keep relatively small nets together.
The reasoning behind this is that we can view the minimization problem of
the (λ− 1)-metric as attempting not to break nets in two. If a net has a low
number of vertices, then this should be easier to accomplish. Furthermore,
the largest nets are most likely to be broken in the final stage, so it may be a
good strategy to disregard these largest nets at first.

56 self-improving sparse matrix partitionings

We consider two options with which we can bias the process towards
keeping small nets together. The first method we consider is to construct a
set of active nets A in the initialization phase. When computing Q(initial)

HLP we
only consider the nets in A:

Q(initial)
HLP (v, i) = ∑

n∈A,v∈n
wHLP(i, n).

We add nets to A after every K cycles over the vertices, where K is a param-
eter we can choose freely. We can do this using different schemes. The main
one we consider will be to sort the nets by size, and after the (Kj)th cycle in
the initial phase the family A will contain the 2j smallest nets of our hyper-
graph. When at least half of all the nets have been added to A we finish the
initialization phase. Another way to view this is that we initially propagate
labels on subhypergraphs of H that contain only nets that have small size.

Another method we consider is to scale the function wHLP directly, by
multiplying it with a factor f (|n|) that depends on the size of the net. Possi-
ble options for such scaling functions are f1(|n|) = exp(1/|n|) or f2(|n|) =
(maxi|ni|) − |n|. The idea is to make small nets count more towards the
preference function Q, such that these are more likely to be kept together
throughout the algorithm.

Implementation

Here we will give some details of sequential algorithms for the Hyper-PuLP
method. In the initial (partitioning) phase we take the matrix in question
A, and construct the hypergraph H according to a model of choice, e.g.
the row-net model. We then choose in a uniformly random manner for
each vertex one of k labels, corresponding to their initial part. Next we
construct a number of data structures that keep track of the current state of
the partitioning. The most important one keeps track of the part distribution
for each net. We do this by constructing a list D of |N | distinct k-tuples.
Each of these tuples encodes how many of the vertices v ∈ n ∈ N are in a
given part, i.e.:

Dn(i) = |{v ∈ n | L(v) = i}|.

We also keep track of the total number of vertices in each part, such that we
can satisfy any balance constraints:

Ci = |{v ∈ V | L(v) = i}|.

4.3 label propagation based partitioning for hypergraphs 57

H ← initializeHypergraph(A)

for all v ∈ V do
L(v)← rand(1, k)

for all n ∈ N do
initializeNetDistribution(Dn)

for all 1 ≤ i ≤ k do
initializePartSize(Ci)

Algorithm 4.5: Initializing the labels and data structures. Here again the
rand(1, k) function returns an integer in the range [1, k] uni-
formly randomly. The initialization functions are trivial and
therefore omitted.

The initialization of the method is summarized in Algorithm 4.5.

procedure PropagateLabel(v, E , L)
Q← [0]
for all n ∈ Ev do

for 1 ≤ i ≤ k do
Q[i]← Q[i] + w(i, n)

p← argmax1≤i≤kQ[i]
if moving v to part p does not violate constraints then

L(v)← p

Algorithm 4.6: Pseudo-code for the label propagation function, on the sub-
hypergraph defined by (V , E). We denote with Ev the set of
nets in E that contain the vertex v. Here we compute the pref-
erence function Q for each part, and update the label to the
part that maximizes this value as long as the move does not
violate the constraints we wish to put. In general these con-
straints can even depend on the phase in which we use this
procedure.

The label propagation procedure presented in Algorithm 4.6 is used for
both phases. Note that we have not explicitly mentioned what constraints
we put on our partitioning during each phase. As mentioned before, the
PuLP method initially allows for oversized or moderately undersized parts

58 self-improving sparse matrix partitionings

during the initial phase. We can employ a similar scheme here, although in
our experiments we will simply disallow moves that lead to oversized parts,
i.e. parts that violate the load-imbalance constraint. This is summarized in
Algorithm 4.6.

A ← ∅
j← 0
while |A| < 1

2 |N | do
A ← {ni ∈ N | i ≤ 2j}
for 1 ≤ j ≤ K do

for all v ∈ V do
PropagateLabel(v,A, L)

Algorithm 4.7: Initial partitioning phase in which we consider subhyper-
graphs A that gradually increase in size. We assume that
the nets are sorted by size.

In the initial phase we maintain the set of active nets, and gradually in-
crease this in size after K cycles, in each of which we update every label
once. Let us assume for simplicity that we have numbered the nets ni with
i ∈ {1, . . . , |N |} such that |ni| ≤ |ni+1| for all 1 ≤ i < |N |. This leads to the
scheme of Algorithm 4.7.

i← 0
while i ≤ I and not converged do

for all v ∈ V do
PropagateLabel(v,N , L)

i← i + 1

Algorithm 4.8: The balancing phase, where our goal is to obtain a good par-
titioning for the entire hypergraph H. Here I is the (maxi-
mum) number of iterations we perform. The hypergraph is
converged if after a complete cycle of updating the labels, we
have not obtained an improved partitioning.

Finally the balancing phase is shown in Algorithm 4.8.
We have left out a number of details, some of which we will briefly men-

tion here:

• We can put different constraints for each phase, and it may be worth-
while, like PuLP, to allow for oversized parts in the initial partitioning
phase on subhypergraphs.

4.4 parallelizing (hyper-)pulp 59

• In general the vertices are weighted, which should be taken into ac-
count when we check against the constraints we put.

• It may be beneficial to visit vertices in a random order each cycle, how-
ever in our experiments we have not seen large improvements when
randomizing the index set.

The propagate label procedure has a time complexity of O(degree(v)k)
where v ∈ V , the degree of v is the number of nets containing v, and k is the
number of parts. If k is large, we can also consider only a constant number
of parts that are represented the most, as well as a constant number of parts
that are represented the least, in any given net. To keep track of these typical
parts for a net we can use an appropriate data structure from which we can
extract such information, e.g. a Fibonacci heap (for each extreme) which can
be updated efficiently to reflect the new part count for each net after a label
update. This will further reduce this complexity.

We apply this function to O(|V|) vertices during our entire algorithm,
and need to sort the nets to construct A. This takes |N | log |N | time. In
total we see that the complexity of our straightforward implementation of
this method is O(|V|vk + |N | log |N |), where v = maxv∈Vdegree(v).

4.4 parallelizing (hyper-)pulp

Because we are interested in mixing partitioning and application steps, we
want to parallelize the partitioning method. For the PuLP algorithm that
targets graphs, it is not hard to parallelize the method for shared memory
systems. Indeed, we can simply divide the vertices among the processors
and let processors do the label propagation for the vertices assigned to them.
This is also described in the original article [44].

In this section we will discuss the challenges when running label propaga-
tion algorithms on systems with distributed memory, and propose possible
ways of handling these issues. We will only discuss the Hyper-PuLP algo-
rithm, although most of the discussion will also apply to the graph partition-
ing method.

4.4.1 Label propagation with distributed memory

We let H be a hypergraph that has been given some initial partitioning, i.e.
the vertices have been distributed over p processors. Within a partitioner
iteration, we let each processor propagate labels for each of the vertices that
has been assigned to it. If processor s wants to update the label for v ∈ V , it
requires the following information:

60 self-improving sparse matrix partitionings

• The (part) distribution of all the nets n ∈ Nv. Note that a part corre-
sponds to a processor t, such that in accordance to the notation intro-
duced before, we write Dn(t) for the number of vertices in net n that
are assigned to processor t.

• The current (total) part sizes, i.e. the number of vertices assigned to
each other processor, which we have called Ct.

If we attempt to keep all this information locally on a processor, we identify
two issues. First, the size of storing Dn(i) for all relevant nets n, grows as
O(|N (s)|p), where N (s) denotes the collection of nets containing at least one
vertex owned by processor s. For e.g. the fine-grain model corresponding to
a matrix A, we have that |N (s)| is at most twice the number of local vertices,
but in general this collection can be prohibitively large, such that this can not
be stored locally. Second, if we update the label of a vertex, it will change
the distribution of all nets containing this vertex, such that information on
remote processors will become outdated very quickly. Because latency is
generally high, it is infeasible to synchronize all processors after every label
update.

The first issue can be overcome by assigning each net to a processor, which
is then responsible for keeping track of the part distribution within that
net. This way, there is no redundant storage required. However, we want
to assign each net to the processor that benefits from knowing this part
distribution most. A possible way of doing is is by assigning each net to
the part (resembling a processor) that owns the most vertices within this net.
This way, processors will have to obtain part distributions stored remotely
less often. The part sizes Ct can still be stored locally, and updated when
required.

However, during a complete cycle over the vertices in a partitioner iter-
ation, a processor will end up requiring data that has the size O(|N (s)|p).
Because it may be infeasible to store all this data simultaneously, we have to
make groups of vertices that have many common nets so that we only have
to consider a subset of this data at any given time. This can be done for
example by matching the local vertices.

The second issue can be overcome by allowing the part distributions of
nets and the part sizes to be outdated, and only update remote counters
after a fixed number of iterations. This significantly reduces the need to
synchronize, but may come at a cost of overall partition quality.

4.4.2 Migration costs

When we reassign a vertex to another part, we require a number of updates
to our data.

4.5 application to spmv partitioning 61

1. The vertex is no longer owned by a processor, which means we have
to migrate the vertex to the new processor it has been assigned to.

2. The part distribution for the nets of this vertex has changed.

3. Also, the majority part of the nets of the vertex could be changed by
this reassignment, which means that the part distribution of that net
too has to be migrated.

4. The part sizes should be updated to reflect the new owner of v.

As hinted at in the previous section, we can cache these changes locally,
and after a fixed amount of iterations update remote data structures only
after a fixed number of iterations. In this way we make sure that the method
has a relatively low migration cost, since we only synchronize when there are
enough changes to warrant the synchronization latency.

4.5 application to spmv partitioning

We can apply the Hyper-PuLP partitioning method to the sparse matrix par-
titioning problem by choosing an appropriate hypergraph model to input to
the problem. However, choosing the best model is not easy. In our initial
experiments we have seen that using the fine-grain model with a random
initial distribution does not lead to good partitionings. Therefore we focus
mostly on choosing between the row-net and the column-net models.

The question of finding a recipe for choosing the best model has been
posed before [18]. If the matrix is non-square, then we could for example
choose the model that minimizes the number of nets. Alternatives may be
to see how dense the nets for each model are, and take as a criterion whether
the median net size is larger for the column-net or row-net model.

Although this might not be feasible in practice, the recipe we will use in
our experiments is to take the model that has the lowest communication
volume when distributed cyclically.

4.6 auto-balancing partitioning and application

In this chapter we have proposed and developed a novel hypergraph parti-
tioning method inspired by label propagation partitioning for graphs, that
has low computational complexity. One of the targets of this partitioning
method could be to obtain reasonably good partitionings in cases where the
matrix to be partitioned is generated ad-hoc, and will only see a single use.
The application we focus on in this work is to find a solution to sparse linear
systems of equations.

If one would have perfect information on the number of times the ma-
trix will be used, as well as the specifics of the hardware the algorithm will

62 self-improving sparse matrix partitionings

run on, then one could in principle predict exactly how the running time
is influenced by the specifics of the matrix distribution (such as load imbal-
ance, communication volume and per-part communication volume). With
this information one could ultimately precisely predict how to balance the
partitioning effort and the actual application to lead to the smallest total cost.

However, the convergence behaviour of a linear solver is highly dependent
on the matrix in question. Furthermore, it becomes increasingly hard to
lower the communication volume through more partitioning effort. In this
section we propose a method to automatically balance the partitioning and
application effort with the goal of minimizing the total (cumulative) running
time.

Partitioning method

The partitioning method we use in this context should be of an iterative na-
ture. In particular, we should be able start from an initial partitioning (this
could even correspond to the cyclic distribution) which we iteratively refine
(from now on we will refer to these steps as partitioning iterations) depending
on information that comes out of our application . For example, by system-
atically inspecting the convergence behaviour e.g. by looking at the residual
||~b− A~xi|| after the ith iteration of our linear solver (from now on called solver
iterations), and comparing this to the required precision ρ, we can try to pre-
dict how many more solver iterations we require, and translate this into the
optimal number of partitioning iterations.

Epochs

To make this more precise we adopt a similar naming scheme to the adaptive
method introduced in [17]. We begin with some initial partitioning π(0)

of (the hypergraph model of) A. We define an epoch to be a number of
applications of A (i.e. solver iterations) before repartitioning, i.e. before the
next partitioning iteration. We will say epoch j has αj solver iterations, after
which the partitioning π(j) will be refined to the partitioning π(j+1).

After each solver iteration we predict with a later specified method the
number of solver iterations left, and we call this number N̂, where the hat
indicates that it is an estimation. Furthermore, we denote with ∆V̂ the (per-
part) communication volume we gained during the previous partitioning
iteration, and with t̂ the (wall) time the iteration took. Let T be the BSP
cost of a single solver iteration, and TSpMV(V) be the BSP cost of the SpMV
algorithm which depends crucially on the communication volume V per

4.6 auto-balancing partitioning and application 63

part. We assume T ≈ TSpMV. If we would not refine our partitioning the
expected running time that is left is:

N̂TSpMV(V),

while if we refine our partitioning, which takes time t̂, the running time that
is left is approximately:

N̂TSpMV(V − ∆V̂).

We therefore take as a criterion to decide whether the next iteration should
be a refinement or a solver iteration respectively, whether or not the following
holds:

N̂TSpMV(V) > t̂ + N̂TSpMV(V − ∆V̂).

Predicting convergence and per-iteration gain

Our criterion requires three estimates to be made; N̂, ∆V̂ and t̂. For the
latter two quantities, our initial experiments indicate that we can take the
communication volume reduction and running time obtained in the previ-
ous partitioner iteration since they remain for more or less constant through-
out the method, until convergence. However, in a parallel setting this may
be very different, and maybe a more sophisticated method will turn out to
be required.

We will thus focus on finding a good estimate N̂, and analyze the cost
of doing so. Good iterative solvers have superlinear convergence behaviour.
We will mean with convergence behaviour the norm of the residual, as a
function of the number of iterations. After k solver iterations, we have a
collection of k pairs: R = {(x, ||rx||) | 0 ≤ x < k}. Because iterative solvers
generally have superlinear convergence behaviour, we can try to model this
using a function:

f̂ (x) = ||r0|| − ax− bx2.

Here, the parameters a, b ∈ R≥0 are taken as non-negative reals. We can find
optimal parameters, in the least-squares sense, by fitting against the data
points in R. Finally we take as N̂ the first y ∈ N such that f̂ (y) < ρ, where
ρ is the tolerance level we require.

The quality of our fit depends on the linear system itself, as well as the it-
erative solver that is used. Minimum residual methods such as GMRES have
the property that the norm of the residual decreases monotonically every it-
eration. This is not necessarily the case for solvers that use another sense
of optimality, in Appendix A we give an overview of the types of Krylov
subspace methods that exist. Linear solvers with more stable convergence
behaviour such as BiCGSTAB [49] may be more suitable for this method than
solvers with erratic convergence behaviour.

Note also that we have some freedom in choosing when to update N̂, since
it is probably not necessary to do so after every iteration.

