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Abstract

This thesis consists of two parts. In Part I we give an introduction to some
of the mathematical aspects of gauge theory. In particular we will intro-
duce the concept of a connection, which allows one to define a notion of
curvature and a notion of parallel transport in an arbitrary vector bundle.
In this context we will treat Yang-Mills theory and Chern-Simons theory,
where the notion of a connection is a fundamental one. We will introduce
the notion of a principal fiber bundle, which is the right tool to formalize
the notion of local symmetries, which is central in gauge theory in physics.
After this, we will consider 4-dimensional BF -theory. First from the point
of view of canonical quantization and Feynman path-integral quantization,
and then from a categorical perspective. From the categorical perspective
we will find a simple criterion that characterizes 4-dimensional BF -theory
up to isomorphism. In Part II we start with a description and an expla-
nation of the integer quantum Hall effect. The explanation we give starts
from a description of a single electron in a magnetic field. If the magnetic
field is extremely strong, then (in a quantum mechanical description) the
coordinates of the electron cease to commute. After this we introduce the
independent oscillator model for Brownian motion and quantize it. It turns
out that there is an interesting way to combine this quantum mechanical
version of Brownian motion, with the theory of an electron in a strong mag-
netic field. We compute the mean squared displacement of the particle as a
function of time for this system. Consequently, we analyse the result in two
different regimes for the friction constant, associated with the Brownian mo-
tion. If the friction constant is very large, then the result is very similar to
classical Brownian motion. If, however, the friction constant is small, then
the movement of the particle is suppressed. In particular, the mean squared
displacement grows linearly with time, and the coefficient is proportional to
the friction constant. We conclude with a final consideration of the integer
quantum Hall effect, and in particular we point out a connection between
the integer quantum Hall effect and the Chern class of a vector bundle.
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Introduction

One might view this thesis as a study of the electron. The electron is, per-
haps, along with the photon, the most well-known fundamental particle.
Far too much is known about the electron for this thesis to be a compre-
hensive study of it. We will not even talk about the electron’s spin, surely
one of its most fundamental and interesting properties. We will consider
the electron from two different points of view. On the one hand we will
describe a tiny part of the mathematical framework that encompasses the
most sophisticated point of view of the electron and of electromagnetism in
general, this is done in part I. On the other hand we will analyse some very
concrete physical systems, where the electron is the main ingredient, this is
the content of part II. Chapters 7 through 9 can be read independently of
part I.

Vector bundles are the natural mathematical setting for electromag-
netism and, in some cases, quantum mechanics. In Chapter 1 we give a
construction of a vector bundle from data that is naturally available in
physics, namely a representation of a group and a collection of transition
maps. We will actually see an example of such data and the corresponding
construction in Chapter 10.

We continue with an introduction to the mathematical aspects of gauge
theories in Chapter 2. Gauge theory is an immensely fruitful area of co-
operation between mathematics and physics. After this introduction, two
important examples of gauge theories are considered in Chapters 3 and 4.
The first example is Yang-Mills theory, which encompasses the standard
model of particle physics. Secondly we consider Chern-Simons theory, this
is an example of a topological quantum field theory. It was shown by Wit-
ten, in Ref. [Witt89], that Chern-Simons theory can be used to obtain knot
invariants. The Chern-Simons actions appears in the effective action used
to describe the fractional quantum Hall effect, see Ref. [Zhang92]. Unfortu-
nately, both of these interesting avenues of research fall beyond the scope of
this thesis. We will be content to give the definition of the Chern-Simons
action and prove some of its elementary properties.

In Chapter 5 we introduce the concept of a principal fiber bundle. These
objects are closely related to the G-bundles introduced in Chapter 1. We
will try to make this connection explicit, by translating some of the concepts
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introduced in the context of vector bundles to principal fiber bundles.
Finally, in Chapter 6 we will consider the so-called BF -theory in four

dimensions. This theory is a gauge theory that is also a topological quantum
field theory, just like Chern-Simons theory. In this chapter we follow the
work [Baez95] very closely. Some slight familiarity with category theory is
assumed in Chapter 6. Motivated by an analysis of this theory we construct
a functor from the cobordism category to the category of vector spaces. This
functor will have some special properties that make it a topological quantum
field theory in the sense of Atiyah, see Ref. [Atiy88].

After this quite abstract story we will change gears a bit and consider
some concrete physical systems in Part II.

In Chapter 7 we will describe and explain the integer quantum Hall ef-
fect (IQHE), originally discovered by K.v.Klitzing, G.Dorda & M.Pepper,
see Ref. [KDP80]. The integer quantum Hall effect is, along with for exam-
ple superconductivity, a macroscopic quantum phenomenon; a macroscopic
quantity, in this instance the resistance, is quantized. The quantum Hall
effect allows the international standard for resistance to be defined in terms
of the electron charge and Planck’s constant alone, and furthermore it allows
the most accurate measurements of resistance today, see Refs. [RS10] and
[SI06]. The theory we develop in Chapter 7 forms the basis of our analy-
sis in Chapter 9. More specifically, in Section 7.4 we consider an electron
in an extremely strong magnetic field, a system that may be described by
so-called topological quantum mechanics. These theories were constructed
by G.V.Dunne, R.Jackiw and C.A.Trugenberger in Ref. [DJT90], in analogy
to Chern-Simons gauge theories. The theory of an electron in an extremely
strong magnetic field has two striking properties. Firstly, in the absence
of an external potential, the Hamiltonian vanishes identically, this is the
reason for the name topological quantum mechanics. Secondly, the spatial
coordinates of the particle cease to commute. We will have more to say
about these facts in the text.

In Chapter 8 we give a brief recollection of the classical theory of Brow-
nian motion and then go on to prescribe a way to quantize such a system.
Because the energy of a particle undergoing Brownian motion is not con-
served, some care must be taken in the quantization of such a system. A
well-studied model that allows quantization of Brownian motion is the so-
called independent oscillator (IO) model. We will introduce this model in
Section 8.2 and study its quantization in Section 8.4. We will take a canon-
ical approach to its quantization, advanced by Ford, Lewis and O’Connell
in Ref. [FLO88]. The main result of this approach is a quantum mechanical
version of the Langevin equation, called the operator Langevin equation, or
the quantum Langevin equation by Ford, Lewis and O’Connell. An alter-
native approach that is well-studied is described by Caldeira and Leggett in
Ref. [CL83].

The work done in Chapters 7 and 8 is synthesized in Chapter 9, where
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we consider Brownian motion in an extremely strong magnetic field. The
main motivation in studying this problem is the question of dissipation in
topological quantum mechanics. This question is especially interesting, be-
cause at first sight it appears to be nonsensical. How can a topological
system dissipate energy? It had no energy to start with. The answer will
turn out to be that in the independent oscillator model we have to give the
topological system a certain interaction energy, which it can then exchange
with the heat bath. The main result of Chapter 9 is the operator Langevin
equation. We solve the operator Langevin equation in some especially sim-
ple situations, and compare the results to the classical theory of Brownian
motion.

In Chapter 10 we give an alternative computation of the Hall conduc-
tance different from the one done in Section 7.3.3. The presentation given
in Chapter 10 is based on Ref. [Kohm85]. The computation makes use of
techniques from the theory of vector bundles treated in part I, in particular
it relates the Hall current to the first Chern class of a particular vector bun-
dle. As such, it lays bare the connection between the quantum Hall effect
and topology.
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Prerequisites and
conventions

The prerequisites for Parts I and II are mostly disjoint. As one might guess
by the titles, the prerequisites for Part I are mostly of a mathematical nature
and the prerequisites for II are mostly of a physical nature.

For Part I we assume that the reader is familiar with the following con-
cepts from differential geometry: differential forms, tangent bundles, vector
bundles and fiber bundles. Furthermore, some familiarity with Lie groups is
required. In Chapter 6 we will assume some familiarity with category theory,
the relevant notions can be found in the rather short document [Baez04].

In Part II we assume that the reader is familiar with quantum mechanics,
in particular, the quantum mechanical harmonic oscillator. Furthermore,
the reader should be comfortable with the Lagrangians and Hamiltonians,
and in extension of this, with the Heisenberg picture of quantum mechanics.
In Chapter 8 we recall some basic facts of classical Brownian motion, our
treatment is, however, far too short to serve as an introduction. We do not
assume any familiarity with the quantum mechanical analog of Brownian
motion.

The following conventions will be in effect throughout the text, unless
explicitly stated otherwise. We abbreviate smooth manifold to manifold. We
will use the Einstein summation convention for repeated indices, whenever
the repeated index appears exactly once as a superscript and exactly once as
a subscript. Any quantity expressed by a single boldface letter, for example
p is a vector. (However, not all vectors will be represented in this way.) The
square of a vector is short for the inner product of the vector with itself,
i.e. if p is a vector, then p2 = p · p. Finally, in Part II we will use Dirac’s
bra-ket notation.

Finally, kB is Boltzmann’s constant and ~ is the reduced Planck constant.
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Bundles and gauge fields
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Chapter 1

Vector bundles

In this chapter we will describe a way to construct vector bundles that is
often found in problems from physics. We will see an example of such a
problem and the corresponding construction in Chapter 10. The presenta-
tion here will be given in coordinates, because this is the way that the data
is usually given in physics.

1.1 G-Bundles

Let M be a manifold and {Uα} an open cover of M . Let G be a group and let
(V, ρ) be a representation of G in the vector space V , that is ρ : G→ GL(V )
is a group homomorphism. We denote the identity of the group G by e.
Let gαβ : Uα ∩ Uβ → G be a collection of smooth maps satisfying gαα = e
and gαβgβγgγα = e for all α, β, γ. The relation gαβgβγgγα = e is called
the cocycle condition. Note that the cocycle condition together with the
condition that gαα = e implies gαβgβα = e.

Definition 1.1.1. Given the data as specified above, the G-bundle E is
defined as

E :=

(⋃
α

Uα × V

)
/ ∼,

where the points (x, v) ∈ Uα× V and (x′, v′) ∈ Uβ × V are equivalent if and
only if x = x′ and

v = ρ(gαβ(x))v′.

The equation above is also abusively written as

v = gαβv
′.

One may show that the relation ∼ is an equivalence relation by making
use of the cocycle condition.

Let M, {Uα}, G, ρ and gαβ be as above.

2



Chapter 1. Vector bundles

Theorem 1.1.2. The space E as defined above is actually a vector bundle.

Proof. To prove the claim we need to show two things: the fibers Ex can
be endowed with the structure of a vector space, and the space E is a fiber
bundle.

First, let us show that the space E is a fiber bundle, i.e. is locally trivial-
izable. Actually, if the pair (E,M) is to be a fiber bundle there should also
be a smooth surjection π : E →M . The map π̃ : ∪αUα×V →M, (x, v) 7→ x,
factors through a map π : E → M , since if (x, v) ∼ (x′, v′) then π̃(x, v) =
π̃(x′, v′). In other words, π is the map obtained from the universal property
of the quotient with respect to the following diagram

∪αUα × V M

E

π̃

q
∃!π

where we have denoted the quotient map by q.
Let x ∈M , then x lies in some open Uα. The set Uα×V is contained in

the preimage of Uα under π̃, that is Uα × V ⊂ π̃−1(Uα). The map q maps
Uα × V surjectively onto π−1(Uα). When restricted to Uα × V , the map q
is a diffeomorphism onto its image, that is

q
∣∣
Uα×V : Uα × V

'−→ q(Uα × V ) ⊆ E.

The commutativity of the diagram above, and the fact that the maps q, π̃
and π are surjections implies that q(Uα × V ) = π−1(Uα). We conclude that
q restricts to a diffeomorphism Uα × V ' π−1(Uα).

Second, let us show that each fiber Ex can be endowed with the structure
of a vector space.

We denote the image of (x, v) ∈ Uα × V in E under the canonical pro-
jection map by q(x, v) = [x, v]α. It follows that the fiber Ex takes the form

Ex = {[x, v]α
∣∣v ∈ V }.

The fiber Ex can be endowed with the structure of a vector space as follows,
let λ ∈ R and let [x, v]α ∈ Ex and [x, v′]α ∈ Ex then we define

λ[x, v]α = [x, λv]α,

[x, v]α + [x, v′]α = [x, v + v′]α.

Let us note that if [x, v]α ∈ Ex and [x, v′]β ∈ Ex, then one might use

[x, v]α + [x, v′]β = [x, v]α + [x, gαβv
′]α.

This makes Ex into a vector space. The rules above are well defined since
gαβ = g−1

βα and since gαβ(v + v′) = gαβv + gαβv
′.

The group G is called the structure group of the vector bundle E.
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Chapter 1. Vector bundles

1.2 The endomorphism bundle

If (E, π) is a bundle over a manifold M , we denote by Γ(E) the space of
(smooth) sections of E over M , i.e.

Γ(E) = {s ∈ C∞(M,E)|π ◦ s = IdM}.

Definition 1.2.1 (Endomorphism bundle). Let E be a vector bundle over
M . The endomorphism bundle End(E) is the bundle E ⊗ E∗. The fiber of
End(E) is equal to the vector space End(Ex).

Suppose that T ∈ Γ(End(E)), thus for each x ∈M we have

T (x) : Ex → Ex, v 7→ T (x)v,

this allows us to view T as a map

T : Γ(E)→ Γ(E),

by the equation

(Ts)(x) = T (x)s(x), (s ∈ Γ(E), x ∈M).

The map T : Γ(E)→ Γ(E) is C∞-linear, that is, for all f ∈ C∞(M) and all
s ∈ Γ(E) we have T (fs) = fT (s).

Theorem 1.2.2. This map describes a bijection Γ(End(E)) ' End(Γ(E)),
(where we see Γ(E) as a C∞(M)-module).

Proof. Let us denote the map described above by

ϕ :Γ(End(E))→ End(Γ(E)),

(ϕT )(s)(x) = T (x)s(x), (T ∈ Γ(End(E)), s ∈ Γ(E), x ∈M).

Let us now describe a map ψ : End(Γ(E)) → Γ(End(E)), which will turn
out to be the inverse of ϕ. Let τ ∈ End(Γ(E)) be arbitrary. We will describe
its image under ψ, that is ψτ , by giving its value at each x ∈M , that is, we
will give a linear map

ψτ(x) : Ex → Ex.

Let x ∈ M and v ∈ Ex be arbitrary. Let s ∈ Γ(E) be an arbitrary section
with s(x) = v. We now define ψτ by

(ψτ)(x) : Ex → Ex, v 7→ (τs)(x).

Using the fact that τ is C∞(M)-linear, one may show that this does not
depend on the choice of section s as follows.

Suppose that we have two sections, s, s′ ∈ Γ(E), with the property that
s(x) = s′(x) = v. We define the section ∆s := s − s′. Then it suffices to

4



Chapter 1. Vector bundles

show that (τ∆s)(x) = 0. Let U be a trivializable open neighborhood of x.
Then choose a basis of sections {ei} of E over U . We expand the section
∆s on this basis, i.e. we write

∆s(m) =
∑
i

χi(m)ei(m), (m ∈ U),

where χi are smooth functions on U . Note that χi(x) = 0 for all i, since
∆s(x) = 0. Let us pick a smooth bump function f on M that satisfies
f(x) = 1 and supp(f) = U . Now we may compute

∆s = (1− f)∆s+ f∆s

= (1− f)∆s+
∑
i

fχiei.

We complete the proof by using the fact that τ is C∞(M)-linear,

(τ∆s)(x) = τ

(
(1− f)∆s+

∑
i

fχisi

)
(x)

= (1− f)(x)(τ∆s)(x) +
∑
i

f(x)χi(x)(τei)(x)

= 0.

We now show that ψ is left and right inverse of ϕ. Let T ∈ Γ(End(E)),
x ∈M , and v ∈ Ex and s ∈ Γ(E) with s(x) = v, then we compute

(ψϕT )(x)(v) = (ϕT )(s)(x) = T (x)s(x) = T (x)v,

hence ψϕT = T . Next, let τ ∈ End(Γ(E)), s ∈ Γ(E) and x ∈ M , then we
compute

(ϕψτ)(s)(x) = (ψτ)(x)(s(x)) = (τs)(x),

hence ϕψτ = τ .

Given two vector bundles E,F over M we may define the homomorphism
bundle Hom(E,F ) = F ⊗ E∗. We now have the following theorem.

Theorem 1.2.3. There is a bijection Γ(Hom(E,F )) ' Hom(Γ(E),Γ(F )),
(where we view Γ(E) and Γ(F ) as C∞(M)-modules.

The proof of Theorem 1.2.2 can be adapted to this situation with minimal
changes.
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Chapter 2

Gauge theory

The subject of gauge theories is an immense one, there are many theories in
physics which may be called gauge theories. A familiar example might be the
classical theory of electromagnetism, but the standard model of physics is
also a gauge theories. Even general relativity may, in some sense, be viewed
as a gauge theory, though in this case there are many caveats. In this chapter
we will give an introduction to some of the most basic notions that appear
in gauge theory, our goal is not to be complete, but rather to give a leisurely
introduction to the mathematical framework of gauge theories.

Let E be a vector bundle over M with fiber V . We denote the space of
smooth vector fields on M by X(M).

2.1 Connections

If M is any smooth manifold, then we may view the smooth functions
C∞(M) as sections of the trivial line bundle over M , i.e. C∞(M) = Γ(M ×
R). Given a vector field v ∈ X(M), there is then a canonical way to take
the derivative of any section f ∈ Γ(M × R) along v, yielding another
section df(v) ∈ Γ(M × R). Hence, we may see the derivative as a map
d : X(M)→ End(Γ(M ×R)). In this section we will give the definition of a
connection on a vector bundle, which may be thought of as a generalization
of this construction.

Definition 2.1.1 (Connection on a vector bundle). A connection D on M
is a map D : X(M)→ End(Γ(E)), v 7→ Dv. Apart from the usual properties
required for an endomorphism (of vector spaces) the map D satisfies the
additional properties, for all v, w ∈ X(M), s ∈ Γ(E) and f ∈ C∞(M):

Dv(fs) = v(f)s+ fDvs,

Dv+ws = Dvs+Dws,

Dfvs = fDvs.

6



Chapter 2. Gauge theory

The map Dv : Γ(E) → Γ(E) is called the covariant derivative along v.
One may check that, indeed, the usual exterior derivative d is a connection
on the trivial line bundle M × R.

We investigate this definition in local coordinates. Let U ⊆ M be an
open neighborhood with coordinates xµ and let ∂µ be the corresponding
basis of coordinate vector fields, and let ei be a basis of sections of E over
U . We write Dµ for D∂µ . We may expand the sections Dµej over the basis
ei and write

Dµej = Aiµjei,

where Aiµj are functions on U , they are the components of the so-called vec-
tor potential. For an arbitrary vector field v = vµ∂µ on U and an arbitrary
section s = siei of E over U we obtain the coordinate description of the
covariant derivative of s in the direction of v:

Dvs = Dvµ∂µs

= vµDµs

= vµDµ(siei)

= vµ((∂µs
i)ei +Ajµis

iej)

= vµ(∂µs
i +Aiµjs

j)ei.

We thus see that Aiµjv
µsjei is a section of E over U . This allows one to view

the vector potential A as an End(E)-valued 1-form. That is, as a section of
the bundle

End(E|U )⊗ T ∗U.

The justification for this viewpoint is that we may write

A = Ajµiej ⊗ e
i ⊗ dxµ.

Indeed, let v ∈ X(U) and let s be a section of E over U , then we obtain

A(v)s = Ajµiv
µsiej .

Definition 2.1.2 (Standard flat connection). Given a trivial open neigh-
borhood U of M we define the standard flat connection D0 on E|U by

D0
vs = v(sj)ej .

A remark that will turn out to be important later is that the standard
flat connection depends on the choice of trivialization.

If E = M × R, then the standard flat connection is actually just the
exterior derivative. In some cases it will be possible to find a globally defined
flat connection, in those cases we will write D0 for this connection, if there
is no globally defined flat connection we will use D0 to denote any fixed
connection. We will see more about what it means for a connection to be
flat later.

7



Chapter 2. Gauge theory

End(E)-valued differential forms

Definition 2.1.3 (End(E)-valued differential forms). An End(E)-valued
differential form is a section of the bundle

End(E)⊗ ΛT ∗M.

Remark 2.1.4. It turns out that this object is very important to us, it is
therefore convenient to introduce the following common shorthand notation

Γ(ΛT ∗M ⊗ End(E)) = Ω(M,End(E)),

Γ(ΛkT ∗M ⊗ End(E)) = Ωk(M,End(E)).

Elements of Ωk(M,End(E)) are referred to as End(E)-valued k-forms. We
should stress that these spaces are defined for any vector bundle E in the
place of End(E).

The reader may notice that we have exchanged the order of the factors
in the tensor product above, sometimes one order is more natural than the
other, so we will do so freely.

Proposition 2.1.5. If D′ is a connection on E, then any other connection
on E can be written as D′ +A, where A is some End(E)-valued 1-form.

Here we give the details of the proof sketched in Ref. [Baez94].

Proof. Suppose we are given two connectionsD′ andD, we have to show that
there exists an End(E)-valued 1-form A with the property that D′+A = D.
Let us show that A := D − D′ does the job. Let v ∈ X, and s, t ∈ Γ(E)
be arbitrary, we claim that Av is a C∞(M)-linear map Av : Γ(E) → Γ(E),
indeed,

Av(fs) = fDv(s) + v(f)s− fD′v(s)− v(f)s = fDv(s)− fD′v(s) = fAv(s),

Av(s+ t) = Dv(s) +Dv(t)−D′v(s)−D′v(t) = Av(s) +Av(t).

So we may identify Av ∈ Γ(End(E)). Furthermore if we fix v, w ∈ X(M),
f ∈ C∞(M) and s ∈ Γ(E) we also have that

Afv(s) = fAv(s), and

Av+w(s) = Av(s) +Aw(s).

Which shows that if we consider A as a map

A : X(M) = Γ(TM)→ Γ(End(E)),

it is C∞(M)-linear. So we may identifyA as beingA ∈ Hom(Γ(TM),Γ(End(E))).
An application of Theorem 1.2.3 now shows that Hom(Γ(TM),Γ(End(E))) '
Γ(T ∗M ⊗ End(E)), which completes the proof.

Since the difference of any two connections, D and D′, gives an element
D −D′ ∈ Ω1(M,End(E)) and furthermore since D + A is a connection for
any A ∈ Ω1(M,End(E)), we say that the space of connections is an affine
space for the space of End(E)-valued 1-forms on M .
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Chapter 2. Gauge theory

2.2 Gauge transformations

In physics, gauge theories arose as a tool to formalize the notion of so-called
local symmetries. At this point we will not be very concrete about this,
but we will see examples later. The mathematical object that formalizes
the notion of symmetry is a group, which we call the gauge group in our
current context. The gauge group is the structure group G of our G-bundle.
The mathematical object that formalizes the notion of local symmetry is
called the group of gauge transformations, denoted by G. We should warn
the reader that the distinction between the gauge group and the group of
gauge transformations is not always made very clear. In this thesis we
will reserve the name ‘gauge group’ for the structure group G, this means
that we will always, rather verbosely, refer to the group G as the ‘group
of gauge transformations’. We will give a definition of the group of gauge
transformations similar to definition 1.1.1.

Definition 2.2.1 (Group of gauge transformations). Let G be a Lie group
and E a G-bundle over the manifold M with fiber V . Let {Uα} be an open
cover of M that trivializes E. That is, the vector bundle E is obtained by
the quotient

E :=

(⋃
α

Uα × V

)
/ ∼ .

See Definition 1.1.1 for the equivalence relation ∼. Then, the group of gauge
transformations G consists of collections of maps

hα ∈ C∞(Uα, G),

that satisfy the relation
hβ = gβαhαgαβ, (2.1)

where gαβ are the maps used to give the equivalence relation ∼ as in 1.1.1.

We should stress that an element of the group of gauge transformations
G is a collection {hα}, that is, if we are given an element {hα} ∈ G we have
a map hα ∈ C∞(Uα, G) for each member of the trivializing cover {Uα}.

Eq. (2.1) tells us how gauge transformations transform under coordinate
transformations.

The group of gauge transformations is actually a group. Indeed, if
{hα}, {h′α} ∈ G then their product is simply the pointwise product, which
exhibits the correct transformation behaviour

gβα(h · h′)αgαβ = gβαhαh
′
αgαβ

= (gβαhαgαβ)(gβαh
′
αgαβ)

= (h · h′)β.

9



Chapter 2. Gauge theory

The unit element of G is the collection of maps identically equal to the unit
element of G.

The group of gauge transformations, G, acts from the left on the space of
sections of E as follows. Let s ∈ Γ(E), then in a local trivialization Uα × V
of E we have

sα(x) = (x, vα(x)) ∈ Uα × V,

where vα : Uα → V . Let h = {hα} ∈ G, then we define

(h · s)α(x) = (x, hα(x)vα(x)) ∈ Uα × V.

This action is well-defined, as we will show here. For any section s ∈ Γ(E)
we must have sα(x) ∼ sβ(x) if x ∈ Uα ∩ Uβ, that is,

vα(x) = gαβvβ(x).

So let us compute

hα(x)vα(x) = hα(x)gαβvβ(x)

= gαβhβ(x)gβαgαβvβ(x)

= gαβhβ(x)vβ(x),

which tells us that (h · s)α(x) ∼ (h · s)β(x), as required.
One can apply gauge transformations to connections as follows. Let D

be a connection on M and let g ∈ G be a gauge transformation. The gauge
transform of D by g is then given by

D′v(s) = gDv(g
−1s).

Definition 2.2.2 (G-connection). We say that D is a G-connection if for
each Uα we have that in local coordinates the components Aµ ∈ End(E) live
in g, the Lie algebra of G.

Let us explain what it exactly means that Aµ lives in g. Just like before,
if s ∈ Γ(E), then in a local trivialization Uα × V of E we have

sα(x) = (x, vα(x)) ∈ Uα × V,

now Aµ acts on s by

(Aµ · s)α(x) = (x,Aα,µ(x)vα(x)).

So Aα,µ(x) ∈ End(V ). Recall that we have a representation ρ : G→ GL(V ),
which induces a representation ρ∗ : g → End(V ). If Aα,µ lies in the image
of ρ∗, i.e. Aα,µ ∈ ρ∗(g) then we say that Aα,µ lives in g.

Proposition 2.2.3. If D is any G-connection and g ∈ G an arbitrary gauge
transformation, then the gauge transform D′ of D is again a G-connection.

