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Abstract

DFT calculations were preformed on a single-layer hexagonal boron nitride nanosheet
(BNNS) with a boron adatom. Different adsorption sites for the B adatom were investigated
and an adsorption site on a B-N bridge site was found to have the highest binding energy.
Based on the found adsorption sites a diffusion pathway was found consisting of two hops
that would allow the B adatom to move between unit cells. This path was investigated with
selective dynamics and the nudged elastic band (NEB) method. The energy barriers of the
resulting path turned out to be sufficiently low to allow the B adatom to diffuse throughout
the BNNS at room temperature.
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1 Introduction

Developments in nanoscience and the synthesis of new functional materials drive to a great extent
technological progress. Often most surprising breakthroughs are made after the discovery of a new
material with an unusual complexity or dimensionality. The great amount of attention that two-
dimensional crystals have drawn since the first successful synthesis was therefore to be expected.
Many scientists have been drawn to those systems in order to discover and make sense of the
unusual physical and chemical properties of 2D crystals that may promote novel applications in
engineering.[37]

Two-dimensional crystals have a thickness of one up to a few atomic layers and are sufficiently
isolated from their environment to be considered free-standing. They can be viewed as atomic
planes pulled out of bulk crystals or as unrolled single-wall nanotubes[36]. In comparison with
3D solids, where electron-electron interactions are suppressed, and 1D materials, where phase
space strongly constraints these interactions, 2D crystals are characterized by strong quantum
fluctuations and an enhanced phase space for interactions[37], giving rise to interesting optical
and electronic properties (e.g. single layer of graphene being a zero bandgap semi-metal[35]). 2D
crystals may also show different chemical and mechanical behavior compared to 3D solids due
to the high (up to infinite) surface-bulk ratio and geometry effects. Graphene for example has a
very high thermal conductivity[2], is the strongest measured material[24], can absorb impact very
well[26] and is the most impermeable membrane known[3]. New 3D materials may also be created
from these 2D crystals via different types of stacking of different 2D crystals.

The first successful isolation of a 2D crystal was graphene which was extracted from graphite
via mechanical exfoliation (also known as mechanical cleavage or mechanical peeling)[34]. This
method relies on the fact that in graphite in-plane bonds are strong while the layers are weakly
coupled via van der Waals interactions. This method was then quickly applied to similar materials
such as hexagonal boron nitride (h-BN)[36], which has the same structure as graphite only with
alternating B and N atoms in the rings instead of C. Bulk h-BN has captured interest for quite
some time due to its high thermal conductivity, low density, electrical insulation, low friction
coefficient, great oxidation resistance and excellent inertness. Its 2D equivalent, boron nitride
nanosheets (BNNS), posses a unique combination of those properties as well as a much better
thermal conductivity, piezoelectric properties, great thermal and chemical stability, extraordinary
mechanical strength and resilience, excellent electron emission and strong cathodoluminescence
emission in the UV. These properties create a wide range of possible applications for example in
compact UV laser devices, as multifunctional composite fillers, dielectric substrates in graphene
electronic devices, thermally robust catalytic and sensing substrates, durable field emitters and in
biological applications (due to its low toxicity)[32, 39, 40].

Because of their dimensionality 2D crystals have more pronounced changes in their properties
due to the adsorption and doping of atoms or molecules and have a much larger surface area avail-
able for such reactions (they are essentially gigantic 2D molecules unprotected from the immediate
environment) compared to bulk materials. For example the electronic properties of boron nitride
nanosheets (BNNS) can be modified by the adsorption of O atoms or organic molecules[9, 47],
while adsorbing a C atom on BNNS creates a local magnetic moment of 2.0 µB [30] and decorating
it and with gold nanoparticles results in excellent catalytic activity for the reduction of H2O2[48].
Some 2D crystals are so sensitive to these changes that they can be used as sensors, in fact a
graphene sensor has been used to detect the adsorption of single gas molecules[43].

Adsorption reactions can also be used to form new 2D crystals out of initial ones. Examples
hereof are graphane and hydrogenated boron nitride nanosheets (BHNH), which can be made
by adsorbing hydrogen on graphene or BNNS respectively until they are fully saturated[4, 35].
Because of the large area available for adsorption 2D crystals are useful for storage and capture
devices. Good examples are BHNH and graphene with Li and Ca atoms adsorbed respectively,
both show great potential for the storage of molecular hydrogen[4, 1]. While graphene adsorbs
toxic lead(II) ions from aqueous solutions[13] and BNNS can be used for the reversible capture
and release of CO2[46] as well as the adsorption of pollutant dyes[45, 27]. The possible diffusion of
adsorbates on 2D crystals is also of interest since this may lead to the formation of nanoclusters or
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self-assembly[38, 49, 14]. When the adsorbates diffuse towards the edges a new 2D crystal may be
made at the edge thus creating a heterojunction, which in case of a BNNS graphene heterojunction
could be interesting for electronic applications[30]. Thus the possible applications of adatoms on 2D
crystals in general and BNNS in specific are quite vast. Therefore the investigation of adsorption
sites and diffusion barriers of adatoms on BNNS is of interest.