64 self-improving sparse matrix partitionings

4.7 zee

The workflow of separating partitioning and application is no longer feasi-
ble when we want to apply the methods set out in the chapter, so that we
have to incorporate the partitioning methods within our application. Since
self-improving partitionings depend crucially on the application, we need
software that mixes these two operations. Therefore we have developed a
partitioning framework, named Zee, that does exactly this. We give some
more background and a short introduction to the Zee partitioning frame-
work in Appendix B.

4.8 results

In this section we present the results of some initial experiments that have
been done for the proposed partitioning and balancing methods. For these
experiments a sequential implementation of Hyper-PuLP on top of the Zee
library was used. The programs were compiled with the GNU Compiler
Collection (GCC) 5.2.0. It was executed on a computer running Arch Linux
with Linux kernel 4.2.5. The computer was equipped with an Intel Core
i5− 4670 CPU running at 3.4 GHz, and 4 GB of RAM.

Hyper-PuLP

We have run the Hyper-PuLP algorithms for a variety of matrices found in
the University of Florida collection of sparse matrices [19]. We will focus
exclusively on bipartitionings.

We developed our partitioning method to be a cheap alternative to existing
methods, that is still able to improve the communication volume beyond
the value corresponding to e.g. the cyclic distribution. In light of this, an
important metric will be the relative communication volume compared to a
zero-cost baseline, i.e. the communication volume that could be obtained with
no partitioning effort. For each a matrix A, we let VC be the communication
volume of a cyclic bipartitioning of A. If we let VHP be the communication
volume obtained by the Hyper-PuLP algorithm then we are interested in the
gain G, which we will define as:

G =

(
1− VHP

VC

)
× 100%.

If we average over multiple runs with random initial partitionings, then
we will take for VHP the average communication volume found. If this gain
is large enough, then we have enough room in the communication volume
to apply the method we proposed for balancing the solver- and partitioner
iterations.

4.8 results 65

matrix m n N VHP Vmin
HP VC G model

08blocks 300 300 592 8.0± 0.0 8.0 8 0.0% row-net
GD02_b 80 80 232 35.8± 5.5 21.0 49 27.0% row-net
GD95_c 62 62 287 34.3± 9.2 9.0 50 31.4% column-net
GD97_a 84 84 332 54.1± 6.6 40.0 77 29.7% column-net
IG5-7 62 150 549 49.8± 3.4 42.0 58 14.1% row-net
ash608 608 188 1216 84.4± 12.9 50.0 186 54.6% column-net
ash85 85 85 523 45.2± 8.2 21.0 85 46.9% column-net
cage5 37 37 233 31.6± 2.9 25.0 37 14.6% column-net
cage6 93 93 785 63.3± 7.0 49.0 93 32.0% column-net
ch4-4-b2 96 72 288 51.4± 4.8 39.0 65 20.9% column-net
chesapeake 39 39 340 36.5± 1.8 31.0 37 1.4% column-net
curtis54 54 54 291 31.4± 5.4 16.0 54 41.9% column-net
dwt_162 162 162 1182 73.0± 17.9 30.0 162 55.0% column-net
dwt_87 87 87 541 44.2± 9.2 23.0 85 48.0% column-net
flower_5_1 211 201 602 86.6± 8.3 63.0 51 −69.7% row-net
football 115 115 1226 91.1± 7.9 78.0 115 20.8% column-net
fs_183_3 183 183 1069 126.8± 16.3 98.0 143 11.3% row-net
gams10am 114 171 407 55.1± 3.0 45.0 54 −2.1% column-net
impcol_a 207 207 572 88.7± 10.8 62.0 127 30.2% row-net
lp_scagr7 129 185 465 73.0± 8.4 43.0 72 −1.4% column-net
lp_share1b 117 253 1179 46.7± 12.5 22.0 102 54.2% row-net
lpi_mondou2 312 604 1208 88.3± 16.1 61.0 281 68.6% row-net
mesh1e1 48 48 306 39.5± 7.3 24.0 48 17.6% column-net
odepa400 400 400 1201 135.1± 13.5 103.0 400 66.2% column-net
pde225 225 225 1065 103.2± 18.0 65.0 225 54.1% column-net
rajat05 301 301 1384 125.0± 18.3 86.0 298 58.0% column-net
rdb200 200 200 1120 99.8± 19.6 51.0 200 50.1% column-net
rel5 340 35 656 20.9± 3.1 13.0 33 36.5% column-net
saylr1 238 238 1128 107.5± 19.5 70.0 238 54.8% column-net
steam3 80 80 928 36.4± 14.1 8.0 80 54.5% column-net
west0067 67 67 294 40.8± 7.1 16.0 50 18.5% column-net
wheel_6_1 83 85 254 41.0± 4.9 28.0 58 29.4% row-net
will57 57 57 281 26.1± 8.6 9.0 56 53.4% column-net
ww_36_pmec_36 66 66 1194 38.3± 1.1 38.0 56 31.6% row-net
zed 116 142 666 31.3± 3.4 24.0 37 15.3% column-net

Table 4.1.: Communication volumes obtained by applying Hyper-PuLP to a selection of small matri-
ces over 100 runs with ε = 0.03. The columns show respectively the name of the matrix,
the number of rows and columns, the number of nonzeros, the average communication
volume obtained by Hyper-PuLP and the standard deviation, the minimum communica-
tion volume obtained, the cyclic communication volume, the gain, and the model that
was used.

66 self-improving sparse matrix partitionings

matrix m n N VHP Vmin
HP VC G model

Franz1 2240 768 5120 1220.1± 26.2 1161.0 320 −281.3% row-net
GD99_b 64 64 252 46.6± 6.0 27.0 64 27.1% column-net
M40PI_n1 2028 2028 5007 980.8± 45.2 871.0 948 −3.5% column-net
Roget 1022 1022 5075 579.0± 21.6 539.0 746 22.4% column-net
SmaGri 1059 1059 4919 289.7± 15.2 254.0 375 22.8% row-net
TF10 99 107 622 71.1± 6.0 51.0 95 25.2% row-net
bcspwr06 1454 1454 5300 565.6± 52.8 457.0 1242 54.5% column-net
bcsstk03 112 112 640 42.8± 14.3 0.0 112 61.7% column-net
bp_1000 822 822 4661 371.8± 52.9 262.0 595 37.5% column-net
bp_1400 822 822 4790 281.8± 51.5 179.0 587 52.0% row-net
bp_1600 822 822 4841 282.1± 44.8 195.0 586 51.9% row-net
bp_800 822 822 4534 366.4± 48.5 258.0 582 37.0% column-net
can_73 73 73 377 46.0± 6.3 32.0 73 37.0% column-net
cdde1 961 961 4681 387.0± 48.3 286.0 961 59.7% column-net
de063157 936 1908 5119 362.0± 28.0 296.0 700 48.3% row-net
de080285 936 1908 5082 354.0± 22.7 299.0 700 49.4% row-net
dwt_607 607 607 5131 251.1± 38.1 153.0 607 58.6% column-net
dynamicSoaringProblem_1 647 647 5367 371.8± 32.5 263.0 602 38.2% column-net
gent113 113 113 655 60.6± 8.8 26.0 98 38.1% row-net
illc1033 1033 320 4732 67.2± 19.7 27.0 274 75.5% column-net
l9 244 1483 4659 143.0± 16.0 102.0 244 41.4% row-net
lp_agg2 516 758 4740 227.9± 32.7 131.0 292 22.0% column-net
lp_agg3 516 758 4756 228.7± 30.8 129.0 272 15.9% column-net
lp_recipe 91 204 687 37.7± 10.4 12.0 81 53.5% row-net
lpi_klein2 477 531 5062 54.0± 0.0 54.0 54 0.0% column-net
lpi_pilot4i 410 1123 5264 176.9± 27.4 110.0 393 55.0% row-net
n2c6-b3 1365 455 5460 343.5± 21.9 281.0 455 24.5% column-net
n3c5-b7 30 120 240 22.9± 2.2 17.0 30 23.6% row-net
n3c6-b3 1365 455 5460 339.5± 20.7 281.0 455 25.4% column-net
n4c5-b3 1350 455 5400 340.6± 17.1 295.0 455 25.1% column-net
netscience 1589 1589 5484 356.6± 68.3 237.0 993 64.1% column-net
nos5 468 468 5172 254.9± 51.4 145.0 400 36.3% column-net
nos7 729 729 4617 376.2± 46.6 289.0 729 48.4% column-net
rel6 2340 157 5101 106.0± 6.6 91.0 155 31.6% column-net
spaceStation_3 467 467 5103 239.2± 58.7 96.0 407 41.2% column-net
well1033 1033 320 4732 69.5± 21.2 30.0 274 74.6% column-net
west0067 67 67 294 42.0± 6.2 15.0 50 16.1% column-net

Table 4.2.: Communication volumes obtained by applying Hyper-PuLP to a selection of matrices
with around 5000 nonzeros over 100 runs with ε = 0.03. For a description of the columns
see Table 4.1.

4.8 results 67

matrix m n N VHP Vmin
HP VC G model

CAG_mat364 364 364 13585 172.4± 42.8 64.0 354 51.3% column-net
Chebyshev2 2053 2053 18447 410.5± 45.5 305.0 4 −10161.5% row-net
D_8 1132 1271 14966 824.8± 30.6 773.0 1123 26.6% row-net
USpowerGrid 4941 4941 13188 1811.1± 90.2 1624.0 2605 30.5% column-net
adder_trans_02 1814 1814 14579 1234.5± 133.4 948.0 1733 28.8% column-net
bcsstm37 25503 25503 15525 378.4± 18.6 335.0 440 14.0% column-net
ch7-6-b2 4200 630 12600 494.6± 24.2 430.0 630 21.5% column-net
flower_4_4 1837 5529 16466 1187.3± 48.7 1030.0 1630 27.2% row-net
orsreg_1 2205 2205 14133 995.6± 123.2 672.0 2205 54.8% column-net
photogrammetry 1388 390 11816 246.2± 33.0 132.0 378 34.9% column-net
rajat12 1879 1879 12926 1317.7± 264.6 640.0 1618 18.6% column-net
rdb2048 2048 2048 12032 844.9± 87.1 572.0 2048 58.7% column-net
robot24c1_mat5_J 302 404 15118 225.1± 9.2 208.0 296 23.9% row-net
rosen8 520 1544 16058 201.1± 46.7 87.0 520 61.3% row-net
spaceStation_10 1272 1272 17478 623.0± 127.3 317.0 1213 48.6% column-net
spaceStation_5 1019 1019 15219 463.4± 102.4 254.0 899 48.5% column-net
spiral 1434 1434 18228 418.1± 96.5 177.0 1433 70.8% column-net

Table 4.3.: Communication volumes obtained by applying Hyper-PuLP to a selection of matrices
with around 15000 nonzeros over 100 runs with ε = 0.03. For a description of the columns
see Table 4.1.

matrix m n N VHP Vmin
HP VC G model

TS 2142 2142 45262 1020.0± 153.8 672.0 1960 48.0% row-net
Zewail 6752 6752 54233 2038.1± 260.8 1276.0 3288 38.0% row-net
abtaha1 14596 209 51307 143.4± 6.6 127.0 209 31.4% column-net
bloweybq 10001 10001 69991 7556.4± 770.1 6680.0 10001 24.4% column-net
ca-HepTh 9877 9877 51971 4057.4± 251.2 3563.0 6236 34.9% column-net
complex 1023 1408 46463 384.5± 3.8 348.0 255 −50.8% column-net
eurqsa 7245 7245 46142 4258.9± 160.2 3836.0 6405 33.5% column-net
ex24 2283 2283 48737 892.9± 135.0 633.0 2283 60.9% column-net
l30 2701 16281 52070 1493.8± 73.9 1311.0 2701 44.7% row-net
mark3jac020 9129 9129 56175 4413.1± 230.4 3934.0 7511 41.2% column-net
mimo46x46_system 13250 13250 48735 4417.2± 270.6 3648.0 9851 55.2% row-net
mimo8x8_system 13309 13309 48872 4477.0± 294.8 3693.0 9882 54.7% row-net
rajat13 7598 7598 48922 5144.6± 739.8 3375.0 7536 31.7% column-net

Table 4.4.: Communication volumes obtained by applying Hyper-PuLP to a selection of matrices
with around 50000 nonzeros over 100 runs with ε = 0.03. For a description of the columns
see Table 4.1.

68 self-improving sparse matrix partitionings

0% 20% 40% 60% 80% 100%

G

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

Figure 4.4.: In this figure we plot for all the matrices that were considered, i.e. that were shown in
Tables 4.1 through 4.4, the fraction (vertical axis) for which we were able to obtain at
least an average gain of G (horizontal axis) over 10 runs.

4.9 summary 69

In Table 4.1 we show the results of running the Hyper-PuLP algorithm on
a collection consisting of a selection of relatively small matrices. In all of our
results we exclude matrices that had a cyclic communication volume of 0
from analysis. Also, we disregard matrices for which we were unable to find
an initial partitioning that satisfied the load-imbalance constraint. Note that
for the majority of the matrices, the Hyper-PuLP algorithm is able to greatly
improve upon the cyclic partitioning. In Table 4.2 we show the results for
a selection of matrices that have around 5000 nonzeros. In Table 4.3 the
matrices considered have around 15000 nonzeros. Finally, in Table 4.4 we
consider matrices with around 50000 nonzeros.

In Figure 4.4 we show the fraction of matrices for which a certain gain
over the cyclic distribution was minimally obtained.

We see that there are a limited number of matrices for which the method
performs poorly, and for a small selection we even end up with worse par-
titionings than the cyclic partitioning. Looking at e.g. the structure of the
flower_5_1 and Franz1 matrices, we see that they have a non-structured
non-zero pattern for which the cyclic partitioning does particularly well. In-
specting the behaviour of Hyper-PuLP on these matrices more closely may
lead to ideas for improving the method, so that it also performs well for this
category of matrices.

For these two matrices, as well as the large matrix complex, the model cho-
sen actually yields worse results than the alternative model, but the cyclic
distributions indicate otherwise, resulting in a negative gain. When the algo-
rithm is run with the other model, these matrices actually do obtain an im-
provement over the cyclic communication volume of the other model. This
indicates that a good recipe for choosing a model is a very important com-
ponent of the method discussed in this chapter.

All in all, the numbers we obtained indicate that the Hyper-PuLP method
is certainly capable of improving the communication well beyond communi-
cation volumes that are obtained with no partitioning effort. This warrants
further investigation of partitioning techniques based on label propagation
for hypergraphs.

In Figure 4.5 we show the best bipartitionings obtained for a selection of
the small matrices we considered. In Figure 4.6 we show the best biparti-
tioning found for the cage7 matrix. In Figure 4.7 we show the progress the
algorithm makes while partitioning the steam3 matrix. Note that the rows,
which in this case correspond to the nets, slowly eliminate the non-majority
label throughout the run, which is what we expect to see.

4.9 summary

We proposed a modification to PuLP, a partitioning technique that uses label
propagation, to target the partitioning problem for hypergraphs, which we

70 self-improving sparse matrix partitionings

(a) lap 25. V = 12 (b) cage5. V = 19

(c) karate. V = 12 (d) mesh1e1. V = 22

(e) chesapeake. V = 27 (f) GD01 c. V = 9

Figure 4.5.: Here we show spy plots of the best bipartitionings obtained for
six small matrices. One-dimensional models were used for the
partitioning. The matrix name and the communication volume
are given for each of the matrices.

