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Abstract

A basic model of linear income taxation is proposed for analyzing optimality in auditing income tax
reports. A game-theoretical approach is used for deriving the optimal strategy for the tax adminis-
tration. Taxpayers minimize expected costs including possible penalties for under-reporting while the
tax administration chooses its audit policy to maximize expected revenue. A simple strategy of only
two audit rates is shown to be optimal in most cases.
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1 Introduction

Wherever there is a system of taxes, there is tax evasion. Governments usually set up tax adminis-
trations in order to monitor taxes and detect evasion. In most Western countries, civilians have the
obligation to report their income to the tax administration. Based on these reported incomes, the
civilian has to pay a certain amount of tax. However, it is possible that the civilian does not report
his actual income, but declares a lower amount so that he needs to pay less tax over his earnings. In
order to prevent this, the tax administration performs audits on the reported incomes to check if they
are true. If under-reporting is detected, the taxpayer is obliged to pay the tax over the unreported
income plus a fine. Unfortunately, these audits come at a certain price, so that it can be not optimal
to audit every reported income. But how to decide which incomes to audit and which not? This is
what we are going to investigate.

There is a considerable amount of literature focusing on how to optimize the tax system, looking at
tax rates, equity principles or penalty rates when evasion is detected. Most of this literature is written
by economists, psychologists or sociologists. Some mathematical articles have also been published.
Kaplow [6] tries to find rules for optimal tax rates and enforcement expenditures. Scotchmer [4]
investigates the case were audits do not with full certainty determine the true income and shows that
some randomness in these audits is optimal. Lambert [3] has published a book in which he brings
together many strands of the analysis of income distribution and redistribution. He among other
things discusses the analysis of the income distribution and social welfare functions.

In this article we focus on the mathematical approach of the strategy for auditing reported incomes
in order to optimize the income tax system. We combine two mathematical models to lay a foundation
for further research on the matter. Cremer’s paper (1990) [1] presents the ”cutoff rule” and proves for
which values it is optimal. He then considers the government as a third actor besides the taxpayer
and the tax administration and extends his findings to the case where there are several audit groups
of taxpayers. Vasin, in his ”Mathematical Models for Organizing the Tax Service” (1999) [2], proves
that any audit strategy can be replaced by a cutoff rule without any losses for the tax service. He then
considers the case where tax inspectors can be bribed.

In this paper, we combine the mathematical foundations of these two models to set up a uniform
basic model for the auditing of income tax. We do not embark into further application of the model,
since the model must first be further improved in order to really stroke with reality. We start the
paper with a brief explanation of the model and its structure in section 2. We also state the made
assumptions. In section 3 we derive the optimal audit strategy combining the results from Cremer
and Vasin. We show that in most cases a cutoff rule as an audit strategy is optimal. In such a cutoff
rule, a reported income below a certain cutoff level t is audited with a constant probability p1, and a
reported income above t is audited with probability p2. Section 3.1 focuses on the determination of
the optimal values for p1 and p2. Section 3.2 aims to prove the optimality of this cutoff rule and in
section 3.3, we show how the optimal cutoff level t can be derived. In section 4, we critically discuss
the posed model and suggest on which regards it might be improved. In section 5, we aim to clarify
the matter by presenting two examples.

Though we use the general environment that was provided by Vasin, we chose to use Cremer’s
notation in the model. In section 3.1, we slightly relaxed some assumptions of Cremer’s model, but
this did not have an essential influence in the proofs or the results derived from the model. The
theorems and the arguments of the proofs in section 3.1 are thus due to Cremer. In section 3.2, we
implement Vasin’s results into our model. His proofs are however not completely followed in this paper,
since they contained many inaccuracies, errors and loopholes. We have corrected these errors and filled
the loopholes wherever it was possible. One problem however still remains unsolved, which makes the
theorem hold only under certain circumstances. We thus pose the theorem as a conjecture. In section
3.2.2, we discuss how we can still derive the desired result in the case that the necessary conditions are
not satisfied. The expressions in section 3.3 are also due to Vasin, although in his paper, they were not
completely correct. We have corrected his errors, which were probably just typos, and have explained
the theorems and their proofs.
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2 The model

In this section we describe the model, introducing it by presenting a number of definitions. These
provide a general structure of the model. We then present some assumptions which give the model
more meaning. When the assumptions are changed, the outcome of this model is no longer guaranteed.
We prepare for the next section, in which the optimal behaviour of the agents is derived.

2.1 Structure

In the model we consider two agents: the taxpayer and the tax administration.
We consider a homogeneous group of taxpayers. We can thus speak of the behaviour of ”the tax-

payer”. The taxpayer has a pretax income w ∈ [0,∞), which is distributed according to a distribution
function F (w), with f(w) = F ′(w) being the probability density function. The taxpayer has the
obligation to report his income to the tax administration. He can however choose not to report his
true income w, but to conceal a part. This concealing is described by the taxpayer behaviour function
x(w), which denotes the reported income of a taxpayer with income w. The outcome of this taxpayer
behaviour function is denoted by x. The tax administration knows F (w). It does not know w. It only
knows x, the reported income. The tax administration can decide to perform an audit, at cost c, after
which the true income w will become known. It establishes an audit policy p(x), where p(x) is the
probability that a taxpayer who reports an income of x will be audited.

Each taxpayer is subject to income tax according to some function θ(x) where x denotes reported
income (x ≤ w); if an audit on the reported income is performed by the tax administration and under-
reporting is detected, he must pay a penalty q(w, x), which depends on the (audited) true income w
and the reported income x. We denote the expected tax-schedule for the taxpayer T (w, x).

The taxpayer’s objective is to maximize expected total income. He is supposed to be risk-neutral.
For the taxpayer, tax and audit parameters as well as his pretax income are given. His choice is thus
limited to part the of this income he wants to conceal. The taxpayer’s behaviour will thus come down
to minimizing his expected tax-schedule T (x,w) = θ(x) + p(x)q(w, x) with respect to x. This means
that each taxpayer will conceal part of his income if he expects this to be profitable.

The tax administration’s objective is maximizing total revenue. For any audit strategy p(x), the
net tax revenue per taxpayer is

R(p(x)) =

∫
[θ(x) + p(x)(q(w, x)− c)] f(w) dw

The administration’s goal is to find a strategy p∗(x) maximizing this revenue.

2.2 Assumptions

The assumptions made in this section are essential for the final results of the model. Some of the
assumptions are based on logical argumentation. There are however some assumptions that are general,
but quite restrictive and therefore questionable. These are necessary to be able to calculate with the
model.

We consider the case where we have a linear income tax: θ(x) = θx− γ, for some θ ≥ 0 and γ ≥ 0.
The penalty is assumed proportional to income: q(w, x) = (π + θ)(w − x), π ≥ 0. We note that the
penalty includes tax on the under-reported income. The purpose of γ in the tax obligation function can
be interpreted as a minimal amount of income over which no tax has to paid. We need to make note
that it does not account for social support by the government for civilians with an income w < γ

θ . We
thus assume γ such that θ(x) ≥ 0. The most particular purpose of γ is that it is an instrument for the
government (not the tax administration) to influence the social welfare of its people. By adjusting the
value of γ, the government can directly increase the after-tax income of the taxpayer, thus influencing
his social welfare function. In this model, we do not consider the role of the government in the game
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of reporting and auditing income tax. We can also derive all the results of this model by assuming
γ = 0, but for the sake of completeness, we leave it as a constant.