In this work density functional theory (DFT) calculations were used to investigate the adsorp-
tion as well as the migration of a B adatom on a BNNS monolayer. Several adsorption sites were
investigated as was the minimum energy path (MEP) for two distinctive hops of the B adatom.

2 Theoretical background

In this section the theoretical background of two methods, density functional theory (DFT) and
nudged elastic band method (NEB), as well as the electronic structure problem will be discussed.

2.1 Electronic structure

By solving the electronic structure problem many properties of materials can be predicted, such as
bond energies and bond lengths of molecules and adsorbed particles and also lattice structures and
physical properties of solids. The ground-state electronic structure problem is defined as finding the
ground-state energy of non-relativistic electrons for arbitrary positions of nuclei within the Born-
Oppenheimer approximation.[8, 6] The Born-Oppenheimer or adiabatic approximation is done by
neglecting the kinetic energy of the nuclei by setting their mass to infinity. This approximation is
justified by the observation that nuclei are much heavier than electrons (about 2∗103 times heavier)
and that thus nuclei react much slower compared to electrons causing them to approximately be
fixed points with respect to electrons. This can also be seen by looking at the full hamiltonian for
a system of interacting electrons and nuclei eq:1. From that eqation it can be clearly seen how the
large nuclei mass (MI) causes their kinetic term (the one that goes with 1

MI
) to be small compared

to the other terms and that it becomes zero when the mass of the nuclei is set to infinity.
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After applying the Born-Oppenheimer approximation and by using Hartree atomic units 1,
which will be used throughout this section hereafter, the hamiltonian can be written as:

H = −1

2

∑
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∑
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1

2
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1

|rrri − rrrj |
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Where Vext(rrri) is the potential acting on the electrons due to the nuclei.

2.2 Density functional theory

Density functional theory (DFT) provides a way to treat the problem of many interacting bodies
as a much easier-to-solve non-interacting problem. Its methodology is applied in a large variety
of fields to many different problems, of which the ground-state electronic structure problem is the
most common[7]. In this section the fundamentals, advantages and limitations of DFT in solving
the electronic structure problem will be discussed in order to give the reader some familiarity with
the theoretical background of this method. First the fundamentals of DFT will be discussed, after

1 i.e., h̄ = me = e = 4πε0 = 1.
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that its advantages and lastly some computational details that are of importance in applying DFT
on the electronic structure problem.

2.2.1 Kohn-Sham DFT

The basis for modern DFT as used on the electronic structure originates from the papers of
Hohenberg-Kohn-Sham [12, 20]. In 1964 Hohenberg and Kohn published a paper in which they
formulated density functional theory as an exact theory of many-body systems. Their formulation
is valid for any system of interacting particles in a external potential Vext(rrri). This thus includes
any problem of electrons and fixed nuclei since the hamiltonian of such a problem can be written
as eq.2. For such systems they were the first to prove the following two theorems upon which DFT
is based:

First Hohenberg-Kohn theorem2: For any system of interacting particles in an external
potential Vext(rrri), the potential Vext(rrri) is determined uniquely, except for a constant, by the
ground state particle density ρ0(rrr) )

Second Hohenberg-Kohn theorem:A universal functional for the energy E[ρ] in terms of the
density ρ (r) can be defined, valid for any external potential Vext(rrri). For any particular Vext(rrri),
the exact ground state energy of the system is the global minimum value of this functional, and
the density ρ (r) that minimizes the functional is the exact ground state density ρ0(r)

The first theorem guarantees that given ρ0(rrr) all properties of the system are determined, via
ρ0(rrr) ⇒ Vext(rrr) ⇒ H ⇒ Ψ({rrr}), where Ψ({rrr}) is the wave function of the problem. It doesn’t
however provide a method to determine the properties of the system directly from ρ0(rrr). The
second theorem guarantees the existence of a functional E[ρ] which can be used to determine the
exact ground state energy and density thus solving the ground state electronic structure problem.
The only problem is that the exact form of E[ρ] is not known and thus it hasn’t got any practical
application in this formulation. This changed in 1965 with a new approach by Kohn and Sham
which provided a way to make useful, approximate ground state functionals for real systems of
many electrons[20]. Their approach was to replace the difficult interacting many-body system with
a different and easier to solve auxiliary system. This was an auxiliary system of non-interacting
particles (Ψ({rrr})→ {ψi(rrr)}), for which they had the ansatz that the ground state density of this
system is exactly equal to the ground state density of the original problem (ρ0(rrr) = ρKS

0 (rrr)). This
so called Kohn Sham system describes the electrons in atoms, molecules and solids as independent
particles moving in an effective potential and is thus described by the following eigenvalue problem.