4.9 summary 71

Figure 4.6.: Here we show spy plots of the best bipartitionings obtained for
cage7. The row-net model was used for the partitioning. The
communication volume that was obtained is V = 111.

72 self-improving sparse matrix partitionings

(a) After 0 iterations. V = 80. (b) After 2 iterations. V = 68.

(c) After 6 iterations. V = 52. (d) After 7 iterations. V = 8.

Figure 4.7.: Here we show snapshots of the intermediate partitionings ob-
tained when applying the Hyper-PuLP method to the steam3

matrix. The number of iterations and the communication vol-
umes are indicated below the figures.

4.10 related work 73

called Hyper-PuLP. We also propose a new method in the form of a balanc-
ing scheme, for minimizing the cumulative runtime of a hypergraph parti-
tioner, and a linear solver. Although this method is formulated such that it
can be applied to any combination of solver and partitioner, the Hyper-PuLP
method is particularly well suited for this balancing scheme because of its
low complexity both in implementation and in runtime. We show that the
Hyper-PuLP algorithm is capable of improving the communication volume
of a distributed sparse matrix well beyond the baseline of a cyclic distribu-
tion.

4.10 related work

The Hyper-PuLP partitioning method is based on the PuLP method by Slota,
Madduri, and Rajamanickam [44]. Henne et al. have recently proposed a
method based on label propagation on the associated clique- and star graphs
of a hypergraph, to improve the coarsening phase in the multi-level method
[27].

4.11 future work

The Hyper-PuLP partitioning method is a general and particularly flexible
method to which many modifications could be made. For example, one
may consider other options for the weight function and the way it should
scale with respect to the size of a net. Also the weight function could be
considered as an energy function in a Monte Carlo method, turning it into a
randomized local search algorithm.

Currently, when the algorithm encounters a local minimum the algorithm
terminates. An alternative would be to make random perturbations when
this happens and let the algorithm continue by refining this perturbed parti-
tioning.

Many optimizations could be made in the implementation of the algo-
rithm. For example, since we only consider a finite set of points as input for
the weight function, we could precompute the hyperbolic functions in these
points to save computational costs. Also a queuing system could be used for
updating the labels similar to the implementation described in [45].

A good recipe should be found for choosing the hypergraph model used.
Here we chose the model that minimizes the cyclic communication volume,
but this may not be feasible in practice.

We could also consider other hypergraph models beyond the one-dimensional
models used in the results shown in this chapter. For example, a pseudo-2D
hypergraph based on the medium-grain partitioning method could be used
as input to the Hyper-PuLP method.

74 self-improving sparse matrix partitionings

Optimizing the parallelization of this algorithm for distributed memory
systems should make for particularly interesting future work.

The method that was discussed for balancing the time spent between par-
titioning and solving a linear system could benefit greatly from more stable
iterative methods for solving linear systems. Furthermore, improvements
could be made in the methods used to estimate N̂, ∆V̂ and t̂.

Part II

M AT R I X A L G O R I T H M S F O R M A N Y- C O R E
A C C E L E R AT O R S

5

B U L K S Y N C H R O N O U S S T R E A M I N G A N D A L G O R I T H M S

Heterogeneous computing plays an important role in modern HPC (high
performance computing). Many supercomputers that dominate the list of
top-supercomputers in recent years, such as the Chinese Tianhe-I and Tianhe-
2 supercomputers, as well as the Titan supercomputer at the Oak Ridge
National Laboratory, use GPGPU (general purpose computing on GPUs) to
obtain their high FLOP-rates. But not only GPUs are used, also for example
FPGAs (field-programmable gate arrays) and many-core coprocessors are
used to accelerate computations. In this section we will develop methods
that target these many-core coprocessors, and propose a streaming framework
within the BSP model which allows BSP algorithms to be generalized to
these systems.

In Section 5.1 we discuss the Parallella, which is a small parallel computer
that will serve as an hardware example to which we can apply the theory
that we develop in this chapter. In Section 5.2 we discuss the implementa-
tion of the BSP model on the Parallella. This is based on joint work with
Abe Wits who is currently a student at Utrecht University, and Tom Ban-
nink who is a PhD candidate at CWI. Next we introduce pseudo-streams
and BSP accelerators which lead to the BSPS model. We will then proceed
by discussing a number of examples of algorithms that fit into the frame-
work we introduced, and propose a new algorithm for performing a SpMV
operation on an accelerator such as the Epiphany processor. We end this
chapter with a discussion on the Epiphany processor as a BSP accelerator,
and we introduce a micro-library for linear algebra on the Parallella that we
developed based on the streaming extension to BSP we will discuss, and the
Zee partitioning framework introduced in the previous chapter.

5.1 parallella and epiphany bsp

The Parallella is a small ‘credit card-sized computer’ which features two
processors. It was launched after a successful crowd-funding campaign on

77

78 bulk synchronous streaming and algorithms

Figure 5.1.: An overview of the features of the Parallella board taken from
the projects’ website [31]. Here only the external connections are
mentioned. Left of the center resides the Adapteva Epiphany
processor, while in the center we have the Zynq ARM processor.

Kickstarter 1. It is inspired by other small-form computing platforms such
as the Raspberry Pi 2 and the Arduino 3, and the development boards are
intended to make parallel programming accessible and open to a large com-
munity. Here we will introduce the specifics of the Parallella board in some
detail, and the platform will serve as a motivation for the theory we develop
in the remainder of this chapter.

The original Parallella board is a small computer that has basic network
capabilities and also support for a number of peripherals, see Figure 5.1.
There are two different processors available. The host processor, which runs
the (Linux) operating system, is a dual-core ARM processor. The second
(co-)processor is what makes the board special; it is a processor based on the
Epiphany architecture which has 16 RISC (reduced instruction set computer)
cores4.

The Epiphany processor architecture [30] defines a square grid of cores
of size N × N. On the processor there is also a network-on-chip (NOC)
present. There is support for single-precision floating point operations. The

1 Parallella: a supercomputer for everyone. https://www.kickstarter.com/projects/

adapteva/parallella-a-supercomputer-for-everyone

2 “The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer
monitor or TV, and uses a standard keyboard and mouse. It is a capable little device that
enables people of all ages to explore computing . . . ” https://www.raspberrypi.org/

3 “Arduino is an open-source electronics platform based on easy-to-use hardware and soft-
ware.” https://www.arduino.cc/

4 There has also been a limited production of Parallella boards with the Epiphany IV processor
which has 64 cores. http://www.adapteva.com/epiphanyiv/

https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone
https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone
https://www.raspberrypi.org/
https://www.arduino.cc/
http://www.adapteva.com/epiphanyiv/

5.1 parallella and epiphany bsp 79

Host RAM, 1GB

DRAM, 32MB

SRAM, 16 × 32kBEpiphany

slow

slow

fast

Figure 5.2.: Overview of the Parallella memory. We also give an indication
of the speed of the different memory lanes available

chip supports core-to-core communication on the processor with very low
latency (in the order of nanoseconds) and zero start-up costs.

We distinguish three layers of memory on the Parallella board. There
is 1GB of RAM available, which is split into two parts; The largest part
is exclusive to the host processor, and we will simply refer to it as RAM,
and a relatively small section which is shared between the host and the
Epiphany called the DRAM (or dynamic memory). Finally there is 32 kB of
local memory present at each core, which we will refer to as the SRAM (or
static memory). See also Figure 5.2. An important feature is the availability
of two DMA (direct memory access) engines at each Epiphany core. These
allow for asynchronous reading and writing among Epiphany cores, and
between the Epiphany cores and the dynamic memory, and will play an
important role in our implementation of pseudo-streaming algorithms.

5.1.1 Epiphany BSP

Epiphany BSP [5] (EBSP) is an implementation of the BSPlib standard [28]
on top of the Epiphany SDK provided for the Parallella. It is released under
the GNU lesser general public license, and was developed by Tom Bannink,
Abe Wits, and Jan-Willem Buurlage. It provides a number of extensions to
the BSPlib standard to accommodate for the dual-processor layout of the
computer.

A typical Epiphany BSP application consists of two separate programs.
The host program configures the application and prepares the data to be
processed by the Epiphany coprocessor, and the kernel is a program that
runs on each of the Epiphany cores in a SPMD manner. All the commu-
nication between Epiphany cores, and between the two processors can be
done using the conventional BSP methods and syntax (e.g. buffered and
unbuffered writes or through message passing mechanisms). A major goal

80 bulk synchronous streaming and algorithms

of the development of EBSP is to allow current BSP programs to be run on
dual-processor hardware such as the Parallella with minimal modifications.

The Epiphany BSP library also provides many utilities to ease the develop-
ment of BSP applications for the Parallella board, such as timers, dynamic
memory management and debugging capabilities. Finally, EBSP also pro-
vides an extension to BSP to support streaming algorithms. We will intro-
duce and formalize this extension in the next section.

5.2 streaming extension to the bsp model

In this section we discuss streaming algorithms. This class of algorithms
can be seen as processing methods for sequential data under typically two
constraints:

Constraint 1. The computer executing the algorithm (or if you prefer, the
algorithm itself) has limited (local) memory L available – typ-
ically much less than the total size S of the input, i.e. L � S.
Here the size is taken as the number of floating-point numbers
that can be stored, or of which the stream consists respectively.

Constraint 2. For each part of the input there is only a limited amount of
processing time available.

An initial description of streaming algorithms has been given already in
1991 [26], but the first formal discussion was given in a 1999 article by Noga
Alon, Yossi Matias, and Mario Szegedy [1]. Many streaming algorithms, in
particular because of the second constraint, are massively parallel and often
employ randomized methods to provide an approximation (typically called
a sketch) of the answer. In the remainder of this section we will give a formal
description of what we mean by a stream and a streaming algorithm, and
will discuss how we can apply this to dual-processor systems such as the
Parallella.

Definition 17. A stream is an ordered and finite collection of n tokens Σ =

(σ1, . . . , σn). Each token fits in the predetermined local memory, i.e. the size
satisfies |σi| < L.

Many additional constraints can be set on streaming algorithms. For ex-
ample, the data stream can be unbounded in size, or is not guaranteed to be
presented in any predetermined order, or each token should be discarded or
archived after a single pass; see e.g. [4, 35].

In particular, streaming algorithms usually refer to algorithms which only
use the input a constant number of times, in many applications even only a
single time. Here we will be much more lenient in the constraints we put on
the algorithms, in particular we will only enforce the first constraint; that the

5.2 streaming extension to the bsp model 81

amount of local memory is severely limited L � |Σ|. Therefore some of the
algorithms we will describe in the context of streams, for example Cannon’s
algorithm for dense-dense matrix multiplication, will not fit into the gen-
eral streaming algorithm framework. The reason is that we are interested
in streaming algorithms not because we want an approximate answer effi-
ciently, but simply because the amount of local memory for the coprocessor
is only sufficient to act on a small collection of tokens at once.

We will call algorithms bulk-synchronous pseudo-streaming (BSPS) algorithms
if they have the following characteristics:

• The input is presented as (possibly multiple) stream(s) of tokens, and
every processor core can only act on a single token at once (for each
stream).

• The input is split into at least p streams Σs, one for each processor
s. All these processors obtain their next tokens from their designated
stream. This leads to algorithms that are naturally parallel.

• The processing of tokens occurs in a bulk-synchronous manner. The al-
gorithms we describe here will be written in a SPMD manner, and we
assert completion of the current pass over a token for each processing
core before moving on to the next.

• Contrary to conventional streaming algorithms there is usually a strict
order in which we process the tokens, and we are allowed to revisit
tokens any number of times.

Many of the typical constraints that are put on streaming-algorithms are not
enforced in what we consider pseudo-streaming. In particular we are free to
reuse tokens any number of times, and furthermore we assume that we have
random access to the tokens within the stream.

5.2.1 BSP accelerators and hypersteps

The BSP cost function provides a convenient method to predict the running
time of a BSP program. We would like to be able to also predict the run-
ning time of a BSPS algorithm, but the architecture of the computers that we
intend to run our algorithms on differ greatly from conventional BSP com-
puters. Therefore we introduce a new kind of BSP computer which we will
call a BSP accelerator. For a BSP accelerator we still define the two parameters
g and l, the communication cost per word and the latency, and we also have
a flop-rate local to each core of the accelerator. In addition we assume lim-
ited local memory L, but we have asynchronous external connections to an
external memory pool of size E� L. We capture the bandwidth to this pool

82 bulk synchronous streaming and algorithms

Host E BSP Accelerator (g, l, e)
async

Figure 5.3.: Schematic overview of a BSP accelator.

with an additional parameter e, which is defined in flops per word similar
to g.

A program for a BSP accelerator consists of a number of hypersteps, each
of which consists of a number of ordinary BSP supersteps. In one hyperstep
the sth processor only acts on a single token of each of the local streams
Σi

s. During a hyperstep the code run can be seen as an ordinary BSP algo-
rithm. After such a step, there is a global bulk-synchronization before every
processor moves on to the next tokens of its local streams. The streams are
prepared by an external processing unit which we will call the host.

Furthermore, we assume that there is an asynchronous communication
mechanism with the external memory pool. During a hyperstep, the next
token can (optionally) be requested, which we call prefetching, and is then
written to a local buffer so that after a hyperstep we can immediately move
on to the next token. This minimizes the down-time within hypersteps, and
is reminiscent of cache prefetching techniques. Indeed one can view our
discussion here as describing a software caching technique in a parallel en-
vironment. Note that prefetching data halves the maximum size of a single
token, since we need to reserve storage for the buffer that holds the next
token.

The main distinction between the classic BSP model and the model we con-
sider here, is the asynchronous fetching from a memory bank of size E, that
is prepared by a black box, which we have called the host. Extensions to the
BSP model that specify parameters for the memory size have already been
studied before, see e.g. [36, 46]. A recent development is Multi-BSP [48], in-
troduced as a model for writing general and portable parallel algorithms for
general multi-core systems. The Multi-BSP model is intended to be general
and can be used to obtain a notion of parameter-independent optimality for
parallel algorithms. For our application, the most distinguishing feature is
prefetching data, and this is not incorporated in Multi-BSP. Contrary to e.g.
the Multi-BSP model, our goal here is specifically to provide a framework
for developing and implementing algorithms for a specific type of system
(with a dual-processor layout) such as the hardware found on the Parallella
board, and consequently we will keep our discussion to a relatively high
level.

We are now ready to discuss the BSPS cost function. Consider a BSPS
program consisting of H hypersteps. We view each hyperstep 1 ≤ h ≤ H as
a separate BSP program, with an associated BSP cost function Th. In every
hyperstep (except for the first) we will prefetch the next token out of external

5.3 examples of bulk-synchronous streaming algorithms 83

memory E with a certain bandwidth. We will denote the inverse of this
bandwidth with e, which is measured in FLOPs per number of words. In this
chapter we will define a data word to be equal to one floating point number,
float for short. For simplicity we assume that every token has size C, and
furthermore we assume that the first token is available for each core of the
accelerator at the start of the program. The BSPS cost of a single hyperstep
then corresponds to the maximum between the time spent processing the
current token, which is equal to Th, and the time taken to fetch the next
token, which is equal to eC. We conclude that the cost function for a BSPS
program should be:

T̃ =
H

∑
h=1

max(Th, eC). (5.1)

If fetching the next token takes more time than processing the current token,
we may say that the hyperstep is bandwidth heavy. Otherwise we say that the
hyperstep is computation heavy.