10



Chapter 2. Gauge theory

Proof. First, let us check that D′ is actually a connection. We fix v ∈ X(M)
and check that D′v is actually an element of End(Γ(E)). Let r, s ∈ Γ(E) and
let f ∈ C∞(M). We compute

D′v(r + s) = gDv(g
−1(r + s))

= gDv(g
−1r + g−1s)

= gDv(g
−1r) + gDv(g

−1s)

= D′v(r) +D′v(s), and,

D′v(fr) = gDv(g
−1(fr))

= gDv(fg
−1r)

= fgDv(g
−1r) + gv(f)g−1r,

= fD′v(r) + v(f)r,

as desired. The other properties are proven similarly.
Next, let us show that D′ is actually G-connection. We consider D on

the neighborhood Uα, thus D = D0 + A and D′ = D0 + A′. We have seen
that (Dµs)

i = ∂µs
i +Aiµjs

j . By definition of D′ we obtain

(D′µs)
i = g(D′µg

−1s)i = g∂µ(g−1si) + gAiµjg
−1sj

= ∂µs
i + g(∂µg

−1)si + gAiµjg
−1sj ,

thus we conclude that

A′µ = g(∂µg
−1) + gAµg

−1.

Now let us consider a local chart U such that we may identify g and Aµ
with maps

g : U → ρ(G) ⊆ GL(V ), Aµ : U → ρ∗(g) ⊆ End(V ).

It is then a standard fact of the theory of Lie groups that (gAµg
−1)(x) ∈

ρ∗(g). Let us show that if x ∈ U , then (g(∂µg
−1))(x) ∈ ρ∗(g). We consider

the map
h : U → G, y 7→ g(x)g−1(y),

it follows that h(x) = e, hence

(g(∂µg
−1))(x) = ∂µh(x) ∈ ρ∗(g),

as required.

2.3 Parallel transport and holonomy

In this section we assume that π : E →M is a vector bundle over a smooth
manifold equipped with a connection D. Furthermore γ : [0, T ] → M will
be a smooth path in M , with endpoints γ(0) = p and γ(T ) = q.

11
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2.3.1 Parallel transport

Let v be a vector in the fiber of E over γ(t). We would like to find a path
u : [0, T ] → E that is the parallel translate of v along γ. We want to drag
the vector v along the path γ, it turns out that we can do this using a
connection. For this we will work in local trivialization E|U ' U × V , for
the moment we suppose that γ maps into U . We suppose that u is a lift of γ,
and define the map v : [0, T ]→ V such that we may write u(t) = (γ(t), v(t)).
Now u(t) is called the parallel translate of v along γ if u(0) = (γ(0), v) and
if the equation

Dγ′(t)u(t) := (γ(t),
d

dt
v(t)) +A(γ′(t))u(t) = (γ(t), 0),

holds for all t ∈ [0, T ]. The idea is that we transport the vector along the
path γ in such a way that the change in the direction of the vector, as
measured by the connection D, is zero. We might slightly abuse notation
and instead write

Dγ′(t)u(t) =
d

dt
u(t) +A(γ′(t))u(t).

If the image of γ is not trivializable, then it will at least lie in the finite
union of trivializable sets, the above procedure can then be done in each of
these patches separately and then glued together.

The solution to the differential equation d
dtu(t)+A(γ′(t))u(t) = 0 always

exists and can be found by the (always convergent) infinite sum

u(t) =

∞∑
n=0

(
(−1)n

∫
t>t1>...>tn>0

A(γ′(t1))...A(γ′(tn))dtn...dt1

)
u(0).

There is a concise way to denote this solution. Let t1, ..., tn ∈ [0, T ] be a
collection of (not necessarily ordered) times. Let σ : {1, ..., n} → {1, ..., n}
be the permutation that orders the times by increasing value, i.e. tσ(1) >
... > tσ(n), then the path-ordered product is defined as

P
[
A(γ′(t1)...A(γ′(tn))

]
:= A(γ′(tσ(1)))...A(γ′(tσ(n))).

In this way, we may write

∞∑
n=0

(
(−1)n

∫
t>t1>...>tn>0

A(γ′(t1))...A(γ′(tn))dtn...dt1

)
=

1

n!

∫
ti∈[0,t]

P
[
A(γ′(t1)...A(γ′(tn))

]
=:

1

n!
P

(∫ t

0
A(γ′(s))ds

)n
The final expression must be interpreted as short hand for the intermediate
expression.

12
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Finally, we define the path-ordered exponential by

Pe−
∫ t
0 A(γ′(s))ds :=

∞∑
n=0

(−1)n

n!
P

(∫ t

0
A(γ′(s))ds

)n
.

2.3.2 Holonomy

Definition 2.3.1 (Holonomy). The holonomy of the connection D along
the curve γ is the linear map

H(γ,D) : Ep → Eq,

which sends the vector v ∈ Ep to the result of parallel transport of v to Eq
along γ with respect to the connection D.

If the path γ is only piecewise smooth, parallel transport may be defined
in the obvious manner. If α : [0, T ]→M and β : [0, S]→M are paths in M
with the property that the endpoint of α is the startpoint of β, i.e. α(T ) =
β(0), then we denote the product, i.e. the concatenation, of the paths α and
β by βα.

There is no canonical way to choose a parametrization for the product
of two paths, so let us show that the holonomy does not depend on the
parametrization.

Proposition 2.3.2. The holonomy along a path γ does not depend on the
parametrization chosen.

Proof. Let α : [0, T ]→ M be a smooth path and let f : [0, S]→ [0, T ] be a
smooth function with f(0) = 0 and f(S) = T . We set β = α ◦ f . The claim
is equivalent to the statement that H(α,D) = H(β,D) for any connection
D. Now let uα : [0, T ]→ E obey the formula

Dα′(t)uα(t) = 0.

We define uβ : [0, S] → E by uβ := uα ◦ f . If the path uβ satisfies the
differential equation Dβ′(t)uβ(t) = 0 we are done. So let us compute this

Dβ′(t)uβ(t) =
d

dt
uα(f(t)) +A((α ◦ f)′(t))uα(f(t))

= u′α(f(t))f ′(t) +A(α′(f(t))f ′(t))uα(f(t))

= f ′(t)
[
u′α(f(t)) +A(α′(f(t)))uα(f(t))

]
= f ′(t)

[
Dα′(f(t))uα(f(t))

]
= 0,

as desired.
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Suppose that u(t) ∈ Eγ(t) satisfies the parallel transport equation

Dγ′(t)u(t) = 0.

Let us work in a local trivialization and write

d

dt
u(t) = −A(γ′(t))u.

Which we will write as

d

dt
u(t) = −γ′µ(t)Aµu(t),

where Aµ = Aµ(γ(t)). If we now set w(t) = g(γ(t))u(t), where g is a gauge
transformation it follows that w satisfies the equation

D′γ′(t)w(t) = 0,

where D′γ′(t)w(t) is the connection obtained by transforming the vector po-
tential A as follows:

A′µ = gAµg
−1 + g∂µg

−1.

It follows that

H(γ,D′) = g(γ(T ))H(γ,D)g(γ(0))−1.

Suppose that γ : [0, T ]→M is a smooth path in M with γ(0) = γ(T ) =
p. In this case the map H(γ,D) : Eγ(0) → Eγ(T ) is a map from Ep to itself,
i.e. H(γ,D) ∈ End(Ep). It follows by cyclicity of the trace that the trace of
such a map is gauge invariant:

tr
[
H(γ,D′)

]
= tr

[
g(p)H(γ,D)g(p)−1

]
= tr [H(γ,D)] .

For this reason the trace of the holonomy around a loop might be physically
interesting object, and it actually is. It even has a special name: a Wilson
loop.

2.4 Curvature

Suppose that π : E →M is a vector bundle equipped with a connection D.

Definition 2.4.1 (Curvature). Given two vector fields, v, w ∈ X(M), we
define the curvature F (v, w) ∈ End(Γ(E)) by

F (v, w)s = DvDws−DwDvs−D[v,w]s, (s ∈ Γ(E)).
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That the object F (v, w) defined in this way actually lives in End(Γ(E))
is shown in [Baez94], in Part II, Chapter 3.

A connection such that F (v, w)s = 0 for all v, w ∈ X(M) and all s ∈ Γ(E)
is called a flat connection. By the isomorphism Γ(End(E)) ' End(Γ(E)),
described in Theorem 1.2.3, it follows that F (v, w) corresponds to a sec-
tion of End(E), hence we may view F as an End(E)-valued two-form,
F ∈ Ω2(M,End(E)). The curvature measures the holonomy of a connec-
tion around an infinitesimal loop, we will make this statement more precise.
Let us work in local coordinates on a neighborhood U , with a given point
x ∈M as the origin. If v, w are vector fields on M then F (v, w) is a section
of End(E). On U we can pick the special vector fields ∂µ and ∂ν , using these
we introduce the notation

Fµν = F (∂µ, ∂ν),

a calculation, (given in [Baez94], Part II, Chapter 3), then shows

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

Let v ∈ Ep and let us perform the parallel transport of v around a small
square with sides of length ε in the xµ − xν-plane. Let us call the result v′.

Proposition 2.4.2. Up to terms of order ε2

v − v′ = ε2Fµν .

Or, in other words, if γ : [0, 4]→M denotes the path around the square:

H(γ,D) = 1− ε2Fµν .

Proof. We use the path ordered exponential formula, or rather the power
series that defines it

v′ = u(4) =
∞∑
n=0

(−1)n

n!
P

(∫ 4

0
A(γ′(s))ds

)n
v.

Suppressing all the coordinates but xµ and xν we can write down explicit
expressions for γ(s):

γ(s) = (sε, 0), 0 6 s 6 1,

γ(s) = (ε, (s− 1)ε), 1 < s 6 2,

γ(s) = ((3− s)ε, ε), 2 < s 6 3,

γ(s) = (0, (4− s)ε), 3 < s 6 4.

We compute γ′(s):

γ′(s) = ε∂µ, 0 6 s 6 1,

γ′(s) = ε∂ν , 1 < s 6 2,

γ′(s) = −ε∂µ, 2 < s 6 3,

γ′(s) = −ε∂ν , 3 < s 6 4.
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So we have that A(γ′(s)) ∝ ε for all s ∈ [0, 4], so if we are interested in v′

up to order ε2 we may write

v′ =

[
1−

∫ 4

0
A(γ′(s))ds+

1

2
P

(∫ 4

0
A(γ′(s))ds

)2
]
v.

In what follows it will be important to remember that A(γ′(s)) actually
depends on γ(s) as well, so we will add this as an argument and write
A(γ′(s), γ(s)). So let us compute the second term on the right hand side of
this equation

−
∫ 4

0
A(γ′(s))ds =− ε

∫ 1

0
A(∂µ, γ(s))ds− ε

∫ 2

1
A(∂ν , γ(s))ds

+ ε

∫ 3

2
A(∂µ, γ(s))ds+ ε

∫ 4

3
A(∂ν , γ(s))ds.

We introduce the notation Aµ(x, y) := A(∂ν , (x, y)). We obtain

−
∫ 4

0
A(γ′(s))ds =− ε

∫ 1

0
Aµ(sε, 0)ds− ε

∫ 2

1
Aν(ε, (s− 1)ε)ds

+ ε

∫ 3

2
Aµ((3− s)ε, ε)ds+ ε

∫ 4

3
Aν(0, (4− s)ε)ds.

At this point one might Taylor expand the integrands around ε = 0 and
obtain

−
∫ 4

0
A(γ′(s))ds = −ε2(∂µAν − ∂νAµ),

where Aµ = Aµ(0, 0). Next we compute the term

1

2
P

(∫ 4

0
A(γ′(s))ds

)2

=

∫ 4

0
ds

∫ s

0
ds′
[
A(γ′(s))A(γ′(s′))

]
.

We compute the inner integral

∫ s

0
A(γ′(s′))ds′ = ε


sAµ 0 6 s 6 1,

Aµ + (s− 1)Aν 1 < s 6 2,

(3− s)Aµ +Aν 2 < s 6 3,

(4− s)Aν 3 < s 6 4.
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So we obtain∫ 4

0
dsA(γ′(s))

∫ s

0
ds′A(γ′(s′)) = ε2

∫ 1

0
sA2

µds

+ ε2

∫ 2

1
Aν (Aµ + (s− 1)Aν) ds

− ε2

∫ 3

2
Aµ ((3− s)Aµ +Aν) ds

− ε2

∫ 4

3
(4− s)A2

νds

= ε2[Aν , Aµ].

Thus, we conclude that

v′ =
[
1− ε2(∂µAν − ∂νAµ)− ε2[Aµ, Aν ]

]
v = [1− Fµν ] v,

as desired.

If we recall that we defined

Fµν := F (∂µ, ∂ν),

it follows that the curvature 2-form, F , is given by

F =
1

2
Fµνdx

µ ∧ dxν .

We mention this notation because it is standard in the physics literature.
Let us consider how the curvature transforms under a gauge transforma-

tion.

Proposition 2.4.3. Let g ∈ G be a gauge transformation. Let D be a
connection. The gauge transform of D is denoted by D′ = gDg−1. Let F
denote the curvature of D, and let F ′ denote the curvature of D′. Then the
following relation holds

F ′ = gFg−1. (2.2)

The proof can be found in [Baez94], we repeat it here.

Proof. Let u, v ∈ X(M) and let s ∈ Γ(E), then claim follows from the
computation

F ′(u, v) = D′uD
′
vs−D′vD′us−D′[u,v]s

= gDuDvg
−1s− gDvDug

−1s− gD[u,v]g
−1s

= gF (u, v)g−1s.
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2.5 The exterior covariant derivative

In this section we will, given a connection D, construct a map

dD : Γ(ΛT ∗M ⊗ E)→ Γ(ΛT ∗M ⊗ E),

called the exterior covariant derivative. We first prove the following lemma,
that simplifies much of the notation.

Lemma 2.5.1. Any E-valued differential form can be written as a sum of
those of the form s ⊗ ω, where s is a section of E and ω is an ordinary
differential form on M .

This is a direct consequence of the more general claim:

Lemma 2.5.2. Suppose that E and E′ are vector bundles over M . Any
section of E ⊗ E′ can be written as a locally finite sum of sections of the
form s⊗ s′, where s ∈ Γ(E) and s′ ∈ Γ(E′).

Proof. Let r ∈ Γ(E ⊗ E′) and x ∈ M be arbitrary but fixed. Let U ⊆ M
be a neighborhood of x such that E ⊗ E′ is trivializable, i.e. π−1(U) '
(Ex ⊗ E′x)× U . Let us choose a basis for sections of E over U , denoted by
{ei} and a basis for sections of E′ over U , denoted by {e′i}. Then the set
{ei⊗ej} is a basis for sections of E⊗E′ over U , which is the statement that
is required.

We started our discussion of connections with the idea of generalizing
the exterior derivative d, which could be viewed as a map d : X(M) →
End(Γ(M×R)) to non-trivial vector bundles instead ofM×R. Of course, one
may also view the exterior derivative as a map d : C∞(M) → Γ(Λ1T ∗M),
or, equivalently, as a map d : Γ(M × R) → Γ(Λ1T ∗M). In the sequel, we
will generalize the exterior derivative from this point of view.

Definition 2.5.3. Given a section s of E we define the E-valued 1-form
dDs as follows

dDs(v) = Dvs, (v ∈ X(M)).

The map
dD : Γ(E)→ Γ(Λ1T ∗M ⊗ E)

is called the exterior covariant derivative (with respect to the connection
D).

We will shortly see how to extend the exterior covariant derivative to a
map

dD : Γ(ΛT ∗M ⊗ E)→ Γ(ΛT ∗M ⊗ E).

As preparation we have the following proposition:
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Proposition 2.5.4. In local coordinates on some open set U ⊆M definition
2.5.3 is equivalent to setting

dDs = Dµs⊗ dxµ.

Proof. Let v ∈ X(U), then v = vµ∂µ, thus

[Dµs⊗ dxµ] v = vµDµs = Dvs = dDs,

as required.

Definition 2.5.5. To define dD on arbitrary E-valued differential forms it
suffices, by Lemma 2.5.2, to define it on those of the form s ⊗ ω, where
s ∈ Γ(E) and ω ∈ Γ(ΛT ∗M). The definition is this:

dD(s⊗ ω) = dDs ∧ ω + s⊗ dω.

The square of the exterior covariant derivative, d2
D is proportional to the

curvature of D, or, more precisely,

d2
Dη = F ∧ η,

for any E-valued form η, a proof may be found in Ref. [Baez94].

2.6 The Bianchi identity

Let D be a connection on a vector bundle E over M . We define the dual
connection D∗ on E∗ by

(D∗vλ)(s) = v(λ(s))− λDv(s), (v ∈ X(M), s ∈ Γ(E), λ ∈ Γ(E∗)).

Using this we can define a new connection on E ⊗ E∗, denoted D ⊗D∗, or
more abusively just by D, it acts as

(D ⊗D∗)v(s⊗ s∗) = (Dvs)⊗ s∗ + s⊗ (D∗vs
∗),

for v ∈ X(M), s ∈ Γ(E), s∗ ∈ Γ(E∗).

Proposition 2.6.1 (Chain rule for covariant derivatives). Denote the con-
nection on E⊗E∗ = End(E) by D. Then for all T ∈ Γ(End(E)), all v ∈ X,
and all s ∈ Γ(E) we have

(DvT )(s) = Dv(Ts)− T (Dvs).

Proof. We write T = t⊗ t∗ and compute

Dv(Ts)− T (Dvs) = Dv(t
∗(s)t)− t∗(Dvs)t

= v(t∗(s))t+ t∗(s)Dv(t)− t∗(Dvs)t

= (v(t∗(s))− t∗(Dvs)) t+ t∗(s)Dv(t)

= t∗(s)Dv(t) + (D∗vt
∗)(s)t

= (DvT )(s).
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Theorem 2.6.2 (Bianchi identity). Let D be a connection on a vector bun-
dle E over a manifold M and let F be the curvature of D. Then the following
equation holds

dDF = 0.

This expression is called the Bianchi identity.

The proof of this theorem will be the content of the rest of this section.
In the rest of this section we will suppose that we have fixed some vector
bundle E on a manifold M equipped with a connection D. As a preparation
we first show some other identities.

Lemma 2.6.3. There is a unique way to define the wedge product of two
End(E)-valued forms such that the wedge of the End(E)-valued forms S⊗ω
and T ⊗ µ is given by

(S ⊗ ω) ∧ (T ⊗ µ) = ST ⊗ (ω ∧ µ),

and such that the wedge product depends C∞(M)-linearly on each factor.

Proof. If we extend the above relation bilinearly we have defined the wedge
product uniquely on all End(E)-valued forms. What remains is to show that
this actually gives a wedge product, i.e. that this product is associative, and
that it depends C∞(M)-linearly on each factor. So let us show this, let
R⊗ ν be another End(E)-valued form

(S ⊗ ω) ∧ ((T ⊗ µ) ∧ (R⊗ ν)) = S ⊗ ω ∧ [TR⊗ (µ ∧ ν)]

= STR⊗ (ω ∧ µ ∧ ν)

= ((S ⊗ ω) ∧ (T ⊗ µ)) ∧ (R⊗ ν).

The fact that this wedge product depends C∞(M)-linearly on each factor is
obvious.

Lemma 2.6.4. Let ω be an End(E)-valued p-form and µ an End(E)-valued
form, the following relation holds

dD(ω ∧ µ) = dDω ∧ µ+ (−1)pω ∧ dDµ.

We say that the exterior covariant derivative is a graded derivation of Ω(M,End(E)).

Proof. We set ω = T ⊗ ρ and µ = S ⊗ σ, where T, S are sections of End(E)
and ρ is a differential p-form and σ an arbitrary differential form. Let us
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Chapter 2. Gauge theory

compute

dD(ω ∧ µ) = dD((T ⊗ ρ) ∧ (S ⊗ σ))

= dD(TS ⊗ (ρ ∧ σ))

= dD(TS) ∧ ρ ∧ σ + TS ⊗ d(ρ ∧ σ)

!
= (dD(T )S + TdD(S)) ∧ ρ ∧ σ + TS ⊗ ((dρ) ∧ σ + (−1)pρ ∧ dσ)

= (dD(T )S ∧ ρ+ TS ⊗ dρ) ∧ σ + T (dD(S) ∧ ρ ∧ σ + (−1)pS ⊗ ρ ∧ dσ)

= (dD(T ) ∧ ρ+ T ⊗ dρ) ∧ (S ⊗ σ) + (−1)p(T ⊗ ρ) ∧ (dD(S) ∧ σ + S ⊗ dσ)

= (dD(T ⊗ ρ)) ∧ (S ⊗ σ) + (−1)p(T ⊗ ρ) ∧ (dD(S ⊗ σ))

= dDω ∧ µ+ (−1)pω ∧ dDµ

This shows the claim. In the step with the exclamation mark we have
used the rule

dD(TS) = dD(T )S + TdD(S).

Which follows from Proposition 2.6.1, by a straightforward computation.

Proposition 2.6.5. Let D and D′ be two connections on E and let A =
D − D′ ∈ Ω1(M,End(E)) be their difference. Let ω be any E-valued form
and let η be any End(E)-valued form, the following relations hold

dDω = dD′ω +A ∧ ω,
dDη = dD′η + [A, η].

These relations are proved in Ref. [Baez94], Part II, Chapter 3, here we
will give a proof of the second one.

Proof. Let η be any End(E)-valued form. Then we can write η = ηI ⊗ dxI ,
and compute

dD(η) = Dµ(ηI) ∧ dxµ ∧ dxI .

Now we use Proposition 2.6.1, which implies

(DµηI)(s) = Dµ(ηIs)− ηI(Dµs),

or in other words
Dµ(ηI) = [Dµ, ηI ],

where the multiplication implied by the commutator brackets on the right
hand side is composition of maps. We go on to compute

dDη = [Dµ, ηI ]⊗ dxµ ∧ dxI

= [D′µ +Aµ, ηI ]⊗ dxµ ∧ dxI

= dD′η +A ∧ η − (−1)pη ∧A
= dD′η + [A, η].
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Chapter 2. Gauge theory

Note that the Bianchi identity is a local statement, so to prove it we may
work in a local trivialization of E and thus write D = D0 +A, where D0 is
the standard flat connection. In the rest of this section we will work in such
a local trivialization and write d = dD0 .

To complete the proof of the Bianchi identity we use the following ex-
pression for the curvature

F = dA+A ∧A,

which leads to

dDF = dF + [A,F ]

= d(dA+A ∧A) + [A, (dA+A ∧A)]

= dA ∧A−A ∧ dA+ [A,dA] + [A,A ∧A]

= [dA,A] + [A, dA]

= 0,

which is the Bianchi identity.
Alternative proofs of the Bianchi identity can be found in Ref. [Baez94],

Part II, Chapter 3.
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Chapter 3

Yang-Mills theory

In this chapter, we consider a specific gauge theory, namely Yang-Mills the-
ory. It is the result of the efforts of Chen Ning Yang and Robert Mills to
generalise the gauge theory for Abelian groups, for example Electrodynam-
ics, to non-Abelian groups, [YM54].

The importance of Yang-Mills theory in physics can hardly be overstated,
the standard model of particle physics is a Yang-Mills theory with as gauge
group a certain quotient of U(1)× SU(2)× SU(3), by a finite normal sub-
group, see Ref. [Baez05].

3.1 Maxwell’s equations

Maxwell’s equations read

dF = 0 ? d ? F = J.

Yang-Mills theory should be a generalization of Maxwell theory, which lives
on the trivial U(1)-bundle over some semi-Riemannian manifold M , to any
G-bundle over some semi-Riemannian manifoldM . We have already done all
the work required to generalize the first of Maxwell’s equations, it becomes

dDF = 0.

To generalize the second of Maxwell’s equations we need to generalize the
Hodge star operator to End(E)-valued differential forms.

Definition 3.1.1 (Hodge star operator). Let T be any section of End(E)
and let ω be any differential form, the Hodge star operator is then given by

?(T ⊗ ω) = T ⊗ ?ω,

where the ? on the right hand side is the usual Hodge star operator on
differential forms.
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Chapter 3. Yang-Mills theory

The second of Maxwell’s equations now generalizes to

?dD ? F = J,

where J is an End(E)-valued 1-form, called the current.

3.1.1 Gauge invariance

Here we will show the gauge invariance of the Yang-Mills equations. Let
π : E → M be a vector bundle with connection D. Let g ∈ G be a gauge
transformation and let D′ be the gauge transform of D by g, i.e. D′vs =
gDv(g

−1s) for any section s and any vector field v. Let us compute the
exterior derivative corresponding to the transformed connection, so let ω =
ωI ⊗ dxI be an E-valued differential form,

dD′ω = D′µ(ωI)⊗ dxµ ∧ dxI

= gDµ(g−1ωI)⊗ dxµ ∧ dxI

= gdD(g−1ω).

Next we claim that for any section T of End(E) we have

D′vT = Ad(g)Dv(Ad(g−1)T ),

where Ad(g)T = g ◦ T ◦ g−1. Let s be a section of E. We start from the
right hand side

Ad(g)Dv(Ad(g−1)T )(s) = gDv(g
−1Tg)g−1s

= g
[
Dv(g

−1T )s+ g−1TDv(g)g−1s
]

= gDv(g
−1T )s+ T

[
Dv(s)− gDv(g

−1s)
]

= gDv(g
−1Ts)− TgDv(g

−1s)

= D′v(Ts)− TD′v(s)
= (D′vT )(s).

This can also be written as

dD′(Ad(g)η) = Ad(g)dD(η).

Let η = ηI ⊗ dxI be an End(E)-valued form, we compute,

dD′η = D′µηI ⊗ dxµ ∧ xI

= Ad(g)Dv(Ad(g−1)ηI)⊗ dxµ ∧ dxI

= Ad(g)dD(Ad(g−1)η).

We are now in a position to prove the gauge invariance of the Yang-Mills
equations. Suppose that

?dD ? F = J,
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Chapter 3. Yang-Mills theory

then it follows that

J ′ = gJg−1

= g ? dD ? Fg
−1

= ?Ad(g)[dD ? F ]

= ?[dD′ ?Ad(g)F ]

= ?dD′ ? F
′,

in the last step we have used Eq. (2.2). We conclude that the second Yang-
Mills equation is gauge invariant.

3.2 Yang-Mills Lagrangian

In physics, one usually does not just postulate equations of motion, but
rather, one tries to find them from some Lagrangian, using the so-called
action principle. To define the Yang-Mills Lagrangian we first define a map
tr : Γ(End(E)) → C∞(M) as follows. Let x ∈ M and let T be a section of
the endomorphism bundle, then

tr(T )(x) = tr(T (x)),

where the tr on the right hand side is the usual trace operator defined for an
endomorphism of any vector space. We extend this to a trace for End(E)-
valued forms. If T is a section of End(E) and ω is a differential form we
define

tr(T ⊗ ω) = tr(T )ω.

Now we can give the Yang-Mills Lagrangian: if D is a connection on E, this
is the 4-form given by

LYM =
1

2
tr(F ∧ ?F ).

Let us show how one finds the Yang-Mills equations from the Yang-Mills
Lagrangian and the action principle. Let us fix a connection D0 (not neces-
sarily flat), such that any other connection D can be written as

D = D0 +A,

with A an End(E)-valued 1-form. The Yang-Mills action is

SYM (A) =
1

2

∫
M

tr(F ∧ ?F ).