HKSψi(rrr) = εiψi(rrr) (3)

With

HKS = −1

2
∇2 + Veff (rrr) (4)

Moreover they showed that with any given system of many interacting electrons there exists
a uniquely defined Kohn Sham system, that is any system of many interacting electron can be
mapped to a many body system of independent electrons with an up to a constant uniquely
defined Veff . They also defined a general form for the energy functional E[ρ] and the Veff for this

2An alternative and more general formulation by Levy and Lieb exists[31, 29, 28]
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problem. Both of which are separated in analytically solvable terms and a exchange-correlation
term in which all the difficult many body effects of exchange and correlation (XC) are grouped
eq:6 and 5. Thus although the Kohn Sham approach involves independent particles it has an
interacting density for the DFT.

E[ρ(rrr)] = Eknown[ρ(rrr)] + EXC [ρ(rrr)] (5)

In Eknown[ρ(rrr)] terms representing the independent kinetic energy of the electrons, the Coulomb
interactions of the electrons and nuclei, those between pairs of electrons and those between pairs
of nuclei are grouped. EXC [ρ(rrr)] is the exchange correlation term.

Veff (rrr) = Vext(rrr) + VHartree(rrr) + VXC(rrr) (6)

Where Vext is the potential caused by the nuclei, VHartree holds the interaction between pairs of
electrons and VXC is the exchange-correlation term which is the functional derivative of EXC [ρ(rrr)]:

VXC(rrr) =
δEXC [ρ(rrr)]

δρ(rrr)
(7)

Also since this system consists of independent particles the electron density obeys the following
equation:

ρ(rrr) =
∑
i

|ψi(rrr)|2 (8)

In conclusion if EXC [ρ(rrr)] is known the Kohn Sham eqations(3) become a self-consistent com-
putational problem whose solution is the solution to the the electronic structure problem of the
interacting system. In Fig.1. it is outlined how such a calculation would work. However EXC [ρ(rrr)]
isn’t known exactly although different approximations exist which are precise enough to be of
practical use. The choice for such an approximation will be discussed in section2.2.3.
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Initial Guess
ρ(rrr)

Solve Effective Potential
Veff (rrr) = Vext(rrr)+VHartree[ρ(rrr)]+VXC [ρ(rrr)]

Solve Kohn Sham equations[
− 1

2∇
2 + Veff (rrr)

]
ψi(rrr) = εiψi(rrr)

Evaluate Electron Density & Total Energy
ρ(rrr) =

∑
i|ψi(rrr)|2 → E[ρ(rrr)] = ...

Converged?

Output Quantities
ρ0(rrr), E[ρ0(rrr)] → forces,

stresses, eigenvalues, ...

yes

No

Figure 1: Flow chart of the Kohn Sham iteration procedure. First an initial guess for the electron
density is made, which is used to determine the effective potential. This in turn enables to solve
the Kohn Sham equations. Then the electron density and the total energy can be calculated
which subsequently can be compared to the initial guess values. If they differ a new value for the
density is chosen and the process repeats until self-consistency is reached. When this is reached
the electronic structure of the system is solved and various physical quantities, such as the forces
on the ions, can be calculated or estimated.

2.2.2 Why DFT?

DFT has two big advantages, which Kohn clearly explains in his Nobel lecture[23], the first is
conceptual. Instead of focusing on 3N-dimensional3 Hilbert space of single-particle states, it deals
with physical quantities defined in the three-dimensional coordinate space, of which the most
common and fundamental is the electron density ρ(rrr). As the size of the system increases and the
number of electrons becomes enormous a description of the system in terms of single particle wave
functions becomes increasingly hard to comprehend especially when a high accuracy is required
for which an increasing amount of exited or “virtual” orbitals are necessary. Whereas quantities
on which DFT focuses, such as ρ(rrr), are much easier visualized for very large systems, thus DFT
gives a useful and complementary look from a different perspective.

The second advantage is practical. Because of the form of the Kohn Sham equations (3)
the computational costs of solving the problem with DFT scales with N. While wave function
methods scale much more quickly with system size, for example Hartree Fock calculations scale
with N4 while post-Hartree Fock methods scale with N5 ∼ N8. Thus the computation costs of
wave function methods become impractically large quite quickly compared to DFT. As such DFT
methods are necessary to preform electronic structure calculations on large systems such as large
molecules and solids in a reasonable amount of time.

3N being the amount of electrons and every electron having 3 spatial dimensions
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2.2.3 Computational details and accuracy

In this section the computational details, such as choice of exchange-correlation functional, will be
discussed in order to provide the reader with the information necessary to reproduce the results.

Exchange-correlation functional The reliability of the results of DFT calculations depend
to a great extent on which approximation for the exchange-correlation functional is used. As such
much effort has been put in developing more precise functionals resulting in a wide range of such
functionals. These functionals all have their own advantages and are thus suited for different
problems, the B3LYP[25] is for example popular with chemist but it preforms more poorly for
extended systems such as crystals. For such systems the general gradient approximation functional
proposed by Perdew, Burke and Ernzerhof (PBE or GGA-BPE)[42] provides good results and is
widely used. Since the system of interest in this work has a crystal structure the PBE functional
was used for all calculations.