5.3 examples of bulk-synchronous streaming algorithms

In this section we will discuss a number of algorithms that fit into the frame-
work we described. First we will discuss algorithms for the inner-product
and general dense-dense matrix multiplication. Finally we will propose a
novel BSPS algorithm for dual-processor hardware for the SpMV operation.

5.3.1 Inner-product

As a simple example we will first consider two vectors ~v,~u ∈ Rn of size n,
and construct a BSPS algorithm to compute their inner product α = ~v · ~u =

∑n
i=1 viui. Here we assume that the total number of components ~vi that can

be stored at a single core is much smaller than the local memory L.

We begin by implicitly distributing the vectors over the processing cores
of our BSP accelerator. In this discussion we will use a cyclic distribution so
that P~u(i) = P~v(i) = i mod p. Next we need to partition the resulting data
for the sth core, which we will take as the streams Σ~v

s and Σ~u
s , into a number

of tokens, each of which will fit in a designated chunk of local memory with
a certain chunk size C, see also Figure 5.4.

84 bulk synchronous streaming and algorithms

~v

Σ~v
1

σ~v1 σ~v2

Figure 5.4.: Here we depict the construction of the streams Σ~v
1 for p = 3

processors. Each token consists of C = 2 vector components,
and the total stream size is |Σ~v

1| = 4.

for all 1 ≤ s ≤ p do . On host
Prepare streams Σ~v

s and Σ~u
s .

αs = 0 . On accelerator core s
for all Token pairs σ~vi ∈ Σ~v

s and σ~u
i ∈ Σ~u

s do
αs = αs + σ~vi · σ~u

i

Send αs to all (other) cores
α = ∑

p
t=1 αt

Algorithm 5.1: Summary of the BSPS algorithm for computing the inner
product. After the completion of the algorithm every core
of the accelerator will have computed the value α = ~v · ~u.
This value can then be communicated back to the host.

Every core maintains a partial sum αs throughout the algorithm. We con-
sider each pair of tokens (both consisting of C vector components) and com-
pute locally the inner product of this subvector and add it to αs. After every
token has been considered, the combined partial sums of all the processors
will be equal to the desired value for the inner product α. Note that we can
identify a token with a subvector, and we construct the streams for the two
vectors in a completely identical manner. We summarize the algorithm in
Algorithm 5.1.

Let us consider the BSPS cost of this algorithm. The total number of hy-
persteps is equal to n

pC , and after all the hypersteps have been performed an
ordinary superstep is performed in which the sum of partial sums is com-
puted. In each of these hypersteps we compute an inner product between
two vectors of size C, taking 2C time, and this requires no communication.

5.3 examples of bulk-synchronous streaming algorithms 85

We see that if e > 2 then the hypersteps are bandwidth heavy, otherwise
they are computation heavy.

5.3.2 Multi-level Cannon’s algorithm

Next we will consider a more elaborate example. One of the important
operations in many applications is multiplying a matrix with another matrix.
Here we will consider the product of two dense matrices, which are too large
to fit completely in the local memory of the accelerator. There are a number
of different parallel algorithms for general matrix-matrix multiplication, and
many rely on the recursive nature of matrix multiplication. As an example
we will first consider Strassen’s algorithm. We can divide two matrices A
and B of size n × n in four blocks of size n/2 × n/2, so that the matrix
multiplication AB = C can be written as:

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
.

This divides the problem of matrix multiplication into the multiplication
of 8 pairs of smaller matrices. These products are completely independent
and can thus be computed in parallel. We can subdivide these problems
even further in the exact same manner if we want to use finer-grained paral-
lelization.

We have divided the resulting matrix C into four blocks which we can
write as Ckl with 1 ≤ k, l ≤ 2 resulting in the system of equations:

Ckl =
n

∑
i=1

AkiBil .

Strassen’s algorithm relies on the observation that instead of performing
these eight multiplications, we can find an equivalent system of equations
that only requires seven multiplications of smaller matrices, for the cost of
doing more additions.

The resulting (sequential) algorithm has a complexity of O(nlog2 7), which
is better than the straightforward implementation which has a complexity
of O(n3). Because of its recursive nature it is straightforward to parallelize
Strassen’s algorithm, however it not immediately clear how to generalize
this algorithm to a BSPS algorithm, because the products that have to be
computed in the recursion depend on higher levels making it hard to pre-
pare streams without doing the actual computation. Therefore we will focus
on an alternative algorithm called Cannon’s algorithm [13], which we will
describe in detail. As we will show, this algorithm is easily generalized to a
streaming algorithm.

86 bulk synchronous streaming and algorithms

Cannon’s algorithm

We will first describe the regular version of Cannon’s algorithm which uses
only a single level. We want to compute AB = C for two matrices A and
B. We assume we have N × N processors (for example, the Parallella board
has 42 = 16 processors). We index each processor core with a pair (s, t). We
then split the matrices A and B in N × N blocks of equal size, so we write
for example:

A =

A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN

 ,

so that we can write for the resulting blocks of C:

Cij =
N

∑
k=1

AikBkj 1 ≤ i, j ≤ N.

We see that the resulting block Cij is the result of adding N terms, in each
of which a block of A and a block of B are multiplied. Since there are exactly
N×N blocks Cij, and N×N processors, it would be very natural to let each
processor compute exactly one of these sums in N steps. However there is
one immediate problem: many blocks of A and B are needed simultaneously
in the same step k, and we do not want to copy our blocks to every single
processor since we may assume that there is finite storage, and therefore
limited room for duplication. It turns out that we can rearrange the sum
above so that in step k each processor requires a unique block of A and B,
so that we never have any data redundancies. After computing a term, the
matrix blocks that were used can be moved around to the processor that
needs the block next.

Let us derive this reordering here. Without rearranging the processor
indexed with (s, t) will compute the product AskBkt in the kth step. If we
consider the sth row of processors, we see that they all require the block Ask
in the kth step. Similarly the tth column of processors require the block Bkt
in the kth step. We might get the idea that we could let the processor index
with (s, t) compute the (s + t)th term first (where we identify the N + 1th
term with the first one), looping around all the way periodically until we
compute the (s + t− 1)th term. In summary we could let the processor (s, t)
compute the product:

As,1+(t+s+k−3) mod N B1+(s+t+k−3) mod N,t

in the kth step5. After careful inspection we see that indeed each processor
works on different blocks each step, because this scheme solves simultane-

5 Note that the indices would be much more straightforward had we used 0-based indices, but
we will stick with 1-based indices in this discussion for consistency.

5.3 examples of bulk-synchronous streaming algorithms 87

ously the similar issues of processors in the same row or column requiring
the same block. The next step to consider is to see which processor needs the
blocks of the current step after the processor is done with it. In the (k + 1)th
step, the processor (s, t) needs the A block that was previously owned by
processor (s, 1 + (s + t + k − 3 mod N)) in the previous step, while the B
block was previously owned by (1+(s+ t+ k− 3 mod N), t). We then come
up with the following scheme:

1. Perform an initial distribution of the matrix blocks over the N × N
processors, sending Ai,j 7→ (i, 1 + ((i + j − 2) mod N)) and Bi,j 7→
(i, 1 + ((i + j− 2) mod N)).

2. (Repeat N times:) Let each processor compute the product of the two
local matrix blocks of A and B, adding the result to Cst.

3. Next each processors sends the matrix block of A to the right, i.e. to
processor (s, 1 + (t mod N)), and each matrix block of B down to pro-
cessor (1 + (s mod N), t).

The resulting matrix product C will then be available distributed over the
processors.

Multi-level Cannon’s algorithm

We will now generalize this algorithm to a BSPS variant. The method we
discuss here is similar to the one described in e.g. [42]. The distribution
scheme that we derived in the previous section will not suffice in general
for BSP accelerators, since for reasonably large matrices, dividing them into
N×N blocks will not make them small enough so that they can be stored in
the local memory of the cores. Thus, we need to reduce these sub-problems
in size even further. We do this by subdividing the matrix in two levels.
The first level will no longer consist of N × N blocks, but of M×M blocks,
where M is taken suitably large. Each of these blocks will be divided further
in N × N blocks, which will be distributed over the cores in the method
described above. For example A will now look like this:

A =

A11 A12 . . . A1M

A21 A22 . . . A2M
...

...
. . .

...
AM1 AM2 . . . AMM

 , Aij =

(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...
(Aij)N1 (Aij)N2 . . . (Aij)NN

 .

In total we then have MN ×MN blocks. We can choose our value of M
such that the resulting smaller blocks (Aij)kl are small enough to fit on the
local memory for the processors.

88 bulk synchronous streaming and algorithms

A 21

A 22A 11

A 12

A 21

A 22A 11

A 12

A

Figure 5.5.: The three layers of our modified Cannon’s algorithm. The top
layer is the matrix A, the second layer is the matrix A sliced in
M×M parts, here we have M = 2. Finally at the bottom layer
we have that each of the M2 blocks has been divided into N× N
parts with N = 3. We indicate the communication direction
of the inner blocks for a single outer block in blue, which is
horizontal for the matrix A, and would be vertical for the matrix
B.

Let us now turn our attention to constructing the streams. We will con-
sider the M2 blocks of A in row-major order, and the M2 blocks of B in
column-major order. The blocks will form the tokens, and will all be con-
sidered M times. In every hyperstep we will compute the product of two
blocks using Cannon’s algorithm introduced above. To construct the stream,
we will denote with e.g. (Aij)

0
st (where 1 ≤ i, j ≤ M denote the outer blocks

and 1 ≤ s, t ≤ N denote the inner blocks) the first inner block that the pro-

5.3 examples of bulk-synchronous streaming algorithms 89

cessor (s, t) receives when considering the token Aij. We define (Bij)
0
st in a

similar manner. We are now ready to define the streams:

ΣA
st = (A11)

0
st(A12)

0
st . . . (A1M)0

st︸ ︷︷ ︸
� M times

(A21)
0
st(A22)

0
st . . . (A2M)0

st︸ ︷︷ ︸
� M times

. . . (AM1)
0
st(AM2)

0
st . . . (AMM)0

st︸ ︷︷ ︸
� M times

,

and

ΣB
st = (B11)

0
st(B21)

0
st . . . (BM1)

0
st(B12)

0
st(B22)

0
st . . . (BM2)

0
st(B13)

0
st . . . (B1M)0

st(B2M)0
st . . . (BMM)0

st︸ ︷︷ ︸
� M times

.

Here, we denote with � the order in which we consider the tokens, so that
� M means that we will repeat looping over that particular section of blocks
M times before moving on to the next section of blocks. Note that each block
is only stored in the stream once. We will loop over groups of M blocks of A
a number of M times before moving to the next, while we simply loop over
the M2 blocks of B a total number of M times.

After constructing these streams, from the perspective of an accelerator
we have to multiply the two tokens, corresponding to the outer matrix
blocks, given to us in each of the M3 hypersteps. This is done by com-
puting the product of the two outer blocks with the ordinary Cannon’s al-
gorithm, which can now be applied since we have chosen the outer blocks
to be of small enough size, the result of which is added to the block Cij that
is currently being computed. After every M hypersteps we have completely
computed one of the M2 blocks of C, and we store the result in the (large)
external memory E.

Let us consider the BSPS cost of this algorithm. First we will derive the
BSP cost of Cannon’s algorithm. There are N supersteps in which we com-
pute the product of two inner blocks of size k× k ≡

(n
NM

)
×
(n

NM

)
, which

takes 2k3 flops. Next we send and receive such an inner block consisting
of k2 words. In fact, we do not send or receive such a block in the final
superstep, but for simplicity we will ignore this. Then the BSP cost equals:

Tcannon = N(2k3 + k2g + l).

The number of values in a token, the chunk size C, is given by the number of
values in an inner block which is equal to k2. For simplicity, we will ignore
the costs of storing the resulting blocks. There are M3 hypersteps, so that
we have arrived at the following BSPS cost for this algorithm:

T̃cannon = M3(max(N(2k3 + k2g + l), ek2)).

5.3.3 Streaming implementation of SpMV

The final BSPS algorithm we consider is a localized version of the parallel
SpMV algorithm we have discussed in Chapter 2. Multiplying a sparse ma-

90 bulk synchronous streaming and algorithms

trix with a vector is a particularly bandwidth dependent operation. What
we mean with this is not only that its running time is linear in the size of the
input (the nonzeros of the matrix), but also that the constant factor is very
low. Indeed, each element is only involved in two FLOPs; one multiplication
with a component of ~v, and the addition of the result to a component of ~u.
This can be made concrete with the FLOPs/byte metric, which is 0.25 for
SpMV, i.e. two flops per floating-point number, which is a very low number.
Because of this, improvements in the asynchronous reading speed from the
external memory pool can provide large benefits for this algorithm.

Specific algorithms have been developed for treating sparse matrices in
heterogeneous environments or to make the algorithm cache-friendly. In
particular many specialized algorithms have been developed for treating the
SpMV problem. A number of these modify the matrix to create e.g. sparse
blocks. Here we present an alternative method, that does not require the
explicit modification of the original matrix.

Strips and windows

Again we assume that the working memory at any given time is much
smaller than the total storage requirements for the entire matrix. In other
words, we assume that we do not have random access in the entire matrix
and input/output vectors, but rather at small chunks of the total input at a
time. In particular we want to focus on a given part of the input and output
vectors at a time. Say we are focusing on a limited number of vector com-
ponents vi. After (implicit) permutation of the input vector, we see that this
limits the corresponding current portion of interest in the matrix to a single
strip which can be seen as a consecutive multi-column of the matrix. Simi-
larly, when we require in addition that only a small part of the output vector
is being written to at a time the current section of interest in the matrix is
limited to a window within the previously mentioned strip.

To prepare the matrix for processing by the accelerator, we thus first de-
compose the matrix in a number of multi-columns. After reordering the
columns of the matrix, we may assume that these multi-columns consist of
consecutive columns and form a number of strips. Each of these strips are
split (independently) in a number of windows, depending on the size of the
matrix and the amount of local storage available. See also Figure 5.6.

A good partitioning then reduces to finding a good selection of strips
and windows within these strips. Furthermore, we require good balance
within these windows and strips. The vector components~v are distributed as
well, and we want to minimize the amount of communication within a strip.
Furthermore we want to reduce the number of vector components uj that a
given core writes to. This leads to an entirely new partitioning problem that
is related to the problems we have treated so far. Here we will focus mainly

5.3 examples of bulk-synchronous streaming algorithms 91

~u = A ~v

Figure 5.6.: Strips and windows in our streaming SpMV algorithm. We split
the matrix A into a number of vertical strips. Here we depict the
first strip and the corresponding part of~v in red. Within this strip
we consider windows; these windows and the corresponding
part of ~u are depicted in blue. Here we choose the windows to
start at the top, and move down until we have considered the
entire strip.

on the method and its implementation itself. A straightforward partitioning
method would be to partition the matrix in M × M blocks, much like we
did for Cannon’s algorithm. We would then end up with M strips, and M
windows within these strips. From now on we assume that a partitioning
of A into strips and windows, and a partitioning of ~v has been given. We
ignore the addition of the partial sums, and will assume that this is done by
the black box host after the conclusion of the algorithm.

