
Master thesis

Interactions in graphene in the
quantum Hall regime

Marianne Knoester

December 11, 2015

Utrecht University

Institute for Theoretical Physics

Supervisor:
Prof. Dr. C. de Morais Smith (UU)

Co-supervisors:
Dr. C.F.J. Flipse (TU/e)
Dr. V. Juričić (UU)



Abstract

Recent experiments with hydrogenated graphene reveal fractal-like structures in the elec-
tronic density. They are reminiscent of fingering patterns in electronic droplets in the
quantum Hall regime. Pseudo-magnetic fields in graphene due to chemical or mechanical
strain might generate these kinds of patterns. In order to obtain a better understanding
of these kinds of systems, we study two kinds of interactions in graphene, under the
influence of a magnetic field. First of all, we consider the Coulomb interaction between
electrons in the fractional quantum Hall regime, which can give rise to various kinds of
electron-solid and -liquid phases. We construct the phase diagram in various Landau
levels. Secondly, we study the interaction between electrons in the integer quantum Hall
regime and an additional non-uniform magnetic field, which can drive the fractal growth
in electronic droplets. We set up the groundwork for the application of this theory to the
experiment.
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Chapter 1

Introduction

During the last decade, graphene has attracted much attention of both theoretical and
experimental scientists. The material, which consists of one layer of carbon atoms, has
some unique properties with potential for widespread applications. Its lightweight, thin
and flexible structure, high conductivity and huge mechanical strength make graphene
an interesting material for the fabrication of, for instance, flexible display screens and
electronic circuits. Besides the technological advancements it may provide, graphene
turned out to be a very exciting material for theoretical physicists as well. Since the
electrons in graphene have a linear dispersion, they behave as two-dimensional massless
Dirac particles. Therefore, properties of relativistic particles, which are usually very
difficult to investigate, are now accessible in table-top experiments. In this way, graphene
can provide a connection between condensed-matter and high-energy physics.

Recent experiments at TU/e have revealed remarkable structures in hydrogenated
graphene. After exposing graphene to a source of hydrogen atoms, which chemisorb to
its surface, the sample is observed using atomic-force microscopy (AFM). The patterns
that arise, as shown in Fig. 1.1a, are islands that seem to have a fractal-like structure.
What are these islands actually consisting of? What is the underlying mechanism that
drives the formation of these patterns? The answers to these questions would provide a
great deal of insight in this curious phenomenon and they form the inspiration on which
part of this thesis is based.

(a) (b)

Figure 1.1: (a) AFM measurement of hydrogenated graphene done by C.F.J. Flipse et
al. (b) Viscous fingering in a Hele-Shaw cell (figure from Ref. [1]).

The formation of fractals is in fact ubiquitous in nature. Trees, ferns, coast lines and
the nervous system are a few of the numerous natural phenomena that posses fractal struc-
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tures. Less apparent examples of fractals in physics include the Hofstadter butterfly [2]
and self-similarity in the fractional quantum Hall effect [3]. Interestingly, there exists an
example of fractal behavior in a two-dimensional classical system, called the Hele-Shaw
cell, that is reminiscent of the patterns that are observed in the experiment. Fig. 1.1b
shows its set-up: between two glass plates, a viscous fluid is injected into another fluid
with a higher viscosity. The injected fluid starts to form fingers due to inhomogeneities
in the pressure. What makes this similarity with the experiment even more striking is
that there is actually a quantum-mechanical analogy of this viscous fingering experiment,
provided by Agam et al. [4]. An electronic droplet confined to a two-dimensional geom-
etry in perpendicular magnetic field is exposed to a nonuniform magnetic field outside
the droplet. This field plays the role of the inhomogeneous pressure and will generate the
same kind of fingering patterns in the electronic droplet as those that were visible in the
classical Hele-Shaw experiment. This makes us wonder if this mechanism can be driving
the fingering patterns in hydrogenated graphene. One important ingredient in the fractal
growth of electronic droplet is the presence of a magnetic field, which quantizes the ki-
netic energy of the electrons and leads to the integer quantum Hall effect. Although there
is no external magnetic field present in the experiment, the deformations in the graphene
sample that arise due to a combination of the hydrogen atoms and the substrate, may
actually lead to a pseudo-magnetic field. Using this field, we can then nevertheless try to
investigate whether the theory of Agam et al. can provide an explanation for the fractal
structures that are observed in the hydrogenated graphene experiment.

The experiment forms the inspiration for the thesis, which focuses on graphene in
a magnetic field. We will examine two different kinds of interactions that can arise
in such systems. First of all, we will investigate the effect of interactions between the
electrons, since these interactions are in principle always present. They turn out to be
the driving mechanism of the fractional quantum Hall effect. Even more so, by varying
the electron density or the magnetic field strength, we gain access to a variety of exotic
electronic phases, such as Wigner crystals and electron-bubble phases. We will provide
a theoretical description of these phases and analyze the phase diagram in graphene.
This might not be directly applicable to the experiment, but it leads to results that are
interesting on its own.

Secondly, we will explore the theory of viscous fingering in electronic liquids, which
arises due to the interaction between electrons and a nonuniform magnetic field. We
will subsequently set up a model that serves as a tool to apply this highly complex
theory to actual experiments. We will do some example calculations which are necessary
to derive the effective potential that describes the droplet’s shape. In further research,
these methods could be used as a starting point for Monte Carlo simulations.