We only consider audit policies by the tax administration where the audit probability is decreasing
with increasing reported income. If we would have an increasing audit probability, it would become
more and more profitable for an individual to report a lower income than his actual income w.

The assumptions in which we part from Cremer are those on the distribution of income F (w) and
the function for the penalty q(w, x). Cremer assumed a maximum income w+, but we show that we
do not need this restriction to let the result hold. We thus suppose w ∈ [0,∞). He also restricted
F (w) in order to prevent a fat tail. He used this restriction in determining the optimal cutoff level.
We do not make any such restriction until section 3.3, where we show how the optimal cutoff level
can be derived. As for the penalty function q(w, x), Cremer’s definition did not explicitly state that
the penalty included the unpaid tax over the concealed income. Where he used π(w − x), we define
q(w, x) = (π + θ)(w − x). The main difference between the assumptions in our model and those from
Vasin is that of the use of γ. He does not define γ, thus proving the results for γ = 0.

3 Optimal audit policy

In this section, we derive the optimal audit policy of the the tax administration, taking the behaviour
of the taxpayer into account. We first consider a certain class of audit policies and then generalize the
result to a much wider class of policies. The result may seem somewhat surprising and unfair. This is
further discussed in section 4.

3.1 The cutoff rule

In this section, audit policy is restricted to a particular type: the probability of an audit is different if
the reported income is below or above a certain cutoff level of income t. For a reported income below
t, the probability of an audit is of a constant rate p1. For a reported income above t this is of rate p2.
Hence, the audit probability p(x) of an individual reporting x is given by

p(x) =

{
p1 if x < t
p2 if x ≥ t (1)

The main structure of this section and the proofs in it are due to Cremer.

3.1.1 The theorem

The objective of the tax administration is to maximize total tax revenue, net of audit costs. Tax
parameters, audit costs and penalty rates are given; its instruments are t, p1 and p2.

The taxpayer’s goal is to minimize the amount to be paid to the tax administration. This amount to
be paid by an individual with income w, who reports x is denoted T (x,w) = θx+p(x)(π+θ)(w−x)−γ.
In the case of a truthful report, this becomes T (w,w) = θw − γ. Over-reporting is ruled out by
the assumption that x ≤ w. A positive fine is thus excluded. The objective function of the tax
administration, that is, tax revenue net of audit costs, is given by

R(p1, p2, t) =

∫ ∞
0

[T (x(w), w)− p(x(w)) c ] f(w) dw (2)

We denote p1∗, p2∗, t∗ as the auditing parameters that maximize the tax net revenue. We start by
determining the optimal audit probabilities p1∗ and p2∗. Even though we use a simple model, this
turns out to be quite a complex problem.
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THEOREM 1.
The optimal audit probabilities of a cutoff policy are given by p∗

1 = θ
π+θ

and p∗
2 = 0.

We will explain Theorem 1 in this section by providing some properties and lemmas. The proofs for
these can be found in section 3.1.2.

Property 1) The minimum audit probability for which each taxpayer declares his income truthfully is
given by θ

π+θ , i.e. p(x) ≥ θ
π+θ ⇒ ∀x ≤ w, x(w) = x

From now on, we define p̂ ≡ θ
π+θ as the minimal deterrent probability. Logically, it is never profitable

for the tax administration to audit a reported income with a probability higher than the minimal
deterrent probability, since it does not change the taxpayer’s report, but does increase expected audit
costs. This leads to the next property.

Property 2) max(p∗1, p
∗
2) ≤ p̂

We already shortly stated that only strategies of decreasing audit probability are to be considered.
This means that high reports should not be audited with a higher probability than low reports. This
statement is formalized in the following property.

Property 3) Without any loss of generality, we can restrict our attention to audit probabilities such
that p2 ≤ p1.

The proofs for these properties can mostly be derived from definitions and some simple argumen-
tation. Note that we have already restricted our possibilities to the condition that p̂ ≥ p1 ≥ p2. We

now define t̂ ≡ t
(
p̂−p2
p1−p2

)
as the income at which the taxpayer is indifferent to reporting either 0 or t.

It appears that the taxpayers are divided into two subgroups: those with income above t̂ who report t
and those with income less than t̂ who report nothing. Taxpayers with income t̂ are indifferent between
reporting zero and reporting t and report t by convention. In the particular case where t̂ → ∞, the
first subgroup vanishes.

We are now left with two alternatives: either p∗1 = p̂ and p∗2 < p̂ or p∗2 < p∗1 < p̂. We ignore the
option where p∗1 = p∗2 = p̂, since it is just a special case of the first with t =∞.

With the results of Properties 1-3, we rewrite the expression for the revenue of the tax-administration
of (2):

R(t, p1, p2) =

∫ ∞
0

[T (x(w), w))− p (x(w)) c] dw

=

∫ t̂

0

[T (0, w)− p1c] f(w) dw +

∫ ∞
t̂

[T (t, w)− p2c] f(w) dw

= p1

[
(π + θ)

∫ t̂

0

wf(w) dw − c
∫ t̂

0

f(w) dw

]
+ p2(π + θ)

∫ ∞
t̂

(w − t)f(w) dw

−
∫ ∞
t̂

(p2c− θt) f(w) dw −
∫ ∞
0

γf(w) dw

= p1

[
(π + θ)

∫ t̂

0

dF (w)− F (t̂)c

]
+

[
p2(π + θ)

∫ ∞
t̂

(w − t) dF (w)− (p2c− θt)(1− F (t̂))

]
− γ

(3)
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We need to make a comment on this expression. As noticed before, people with income below t
report truthfully in the case where p1 = p̂, while they report no income with p1 < p̂. However, this
discontinuity of x(w) can be ignored in (2) since p1 = p̂ implies T (0, w) = p1(π+ θ)w = θw = T (w,w)
for w < t. We can thus conclude that R(t, p1, p2) is a continuous function on S, where S is the following
set of possible optimal solutions (t∗, p∗1, p

∗
2):

S =
{

(t, p1, p2) ∈ R3
+

∣∣∣ 0 ≤ p2 ≤ p1 ≤ p̂ and t ∈ [0,∞)
}

We are now ready to prove the theorem. We will show that R(t, p1, p2) finds a maximum on S for
p1 = p̂ and p2 = 0. This maximum is also the global maximum of R(t, p1, p2). The existence of a
maximum on S follows from the continuity of R and the compactness of S. Properties 2 and 3 imply
that this maximum on S is actually the global maximum. We will now first show that p∗2 = 0. With
this result, we can conclude in a similar way that p∗1 = p̂.