The action principle now tells us that we can find the equations of motion
for A by finding the extremum of the action, i.e. from the equation

δSYM = 0.
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Let us determine what this actually means. Let δA be an arbitrary End(E)-
valued 1-form. We define

As := A+ sδA,

and then

δG =
d

ds
G(As)

∣∣
s=0

,

for any function G. Clearly δG may depend on δA, but when we write
δG = 0 we mean that this is true for all choices of δA. First let us compute
the variation of F . To this end we first note that we have

F = F0 + dA+A ∧A,

where F0 is the curvature of D0. So we have

δF =
d

ds
(F0 + dAs +As ∧As)

∣∣
s=0

= d

(
d

ds
As

)
+

(
d

ds
As

)
∧A+A ∧

(
d

ds
As

) ∣∣
s=0

= dδA+ δA ∧A+A ∧ δA
= dδA+ [A, δA]

= dDδA.

To compute the variation of the Yang-Mills action we will need some ad-
ditional information about the trace. Suppose that η = ηI ⊗ dxI is an
End(E)-valued p-form, and µ = µI ⊗ dxI is an End(E)-valued q-form, we
compute

tr(η ∧ µ) = tr(ηIµJ)dxI ∧ dxJ

= (−1)pqtr(µJηI)dx
J ∧ dxI

= (−1)pqtr(µ ∧ η).

As a direct consequence we have

tr([ω, µ]) = 0.

Next, if η is an End(E) valued form we compute

tr(dDη) = tr(dη + [A, η])

= tr(dη)

= d tr(η).
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Now let us derive the Yang-Mills equations, using the action principle.
We compute the variation of the Yang-Mills action

δSYM =
1

2
δ

∫
M

tr(F ∧ ?F )

=
1

2

∫
M

tr(δF ∧ ?F + F ∧ ?δF )

=

∫
M

tr(δF ∧ ?F )

=

∫
M

tr(dDδA ∧ ?F ).

If M has no boundary, then Stokes’ theorem tells us

δSYM =

∫
M

tr(δA ∧ dD ? F ),

if this is to vanish for arbitrary δA we conclude

dD ? F = 0.

Which are the Yang-Mills equations in vacuum.
In section 3.1.1 we showed that the Yang-Mills equations are gauge-

invariant. Here we will show that the Yang-Mills action is gauge invariant,
which has as a direct consequence that the Yang-Mills equations are gauge-
invariant as well. Let g ∈ G be a gauge transformation. Let A be an
End(E)-valued 1-form and let A′ = g(dg) + gAg−1 be its gauge-transform.
Then we may compute, using Eq. (2.2)

SYM (A′) =
1

2

∫
M

tr(F ′ ∧ ?F ′)

=
1

2

∫
M

tr(gFg−1 ∧ ?gFg−1)

=
1

2

∫
M

tr(F ∧ ?F )

= SYM (A).
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Chern-Simons theory

In this chapter we describe a second gauge theory, called Chern-Simons
theory, that has interesting uses in topology and in physics, as mentioned in
the introduction. Chern-Simons theory will be one of the main ingredients
in the analysis of 4-dimensional BF theory, which is the subject of Chapter
6.

4.1 The Chern form

Let π : E →M be a trivial vector bundle over M , and let D be a connection
on E. We write

D = D0 +A,

where D0 is the standard flat connection, and A is an End(E)-valued 1-form.
Recall that

dDω = dω +A ∧ ω

for any E-valued form ω.

Proposition 4.1.1. In the present context, the k-th Chern form, tr(F k), is
exact for any k.

Proof. Let As = sA and let

Fs = sdA+ s2A ∧A

be the curvature of As. First note that

dFs
ds

= dA+ 2sA ∧A = dA+ [A,As] = dDsA,

so it follows by the Bianchi identity that

tr(
dFs
ds
∧ F k−1

s ) = tr(dDsA ∧ F k−1
s ) = tr(dDs [A ∧ F k−1

s ]) = dtr(A ∧ F k−1
s ).

28



Chapter 4. Chern-Simons theory

We now compute

tr(F k) =

∫ 1

0

d

ds
tr(F ks )ds

= k

∫ 1

0
tr(

dFs
ds
∧ F k−1

s )ds

= kd

∫ 1

0
tr(A ∧ F k−1

s )ds.

Let E be a U(1)-bundle over an arbitrary smooth orientable manifold
M with standard fiber given by the fundamental representation of U(1).
Suppose that the dimension of M is at least 2.

Proposition 4.1.2. The first Chern class of E, that is,

i

2π
F,

is integral.

Proof. The proposition says that for any compact two-dimensional oriented
submanifold without boundary Σ ⊆M we have that

i

2π

∫
Σ
F

is an integer. So let Σ ⊆M be an arbitrary submanifold without boundary.
Choose an arbitrary point ξ ∈ Σ and let U ⊆ Σ be a coordinate patch around
ξ. Let γ : S1 → U be a loop around ξ. The loop γ cuts the surface Σ into
two pieces Σ+ and Σ− such that Σ+ ∩ Σ− = γ (we use γ interchangeably
for both the map γ : S1 → Σ and for the submanifold defined by the map),
and such that the boundary of Σ+ is ∂Σ+ = γ and the boundary of Σ− is
∂Σ− = γ−1, where γ−1 denotes the loop γ, but with opposite orientation.

Now, let D be the connection with curvature F . Let (Ui)i∈I be a finite
collection of coordinate charts covering Σ+ and trivializing E over Σ. Let
(γi)i∈I be a collection of loops such that∏

i∈I
γi = γ,

and such that for each i ∈ I the loop γi lands in Ui. It follows that∏
i∈I

H(γi, D) = H(γ,D).

Then, locally, that is for each Ui, we can write D = D0 +A, where D0 is
the standard flat connection on Ui and A is an End(E)-valued 1-form, with
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F = dA. We may now compute the holonomy of the connection D around
the loop γi as follows

H(γi, D) = e
−

∫
γi
A
.

Now let Σi ⊆ Σ be the surface bounded by the loop γi, i.e. such that
∂Σi = γi. By Stokes’ theorem it follows that

H(γi, D) = e
−

∫
Σi

dA
= e
−

∫
Σi
F
.

Thus we see that

H(γ,D) =
∏
i∈I

H(γi, D) = e
−

∑
i∈I

∫
Σi
F

= e−
∫
Σ+ F .

The same procedure shows that

H(γ−1, D) = e−
∫
Σ− F .

So we conclude that

1 = H(γ,D)H(γ−1, D) = e−
∫
Σ+ F−

∫
Σ− F = e−

∫
Σ F ,

thus −
∫

Σ F = 2πik, with k ∈ Z, as required.

4.2 Chern-Simons action

Definition 4.2.1 (Chern-Simons action). Let E be a trivial G-bundle over a
three-dimensional manifold Σ without boundary. The Chern-Simons action
is given by

SCS(A) =

∫
Σ

tr(A ∧ dD0A+
2

3
A ∧A ∧A),

where A is the vector potential corresponding to a G-connection D = D0+A,
and D0 is the canonical flat connection on the trivial bundle E.

Remark 4.2.2. At this point it is important to stress that we distinguish
between trivial fiber bundles and trivializable fiber bundles. A trivial fiber
bundle is a fiber bundle E →M with fiber F , equipped with a trivialization
φ : E

'→M × F . A trivializable fiber bundle is a fiber bundle E →M with
fiber F , for which there exists a trivialization φ : E

'→M ×F . There might
however be another trivialization φ′ : E

'→ M × F , which is just as good.
This distinction is important for the Chern-Simons action, since it depends
on the choice of trivialization because the choice of global flat connection
D0 depends on the choice of trivialization.

In the rest of this chapter we will write d = dD0 for the exterior covariant
derivative with respect to the flat connection.
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Proposition 4.2.3. The variation of the Chern-Simons action is given by

δSCS = 2

∫
Σ

tr((dA+A ∧A) ∧ δA)

= 2

∫
Σ

tr (F ∧ δA) .

Hence, the connections that extremize this action are the flat connections.

Proof. The result follows from the computation

δSCS =

∫
Σ

tr

(
δ(A ∧ dA) +

2

3
δ(A ∧A ∧A)

)
=

∫
Σ

tr (δA ∧ dA+A ∧ dδA+ 2A ∧A ∧ δA)

= 2

∫
Σ

tr ((dA+A ∧A) ∧ δA) .

Let E →M be a trivial vector bundle over M . Suppose that the bound-
ary of M is a three-dimensional manifold Σ. From the proof of Proposition
4.1.1 it follows that the second Chern-Form is given by

tr(F ∧ F ) = d tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

hence it follows that∫
M

tr(F ∧ F ) =

∫
Σ

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
= SCS(A).

Proposition 4.2.4. The Chern-Simons action is invariant under so-called
small gauge transformations, that is, gauge transformations that are con-
nected to the identity.

Proof. Let g be a gauge transformation connected to the identity and let gs
be the corresponding one-parameter family of gauge transformations, that is
gs is defined for s ∈ [0, 1] and g0 = e and g1 = g. Let As be the corresponding
gauge-transformed vector potential

As = gsAg
−1
s + gsd(g−1

s ).

We will show that
d

ds
SCS(As) = 0,

it is sufficient to show this at s = 0 since

d

ds
SCS(As)

∣∣
s=t

=
d

ds
SCS((At)s)

∣∣
s=0

.
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We introduce the notation

T =
d

ds
gs
∣∣
s=0

,

from which follows
d

ds
g−1
s = −T.

We compute
d

ds
As
∣∣
s=0

= [T,A]− dT.

Now we compute

d

ds
SCS(As)

∣∣
s=0

=
d

ds

∫
Σ

tr(As ∧ dAs +
2

3
As ∧As ∧As)

∣∣
s=0

=

∫
Σ

tr(
dAs
ds
∧ dAs +As ∧ d

dAs
ds

+ 2As ∧As ∧
dAs
ds

)
∣∣
s=0

=

∫
Σ

tr
(
[T,A] ∧ dA− dT ∧ dA+A ∧ d[T,A]

+ 2A ∧A ∧ ([T,A]− dT )
)
.

First note that ∫
Σ

tr(−dT ∧ dA) = 0,

by Stokes’ theorem. We consider the term∫
Σ

tr(A∧ d[T,A]) =

∫
Σ

tr(dA∧AT − dA∧ TA+A∧A∧ dT +A∧ dT ∧A).

Now note that

0 =

∫
Σ

tr(d(A ∧AT )) =

∫
Σ

tr(dA ∧AT − dA ∧ TA+A ∧A ∧ dT ).

This implies that ∫
Σ

tr(A ∧ dT ∧A) =

∫
Σ

tr([T,A] ∧ dA).

Putting all this together we see that

d

ds
SCS(As)

∣∣
s=0

= 2

∫
Σ

tr([T,A] ∧ dA+A ∧A ∧ ([T,A]− dT )).

The graded cyclic property of the trace implies that

tr(A ∧A ∧ [T,A]) = 0,

so we compute

d

ds
SCS(As)

∣∣
s=0

= 2

∫
Σ

tr(TA ∧ dA−AT ∧ dA−A ∧A ∧ dT )

= 2

∫
Σ

tr(d(AT ∧A))

= 0.
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Principal fiber bundles

5.1 Principal G-bundles

In the above we have considered vector bundles and in particular G-bundles.
In this section we consider the related notion of principal G-bundles.

Definition 5.1.1 (Principal G-bundle). Let G be a Lie group. A principal
G-bundle P over a manifold M consists of the following data:

• A manifold P with a right action of G on P

P ×G→ P, (p, g) 7→ pg.

• A surjective map π : P → M , which is G-invariant, that is π(pg) =
π(g) for all p ∈ P and all g ∈ G.

The data must satisfy the local triviality condition: for each x ∈ M , there
exists an open neighborhood U of x and a diffeomorphism

ψ : π−1(U)→ U ×G

which maps each fiber π−1(u) to the fiber {u}×G and which isG-equivariant,
that is

ψ(pg) = ψ(p)g,

for each p ∈ π−1(U) and each g ∈ G.

The local triviality condition, together with the G-equivariance of the
induced diffeomorphism implies that each fiber Px = π−1(x) is, as a right
G-space, isomorphic to the group G. Given a fixed p0 ∈ Px the map

ϕp0 : G→ Px, g 7→ p0g,

is a diffeomorphism, that intertwines the right G-actions G 	 G and Px 	 G.
Its inverse is given by

lψ(p0)−1 ◦ ψ,
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where l(u,g) is left multiplication by g. Let us verify this, so let g ∈ G be
arbitrary, then

lψ(p0)−1 ◦ ψ ◦ ϕp0(g) = ψ(p0)−1(ψ(p0g)) = ψ(p0)−1ψ(p0)g = g.

Conversely, if p ∈ Px is arbitrary we see that

(ϕp0 ◦ lψ(p0)−1 ◦ ψ)(p) = p0ψ(p0)−1ψ(p) = (ψ−1 ◦ ψ)
(
p0ψ(p0)−1ψ(p)

)
= p,

as required. In some sources the condition that the diffeomorphism ψ is
G-equivariant is replaced by the condition that the right action of G on P
acts freely and transitively on the fibers, in the above we have shown that if
P is a principal G-bundle as in the definition given here, it most definitely
is in the definition given in other sources. (And in fact, as one might hope,
the different definitions are equivalent.)

Example 5.1.2 (Frame Bundle). Let E be a vector bundle over a manifold
M . Suppose that the fiber of E is a vector space V . For each x ∈ M we
may choose an ordered basis for Ex, such a basis is called a frame. For a
vector space the frame bundle Fr(V ) is the space of frames of V . The frame
bundle of the vector bundle E is the space

Fr(E) := {(x, u) : x ∈M,u a frame of Ex}.

Local triviality of the frame bundle follows from local triviality of the vector
bundle E, i.e. the frame bundle is locally diffeomorphic to U×Fr(V ), (where
U ⊆ M). The frame bundle comes equipped with a natural right action of
GL(V ). Locally described by

Fr(Ex)×G→ Fr(Ex), ((x, u), g) 7→ (x, ug).

If u, u′ ∈ Fr(V ) there exists a unique element g ∈ GL(V ) such that u′ = ug.
In this way we obtain a (non-canonical) isomorphism between Fr(V ) and
GL(V ), in this way Fr(E) becomes a principal GL(V )-bundle.

Definition 5.1.3 (Vertical vectors). We say that a vector vp ∈ TpP is
vertical if it is tangent to the fiber of π, that is, if (dπ)(vp) = 0.

Definition 5.1.4 (Infinitesimal action). If X ∈ g, then

p 7→ d

dt

∣∣∣∣
t=0

p exp(tX)

defines a vector field on P , we denote this vector field by vX . The map

a : g→ X(P ), X 7→ vX

is called the infinitesimal action of g on P .
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Note that, conveniently, if X ∈ g then φt : p 7→ p exp(tX) is the flow of
a(X) = vX .

Let p ∈ P and X ∈ g be arbitrary, we denote ϕp : g→ P,X 7→ p expX,
this means that we have

(vX)p = d(ϕp)X.

Now also note that π ◦ ϕp : g → M,X 7→ p is the constant map. Thus we
see

dπ(vX)p = d(π ◦ ϕp)X = 0,

since this holds for any p ∈ P , we have that vX is a vertical vector field, for
any X ∈ g.

Let ρ : G→ GL(V ) be a representation of the Lie group G in the vector
space V .

Definition 5.1.5 (Basic forms). A differential form A ∈ Ωk(P, V ) is hori-
zontal if iv(A) = 0 for all vertical vector fields v ∈ X(P ). If a differential form
A ∈ Ωk(P, V ) is both horizontal and G-equivariant, (R∗g(A) = ρ(g)−1(A)), it

is called basic. The space of basic differential forms is denoted Ωk(P, V )bas.
The space of equivariant differential forms is denoted by Ωk(P, V )G.

5.2 The associated vector bundle

There is a way to construct a vector bundle, called the associated vector
bundle, from a principal G-bundle. Let M be a manifold, let G be a Lie
group and let π : P → M be a principal G-bundle over M . Let (ρ, V ) be a
representation of G in V , i.e. V is a vector space (over an arbitrary field K)
and ρ is a group homomorphism ρ : G → GL(V ). We define a right action
of G on the product space P × V by

(P × V )×G→ P × V, ((p, v), g) 7→ (pg, ρ(g)−1v).

Definition 5.2.1 (Associated vector bundle). Given the data as above, we
define the associated vector bundle as the space

E(P, V ) := (P × V )/G

Explicitly, the following elements of E(P, V ) are identified

[pg, v] = [p, ρ(g)v].

Proposition 5.2.2. The associated vector bundle construction does indeed
produce a vector bundle.

Proof. The projection map π̃ : E(P, V )→M is given by

π̃[p, v] = π(p),
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for all [p, v] ∈ E(P, V ), this map is well defined as a consequence of the
G-invariance of π : P →M . Let x ∈M be arbitrary, then the fiber

E(P, V )x = {[p, v] : p ∈ Px, v ∈ V },

has a natural structure of vector space, to wit

[p, v] + [p, w] = [p, v + w], λ[p, v] = [p, λv],

for any [p, v], [p, w] ∈ E(P, V )x and λ ∈ K. Now suppose that [p, v], [q, w] ∈
E(P, V )x, then there exists an element g ∈ G such that p = qg, (since
the group G acts transitively on the fibers of P ), and we see that [q, w] =
[p, g−1w], so

[p, v] + [q, w] = [p, v + g−1w].

Finally, let us consider the smooth structure on E(P, V ). Let x ∈ M be
arbitrary, then the local trivialization of P described as

ψ : π−1(U)→ U ×G,

leads to a local trivialization of E(P, V ):

ψ̃ : π̃−1(U)→ U × V, p 7→ (π(p), ψ2(p)v),

where ψ2(p) ∈ G is the second component of ψ(p) ∈ U × G. This gives us
the smooth structure and at the same time shows that the local triviality
condition holds.

Let M be a smooth manifold and let n ∈ N>1. Let C be the category
of Vector bundles of rank n over M . Here the vector bundle morphisms are
taken to be fiberwise invertible linear smooth maps covering the identity
map of M . In other words if E and E′ are objects in C and f ∈ Hom(E,E′)
then the following triangle commutes

E E′

M

f

πE πE′

And for each x ∈ M the map f restricts to an invertible linear map f :
Ex → E′x. Let D be the category of principal GL(n,R)-bundles over M .
Here the morphisms are taken to be invertible right GL(n,R)-equivariant
smooth maps that cover the identity of M . In other words, if P and P ′ are
objects in D and f ∈ Hom(P, P ′) then the following triangle commutes

P P ′

M

f

πP πP ′
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and for all g ∈ GL(n,R) and p ∈ P we have

f(p · g) = f(p) · g.

Note that in this way both C and D are groupoids. In the following we
will argue that these categories are essentially equivalent. To begin, we need
functors Fr : C → D and G : D → C.

Definition 5.2.3. We define the functor Fr : C → D as follows.
Objects — Given an object E of C, we define Fr(E) to be the frame

bundle of E. The frame bundle may be defined as

Fr(E) = {φ : Rn ∼→ Ex|x ∈M,φ a linear bijection}.

If φ ∈ Fr(E) and g ∈ GL(n,R), then the right GL(n,R)-action is given
by (φ, g) 7→ φ ◦ g, i.e. it is given by precomposition with the linear map
g : Rn → Rn.

Morphisms — Given a morphism f : E → E′, we define a map Fr(f) :
Fr(E) → Fr(E′) as follows. Given a frame φ : Rn → Ex we obtain a frame
Rn → E′x simply by composition with the linear map fx : Ex → E′x as in
the diagram

Rn Ex

E′x

φ

Fr(f)φ
fx

Since composition of maps is associative, this map is right GL(n,R)-
equivariant, i.e. if g ∈ GL(n,R), then (Fr(f)xφ) ◦ g = Fr(f)x(φ ◦ g).

We see that the inverse of Fr(f) is given by Fr(f−1). Furthermore we
have that if U ⊆ M with E|U ' U × Rn and E′|U ' Rn, then f : E → E′

induces a smooth map f̂ : U → GL(n,R). One may show that with respect
to the induced trivializations of the frame bundles we obtain

Fr(f) : U ×GL(n,R)→ U ×GL(n,R),

(x, g) 7→ (x, f̂(x)g),

hence showing that Fr(f) is smooth. One may furthermore verify that Fr
preserves compositions, and is thus a functor.

Definition 5.2.4. We define the functor G : D → C as follows.
Objects — Given an object P of D, we define G(P ) to be the vector

bundle associated with the natural representation of GL(n,R) on Rn, that
is

G(P ) := (P × Rn)/GL(n,R).
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Morphisms — Given a morphism f : P → P ′, we consider the map

P × Rn → (P ′ × Rn)/GL(n,R) = G(P ′),

(p, v) 7→ [f(p), v].

This is a smooth map that descends to the quotient (by right GL(n,R)-
equivariance of f), as in the following diagram

P × Rn G(P ′)

G(P )
G(f)

This defines the, automatically smooth, map G(f) : G(P )→ G(P ′).

The map G(f) is fiberwise linear, because it does nothing to the second
component. The inverse of the map G(f) is G(f−1). Finally, one may show
that G preserves compositions.

Proposition 5.2.5. The category C of Vector bundles of rank n over M is
essentially equivalent to the category D of principal GL(n,R)-bundles over
M . In particular, there are natural transformations

α : G ◦ Fr⇒ IdC and β : Fr ◦G⇒ IdD.

Sketch of proof. We will only give the components of the natural transfor-
mations α and β and leave the verifications to the reader. Let E be an object
of C. The component of α at E should be a morphism αE : G ◦Fr(E)→ E.
Let [fx, v] ∈ G ◦ Fr(E) = (Fr(E)× Rn)/GL(n,R), then we define

αE([fx, v]) = fx(v).

One may verify that this is well-defined, actually yields a morphism αE :
G ◦ Fr(E)→ E, and that the naturality square commutes.

Next, let P be an object of D. The component of β at P is a morphism
βP : Fr ◦ G(P ) → P , it is actually simpler to write down the inverse β−1

P :
P → Fr ◦G(P ). We now define the component of β−1 at P ,

β−1
P : P → Fr(P × Rn/GL(n,R))

p 7→ (v 7→ [p, v]).

Again, one may verify that, indeed βP is a morphism P → Fr ◦ G(P ) and
that the naturality square commutes.

The following isomorphism is sometimes implicitly used when talking
about associated vector bundles.
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Proposition 5.2.6. If E = E(P, V ) is the associated vector bundle, then
one has a linear isomorphism

π• : Ωk(M,E)
∼−→ Ωk(P, V )bas.

Proof. We will give an explicit construction of the map π•. To do so we first
consider the pullback bundle

π∗(E) := {(p, x) ∈ P × E|π(p) = π̃(x)} ⊆ P × E,

sometimes also denoted as π∗(E) = P ×πE. Notice that there is a canonical
isomorphism

i : P × V → π∗(E), (p, v) 7→ (p, [p, v]).

For fixed p ∈ P , the map i induces an invertible linear map

ip : V → Eπ(p), v 7→ [p, v].

Next we note that the map π : P →M induces a map

π∗ : Ωk(M,E)→ Ωk(P, π∗E),

given by

π∗(ω)(v1, ..., vk) = ω((dπ)p(v
1), ..., (dπ)p(v

k)) ∈ Eπ(p) = (π∗E)p,

for v1, ..., vk ∈ TpP . We claim now that the map π• is given by

π• := (Id⊗ i−1) ◦ π∗ : Ωk(M,E)
∼−→ Ωk(P, V ).

Let us be entirely explicit about what we mean by Id ⊗ i−1. Let T ∈
Ωk(P, π∗E) = Γ(ΛkT ∗P ⊗ π∗E), p ∈ P , and v1, ..., vk ∈ TpP , then the
following equation holds

((Id⊗ i−1)T )p(v
1, ..., vk) = i−1

p (Tp(v
1, ..., vk)).

There are now a number of checks to do to make sure that this map is an
isomorphism.

• First we check that π• actually maps into Ωk(P, V )bas. First fix p ∈ P ,
then let v ∈ TpP be vertical and let v2, ..., vk ∈ TpP be arbitrary, we
now compute for an arbitrary ω ∈ Ωk(M,E)

ιvπ
•(ω)p(v

2, ..., vk) = i−1ω((dπ)p(v), (dπ)p(v
2), ..., (dπ)p(v

k)) = 0,

since (dπ)p(v) = 0. Next let us show that the resulting V -valued form
is G-equivariant. So let g ∈ G be arbitrary, and let v1, ..., vk ∈ TpP
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be arbitrary. First we show that the map i : P × V → π∗(E) has the
following property

i−1
pg = ρ(g)−1i−1

p ,

since

ρ(g)−1i−1
p [p, v] = ρ(g)−1v = i−1

pg ipgρ(g)−1v = i−1
pg [pg, ρ(g)−1v] = i−1

pg [p, v].

Now we show the G-equivariance,

R∗g(i
−1π∗ω)(v1, ..., vk) = i−1

pg (π∗ω)pg((dRg)pv
1, ..., (dRg)pv

k)

= ρ(g)−1i−1
p ωπ(pg)(d(π ◦Rg)pv1, ...,d(π ◦Rg)pvk)

= ρ(g)−1(i−1π∗ω)(v1, ..., vk).

• Let us show that π∗ is injective (since i is an isomorphism it follows
that π• is injective). Since π∗ is linear it suffices to show that if ω 6= 0
then π∗ω 6= 0. So let ω 6= 0, this means that there exists a p ∈ P such
that we can pick x1, ..., xk ∈ Tπ(p)M such that ω(x1, ..., xk) 6= 0. Since

dπ is surjective there exist v1, ..., vk ∈ TpP such that (dπ)pv
i = xi for

0 < i 6 k. It follows that

π∗ω(v1, ..., vk) = ω(x1, ..., xk) 6= 0.

• Our next order of business is to show that π• is surjective. Since i
is an isomorphism this can be expressed as follows: we claim that for
each η ∈ Ωk(P, V )bas there exists an ω ∈ Ωk(M,E) such that

ωπ(p)((dπ)p(v
1), ..., (dπ)p(v

k)) = ip(ηp(v
1, ..., vk)), (5.1)

for each p ∈ P and all vi ∈ TpP . So let η ∈ Ωk(P, V )bas be arbitrary.
Then we define ω ∈ Ωk(M,E) by

ωx(x1, ..., xk) = ip(ηp(v
1, ..., vk)),

where p is chosen such that π(p) = x and where each vi ∈ TpP is an
arbitrary choice of a vector such that (dπ)p(v

i) = xi. It is clear that
with this choice of ω Eq. (5.1) is satisfied.

Let us now show that this definition does not depend on the choices
for p and v1, ..., vk.