Dispersion correction Dispersion forces, also known as London or van der Waals forces have
always posed a problem for standard DFT functionals [15, 16]. This is because these interactions
cause long-ranged/non-local correlations while standard approximations for EXC are local. As such
in systems where these attractive forces are for a large part responsible for the bonds the binding
energy/bond strength ends up being underestimated by DFT. The adsorption of particles on a
surface can be achieved through van der Waals force, when this is the fundamental interacting
force it is called physisorption. Thus to get correct results including corrections to account for
dispersion interactions are necessary. In this work these were done by a van der Waals functional
made by Klimeš[19, 18].

Basis set and core electrons The Kohn Sham wave functions from eq;3 can be represented
in terms of any complete basis set[17]. For periodic systems it is most useful to expand the wave
functions in the form of a plane-wave basis set (eq:9). Therefore all calculations done in this work
were carried out using the plane-wave basis.

ψi,kkk(rrr) =
∑
GGG

ci,kkk(GGG)exp[i(kkk +GGG) · rrr] (9)

Here we however run in some practical implications since the summation in eq.9 is over all
reciprocal lattice vectors G, which means that G has an infinite amount of possible values. But
since plane-waves can be seen as solutions to the Schrödinger equation with a kinetic energy

E = h̄2

2m |kkk+GGG| and since lower energies are physically more significant than higher energies the wave
function can be reasonably be approximated by truncating the expression at a high enough energy.
For higher cutoff energies the wave functions become more accurate while the computational cost
increases. In order to find a high enough cutoff energy for any specific some initial calculations
need to be done, these can be found in the appendix (A.1), for the system investigated in this work
a cutoff energy of 750 eV was found to be sufficient4. It is important to note that a cutoff energy
of 750 eV is only sufficient in combination with the projector augmented wave method (PAW)[5]
of Blöchl, which is used to describe electrons near ion cores, with an energy cutoff of 1050 eV for
the augmentation charges. Without the PAW method a much larger energy cutoff is needed for
the plane-waves in order to describe the rapidly oscillating electrons near ion cores. By using the
PAW method and a lower cutoff energy for the plane-waves the computation costs are reduced.

k-point sampling in the Brillouin zone For DFT calculations done with a plane-wave basis
set for many calculations the integral in eq.10 has to be evaluated.

I =
Vcell
(2π)3

∫
BZ

g(kkk)dkkk (10)

4a convergence within 1 meV/atom was considered sufficient
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Here Vcell is the volume of the unit cell, g(kkk) is a generic function of k vectors and it is integrated
over all possible values of kkk in the Brillouin zone. This is an infinite-dimensional problem and thus
needs to be evaluated numerically with a discrete set of properly weighted k-points. In order to
efficiently do this a method was developed by Monkhorst and Pack[33]. Within most simulation
packages including the package used for all calculations in this work, the Vienna ab initio simulation
package (VASP)[22, 21], this method is an option and only the amount of k-points in every direction
needs to be specified. The accuracy and the computational cost of the DFT calculations increase
with the density of k-points sampled in the Brillouin zone. Thus just as with the cutoff energy
some preliminary calculations need to be done to find a sufficient value for the k-point density,
see appendix (A.1). It is also important to note that for increasing cell volume in real space the
Brillouin zone in reciprocal space decreases thus reducing the k-point sampling density needed for
good results. Throughout this work following the method of Monkhorst-Pack k-space was sampled
with a Γ centered Monkhorst-Pack grid with a k-point mesh of 2x2x1, this ensured an energy
convergence within 1 meV/atom

2.3 Nudged elastic band method

Although with DFT local energy minima and thus adsorption sites can be calculated quite easily
on its own it isn’t very well equipped to determine transition states and find the minimum energy
pathway (MEP) between two local energy minima. A method made to find these MEPs between a
stable initial and final state and that is widely used in DFT calculations is the nudged elastic band
(NEB) method. With the NEB method a string of images (geometric configurations of the system)
is used to describe a reaction pathway between the initial and final state. The initial pathway is
usually made via a linear interpolation between the initial and final state, although with some
problems a different setup is better. Then the images along the NEB are relaxed to the MEP via
a scheme were the potential forces only act perpendicular to the band and artificially added spring
forces act along the band. So for every image i the force on it has the form of the equation 11.
Where F⊥i is the part of the force which the system exerts on the image perpendicular to the path

and F
‖
i is the artificially added spring force acting along the path.