Let t and t̂ be fixed such that t̂ <∞ (t̂ <∞ is assumed only for notational convenience. A slight
modification argument is sufficient to show the same results for t =∞). Using the definition of t̂, we
find:

p2 =
t̂

t̂− t
p1 − p̂

t

t̂− t
(4)

and

dp2
dp1

=
t̂

t̂− t
> 1 (5)

We then differentiate R with respect to p1, given t, t̂, and (4).

dR

dp1
= (π + θ)

∫ t̂

0

dF (w)− F (t̂)c+
t̂

t̂− t

[
(π + θ)

∫ ∞
t̂

(w − t)dF (w)−
(
1− F (t̂)

)]
(6)

We see that (6) is independent of p1. R thus increases/decreases linearly with p1. This implies that
the maximum of R is achieved on the boundary of S. If (6) is positive, p∗1 = p̂; if negative, p∗2 = 0.
From (5), we have that on decreasing p1, p2 reaches zero before p1. This brings us to two alternatives:
(a) p∗1 = p̂, p∗2 < p̂ or (b) p∗1 < p̂, p∗2 = 0. Furthermore, from the definition of t̂, it follows that p = p̂
implies t̂ = t. In case (a), R is a linear function of p2, which is thus maximized for p2 = 0 or p2 = p̂.
As above, we ignore the option p2 = p1 = p̂, since it is a special case of the the first option with t =∞.
We finds that in both case (a) and case (b), p∗2 = 0.

We note that p2 = 0, together with the definition of t̂ implies that t̂ = tθ
(π+θ)p1

. We can now write

our revenue function (3) more simply as

R(t, p1, 0) = p1(π + θ)

∫ tθ
(π+θ)p1

0

wdF (w)− F
(

tθ

(π + θ)p1

)
p1c+

[
1− F

(
tθ

(π + θ)p1

)]
θt− γ (7)

We proceed to show that p∗1 = p̂ in a very similar way as we did for p∗2. We fix t and t̂ such that t̂ <∞
and then differentiate (7) with respect to p1. We find again that this derivative is independent of p1 so
that the optimal value of p1 must lie on the boundary of S. We find that p∗1 = p̂. Finally we conclude
that Theorem 1 is true.

�

With this policy, all individuals that report an income below the cutoff t are audited with probability
p̂, which is the minimal deterrent policy. Individuals that report an income above the cutoff will never
be audited. This results in a division of two groups of taxpayers. Individuals with an income below
the cutoff t will report their true income. Individuals with an income above this cutoff will report an
income of t.
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3.1.2 Proofs

In this section, we provide the proofs of the properties stated in the section 3.1.1 and some statements
that have been made casually. We start by stating the property once more, followed by a mathematical
proof. Some properties in this section you will not recognize from section 3.1.1, since they were never
explicitly stated. They are however necessary for the complete proof of Theorem 1. We will then
specify what is the result of this property.

Property 1) p̂ ≡ θ
π+θ is the minimum audit probability for which each taxpayer declares his income

truthfully, i.e. p(x) ≥ p̂ ⇒ ∀x ≤ w, x(w) = x

Proof: It is sufficient to compare the tax burden in the case of truthful reporting and the case of
under-reporting. If p(x) ≥ p̂ and the taxpayer under-reports his income, i.e. if x < w, then he has to
pay more to the tax-administration then if he had reported his true income w.

T (x,w) = θx+ p(x)(π + θ)(w − x)− γ ≥ θx+ θ(w − x)− γ = θw − γ = T (w,w)

�

Property 2) max(p∗1, p
∗
2) ≤ p̂

Proof: We prove this property by contradiction. Assume that Property 2 does not hold. The following
cases are possible:

(i) p∗1 ≥ p̂, p∗2 > p̂

(ii) p∗1 < p̂, p∗2 > p̂

(iii) p∗1 > p̂, p∗2 ≤ p̂

In any of these cases we can define p′i = min(p∗i , p̂), i = 1, 2. We then see that if p′i = p∗i , the
audit strategy does not change, so the taxpayer behaviour also remains unchanged. If p′i = p̂, the
original audit probability was higher than the minimal deterrent probability. By Property 1, the
original taxpayer behaviour is given by the taxpayer declaring his true income w. With our new
audit probability p′i = p̂, the taxpayer still declares x = w. The taxpayer behaviour thus does not
change. Expected audit costs will however decrease. We show this by showing that the integrand of
the expression for the expected revenue of (2) increases when p∗i is replaced by p′i for i = 1, 2. The
following expression holds whenever p′i = p̂. Note that then p′i ≤ p∗i .

[θx+ p∗i ((π + θ)(w − x)− c)− γ] f(w) = [θw − p∗i c− γ] f(w) ≤ [θw − p′ic− γ] f(w)

In the case of p′i = p∗i , the revenue does not change. We conclude that if we replace p∗1, p∗2 by p′1, p′2,
the taxpayer’s behaviour will never change. However, the expected audit costs will decrease, which
increases the expected total revenue for the tax administration. This contradicts the definition that
p∗1 and p∗2 are the optimal audit policy. We conclude that indeed max(p∗1, p

∗
2) ≤ p̂

�

Property 3) Without any loss of generality, we can restrict our attention to audit probabilities such
that p2 ≤ p1.

Proof: If p2 > p1, it means that for all taxpayers with an income higher than the cutoff income t, the
probability of being audited is lower when reporting an income smaller than t. It even implies that for
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any policy (p1, p2, t) with p2 < p2 and taking Property 2 into account, the best reply for all taxpayers
is to report no income, i.e. ∀w ∈ [0,∞), x(w) = 0. The policy can thus be replaced by (p1, p

′
2) with

p′2 ≤ p1 which leaves the taxpayers’ report unchanged and does not increase audit costs.

�

Property 4 and 5 are both necessary for the derivation of the reply of the taxpayer.

Property 4) If p(x) = p for any x ∈ [a, b], then ∀x ∈ (a, b) :

∂

∂x
T (x,w) ≥ 0⇔ p ≤ p̂ (8)

∂

∂x
T (x,w) < 0⇔ p > p̂ (9)

Proof: We first prove (8). The proof of the equivalence of (9) is similar. Firstly we note that ∀x ∈ (a, b),
T (x,w) = θx + p(π + θ)(w − x), thus ∀x ∈ (a, b), ∂

∂xT (x,w) = θ − p(π + θ). Suppose p ≥ p̂, then
∂
∂xT (x,w) = θ − p(π + θ) ≤ θ − p̂(π + θ) = 0. Now suppose ∂

∂xT (x,w) ≤ 0, then θ − p(π + θ) ≤ 0, so
we find that p ≥ p̂.