Constructing the stream

Again we turn our attention on defining the streams and their tokens. There
is one big difference with the algorithms that were treated before, and that
is that the tokens are inhomogeneous. Not only can they be of different
sizes, but we also require completely different information when e.g. we
start considering a new strip or a new window. We will therefore make a
distinction between header tokens and content tokens. The header tokens will
contain information for windows, strips or even the entire algorithm. The
content tokens will represent the components of the input vector and the
entries of the matrix that should be considered next. In the discussion below
we mix the strip header and the vector content token to reduce the number
of different tokens that have to be considered. The remainder of this section
will be devoted to defining these tokens, and we will go into detail how we
define them.

92 bulk synchronous streaming and algorithms

A[1ij] A[2ij]

A[3ij] A[4ij]

A[k11]A[k12] . . . A = A1 ∪ A2 ∪ A3 ∪ A4

RAM
DRAM

SRAM

Figure 5.7.: Here we give an overview of the constructed streams for the
matrix A, for p = 4 processors. The streams are constructed in
the shared DRAM, while each of the windows are sent separately
to the cores and put in the local SRAM.

We construct a single stream, in which the information for both the matrix
ΣA

s and the input vector Σ~v
s is stored. We will have three kind of header tokens,

one global header, a number of strip headers, and a larger number of window
headers. We will have a single kind of content token, a window content token
containing the matrix elements inside the current window. We will discuss
each of these in turn:

1. The global header will contain information about the maximum num-
ber of vector components of ~v the processor will be considering at any
given time over all the strips. Similarly, it will contain the maximum
number of ~u components the processor will write to. It will also con-
tain the maximum number of nonzeros assigned to this processor with
a window, the maximum strip width, and the number of strips. This
way the accelerator core can preallocate the required memory once for
the entire algorithm.

2. The strip header will contain the number of windows within this strip,
the number of local vector components ~v for the strip, and the values
of these components.

3. The window header contains the number of nonlocal vector compo-
nents of ~v that are required for this window, the owners and remote
indices of these components, and the number of nonzeros within this
window.

4. The window content token contains the nonzeros of the current win-
dow using a user-defined storage mechanism.

An important part of implementing these streams efficiently is using appro-
priate local indices for the values Aij, vi and uj. We will number the local

5.3 examples of bulk-synchronous streaming algorithms 93

input vector components for each processor within a strip with numbers
i ∈ {1, . . . , k}. The nonlocal components vi vary from window to window,
and will be given the indices i ∈ {k + 1, . . . , l}, so that the vector compo-
nents that we have to obtain can be stored consecutively. For each window
we will number each column that is non-empty for any given processor
with j ∈ {1, . . . , m}. We will therefore preprocess each window to store the
triplets with indices corresponding to this choice of local indices. Note that
this does not depend on the actual values of ~v such that this only has to be
done once, and can then be reused for different input vectors. Every time
we finish processing a window content token, we store the resulting partial
subvector of ~u in the external memory E.

Note that it is possible to choose the windows independently not only for
each strip, but also for each processor, since all the non-local information
stays the same while processing the current strip.

Horizontal strips

In the discussion above we have taken our strips vertically. This leads to a lot
of communication for the partial results of the output vector ~u. Indeed, there
can be a large number of strips, and for each strip there may be a contribu-
tion to any vector component uj. This leads to a large storage requirement
unless we spend time adding partial results, which would require an addi-
tional read and write from/to the external memory E. However, this choice
does mean that we only consider any given vector component in a single
strip, which means that communication for ~v will be relatively efficient. An
alternative choice is to use horizontal strips. This way, we no longer consider
vector components only once. However, after we are done with a strip we
know the complete result for a part of ~u, eliminating the need to add the
partial results during or at the end of the algorithm. What method is the
fastest depends ultimately on the parameters of the accelerator, as well as
the sparsity pattern of the matrix.

Partitioning for the BSPS SpMV algorithm

Here we will mention some considerations for finding a good partitioning of
the matrix for the BSPS SpMV algorithm discussed above. A good partition-
ing is crucial for the running speed of the algorithm. The main constraints
of the partitioning are that:

• The strips can not be too wide, since we only have room for a limited
part of the input vector ~v.

• Windows cannot be too high such that we limit the number of vector
components ~u that are written to.

94 bulk synchronous streaming and algorithms

Instead of optimizing for the total communication volume, as is the case
in the general parallel SpMV algorithm, here we should optimize for the
combined communication that occurs because of our choice of windows.
There are at least two approaches one can take. The first is to first find a good
global partitioning that reduces the communication volume for the general
algorithm, such as those discussed in Chapter 3; and finding a good selection
of strips and windows while keeping the vector/matrix distribution fixed. A
better approach would be to simultaneously partition the matrix and select
the strips and windows. This is an area that is still to be explored, and would
make for exciting future work.

5.4 the epiphany processor as a bsp accelerator

As a concrete example of a BSP accelerator we will consider the Epiphany-III
chip that is found on the original Parallella board. This chip has a grid of
4× 4 cores which each run with a default clock rate of 600 MHz. As we
mentioned when we introduced the Parallella in Section 5.1, the Epiphany
chip is connected to a portion of memory called the DRAM which we will
take as our external memory E, and each core comes equipped with a DMA
engine which gives us an asynchronous connection to this memory pool.

There are many possible communication paths between the host, the Epiphany
and the various kinds of memory. We are interested in estimating as accu-
rately as possible the inter-core communication speed g, the latency l, and
the read/write speed e from an Epiphany core to the external memory using
the DMA-engine.

Actor Network state Read Write
Core busy 8.3 MB/s 14.1 MB/s

non-busy 8.9 MB/s 270 MB/s
DMA busy 11.0 MB/s 12.1 MB/s

non-busy 80.0 MB/s 230 MB/s

Table 5.1.: These communication speeds were obtained from measurements
done during the development of Epiphany BSP. In the network
state column we indicate if a single core is reading/writing (non-
busy) or if all cores are reading/writing simultaneously (busy).
All the speeds are given per core.

We summarize the results of a number of measurements that were done
during the development of Epiphany BSP in Table 5.1. From this we can esti-
mate e. Note that there is a significant difference between the read and write
speeds when multiple cores are communicating with the external memory
at the same time. We will choose to use the most pessimistic number, the
read speed using the DMA engine from the external memory with a busy

5.4 the epiphany processor as a bsp accelerator 95

network state, since we expect that all cores will simultaneously be reading
from the external memory during a hyperstep. We arrive at an external
inverse bandwidth of:

e ≈ (11 MB/s)−1 ≈ 217 FLOP/float,

where we used that an Epiphany core runs at a default frequency of 600 MHz.
Also we use single-precision floats which have a size of 4 bytes. Note that
this value for e is rather high, which means that we need to do a large num-
ber of FLOPs with every floating point number we obtain or the time of a
hyperstep will have this bandwidth as a bottleneck. This is an obvious limi-
tation of the Parallella board, and is specific to this computer. We note that
this high value for e is not a general property of the Epiphany chip (nor any
other BSP accelerator).

500 1000 1500 2000
Bytes

2000

4000

6000

8000

10 000

cycles

Figure 5.8.: In this figure we depict the number of clock cycles on the vertical
axis as a function of the number of bytes sent on the horizon-
tal axis. These numbers are for reading directly from the local
memory of the next logical Epiphany core by a given Epiphany
core. In blue the raw measurements are shown. There are three
blue lines corresponding to different physical distances between
Epiphany cores that are logical neighbours. The red line denotes
a linear fit against all this data. Note that there are more data
points in the lowest line, causing the fit to be closer to this line.
From this fit we obtain the values for g and l. Alternatively to
the method we used, one could use all-pair communication to
determine these parameters.

96 bulk synchronous streaming and algorithms

For g and l we fit a linear function against the raw measurements that
were obtained for core-to-core reads for a varying number of bytes. It turns
out that the Epiphany hardware is such that this specific type of commu-
nication does not suffer from the large discrepancies between simultaneous
and non-simultaneous communication of multiple cores. The result of this
fit is depicted in Figure 5.8. After compensating for overhead because of
the hardware clock that was used to perform the measurements, we obtain
lr ≈ 1.6 FLOP for the latency, and gr ≈ 13.8 FLOP/float for the inter-core
communication speed for reading6.

Analogous measurements for writes yield: lw ≈ 5.6 FLOP for the write
latency, and gw ≈ 5.0 FLOP/float for the write speed.

We will assume that a BSP program spends an equal amount of time
reading and writing (although on this platform one should prefer to use
writes to obtain the best possible speeds), so that the final values for g and
l will be taken as the average of the values we obtained for reading and
writing:

l ≡ lr + lw

2
≈ 3.6 FLOP,

g ≡ gr + gw

2
≈ 9.4 FLOP/float.

We have implemented the algorithms discussed in this chapter in Zephany7,
a micro-library for the Parallella based on Zee and Epiphany BSP. In the fu-
ture this library could be modified to use the BSPS cost function to decide
whether it is worthwhile to accelerate a given operation using the Epiphany,
without requiring user-intervention to make this choice.

5.5 summary

We have introduced a modification to the BSP model which is more suit-
able for many-core coprocessors. The specifics of these processors lead us
to propose the definition of a BSP accelerator, and made us consider what
we called bulk-synchronous pseudo-streaming algorithms which are able to
run on these accelerators. We gave three examples of these algorithms. Fi-
nally we considered specifically the Epiphany chip as an example of a BSP
accelerator.

6 Starting and stopping the hardware clock takes a specific, fixed number of clock cycles. We
also used that the Epiphany is able to perform one FLOP per clock cycle. We do note however
that there is support on this platform to perform the equivalent of two FLOPs per clock cycle
when performing multiplications and additions in succession, but we will not make use of
this to preserve generality, such that the values are valid for any BSPS algorithm.

7 http://www.github.com/jwbuurlage/Zephany

http://www.github.com/jwbuurlage/Zephany

5.6 future work 97

5.6 future work

There is still a wide range of algorithms and applications that we have not
considered in this context. As an example, we can also imagine the BSPS
cost function to apply to the processing of a video feed, where a frame is
analyzed in each hyperstep. Here we could require the hypersteps to be
bandwidth heavy to ensure that we are able to process the entire video feed
in real-time.

We can also consider other kinds of accelerators, beside many-core co-
processors, such as GPUs or FPGAs, and see if they would fit within this
framework after the necessary modifications. Finally, we can also consider
models in which we have different types of processing units, and develop a
model that uses the BSP and BSPS costs to distribute the work of a single
algorithm in this heterogeneous environment.

5.7 acknowledgments

I would like to thank Tom Bannink and Abe Wits for their work on Epiphany
BSP, and their contribution to the early stages of a streaming extension to the
BSP model. I would also like to thank Adapteva for providing part of the
hardware that was used for the development of the relevant software, and so
that we were able to perform the measurements presented in this chapter.

Part III

A P P E N D I X

A
K RY L O V S U B S PA C E M E T H O D S

One popular category of linear solvers are so-called Krylov subspace meth-
ods [50]. Here we will describe the basic theory, and focus in particular on
a minimum residual method called GMRES. We will see that the important
operations are SpMV and the dot-product, both of which can be parallelized.

First let us specify what we mean by a linear solver. Say we are given a
matrix A ∈ Mm×n and a vector~b ∈ Rm (throughout this research we focus
on problems with real coefficients). We want to find a vector ~x ∈ Rn such
that

A~x =~b. (A.1)

For now we will assume m = n, but the methods we develop also gener-
alize to general rectangular matrices. Finding an exact solution to this can
be done by using algorithms like Gaussian elimination or specialized algo-
rithms such as Cholesky Decomposition, which run in O(n3) time (see e.g.
[24]). However, for large matrices finding the exact solution is infeasible.
Furthermore the Gaussian elimination process does not exploit the sparse-
ness of a matrix, and instead causes fill-in in the matrix – which is something
we want to avoid.

To accommodate solving the linear problem for large and/or sparse ma-
trices, heuristic methods were developed that approximate the vector ~x in
O(n2) time. Krylov subspace methods rely on the Cayley-Hamilton theo-
rem.

Theorem 3 (Cayley-Hamilton). Let A ∈ Mn×n, and let p(λ) = det(λId− A) be
the characteristic polynomial of this matrix. Then A is a zero of the corresponding
polynomial p : Mn×n → Mn×n.

A direct corollary of this theorem is that the inverse of a matrix A is given
by a polynomial p in A of degree k ≤ n:

A−1 = p(A) = c0Id + c1A + c2A2 + ... + ck Ak.

Indeed, if p(A) = 0 then, we have d1A + d2A2 + ...+ dk Ak = −d0Id. We then
factor out A in the left-hand side and divide by −d0 to find Aq(A) = Id for
some polynomial q, such that indeed A−1 = q(A).

101

102 krylov subspace methods

Note that the exact solution to Equation A.1 is given by ~x = A−1~b. This
means in particular that

~x ∈ span{~b, A~b, ..., Ak~b}.

If the matrix A is such that higher powers of A become negligible, i.e. ||Ak~b||
is small for high values of k, then we can try to approximate ~x by using only
small powers of A. This observation shows the usefulness of the definition
of Krylov subspaces.

Definition 18 (Krylov subspace). The kth Krylov subspace corresponding to
a matrix A ∈ Mn×n and a vector ~y ∈ Rn is the space:

Kk(A,~y) = span{~y, A~y, . . . Ak−1~y}

These subspaces give rise to (iterative) Krylov subspace methods. These
methods all follow (roughly) the following scheme:

1. First an initial vector ~x0 is chosen.

2. The following procedure is repeated for each vector ~xi: compute the
residual~ri =~b− A~xi.

3. Find our next guess ~xi+1 in the Krylov subspace Ki(A,~r0) according to
some notion of optimality, e.g. minimizing the residual.

Besides the residual we can also define the error εi as εi = ~x−~xi. We can
view the norm of the error as a measure for convergence in the domain of
A, and the norm of the residual as a measure of convergence in the range of
A. With this notation we can write

A(~xi + εi) =~b, or equivalently A~xi =~b−~ri.

As an example of an iterative scheme we will discuss the simplest example
here, which is known as Richardson iteration. Note that we can rewrite the
first equation above as:

Aεi =~b− A~xi.

Assuming that A is close to the identity matrix A ≈ Id, i.e. for example
||A− Id|| < 1, it is natural to guess εi =~b− A~xi. This leads to the iterative
scheme:

~xi+1 = ~xi +~b− A~xi = ~xi +~ri

Let us see how the residual~ri behaves as i increases by rewriting it in terms
of the initial residual~r0

~ri =~b− A~xi =~b− A(~xi−1 +~ri−1)

= (~b− Axi−1)− A~ri−1 = (Id− A)~ri−1

= (Id− A)i~r0,

A.1 choosing optimal vectors from the subspace 103

such that for the norm of~ri we obtain

||~ri|| = ||(Id− A)i~r0|| ≤ ||(Id− A)i|| · ||~r0|| ≤ ||Id− A||i · ||~r0||.