First suppose that p is fixed, but we have two different choices, say
vi ∈ TpP , and wi ∈ TpP such that (dπ)p(v

i) = xi = (dπ)p(w
i) for each

i. Then it follows that wi = vi + ai with (dπ)p(a
i) = 0, but η was

assumed to be horizontal, thus ιaiη = 0 for each i and thus

ηp(v
1, ..., vk) = ηp(v

1 + a1, ..., vk) = ηp(w
1, ..., wk).
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Now suppose that we have two points p, p′ ∈ P with π(p) = π(p′),
then there exists an element g ∈ G, such that p′ = pg. Suppose
furthermore that we have chosen vi ∈ Tp′P such that (dπ)p′(v

i) = xi,
then we compute

ip′ηp′(v
1, ..., vk) = ipgηpg(v

1, ..., vk)

= ipρ(g)ηpg(v
1, ..., vk)

= ipR
∗
g−1ηpg(v

1, ..., vk)

= ipηp((dR
−1
g )p′v

1, ..., (dR−1
g )p′v

k).

Now note that

(dπ)p(dR
−1
g )p′v

i = d(π ◦R−1
g )p′v

i = (dπ)p′v
i = wi,

so if wi ∈ TpP with (dπ)pw
i = xi then

ip′ηp′(v
1, ..., vk) = ipηp(w

1, ..., wk),

this concludes the proof.

5.3 The adjoint bundle

The adjoint bundle is an example of an associated vector bundle. Let G be
a Lie group and let g denote its Lie algebra. Let P be a principal G-bundle
over a manifold M . If we now construct the associated vector bundle for
the representation (Ad, g) we obtain the adjoint bundle. That is,

adP = (P × g)/G,

so two elements (p,X), (q, Y ) ∈ P × g are equivalent if there is an element
g ∈ G such that

(q, Y ) = (pg,Ad(g)X).

Definition 5.3.1 (Wedge product). Let B = BI ⊗dxI ∈ Γ(adP ⊗ΛkT ∗M)
and F = FI ⊗ dyI ∈ Γ(adP ⊗ ΛlT ∗M). Then we define the wedge product
B ∧ F ∈ Γ(adP ⊗ adP ⊗ Λk+lT ∗M) to be

B ∧ F = BI ⊗ FJ ⊗ dxI ∧ dyJ .

Suppose now that the Lie algebra g is equipped with an invariant non-
degenerate symmetric bilinear form 〈 , 〉. In this case we can define the
following map.

Definition 5.3.2 (Trace). The trace is the map tr : Γ(adP ⊗ adP ⊗
ΛkT ∗M)→ Γ(ΛkT ∗M) defined by

tr(BI ⊗ FJ ⊗ dxI,J)x = 〈BI,x, FJ,x〉dxI,Jx ,

for each x ∈M .
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5.4 Connections on principal bundles

Let G be a Lie group and let π : P → M be a principal G-bundle over a
manifold M .

Definition 5.4.1 (Horizontal subspace). A horizontal subspace of P at
p ∈ P is a subspace

Hp ⊆ TpP

with the property that the map

(dπ)p
∣∣
Hp : Hp → Tπ(p)M

is an isomorphism. Note that given a horizontal subspace at p we can
translate it to a horizontal subspace at gp as follows

Rg(Hp) := {(dRg)(Xp) : Xp ∈ Hp}.

Definition 5.4.2 (Connections as horizontal distributions). A connection
on P is a vector sub-bundle H ⊆ TP , (also called a distribution), with the
property that each fiber Hp is a horizontal subspace of P and

Hpg = Rg(Hp),

for all p ∈ P and g ∈ G.

The following is an equivalent definition of a connection on the principal
G-bundle P as a 1-form.

Definition 5.4.3 (Connections as 1-forms). A connection on P is a g-valued
1-form

α ∈ Ω1(P, g),

which is G-equivariant, i.e. it satisfies

R∗g(α) = Adg−1(α),

for any g ∈ G. Here R∗g is the pullback of the map Rg : P → P, p 7→ pg.
Furthermore α should satisfy

αp

(
d

dt

∣∣∣∣
t=0

p exp(tX)

)
= X,

for any p ∈ P and any X ∈ g.

Thus if α is a connection 1-form on P it follows from the definition that

α(vX) = X,

(for the definition of vX recall definition 5.1.4). We furthermore note that
any vertical vector v ∈ TpP is of the form (vX)p for some X ∈ g.
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Proposition 5.4.4. There is a bijection between connection 1-forms α ∈
Ω1(P, g)G and connections H on P . The bijection respects the following
equality

Hp = {Xp ∈ TpP : Ap(Xp) = 0}.

The proof to this proposition can be found in Ref. [G-struc].
An important use of a connection on a vector bundle was to give a notion

of parallel transport, so one might expect that given a connection H ⊆ TP
on the principal G-bundle P we might use H to give a notion of parallel
transport. This is indeed possible:

Definition 5.4.5 (Horizontal curves). Given a connection H ⊆ TP and a
curve u : I → P , we say that u is horizontal if

u̇(t) ∈ Hγ(t)

for all t ∈ I. Here γ(t) = π(u(t)).

From Ref. [G-struc] we have the following theorem:

Theorem 5.4.6 (Existence of horizontal curves). Let γ : I → M be a
curve in M , and t0 ∈ I. Then for any u0 ∈ Pγ(t0) there exists a unique
horizontal curve u : I → P above γ, (i.e. π(u(t)) = γ(t)) with the property
that u(t0) = u0.

The Lie bracket [•, •] of the Lie algebra g extends to a bracket defined
as follows.

Definition 5.4.7 (Bracket). We define the bracket

[•, •] : Ω1(P, g)× Ω1(P, g)→ Ω2(P, g),

by the formula

[α, β](v, w) := [α(v), β(w)]− [α(w), β(v)], (v, w ∈ X(P )).

Definition 5.4.8 (Curvature). The curvature of a connection 1-form α is
defined as

F = dα+
1

2
[α, α] ∈ Ω2(P, g).

The curvature has some special properties that we would like to discuss,
recall the terminology introduced in definition 5.1.5.

Proposition 5.4.9. The curvature F of a connection 1-form α is a basic
form.
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Proof. Let g ∈ G be arbitrary, we compute

R∗g(F ) = R∗g (dα+ [α, α]) ,

= dR∗gα+ [R∗gα,R
∗
gα]

= dAd−1
g α+ [Ad−1

g α,Ad−1
g α]

= Ad−1
g (dα+ [α, α])

= Ad−1
g F,

which establishes the G-invariance. Let v ∈ X(P ) be a vertical vector field.
Then there exists an X ∈ g such that v = vX . Let us compute

ιvXF = ιvXdα+
1

2
ivX [α, α]

= LvXα− dιvXα+ [α(vX), α]

=
d

dt

∣∣
t=0

(φ∗tα) + [X,α],

we recall that the flow corresponding to the vector field vX is φt : p 7→
p exp(tX), hence φt = Rexp(tX) and we see

d

dt

∣∣
t=0

(R∗exp(tX)α) =
d

dt

∣∣
t=0

(Ad(exp(−tX))α)

=
d

dt

∣∣
t=0

(exp(−tadX)α)

= −[X,α],

so we conclude that ιvXF = 0.

Remark 5.4.10. Together with Proposition 5.2.6, the proposition above
says that we may identify the curvature F ∈ Ω2(P, g) with an adP -valued
two-form F ∈ Ω2(M, adP )bas. In a similar vein, if the principal bundle P is
trivial we may fix the canonical flat connection α0, and any other connection
α on P may be written as α = α0 +A, where A ∈ Ω1(P, g)bas is a basic form.
Again using Proposition 5.2.6 we may thus identify A with an adP -valued
one-form A ∈ Ω1(M, adP ).

Note that the space of connection 1-forms is an affine space for Ω1(M, adP ).
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4-dimensional BF theory

In this chapter we consider another example of a topological field theory,
namely BF theory. The goal of this chapter is to construct a topological
quantum field theory in the sense defined by Atiyah in Ref. [Atiy88]. We
will start by considering the canonical and path integral quantization of the
BF Lagrangian. Using the results we obtain here, we define a functor from
the cobordism category to the category of vector spaces. This functor turns
out to have some nice properties, which turn it into a topological quantum
field theory. The specific theory we treat here was studied in Ref. [Baez95],
we essentially work out the details.

6.1 The 4-dimensional BF Lagrangian

In this section we give the definition of the 4-dimensional BF Lagrangian
and study its canonical and path integral quantization.

Let G be a Lie group with an invariant nondegenerate symmetric bilinear
form on its Lie algebra g. Let M be an oriented 4-manifold equipped with a
principal G-bundle, P , over it. Let α be a connection 1-form on P and B an
adP -valued 2-form on M . Let F be the adP -valued curvature 2-form, (recall
Proposition 5.2.6). Then, the 4-dimensional BF action with cosmological
constant Λ is given by

SBF (B,F ) =

∫
M

tr(B ∧ F +
Λ

12
B ∧B).

The name ‘BF -theory’ refers to the fact that the fields involved are usually
called B and F . Varying with respect to α gives

δαS(B,F ) =

∫
M

tr(B ∧ δαF )

=

∫
M

tr(B ∧ dαδα),
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in the case that M is without boundary, Stokes’ theorem tells us that the
equation of motion becomes dαB = 0.

The BF Lagrangian is given by

LBF = tr(B ∧ F +
Λ

12
B ∧B),

or, in local coordinates,

LBF =Ba
ijF

b
kl〈Xa, Xb〉dxi ∧ dxj ∧ dxk ∧ dxl

+
Λ

12
Ba
ijB

b
kl〈Xa, Xb〉dxi ∧ dxj ∧ dxk ∧ dxl.

Here the Xa’s form a basis for the Lie algebra g. Furthermore F is given by
the familiar formula F = dα+ 1

2 [α, α], or in local coordinates

F = −∂A
a
i

∂xj
Xa ⊗ dxi ∧ dxj +AaiA

b
j [Xa, Xb]⊗ dxi ∧ dxj ,

recall that, locally, there is always a flat connection α0, and we write α−α0 =
A ∈ Ω1(M, adP ). If fabc are the structure constants of the Lie algebra g,
i.e. [Xb, Xc] = fabcXa, we can read off the components of F :

F akl =
1

2

(
∂Aal
∂xk

−
∂Aak
∂xl

)
+ fabcA

b
kA

c
l .

We would like to quantize this theory using the canonical formalism. To
that end we assume that the manifold M is of the form Σ × R, where Σ is
a closed three-dimensional manifold that represents space and R represents
time. The space of physical states now becomes the space of connections.
The momentum conjugate to A is defined by

(ΠA)mc =
∂LBF
∂(∂0Acm)

.

For this computation, it is convenient to write

dxi ∧ dxj ∧ dxk ∧ dxl = εijkldx0 ∧ dx1 ∧ dx2 ∧ dx3,

this allows us to work with the Lagrangian density, instead of the Lagrangian
differential form. By this we mean that we define the Lagrangian density

L̃BF =

(
Ba
ijF

b
kl〈Xa, Xb〉+

Λ

12
Ba
ijB

b
kl〈Xa, Xb〉

)
εijkl.

Using this we compute

∂L̃BF
∂(∂0Acm)

= Ba
ij

∂F bkl
∂(∂0Acm)

〈Xa, Xb〉εijkl

= −Ba
ijδ

0
l δ
m
k δ

b
c〈Xa, Xb〉εijkl

= −Ba
ij〈Xa, Xc〉εijm0.
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If we restrict i, j, k to spacelike indices, i.e. i, j, k = 1, 2, 3, then we obtain

∂L̃BF
∂(∂0Acm)

= Ba
ij〈Xa, Xc〉εijm.

It follows that we have the following relation

δmi δ
a
c δ(x− y) = {Aai (x), (ΠA)mc (y)} = {Aai (x), Bb

kl(y)}〈Xb, Xc〉εlkm.

We may view 〈Xa, Xb〉 as a metric, and use it to raise and lower Lie algebra
indices, in other words, we write

Ba,ij = Bb
ij〈Xa, Xb〉.

We thus see
δmi δ

a
c δ(x− y) = {Aai (x), Bc,kl(y)}εlkm.

The canonical momentum conjugate to A is B. The equations of motion for
B that follow from L̃BF are

F aij +
Λ

6
Ba
ij = 0.

Since this equation of motion does not contain any time derivatives it is a
constraint. Upon canonical quantization the states become functions on the
space of connections on Σ, denoted by AΣ. We promote Ba

ij to the operator

Ba
ij = −iεijk

δ

δAka
.

The constraint thus becomes(
F aij − i

Λ

6
εijk

δ

δAka

)
ψ = 0. (6.1)

If P
∣∣
Σ

is trivializable the solution is given by

ψ(A) = e
−3i
Λ
SCS(A),

where SCS is the Chern-Simons action given by

SCS(A) =

∫
Σ

tr(A ∧ dA+
2

3
A ∧A ∧A).

Here we recall Remark 5.4.10, to make sense of this expression. Note that
two different choices of trivialization for P

∣∣
Σ

will give the same Chern-
Simons action, up to a constant, this means that ψ(A) is determined up
to a factor. This factor is, however, not interesting, since the constraint,
Eq. (6.1), only fixes ψ up to a factor. Verifying that this expression for ψ
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actually solves Eq. (6.1) is straightforward if one uses the result of Proposi-
tion 4.2.3, which reads

δSCS
δAka(x)

= εijkF aij(x).

Next we consider the path-integral quantization of this BF -theory. If
M has boundary ∂M = Σ, we expect to obtain a vector ψ in the space of
states on Σ as follows:

ψ(AΣ) =

∫
A|Σ=AΣ

DA
∫
DBei

∫
M tr(B∧F+ Λ

12
B∧B).

If we complete the square using the substitution B → B − 6F/Λ we can
perform the, then quadratic, integral over B and obtain

ψ(AΣ) ∝
∫
A|Σ=AΣ

DAe−
3i
Λ

∫
M tr(F∧F ).

We now derive a result that will be convenient in the sequel.

Proposition 6.1.1. Let α, α′ ∈ Ω1(P, g) be arbitrary connections on a prin-
cipal fiber bundle P → M . Denote the boundary of M by Σ. Suppose that
P
∣∣
Σ

is trivializable and fix a trivialization of P
∣∣
Σ

. Let F be the curvature of
α and F ′ the curvature of α′. Define A = α − α′ ∈ Ω1(M, adP ). Then the
identity∫

M
tr(F ∧ F ) = SCS(A|Σ) +

∫
M

tr(F ′ ∧ F ′) + 2

∫
Σ

tr(A ∧ F ′), (6.2)

holds, where A|Σ is the restriction of A to Σ.

Proof. We define a family of g-valued 1-forms on P as follows

αs := α′ + sA, (s ∈ I),

so in particular α1 = α and α0 = α′. The curvature of αs is

Fs = dαs +
1

2
[αs, αs]

= F0 + sdA+
s2

2
[A,A] + s[α0, A].

Let us write dDs for the exterior covariant derivative induced by the con-
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nection αs. We now compute

tr(F1 ∧ F1)− tr(F0 ∧ F0) =

∫ 1

0

d

ds
tr(Fs ∧ Fs)

= 2

∫ 1

0
tr(

dFs
ds
∧ Fs)

= 2

∫ 1

0
tr ((dA+ s[A,A] + [α0, A]) ∧ Fs)

= 2

∫ 1

0
tr(dDsA ∧ Fs)

= 2d

∫ 1

0
tr(A ∧ Fs)

= d tr(A ∧ dA+
1

3
A ∧ [A,A] + 2A ∧ F0 +A ∧ [α0, A])

= d tr(A ∧ dD0A+
2

3
A ∧A ∧A+ 2A ∧ F0).

Now, if we integrate both sides over M we obtain∫
M

tr(F1 ∧ F1) =

∫
M

tr(F0 ∧ F0) +

∫
M

d tr(A ∧ dD0A+
2

3
A ∧A ∧A+ 2A ∧ F0)

=

∫
M

tr(F0 ∧ F0) +

∫
Σ

tr(A ∧ dD0A+
2

3
A ∧A ∧A+ 2A ∧ F0)

=

∫
M

tr(F0 ∧ F0) + 2

∫
Σ

tr(A ∧ F0) + SCS(AΣ)

If we recall that F0 = F ′ and F1 = F we obtain the desired result.

The applications of this result in the sequel will be in the form of the
following corollaries.

Corollary 6.1.2. Let P → M be a principal fiber bundle. Denote the
boundary of M by Σ. Suppose that P |Σ is trivializable and fix a trivialization
of P |Σ. Let α ∈ Ω1(P, g) be an arbitrary connection on P , and let α′ ∈
Ω1(P, g) be an arbitrary extension of a flat connection on P |Σ. Define A =
α− α′ ∈ Ω1(M, adP ). Then the identity∫

M
tr(F ∧ F ) = SCS(A|Σ) +

∫
M

tr(F ′ ∧ F ′)

holds, where A|Σ is the restriction of A to Σ.

Note that the left-hand side of Eq. (6.2) does not depend on the choice
of trivialization, so neither does the right hand side. The pieces SCS(AΣ)
and 2

∫
Σ tr(A∧F ′), thus depend on the choice of trivialization of PΣ in such

a way that their sum does not. Similarly, the left-hand side of Eq. (6.2) does
not depend on α′ so neither does the right-hand side.
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6.2 The BF functor

Motivated by the results of the previous section we translate the description
of 4-dimensional BF theory in terms of a Lagrangian into a description in
the style of Atiyah’s TQFT, see Ref. [Atiy88], thus in terms of a functor
ZBF . For a summary of the definitions from category theory used here we
refer the reader to Ref. [Baez04]. First let us describe the domain of the
functor.

Definition 6.2.1. Let C be the category determined by the following data:

• An object Σ of C is a compact oriented 3-manifold, equipped with a
trivializable principal G-bundle PΣ → Σ.

• Given two objects Σ and Σ′, a morphism M : Σ→ Σ′ is an equivalence
class of compact oriented 4-manifoldsM with boundary, equipped with
principalG-bundle PM →M and bundle isomorphism f̃M : PΣ̄∪PΣ′ →
PM
∣∣
∂M

lifting an orientation-preserving diffeomorphism fM : Σ̄∪Σ′ →
∂M .

The equivalence relation is that M ∼M ′ if there is a bundle isomorphism
α : PM → PM ′ such that f̃M ′ = α ◦ f̃M . Furthermore, if Σ is any oriented
3-manifold, then Σ̄ is the same manifold, with its orientation reversed.

Remark 6.2.2. If we endow C with the disjoint union ∪ : C×C→ C, then
the category C becomes a symmetric monoidal category. The unit object
is the empty set ∅. If Σ is an object of C, then the dual object is Σ̄, (here
the principal G-bundle PΣ is untouched). In this way C becomes a rigid
symmetric monoidal category. The associator and braiding are the obvious
maps.

The codomain of the functor ZBF will be the symmetric monoidal cate-
gory Vect of vector spaces and linear maps, equipped with the usual tensor
product ⊗.

If Σ is an object in C, let AΣ denote the space of connections on PΣ. We
recall that by Proposition 5.2.6 and the fact that PΣ is trivializable there is
a non-canonical isomorphism AΣ ' Ω1(Σ, adPΣ).

Definition 6.2.3 (The BF functor). Here, we will give the definition of the
functor ZBF : C→ Vect and show that it is well-defined.

Objects — Let Σ be an object in C. We define ZBF (Σ) to be the space
of functions on AΣ that are multiples of exp(−3iSCS(AΣ)/Λ). That is

ZBF (Σ) = {φ : AΣ → C|φ(AΣ) = λe−
3i
Λ
SCS(AΣ), AΣ ∈ AΣ, λ ∈ C}.

Here, we use the non-canonical isomorphism Ω1(PΣ, g)G ' Ω1(Σ, adPΣ).
Because the Chern-Simons actions corresponding to different trivializations
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Chapter 6. 4-dimensional BF theory

only differ by a constant, this space is independent of the choice of trivial-
ization of PΣ. Separately we define ZBF (∅) = C.

Morphisms — If M : ∅ → Σ is a morphism in C, then we define

ZBF (M) : C→ ZBF (Σ), λ 7→ λψ,

where ψ is the function

ψ : AΣ → C,

αΣ 7→ e−
3i
Λ

∫
M tr(F∧F ),

where F is the curvature of any connection α extending αΣ to all of PM . Note
that to define the map ψ : AΣ → C we made no mention of a trivialization
of PΣ, so even though we will use a trivialization of PΣ to prove that ψ ∈
ZBF (Σ), ψ does not depend on the trivialization of PΣ.

Let us show that this does not depend on the choice of extension of αΣ

and that ψ ∈ ZBF (Σ). We fix a trivialization of PΣ, this induces a flat
connection on PΣ. Let us extend this flat connection to all of PM , (the
extension need not be flat), we denote this extension by α′. We denote the
curvature of α′ by F ′. Let us write A = α − α′. From Corollary 6.1.2 it
follows that ∫

M
tr(F ∧ F ) = SCS(A|Σ) +

∫
M

tr(F ′ ∧ F ′).

The right-hand side does not depend on the extension α of αΣ, thus neither
does the left-hand side. To use Corollary 6.1.2 we have to choose a trivializa-
tion of PM |Σ. The manifold M comes equipped with a bundle isomorphism
f̃M : PΣ → PM |Σ. Via this bundle isomorphism the trivialization of PΣ,
that we have already chosen, induces a trivialization of PM |Σ. Using this
trivialization it follows that

SCS(AΣ) = SCS(A|Σ). (6.3)

It follows that indeed ψ ∈ ZBF (Σ).

Remark 6.2.4. Eq. (6.3) is not entirely trivial. By SCS(AΣ) we mean the
Chern-Simons action with respect to the fixed trivialization of PΣ and by
SCS(A|Σ) we mean the Chern-Simons action with respect to the trivializa-
tion induced on PM |Σ by the map f̃M : PΣ → PM |Σ.

Now suppose that M : Σ→ Σ′, thus ∂M = Σ̄∪Σ′. In this case we define

ZBF (M) : ZBF (Σ)→ ZBF (Σ′), φ 7→ ψφ, (6.4)

where ψ is the function

ψ : AΣ̄∪Σ′ → C,

αΣ̄∪Σ′ 7→ e−
3i
Λ

∫
M tr(F∧F )
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where F is the curvature of any connection α extending αΣ̄∪Σ′ to all of PM .
We have already shown that this in fact does not depend on the choice of
extension α. This map is clearly linear. It remains to show that it does
indeed map ZBF (Σ) into ZBF (Σ′). Let φ ∈ ZBF (Σ) and let αΣ′ ∈ AΣ′

be arbitrary. Fix a trivialization of PΣ and PΣ′ , hence of PΣ∪Σ′ . Fix the
standard flat connection on PΣ∪Σ′ and denote an arbitrary extension of this
flat connection to all of PM by α′. Denote the curvature of α by F and of
α′ by F ′. We define A = α− α′. Using Corollary 6.1.2 we obtain∫

M
tr(F ∧ F ) = SCS(A|Σ̄∪Σ′) +

∫
M

tr(F ′ ∧ F ′)

= −SCS(AΣ) + SCS(AΣ′) +

∫
M

tr(F ′ ∧ F ′),
(6.5)

note that, in writing the second line, we have used the fact that the triv-
ializations of PΣ̄∪Σ′ and PM |Σ̄∪Σ agree. The minus sign in the identity
SCS(AΣ̄) = −ACS(AΣ) is the reason that this definition works out. It is a
result of the fact that when we include the in-boundary Σ into M we flip its
orientation. Because φ ∈ ZBF (Σ), there exists some λ ∈ C such that

φ(αΣ) = λe−
3i
Λ
SCS(AΣ).

We now complete the proof, using Eq. (6.5),

ψ(αΣ∪Σ′)φ(αΣ) = λe−
3i
Λ (SCS(AΣ′ )−

∫
M (F ′∧F ′)),

it follows that ψ(αΣ∪Σ′)φ(αΣ) does not depend on αΣ and indeed ψφ ∈
ZBF (Σ′).

We would like to show that ZBF indeed preserves the identity morphisms.
To do so, we will first give a description of the identity morphisms in C.

Let us fix an object Σ of C. We will describe the identity morphism
M : Σ → Σ. As a manifold it is given by M = Σ × I. There is an obvious
inclusion

fM : Σ̄ ∪ Σ→ Σ× I.

The principal fiber bundle over M is given by

PM = Σ× I ×G.

Now let us fix a trivialization ϕ : PΣ → Σ×G, which induces a trivialization
ϕ̄ : PΣ̄ → Σ̄ × G. The lift f̃M of fM is obtained by declaring the following
diagram to commute

PΣ̄∪Σ PM

(Σ̄ ∪ Σ)×G

f̃M

ϕ̄∪ϕ
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One may verify that indeed f̃M lifts fM . If one picks another trivialization
ϕ′ : PΣ → Σ×G one obtains another map f̃ ′M : PΣ̄∪Σ → PM . We investigate
the dependence of the resulting morphism M : Σ→ Σ, (remember that this
was an equivalence class). To that end we define the map χ to be that map
that makes the following diagram commute

(Σ̄ ∪ Σ)×G PM |∂M

PΣ̄∪Σ

(Σ̄ ∪ Σ)×G PM |∂M .

χ

ϕ̄′∪ϕ′

ϕ̄∪ϕ

f̃ ′M

f̃M

(6.6)

We might expect the pairs (M, f̃M ) : Σ → Σ and (M, f̃ ′M ) : Σ → Σ to
represent the same morphism. Using the identities PM |∂M = Σ×{0, 1}×G
and PM = Σ × I × G, we see that this is the case if and only if there
exists a bundle isomorphism ξ : PM → PM such that the following diagram
commutes

Σ× {0, 1} ×G Σ× I ×G

Σ× {0, 1} ×G Σ× I ×G

χ ξ

This essentially means that ξ is a homotopy between

χ(−, 0,−) : Σ×G→ Σ×G, (s, g) 7→ χ(s, 0, g), and

χ(−, 1,−) : Σ×G→ Σ×G, (s, g) 7→ χ(s, 1, g).

Using the diagram 6.6 and the fact that ϕ̄′ = ϕ′ and ϕ̄ = ϕ, we see that
χ(−, 0,−) = χ(−, 1,−), hence the map ξ exists.

Proposition 6.2.5. If Σ is any object in C and M : Σ → Σ is the corre-
sponding identity morphism, then ZBF (M) = IdZBFΣ.

Proof. For notational clarity we distinguish the source and target of M by a
prime, i.e. M : Σ→ Σ′, however the reader is urged to keep in mind that Σ
and Σ′ are one and the same, viewed as objects of C. Let φ ∈ ZBF (Σ) and
αΣ′ ∈ AΣ′ be arbitrary. We follow the procedure described above leading up
to Eq. (6.5), however instead of picking an arbitrary extension α′ of the flat
connection on PΣ̄∪Σ′ we take α′ to be the flat connection on PM . It follows
by Eq. (6.5) that ∫

M
tr(F ∧ F ) = −SCS(AΣ) + SCS(AΣ′),
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where, we have used Eq. (6.3). We compute

ψ(αΣ̄∪Σ′)φ(αΣ) = λe−
3i
Λ
SCS(AΣ′ ) = φ(αΣ′).