�

Property 5)

(i) T (0, w) ≷ T (t, w)⇔ w ≷ t̂ ≡ t
(
p̂− p2
p1 − p2

)
(10)

(ii)
∂[T (0, w)− T (t, w)]

∂w
> 0 (11)

Proof: Both results are directly obtained from the definition of T (x,w):

(i) : T (0, w) = p1(π + θ)w − γ, T (t, w) = θt+ p2(π + θ)(w − t)− γ
and so,

T (0, w) ≥ T (t, w)⇒ p1(π + θ)w ≥ θt+ p2(π + θ)(w − t)⇒
w(p1(π + θ)− p2(π + θ)) ≥ θt− tp2(π + θ)⇒

w ≥ t
(

θ − p2(π + θ)

p1(π + θ)− p2(π + θ)

)
= t

(
p̂− p2
p1 − p2

)

(ii) :
∂

∂w
(T (0, w)− T (t, w)) =

∂

∂w
(p1(π + θ)w + θt− p2(π + θ)(w − t))

= p1(π + θ)− p2(π + θ) > 0

�

We note that (ii) implies that the expected tax payments increase with effective income, hence the
gain from reporting zero relative to reporting the cutoff income t is decreasing with effective income.
We can thus conclude the division of the subgroup of individuals with an income below t̂ reporting
nothing and the subgroup of individuals with an income above t̂ reporting t.

The rest of the proof of Theorem 1 can be found in section 3.1.1.
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3.2 General audit probabilities

We now consider a wider class of audit policies. In this section we will discuss the conjecture that
any decreasing audit probability can be replaced by the audit policy with a cutoff rule from section
3.1 without a decrease in the net revenue of the tax administration. Vasin provided a proof for this
conjecture, but in that proof he implicitly made an assumption that does not always hold. Without
this assumption, the proof is no longer completely correct. In section 3.2.1, we assume the sufficient
conditions and present Theorem 2. The main construction of the proof for Theorem 2 is due to Vasin,
though in his paper he simply skipped all the lemmas and propositions we present in this section.
Theorem 2 states some conditions, any mention of these conditions is left out by Vasin. If these con-
ditions were to be left out and the result could still be proved, then the proof of the conjecture would
follow. Vasin’s proof however does not suffice to do so. We try to make as clear as possible when
complications may be encountered and discuss what happens then in section 3.2.2. Here we show what
will happen if the conditions are not satisfied. We show what the taxpayer behaviour will look like
and we illustrate how to still find a dominant cutoff strategy with a general example. In section 3.2.3,
complete proofs of all theorems, lemmas and propositions is provided.

3.2.1 Vasin’s theorem

We consider any decreasing audit probability p(x). Our goal is to show when the policy of using this
probability is matched or improved by the policy of the cutoff rule. In order to do so, we need to
introduce some definitions and notations that help us describing the proper conditions for this to hold.
For any t1 < t2 < · · · < tn, and p̂ ≥ p1 > p2 > · · · > pn ≥ 0, consider an n-level strategy p(x) such
that:

p(x) =


p̂ if x < t1

pk if x ∈ [tk, tk+1) (k = 1, . . . , n− 1)

pn if x ≥ tn
(12)

We define S(t1, . . . , tn, p1, . . . , pn) as such an n-level strategy. We now introduce

t̂k ≡
θ

θ + π

(
tk+1 − tk
pk − pk+1

)
+
pktk − pk+1tk+1

pk − pk+1
for k ∈ {1, . . . , n− 1} (13)

We choose this value of t̂k so that an individual with income w = t̂k is indifferent to declaring x = tk
or x = tk+1, i.e.

θtk + pk(θ + π)(t̂k − tk) = θtk+1 + pk+1(θ + π)(t̂k − tk+1)

We define t̂n ≡ ∞.
In many cases where the values of the pi and ti are somewhat evenly spread, t̂i will be strictly

increasing so that t̂1 < t̂2 < · · · < t̂n. However, it is possible that this will not hold. In his paper,
Vasin proves that whenever t̂i strictly increases with i, any n-level strategy can be matched or im-
proved by the cutoff rule. He then concludes that any strategy of decreasing audit probabilities can
also be replaced by the cutoff rule, by the argument that we can approach any such strategies in R by
an n-level strategy for n sufficiently large. We will first prove that this indeed holds in the case that
the t̂i are strictly increasing and then show what will happen when t̂i is not strictly increasing with i
in section 3.2.2.
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THEOREM 2.
Any admissible n-level audit strategy S(t1, . . . , tn, p1, . . . , pn) for which t̂1 < t̂2 < · · · <
t̂n, can be at least matched by the strategy

p(x) =

{
p̂ if x < t

0 if x ≥ t
(14)

for some t ∈ R.

Let t1 < · · · < tn and p1 > · · · > pn ≥ 0, such that t̂1 < t̂2 < · · · < t̂n−1 < t̂n ≡ ∞. We will prove
Theorem 2 by induction on n.

Proof.
We first show what the taxpayer’s behaviour will now look like. For an individual earning w, the
possibilities of declaring income can be divided into intervals [0, t1), [t1, t2), [t2, t3), . . . , [tn−1, tn). A
declaration of x ∈ [0, t1) will be audited with the minimal deterrent probability p̂, so that for w ∈ [0, t1),
x(w) = w. However, declarations of x in any other interval will be audited with a probability less
than p̂ so that the expected tax schedule decreases with x. Within an interval, the audit probability is
constant so that the taxpayer is always better off declaring the infimum of the interval than declaring
any other value within the interval. It thus only makes sense for the taxpayer to declare either his
true income or to declare tk for some k ∈ {1, . . . , n − 1}. We can therefore proceed considering only
these values for x(w). We now define Tk(w) as the expected tax schedule for a taxpayer with income
w when he declares tk. Define T0(w) as the expected tax schedule when declaring truthfully. We now
state a proposition which will lead to the determination of the taxpayer’s behaviour function.

Proposition 1
If the true income w is above the level of income with which the taxpayer is indifferent to reporting
either tk or tk+1, then it is more profitable for the taxpayer to report tk+1 than to report tk. It is the
other way around when w is below this point of indifference, i.e.

w ≷ t̂k ⇒ Tk(w) ≷ Tk+1(w)

We can now see that the taxpayer’s behaviour is described as follows:

x(w) =


w if w ∈ [0, t1)

t1 if w ∈ [t1, t̂1)

tk if w ∈ [t̂k−1, t̂k), (k = 2, . . . , n)

(15)

We assume that if several declared income values correspond to the same expected income after taxes
and penalties, the taxpayer declares a value closest to the actual income. If t̂k ≤ tk−1 for some k, then
the taxpayer never declares tk. There exists an audit strategy of level l < n, that produces the same
taxpayer behaviour and the same revenue. We will then consider an audit strategy that differs from
the initial strategy only in that p(x) = pk−1 for tk ≤ x < tk+1.

Lemma 1
The 2-level strategy S(t1, t2, p1, p2) is dominated by one of the following strategies:

(i) The strategy of the random audit rule where any reported income x is audited
with probability p̂
(ii) The 1-level strategy S(t1, 0)
(iii) The 1-level strategy S(t̂1, 0)

11



The proof of this Lemma is provided in section 3.2.3.
We finish the proof by assuming the result for any strategy of level n − 1 and showing that the

result then also holds for a strategy of level n with a similar method as we used in the proof for the
2-level strategy.

3.2.2 Complications of the conjecture

Now, what will happen if t̂i is not strictly increasing with i? We will show how the taxpayer behaviour
functions alters in this case. We first suppose there is at least one disruption of these increasing t̂i’s
and derive the altered taxpayer behaviour function. It should then be clear how the behaviour function
changes in the case of more disruptions. We then show in which cases we can successfully apply the
proof of Theorem 2 on a 3-level strategy where t̂i is not strictly increasing with i.