As before, if A is close to the identity we have ||Id− A|| < 1 such that ~ri
indeed converges to zero, as we desire.

If A is not close to the identity there is a very convenient method we can
apply such that we can still use a similar scheme. This relies on a matrix M,
a so-called preconditioner. The requirement on M is that it is a matrix that is
easily invertible, relative to A, which approximates A in the sense that M−1A
is close to the identity. In particular we require that ||Id − M−1A|| < 1,
because then we can apply M−1 to both sides of Equation A.1, to see that it
converges with the previous argument.

a.1 choosing optimal vectors from the subspace

For the vectors found using Richardson iteration we have

~xi = ~xi−1 +~ri = ~x0 +
i−1

∑
k=0

~rk = ~x0 +
i−1

∑
k=0

(Id− A)k~r0,

so that in particular if we choose ~x0 =~0 we have:

~x ∈ span{~r0, A~r0, . . . , Ak−1~r0} = Kk(A,~r0).

However, it may not be the best vector to approximate the answer in this sub-
space. Therefore, algorithms have been invented that lead to better choices
of vectors ~xi, that are optimal in one of the following senses:

1. Minimum residual. The residual has minimal Euclidean norm:

~xk = argmin~y∈Kk(A,~r0)
||~b− A~y||2. (A.2)

2. Minimum error. The kth vector is taken from a different Krylov subspace,
~xk ∈ ATKk−1(AT,~r0), such that the error

||~x−~xk||2

is minimal.

3. Ritz-Galerkin. The residual ~rk corresponding to ~xk is orthogonal to the
current Krylov subspace:

~rk ⊥ Kk(A,~r0).

4. Petrov-Galerkin. Let B ⊂ Rn be some other suitably chosen k-dimensional
subspace. The residual should be orthogonal to this space:

~rk ⊥ B.

104 krylov subspace methods

In the remainder of this section we will focus on a method that gives opti-
mal answers in the sense of Equation A.2 called GMRES, but many other
methods have been developed for each of these categories.

a.2 gmres

An important Krylov subspace method is GMRES [43], for Generalized
Minimum RESidual. It requires A to be non-singular, non-symmetric and
square – but it can be generalized to include other systems too. It works by
generating a well-conditioned basis for the relevant Krylov subspaces using
an orthonormalization phase called the Arnoldi process. In this process an
upper Hessenberg matrix H is formed to which we can apply an implicit
QR decomposition. Using a least-squares approach we obtain a vector that
satisfies Equation A.2. Here we will introduce this method, and analyze the
basic linear algebra operations that the resulting algorithm requires.

a.2.1 Arnoldi process

The Krylov subspace Ki(A,~r0), in which we find our intermediate vector
~xi, is spanned by the vectors ~r0, A~r0 . . . Ai−1~r0. It might then seem natural
to use these vectors as a basis for our Krylov subspace. However, for high
powers of A these vectors will increasingly point in the direction of the
dominant eigenvector, making this basis increasingly ill-conditioned. This
will eventually lead to large numerical errors.

The Arnoldi process provides a way to compute a well-conditioned or-
thonormal basis of the Krylov subspace while retaining useful information
about the original basis. Here we will use a modified Gram-Schmidt algo-
rithm to implement this process. We define the first basis vector as ~v1 ≡
~r0/||~r0|| – the normalized initial residual. If we want to extend the basis of
the ith Krylov subspace to the (i + 1)th one, we orthogonalize A~vi against
our previous basis to obtain ~vi+1 using Gram-Schmidt with two important
alterations.

Recall that the Gram-Schmidt procedure works as follows: let {~vi} ≡
{~v0, . . . ,~vk} be an orthogonal basis, and let ~w /∈ span({~vi}). Then we can
form an orthogonal basis of span{~vi} ∪ ~w in an inductive manner by defin-
ing ~vi+1 ≡ ~w − ∑i

k=0〈~w,~vk〉~vk. In the modified Gram-Schmidt procedure
we subtract the sum term-by-term, and use the intermediate results in the
inner product instead of ~w. This makes the algorithm less susceptible to
numerical errors, but since the vectors ~vi and ~vj for i 6= j are orthogonal it is
mathematically equivalent.

In the Arnoldi process, we store the results of the inner products encoun-
tered in an upper Hessenberg matrix H. Let {~vi} be an orthonormal basis

A.2 gmres 105

of Ki(A,~r0). We can find an orthonormal basis of Ki+1(A,~r0) by orthogo-
nalizing ~wi+1 ≡ Ai~r0 against {~vi} using modified Gram-Schmidt, by which
we obtain a vector ~wi+1, which we then normalize to obtain ~vi+1. We store
the results of the inner products hji = 〈~wi+1,~vj〉 in the matrix H(i+1,i) of
size (i + 1) × i, and store the norm of ~wi+1 below the diagonal such that
hi+1,i = ||~wi+1||, the other elements of the matrix are defined to be zero. We
then have the following relation

Lemma 1 (Arnoldi Relation). Let H(i+1,i) be defined as above. We define V(k) as
the matrix defined by using the first k vectors ~vi as columns. We then have:

AV(k−1) = V(k)H(k+1,k) (A.3)

Proof. It suffices to show that the relation holds for individual matrix columns
~vj for j ≤ k− 1. The relation then follows from a direct computation:

~vj =
~wj

||~wj||
=

A~vj−1 −∑
j−1
i=1 hi,j−1~vi

hj,j−1

from which we see that

A~vj−1 = ~vjhj,j−1 +
j−1

∑
i=0

hi,j−1~vi =
j

∑
k=0

hk,j−1~vk

which leads to

A~vj =
j+1

∑
k=0

hk,j~vk

as required.

a.2.2 Least-squares approach

Recall that we are interested in finding ~xk ∈ Kk(A,~r0) such that ||~b− A~xk|| is
minimal. Since ~V(k) represents a basis for this space we can write ~xk = ~V(k)~y
for some ~y ∈ Rk. With the choice ~x0 = 0, we can rewrite the norm as follows:

||~b− A~xk|| = ||~b− AV(k)~y|| = || ||~r0||~v1 − AV(k)~y||
= || ||~r0||V(k+1)~e1 −V(k+1)H(k+1,k)~y|| = || ||~r0||~e1 − H(k+1,k)~y||.

Here, we used that V(k+1) is orthogonal and thus norm preserving. We have
thus transformed our problem into a least-squares problem: we want to find
~y ∈ Rk such that:

~y = argmin~z∈Rk || ||~r0||~e1 − H(k+1,k)~z||, (A.4)

which can be solved using QR decomposition. GMRES makes use of the
fact that QR decompositions can be done efficiently for upper Hessenberg
matrices using a sequence of Givens rotations.

106 krylov subspace methods

a.2.3 Givens rotations

Definition 19. A Givens rotation is a transformation of the form

G =

(
a −b
b a

)
(A.5)

such that a2 + b2 = 1.

If we are interested in annihilating the second component of a vector
(

x
y

)
,

we use Givens rotations by requiring G
(

x
y

)
=

(
1
0

)
. For a vector

(
x
y

)
we

see that if we define

a =
x√

x2 + y2
; b =

−y√
x2 + y2

(A.6)

then indeed G
(

x
y

)
=

(
1
0

)
. In general, a vector in Rn can be transformed

into a vector parallel to e1 by a sequence of n− 1 Givens rotations.

a.2.4 QR decomposition

Since H(k+1,k) is an upper Hessenberg matrix, we only need to annihilate a
single element per column, namely those on the subdiagonal, to perform a
QR decomposition. We do this by using a series of Givens rotations. We de-
note the product of the necessary Givens rotations in the QR decomposition
phase of step k, in which we find the vector ~vk+1, by Q(k+1,k), and the result-
ing upper triangular matrix by R(k,k). Thus we find the QR decomposition:

H(k+1,k) = Q(k+1,k)R(k,k).

It is easy to verify that we only have to add single columns to Q and R every
step, and can therefore reuse the decompositions of the prior steps.

Using this QR decomposition we can rewrite the problem Equation A.4:

||~r0||~e1 = H(k+1,k)~y = Q(k+1,k)R(k,k)~y,

(Q(k+1,k))T||~r0||~e1 = R(k,k)~y,

(R(k,k))−1(Q(k+1,k))T||~r0||~e1 = ~y.

Here, we can use that R, as an upper triangular matrix, can be easily inverted.
Finally we find the required vector by ~xk = V(k)~y.

A.3 conjugate gradient 107

a.2.5 The GMRES algorithm

In summary we conclude each ith iteration of the GMRES algorithm consists
of 3 phases:

• Compute the vector ~wi+1 = A~vi. This requires one matrix-vector mul-
tiplication taking up to O(n2) time if the matrix is dense.

• Orthogonalize the vector ~wi+1 against the basis {~vj | j ≤ i} and nor-
malize it, forming the matrix H in the process. This takes a total of i
inner products which take O(n) time each.

• Finally we QR decompose the matrix H, and solve the least squares
problem directly.

Because of the way the algorithm is constructed, we see that the final phase
only takes constant time, since we can reuse the results of the previous itera-
tions. We should also mention that certain optimizations can be applied. For
example, we can restart the search after m iterations, using ~xm as our initial
guess. This keeps the Krylov subspaces of low-dimension, which limits the
number of inner products necessary in the second phase. We can also apply
a preconditioner to the system to further reduce the total running time.

a.3 conjugate gradient

For symmetric square matrices A an equally elegant method has been devel-
oped. In this section we will follow closely the discussion in Chapter 5 of
[50]. We start with the Arnoldi relation Equation A.3, and apply (V(k−1))T

to both sides of the equation. We then find

(V(k−1))T AV(k−1) = (V(k−1))TV(k)H(i+1,i) = H(i,i)

where H(i,i) is the i× i upper block of the upper Hessenberg matrix H(i+1,i).
Since A is symmetric the entire left-hand side is symmetric, and thus H(i,i) is
symmetric. This implies in particular that the matrix H(i+1,i) is tridiagonal,
which we will use to derive a method called the Conjugate Gradient (CG)
method. In this discussion we will denote this matrix with T(i+1,i) to remind
us of the fact that it is tridiagonal.

The Lanczos method

The general method we will derive here is called the Lanczos method, of
which CG is a clever variation. It is of the Ritz-Galerkin category, which
means that each residual ~rk is orthogonal to the previous Krylov subspace
Kk(A,~r0). In this approach we can extend our basis by letting the vector ~vk
coincide with the residual ~rk automatically leading to an orthogonal basis

108 krylov subspace methods

for the next Krylov subspace. Recall also that we have a relation between~rk
and~r0:

~rk = (I − Aq(A))~r0,

where q(A) is some polynomial with constant term equal to the identity
matrix. This follows directly from ~rk = ~b− A~xk and ~xk ∈ Kk(A,~r0). Using
the Arnoldi relation, Equation A.3, we see that for vectors ~vk ≡~rk we have:

A~vk = tk+1,k~vk+1 + tkk~vk + tk−1,k~vk−1,

where tij denotes the coefficients of the tridiagonal matrix T(i,i). Combining
these two equations we find a recurrence relation

ti+1,i + tii + ti−1,i = 0.

Since we let our basis vectors coincide with our residuals we have that
V(k) = R(k), where R(k) is the matrix defined by using the first k residu-
als as columns. We conclude that for CG, the Arnoldi relation reduces to

AR(k) = R(k+1)T(k+1,k). (A.7)

Because R(k) forms a basis for the kth Krylov subspace, we can use it to write
our vector ~xk in terms of a vector inside this subspace. That is, there exists a
vector y ∈ Rk such that:

~xk = R(k)~y.

Because~rk ⊥ Kk(A,~r0), we have:

0 = (R(k))T(A~xk −~b) = (R(k))T AR(k)~y− (R(k))T~b.

We use Equation A.7 to write:

(R(k))T AR(k)~y = (R(k))T~b

=⇒ (R(k))TR(k+1)T(k+1,k)~y = (R(k))T~b

=⇒ (R(k))TR(k)T(k,k)~y = ||~r0||~e1

because the residuals are mutually orthogonal. Scaling inversely with ||~r0||,
we see that we have reduced our original problem to solving T(k,k)~y = ~e1,
from which ~xk will follow.

Saving storage

The CG method is a way to achieve the above without storing the matrix R(k)

explicitly. We assume that the matrix A is, in addition to being symmetric,
also positive definite, such that in particular it has strictly positive elements

A.3 conjugate gradient 109

on the diagonal. Multiplying both sides of Equation A.7 with (R(k))T on the
left, we find

(R(k))T AR(k) = (R(k))TR(k)T(k,k).

Note that the left-hand side is positive definite, and that (R(k))TR(k) is a
diagonal matrix. This implies in particular that the diagonal of T(k,k) is non-
zero, such that we can perform an LU decomposition without pivoting. We
will write

T(k,k) = L(k)U(k).

Starting from ~xk = R(k)~y = R(k)(T(k,k))−1~e1, we see that we can write ~xk as:

~xk = R(k)(U(k))−1(L(k))−1~e1.

We will define Pk ≡ R(k)(U(k))−1 and qk ≡ (L(k))−1~e1, such that we have
~xk = Pkqk. Note that L(k) only has elements on the subdiagonal and the
diagonal, and U(k) has unit diagonal, and elements on the superdiagonal.
From L(k)q = ~e1 we see that:

(qk)0 =
1

L(k)
00

, L(k)
i+1,i(qk)i + L(k)

i+1,i+1(qk)i+1 = 0.

In particular, each iteration we only have to extend the vector q with one
component, which can be computed recursively. We can find a similar re-
cursive relation for the columns of P(k), which we denote by ~p0, . . . ,~pk−1. In
particular we find

~pk =~rk −U(k)
k−1,k~pk−1.

Using ~xk = Pkqk we see that we can compute the next vector recursively:

~xk = ~xk−1 + (qk)k−1~pk−1.

The CG algorithm

The name for the CG method can be explained by observing that the vectors
~pk are conjugate, i.e. orthogonal with respect to the inner product defined by
the symmetric matrix A. Furthermore they are the gradients of the function
f (z) = ||~x −~z||A, where || · ||A is the norm defined by the inner product
induced by A.

We can simplify the notation greatly by observing that we can reuse most
of the information from the previous iteration. We will drop the index from
L, U, P and q, since in each iteration we only need to add an additional
column or element respectively. We will write αi ≡ ~qi, βi ≡ Ui−1,i. In
summary, we have the following recursion relations:

~pk =~rk + βk−1~pk−1

~xk = ~xk−1 + αk−1~pk−1

~rk =~rk−1 − αk−1~pk−1.

110 krylov subspace methods

With a straightforward calculation we can recast these equations to obtain
neat expressions for αk and βk:

αk =
||~rk||2

~pT
k A~pk

βk =
||~rk||
||~rk−1||

.

We see that for the kth iteration in the CG method we have the following
phases:

• Compute ||rk−1||, taking O(n) time.

• We compute βk−1 and ~pk, taking one vector update of O(n) time. Next
we compute the product A~pk taking O(n2) time if the matrix is dense.