FNEB
i = F⊥i + F

‖
i (11)

By iteratively adjusting the images/configurations of the NEB until the F⊥i becomes zero the
NEB is slowly adjusted until it forms the MEP. In NEB calculations it is important to determine for
every image the tangent, τ̂îτîτi along the band in order to calculate the correct components of FNEB

i .
There are several ways to do this but the upwind tangent method as described by Henkelman
et al.[10] gives the best stability and avoids the development of artificial kinks along the path at
high force regions. This is why although VASP comes with a built in NEB method for the NEB
calculations a package developed by the Henkelman group was used[10, 11, 44]. On a side note
because for a NEB one needs to run DFT calculations for all the images at once the computation
cost of a single calculation can become quite high. Also the Henkelman package comes with a
climbing image method which assures that an image ends up at the saddle point, but since the
saddle point was the already known final state this method was turned off. Finally NEB calculations
are local not global optimization calculations, i.e. it minimizes to a local not global MEP. So a
NEB calculation can give accurate information about a particular transition but it can not indicate
whether other transitions, with a lower energy barrier, exist related to the same initial and final
states. For example to move an adatom from one adsorption site to another can happen via said
adatom simply moving over the surface, but another way of achieving this is via the exchange
mechanism where the adatom replaces an atom of the same species in the surface layer while the
surface atom pops up onto the surface in a different location becoming an adatom. Both of them
have the same result but the MEPs are different.
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3 Computational setup

In this section the specific model and setups used for the calculations will be described.

3.1 Supercell

As noted in section 2.2.3 all calculations in this work were done using the Vienna ab initio simulation
package (VASP)[22, 21]. In order to simulate a crystal this package needs a so called supercell as
input which is then periodically repeated in the three spatial directions. The size and shape of
the supercell as well as the number, elements and positions of the atoms in the supercell have to
be specified in order to create the supercell. Since the system of interest is 2D hexagonal boron
nitride with a single adatom it is important to create a supercell in such a way that the adatoms
in different periodic images don’t interact with each other as well as that images stacked in the
z-direction don’t interact with each other at all. In order to achieve this a supercell with a vacuum
layer greater than 20 Å and a horizontal width of at least 13 Å was created. the h-BN sheet was
found to have a lattice constant of 2.51 Å, see appendix (A.2), which leads the supercell to be filled
with 36 atoms of nitrogen and boron each to create the BNNS plus an extra atom as adatom, see
fig.2.

Figure 2: Top view of an example supercell with a BNNS (boron and nitrogen atoms red and blue
respectively) with an adatom (green).
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3.2 Adsorption sites

In order to determine the adsorption sites of an adatom several calculations were done with different
initial guesses on which ionic relaxation was applied in order to find the adsorption position with
the lowest total energy and thus with the highest bond strength/energy. In the scheme of fig.1
Vext is not updated during the loop and thus the positions of the ions is not updated. As such this
scheme can not be directly used to relax the ionic structure, but after the electronic relaxation the
forces on the ions can be calculated. These forces can then be used as initial input for a different
algorithm that will update the ion positions. This results in a new Vext which is used for a new
electronic relaxation which will provide the ionic relaxation algorithm with new input.

Top N

Top B

H6

B-B

N-N

B-N

Figure 3: A unitcell of hexagonal boron nitride with
the six different trial positions of the adatom; in the
middle of the hexagon (H6), on top of an N atom
(Top N), on top of an B atom (Top B), equidistant
from an N and an B atom or hetero bridge (B-N),
equidistant from two N atoms or N-bridge (N-N)
and equidistant from two B atom or B-bridge (B-
B). B atoms are red while N atoms are blue.

Within the VASP package various ionic
relaxation algorithms are provided the
one used throughout this work was the
RMM-DIIS algorithm from VASP. Six dif-
ferent positions where used as initial
guesses (fig.3), the sites on top of a
boron/nitrogen atom (B/N TOP), in the
center of the hexagonal unitcell (H6), be-
tween a boron-nitrogen pair (B-N or het-
ero bridge), between a boron pair (B-
B or B-bridge) and between a nitrogen-
nitrogen pair (N-N or N-bridge). For
these two different types of relaxations,
electronic and structural, different conver-
gence criteria were used, for the elec-
tronic relaxation the energy difference needed
to be within 10−5eV to be considered
converged while for the structural relax-
ation 10−4eV was used as convergence cri-
terium.

3.3 Migration

In section 2.3 the NEB method with which
the MEP can be determined was discussed,
but because of its computational costs an
other method to determine the migration
path of an adatom was also implemented
which will be discussed here. VASP comes with the option of selective dynamics with which
the position of arbitrary atoms can be fixed in any of the directions of the 3 vectors used to define
the supercell. In order to determine the transition states between two adsorption sites a number of
adatom positions between them are generated through interpolation just as with the NEB method.
But instead of running one simulation with all of these positions within the h-BN crystal a seperate
DFT calculation is run for each position in which the position of the adatom is kept fixed in one
direction along the BNNS surface while a structural relaxation is done. Because the supercell for
all these calculations was orthogonal the adatom is only relaxed with respect to its height and
the direction along the BNNS that is perpendicular to the direction in which the adatom is fixed.
This way the adatom is driven towards a position which minimizes the energy without being able
to ”fall” back to the adsorption site. Thus by running serveral of these calculations a number
of intermediate positions between two adsorption sites can be determined. While running these
selective dynamics calculations all the atoms along two of the edges of the supercell were kept fixed
in all directions. This was done in order to prevent all the atoms of the BNNS to move the same
distance as the adatom was moved which would effectively return the arrangement in which the
adatoms is on the adsorption site.
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4 Results and Discussion

4.1 Adsorption sites

In table 1 the adsorption energies of the trial adsorption sites can be found. The adsorption energy,
Ead was defined as;

Ead = Eatom + EBNNS − Esystem (12)

Where Eatom is the energy of a single adatom, EBNNS is the energy of a perfect BNNS without
a adatom and Esystem is the energy of the system of BNNS with an adatom on it.