We again consider the audit probability

p(x) =


p̂ if x < t1

pk if x ∈ [tk, tk+1) (k = 1, . . . , n− 1)

pn if x ≥ tn

where p̂ > p1 > · · · > pn > 0 and t1 < · · · < tn. We use the same definition of t̂k as in (13) for
k ∈ {1, . . . , n− 1} and define t̂ ≡ ∞.

Now, suppose that ∃k ∈ {2, . . . , n−1} such that t̂k ≤ t̂k−1. Let l be the smallest natural number in
{k + 1, . . . , n} for which t̂k−1 < t̂l. We will show that with this audit probability policy, the taxpayer
will never declare income tk:

if w < t̂k−1, then Tk−1(w) < Tk(w)⇒ tk will not be declared

if w ≥ t̂k−1, the also w > t̂k so that Tk−1(w) ≥ Tk(w) > Tl(w)⇒ tk will not be declared

We conclude that tk will never be declared. We thus find the following taxpayer behaviour function:

x(w) =



w if w ∈ [0, t1)

t1 if w ∈ [t1, t̂1)

ti if w ∈ [t̂i−1, t̂i) (i = 2, . . . , k − 1)

tl if w ∈ [t̂k−1, t̂l)

tj if w ∈ [t̂j , t̂j+1) (j = l, . . . , n− 1)

We see that the behaviour function simply skips the cutoff levels where the disruption of the strict
increasing of t̂i is caused. Now, how does this affect the proof we have seen above? Unfortunately we
cannot prove that we can always replace an n-level strategy with a 1-level strategy. We can though
show under which circumstances we can replace a 3-level strategy with a 1-level strategy. A general
example can be found in section 3.2.3. This should provide an idea of when we can successfully apply
Theorem 2. In section 5 we present another, more specific example to clarify this even more.

3.2.3 Proofs

In this section we prove the proposition and the lemma from section 3.2.1 in order to complete the
proof of Theorem 2. We then discuss an example of a 3-level strategy and show how we can find a
1-level strategy that dominates it. We first state the statements to prove once more and then provide
the mathematical proofs.
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Proposition 1
If the true income w is above the level of income with which the taxpayer is indifferent to reporting
either tk or tk+1, then it is more profitable for the taxpayer to report tk than to report tk+1. It is the
other way around when w is below this point of indifference, i.e.

w ≷ t̂k ⇒ Tk(w) ≷ Tk+1(w) (16)

Proof.
Suppose w = t̂k + ε, ε > 0. Then:

Tk(w) = θtk + pk(θ + π)(t̂k + ε− tk)− γ
= θtk + pk(θ + π)(t̂k − tk) + pk(θ + π)ε− γ
= Tk(t̂k) + pk(θ + π)ε− γ
= Tk+1(t̂k) + pk(θ + π)ε− γ
> Tk+1(t̂k) + pk+1(θ + π)ε− γ = Tk+1(w)

We thus see that for any w > t̂k, Tk(w) > Tk+1(w). Now, if w = t̂k − ε, with ε > 0, we find that
Tk(w) < Tk+1(w) in a similar way.

�

Lemma 1
The 2-level strategy S(t1, t2, p1, p2) is dominated by one of the following strategies:

(i) The strategy of the random audit rule where any reported income x is audited
with probability p̂
(ii) The 1-level strategy S(t1, 0)
(iii) The 1-level strategy S(t̂1, 0)

Proof.
Consider the 2-level strategy S(t1, t2, p1, p2). Then t̂1 is obtained from (13). Denote by dp = (d1, d2)
a change such that t̂1 remains unchanged for any admissible strategy S(t1, t2, p1 + zd1, p2 + zd2). We
now have the following equations:

t̂1 = p̂
t2 − t1
p1 − p2

+
p1t1 − p2t2
p1 − p2

(17)

t̂1 = p̂
t2 − t1

p1 + zd1 − p2 − zd2
+

(p1 + zd1)t1 − (p2 + zd2)t2
p1 + zd1 − p2 − zd2

(18)

From (17) we derive that p1 = p2
t̂1−t2
t̂1−t1

+ p̂ t2−t1
t̂1−t1

. With this result, we find from (18) that d1 = d2
t̂1−t2
t̂1−t1

.

Let pz = p+ zdp with d2 = 1. We consider the audit strategy S(t1, t2, p1 + zd1, p2 + z). Note that
we now have the following audit rule and behaviour function:

pz(x) =


p̂ if x < t1

p1 + z t̂1−t2
t̂1−t1

if x ∈ [t1, t2)

p2 + z if x ≥ t2

x(w) =


w if w ∈ [0, t1)

t1 if w ∈ [t1, t̂1)

t2 if w ≥ t̂1

13



The net revenue per taxpayer of the tax service becomes

R(pz(·)) =

∫ [
θx(w) + pz(x)

(
(π + θ)(w − x(w))− c

)
− γ
]
f(w) dw

=

∫ t1

0

[θw − p̂c] f(w) dw +

∫ t̂1

t1

[
θt1 + (p1 + zd1)

(
(π + θ)(w − t1)− c

)]
f(w) dw

+

∫ ∞
t̂1

[
θt2 + (p2 + z)

(
(π + θ)(w − t2)− c

)]
f(w) dw − γ (19)

The greatest possible z corresponds to pzmax,1 = pzmax,2 = p̂, which represents the random audit
rule. With the least possible z, we have pzmin,2 = 0, pzmin,1 = p̂ t2−t1

t̂1−t1
. We are going to study the

derivative of (19), d
dzR(pz(·)).

d

dz
R(pz(·)) =

∫ t̂1

t1

d1
(
(π + θ)(w − t1)− c

)
f(w) dw +

∫ ∞
t̂1

(
(π + θ)(w − t2)− c

)
f(w) dw

=
t̂1 − t2
t̂1 − t1

∫ t̂1

t1

(
(π + θ)(w − t1)− c

)
f(w) dw +

∫ ∞
t̂1

(
(π + θ)(w − t2)− c

)
f(w) dw

(20)

This partial derivative is independent of z, the net revenue is thus a linear function of z. If d
dzR(pz(·)) >

0, then the revenue from S(t1, t2, p1, p2) is less than the revenue from S(t1, t2, p̂, p̂). Hence, the tax
service is better off when using the random audit rule. If d

dzR(pz(·)) ≤ 0, the strategy is dominated
by S(t1, t2, p̂

t2−t1
t̂1−t1

, 0). Define λ = t2−t1
t̂1−t1

. We find that the revenue of this strategy yields:

R
(
S(t1, t2, λp̂, 0)

)
=

∫ t1

0

[θw − p̂c]f(w) dw +

∫ t̂1

t1

[θt1 + λθ(w − t1)− p̂cλ]f(w) dw

+

∫ ∞
t̂1

θt2 f(w) dw − γ (21)

We now note that this revenue is the same as the convex combination of the revenue of two 1-level
cutoff rules:

λR
(
S(t̂1, 0)

)
+ (1− λ)R

(
S(t1, 0)

)
= λ

[∫ t̂1

0

[θw − p̂c− γ]f(w) dw +

∫ ∞
t̂1

[θt̂1 − γ]f(w) dw

]

+ (1− λ)

[∫ t1

0

[θw − p̂c− γ]f(w) dw +

∫ ∞
t1

[θt1 − γ]f(w) dw

]
=

(
λ

∫ t1

0

[θw − p̂c]f(w) dw + (1− λ)

∫ t1

0

[θw − p̂c]f(w) dw

)
+

(
λ

∫ t̂1

t1

[θw − p̂c]f(w) dw

+ (1− λ)

∫ t̂1

t1

[θt1]f(w) dw

)
+

(
λ

∫ ∞
t̂1

[θt̂1]f(w) dw + (1− λ)

∫ ∞
t̂1

[θt1]f(w) dw

)
− γ

=

∫ t1

0

[θw − p̂c]f(w) dw +

∫ t̂1

t1

[θt1 + λθ(w − t1)− p̂cλ]f(w) dw

+

∫ ∞
t̂1

[θλ(t̂1 − t1) + θt1]f(w) dw − γ

= R
(
S(t1, t2, λp̂, 0)

)
So at least one of these 1-level cutoff rules is not worse than our 2-level strategy. In conclusion, any
2-level strategy can be replaced by a 1-level strategy.
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Now assume that any (n − 1)-level strategy can be replaced by a 1-level strategy for some n ≥ 2.
We consider any non-increasing n-level strategy S(t1, . . . , tn, p1, . . . , pn). If pn > 0, denote (p1, . . . , pn)
by p̄. Denote by dp̄ = (d1, . . . , dn) a change such that t̂1, . . . , t̂n are the same for every strategy
S(t1, . . . , tn, p̄(z)), where p̄(z) = p̄+ zdp̄.

It suffices to set dn = 1, dk−1 = dk
t̂k−1−tk
t̂k−1−tk−1

, k = n, . . . , 2. The supremum zmax of all possible z is

obtained from pzmax,k = p̂ for every k = 1, . . . , n, and the infimum is obtained from pzmin,n = 0. The
rest of the argument is the same as for n = 2.

We now discuss the example of some 3-level strategy and show how we can find a 1-level strategy
that dominates it. Suppose some audit strategy S(t1, t2, t3, p1, p2, p3), such that t̂2 ≤ t̂1. The taxpayer
behaviour function thus becomes:

x(w) =


w if w ∈ [0, t1)

t1 if w ∈ [t1, t̂1)

t3 if w ≥ t̂1
(22)

As in the proof above, we again define a change dp = (d1, d2, d3) in the audit probability such
that the values of t̂1 and t̂2 do not change. We consider an admissible strategy S(t1, t2, t3, p1 +

zd1, p2 + zd2, p3 + zd3). We now let d3 = 1 and find that di = di+1
t̂i−ti+1

t̂i−ti
for i = 1, 2. The net

revenue of this strategy is then linear in z, so we need to look at its derivative to find a strat-
egy that yields a higher net revenue. If this derivative is positive, our strategy is dominated by
S(t1, t2, t3, p̂, p̂, p̂), which is the random audit rule. If this derivative is negative, our strategy is domi-

nated by S
(
t1, t2, t3, p̂

(
t3−t2
t̂2−t2

+ t2−t1
t̂1−t1

)
, p̂
(
t3−t2
t̂2−t2

)
, 0
)

. Unfortunately we cannot prove that this strat-

egy is always dominated or matched by a 1-level strategy, nor can we prove that it is never dominated.
It is hard to prove such dominance, since there are simply too many variables on which the expected
revenue of this strategy depends and we cannot rewrite it in a smart way as we did in the proof of
Theorem 2. What we can do, is try to find a 2-level strategy that dominates our 3-level strategy.
We can try this in several ways. One method is to construct a 2-level strategy that yields the same
taxpayer behaviour as our 3-level strategy. We show how this can be done below. In Example 2 of
section 5, we show another method that can be attempted.

In order to find a strategy S(t′1, t
′
2, p
′
1, p
′
2) that yields the same taxpayer behaviour function, we let

t′1 = t1, t′2 = t3. We now need to choose p′1 and p′2 such that the income with which the taxpayer is
indifferent to declaring t1 or t3 is equal to t̂1. After some calculations, we find that this is so if

p′1 = p̂

(
t3 − t1
t̂1 − t1

)
+ p′2

(
t̂1 − t3
t̂1 − t1

)
(23)

We note that we still are bound to the condition that p̂ > p′1 ≥ p′2 > 0. Now, for any 2-level strategy
for which (23) holds, the taxpayer behaviour function is the same as (22). Now, all that is left to do,
is to pick the right values of p′1, p′2, such that the revenue of S(t1, t3, p

′
1, p
′
3) is higher than the revenue
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of S(t1, t2, t3, p1, p2, p3), i.e.∫ t1

0

[θw − p̂c− γ]f(w) dw +

∫ t̂1

t1

[θt1 + p′1((θ + π)(w − t1)− c)− γ]f(w) dw

+

∫ ∞
t̂1

θt3 + p′2((θ + π)(w − t3)− c− γ) f(w) dw

≥
∫ t1

0

[θw − p̂c− γ]f(w) dw +

∫ t̂1

t1

[θt1 + p1((θ + π)(w − t1)− c)− γ]f(w) dw

+

∫ ∞
t̂1

[θt3 + p3((θ + π)(w − t3)− c)− γ] f(w) dw

⇔
∫ t̂1

t1

[θt1 + p′1((θ + π)(w − t1)− c)]f(w) dw +

∫ ∞
t̂1

[θt3 + p′2((θ + π)(w − t3)− c)] f(w) dw

≥
∫ t̂1

t1

[θt1 + p1((θ + π)(w − t1)− c)]f(w) dw +

∫ ∞
t̂1

[θt3 + p3((θ + π)(w − t3)− c)] f(w) dw

(24)

The values of p′1, p′2 that satisfy (24) completely depend on the tax and penalty ratios as well as
the distribution of income. In general we can find some sufficient 2-level strategy. Then we can apply
Theorem 2 so that we can find a 1-level strategy dominating our 3-level strategy.

3.3 Optimal cutoff level t

From section 3.1.1 and 3.2.1, we can conclude that in most cases, we find an optimal audit probability
of the class of cutoff rules. The question now rises how to determine the optimal cutoff level, i.e: With
an audit policy of the form

p(x) =

{
p̂ if x < t

0 if x ≥ t

What is the optimal t? We note that the t =∞ is allowed. In this section we will derive conditions on
the hand of which we can determine the optimal cutoff t. We do not derive an explicit expression for
t. The theorem and the propositions in this section as well as the general outline of their proofs are
due to Vasin. Since we will only discuss cutoff rules as audit strategies, it is sufficient to only denote
the cutoff level t in order to specify which strategy is meant. We from hereon denote the revenue per
taxpayer from a cutoff rule as an audit strategy with cutoff level t shortly by R(t).