• Compute αk, ~xk and~rk. This requires one inner product and two vector
updates.

B
Z E E ; A D I S T R I B U T E D M AT R I X L I B R A RY A N D
PA RT I T I O N I N G F R A M E W O R K

In this chapter we introduce a new partitioning framework called Zee. This
framework is written in modern C++, and can be viewed as a unified soft-
ware library for applications (initially linear algebra and in particular linear
solvers) that also automatically and autonomously optimizes the running
time of the operations involved, by means of balancing and partitioning.

b.1 introduction

There are many software packages available that focus on hypergraph par-
titioning problems, and these packages can all be used to partition sparse
matrices to optimize the running time of the SpMV operations. Examples of
such packages can be found in Table 3.2.

Because there are already so many libraries available, the question arises
“Why write another software library for partitioning?”. For us, the answer is
twofold. First and foremost, we are ultimately interested in mixing (linear)
solver iterations and partitioner iterations, and this fact alone forces us to re-
think the way we develop software for both of these problems. The existing
solution, where the partitioner exists as a completely separate entity, simply
does not suffice. Second, we felt there was room for a partitioning frame-
work that was built more generally than the existing options. In particular,
Zee was written with a number of design goals in mind:

• Fully distributed. Many partitioners are sequential, and are therefore
not only unable to handle matrices that must be distributed from the
start because of their size, they do not scale well either. A major goal
of the framework is to be able to eventually do all computations in

111

112 zee ; a distributed matrix library and partitioning framework

a completely distributed way, without needing centralized or shared
memory.

• Modular and extensible. The library is built generally enough to support
new partitioning methods as they are invented, without requiring to
make major changes to the software. Furthermore, it is easy to extend
its capabilities by adding additional partitioning methods or function-
ality, also for third-party users.

• Maintainable and future-proof. C++ has been a very successful language
for performance-critical applications. The latest revisions of C++, C++11

and C++14 add many features to the language that make it particularly
well-suited for the development of this framework.

• Cross-platform. It is designed to work on embedded systems, personal
computers, and we plan to support distributed computing using e.g.
MPI in a future release. In particular the library has been successfully
tested on multi-core computers as well as the Parallella.

• Integration in applications. In this thesis we have focused on develop-
ing methods for iterative refinement of partitionings. The Zee frame-
work is meant to be integrated in software employing these techniques.
While first we target sparse matrix applications, in the future we could
support more general applications using the same techniques.

The syntax and overall structure of Zee is based on Eigen [25], which is
a ‘C++ template library for linear algebra’, such that it should feel familiar
to use our new framework for users of this popular linear algebra library.
Software development for scientific computing requires careful design and
practices (see e.g. [3] for an overview), and we have taken care to ensure that
every component of the software is of high quality. Zee is available as free
software under the lesser GNU public license (LGPL) at http://git.codu.
in/jwbuurlage/Zee.

b.2 features

In this section we will talk about some of the features of the library. We will
also mention some high-level details that users ought to know if they want
to use the library effectively. Specific implementation details and a number
of usage examples will be given in later sections.

b.2.1 Linear algebra; types and operations

Zee supports both dense and sparse matrix types, and supports many opera-
tions on these matrices. All of these types are distributed on the lowest level.

http://git.codu.in/jwbuurlage/Zee
http://git.codu.in/jwbuurlage/Zee

B.2 features 113

This means in particular that a matrix A consist of a number of images, which
all form mutually disjoint submatrices of A. Although, besides cache-effects,
this should have little implications on the behaviour of the library on shared
memory architectures, it does mean the library is easily extended to systems
with distributed memory. Storage of the matrices is logically separated from
other components of the matrix type. Compatible types (including scalars
and vectors) can be added, subtracted and/or multiplied with each other.

In the initial release of the library only dense vectors are supported. Just
like matrices, vectors are necessarily distributed over multiple images. Many
operations such as taking the dot product of two vectors, and computing the
norm of a vector are supported.

Given a matrix A and a vector~b, solvers can be used to find a vector ~x such
that A~x ≈ ~b. The solvers in Zee are completely general; they can support
any matrix type to ensure cross-platform portability.

b.2.2 Partitioning

Partitioners are capable of (re)distributing a matrix into a number of images.
The specific partitioners that come with the library (stock partitioners) op-
timize the distribution for the SpMV operation. New partitioners can be
added by implementing only a few functions, and can be used instead of
the stock partitioners for all operations that are supported by Zee.

We also support partitioning a (dense) vector. This is always done with
respect to a matrix partitioning, and can be seen as a post processing step.
Conversely, the indices of a matrix can be localized with respect to a vector
partitioning. Operations such as SpMV are performed with local indices,
such that Zee can be used on distributed systems.

b.2.3 Utilities

There is also an accompanying utility library with, among others, the follow-
ing features:

• Loading dense and sparse matrices from the matrix market format [8].

• Elaborate benchmarks can be created using high-precision timers.

• There is also support for making plots using intermediate formats. The
plots are made using matplotlib library [29] for the Python program-
ming language. In particular we support spy plots of matrices, and line
plots for e.g. inspecting convergence behaviour.

• Convenience methods for outputting tabular data can be used to make
reports of the performance of applications that use Zee. We support

114 zee ; a distributed matrix library and partitioning framework

multiple output formats such as comma-separated values and LATEX ta-
bles.

• The logger can be used to track information of running programs, and
to see errors and warnings. All major types that come with the library
can be output using the logger.

b.3 overview of internal structure

Matrix Types

Partitioners

Iterative Partitioners

Operations

Linear Algebra Solvers

Figure B.1.: Here we give a schematic overview of the different modules of
which Zee consists. Relations between modules are indicated
with an arrow. One of the unique features of the library is that it-
erative partitioners and operations work together to minimize their
cumulative run time, this is indicated with a dotted line.

An overview of the modules that are present in the pre-alpha release Zee
are depicted in Figure B.1. The library is written in an object oriented (OO)
fashion. The most fundamental types are (distributed) matrix objects. These
matrix objects are used or manipulated by the other components of the li-
brary, such as partitioners and solvers.

Here we will give a detailed overview of the implementation of every
component, which is relevant for users who want to use the library to its
full capability, as well as for developers who want to extend the library.
We will denote Objects and other code with a monospace font on a gray
background. Our discussion will be such that readers that are familiar with
OO programming, but unfamiliar with C++ syntax should still be able to
grasp the necessary concepts.

matrix types

Every matrix class in Zee derives from Zee::DMatrixBase , which is a base
class for distributed matrices. This base class has a number of template

B.3 overview of internal structure 115

arguments. Arguably the most important arguments decide the types that
are used for the indices, which should always be unsigned integers, and
the values – which can in principle be any type that supports addition and
multiplication operations. These are denoted throughout the library with
TIdx and TVal respectively. The third and final template argument is
Derived . This is done so that the parent (here the base matrix class) knows

the type of its children, which is useful for optimizing certain operations (see
also the section on linear algebra operations). This construction is known as
the curiously recurring template (CRT) pattern. This base class also keeps
track of common traits of matrix types such as the size, and the number of
processors over which it is distributed.

Dense matrices all derive from Zee::DDenseMatrixBase . For multi-core
processors we provide a type Zee::DMatrix , which is the default dense
matrix type on these platforms. This type supports element access via the
at(i, j) member function. It also supports other operations such as trans-

posing.

Much thought has been put into the specific implementation of sparse ma-
trices. The base class for sparse matrices is Zee::DSparseMatrixBase . In
addition to the template arguments of the main base class discussed above,
we also have freedom in choosing the image type.

The sparse matrix object can be used directly or via operations. Since
this object is distributed, when we want to compute e.g. the communication
volume we need to combine the information that is stored over multiple
processors. This means that the elements of the matrix are not stored by the
matrix object itself, but instead it holds references to its images (by default
of the Zee::DSparseMatrixImage type) on other processors, which in turn
hold references to an object that actually stores the matrices.

Sparse matrices can be stored in a great number of ways. In fact, in some
applications such as computerized tomography they need not be stored ex-
plicitly at all. The Zee library recognizes this fact, and makes very little as-
sumptions on the specific underlying storage mechanisms – which can even
be supplied by the user. The storage objects need only support iterating over
the triplets that make up the image (by implementing a type that conforms
to the methods defined in Zee::StorageIteratorTriplets). These triplets
can be computed on the fly, or can be stored explicitly. This makes it simple
to implement general algorithms that work just as well with compressed or
implicit storage mechanisms, as well as in applications where the triplets are
stored explicitly.

Vector objects derive from Zee::DVectorBase , and are viewed as dense
matrices of size n× 1. Specific information about a vector such as its norm
or size can be requested using the appropriate functions.

116 zee ; a distributed matrix library and partitioning framework

operations on vectors and matrices

Compatible objects can be multiplied, added, subtracted, scaled etc. We
support basic linear algebra operations such as the matrix-vector product,
the matrix-matrix product, the dot product etc. A future goal is to support
all BLAS operations, and possible even leverage LAPACK [2] routines.

To prevent the unnecessary creation of temporary objects every expression
involving linear algebra types is first combined into a recursive type corre-
sponding to a tree of the expression (similar to an abstract syntax tree). This
construction is known as expression templates, and can be used to optimize
operations at compile time. It also makes it much easier to implement new
operations that can be used together with existing operations.

v+

* *

A u A w

Figure B.2.: Here we consider the expression v = A * u + A * w . First a
type tree of multiple objects of type Zee::BinaryOperation is
constructed. Then we put v equal to this type, in effect calling
the equal-sign operator. This operator recursively calls the ap-
propriate functions which perform the operations in an efficient
manner, for example the results can be written directly to v .

Consider for example the expression v = A * u + A * w , where u and
w are of Zee::DVector type, and A is a dense matrix of type Zee::DMatrix .

Every operation such as A * u returns an object that encodes the operation.
In this case it will be a binary operation, with a dense matrix in the left hand
side, and a vector in the right hand side. In particular it will be of type
Zee::BinaryOperation<Zee::DMatrix, Zee::DVector> . These operation

types can be combined. Indeed, in our main example the operation + has
another binary operation on the left- and right hand side. These operations
are not performed until the entire expression formed is assigned to an ob-
ject, in this case the vector v . In this way we can directly use the storage
allocated for this resulting vector without introducing any temporary objects
for the intermediate results. We also have very fine control over the way the
operations are performed. See also Figure B.2.

B.3 overview of internal structure 117

Operations are performed by functions with the signature
perform operation<TOperation> . New operations can be added by im-

plementing this function for appropriate operation types. We can also use
this function to manipulate the tree while the program is compiling. For
example, we may detect that:

v = A u + A w = A(u + w) ,

and note that the right-most expression is more efficient to compute than
the original expression. By rearranging the tree, and recursively calling the
function that performs the computation on the new type we can compute v

more efficiently.

Partitioning matrices

Partitioners are objects that modify the distribution of a matrix object. In
particular it can create, modify or destroy images corresponding to a ma-
trix. The base partitioner type is Zee::Partitioner . Every partitioner
must implement a method for initialization, and a method for partitioning.
A number of partitioners are supplied with Zee. Examples are basic par-
titioners corresponding to the cyclic, block, or random distributions, and
more advanced partitioners such as multi-level partitioners based on the
KLFM heuristic, and flavours of these partitioners such as the medium grain
method.

There is a special type of matrix partitioner called an iterative partitioner
which are partitioners that derive from Zee::IterativePartitioner . In
addition to a partition method, these partitioners must also implement a
refine method. This method should be able to (iteratively) refine the parti-
tioning of a matrix.

Vector partitioner

After a matrix has been partitioned it is ready to perform parallel operations
such as the SpMV, ~u = A~v. However, to realize the communication volume
that a partitioner obtains we need to have an appropriate distribution for
the vectors that are involved in this operation. In principle this can be done
greedily, by assigning a vector component of ~u and ~v to any processor in
the corresponding row or column respectively. For iterative solvers we may
require that the distribution of a vector ~v and the resulting vector ~u are iden-
tical, since the resulting vector will be multiplied with A in the next iteration.
This is an example where we want a more involved vector partitioner.

Vector partitioners derive from Zee::VectorPartitioner . Zee comes
with a vector partitioner Zee::GreedyVectorPartitioner that finds a good

118 zee ; a distributed matrix library and partitioning framework

distribution for ~v and ~u when the application requires that they should be
identical.

Iterative solvers

The final module we will discuss in detail is the iterative solver. In partic-
ular we will discuss how they combine with iterative partitioners to mini-
mize the runtime of an application. Solvers implement a single function, e.g.
Zee::GMRES::solve . This method takes as arguments at least a matrix A,

a vector ~b, an initial guess ~x0 and various parameters specific to the solver,
such as the number of iterations and the tolerance level.

Solvers that combine with partitioners take in addition an iterative parti-
tioner as its argument. By expecting the convergence behaviour it estimates
the number of iterations left, and it combines this information with the com-
munication volume and the iterative partitioner to decide whether to refine
the matrix A using the supplied iterative partitioner. The net result is that
the total runtime of the solver is optimized.

b.4 examples

To give an idea of what the library looks like in practice, and how to write
programs using Zee, we give a number of basic example C++ programs here.
We begin with initializing matrix and vector objects.

Listing B.1: Initializing vectors and matrices

1 // matrices are initialized with a single image containing

2 // all zeros by default

3 auto A = DSparseMatrix<unsigned int, float>(rows, cols);

4

5 // we can construct sparse matrices by supplying triplets

6 std::vector<Triplet<unsigned int, float>> triplets;

7 A.setFromTriplets(triplets.begin(), triplets.end());

8

9 // they can also be loaded from a matrix market file

10 // by default the matrices are distributed cyclically over the

11 // ‘procs‘ processors

12 auto A = DSparseMatrix<unsigned int, float>("matrix.mtx", procs);

13

14 // dense matrices can be loaded in similarly

15 auto B = DMatrix<unsigned int, float>(rows, cols);

16 B.at(0, 0) = 1.0f;

17 auto B = DMatrix<unsigned int, float>("dense_matrix.mtx", procs);

18

B.4 examples 119

19 // vectors are zero initialized by default, and can be

20 // viewed as (n x 1) dense matrices

21 auto v = DVector<unsigned int, float>(size);

22

23 // they can also be filled with a supplied value

24 auto value = 1.0f;

25 auto v = DVector<unsigned int, float>(size, value);

Now that we have seen a number of ways to initialize matrices and vectors,
we are ready to show how we can perform operations with these objects.

Listing B.2: Basic linear algebra

1

2 // we initialize some objects

3 DVector<> v, w;

4 DSparseMatrix<> A;

5 DMatrix<> B;

6 DMatrix<> C;

7

8 // we can add and subtract vectors

9 DVector<> u1 = v + w;

10 DVector<> u2 = v - w;

11

12 // we can multiply matrices with vectors

13 DVector<> u1 = A * v;

14

15 // we can multiply matrices with matrices

16 DMatrix<> D = B * C;

17

18 // we can combine any number of operations as we see fit

19 DVector<> u1 = 2.0f * A * (v + w) + v;

20

21 // or even reuse existing vectors

22 w = A * v;

Next we show how to partition matrices and vectors explicitly. Note that
there is a difference in how ordinary partitioners, and how iterative parti-
tioners are used.