Table 1: Adsorption energies of the adsorption sites, for each species of atom a comparison of the
energies of the adsorption sites with the lowest energy adsorption site and the distances between
the adatoms and the BNNS.

Atom species Site ∆E (eV) adsorption energy (eV) height adatom (Å)

B Center 0.406 0.335 2.74
Hetero bridge 0.000 0.742 1.83
B brigde 0.117 0.625 1.81
N bridge 0.192 0.550 2.03
on B 0.420 0.321 2.80
onN 0.116 0.626 1.81

N Center 2.352 0.579 2.26
Hetero bridge 0.000 2.931 1.63
on B 1.295 1.636 1.88
onN 0.021 2.910 2.78

From the table it can found that the hetero bridge site for both the N and B adatom has the
lowest energy which leads to that site being the most favorable for adsorption. The adsorption
energy of the N adatom for this site is about 4 times greater than that of the B adatom making
the adsorption of a N atom more favorable than the adsorption of a B atom. Also the adsorption
of an N atom on top of an atom in the BNNS caused a vertical displacement in the position of that
atom. When adsorbed on top of a B atom the B atom moved closer (’upwards’) to the adsorbed
N atom. While when it was adsorbed on top of an N atom the N atom in the BNNS moved away
(’downwards’) from the adsorbed N. The distance between the B atom on which N was adsorbed
and the BNNS was 0.39 Å (’upwards’) and for the N atom of the BNNS 0.91 Å (’downwards’). For
a adsorbed B atom such displacements were not present. Although the adsorption sites in table
1 are named after their trial positions, not all adsorption sites remained the same after the ionic
relaxation. In fig.4 the adsorption sites that were found after the relaxation are shown.

In fig.4b it can be seen that the initial guesses for the adsorption sites of an N atom were
quite good and that only the position for the hetero brigde site was moved slightly closer to the N
atom in the BNNS. In fig.4a however only the center and on B trial sites turned out to be actual
adsorption sites for an B adatom. For the N-bridge trial position the B adatom was moved closer
to the B atom in the BNNS while for the hetero brigde position it was moved closer to the N
atom reducing the horizontal distance between them from 1

2 l to about 1
3 l, where l is the distance

between a B and N atom in the BNNS. Lastly for B-bridge trial site the B adatom was moved
closer to the N atom while for the on N trial site it was moved closer to the B-bridge position. The
result is that their respective found adsorption sites are very close to each other and since their
adsorption energies are almost equal the resulting found adsorption site for those 2 calculations
can be considered the same.
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(a) (b)

Figure 4: The trial adsorption sites are indicated by white circles, the found adsorption sites are
indicated by black circles. In (a) the found adsorption sites for an adsorbed B atom are shown and
in order to distinguish between the found adsorption site for on N and the B-bridge trial sites the
adsorption site for on N is indicated with a green circle. In (b) the found adsorption sites for a N
adatom are shown with the on N adsorption site shown in green in order to make it clearly visible

4.2 Migration path

Based on the adsorption sites found for a B adatom a likely migration path between unit cells was
constructed. This path consisted of two parts, a short path where the B adatom moved from a
hetero bridge site around a N atom likely via a on N site to another hetero brigde site and a long
path where the B adatom moved from a hetero brigde site around a B atom likely via the N-bridge
site to another hetero brigde site. First the results for the short path around the N atom will be
discussed, after which the same will be done for the long path around the B atom and lastly those
results are combined into a single path that enables migration of the B adatom throughout the
BNNS.

4.2.1 Migration path around nitrogen

Since the path around N was short both the NEB and selective dynamics (SD) method could be
used. Both methods showed a negligible amount of change in the distance between the BNNS
and the B adatom during its migration around the N atom. With the NEB method the change
in distance stayed within the range of 0.03 Å while for SD it was within the range of 0.05 Å. The
resulting path along the BNNS, shown in fig.5, however differed greatly between both methods as
can be seen in fig.6.
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(a) (b)

Figure 5: Migration path of a B adatom around N in a hexagonal unit cell of boron nitride
calculated with the NEB method (a). Migration path of a B adatom around N in a hexagonal unit
cell of boron nitride calculated with SD (B).
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Figure 6: Migration path of a B adatom on h-BN around a N atom calculated with the NEB
method (red) and with selective dynamics (blue). The origin was set at the position of the N
atom. The lines were drawn to guide the eye.
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The energy change during the migration from hetero bridge to hetero bridge around an N atom
calculated by both methods is shown in fig.7. The methods give a different shape for the energy
change during the migration but have their peaks are equal in height at have the same position.
This is because although the migration paths calculated with both methods are different they both
go trough the adsorption site found with the on N trial site.
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Figure 7: Energy increase during the migration of a B adatom around a N atom calculated with
the NEB (red) and SD (blue) methods. The migration path is expressed in its fraction of the total
path of moving around an N atom and a B atom. The lines were drawn to guide the eye