Hence, we conclude that indeed ZBF (M) = IdZBF (Σ).

Remark 6.2.6. In the proof above we have used that the trivializations of
PΣ̄∪Σ and of PM |∂M are compatible. In fact, this is what allowed us to use
Eq. (6.3).

Let us fix a quintuple

Σ0
M1−→ Σ1

M2−→ Σ2

in C. Let us denote M2 ◦M1 = M2 ∪Σ1 M1 : Σ0 → Σ2 for the composite of
M1 and M2 in C. Then, we have, for any curvature two-form F ,∫

M2∪Σ1
M1

tr(F ∧ F ) =

∫
M2

tr(F ∧ F ) +

∫
M1

tr(F ∧ F ).

Using this equation one might check that ZBF (M2 ◦ M1) = ZBF (M2) ◦
ZBF (M1).

In summary, we have shown that ZBF is well-defined and preserves both
the identity and composition. This completes the description of the functor
ZBF : C→ Vect.

Theorem 6.2.7. The functor ZBF : C→ Vect is symmetric monoidal.

Proof. If Σ,Σ′ ∈ C then there is a natural isomorphism

ΦΣ,Σ′ : ZBF (Σ)⊗ ZBF (Σ′)→ ZBF (Σ ∪ Σ′),

namely the one that says

ΦΣ,Σ′ : λ(φΣ ⊗ φΣ′) 7→ λ(φΣφΣ′),

this map does as advertised, since

SCS(AΣ) + SCS(AΣ′) = SCS(AΣ ∪AΣ′),

so that φΣφ
′
Σ ∈ AΣ∪Σ′ .

According to Ref. [CY99] any symmetric monoidal functor preserves du-
als up to isomorphism.
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6.3 The case G = GL(4,R)

An interesting feature of 3-dimensional compact manifolds is that they have
trivializable tangent bundles, see for example exercise 12-B in Ref. [MilSt].
We will take advantage of this fact to obtain a functor Z : 4Cob → Vect.
Here 4Cob is the 4-dimensional cobordism category, it is very much like C,
where we simply forget about the bundles. More specifically, the definition
is,

Definition 6.3.1 (4Cob). The category 4Cob is the category determined
by the following data:

• An object Σ of 4Cob is a compact oriented 3-manifold.

• Given two objects Σ and Σ′, a morphism M : Σ→ Σ′ is an equivalence
class of compact oriented 4-manifoldsM with boundary, equipped with
an orientation-preserving diffeomorphism fM : Σ̄ ∪ Σ′ → ∂M .

Just like C, this is a rigid symmetric monoidal category. We would like
to design a functor F : 4Cob → C, so that we could obtain a functor
Z = ZBF ◦F : 4Cob→ Vect. We will obtain a map F : 4Cob→ C that is
not quite a functor, but it will turn out that Z = ZBF ◦F will be a functor.

So let us give a description of the map F . Let Σ be an object in 4Cob,
that is, Σ is a compact oriented three-dimensional manifold. Let TΣ be its
tangent bundle and let LΣ be the trivial line bundle over Σ. Since TΣ and
LΣ are trivializable, so is TΣ⊕LΣ. Thus, the frame bundle Fr(TΣ⊕LΣ) is
trivializable as well, recall example 5.1.2. The fiber of TΣ⊕ LΣ is R4, thus
PΣ := Fr(TΣ ⊕ LΣ) is a trivializable principal GL(4,R)-bundle, we define
the image of Σ under F to be this object in C. Now let M be a morphism in
4Cob going from Σ to Σ′. That is, M is a 4-dimensional compact oriented
manifold, equipped with an orientation-preserving diffeomorphism f : Σ̄ ∪
Σ′ → ∂M . Let PM be the frame bundle of M . Now we note that morphisms
in C are equipped with a bit of extra structure, namely a lift f̃ : PΣ̄∪PΣ′ →
PM |∂M , of the diffeomorphism f : Σ̄ ∪ Σ′ → ∂M .

First, let us work on the level of the vector bundle T Σ̄⊕LΣ̄∪TΣ′⊕LΣ′.
There is an obvious lift of f : Σ̄∪Σ′ → ∂M for the first component, namely
df : T Σ̄ ∪ TΣ′ → T∂M ⊂ TM |(Σ̄∪Σ′). What remains is to construct a map

µ : LΣ̄ ∪ LΣ′ → TM |(Σ̄∪Σ′). The construction of this map amounts to the

choice of two sections, v : f(Σ̄) → TM |Σ̄ and w : f(Σ′) → TM |Σ′ , we will
see in a moment that v and w need to have some special properties. Given
such a choice, the map µ restricted to LΣ̄ will become

µ|LΣ̄ : LΣ̄ = Σ̄× R→ TM |Σ̄, (x, t) 7→ tv(f(x)).

The map df maps T Σ̄ into the subbundle of vectors tangent to Σ̄, thus
if v is nowhere tangent to Σ̄, (thus in particular nowhere vanishing), the
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linear map (df ⊕ µ)|T Σ̄⊕LΣ̄ is an isomorphism. The same holds for w and
(df ⊕ µ)|TΣ′⊕LΣ′ . Now if v is inwards-pointing and w is outwards-pointing
the map

df ⊕ µ : T Σ̄⊕ LΣ̄ ∪ TΣ′ ⊕ LΣ′ → TM |Σ∪Σ′ (6.7)

is an orientation-preserving isomorphism, lifting f : Σ̄ ∪ Σ′ → ∂M .
It remains to show that the isomorphism df⊕µ gives us an isomorphism

f̃ : PΣ̄ ∪ PΣ → PM |∂M , but this follows directly from prosition 5.2.5.
This completes the description of the map F : 4Cob→ C.
The procedure above does give us a functor F ′ : 4Cob′ → C, where

4Cob′ is the category with the same objects and morphisms as 4Cob, except
that a morphism M in 4Cob′ is equipped with a section v of TM over ∂M ,
that is nowhere tangent to ∂M and inwards pointing on the in-boundary
and outwards pointing on the out-boundary.

Let us define G : 4Cob → 4Cob′ to be the map that assigns to each
object in 4Cob the same object in 4Cob′ and to each morphism of 4Cob
the same morphism in 4Cob′ with arbitrarily chosen section v of TM over
∂M with the necessary properties.

We define Z : 4Cob→ Vect to be given by Z = ZBF ◦F ′ ◦G. The map
Z is the map that we are actually interested in, and not its constituents F ′

and G. Hence we will prove that Z is actually a functor directly.

Theorem 6.3.2. The map Z : 4Cob → Vect is a symmetric monoidal
functor.

Proof. It is clear that Z preserves composition. Let us show that Z pre-
serves the identity morphism. Let Σ be an arbitrary object in 4Cob. The
identity morphism is represented by the manifold Σ× I. We recall that any
compact oriented three-manifold has trivializable tangent bundle. Let us fix
a trivialization of TΣ, which induces a trivialization on PΣ and on PΣ̄. Let
us recall the definition 6.2.3, we see that the map Z(M) : Z(Σ) → Z(Σ) is
fully determined by a function ψ ∈ A(PΣ̄ ∪ PΣ). By Eq. (6.4) it suffices to
show that for all connections αΣ̄∪Σ on PΣ̄ ∪ PΣ it is true that

ψ(αΣ̄∪Σ) = e−
3i
Λ
SCS(AΣ̄∪Σ).

According to the prescription of G we have equipped ∂M = {0, 1}×Σ with
an arbitrary section v of TM |∂M , which is nowhere tangent to the boundary
of M and inwards pointing on {0} × Σ and outwards pointing on {1} × Σ.
According to the prescription of F ′ we have used the vector field v to obtain
an isomorphism

f̃M : PΣ̄ ∪ PΣ → PM |∂M .

According to the prescription of ZBF the function ψ : A(PΣ̄ ∪ PΣ) → C is
given by

ψ(αΣ̄∪Σ) = e−
3i
Λ

∫
M tr(F∧F ),
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where F is the curvature of any connection α extending (f̃∗M )−1(αΣ̄∪Σ) to
all of PM . Because we have already fixed a trivialization of TΣ, there is an
obvious trivialization of TM = TΣ× TI, and hence of PM . Note that this
trivialization induces a trivialization of PM |∂M that need not agree with the
trivialization of PM |∂M induced by f̃M . Taking α′ in Eq. (6.5) to be the
standard flat connection on PM we obtain

ψ(αΣ̄∪Σ) = e−
3i
Λ
SCS(A|Σ̄∪Σ).

The desired result follows if we can show that

SCS(AΣ̄∪Σ) = SCS(A|Σ̄∪Σ),

here AΣ̄∪Σ and A|Σ̄∪Σ need not be equal, because they were obtained from
αΣ̄∪Σ via different trivializations of PM |∂M . Let us compare this with
Eq. (6.3), there the result followed because the trivialization of PM |Σ and
PΣ were constructed via the map f̃M . In our current setup, the map f̃M
does not carry the trivialization of PΣ̄∪Σ to the trivialization of PM |∂M .
We will show however that f̃M does carry the trivialization of PΣ̄∪Σ to the
trivialization of PM |∂M , up to a small gauge transformation. Then, since
the Chern-Simons action is invariant under small gauge transformations,
see Proposition 4.2.4, we are done. For notational convenience, let us write
S = Σ̄ ∪ Σ. Let us work on the level of the vector bundles TM |∂M and
TS ⊕ LS, and simply identify the map f̃M : PS → PM |∂M with the map
TS ⊕ LS → TM |∂M that produced it. We consider the following diagram

TS ⊕ LS Σ× R4

TM |∂M Σ× R4

f̃M h

The map h : Σ × R4 → Σ × R4 is defined to be the map that makes the
square commute. The map h will be a bundle isomorphism, we may identify
it as a map h : Σ→ GL(R, 4). Using Eq. (6.7) and the fact that f : S → ∂M
was the obvious inclusion, one may verify that the map h takes the form

h(x) =


1 0 0 v1(f(x))
0 1 0 v2(f(x))
0 0 1 v3(f(x))
0 0 0 v4(f(x))

 ,

for all x ∈ S. Here v is (the image in the trivialization of) the supplied
section of TM over ∂M . We now consider the one-parameter family of
linear maps ht : Σ× R4 → Σ× R4, for t ∈ I, given by

h(x) =


1 0 0 tv1(f(x))
0 1 0 tv2(f(x))
0 0 1 tv3(f(x))
0 0 0 (1− t) + tv4(f(x))

 .
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It is clear that h0 = Id and h1 = h. The determinant of ht is given by
(1 − t) + tv4(f(x)). The assumption that v is inwards pointing on Σ̄ and
outwards pointing on Σ is equivalent to the assumption that v4(f(x)) > 0
for all x ∈ S. Hence ht is a homotopy from Id to h, thus h is a small gauge
transformation.

6.4 Uniqueness of Z

In the article that we are following, [Baez95], another topological quantum
field theory is discussed, namely Crane-Yetter-Broda theory [CY93]. Unfor-
tunately, a description of this theory is beyond the scope of this thesis. The
article then goes on to prove the equivalence of the Chern-Simons theory, Z,
that we discussed, and Crane-Yetter-Broda theory. We can, however give a
simple, but highly non-exhaustive, criterion that may be used to prove that
two topological quantum field theories are the same. This criterion is used
to prove the equivalence. Before we do so we will have something more to
say about the theory described by Z.

One of the main interests of topological quantum field theories, from a
mathematical point of view, is that they produce invariants of manifolds as
follows. The functor Z : 4Cob → Vect takes morphisms in 4Cob, that is
4-manifolds with boundary, to morphisms in Vect. Actually, a morphism
in 4Cob is an equivalence class of a 4-manifold. This means that if M
and M ′ are diffeomorphic 4-manifolds, then Z does not distinguish between
them. In particular if M : ∅ → ∅, then Z(M) : C → C, hence we may
identify Z(M) with a complex number. This number depends only on the
diffeomorphism class of M . In our current setting we have

Z(M) = e−
3i
Λ

∫
M tr(F∧F ),

where F is the curvature of a connection on the tangent bundle of M .
According to the Hirzebruch signature theorem, see [HBJ92] or [Hirz78],
we have ∫

M
tr(F ∧ F ) = 12π2σ(M),

where σ(M) is the signature of M . We conclude that

Z(M) = e−
36i
Λ
π2σ(M).

We have the following convenient lemma that is true for any topological
quantum field theory, where the objects of Vect are finite-dimensional vector
spaces.

Lemma 6.4.1. Let Z : 4Cob → Vect be any topological quantum field
theory. Suppose that Σ is an object of 4Cob and M : Σ → Σ a morphism.
We can construct a morphism M◦ : ∅ → ∅ by glueing M to itself along
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its boundary, that is, we identify Σ̄ ⊂ ∂M with Σ ⊂ ∂M . The following
equation now holds:

Z(M◦) = tr(Z(M)).

Proof. On the one hand we may identify Z(M) ∈ End(Z(Σ)) with Z̃(M) ∈
Z(Σ)⊗ Z∗(Σ). There exist vectors ψi ∈ Z(Σ) and αi ∈ Z∗(Σ) such that

Z̃(M) = ψi ⊗ αi,

in terms of which the trace of Z(M) now reads

tr(Z(M)) = αi(ψ
i) = tr(Z̃(M)).

Similarly there is a canonical isomorphism

End(Z(Σ)) ' Hom(Z∗(Σ)⊗ Z(Σ),C),

(T : Z(Σ)→ Z(Σ)) 7→ (α⊗ v 7→ α(T (v))).

Given T ∈ End(Z(Σ)) we denote its image in Hom(Z∗(Σ)⊗Z(Σ),C) by T˜ .
We see that

IdZ(Σ)

˜
: α⊗ v 7→ α(v),

hence IdZ(Σ)

˜
= tr. On the other hand, given M : Σ → Σ we may form

M̃ : ∅ → Σ∪Σ̄, and similarly we may form Id˜ Σ : Σ∪Σ̄→ ∅, from the identity

on Σ. It is clear that M◦ = Id˜ Σ ◦ M̃ . Using the fact that Z is functor that
preserves duals we now obtain Z(M˜) = Z(M)

˜
and Z(Id˜ Σ) = Z(IdΣ)

˜
, hence

Z(M◦) = Z(Id˜ Σ)◦Z(M̃) = Z(IdΣ)
˜

◦Z̃(M) = IdZ(Σ)

˜
◦Z̃(M) = tr(Z(M)).

The finite-dimensionality of the vector spaces involved is required to
make sense of the notion of trace.

As a particular application of Lemma 6.4.1 we consider the identity mor-
phism IdΣ = Σ× I. We have Id◦Σ = Σ× S1. It follows that

Z(Σ× S1) = tr(IdZ(Σ)) = dim(Z(Σ)). (6.8)

We are now ready to state and prove the criterion mentioned above. Note
that we are not talking about extended topological quantum field theories.

Theorem 6.4.2. If Z,Z ′ : 4Cob → Vect are topological quantum fields
theories which obey, for all compact oriented 4-manifolds M ,

Z(M) = Z ′(M) = yσ(M),

with y 6= 0, then there is a monoidal natural isomorphism F : Z → Z ′. It is
also said that Z and Z ′ are equivalent as topological quantum field theories.
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Proof. Suppose that Z,Z ′ : 4Cob→ Vect are functors as in the assumption
of the theorem. The claim is now that for each object Σ of 4Cob there exists
an isomorphism FΣ, such that for all triples M : Σ1 → Σ2, the following
diagram commutes

Z(Σ1) Z ′(Σ1)

Z(Σ2) Z ′(Σ2)

FΣ1

Z(M) Z′(M)

FΣ2

(6.9)

this is the naturality square of F . Furthermore the isomorphisms FΣ should
be compatible with the monoidal structure, we will elaborate on this com-
patibility later in the proof.

Before we construct F , we argue that Z(Σ) and Z ′(Σ) are one-dimensional
for any Σ. This follows from the fact that σ(S1×Σ) = 0 and from equation
6.8 as follows

dim(Z(Σ)) = Z(Σ× S1) = yσ(M) = 1.

Because the oriented cobordism group in three dimensions is trivial there is,
for each Σ, a morphism M : ∅ → Σ. Moreover, by the computation

Z(M̄)Z(M)1 = Z(M̄ ◦M)1 = yσ(M̄◦M) 6= 0,

the vector Z(M)1 ∈ Z(Σ) is non-zero. We now define the map FΣ : Z(Σ)→
Z ′(Σ) by the equation

FΣ(Z(M)1) = Z ′(M)1, (6.10)

for any M : ∅ → Σ. There are now a number of checks we need to do.

• First note that, since Z(Σ) and Z ′(Σ) are one-dimensional, the equa-
tion (6.10) completely determines the map FΣ.

• Let us check that in fact if Eq. (6.10) holds for one choice of M : ∅ → Σ
it holds for all such M . That is, the definition of F does not depend
on the choice of M . Let M1,M2 : ∅ → Σ be arbitrary but fixed. By
the one-dimensionality of Z(Σ) and Z ′(Σ) there exist constants α ∈ C
and α′ ∈ C such that

Z(M1) = αZ(M2), Z ′(M1) = α′Z(M2).

Since M̄1 ◦M1 and M̄1 ◦M2 are closed 4-manifolds we have

Z(M̄1 ◦M1) = αZ(M̄1 ◦M2), and Z ′(M̄1 ◦M1) = α′Z ′(M̄1 ◦M2),

hence α = α′.
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• We consider the naturality of F . Fix an arbitrary triple M : Σ1 →
Σ2 in 4Cob. Let us show that the naturality square (6.9) indeed
commutes

Z ′(M)FΣ1Z(N)1 = Z ′(M)Z ′(N)1

= Z ′(M ◦N)1

= FΣ2Z(M ◦N)1

= FΣ2Z(M)Z(N)1.

• Finally, let us show that F is compatible with the monoidal structure.
Fix the pairs M1 : ∅ → Σ1 and M2 : ∅ → Σ2. Then it follows

FΣ1∪Σ2Z(M1 ∪M2)1 = Z ′(Σ1 ∪ Σ2)1

= Z ′(Σ1)⊗ Z ′(Σ2)1

= FΣ1Z(Σ1)1⊗ FΣ2Z(Σ2)1

= (FΣ1 ⊗ FΣ2)Z(M1 ∪M2)1.

Fix M : ∅ → ∅. It follows

F∅Z(M)1 = Z ′(M)1 = Z(M).

These results show that F is a monoidal natural transformation.

This result is in a certain sense a uniqueness result. Any four-dimensional
topological quantum field theory G : 4Cob→ Vect that has

G(M) = e−
36i
Λ
π2σ(M)

for all closed four-manifolds M , is equivalent to four-dimensional BF -theory
with cosmological constant Λ, also called Z. We might interpret this as
saying that Z is the only theory with

Z(M) = e−
36i
Λ
π2σ(M)

for all closed four-manifolds M .
Let us conclude this chapter with the remark that the Crane-Yetter-

Broda topological quantum field theory does indeed assign the number
yσ(M) to each compact oriented 4-manifold M , and hence, is equivalent to
4-dimensional BF theory. For a discussion on this point we refer to reader
to [Baez95].
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Chapter 7

Integer quantum Hall effect

In 1985, Klaus von Klitzing was awarded the Nobel prize in physics for his
discovery of the integer quantum Hall effect, [KDP80]. An introduction to
the theory behind the integer quantum Hall effect will be the subject of this
chapter. It is, of course, a very interesting subject in its own right, and
moreover, it will be one of the two main ingredients in the theory we wish to
develop. There is much that can be said about the IQHE and its variants,
like the fractional quantum Hall effect (FQHE), but we will restrict ourselves
to just one aspect of the theory, namely the so-called Landau quantization.
The interested reader might find a more complete introduction to the subject
in Ref. [Goer09], which is also the main reference for this chapter.

7.1 Landau quantization

We start by setting up the problem. Consider a particle of mass m and
charge −e constrained to move in the plane. Its position is described by the
vector r. A homogeneous magnetic field, of magnitude B > 0, is applied
perpendicularly to the plane. Note that the force exerted on the particle
will always lie in the plane. The magnetic field may be described by a
vector potential A : R3 → R3, such that ∇ ×A = B = Bẑ. Any function
A : R3 → R3 with the property that ∇×A = B is called a vector potential
for B. There are many such vector potentials, the selection of any particular
one of them is called a choice of gauge. We will make use of two particular
choices, namely the symmetric gauge

A(x, y, z) =
B

2
(−y, x, 0),

and the Landau gauge

A(x, y, z) = B(−y, 0, 0).

If ξ : R3 → R is any function, and A is a vector potential for B, then so is A+
∇ξ. The assignment A→ A +∇ξ is called a gauge transformation. In fact,
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Chapter 7. Integer quantum Hall effect

any two vector potentials for B can be related by a gauge transformation.
Using any choice of gauge for A, the dynamics of the particle are governed
by the Lagrangian

L =
1

2
mṙ2 − eA · ṙ. (7.1)

One might protest that the Lagrangian is not gauge invariant, however, using
the chain rule for derivatives, one can show that under a gauge transforma-
tion the Lagrangian only changes by a total derivative. The Lagrangian
description is not important for us at the moment, but it will turn out to be
convenient later. Let us thus pass to the Hamiltonian description. We first
compute the canonical momentum

p =
∂L

∂ṙ
= mṙ− eA. (7.2)

Note that the canonical momentum is not the usual momentum mṙ. In
the above computation, we have assumed that the vector potential does not
contain any time derivatives of r, an assumption that was already implicit
in writing A : R3 → R3. The Hamiltonian becomes

H =

(
∂L

∂ṙ
ṙ− L

) ∣∣∣∣
ṙ=(p+eA)/m

=
1

2

(p + eA)2

m
. (7.3)

A striking feature of this system is that the canonical momentum is not gauge
invariant. One might conclude that something has gone awfully wrong;
however, the Hamiltonian, miraculously, is gauge invariant! So all hope is
not lost, and we will, of course, see that in the end everything works out,
as long as one promises never to try to measure the canonical momentum.
An interesting remark is that the Hamiltonian in Eq. (7.3) is exactly the
Hamiltonian that one obtains by applying minimal coupling, p → p + eA,
to the free particle Hamiltonian, that is

1

2

p2

m
→ 1

2

(p + eA)2

m
.

7.1.1 Classical solution

We are interested in the quantum mechanical solution to the problem de-
scribed by Eq. (7.3). However, there are some valuable lessons to be learned
from the classical picture. We may derive the equations of motion from ei-
ther the Lagrangian (7.1) or the Hamiltonian (7.3). Either way, the equation
of motion is given by the Lorentz force law

mr̈ = −e(ṙ×B).

We introduce the cyclotron frequency

ωc :=
eB

m
,
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and write out the equation of motion in components

r̈x = −ωcṙy,
r̈y = ωcṙx.

One may verify that the equations

rx(t) = Cx −R sin(ωct+ φ),

ry(t) = Cy +R cos(ωct+ φ),
(7.4)

solve the equation of motion, for any Cx, Cy, R, φ ∈ R. We see that the
particle describes a circular motion of radius R around the point (Cx, Cy).
We can express Cx and Cy in terms of ṙ and r as follows

Cx = rx(t)− 1

ωc
ṙy(t),

Cy = ry(t) +
1

ωc
ṙx(t).

(7.5)

The numbers Cx and Cy are the so-called guiding center coordinates, which
will turn out to be quite relevant for the quantum mechanical problem.
Their importance might be expected because Cx and Cy are constants of
motion, and thus, commute with the Hamiltonian.

7.1.2 Canonical quantization

We now perform canonical quantization by promoting r and p to operators,
obeying the canonical commutation relations

[ri,pj ] = i~δij ,

with the additional condition that all commutators not determined by this
equation vanish. We define the gauge-invariant momentum

Π = p + eA.

Let us compute the commutator between the different components of Π,

[Πx,Πy] = [px + eAx,py + eAy]

= −ie~ (∇×A)z
= −ie~B.

It is conventional to introduce the so-called magnetic length

lB =

√
~
eB

.
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In terms of the magnetic length, the commutator above reads

[Πx,Πy] = −i~
2

l2B
. (7.6)

The Hamiltonian (7.3) can be written as

H =
Π2
x

2m
+

Π2
y

2m
. (7.7)

In this way, we see that the system is essentially a harmonic oscillator! We
define the analogs of the creation and annihilation operators

a =
lB

~
√

2
(Πx − iΠy) , a† =

lB

~
√

2
(Πx + iΠy) . (7.8)

Up to this point, there were no restrictions on the number e; however, at
this point we have assumed that e is positive, if it is not, the expression
for a† would be inconsistent with the expression for a. It is not difficult to
modify the theory developed here to the case that e is negative. Nothing
essential changes, so for the sake of clarity, let us fix e to be positive from
now on. One can show, using Eq. (7.6), that a and a† satisfy the following
relation [

a, a†
]

= 1. (7.9)

The Hamiltonian (7.3) may be expressed as

H =
~2

ml2B

(
a†a+

1

2

)
. (7.10)

We can now provide a set of orthogonal vectors in the Hilbert space of the
problem, that we will later extend to a basis of the Hilbert space. We will
refer to this set as a partial basis. The partial basis states are indexed by a
natural number n ∈ N and obey the relations

a†|n〉 =
√
n+ 1|n+ 1〉, and a|n〉 =

√
n|n− 1〉,

and the annihilation operator annihilates the vacuum,

a|0〉 = 0.

This basis is a partial basis because we started with a particle in two spatial
dimensions, and this basis describes a one dimensional harmonic oscillator.
The spectrum of the system described by Eqs. (7.9) and (7.10) is now given
by

En =
~2

ml2B

(
n+

1

2

)
= ~ωc

(
n+

1

2

)
,

where ωc = eB/m = ~/(ml2B) is the cyclotron frequency . The space of
states corresponding to a fixed n ∈ N is called a Landau level.

In the following sections, we will find two distinct ways to characterise
the remaining degree of freedom, or equivalently to complete the partial
basis constructed above.
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7.1.3 Guiding center coordinates

The partial basis defined above diagonalizes the Hamiltonian. Hence, if we
want to complete it, we might want to find operators that commute with the
Hamiltonian and try to diagonalize those. Now, we know that an operator
commutes with the Hamiltonian if and only if it is a constant of motion. The
astute reader might notice that this is a remark that we actually have made
already! Recall section 7.1.1, where we found the guiding center coordinates,
Cx and Cy, which were constants of motion. We are, however, not yet in the
position to make use of Cx and Cy, since Eq. (7.5) gives us an expression in
terms of ṙ, which is surely not admissible in a Hamiltonian setup. We recall
Eq. (7.2) and write

mṙ = p + eA.

This leads to the expressions

Cx = rx −
py
mωc

− eAy

mωc
= rx −

py
eB
− Ay

B
= rx −

Πy

eB
,

Cy = ry +
px
mωc

+
eAx

mωc
= ry +

px
eB

+
Ax

B
= ry +

Πx

eB
.