THEOREM 3.
In the class of cutoff rules, if the inequality∫

w≥t

[
θ(w − t)− cθ

π + θ

]
f(w) dw ≥ 0 (25)

is satisfied for all t ∈ R, then the optimal cutoff is found at t =∞.

Proof.
We will prove this theorem by comparing the revenue from a cutoff at ∞ with the revenue from a
cutoff at t < ∞. Suppose t < ∞. We thus compare R(∞) and R(t). Note that in the first case, all
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taxpayers will always declare their true income, where in the second case, whis will only happen for
an income w < t. We find that

R(∞)−R(t) =

∫ ∞
0

[θw − p̂c− γ]f(w) dw −
(∫ t

0

[θw − p̂c− γ]f(w) dw +

∫ ∞
t

[θt− γ]f(w) dw

)
=

∫
w≥t

[θ(w − t)− cθ

π + θ
]f(w) dw ≥ 0

We find that for every t <∞, R(∞) > R(t), so the revenue for the audit rule where t =∞ is greater
than the revenue if t <∞. We conclude that the optimal cutoff level is found at t =∞.

�

Let us consider relationship (25) in more detail in order to find out when it does and does not hold.

We find that it reduces to an equality of f(w) = ke−w
θ+π
c and holds as an inequality if | f

′(w)
f(w) | <

π+θ
c

for w > t, i.e., if the income distribution has a fat tail.
We have derived the optimal cutoff in the case that (25) holds. We now proceed assuming that

inequality (25) does not hold for some t. The optimization problem for t now in general has multiple
solutions. However, for a wide class of distributions, the optimal value of t is unique. We show this by
the following proposition:

Proposition 2
Assume that the probability density function of income distribution f(w) has a single maximum and

| f
′(w)
f(w) | increases in w for f ′(w) < 0. Then R(t) has at most one local maximum.

Before we start on the proof of this proposition, we first explain the assumptions that are made.
A distribution density function that has a single maximum generally has a peak at some income level
M , often called the modal income, and from thereon decreases towards 0. The part of the domain

where f ′(w) < 0 is thus the part where w > M . The assumption that | f
′(w)
f(w) | increases in w for w > M

prevents the distribution from having a fat tail.

Proof. We start by calculating d2

dt2R(t):

d2

dt2
R(t) =

d2

dt2

(∫ t

0

[θw − p̂c]f(w) dw +

∫ ∞
t

θtf(w) dw − γ
)

=
d2

dt2

(∫ ∞
0

[θw − θc

θ + π
]f(w)dw + θt(F (∞)− F (t))− γ

)
=

d

dt

(
θtf(t)− θc

θ + π
f(t) + θ(1− F (t))− θtf(t)

)
= − θc

θ + π
f ′(t)− θf(t) = −θf(t)

(
1 +

cf ′(t)

(θ + π)f(t)

)
Define t′ as the supremum of the cutoff levels t for which f ′(t)

f(t) = − θ+πc . We see that on the interval

where f ′(t)
f(t) ≥ −

θ+π
c , the second derivative of the revenue function R(t) is non-positive, so we have

a concave revenue R(t). The interval where f ′(t)
f(t) < − θ+πc is found when t > t′. Here, the revenue

function is convex. On the first interval, there is at most one local maximum. In the second interval,
the only possible optimum is t =∞. Comparing these two variants. we find the optimal cutoff level t.

�
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4 Comments

In this section we discuss the results found in the previous sections. We also discuss the the model
itself. Is it a realistic model? Do the assumptions stroke with reality or are they too restrictive? We
suggest what could be improved or what could be surveyed more carefully in future research.

Some of the results that are derived in this model may seem somewhat surprising. The optimal
audit policy as a cutoff rule indeed implies that the tax administration only audits ’poor’ individuals,
though a higher return could be expected from auditing ’rich’ individuals. The explanation for this
paradox is that the tax administration does not know which individuals are rich and which are poor.
It thus develops a strategy that holds for all taxpayers. If it was to reduce the audits on people who
report a lower income, it might be advantageous for individuals with a high income to pretend they
are poor. In this model, audit decisions can only be based on reported income. It may very well be
that in reality, the tax administration can perform some screening at low cost to separate several audit
groups of taxpayers which are more likely to have a high/low income. The administration can then
develop a different audit policy for the individuals in each separate group. We however assumed a
homogeneous group of taxpayers.

We also have to make a comment on the fact that we assumed the same audit cost c for every
taxpayer, though it may very well be possible that audits on some individuals will be more costly than
the audit on others. We can for instance imagine that individuals who are on payroll at a company are
easier to audit than freelancers who work independently. It would be interesting to investigate how
the model can be applied on several audit groups with different parameters.

As we mentioned before, some of the assumptions that we make are somewhat restrictive. Relaxing
these assumptions will however undoubtedly complicate the treatment of the problem at hand. It is
necessary that we critically look upon the assumptions to check in which regards the model may be
improved. One of the most influential assumptions that is made is the risk neutrality of the taxpayers.
In reality, many individuals will report their true income by moral incentives also, instead of only
taking monetary incentives into consideration. One must also note that the penalty on the detection
of tax evasion will in many cases not only be monetary. Other losses, such as loss of time, aggravation
and damage to reputation will usually be involved in affecting the taxpayer’s behaviour. Vasin includes
these additional losses in his model by assuming they are equivalent to a certain additional amount of
money. These implicit additional penalties are however usually a priori unknown and very subjective
to the individual concerned.

Another difference between the model and reality that is easily noticed, is the assumption of lin-
earity in the tax obligation θ(x). Many Western countries use a stepwise increasing tax obligation.
Individuals with high income thus need to pay a relatively greater part of their income to the tax
administration than individuals with a lower income do. Replacing our linear tax rate with such a
stepwise increasing tax function would make calculation with the model much more difficult, but it
would undoubtedly have a large impact on its results.

In our model, we only consider the taxpayer and the tax administration as actors in the income tax
game. The government, who decides the tax obligation, penalty rates and the constant γ, is not taken
into account. It however plays a large role in the process of redistribution of income through income
tax. When implementing the role of the government in a model, one will find that formulating its
objective can be complicated. One may try to measure it by some sort of social welfare function which
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is bounded to a minimal revenue. A restriction of the penalty rate is then also in order, since it may be
unethical to fine individuals with an disproportional high amount of money, though it does effectively
increase the revenue. When comparing our model with reality, we find that a penalty on tax evasion
that is proportioned to the concealed income w−x is quite realistic. One can however wonder whether
this penalty proportionate to w − x is desirable for the government. Are there more efficient penalty
functions that are morally justified? One could also try to analyze in detail the intricate relationship
between government and tax administration.