15



4.2.2 Migration path around boron

For the long path around the B atom only the selective dynamics method was used since it required
too many images for the NEB method. In the direction along the BNNS and perpendicular to the
direction in which the B adatom was fixed (y-direction) the B adatom showed a negligible change,
within a range of 0.04 Å, in position during its migration around the B atom. The movement of
the B adatom along the BNNS can be seen in fig.9. How the distance of the B adatom to the
BNNS changed during the migration around the B atom can be seen in fig.8.The change in energy
during the migration of the B adatom around the B atom is shown in fig.10.
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Figure 8: Change in distance between the B adatom and the BNNS during the migration of the B
adatom around the B atom. The path is taken in the direction in which the B adatom was fixed
and the boron atom around which it moves is located at 0. The lines were drawn to guide the eye.

Figure 9: Migration of a B adatom around a B atom in a hexagonal boron nitride unit cell.
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Figure 10: Energy increase during the migration of a B adatom around a B atom calculated with
SD. The migration path is expressed in its fraction of the total path of moving around an N atom
and a B atom.

4.2.3 Total migration path

By combining the migration paths of the B adatom around the N atom and the one around the B
atom a new migration path is constructed which allows the B adatom to move to a neighboring
unit cell (fig.12) or it can make a turn within the unit cell, fig.11. The change in energy during
the migration is shown in fig,13.

Figure 11: The migration of a B adatom in a hexagonal unit cell of boron nitride. Red is migration
around a N atom calculated with the NEB method, green the SD around a N atom and purple the
SD around a B atom
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(a) (b)

Figure 12: Migration to a neighboring unit cell with the migration around a N atom calculated
with the NEB method (a) and with SD (b). The migration around the B atom is calculated with
SD and is indicated by purple, green is the migration around a N atom calculated with SD and
red is around a N atom calculated with the NEB method.
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Figure 13: The change in energy during the migration of a B adatom around a N atom first and
a B atom second. Red indicates the calculations done with the NEB method and blue with SD.
The lines were drawn to guide the eye.

4.3 Diffusion of B adatom

With the energy landscape known some calculations on the kinetics of the B adatom can be done.
The jump rate of a adatom jumping from one hetero bridge site to another is described by equation
13.

Γ = ν0e
−Ediff/(k∗T ) (13)

Where Γ is the jump or hopping rate, ν0 is the vibrational frequency of the adatom which is
typically around 1013Hz, Ediff is the height of the energy barrier, k is the boltzman constant and
T is the temperature. In order for diffusion to happen Ediff has to be smaller than the adsorption
energy otherwise desorption will be the dominant process. Since the peaks in the energy curve of
the diffusion path are the on N site and N-bridge site both peaks are lower than the adsorption
energy of the hetero bridge site (see table 1). Since the diffusion path consists of two different
hops which leads to two different energy barriers two hopping frequencies can be defined. Γ1 for
the small energy barrier E1 which needs to be overcome for a hop around a N atom and Γ2 for
the larger energy barrier E2 which needs to be overcome for a hop around a B atom. Since E2

is larger than E1, Γ2 is larger than Γ1 at equal temperature. Thus three regimes can be defined,
one where the T is so low that both the hop around a N atom and the hop around a B atom can
not be made (Γ2 < Γ1 << 1). A temperature regime where the B adatom can hop around a N
atom but not around a B atom (Γ2 << 1 < Γ1) and thus the B adatom is trapped on the three
hetero bridge sites around one N atom. The last regime is when T is so high that the B adatom
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can hop around both the N atom and the B atom (1 < Γ2 < Γ1) and thus the paths in figures
12 and 11 are accessible. In the table below the hopping frequencies for the two energy peaks has
been calculated for different T.

Table 2: Hopping frequencies for diffusion around a N atom (Γ1) and around a B atom (Γ2) for
different temperatures.

Temperature (K) k*T (eV) Γ1 (s−1) Γ2 (s−1)

30 0.003 1.06 ∗ 10−7 5.78 ∗ 10−20

50 0.004 10.3 4.54 ∗ 10−7

80 0.007 3.23 ∗ 105 8.14
100 0.009 1.02 ∗ 107 3.57 ∗ 106

150 0.013 1.01 ∗ 109 1.46 ∗ 108

200 0.017 1.01 ∗ 1010 1.35 ∗ 109

273 0.024 6.38 ∗ 1010 2.87 ∗ 109

From the values of table 2 it is clear that at room temperature the B adatom can diffuse
throughout the BNNS. From the hopping frequency it is possible the calculate the average distance
traveled by a B adatom after a time t with the following equation.