(7.11)

As expected, one may verify by direct computation

[Cx,Πx] = 0, [Cx,Πy] = 0,

[Cy,Πx] = 0, [Cy,Πy] = 0.

Thus, the guiding center operators, Cx and Cy, commute with the Hamil-
tonian. This implies that we may, in principle, simultaneously diagonalize
either Cx or Cy and the Hamiltonian. However, we may not diagonalize
both Cx and Cy

[Cx, Cy] =

[
rx −

py
eB
− Ay

B
, ry +

px
eB

+
Ax

B

]
=

i~
eB

+
i~
eB

+
i~
eB2

∂Ax
∂y
− i~
eB2

∂Ay
∂x

=
i~
eB

= il2B.

Instead of trying to diagonalize either Cx or Cy – diagonalizing Cx seems
somewhat unfair to Cy and vice versa – we notice the similarity of the
expression [Cx, Cy] with Eq. (7.6). Analogously to the harmonic oscillator,
we define creation and annihilation operators

b =
1

lB
√

2
(Cx + iCy) , b† =

1

lB
√

2
(Cx − iCy) . (7.12)
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One may then verify that [
b, b†

]
= 1.

Therefore we may diagonalize b†b, that is, we introduce the set of states
indexed by m ∈ N that obey

b†b|m〉 = m|m〉.

We now have a complete orthonormal basis for the Hilbert space, indexed
by two integers, n,m ∈ N, constructed as follows. We define the vacuum
state as the unique vector obeying

a|0, 0〉 = b|0, 0〉 = 0. (7.13)

Then, all other states are constructed as

|n,m〉 =

(
a†
)n (

b†
)m√

(n!)(m!)
|0, 0〉. (7.14)

Using the commutation relations [a, a†] = 1 and [b, b†] = 1, one may verify
the following useful identities

a†a|n,m〉 = n|n,m〉, b†b|n,m〉 = m|n,m〉,
a|n,m〉 =

√
n|n− 1,m〉, a†|n,m〉 =

√
n+ 1|n+ 1,m〉,

b|n,m〉 =
√
m|n,m− 1〉, b†|n,m〉 =

√
m+ 1|n,m+ 1〉.

Note that for any n,m,m′ ∈ N, the two states |n,m〉 and |n,m′〉 have the
same energy, so the Landau levels are (infinitely) degenerate.

7.1.4 Wave functions

One might be interested in the wave functions corresponding to the sys-
tem defined by Eqs. (7.13) and (7.14). Formally, we know that the wave
functions should be elements of L2(R2), that is, complex-valued square in-
tegrable functions of two real variables. We will denote the wave function
corresponding to the state |n,m〉 by ϕ(n,m)(x, y). According to the usual
rules of canonical quantization, we may represent the position and momen-
tum operators as

rx → x, ry → y, (7.15)

px → −i~∂x, py → −i~∂y.

Note that the expressions for px and py do not depend on the gauge potential,
A. However, we know that upon a gauge transformation

A→ A +∇ξ, (7.16)

68



Chapter 7. Integer quantum Hall effect

the canonical momentum should transform as

p→ p− e∇ξ.

Instead of trying to modify the representation of the operators we ask that
the wave functions ϕ ∈ L2(R2) obey a certain transformation behaviour,
namely, under the transformation (7.16) the wave function should transform
as

ϕ→ e−e
i
~ ξϕ. (7.17)

Using Eqs. (7.8) and (7.12) for a and b, one may write

a′ :=
~
√

2

lB
a = Πx − iΠy,

b′ := eBlB
√

2b = eB(x+ iy)−Πy + iΠx.

It follows that

ia′ − b′

2
= Πy −

eB

2
(x+ iy),

a′ − ib′

2
= Πx +

eB

2
(y − ix).

From Eq. (7.13), it now follows that the ground state satisfies the equations(
Πy −

eB

2
(x+ iy)

)
ϕ(0,0) = 0,(

Πx +
eB

2
(y − ix)

)
ϕ(0,0) = 0.

The canonical quantization rules in Eq. (7.15) tell us that(
−i~∂y + eAy(x, y)− eB

2
(x+ iy)

)
ϕ(0,0)(x, y) = 0, (7.18)(

−i~∂x + eAx(x, y) +
eB

2
(y − ix)

)
ϕ(0,0)(x, y) = 0. (7.19)

Eq. (7.18) is solved by

ϕ(0,0)(x, y) = f(x) exp

{
1

i~

∫ y

0

[
eAy(x, k)− eB

2
(x+ ik)

]
dk

}
= f(x) exp

{
1

i~

(∫ y

0
eAy(x, k)dk − eB

4
iy2 − eB

2
xy

)}
,

(7.20)

where f is an arbitrary function of x, (but independent of y). We substitute
this result into Eq. (7.19), divide both sides by ϕ(0,0)(x, y), and obtain

i~
∂xf(x)

f(x)
= −

∫ y

0
e
∂Ay(x, k)

∂x
dk + eAx(x, y) + eBy − eB

2
ix. (7.21)
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Because the left-hand side does not depend on y, the right-hand side may
not depend on y either. Taking the derivative with respect to y of the right
hand side and using the fact that

∂Ay
∂x
− ∂Ax

∂y
= B,

one sees that the right hand side is indeed independent of y. The differential
equation Eq. (7.21) is solved by

f(x) = exp

{
1

i~

∫ x

0

[
−
∫ y

0
e
∂Ay(l, k)

∂l
dk + eAx(l, y) + eBy − eB

2
il

]
dl

}
= exp

{
1

i~

(
−
∫ y

0
eAy(x, k)dk +

∫ x

0
eAx(l, y)dl + eBxy − eB

4
ix2

)}
.

Finally, we substitute this back into Eq. (7.20), and obtain

ϕ(0,0)(x, y) = exp

{
−eB

4~
(x2 + y2) +

eB

2i~
xy +

∫ x

0

eAx(l, y)

i~
dl

}
.

All other states can now be found using Eq. (7.14). Some remarks are
now in order. First, the wave functions are not gauge invariant. In fact,
under a gauge transformation A→ A+∇ξ, the ground state wave function
transforms as

ϕ(0,0)(x, y)→ e−e
i
~ ξ(x,y)ϕ(0,0)(x, y).

We see that this solution indeed exhibits the required transformation be-
haviour, as stated in Eq. (7.17). Next, notice that there is a choice of
gauge for which the ground state wave function becomes particularly sim-
ple, namely the symmetric gauge, A(x, y, z) = B(−y, x, 0)/2. In this case
we obtain

ϕ(0,0)(x, y) = exp

(
−eB

4~
(x2 + y2)

)
= exp

(
− 1

4l2B
(x2 + y2)

)
.

Using Eq. (7.14) we now compute

ϕ(0,m)(x, y) =

(
x+ iy

lB

)m
exp

(
− 1

4l2B
(x2 + y2)

)
. (7.22)

In Chapter 10 we shall work in the symmetric gauge. Finally, we should say
that we have not bothered to normalize our states.
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7.1.5 Landau gauge

Up to now we have avoided choosing a gauge. In this section, we will choose
one. Specifically, we will work in the Landau gauge, A(x, y, z) = B(−y, 0, 0).
In this gauge, the gauge-invariant momentum becomes

Πx = px − eBy,
Πy = py.

We see that the x-component of the canonical momentum, px, commutes
with both Πx and Πy, and thus with the Hamiltonian, Eq. (7.7). Hence, we
may simultaneously diagonalize H and px. This choice of gauge is thus par-
ticularly natural if we have a potential that breaks translational invariance
in the y-direction, but not in the x-direction. The functions, parametrized
by k ∈ R, eikx diagonalize the action of px, i.e. pxe

ikx = ~keikx. Moti-
vated by this fact we take the following ansatz for the eigenfunctions of the
Hamiltonian

ψn,k(x, y) = eikxχn,k(y). (7.23)

Note that these functions are, in principle, not normalizable. Let us now
consider the time-independent Schrödinger equation

Π2
x + Π2

y

2m
ψn,k(x, y) = En,kψn,k(x, y).

Which, using the ansatz (7.23), becomes[
p2
y

2m
+m

ω2
c

2

(
y − l2Bk

)2]
χn,k(y) = En,kχn,k(y). (7.24)

This is effectively a one-dimensional harmonic oscillator, with angular fre-
quency ωc, centered at l2Bk. It follows that En,k = ~ωc (n+ 1/2), as in fact
we already knew. Let us define y0 := l2Bk. The wave functions thus become

χn,k(y) =
1√

2nn!

(
1

2

)1/4 1√
lB
e
− (y−y0)2

2l2
B Hern

(
y − y0

lB

)
,

where Hern are the Hermite polynomials

Hern(y) = (−1)ney
2 dn

dyn

(
e−y

2
)
.

7.2 Integer quantum Hall effect: phenomenology

In this section we describe the phenomenology of the integer Quantum Hall
effect.
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Figure 7.1: Schematic overview of the quantum Hall setup.

We consider a rectangular conductor of negligible thickness. The conduc-
tor is imperfect in the sense that there are some impurities in the material,
this will turn out to be essential for the effect we are about to describe, as
will be explained in section 7.3.4. The length of the conductor is supposed
to be much greater than its width. A current is applied along the length of
the conductor and a homogeneous magnetic field is applied perpendicularly
to the surface of the conductor. One measures the voltage drop across the
width of the conductor as in Fig. 7.1.

The resistance corresponding to this voltage drop is called the Hall re-
sistance. We now consider the Hall resistance as a function of the magnetic
field. It turns out that the Hall resistance is piece-wise constant as in Fig. 7.2.
This effect is called the integer quantum Hall effect because the resistance is
of the form 2π~/(Ne2) =: RK/N , where N ∈ N. The constant RK is called
the von Klitzing constant, in honor of von Klitzing’s discovery of the integer
quantum Hall effect.

This effect is rather striking, because it is a macroscopic phenomenon
that can not be explained classically. In fact, the straight blue line in Fig. 7.2
shows the classical prediction of the resistance as a function of magnetic field.
The classical and the quantum mechanical result agree if the magnetic field
takes the form

B

B0
=

1

N
, (N ∈ Z)

where B0 is some material dependent quantity. This feature will be ex-
plained in the sequel.
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Figure 7.2: The Hall resistance as a function of the magnetic field.

7.3 Integer quantum Hall effect: theory

To accommodate for the quantum Hall effect we need to modify the setup
we described in the previous sections in three ways. First, we need to add
some confining potential, say in the y-direction, such that we indeed model
a long and thin conductor. Second, we should include a disorder potential
that describes the impurities of the conductor. Finally, we need to include
the effect of the injected current. We include the first two effects by adding
the following term to the Hamiltonian, Eq. (7.24),

V (x, y) = Vconf(y) + Vimp(x, y),

where Vconf(y) is the term that describes the confining potential and Vimp(x, y)
the term that describes the impurities, or disorder.

7.3.1 Semi-classical treatment of disorder

In this section we give a semi-classical picture of the effect of disorder on
the electrons in the conductor. We assume that the disorder potential Vimp

varies smoothly and does not contribute to mixing of Landau levels. In this
case we may make the approximation

Vimp(x, y) ≈ Vimp(Cx, Cy), (7.25)

see section 7.4.2 for more about this approximation. More concretely, we
make the assumption that

|∇V | � ~ωc
lB

. (7.26)
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We now consider the Heisenberg equations of motion for the guiding center
coordinates in this approximation.

Ċx =
i

~
[H,Cx] =

i

~
[Vimp(Cx, Cy), Cx] =

l2B
~
∂Vimp(Cx, Cy)

∂Cy
,

Ċy =
i

~
[H,Cy] =

i

~
[Vimp(Cx, Cy), Cy] = −

l2B
~
∂Vimp(Cx, Cy)

∂Cx
.

We compute
(〈Ċx〉, 〈Ċy〉) · 〈∇V 〉 = 0,

or in other words, the expectation value of the velocity of the guiding center
coordinates is perpendicular to the expectation value of the gradient of the
potential. This means that in the semi-classical picture, the guiding center
coordinates of an electron follow the equipotential lines. It follows that an
electron can only make it from one edge of the sample to the other if it is
on an open equipotential line. From this point on we make the assumption
that in the bulk of the conductor all equipotential lines are closed, the only
equipotential lines that extend entirely through the conductor are located
at the lateral edges. This assumption is generically fulfilled.

7.3.2 Confining potential

In this section we consider the effect of a confining potential on the system.
The confining potential models the edge of the conductor, it should be a
smooth version of the infinite square well potential. If we forget about the
effect of disorder for a moment and again decompose the wave functions as
in Eq. (7.23), that is, we write

ψn,k(x, y) = eikxχn,k(y).

Then, the effective time-independent Schrödinger equation, (see Eq. (7.24)),
for χn,k(y) becomes

Hkχn,k(y) =

[
p2
y

2m
+

1

2
mω2

c (y − y0)2 + Vconf(y)

]
χn,k(y) = En,kχn,k(y),

(7.27)
recall that y0(k) = l2Bk. Let us expand the confining potential up to first
order,

Vconf(y) = Vconf(y0) +
∂Vconf

∂y

∣∣∣∣
y=y0

(y − y0) +O
(
∂2Vconf

∂y2

)
(y − y0)2.

We recall our assumption, Eq. (7.26), that the potential varies slowly, this
means that

∂2Vconf

∂y2
, and

(
∂Vconf

∂y

)2

,
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are sufficiently small, thus we can write

Vconf(y) = Vconf(y0) +
∂Vconf

∂y

∣∣∣∣
y=y0

(y − y0).

We now define

y′0 := y0 −
1

mω2
c

∂Vconf

∂y

∣∣∣∣
y=y0

,

then, one may verify that

1

2
mω2

c (y − y0)2 + Vconf(y) =
1

2
mω2

c (y − y′0)2 + Vconf(y0).

We thus see that the time-independent Schrödinger equation, (see Eq. (7.27)),
becomes[

p2
y

2m
+

1

2
mω2

c (y − y′0)2 + Vconf(y0)

]
χn,k(y) = En,kχn,k(y).

We conclude that the solution is that χn,k(y) describes a harmonic oscillator
centered at y′0(k) with energy

E′n,k = ~ωc
(
n+

1

2

)
+ V (y0).

This result can be understood intuitively. The magnetic field forces the
particles to localize on a length scale lB, we have assumed that the potential
is approximately constant on this length scale. Thus, the result is that the
wave functions are not affected by the confining potential, and the energy
is shifted by the, approximately constant, confining potential V (y0). The
upshot of this analysis is that the confining potential is fully compatible
with the semi-classical treatment of disorder from section 7.3.1.

7.3.3 Conductance of a filled Landau level

In this section we assume that the first n Landau levels are completely filled.
We will compute the current induced by a potential difference between the
opposing lateral edges of the sample, see Fig. 7.1. The current of the n-th
Landau level, (as in Fig. 7.1) is given by

Ixn = − e
L

∑
k

〈n, k|ẋ|n, k〉,

where |n, k〉 is the state 〈x, y|n, k〉 = ψn,k(x, y) = eikxχn,k(y), and L is the
length of the sample. Let us recall that y0 = kl2B, thus the range of the sum
over k is dictated by the width of the sample, let us suppose that it runs
from kmin to kmax. The values that k is allowed to take are dictated by the
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boundary conditions ψn,k(0, y) = 0 and ψn,k(L, y) = 0, we will not need the
explicit values that k is allowed to take, only the separation between two
adjacent ones, which is ∆k = 2π/L. Now, we use the Heisenberg equations
of motion and compute

i~ẋ = [x,H] = i~
∂H

∂px
= i

∂H

∂k
,

where in the last step we have used that px|n, k〉 = ~k|n, k〉. It then follows
that

〈n, k|ẋ|n, k〉 =
1

~
∂En,k
∂k

.

We approximate the derivative

∂En,k
∂k

≈
En,k+∆k − En,k

∆k
=

L

2π
(En,k+∆k − En,k),

which leads to

Ixn = − e

~L
∑
k

∂En,k
∂k

= − e

2π~
∑
k

(En,k+∆k−En,k) = − e

2π~
(En,kmax−En,kmin

).

This is essentially the discrete version of Stokes’ theorem. The difference
between the energies is nothing but the Hall voltage

En,kmax − En,kmin
= −eV.

So we conclude that the Hall conductance of a single Landau level is

Ixn
V

=
e2

2π~
. (7.28)

Comparison of this result to the discussion in section 7.3.1 leads to the
conclusion that each Landau level corresponds to exactly one of the open
equipotential lines, that are located at the lateral edges. Based on reflection
symmetry of the confining potential along the x-axis, one might expect there
to be an even number of open equipotential lines, this is however not the
case since the magnetic field breaks this symmetry; the electrons are chiral.

7.3.4 Partially filled Landau levels

In this section we will discuss the emergence of the plateaus in the Hall
resistance, as depicted in Fig. 7.2. We are thus looking for the resistance,
or equivalently the conductance, as a function of the magnetic field. For
this we require the so-called filling factor, the integer part of which is the
number of completely filled Landau levels, and the fractional part of which
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Figure 7.3: Top down view of a part of the conductor. The lines with arrows
represent equipotential lines of a typical effective potential.

is the filling fraction of the hightest unfilled Landau level. According to
Ref. [Goer09], it is given by

ν =
2π~nel

eB
, (7.29)

where nel is the number of electrons, which we assume to be fixed. We
see that if we increase the strength of the magnetic field the number of
completely filled Landau levels decreases, thus the conductance should de-
crease with it. Let us now qualitatively discuss the emergence of plateaus
in the Hall conductance. In the previous sections, we have argued that the
conductance is due to the existence of open equipotential lines. We have
furthermore argued that each Landau level has exactly one open equipoten-
tial line available for electron transport. Now suppose that the n-th Landau
level is partially filled. The n− 1 levels beneath it each contribute e2/(2π~)
to the conductance. The electrons in the n-th level only have one open
equipotential line available, which they may or may not use. If they do,
then the total conductance is ne2/(2π~), if they do not, then the total con-
ductance is (n− 1)e2/(2π~). This essentially explains the integer quantum
Hall effect. Let us give a more intuitive picture of what is happening. We
will consider the effective potential seen by an electron in the n-th Landau
level, this potential will include the effects of all electrons in lower Landau
levels on our special electron, all effects of the material properties and the
confining potential. We will assume that this effective potential fulfills the
generic condition as described at the end of section 7.3.1. In Fig. 7.3 we
have a drawn piece of the conductor. The lines with arrows represent the
equipotential lines of the effective potential as seen by an electron in the
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n-th Landau level. The arrows indicate the direction of the electron orbits
as follows from the analysis in section 7.3.1. A plus sign indicates a local
maximum of the effective potential and a minus indicates a local minimum.
Let us suppose that we apply an electric field in the y-direction, then we es-
sentially shut off one of the open equipotential lines. Now, imagine that we
start in the situation that the n-th Landau level is empty. By turning down
the magnetic field we start filling the n-th Landau level. The first electron
will look for the lowest equipotential line, which in our picture 7.3 is closed.
As we turn down the magnetic field the electrons will keep filling the closed
equipotential lines centered around local minima, (in our picture the clock-
wise oriented ones), until the lowest unoccupied equipotential line is an open
one, at which point the conductance jumps. If we keep decreasing the mag-
netic field the electrons will start filling the closed equipotential lines around
local maxima, until the n-th Landau level is filled. At this point the same
story holds for the (n + 1)-th Landau level. We conclude that this semi-
classical picture essentially explains the integer quantum Hall effect. We
may also conclude that the point at which the conductance jumps, depends
crucially on the microscopic properties of the material, but the existence of
the plateaus is independent of these properties.

7.4 Strong magnetic field

7.4.1 Lagrangian approach

In this section we consider the strong magnetic field limit of the theory
described by the Lagrangian (7.1). We will show that this limit is a “topo-
logical” limit, in the sense that after taking this limit, the Hamiltonian
vanishes. We will work in the Landau gauge, A(x, y, z) = (−yB, 0, 0). In
this case the Lagrangian (7.1) reads

L =
1

2
ṙ2 + eBṙxry − V (rx, ry),

here, we have included some arbitrary external potential V (rx, ry). We
claim that in the strong magnetic field limit we may discard the kinetic
term mṙ2/2,

L = −eA · ṙ− V (r). (7.30)

This approximation will be valid if

1

2
mṙ2 � eBṙxry. (7.31)

Let us write v0 = αc, for the typical velocity of an electron, where α is a
dimensionless constant. Let us thus write ṙx = ṙy = αc, in which case we
obtain

αmc� eBry. (7.32)
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If we now set ry = lB =
√

~/(eB), we get the following criterion

αmc� ~
lB
,

or, equivalently,
lC � αlB, (7.33)

where lC = ~/(mc) is the characteristic length. We conclude that if the
characteristic length is far larger than the magnetic length, lB, times α we
may work with the approximate Lagrangian (7.30). For electrons in the
lowest conduction band of gallium arsenide at room temperature we have,
from Ref. [Blak82],

α ≈ 0.001 m ≈ 0.06mel,

where mel is the electron mass, (m is the effective mass of electrons in
gallium arsenide). Using this data we conclude that the equality lC = αlB
is satisfied at B ≈ 20 Tesla.

We compute the canonical momentum corresponding to rx,

px =
∂L

∂ṙx
= eBry.

We see that the momentum canonically conjugate to the observable rx is
proportional to ry. Hence, rx and ry are the only dynamical variables. Be-
fore discarding the kinetic term mṙ2/2 there were four dynamical variables,
rx, ry, ṙx and ṙy. Thus, if we discard the kinetic term mṙ2/2, then the
system undergoes dimensional reduction. The approximation we made is
thus far from innocent. The Hamiltonian corresponding to the approximate
Lagrangian (7.30) reads

H = p · ṙ− L = V (r).

Hence, we see that in the absence of an external potential V the Hamiltonian
vanishes identically in this approximation. Upon quantization, px = eBry
and rx turn into operators obeying the canonical commutation relations

[rx, ry] = i
~
eB

= il2B. (7.34)

An important consequence of this commutation relation is that, by the
Heisenberg uncertainty principle, we can no longer localize the particle with
arbitrary precision. Denoting the variance of rx by σx and the variance of
ry by σy the uncertainty relation reads

σxσy >
l2B
2
.

In view of the demand lC � αlB this is likely a mild requirement, unless the
electrons are especially slow. The commutation relation (7.34) is identical
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to the commutation relation [Cx, Cy] = il2B. In fact, Eq. (7.5) implies that
in the large magnetic field limit the guiding center coordinates coincide with
the coordinates of the particle. At this point, a word of warning is in order.
Based on Eq. (7.4) one might be inclined to say that ṙ is proportional to
ωc, thus to B, such that in the large magnetic field limit the coordinates Cx
and rx will not coincide. This reasoning is erroneous, since Eq. (7.4) is a
solution to an initial value problem, i.e. one should specify ṙ at some time
t0 and thus ṙ may not depend on B. Furthermore, our description of the
problem is non-relativistic, and will thus break down if the velocities become
too large.

7.4.2 Projecting onto a Landau level

There is another way to understand the strong magnetic field limit. We
recall that the energy associated to the n-th Landau level is En = eB(n +
1/2)/m, in particular, it is linear in B, so if B is very large we are essentially
separating the Landau levels by a large amount. Based on this argument
we conclude that taking the strong magnetic field limit is equivalent to
projecting onto a Landau level. We recall the basis for the Hilbert space as
constructed in Eq. (7.14). Using this notation we see that the operator that
projects a wave function onto the n-th Landau level is given by

Pn :=
∞∑
m=0

|n,m〉〈n,m|.

One may verify that

PnaPn = 0, and [Pn, b] = 0. (7.35)

Combining Eqs. (7.8) and (7.11) we see that

rx = Cx + i
lB√

2
(a− a†),

ry = Cy −
lB√

2
(a+ a†).

Using Eqs. (7.12) and (7.35) one sees that

PnrxPn = CxPn = PnCx,

PnryPn = CyPn = PnCy.

Using the fact that [Cx, Cy] = il2B it follows that

[PnrxPn, PnryPn] = il2BPn.

And finally, we may also project the Hamiltonian onto the n-th Landau level

PnH(X,Y )Pn = ~ωc
(
n+

1

2

)
Pn + PnV (rx, ry)Pn. (7.36)
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Here, we see that the approximation (7.25) is equivalent to the approxima-
tion that

PnVimp(rx, ry)Pn ≈ Vimp(PnrxPn, PnryPn) = Vimp(CxPn, CyPn).

Hence, our intuitive argument that the strong magnetic field limit is equiv-
alent to the projection onto a Landau level seems to be correct. Further
discussion of this “topological” limit may be found in Ref. [DJ93].
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Quantum Brownian motion

In this Chapter, we study the quantization of the Brownian motion of a
single particle in two dimensions. Since the Brownian motion of a particle
is dissipative, the system does not admit a Lagrangian or a Hamiltonian
description. This fact complicates the quantization of the model, since the
methods of quantization that are well understood rely on the existence of a
Lagrangian or a Hamiltonian, (i.e. the Feynman path integral or canonical
quantization).

We will first give a brief description of the classical theory of Brownian
motion. Then, we will describe the independent oscillator model, which is
a Hamiltonian model used to quantize Brownian motion. Finally, we will
discuss the canonical quantization of the independent oscillator model. This
model was extensively discussed by Ford, Lewis and O’Connell (FLO), in a
series of papers, of which [FLO88] is the most important one for us.

8.1 Classical Brownian motion

Brownian motion describes the effective random movement of a large (macro-
scopic) particle in a bath of microscopic particles. It is thus an effective (or
statistical) theory, where the macroscopic degree of freedom is the position
of the large particle. One might thus see the position of the large parti-
cle as analogous to, for example, the temperature or the pressure of a gas
in thermodynamics. The time evolution of a particle undergoing Brownian
motion is described by the so-called Langevin equation. It is this stochastic
differential equation that will eventually guide us through the quantization
of Brownian motion. If m is the mass of the particle and r(t) denotes the
probability distribution of the position of the particle at time t, then the
Langevin equation is

mr̈ = −ηṙ + f(t). (8.1)

Here, η > 0 is the damping coefficient and f(t) is the random force exerted
on the particle by the bath. We assume that the force exerted on the large
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particle by the bath consists of a frictional force that is linear to the velocity
of the large particle, hence the term −ηṙ, plus a random force that depends
only on the time, hence the term f(t).

The force f(t) has a Gaussian probability distribution and obeys

〈fα(t)fβ(t′)〉 = 2ηkBTδαβδ(t− t′), (8.2)

where kB is Boltzmann’s constant, T is the temperature, δαβ is Kronecker’s
delta symbol and δ(t− t′) is the Dirac delta distribution.