Future research on the subject could focus on improving some of the matters mentioned above. Es-
pecially adjustments to the tax function θ(x) and to the risk neutrality of the taxpayer seem promising.
One could also focus on completing the proof of the optimality of the cutoff rule as an audit probabil-
ity policy. When the model becomes more complicated, performing computer simulation might help
finding optimality.
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5 Examples

Some of the theorems above may be quite difficult to read due to the many notations that are used. In
this section, we aim to clarify some notational difficulties by illustrating the proofs and statements of
section 3.2 with examples. In Example 1, we show the result of Theorem 2 for a 2-level strategy. The
main purpose of this example is to help the reader understand the proof by executing it. In Example
2, we work out a 3-level strategy under conditions for which Theorem 2 does not hold. We aim to give
an idea of how we can still try to derive the optimality of the cutoff rule.

Example 1.
Let the tax rate θ = 0.2 and the penalty rate θ = 0.3. We then find the minimal deterrent probability
p̂ = θ

θ+π = 0.4. We define the audit strategy

p(x) =


p̂ if x < 10

0.3 if 10 ≤ x < 20

0.2 if x ≥ 20

(26)

This corresponds to t1 = 10, t2 = 20, p1 = 0.3, p2 = 0.2.
We then derive t̂1 = p̂ t2−t1p2−p1 + p1t1−p2t2

p2−p1 = 0.4 10
0.1 + −1

0.1 = 30. An individual with an income w = 30
is thus indifferent to declaring x = 10 or x = 20. By convention he declares x = 20, since it is closer
to his actual income. This gives the following taxpayer behaviour function:

x(w) =


w if w < 10

10 if 10 ≤ w < 30

20 if w ≥ 30

(27)

We will now consider a change dp = (p1 +d1, p2 +d2) in the probability scheme for which t̂1 = 30 does
not change. We consider the strategy S(10, 20, 0.3 + zd1, 0.2 + zd2) for some z such that the strategy
is admissible. We then suppose d2 = 1 and find:

d1 = d2
t̂1 − t2
t̂1 − t1

=
20

10
=

1

2
(28)

The audit probability has now changed to

q(x) =


p̂ if x < 10

0.3 + 1
2z if 10 ≤ x < 20

0.2 + z if x ≥ 20

(29)

This strategy leads to the same taxpayer behaviour function as the previous. We still have x(w) as in
(27). Note that our changed strategy is still bound to the restriction of p̂ ≥ p1 ≥ p2 ≥ 0, which gives
−0.2 ≤ z ≤ 0.2.

We now consider the revenue per taxpayer, gained from this strategy and find that its derivative
is independent of z, which makes the revenue linear in z. It is thus dominated by the strategy where
z = 0.2 or by the strategy where z = −0.2. In the first case, we find that R(S(10, 20, 0.4, 0.4)) is the
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random audit rule, which is 1-level cutoff probability with t =∞. In the latter case, we find:

R(S(10, 20, 0.2, 0)) =

∫ 10

0

[0.2w − 0.4c− γ]f(w) dw +

∫ 30

10

[2 + 0.1(w − 10)− 0.2c− γ]f(w) dw

+

∫ ∞
30

[4− γ]f(w) dw

=

∫ 10

0

[0.2w − 0.4c]f(w) dw +

∫ 30

10

[1 + 0.1w − 0.2c]f(w) dw

+

∫ ∞
30

4f(w) dw − γ

We note that 1
2R(S(10, 0)) + 1

2R(S(30, 0)) yields the same revenue:

1

2
R(S(10, 0)) +

1

2
R(S(30, 0)) =

1

2

∫ 10

0

[0.2w − 0.4c− γ]f(w) dw +
1

2

∫ ∞
10

[2− γ]f(w) dw

+
1

2

∫ 30

0

[0.2w − 0.4c− γ]f(w) dw +
1

2

∫ ∞
30

[6− γ]f(w) dw

=

∫ 10

0

[0.2w − 0.4c]f(w) dw +

∫ 30

10

[1 + 0.1w − 0.2c]f(w)dw +

∫ ∞
30

4f(w) dw − γ

So we know that one of these 1-level strategies yields a revenue that is greater than or equal to the
revenue of our 2-level strategy. This concludes the example.

Example 2.
We again let the tax rate be θ = 0.2 and the penalty rate π = 0.3, which gives the minimal deterrent
probability p̂ = 0.4. We now let t1 = 10, t2 = 20, t3 = 30 and p1 = 0.3, p2 = 0.25, p3 = 0.05.

We now find the following values of indifference: t̂1 = 40, t̂2 = 37.5. We note that for these values,
t̂1 > t̂2, so that Theorem 2 cannot be applied. We find the following taxpayer behaviour:

x(w) =


w if w < 10

10 if 10 ≤ w < 40

30 if w ≥ 30

(30)

We note that t2 = 20 is never declared. One may wonder why we cannot just treat this case as a
2-level strategy on which we can apply Theorem 2. This will not hold, since although the taxpayer
behaviour function acts as if we are dealing with a 2-level strategy, we need to realise that (30) is still
the result of a 3-level strategy. Although the taxpayer will never declare t2 = 20 and as a result the tax
administration will never audit with probability p2 = 0.25, the fact that it would do so if the taxpayer
were to declare x ∈ [20, 30) still affects the taxpayer behaviour. More concretely, if were to consider
S(10, 30, 0.3, 0.05), the value of the point of indifference would change to t̂1 = 38, which would then
result in a different taxpayer behaviour function than we found in (30). If we can however prove that
this 2-level strategy dominates our original 3-level strategy, we can still conclude the optimality of the
cutoff rule. We compare the strategies by comparing their revenues. We find:

R(S(10, 20, 30, 0.3, 0.25, 0.05)) =∫ 10

0

[0.2w − 0.4c]f(w)dw +

∫ 40

10

[0.2 · 10 + 0.3 · 0.5(w − 10)− 0.3c]f(w)dw

+

∫ ∞
40

[0.2 · 30 + 0.05 · 0.5(w − 30)− 0.05c]f(w)dw − γ (31)
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and

R(S(10, 30, 0.3, 0.05)) =∫ 10

0

[0.2w − 0.4c]f(w)dw +

∫ 38

10

[0.2 · 10 + 0.3 · 0.5(w − 10)− 0.3c]f(w)dw

+

∫ ∞
38

[0.2 · 30 + 0.05 · 0.5(w − 30)− 0.05c]f(w)dw (32)

so that

R(S(10, 30, 0.3, 0.05))−R(S(10, 20, 30, 0.3, 0.25, 0.05)) =

∫ 40

38

[4.75 + 0.25c− 0.125w]f(w)dw

(33)

We see that expression (33) is dependent of the audit cost and the probability density function f(w).
We note however that in many cases we will find that our our original strategyR(S(10, 20, 30, 0.3, 0.25, 0.05))
is in fact dominated by the 2-level strategy R(S(10, 30, 0.3, 0.05)), on which we can successfully apply
Theorem 2 to conclude that the original strategy is dominated by the cutoff rule.

If this does not work, we can also try to find another 2-level audit strategy S(10, 30, q1, q2) that
yields the same point of indifference t̂1 = 40 but produces a larger net revenue. We show this approach
for any 3-level strategy in section 3.2.3.

We can conclude that for many admissible strategies, we can find a way to use Theorem 2 in order
to conclude that the cutoff rule is optimal. We can unfortunately not yet prove that this is always the
case.
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