Listing B.3: Partitioning matrices and vectors

1 // we initialize some objects

2 DVector<> v, w;

3 DSparseMatrix<> A, B;

4

120 zee ; a distributed matrix library and partitioning framework

5 // we can (bi-)partition the matrix A using e.g. medium-grain

6 MGPartitioner<decltype(A)> mediumGrain(epsilon);

7 mediumGrain.partition(A);

8

9 // we can refine the partitioner with MG-IR

10 while (!mediumGrain.locallyOptimal()) {

11 mediumGrain.refine(A);

12 }

13

14 // we can also use Hyper-PuLP to partition

15 PulpPartitioner<decltype(B)> pulp(B, procs, epsilon);

16 pulp.initialize(HGModel::row_net);

17

18 // we obtain an initial partitioning

19 pulp.initialPartitioning(iterations);

20

21 // and now we can perform refinement iterations using

22 pulp.refine();

23

24 // if we want to perform a SpMV we need to partition the vector

25 GreedyVectorPartitioner<decltype(A), decltype(b)> greedy(A, v, w);

26 greedy.partition();

27

28 // we localize the indices of the matrix for efficiency

29 greedy.localizeMatrix();

30

31 // now we can perform the SpMV

32 v = A * w;

The final example we will discuss here is how to use solvers. The solver
that is supplied with Zee is (modified) GMRES. We plan to add more solvers
after the initial release.

Listing B.4: Solving linear systems

1 auto A = DSparseMatrix<TVal, TIdx>("matrix.mtx", procs);

2 auto b = DVector<TVal, TIdx>(A.getRows(), 1.0);

3

4 // initial x is the zero vector

5 auto x = DVector<TVal, TIdx>(A.getCols());

6

7 // Start GMRES

8 GMRES::solve<TVal, TIdx>(A, // Matrix

9 b, // RHS vector

10 x, // initial guess for x

B.5 extending zee 121

11 outer, // outer iterations

12 inner, // inner iterations

13 epsilon, // tolerance level

14 true); // plot residuals

We have only shown the basic usage of Zee here. The user has a lot of
control over the inner workings of the algorithm, but the library has been
built with sensible defaults such that it can also be used right out-of-the-box.

b.5 extending zee

In this section we describe how to extend Zee, either by implementing new
features or by supplying platform specific types.

We note that direct contributions to the library are also welcomed. The
source code of the initial release is hosted on GitHub1 and further details on
how to contribute to the library can be found there. More information on
how to use and extend the library for specific applications can also be found
on GitHub.

Extending Zee is typically done by implementing subclasses of the ap-
propriate built-in types. As an example of this, we mention that we have
successfully ported the library to the Parallella platform by providing spe-
cial implementations of components of the sparse matrix, dense matrix and
vector classes. The only other thing that is necessary is to write platform
specific code for the implementation of basic linear algebra functions. For
this specific platform, we have implemented the BSPS algorithms described
in Chapter 5.

The implementation of Zee on the Parallella is released as a separate micro-
library which we have called Zephany2 and depends on Epiphany BSP and
Zee itself.

Custom types and partitioners can be created by providing subclasses of
the appropriate classes. These user-defined classes can be used as input for
the partitioners and solvers that come with Zee, and can leverage features of
Zee such as reusing the implementation of built-in classes, custom storage
for sparse matrices, and the utility library.

1 http://www.github.com/jwbuurlage/Zee

2 http://www.github.com/jwbuurlage/Zephany

http://www.github.com/jwbuurlage/Zee
http://www.github.com/jwbuurlage/Zephany

B I B L I O G R A P H Y

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer and System
Sciences, 58(1):137 – 147, 1999.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[3] D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis,
Richard T. Guy, Steven H. D. Haddock, Katy Huff, Ian Mitchell, Mark D.
Plumbley, Ben Waugh, Ethan P. White, Greg Wilson, and Paul Wilson.
Best practices for scientific computing. CoRR, abs/1210.0530, 2012.

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In IN PODS,
pages 1–16, 2002.

[5] Tom Bannink, Jan-Willem Buurlage, and Abe Wits. Epiphany BSP 1.0.
http://www.codu.in/ebsp/docs/, 2015.

[6] Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach
using BSP and MPI. Oxford University Press, 2004.

[7] Rob H. Bisseling, Bas O. Fagginger Auer, A. N. Yzelman, Tristan van
Leeuwen, and Ümit V. Çatalyürek. Two-dimensional approaches to
sparse matrix partitioning. In Uwe Naumann and Olaf Schenk, editors,
Combinatorial Scientific Computing, Computational Science Series, pages
321–349. CRC Press, Taylor & Francis Group, Boca Raton, FL, 2012.

[8] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett,
and Jack J. Dongarra. Matrix market: A web resource for test matrix
collections. In Proceedings of the IFIP TC2/WG2.5 Working Conference on
Quality of Numerical Software: Assessment and Enhancement, pages 125–
137, London, UK, UK, 1997. Chapman & Hall, Ltd.

[9] Achi Brandt. Multi-level adaptive solutions to boundary-value prob-
lems. Mathematics of Computation, 31(138):333–390, 1977.

[10] T. Bui and C. Jones. A heuristic for reducing fill-in in sparse matrix
factorization. In Proceedings Sixth SIAM Conference on Parallel Processing
for Scientific Computing, pages 445–452. SIAM, Philadelphia, PA, 1993.

123

http://www.codu.in/ebsp/docs/

124 Bibliography

[11] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex
and edge partitions is NP-hard. Inf. Process. Lett., 42(3):153–159, May
1992.

[12] Andrew E. Caldwell, Andrew B. Kahng, and Igor L. Markov. Improved
algorithms for hypergraph bipartitioning. In Proceedings Asia and South
Pacific Design Automation Conference, pages 661–666. ACM Press, New
York, 2000.

[13] Lynn Elliot Cannon. A Cellular Computer to Implement the Kalman Filter
Algorithm. PhD thesis, Bozeman, MT, USA, 1969. AAI7010025.

[14] Ümit V. Çatalyürek and Cevdet Aykanat. Decomposing irregularly
sparse matrices for parallel matrix-vector multiplications. In A. Ferreira,
J. Rolim, Y. Saad, and T. Yang, editors, Proceedings Third International
Workshop on Solving Irregularly Structured Problems in Parallel (Irregular
1996), volume 1117 of Lecture Notes in Computer Science, pages 75–86.
Springer-Verlag, Berlin, 1996.

[15] Ümit V. Çatalyürek and Cevdet Aykanat. PaToH: A multilevel hyper-
graph partitioning tool, version 3.0. Technical report, Department of
Computer Engineering, Bilkent University, Ankara, Turkey, 1999.

[16] Ümit V. Çatalyürek and Cevdet Aykanat. A fine-grain hypergraph
model for 2D decomposition of sparse matrices. In Proceedings Eighth In-
ternational Workshop on Solving Irregularly Structured Problems in Parallel
(Irregular 2001), page 118. IEEE Press, Los Alamitos, CA, 2001.

[17] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy,
and L.A. Riesen. Hypergraph-based dynamic load balancing for adap-
tive scientific computations. In Proc. of 21st International Parallel and Dis-
tributed Processing Symposium (IPDPS’07). IEEE, 2007. Best Algorithms
Paper Award.

[18] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. On two-
dimensional sparse matrix partitioning: Models, methods, and a recipe.
SIAM J. Sci. Comput., 32(2):656–683, February 2010.

[19] Timothy A. Davis. University of Florida sparse matrix collection. Online
collection, http://www.cise.ufl.edu/research/sparse/matrices, Depart-
ment of Computer and Information Science and Engineering, Univer-
sity of Florida, Gainesville, FL, 1994-2004.

[20] K. D. Devine, E. G. Boman, R.T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek. Parallel hypergraph partitioning for scientific computing.
In Proceedings IEEE International Parallel and Distributed Processing Sym-
posium 2006, page 102. IEEE Press, Los Alamitos, CA, 2006.

Bibliography 125

[21] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for im-
proving network partitions. In Proceedings of the 19th Design Automation
Conference, DAC ’82, pages 175–181, Piscataway, NJ, USA, 1982. IEEE
Press.

[22] A. E. Fincham and B. Ford, editors. Parallel Computation (The Institute
of Mathematics and its Applications Conference Series, New Series). Oxford
University Press, 1994.

[23] W. Fortes and K.J. Batenburg. Quality bounds for binary tomography
with arbitrary projection matrices. Discrete Applied Mathematics, 183:42–
58, mar 2015.

[24] Gene Golub and Charles van Loan. Matrix computations. The Johns
Hopkins University Press, Baltimore, 2013.

[25] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http://eigen.

tuxfamily.org, 2010.

[26] David Heath, Simon Kasif, S. Rao Kosaraju, Steven Salzberg, and Gre-
gory Sullivan. Learning nested concept classes with limited storage.
In Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence - Volume 2, IJCAI’91, pages 777–782, San Francisco, CA, USA, 1991.
Morgan Kaufmann Publishers Inc.

[27] Vitali Henne, Henning Meyerhenke, Peter Sanders, Sebastian Schlag,
and Christian Schulz. n-level hypergraph partitioning. CoRR,
abs/1505.00693, 2015.

[28] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau,
Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H.
Bisseling. BSPlib: The BSP programming library. Parallel Computing,
24(14):1947–1980, 1998.

[29] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In
Science & Engineering, 9(3):90–95, 2007.

[30] Adapteva Inc. Epiphany architecture reference: http://www.adapteva.
com/docs/epiphany_arch_ref.pdf, 2012.

[31] Adapteva Inc. Parallella project website: http://www.parallella.org,
2012.

[32] A. C. Kak and Malcolm Slaney. Principles of Computerized Tomographic
Imaging. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2001.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.parallella.org

126 Bibliography

[33] George Karypis and Vipin Kumar. Multilevel k-way hypergraph parti-
tioning. In Proceedings 36th ACM/IEEE Conference on Design Automation,
pages 343–348. ACM Press, New York, 1999.

[34] B. W. Kernighan and S. Lin. An efficient heuristic procedure for parti-
tioning graphs. Bell System Technical Journal, 49(2):291–307, feb 1970.

[35] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency
counts over data streams. In Proceedings of the 28th International Confer-
ence on Very Large Data Bases, VLDB ’02, pages 346–357. VLDB Endow-
ment, 2002.

[36] W. F. McColl and A. Tiskin. Memory-efficient matrix multiplication in
the BSP model. Algorithmica, 24(3-4):287–297, 1999.

[37] M. E. J. Newman. Detecting community structure in networks. The Euro-
pean Physical Journal B - Condensed Matter and Complex Systems, 38(2):321–
330, 2004.

[38] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web, 1999.

[39] Daniël M. Pelt and Rob H. Bisseling. A medium-grain method for fast
2D bipartitioning of sparse matrices. In Proceedings IEEE International
Parallel and Distributed Processing Symposium 2014, pages 529–539. IEEE
Press, 2014.

[40] Daniël M. Pelt and Rob H. Bisseling. An exact algorithm for sparse
matrix bipartitioning. Journal of Parallel and Distributed Computing, 85:79

– 90, 2015. IPDPS 2014 Selected Papers on Numerical and Combinatorial
Algorithms.

[41] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near
linear time algorithm to detect community structures in large-scale net-
works. Phys. Rev. E, 76:036106, Sep 2007.

[42] James A. Ross, David A. Richie, Song J. Park, and Dale R. Shires. Paral-
lel programming model for the Epiphany many-core coprocessor using
threaded MPI. In Proceedings of the 3rd International Workshop on Many-
core Embedded Systems, MES ’15, pages 41–47, New York, NY, USA, 2015.
ACM.

[43] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems. SIAM Jour-
nal on Scientific and Statistical Computing, 7(3):856–869, 1986.

Bibliography 127

[44] George M. Slota, Kamesh Madduri, and Sivasankaran Rajamanickam.
PuLP: Scalable multi-objective multi-constraint partitioning for small-
world networks. In 2014 IEEE International Conference on Big Data (Big
Data). Institute of Electrical & Electronics Engineers (IEEE), oct 2014.

[45] G.M. Slota, S. Rajamanickam, and K. Madduri. BFS and coloring-
based parallel algorithms for strongly connected components and re-
lated problems. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 550–559, May 2014.

[46] Alexandre Tiskin. The bulk-synchronous parallel random access ma-
chine. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves
Robert, editors, Euro-Par’96 Parallel Processing. Vol. II, volume 1124 of
Lecture Notes in Computer Science, pages 327–338. Springer-Verlag, Berlin,
1996.

[47] Leslie G. Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103–111, 1990.

[48] Leslie G. Valiant. A bridging model for multi-core computing. Journal of
Computer and System Sciences, 77(1):154 – 166, 2011. Celebrating Karp’s
Kyoto Prize.

[49] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging vari-
ant of Bi-CG for the solution of nonsymmetric linear systems. SIAM
Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.

[50] H. A. van der Vorst. Iterative Krylov methods for large linear systems. Cam-
bridge University Press, Cambridge, 2009.

[51] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data
distribution method for parallel sparse matrix-vector multiplication.
SIAM Review, 47(1):67–95, 2005.

	Sparse Matrix Partitioning
	Solving systems of linear equations
	Optimizing linear solvers
	Example: Computed Tomography
	Example: Google's PageRank Algorithm

	Operations with Sparse Matrices
	Parallel computing
	The BSP model

	Parallel Sparse Matrix Vector multiplication
	Predicting the performance of parallel SpMV
	Sparse matrix distributions
	Quality of a distribution

	Summary

	Partitioning techniques for sparse matrices
	Theory and notions
	Partitioning a graph
	Modeling a sparse matrix as a (hyper)graph
	k-way matrix partitionings
	Vector partitioning

	Methods
	Kernighan-Lin
	Multi-Level methods
	Medium-grain method
	PuLP
	Hypergraph partitioning software

	Self-improving Sparse Matrix Partitionings
	A detailed look at the PuLP algorithm
	Label propagation

	Graph Partitioning using Label Propagation
	Label Propagation based Partitioning for Hypergraphs
	Indirect methods, graph representations
	Direct methods

	Parallelizing (Hyper-)PuLP
	Label propagation with distributed memory
	Migration costs

	Application to SpMV partitioning
	Auto-balancing partitioning and application
	Zee
	Results
	Summary
	Related work
	Future work

	Matrix Algorithms for many-core accelerators
	Bulk Synchronous Streaming and algorithms
	Parallella and Epiphany BSP
	Epiphany BSP

	Streaming extension to the BSP model
	BSP accelerators and hypersteps

	Examples of Bulk-synchronous Streaming algorithms
	Inner-product
	Multi-level Cannon's algorithm
	Streaming implementation of SpMV

	The Epiphany processor as a BSP accelerator
	Summary
	Future work
	Acknowledgments

	Appendix
	Krylov subspace methods
	Choosing optimal vectors from the subspace
	GMRES
	Arnoldi process
	Least-squares approach
	Givens rotations
	QR decomposition
	The GMRES algorithm

	Conjugate Gradient

	Zee; A distributed matrix library and partitioning framework
	Introduction
	Features
	Linear algebra; types and operations
	Partitioning
	Utilities

	Overview of internal structure
	Examples
	Extending Zee