Let us give a brief derivation of the fact that 〈r2(t)〉 ∝ t for large times
t. The general solution to Eq. (8.1) is

r(t) = r(0) +
m

η
ṙ(0)(1− e−

η
m
t) +

1

η

∫ t

0

(
1− e−

η
m

(t−t′)
)

f(t′)dt′. (8.3)

Let us assume that r(0) = 0 and ṙ(0) = 0, this assumption is not necessary,
but it simplifies the computations. In this case we obtain

〈r2(t)〉 =
1

η2

∫ t

0

∫ t

0

(
1− e−

η
m

(t−t′)
)(

1− e−
η
m

(t−t′′)
)
〈f(t′) · f(t′′)〉dt′dt′′

=
2nkBT

η

∫ t

0

(
1− e−

η
m

(t−t′)
)2

dt′

=
2nkBT

η

(
t−m2− 2e−

η
m
t

η
+m

1− e−2 η
m
t

η

)
,

where n is the number of dimensions in which the particle is allowed to
move. We see that for large times t we have

〈r2(t)〉 ≈ 2nkBT

η
t. (8.4)

8.2 The independent oscillator model

The idea of the independent oscillator (IO) model is to give a Hamiltonian
description of the entire system, that is, including both microscopic and
macroscopic degrees of freedom. We can then quantize this total descrip-
tion using any of the usual methods, that is, by Feynman path integrals
or canonical quantization. The quantization of this system using Feynman
path integrals and influence functionals was extensively studied by Caldeira
and Leggett in Ref. [CL83]. The method of canonical quantization was
studied by Ullersma in Ref. [Ull66] and by Ford, Lewis and O’Connell in
Ref. [FLO88]. After quantization, we assume the microscopic part of the
system to be in some known thermodynamical state, and consider only the
way in which it affects our macroscopic degree of freedom. We should stress
that the microscopic part of the description is not meant to actually reflect
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the microscopic degrees of freedom of the system. It should only be such
that the effective theory for the macroscopic degree of freedom is exactly
the theory we want to quantize, in our case, the Langevin equation.

We imagine that our Brownian particle is coupled to an infinite number
of particles by ideal springs. The Lagrangian corresponding to this model is

L =
1

2
MṘ2 +

∑
i

1

2
miṙ

2
i −

∑
i

1

2
miω

2
i (ri −R)2 . (8.5)

Here R is the position of the Brownian particle, ri is the position of the
i-th particle in the bath, M is the mass of the Brownian particle, mi is the
mass of the i-th particle and ωi is the frequency corresponding to the spring
coupling the i-th particle to the Brownian particle.

Before we quantize this system, we should verify that it does indeed de-
scribe Brownian motion at the classical level. The argument presented here
is adapted from Ref. [FLO88]. The Euler-Lagrange equations corresponding
to the Lagrangian (8.4) are

MR̈ =
∑
i

miω
2
i (ri −R), (8.6)

r̈i = ω2
i (R− ri). (8.7)

The solution of Eq. (8.6) reads

ri(t) = rhi (t) + R(t)−
∫ t

0
cos[ωi(t− s)]Ṙ(s)ds, (8.8)

where rhi (t) is the solution to the homogeneous equations of motion, i.e. it
satisfies

r̈hi (t) + ω2
i r
h
i (t) = 0.

An explicit expression for the homogeneous solution is

rhi (t) = ri(0) cos(ωit) + ṙi(0)
sin(ωit)

ωi
. (8.9)

Combining Eqs. (8.5) and (8.7) leads to

MR̈(t) =
∑
i

miω
2
i

{
rhi (t)−

∫ t

0
cos[ωi(t− s)]Ṙ(s)ds

}
. (8.10)

Now we define

f(t) :=
∑
i

miω
2
i r
h
i (t), (8.11)

µ(t− s) :=
∑
i

miω
2
i cos[ωi(t− s)]. (8.12)
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Thus, Eq. (8.9) can be written as

MR̈(t) +

∫ t

0
µ(t− s)Ṙ(s)ds = f(t). (8.13)

Indeed, the term f(t) is the random force. The function µ(t − s) is called
the memory kernel, it describes the way the system depends on its history.
We see that if we have ∫ t

0
µ(t− s)Ṙ(s)ds = ηṘ(t), (8.14)

we have successfully reproduced the Langevin equation, Eq. (8.1), at least
in form. We claim that setting

mk =
2η

πk
, and (8.15)

ωk = k, (8.16)

indeed gives us (8.13). To show this, let us take the continuum limit of
Eq.(8.11), in this case it reads

µ(t− s) =
2η

π

∑
k

k cos[k(t− s)] −→ 2η

π

∫ ∞
0

cos[k(t− s)]dk = 2ηδ(t− s).

Substitution of this result into Eq. (8.9) yields

MR̈(t) + 2θ(0)Ṙ(t) = f(t),

where θ(t) is the Heaviside theta function defined by

θ(t) :=

∫ t

−1
δ(s)ds.

Now a subtle point arises. There are different possible conventions for the
value θ(0), to decide which one we should use, we should consider the limiting
procedure that we used to obtain the Dirac delta distribution. We thus
compute

θ(0) =

∫ 0

−1
δ(s)ds

=
1

π

∫ 0

−1
ds

∫ ∞
0

dk cos[ks]

=
1

π

∫ ∞
0

dk

∫ 0

−1
cos[ks]

=
1

π

∫ ∞
0

dk
sin[k]

k

=
1

2
.
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Hence, the distribution described by Eqs. (8.14) and (8.15) does indeed
reproduce the Langevin equation. Now let us show that, under the right
assumptions, we also get that f obeys Eq. (8.2). For notational convenience,
we will assume that there is just one spatial dimension, generalization to
more spatial dimensions is straightforward. First, let us suppose that we
keep the Brownian particle fixed at the origin up to some time t0 > 0.
This is a technical assumption, that ensures that we have ri(0) = rhi (0)
and ṙi(0) = ṙhi (0). Furthermore, we assume that at t = 0 the harmonic
oscillators rk are pairwise uncorrelated, and are canonically distributed, at
temperature T , with energy

Ek =
1

2
mkṙ

2
k +

1

2
mkω

2
kr

2
k

=
η

πk
ṙ2
k +

η

π
kr2

k.

The equipartition theorem then tells us that

〈rk(t)rk′(t)〉 = δkk′
πkBT

2ηk
, (t < t0), (8.17)

〈ṙk(t)ṙk′(t)〉 = δkk′
πkkBT

2η
, (t < t0). (8.18)

Taking the derivative with respect to time of Eq. (8.16) yields

〈rk(t)ṙk′(t)〉 = 0, (t < t0).

We now set out to compute 〈f(t)f(t′)〉. First, we take the continuum limit
in Eq. (8.10)

f(t) −→ 2η

π

∫ ∞
0

rhk(t)dk.

Now, we use Eq. (8.8) and write

〈f(t)f(t′)〉 =
4η2

π2

∫ ∞
0

∫ ∞
0
〈rhk(t)rhk′(t

′)〉dkdk′

=
4η2

π2

∫ ∞
0

∫ ∞
0

[
〈rk(0)rk′(0)〉 cos(kt) cos(k′t′)

+ 〈ṙk(0)ṙk′(0)〉sin(kt) sin(k′t′)

k2

]
dkdk′

=kBT
2η

π

∫ ∞
0

[
cos(kt) cos(kt′) + sin(kt) sin(kt′)

]
dk

=kBT
2η

π

∫ ∞
0

cos[k(t− t′)]dk

=2kBTηδ(t− t′).

Here we have used that in the continuum limit δkk′ → kδ(k − k′).
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It is important to note that this derivation should not be seen as a
justification of the Langevin equation, but rather, as a verification that the
model described by the Lagrangian (8.4) does indeed describe Brownian
motion.

8.3 Quantum harmonic oscillators in thermal equi-
librium

The goal of this section is to derive analogs of Eqs. (8.16) and (8.17) for
the quantum mechanical case. The results are Eqs. (8.20), (8.21) and (8.22)
at the end of this section. The derivation presented here is adapted from
Ref. [FKM65]. We consider a system of uncoupled harmonic oscillators
canonically distributed, at temperature T , with respect to the Hamiltonian
HB given by

HB =
∑
j

[
p2
j

2mj
+

1

2
mjω

2
j r

2
j

]
.

The operators rj and pj satisfy the usual commutation relations

[ri, pj ] = i~δij , [ri, rj ] = [pi, pj ] = 0.

If O is any operator then its expectation value may be computed by

〈O〉 =
Tr{O exp(−HB/(kT ))}
Tr{exp(−HB/(kT ))}

.

We introduce the usual ladder operators

aj =

√
mjωj

2~

(
rj +

i

mjωj
pj

)
.

The commutation relations

[ai, a
†
j ] = δij , [ai, aj ] = [a†i , a

†
j ] = 0,

follow directly from the commutation relations between q and p. We ex-
press the usual positions and momentum operators in terms of the ladder
operators

rj =

√
~

2mjωj
(aj + a†j), (8.19)

pj = i

√
mjωj~

2
(a†j − aj). (8.20)

Thus, we obtain

HB =
∑
j

~ωj(a†jaj +
1

2
).
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We now use the fact that the eigenvalues of the j-th single particle Hamil-
tonian HBj = ~ωj(a†jaj + 1/2) are given by EBjn = ~ωj(n + 1/2). Which
leads to

〈a†iaj〉 = δij
Tr{a†iaj exp(−HB/(kT ))}

Tr{exp(−HB/(kT ))}

= δij

∑∞
n=0 n exp

[
−~ωj
kT

(
n+ 1

2

)]
∑∞

n=0 exp
[
−~ωj
kT

(
n+ 1

2

)]
= δij

[
exp

(
~ωj
kT

)
− 1

]−1

.

In other words

〈a†iaj〉 =
1

2
δij [coth

(
~ωj
2kT

)
− 1],

〈aia†j〉 =
1

2
δij [coth

(
~ωj
2kT

)
+ 1],

here we have used the commutation relations for the ladder operators. Using
Eqs. (8.18) and (8.19) we obtain the following expressions

〈rirj〉 = δij
~

2ωjmj
coth

(
~ωj
2kT

)
, (8.21)

〈pipj〉 = δij
1

2
~ωjmj coth

(
~ωj
2kT

)
, (8.22)

〈ripj〉 =
1

2
i~δij . (8.23)

Since harmonic oscillators in multiple dimensions can be seen as uncou-
pled one dimensional harmonic oscillators, it is straightforward to generalize
Eqs. (8.20), (8.21) and (8.22) to multiple dimensions. Let us also note that
the expectation values of the position and momentum are equal to zero,
i.e. 〈ri〉 = 0 and 〈pi〉 = 0.

8.4 Quantum Brownian motion

In this section we take the independent oscillator model, i.e. the Lagrangian
(8.4), and perform canonical quantization. The derivation presented here
follows very closely Ref. [FLO88]. The Hamiltonian corresponding to the
Lagrangian (8.4) is

H =
1

2M
P2 +

∑
i

1

2mi
p2
i +

∑
i

1

2
miω

2
i (ri −R)2, (8.24)
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where P and pi are the momenta of the Brownian particle and of the bath
respectively. Canonical quantization now tells us that we have the commu-
tation relations

[R,P] = i~, and [ri,pj ] = δiji~, (8.25)

and all other commutators vanish. We shall work in the Heisenberg pic-
ture, i.e. states are independent of time and operators obey the Heisenberg
equation

d

dt
A(t) =

i

~
[H,A(t)].

The Heisenberg equations corresponding to the model defined by Eqs. (8.23)
and (8.24), thus become

r̈j = −ω2
j (rj −R), (8.26)

MR̈ =
∑
i

miω
2
i (ri −R). (8.27)

Note that these equations are identical to the equations we obtained in the
classical case, Eqs. (8.5) and (8.6). The differential equation (8.25) is solved,
for t > 0, by

rj(t) = rhj (t) + ωj

∫ t

0
sin [ωj(t− s)] R(s)ds, (8.28)

where rhj (t) is the solution to the homogeneous equation r̈(t) + ω2
j r(t) = 0,

given by

rhj (t) = rj cos(ωjt) + pj
sin(ωjt)

mjωj
. (8.29)

Here, rj and pj are the inital conditions of the Heisenberg equation of mo-
tion, i.e. they are operators obeying Eq. (8.24), that represent the initial
state of the j-th particle. By partial integration of Eq. (8.27) one finds

rj(t) = rhj (t) + R(t)− cos(ωjt)R(0)−
∫ t

0
cos[ωj(t− s)]Ṙ(s)ds, (8.30)

thus, the solution (8.27) is equivalent to the solution (8.8). Substitution of
Eq. (8.29) in Eq. (8.26) yields

MR̈(t) =
∑
i

miω
2
i

[
rhi (t)− cos(ωit)R(0)−

∫ t

0
cos[ωi(t− s)]Ṙ(s)ds

]
.

(8.31)
We now reintroduce the operator-valued random force

f(t) :=
∑
i

miω
2
i r
h
i (t), (8.32)
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and the memory kernel

µ(t) :=
∑
i

miω
2
i cos [ωi(t− s)] . (8.33)

Thus, we may write Eq. (8.30) as

MR̈(t) + µ(t)R(0) +

∫ t

0
µ(t− s)Ṙ(s)ds = f(t), (8.34)

in analogy with Eq. (8.12) we call this equation the quantum- or operator
Langevin equation. Now let us take µ(t) = 2ηδ(t), see Eqs. (8.14) and (8.15)
for a distribution of masses and frequencies that does this. Then, we obtain

MR̈(t) + 2ηδ(t)R(0) + ηṘ(t) = f(t). (8.35)

Let us discard the term 2ηδ(t)R(0), in doing so our solution will only be
valid for t > 0. For notational convenience we shift our time parameter
t 7→ t+ t0 for some time t0 > 0, then we obtain the differential equation

MR̈(t) + ηṘ(t) = f(t), t > 0. (8.36)

This is exactly the classical Langevin equation, Eq. (8.1), with solution
Eq. (8.3), which reads

R(t) = R(0) +
1

η
P(0)(1− e−

η
M
t) +

1

η

∫ t

0

(
1− e−

η
M

(t−t′)
)

f(t′)dt′, (8.37)

where we have used the relation

MṘ =
i

~
[H,R] = P. (8.38)

There are now two features that are different from the situation in section
8.1. The first, and most important, is that the equation

〈fα(t)fβ(t′)〉 = 2ηkBTδαβδ(t− t′),

no longer holds. We will find the correct expression for 〈fα(t)fβ(t′)〉 in the
sequel. Secondly, we may no longer assume that R(0) = 0 and P(0) = 0,
since these initial conditions are inconsistent with the canonical commuta-
tion relation. We may not even assume that 〈R2(0)〉 = 0 and 〈P2(0)〉 = 0,
since this would violate the Heisenberg uncertainty principle.

We will denote the anti-commutator using braces, i.e. {f(t), f(t′)} =
f(t)f(t′) + f(t′)f(t).

For the rest of this section we will suppose that the bath oscillator are
canonically distributed with respect to the Hamiltonian HB, that is, the
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arguments from section 8.3 hold. Now, let us compute the symmetrized
force correlator,

1

2
〈{f(t), f(t′)}〉 =

1

2

∑
k,l

mkω
2
kmlω

2
l 〈{rhk , rhl }〉.

First, we compute 〈{rhk , rhl }〉, using Eqs. (8.28), (8.20), (8.21) and (8.22),

1

2
〈{rhk , rhl }〉 =

1

2
〈{rk cos(ωkt) + pk

sin(ωkt)

mkωk
, rl cos(ωlt

′) + pl
sin(ωlt

′)

mlωl
}〉

=
δkl~

2ωkmk

(
cos(ωkt) cos(ωkt

′) + sin(ωkt) sin(ωkt
′)
)

coth

(
~ωk

2kBT

)
=

δkl~
2ωkmk

cos[ωk(t− t′)] coth

(
~ωk

2kBT

)
,

here, we have used that 〈{rk, pl}〉 = 0. It follows that

1

2
〈{f(t), f(t′)}〉 =

~
2

∑
k

mkω
3
k cos[ωk(t− t′)] coth

(
~ωk

2kBT

)
.

The generalization to multiple dimensions reads

1

2
〈{fα(t), fβ(t′)}〉 = δαβ

~
2

∑
k

mkω
3
k cos[ωk(t− t′)] coth

(
~ωk

2kBT

)
. (8.39)

Suppose that the distribution of masses and frequencies of the bath is
given by Eqs. (8.14) and (8.15), i.e. mk = 2η/(πk), and ωk = k, in this case
we obtain

1

2
〈{fα(t), fβ(t′)}〉 = δαβ

~η
π

∑
k

k2 cos[k(t− t′)] coth

(
~k

2kBT

)
= δαβ

~η
π

∫ ∞
0

k cos[k(t− t′)] coth

(
~k

2kBT

)
dk

= ηkBT
d

dt
coth

(
πkBT (t− t′)

~

)
.

(8.40)

Strictly speaking, the integral∫ ∞
0

k cos[k(t− t′)] coth

(
~k

2kBT

)
dk,

diverges, one can, however, make sense of this expression by declaring it to
be the Fourier cosine transform of

k coth

(
~k

2kBT

)
.
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In the remainder of this section we will show that under the assump-
tion that the distribution of masses and frequencies of the bath is given by
Eqs. (8.14) and (8.15), we obtain

〈R2(t)〉 =
nkBT

η
t,

for large times t. Using Eq. (8.36) one sees that

〈R2(t)〉 =

〈(
R(0) +

1

η
P(0)(1− e−

η
M
t) +

1

η

∫ t

0

(
1− e−

η
M

(t−t′)
)

f(t′)dt′
)2〉

.

(8.41)
We shall treat, one by one, the terms that one obtains when expanding the
square in this expression. Let us suppose that

〈R(0)〉 = 0, and 〈P(0)〉 = 0.

Furthermore, we define

σ2
R := 〈R2(0)〉, and σ2

P := 〈P2(0)〉. (8.42)

We assume that at t = 0 the operators R(t) and P(t) do not act on the part
of the Hilbert space belonging to the bath particles, this implies that

〈R(0) · f(t)〉 = 0, and 〈P(0) · f(t)〉 = 0, (8.43)

for all times t > 0. We now compute

1

η2

〈(∫ t

0

(
1− e−

η
M

(t−t′)
)

f(t′)dt′
)2〉

=
1

2η2

∫ t

0

∫ t

0

(
1− e−

η
M

(t−s)
)(

1− e−
η
M

(t−s′)
) n∑
α=1

〈{fα(s), fα(s′)}〉dsds′

=
nkBT

η

∫ t

0

∫ t

0

(
1− e−

η
M

(t−s)
)(

1− e−
η
M

(t−s′)
) d

ds
coth

(
πkBT (s− s′)

~

)
dsds′.

This expression is difficult to handle analytically, however, we are interested
in the behaviour of this expression only for large times t � M/η, so we
approximate (

1− e−
η
M

(t−s)
)
≈ 1.

In this case we obtain

1

η2

〈(∫ t

0

(
1− e−

η
M

(t−t′)
)

f(t′)dt′
)2〉

=
nkBT

η

∫ t

0
coth

(
πkBT (t− s′)

~

)
ds′.
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This expression diverges, to handle this, we include a regulator ε > 0, and
instead compute

nkBT

η

∫ t−ε

0
coth

(
πkBT (t− s′)

~

)
ds′

=
n~
πη

[
log sinh

(
πkBTt

~

)
+ log csch

(
πkBTε

~

)]
.

For large times t we may use the approximation

log sinh

(
πkBTt

~

)
= log

[
1

2
exp

(
πkBTt

~

)
− 1

2
exp

(
−πkBTt

~

)]
≈ log

[
1

2
exp

(
πkBTt

~

)]
=
πkBT

~
t− log[2].

We thus conclude that

1

η2

〈(∫ t

0

(
1− e−

η
M

(t−t′)
)

f(t′)dt′
)2〉

=
nkBT

η
t+ lim

ε↓0
C(ε), (8.44)

where C(ε) is given by

C(ε) =
n~
πη

log

[
1

2
csch

(
πkBTε

~

)]
.

Note that limε↓0C(ε) diverges. It is, however, a constant with respect to t,
so we will discard it in what follows. Using Eqs. (8.40), (8.41), (8.42) and
(8.43) we conclude that, for t�M/η, we have

〈R2(t)〉 ≈ σ2
R +

σ2
P

η2
+

1

η
(R(0) ·P(0) + P(0) ·R(0)) +

nkBT

η
t

≈ nkBT

η
t,

which is the same as the classical result (??), up to a factor of two.
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Chapter 9

Quantum Brownian motion
in a Landau level

In this Chapter we combine the lessons learned from Chapters 7 and 8,
specifically, we will consider the independent oscillator model from section
8.2 in the strong magnetic field limit as described in section 7.4.

9.1 Obtaining the operator Langevin equations

We start from the independent oscillator Lagrangian, Eq. (8.4), which we
repeat here

L =
1

2
MṘ2 +

∑
i

1

2
miṙ

2
i −

∑
i

1

2
miω

2
i (ri −R)2 ,

where the notation is as in section 8.2. We assume that the Brownian particle
has charge −e < 0 and the bath particles carry no charge. We furthermore
assume that the Brownian particle and the bath oscillators are constrained
to move in the xy-plane and we apply a homogeneous magnetic field in the
z-direction. We obtain the Lagrangian

L =
1

2
MṘ2 − eA · Ṙ− V (R) +

∑
i

1

2
miṙ

2
i −

∑
i

1

2
miω

2
i (ri −R)2 , (9.1)

where we have also included an external potential V (R) that works on the
Brownian particle. We now take the strong magnetic field limit and per-
form canonical quantization as described in section 7.4. Let us summarize
the assumptions and results of this procedure. We assume that the Compton
length corresponding to the Brownian particle is far greater than the mag-
netic length corresponding to the Brownian particle. The, now quantum-
mechanical, system is described by the Hamiltonian

H = V (R) +
∑
i

p2
i

2mi
+
∑
i

1

2
miω

2
i (ri −R)2 , (9.2)
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where pi is the canonical momentum vector corresponding to the i-th parti-
cle, with components denoted by pi = (pxi ,p

y
i ). Furthermore, the following

commutation relations hold,

[Rx,Ry] = il2B, [rαi ,p
β
j ] = δijδ

αβi~, (9.3)

and all other commutators vanish. Because we are working in two spatial
dimensions, it is at this point convenient to change our notation somewhat.
We shall henceforth write

X := Rx, Y := Ry,

xi := rxi , yi := ryi ,

pxi := pxi , pyi := pyi .

Eqs. (9.2) and (9.3) thus read

H = V (X,Y )+
∑
i

[
(pxi )2

2mi
+

1

2
mω2

i (xi −X)2

]
+
∑
i

[
(pyi )

2

2mi
+

1

2
mω2

i (yi − Y )2

]
,

(9.4)
and

[X,Y ] = il2B, [xi, p
x
j ] = δiji~, [yi, p

y
j ] = δiji~.

We will work in the Heisenberg picture, like in section 8.4, the operators will
depend on time and the states will be time-independent. The equations of
motion for the bath read

ẍi + ω2
i xi = ω2

iX,

ÿi + ω2
i yi = ω2

i Y.
(9.5)

These equations are solved by

xi = xhi (t) +X(t)− cos(ωit)X(0)−
∫ t

0
cos[ωi(t− s)]Ẋ(s)ds,

yi = yhi (t) + Y (t)− cos(ωit)Y (0)−
∫ t

0
cos[ωi(t− s)]Ẏ (s)ds,

(9.6)

where

xhi (t) = xi cos(ωit) + pxi
sin(ωit)

miωi
, (9.7)

and similarly for yhi (t). See section 8.4, in particular the argument leading
to Eq. (8.29) for more details. The equations of motion for the Brownian
particle read

Ẋ =
l2B
~
∂V

∂Y
+
l2B
~
∑
i

miω
2
i (yi − Y ),

Ẏ = −
l2B
~
∂V

∂X
−
l2B
~
∑
i

miω
2
i (xi −X).

(9.8)
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Before we continue with the derivation of the operator Langevin equa-
tions, we introduce some convenient, and physically meaningful, notation.
First,

Uα(t) :=
l2B
~
∑
j

mjω
2
j

[
rαj cos(ωjt) + pαj

sin(ωjt)

mjωj

]
(9.9)

defines a random velocity field. The statistics of this random field is de-
termined solely by the state of the oscillator bath. Second, we define the
memory kernel

µ(t) :=
l2B
~
∑
i

miω
2
i cos[ωit]. (9.10)

Substitution of Eq. (9.6) into Eq. (9.8) yields

Ẋ(t)−
l2B
~
∂V

∂Y
(t) = Uy(t)− µ(t)Y (0)−

∫ t

0
µ(t− s)Ẏ (s)ds,

Ẏ (t) +
l2B
~
∂V

∂X
(t) = −Ux(t) + µ(t)X(0) +

∫ t

0
µ(t− s)Ẋ(s)ds.

(9.11)

These equations are the operator Langevin equations corresponding to a
charged particle in a very strong magnetic field.

9.2 Solving the operator Langevin equations

9.2.1 Thermal statistics of the velocity field

In the previous Chapter we have seen that the inequal time symmetric corre-
lator of the random force played an essential role in determining quantities of
physical interest. Thus, we devote this section to the inequal time symmet-
ric correlator of the random velocity U , which now plays the role of random
force. We assume that the bath oscillators are canonically distributed, at
temperature T , with respect to the Hamiltonian

HB =
∑
j

[
p2
j

2mj
+

1

2
mjω

2
j r

2
j

]
, (9.12)

that is, the assumptions made in section 8.3 hold. Under these assump-
tions, one may show, using Eqs. (8.20), (8.21) and (8.22) that the following
equation holds

1

2
〈Uα(t)Uβ(t′)+Uβ(t′)Uα(t)〉 = δαβ

l4B
2~
∑
i

miω
3
i cos[ωi(t−t′)] coth

(
~ωi

2kBT

)
.

(9.13)
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9.2.2 Memory-free system in the topological limit

In this section, we will consider the case that the system has no memory,
that is, it is Markovian, that is, µ(t) = 2γδ(t), here γ is some dimensionless
constant. We will furthermore set V = 0. We will show that in the limit of
large time t we have

〈X2(t)〉 =
γl2BkBT

~(1 + γ2)
t. (9.14)

Setting V = 0 in Eq. (9.11) yields

Ẋ(t) = Uy(t)− µ(t)Y (0)−
∫ t

0
µ(t− s)Ẏ (s)ds, (9.15)

Ẏ (t) = −Ux(t) + µ(t)X(0) +

∫ t

0
µ(t− s)Ẋ(s)ds. (9.16)

Next, we assume that

µ(t− s) =
l2B
~
∑
k

mkω
2
k cos[ωk(t− s)] = 2γδ(t− s). (9.17)

This is essentially the assumption that the system has no memory, or that it
is Markovian. A particular distribution of frequencies and masses that has
this property is

ωk = k, mk =
2

k

γ~
πl2B

.