√
〈∆r2〉 = a

√
Γt (14)

Where a is the distance traveled by a hop and t is the time. This equation does not account
for a path with different kinds of hops but from table 2 and fig.14 it can be seen that when Γ2 is
large enough to allow hopping, Γ1 is much larger than Γ2 which makes an approximation whereby
only Γ2 is taken into account reasonable. Considering a, the hop around a N atom and the hop
around a B atom add up to a path with the length of the lattice constant, thus a=2.51 Å. With
this the average distance traveled for different temperatures can be plotted against time as done
in fig.15.
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Figure 14: Hopping frequencies of the B adatom on a log scale against temperature for the path
around a N atom (E1) and the path around a B atom (E2). In (a) for a temperature range from
0 to 1000 K and in (b) for a temperature range of 50 to 150 K.
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Figure 15: Average distance traveled after a time t for different temperatures T.
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5 Conclusion

In this work possible adsorption sites of a boron atom on a boron nitride nanosheet were inves-
tigated using DFT calculations. The adsorption site with the highest bond energy was found to
be on a hetero bridge with the distance from the B adatom to a N atom about half the distance
between the adatom and a B atom. The migration of the adatom on top of the BNNS was also
investigated using both the nudged elastic band method and selective dynamics. A diffusion path
with whereby diffusion throughout the BNNS is possible was identified and it consists of two dis-
tinctive hops. One hop is from a hetero bridge site to a hetero bridge site around a N atom. This
hop has a shorter path and lower energy barrier compared to the second hop which is also from
a hetero bridge site to a hetero bridge site but around a B atom. With these energy barriers the
kinetics of the diffusion were investigated and the calculations showed that diffusion takes place at
room temperature. Thus a B adatom is not confined in a certain area on the BNNS.

It was also found that although the NEB method and selective dynamics gave the same energy
barrier the calculated values between the two points differed except for the saddle point. Thus
the resulting energy curves were different except for the place and height of the peak. Further
investigation of which path is accurate is necessary and the application of the NEB method on
migration around the B atom to compare the NEB method with the selective dynamics would be
interesting as well.

Similar investigation of elements other than boron as adatoms such as nitrogen, carbon and
gold could be an interesting follow up study of what was done in this work.
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A Appendix

A.1 Convergence

With numerical calculations an important issue is how well converged they are since it determines
their accuracy. For the calculations done in this work the parameters that determine the conver-
gence are the energy cutoffs and the k-space sampling. In order to identify the minimum values
for these parameters for good convergence some preliminary calculations were done which will be
reported here. In order to test the convergence two sets of calculations were done, one for different
values for the kinetic cutoff energy of the plane-waves basis set and another for the amount of
k-points sampled on the k-mesh. Although the cutoff energy for the augmentation charges also
influences the convergence it was not treated as an independent parameter and was always set to
1.4 times the plane-wave energy cutoff.

In order to find a good convergence for the cutoff energy geometry optimization of a 6x6 h-BN
supercell was done for different cutoff energies. A high sampling for the k-space was chosen, a
k-mesh with a sampling of 12x12x1, for all the calculations in order to measure only the energy
cutoff dependence of the convergence. The results would be considered well converged if the energy
per atom becomes constant within a range of ± 1 meV compared to the energy per atom calculated
at the highest cutoff energy (900 eV). As indicated by Fig. A.1 a minimum cutoff energy of 750
eV is needed to satisfy that condition.
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Figure A.1: Calculated energy differences per atom for different cutoff energies of the plane-wave
basis set compared to the highest cutoff of 900 eV. All points were calculated with a 12x12x1 k-
mesh. The blue dashed line was drawn to guide the eye. The area between the red lines indicates
an interval of ±1 meV while the area between the blue lines indicate an ±2 meV interval.

For the k-space sampling a similar approach was used. Geometry optimization was done with
a 6x6 h-BN supercell with a high energy cutoff, 900 eV, in order to insure that only the k-space
sampling influences convergence. Since the calculations are done on a 2D material the sampling of
k-space was done in the following format; axax1, with a being the parameter that was varied for
different calculations. As Fig. A.2 indicates a sampling of 2x2x1 satisfies the convergence condition
of ±1 eV with respect to that of a sampling of 12x12x1.
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Figure A.2: Calculated energy differences per atom for different k-meshes compared to a k-mesh
of 12x12x1. All points were calculated with an energy cutoff of 900 eV. The blue dashed line was
drawn to guide the eye. The area between the red lines indicates an interval of ± 1 meV.

A.2 Lattice constant

In order to determine the lattice constant of h-BN preliminary calculations have been done. For
different values for the lattice constant geometry optimization was done. The calculations were done
with a 1x1 supercell of h-BN with a vacuum layer of at least 20 Å thick between layers to prevent
interlayer interaction. The energy cutoff was 750 eV and the k-mesh 12x12x1. As illustrated in
Fig. A.3 a lattice constant of 2.51 Å resulted in the lowest energy, this is in agreement with the
experimental value[41]. Therefore in all other calculations a lattice constant of 2.51 Å was used.
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Figure A.3: Calculated energy for different values for the lattice constant. The energy at 2.51 Å
has been set as zero and the dashed line is a quadratic fit.
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