Comparison with Eqs. (8.14) and (8.15) gives us that γ is related to the
usual friction constant η by

γ = η
l2B
~
, (9.18)

this is just a consequence of the fact that we have absorbed the factor l2B/~
into our definition of µ(t) for notational convenience. We now obtain

Ẋ(t) + γẎ (t) = Uy(t)− δ(t)γ2Y (0), (9.19)

Ẏ (t)− γẊ(t) = −Ux(t) + δ(t)γ2X(0). (9.20)

To solve these equations, we first cast them in matrix form and solve for
Ẋ and Ẏ . This yields(

1 γ
−γ 1

)(
Ẋ(t)

Ẏ (t)

)
=

(
Uy(t)− δ(t)γ2Y (0)
−Ux(t) + δ(t)γ2X(0)

)
, (9.21)

We obtain the solution of Eq. (9.21):(
Ẋ

Ẏ

)
=

(
γ(Ux(t)−δ(t)γ2X(0))+Uy(t)−δ(t)γ2Y (0)

γ2+1
−Ux(t)+δ(t)γ2X(0)+γ(Uy(t)−δ(t)γ2Y (0))

γ2+1

)
. (9.22)
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To find X and Y as a function of t, we just need to integrate this result and
add constants, OX and OY ,

X(t) =
1

γ2 + 1

∫ t

0
[Uy(s) + γUx(s)] ds− γ2

Y (0) + γX(0)

γ2 + 1
+OX (9.23)

Y (t) =
1

γ2 + 1

∫ t

0
[−Ux(s) + γUy(s)] ds+ γ2

X(0)− γY (0)

γ2 + 1
+OY . (9.24)

Requiring consistency of Eqs. (9.23) and (9.24) at t = 0 yields

X(t) =
1

γ2 + 1

∫ t

0
[Uy(s) + γUx(s)] ds+X(0) (9.25)

Y (t) =
1

γ2 + 1

∫ t

0
[−Ux(s) + γUy(s)] ds+ Y (0). (9.26)

Let us recall that the operators Ux(t) and Uy(t) only work on the part
of the Hilbert space belonging to the bath. This is the reason we did not
absorb the terms cos(ωxj t)X(0) and cos(ωyj t)Y (0) into the homogeneous part
of the solutions, since we would have had to redefine Ux and Uy to absorb
these terms as well, and this would have invalidated the statement above.
Next, we assume that the initial state is factorizable and that the operators
X(0) and Y (0) only work on the part of the Hilbert space belonging to
the Brownian particle. This implies that 〈X(0)Uα(t)〉 = 〈X(0)〉〈Uα(t)〉 and
〈Y (0)Uα(t)〉 = 〈Y (0)〉〈Uα(t)〉, for all t. Let us set 〈X(0)〉 = 〈Y (0)〉 = 0
and assume that the bath is canonically distributed with respect to the free
Hamiltonian HB, as in section 9.2.1. It then follows that 〈Ux(t)〉 = 〈Uy(t)〉 =
0, and thus that 〈Ux(t)Uy(t

′)〉 = 0.
We now compute the symmetrized expectation value

〈X(t)X(t′) +X(t′)X(t)〉
2

(9.27)

=
1

2(γ2 + 1)2

∫ t

0
ds

∫ t′

0
ds′
〈
Uy(s)Uy(s

′) + Uy(s
′)Uy(s) + γ2Ux(s)Ux(s′) + γ2Ux(s′)Ux(s)

〉
+ 〈X(0)2〉.

We recall Eq. (9.13), which, with our current choice of distribution for the
oscillator masses and frequencies, reads

1

2
〈Uα(t)Uβ(t′) + Uβ(t′)Uα(t)〉 = δαβγ

l2B
π

∑
k

k2 cos[k(t− t′)] coth

(
~k

2kBT

)
= δαβγ

l2B
π

∫ ∞
0

k cos[k(t− t′)] coth

(
~k

2kBT

)
dω

= δαβγkBT
l2B
~

d

dt
coth

(
πkBT (t− t′)

~

)
.

(9.28)
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Strictly speaking, the integral∫ ∞
0

k cos[k(t− t′)] coth

(
~k

2kBT

)
dω (9.29)

diverges. However, one can make sense of this expression nonetheless, by
declaring it to be the Fourier cosine transform of the function k coth(~k/(2kBT )),
in which case one obtains the result above. Hence Eq. (9.27) becomes

1

2
〈X(t)X(t′)+X(t′)X(t)〉 =

γkBT l
2
B

~(1 + γ2)

∫ t′

0
ds′ coth

(
πkBT (t− s′)

~

)
+〈X(0)2〉.

(9.30)
We perform the integral in Eq. (9.30) for 0 < t′ < t, and obtain

1

2
〈X(t)X(t′) +X(t′)X(t)〉

=
γl2B

π(1 + γ2)
log

[
csch

(
π(t− t′)TkB

~

)
sinh

(
πtTkB

~

)]
+ 〈X(0)2〉.

We would like to compute 〈X2(t)〉 to compare this result to the well-
known result 〈x2(t)〉 ∝ t for Brownian motion. However, our current ex-
pression is not valid for t = t′. Hence, we set t′ = t − ε, where ε is some
small positive time. In this case, we obtain

1

2
〈X(t)X(t− ε) +X(t− ε)X(t)〉

= C(ε) +
γl2B

π(1 + γ2)
log

[
sinh

(
πtTkB

~

)]
+ 〈X(0)2〉, (9.31)

where C(ε) does not depend on t and is given by

C(ε) =
γl2B

π(1 + γ2)
log

[
csch

(
πεTkB

~

)]
. (9.32)

For large times t, we obtain

log

[
sinh

(
πtTkB

~

)]
= log

[
1

2
exp

(
πtTkB

~

)
+

1

2
exp

(
−πtTkB

~

)]
≈ log

[
1

2
exp

(
πtTkB

~

)]
=
πTkB
~

t− log[2],

which leads to

1

2
〈X(t)X(t− ε) +X(t− ε)X(t)〉 =

γl2BTkB
~(1 + γ2)

t+ 〈X(0)2〉+ C∨(ε), (9.33)
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where

C∨(ε) =
γ

π(1 + γ2)
log

[
1

2
csch

(
πεTkB

~

)]
. (9.34)

Discarding the infinite term limε↓0C
∨(ε), we see that for large times t we

have

〈X2(t)〉 =
γl2BTkB
~(1 + γ2)

t.

Using Eq. (9.18), relating γ and η we obtain

〈X2(t)〉 =
kBT

η + ~2

l4B

1
η

t.

In the case that the friction constant η is large, that is, η � ~/l2B, we
obtain

〈X2(t)〉 ≈ kBT

η
t, (9.35)

This result is the same as the classical result without a magnetic field
Eq. (??), which is the same as the quantum mechanical result without a
magnetic field.

If the friction constant is small, that is, 0 < η � ~/l2B, we see that

〈X2(t)〉 ≈
l4BkBTη

~2
t =

kBTη

(eB)2
t, (9.36)

which is in stark contrast with the classical result. We see that if η is small,
the magnetic field suppresses fluctuations.
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Chapter 10

Hall conductance as
topological invariant

In this Chapter we give an alternative derivation of the expression for the
Hall conductance of a single Landau level, Eq (7.28). Our main reference
for this Chapter is Ref. [Kohm85].

10.1 Generalized Bloch waves

We consider a setup as described in section 7.1, but we include an exter-
nal potential, V (x, y), such that the time-independent Schrödinger equation
becomes

Hψ(x, y) =

[
1

2m
(p + eA)2 + V (x, y)

]
ψ(x, y) = Eψ(x, y). (10.1)

The potential is assumed to be (a, b)-periodic, that is,

V (x, y) = V (x+ a, y) = V (x, y + b).

The system is invariant under a translation by a along the x-direction or by
b along the y-direction, the Hamiltonian, however, is not. If the Hamiltonian
was invariant under these translations we could apply Bloch’s theorem. We
will state and prove Bloch’s theorem in this section, however, let us first
give some useful definitions. We will specialize our definitions to the case of
a system in two dimensions that is translation invariant under translations
by a = ax̂ and b = bŷ. The Bravais lattice is the lattice, in R2, of vectors
of the form R = nxa + nyb for nx, ny ∈ Z.

Definition 10.1.1 (Translation Operator). Let R be a Bravais lattice vec-
tor, then the translation operator along R is the operator TR, that, given a
smooth function f(r) shifts it by R. That is,

TRf(r) = f(r + R). (10.2)
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Each translation operator has an explicit form

TR = exp

[
i

~
R · p

]
, (10.3)

where p is the canonical momentum. One may verify that this explicit form
indeed works on smooth functions, by a Taylor expansion and an application
of the binomial theorem.

In the sequel all translation operators will be assumed to be translation
operators along some Bravais lattice vector.

Theorem 10.1.2 (Bloch’s theorem). Let H be a Hamiltonian invariant
under all translations by Bravais lattice vectors, that is, H commutes with
TR for all Bravais lattice vectors R. Suppose furthermore that there is a
basis for the Hilbert space of the problem that diagonalizes the Hamiltonian.
Then, there is a complete basis, ψn,(r), for the Hilbert space of the problem
with the following properties.

• Each basis vector is an eigenvector of the Hamiltonian,

Hψn = Enψn.

• Each basis vector ψn(r) can be decomposed as

ψn(r) = eik·run,k(r),

where uk(r) is (a, b)-periodic and k ∈ R2.

The theorem above is really a statement about eigenvectors of translation
operators, formalized in the following lemma.

Lemma 10.1.3 (Diagonalizing translation operators). If ψ(r) is a simul-
taneous eigenvector of the translation operator TR for all Bravais lattice
vectors R, then ψ(r) may be written as

ψ(r) = eik·ruk(r),

where uk(r) is (a, b)-periodic and k ∈ R2.

Proof. From the explicit form of the translation operators, Eq. (10.3), we see
that each translation operator is unitary, thus any eigenvalue of a translation
operator is a complex number of modulus one. Now, suppose that ψ(r) is
a simultaneous eigenvector of all translation operators, thus, in particular
ψ(r) is an eigenvector of the translations along the basis vector a and b,
thus

ψ(r + a) = Taψ(r) = eikxψ(r),

ψ(r + b) = Tbψ(r) = eikyψ(r),
(10.4)
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for some real numbers kx and ky. We define

uk(r) := e−ik·rψ(r) = e−ikxx−ikyyψ(r)

It follows that, for any Bravais lattice vector R, we have

uk(r + R) = TRuk(r)

= TR(e−ik·rψ(r))

= e−ik·r−ik·Reik·Rψ(r)

= uk(r).

Bloch’s theorem is now a straightforward consequence.

Proof of Bloch’s theorem. If the Hamiltonian commutes with all translation
operators, then there exists a basis, ψn, for the Hilbert space of the problem
that diagonalizes both the Hamiltonian and all translation operators. Now,
apply Lemma 10.1.3 to this basis.

Bloch’s theorem is a powerful tool in the study of systems with trans-
lational symmetry. However, the vector potential A does not have transla-
tional symmetry, even though the magnetic field it produces is homogeneous.
Hence, we are not quite in the position to use Bloch’s theorem, since the
Hamiltonian in Eq. (10.1), given by

H =
1

2m
(p + eA)2 + V (x, y),

does not commute with the translation operators. Let us instead consider
the so-called magnetic translation operators. The magnetic translation op-
erators are most generally defined in terms of the guiding center coordinates,
so let us recall their definition from 7.1.3 here,

Cx = rx −
py
eB
− Ay

B
, (10.5)

Cy = ry +
px
eB

+
Ax

B
. (10.6)

We collect these operators in the vector C := (Cx, Cy). Let us furthermore
recall the definition of the magnetic length from section 7.1.2

l2B =
~
eB

.

Definition 10.1.4 (Magnetic Translation Operators). Let R be a Bravais
lattice vector, then the magnetic translation operator along R, denoted T̂R,
is defined by the formula

T̂R = exp

[
i

~
eR · (B×C)

]
.
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One may show that in our case, that is, when B = (0, 0, B), it follows
straightforwardly from the definition that

T̂R = exp

[
i

l2B
(RxCy −RyCx)

]
. (10.7)

It is clear that the magnetic translation operators commute with the kinetic
part of the Hamiltonian, since the operators Cx and Cy do, and in fact they
also commute with the periodic potential, as we will show below. It is most
easily seen in the symmetric gauge,

A = (B× r)/2 = B(−y, x, 0)/2, (10.8)

which we will use in the rest of this section. This choice makes the mag-
netic translation operators especially simple. We can rewrite the magnetic
translation operators using the expressions for the guiding center operators,
Eq. (10.5), the expression for the magnetic translation operator, Eq. (10.7),
and the explicit epxressions for the symmetric gauge, Eq. (10.8),

T̂R = exp

[
i

~
(Rxpx + Rypy) +

1

2

i

l2B
(Rxry −Ryrx)

]
.

It follows from the identity

[Rxpx + Rypy,Ryrx −Rxry] = 0

that

T̂R = exp

[
i

~
R · p

]
exp

[
1

2

i

l2B
(Rxry −Ryrx)

]
= TR exp

[
1

2

i

l2B
(Rxry −Ryrx)

]
= exp

[
1

2

i

l2B
(Rxry −Ryrx)

]
TR.

We have assumed that TR commutes with V , i.e. V is periodic, and it is
clear that

exp

[
1

2

i

l2B
(Rxry −Ryrx)

]
commutes with V , hence T̂R commutes with the Hamiltonian, Eq. (10.1).
Let us give explicit expressions for the magnetic translation operators along
the Bravais lattice basis vectors a and b,

T̂a = Ta exp

[
i

2l2B
ary

]
,

T̂b = Tb exp

[
− i

2l2B
brx

]
.

(10.9)
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We would like find a basis for the Hilbert space of our problem that simulta-
neously diagonalizes the Hamiltonian and all magnetic translation operators.
If such a basis is to exist, the magnetic translation operators must commute
amongst themselves. Hence, we use the defining property of the transla-
tion operator, Eq. (10.2), and the expression for the magnetic translation
operators, Eq. (10.9), to compute

T̂aT̂b = Ta exp

[
i

2l2B
ary

]
Tb exp

[
− i

2l2B
brx

]
= Tb exp

[
− i

2l2B
b(rx + a)

]
Ta exp

[
i

2l2B
a(ry − b)

]
= exp

[
− i

l2B
ab

]
T̂bT̂a.

(10.10)

We conclude that if ab/l2B is an integer multiple of 2π, then the magnetic
translation operators will commute. From now on, we will work under the
assumption that this is the case. In fact, in the original paper by Kohmoto
[Kohm85], the much weaker assumption that ab/l2B is a rational multiple of
2π was used. Not much changes, we just take the more restrictive assump-
tion for notational simplicity. One can also deal with the case that ab/l2B
is arbitrary, but this requires significantly more sophisticated tools, most
notably noncommutative geometry as developed by Alain Connes, see for
example Ref. [BES94].

Remark 10.1.5 (Spectra of the magnetic translation operators). The ex-
pression (10.10) implies that the two one-parameter families T̂ta and T̂tb,
(t ∈ R) fulfill the requirements of von Neumann’s uniqueness theorem, (see
for example theorem 2.1 in Ref. [Maas04]), hence their spectra are equal to
the unit circle, S1 ( C.

Theorem 10.1.6 (Generalized Bloch waves). Let a and b be basis vectors
for a Bravais lattice, such that the magnetic translation operators T̂a and
T̂b commute. Let H be a Hamiltonian that commutes with these magnetic
translation operators. Suppose furthermore that there exists a basis for the
Hilbert space of the problem that diagonalizes H. Then, there exists a com-
plete basis, ψn(r), for the Hilbert space of the problem, with the following
properties.

• Each basis vector is an eigenvector of the Hamiltonian,

Hψn = Enψn.

• For each basis vector, ψn(r), there exist a vector k ∈ R2, and a function
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un,k : R2 → C, with the property that

un,k(x+ a, y) = e
− i

2l2
B

ay
un,k(x, y) (10.11)

un,k(x, y + b) = e
i

2l2
B

bx
un,k(x, y) (10.12)

such that
ψ(r) = eik·ruk(r).

Analogously to the situation in the regular Bloch’s theorem, the state-
ment above is really a statement about the eigenvectors of magnetic trans-
lation operators.

Lemma 10.1.7 (Diagonalizing magnetic translation operators). If ψ(r) is a
simultaneous eigenvector of the translation operator TR for all Bravais lattice
vectors R, then there exist a vector k ∈ R2, and a function uk : R2 → C,
with the property that

uk(x+ a, y) = e
− i

2l2
B

ay
uk(x, y),

uk(x, y + b) = e
i

2l2
B

bx
uk(x, y)

such that
ψ(r) = eik·ruk(r).

Proof. Assume that the vector ψ is a simultaneous eigenvector for T̂a and
for T̂b with eigenvectors eikxa and eikyb, respectively. That is,

T̂aψ(x, y) = eikxaψ(x, y),

T̂bψ(x, y) = eikybψ(x, y).

Because the operators T̂a and T̂b are unitary, the numbers kx and ky are
real. We assemble the numbers kx and ky into the vector k = (kx, ky) and
define

uk(x, y) = e−ik·rψ(x, y).

Using Eq. (10.9) we now see that

uk(x+ a, y) = Tauk(x, y)

= Tae
−ik·rψ(x, y)

= e−ik·r−ikxaTaψ(x, y)

= e−ik·r−ikxae
− i

2l2
B

ary
T̂aψ(x, y)

= e
− i

2l2
B

ay
e−ik·rψ(x, y)

= e
− i

2l2
B

ay
uk(x, y),

a similar computation for uk(x, y + b) completes the proof.
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Analogously to Bloch’s theorem, the generalized version is a direct result
of the lemma above.

Proof of Generalized Bloch waves. If the Hamiltonian commutes with all mag-
netic translation operators, then there exists a basis, ψn, for the Hilbert
space of the problem that diagonalizes both the Hamiltonian and all trans-
lation operators. Now apply Lemma 10.1.7.

Note that remark 10.1.5 implies that for each k ∈ R2 there exists a
function uk which is a Bloch wave in the sense of theorem 10.1.6.

10.2 Hall conductance

We continue with our study of the Hamiltonian in Eq. (10.1). We recall that
we have shown that it commutes with the magnetic translation operators, T̂a
and T̂b as given in Eq. (10.9), and that these operators commute amongst
each other. We are thus in the position to apply the generalized Bloch
theorem, 10.1.6. We obtain a complete basis, ψn, for the Hilbert space of
our problem, L2(R2), where each ψn is an eigenvector of H with eigenvalue
En. Furthermore, for each n there exist a vector k ∈ R2 and a vector
un,k ∈ L2(R2), with the property that

un,k(x+ a, y) = e
− i

2l2
B

ay
un,k(x, y),

un,k(x, y + b) = e
i

2l2
B

bx
un,k(x, y),

such that
ψn(r)(x, y) = eik·run,k(r).

Using Eq. (10.1), one may show that[
1

2m
(−i~∇+ ~k + eA)2 + V (x, y)

]
un,k(x, y) = Enun,k(x, y),

where ∇ is the gradient.
Let us now define the magnetic Brillouin zone

I2 = {k ∈ R2 : 0 6 kx 6 2π/a, 0 6 ky 6 2π/b}.

The vectors c := (2π/a, 0) and d := (0, 2π/b) are the basis vectors for the
reciprocal lattice for the Bravais lattice, that is, they obey

a · c = 2π, a · d = 0,

b · c = 0, b · d = 2π.
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One may show, using linear response theory, that the Hall conductance
of a completely filled Landau level, σn,xy, is given by

σn,xy = −e
2

~
i

(2π)2

∫
I2

dk

∫
dr

(
∂ūn,k
∂ky

∂un,k
∂kx

−
∂ūn,k
∂kx

∂un,k
∂ky

)
, (10.13)

for a derivation of this result we refer to Ref. [Kohm85]. In what follows, the
symbol ∇k denotes the gradient with respect to k, that is ∇k = (∂kx , ∂ky).
We now define the vector field, (not to be confused with the vector potential
A),

Â(k) =

∫
dr ūk∇kuk = 〈uk|∇k|uk〉, (10.14)

in terms of which, the Hall conductance can be written as

σn,xy = −e
2

~
1

(2π)2

∫
I2

dk
[
∇k × Â(k)

]
z
, (10.15)

where the subscript z tells us that we take the z-component. At this point
we would like to identify opposite edges of the square I2 to obtain a torus
T2. However, the function Â : I2 → C need not descend to the torus, that
is, we might have, for example

Â(0, ky) 6= Â(2π/a, ky),

for some 0 6 ky 6 2π/b. It turns out that we may view Â(k) as the
components of a differential one-form on a certain complex line bundle over
the torus. In the sequel we will explicitly construct this complex line bundle
over the torus. First we require the following result on the Bloch wave
functions un,k.

Lemma 10.2.1. For each n there exist functions θn,x, θn,y : R2 → R, such
that for all k ∈ R2 the following relations hold

un,k+c(r) = eiθn,x(k)un,k(r),

un,k+d(r) = eiθn,y(k)un,k(r).

An explanation can be found in Ref. [DZ85].
This result allows us to construct a complex line bundle over the torus

in such a way that we may view the maps

R2 → C,k 7→ un,k(r),

as sections of this complex line bundle. Let us first construct an open cover
of I2 ( R2. Consider the the following subdivision of I2 into four rectangles

V1 := {k ∈ I2|kx 6 π/a, ky 6 π/b},
V2 := {k ∈ I2|kx 6 π/a, π/b 6 ky},
V3 := {k ∈ I2|π/a 6 kx, ky 6 π/b},
V4 := {k ∈ I2|π/a 6 kx, π/b 6 ky}.
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V2 V4

V1 V3

U2 U4

U1 U3

Figure 10.1: We divide the rectangle into four sets and then slightly grow
each of these sets to obtain an open cover of the rectangle that descends to
the torus.

For each α = 1, 2, 3, 4 let Uα be an open set containing Vα. See Fig. 10.1 for
a picture of the sets Vα and Uα.

The collection Uα forms an atlas for the torus T2 = R2/Z2. That is, for
each Uα the map projection map q : R2 → T2 restricts to a map that is a
diffeomorphism onto its image U ′α := q(Uα),

q
∣∣
Uα

: Uα
'→ U ′α ( T2.

Let us assume that all zeroes of un,k(r) are located outside of the overlaps
q−1(U ′α∩U ′β) for all α, β = 1, 2, 3, 4. If α 6= β, then for each point k ∈ U ′α∩U ′β
there are two distinct points1, kα ∈ Uα and kβ ∈ Uβ, such that q(kα) =
q(kβ) = x. For each α = 1, 2, 3, 4 we now define the map φα : U ′α → R by

eiφα(k) =
ukα(r)

|ukα(r)|
,

this map might not be defined on all of U ′α, but by the assumption on the
zeroes of un,k(r) it is certainly defined on the overlaps, and this will turn
out to be sufficient. For each pair α, β = 1, 2, 3, 4 we now define the map

gαβ : U ′α ∩ U ′β → U(1),

k 7→ ei(φα(k)−φβ(k)).
(10.16)

1We write kα instead of kα to avoid confusion with the components of k denoted by
kx and ky, we will use this notation in the sequel. Also note that we break with our
convention, in the rest of this section, no summation is implied over repeated indices.

109



Chapter 10. Hall conductance as topological invariant

In the sequel we will write φαβ = φα − φβ. For all α, β, γ = 1, 2, 3, 4 the
maps gαβ obey the conditions gαα = 1 and gαβgβγ = gαγ . This allows us
to construct a complex line bundle over the torus T2 as in definition 1.1.1,
by taking the vector space V = C and the natural representation by left
multiplication ρ : U(1) → GL(C). We denote this complex line bundle by
π : E → T2. By lemma 10.2.1 it follows that for all pairs α, β = 1, 2, 3, 4,
for all k ∈ U ′α ∩ U ′β we have

un,kα(r) = gαβ(k)un,kβ (r),

hence we may identify un,k(r) as a section of E. We now recall the definition

(10.14) of the vector field Â(k)

Â(k) = 〈uk|∇k|uk〉, (k ∈ R2),

in terms of which we define the one-form, (not to be confused with the vector
potential A),

A(k) = Â(k) · dk, (k ∈ R2).

We claim that the one-form A may be viewed as a connection one-form on E.
It suffices to show that the one-form A exhibits the correct ‘transformation
behaviour’. Let α, β = 1, 2, 3, 4 be arbitrary, let k ∈ U ′α∩U ′β, then we use the
fact that 〈ukβ |ukβ 〉 = 1 and the definition of gαβ, (Eq. (10.16)) to compute

A(kα) = 〈ukα |∇k|ukα〉 · dk

= 〈ukβ |gβα(k)∇k [gαβ(k)|ukβ 〉] · dk

= A(kβ) + 〈ukβ |gβα(k)(∇kgαβ(k))|ukβ 〉〉 · dk

= A(kβ) + idφαβ(k).

On each chart U ′α we define a connection d − A(kα). One may check that
indeed for all α, β = 1, 2 and all k ∈ U ′α ∩ U ′β we have

(d−A(kα))ukα = gαβ(k)(d−A(kβ))ukβ

The curvature F of the connection D is given by

F = dA =
∂

∂kµ
Âν(k) dkµ ∧ dkν ,

where µ and ν are summed over {x, y}. One may show that the curvature
does descend to the torus, hence∫

I2

F =

∫
T2

F.
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We now compute ∫
I2

F =

∫
I2

∂

∂kµ
Âν(k) dkµ ∧ dkν

=

∫
I2

dk
[
∇k × Â(k)

]
z
,

hence using Eq. (10.15), it follows that

σn,xy = −e2~
1

(2π)2

∫
I2

dk
[
∇k × Â(k)

]
z

= −e2~
1

(2π)2

∫
T2

F.

The number
1

2π

∫
T2

F

is nothing but the first Chern class, hence an integer by proposition 4.1.2.
We conclude that

σn,xy = − e2

2π~
N,

where N is an integer.
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Chapter 11

Outlook

In Chapter 9 we considered a composite system, consisting of a topological
part coupled to a harmonic oscillator part. The topological part being the
charged particle in a strong magnetic field. If one considers this quantum
mechanical theory to be a (0+1)-dimensional quantum field theory, then an
interesting problem would be to consider an (n+ 1)-dimensional analog. In
particular, one could take an n-dimensional topological quantum field theory
and couple this to a quantum field theory. There are many choices avail-
able for both the topological quantum field theory and the non-topological
quantum field theory. A natural choice for the topological quantum field
theory would be Chern-Simons theory, because it is understood very well,
and because it appears to be a natural analog of a particle in a strong
magnetic field, see Ref [DJT90]. A natural way to couple this theory to a
non-topological quantum field theory might be to follow a procedure similar
to Stueckelberg coupling, see for example Ref. [KN05]. Another interest-
ing approach might be to couple a topological quantum field theory to a
conformal quantum field theory, because just like topological quantum field
theories, conformal quantum field theories can be used to construct functors
from something like the cobordism category to something like the category
of vector spaces, see Ref. [Segal88]. It would be interesting to see of anything
of this categorical description remains.
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