The structure of the thesis is as follows. We start with a brief description of the
experiment and the AFM measurements in Chapter 2. We proceed by explaining the
physics of two-dimensional electrons in a perpendicular magnetic field in Chapter 3.
Then, in Chapter 4 we will discuss the theory of graphene, including the quantum Hall
effect in graphene and the formation of pseudo-magnetic fields due to strain. Next, we
will consider electronic interactions in two-dimensional electron systems in Chapter 5
and explain about the various electron phases. Then, in Chapter 7, the theory of viscous
fingering in electronic droplets in a quantum Hall system is addressed. In the subsequent
chapters, we will apply those two theories to graphene, starting with electron phases in
graphene in Chapter 6, followed by the hydrodynamical model in Chapter 8. Finally, we
conclude and discuss the possibilities for further research in Chapter 9.
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Chapter 2

The experiment

To make graphene nowadays, more advanced methods than the deceivingly simple ‘scotch
tape’ method are used. At TU/e, graphene is epitaxially grown on silicon carbide (SiC) by
thermal decomposition of the substrate [5–7]. First of all, surface defects and impurities
of the SiC sample are removed by etching in an hydrogen atmosphere. Then, the SiC
sample is heated up to 1650◦C such that the silicon evaporates. Since the evaporation
temperature of carbon is higher than that of silicon, the carbon atoms will stay at the
surface. Some of the carbon atoms in this layer are covalently bonded to the silicon atoms
in the substrate. As a results, this layer will not have the same electronic properties as
graphene, hence it acts a buffer layer (see Fig. 2.1a). On top of that, another layer of
carbon atoms is grown which serves as the actual graphene sample (see Fig. 2.1b). Since
some of the silicon atoms in the top of the substrate are not bonded with the carbon
atoms, they are so-called dangling bonds.

Figure 2.1: Schematic picture of (a) the buffer layer on top of SiC substrate consisting
of carbon atoms, some of which are bonded to the substrate and (b) the monolayer of
graphene on top of the buffer layer. Figure from Ref. [6].

Although the aim is to make the actual graphene layer as pristine as possible, the
substrate inevitably has some effect on the graphene. Here, it are the dangling bonds
that influence its structure mostly. The buffer layer on top of the SiC substrate ‘feels’
the unsaturated bonds and as a results it deforms, that is, above the dangling bonds the
buffer layer forms a bump. Since the dangling bonds are arranged in a triangular lattice,
with a lattice spacing of about 2 nm, there is also a periodic deformation in the buffer
layer [8]. The actual graphene layer follows the morphology of the buffer layer, hence
it also possesses this triangular lattice of bumps, albeit with a smaller amplitude. In
Fig. 2.2a, a cross-section of the substrate with the two layer is shown. The deformation
in the buffer layer is clearly visible. The actual graphene layer looks flat, but upon careful
inspection, one can see a slight deformation above the point where the buffer layer is also
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(a) (b)

Figure 2.2: (a) Cross-section of buffer layer and actual graphene layer on top of the SiC
substrate. The bumping effect is the largest in the buffer layer, but it is still visible in
the top graphene layer. (b) Height of the graphene layer. Figures from Ref. [8].

deformed. In Fig. 2.2b the height of the graphene layer is shown. There we can see that
the bump has an amplitude of 0.04 nm.

Having fabricated a layer of graphene with this method, the sample is subsequently
exposed to a source of hydrogen atoms, which chemisorb to the graphene surface. The
hydrogen atom also deform the surface, just like the dangling bonds. When the hydro-
genation dose is low, the hydrogen atoms are probably more likely to sit on sites above
the dangling bonds. Thereby, they lift the bump in the graphene layer that was already
there due to the substrate. We expect in principle that the hydrogen atoms cover these
preferential sites first and upon further increasing the hydrogen dose they cover the sur-
face randomly. Furthermore, we expect the hydrogen atoms to stay fixed at their places
once they are bonded to the surface.

When the hydrogenated graphene sample is observed using AFM, some remarkable
patterns appear, as shown in Fig. 2.3. We can see islands with fractal-like structures.
The number of islands increases with increasing hydrogen dose. However, the islands
never seem to merge into each other. The line in Fig. 2.3a in probably due to some
defect, such as a crease in the graphene sheet. The origin of these structures is not fully
understood yet. As a first suggestion, we might consider the possibility that they are
simply the hydrogen atoms themselves that cluster under the influence of some underlying
mechanism. However, as the AFM measurements by Flipse et al. reveal, the height of
the hydrogenated sample is in the order of nanometers. It is quite unlikely that the mere
effect of bonding hydrogen atoms to graphene (which is already atomically thin) leads
to a sample that is nanometers thick. Compare this, for example, to the height of the
bumps due to the substrate; they have an amplitude of 0.04 nm. The hydrogen may
increase the amplitude of the bumps, but it is doubtful that it will increase two orders of
magnitude. As an alternative explanation, we can consider the possibility that the tip of
the AFM device was charged. Then, the force between the tip and the surface (which is
in fact what an AFM measures) can become very large if there is charge on the sample.
This suggests that the patterns in Fig. 2.3 are actually patterns in the charge density.
However, scanning tunneling microscopy (STM) measurements will have to be performed
in order to determine the details of the islands more precisely.

Regardless of the origin of these structures, there is a remarkable similarity between
these patters and fractal structures appearing in classical fluids. These patterns are, in
fact, reminiscent of fingering patterns that arise in Laplacian growth processes. Inter-
estingly, there is a description of such processes in electronic droplets [4]. They arise in
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(a) (b) (c)

Figure 2.3: AFM images (made by Flipse et al.) of hydrogenated graphene for a low (a),
medium (b) and high (c) hydrogen dose. Images are 700× 700 nm.

quantum Hall systems with an additional nonuniform magnetic field. In this experiment,
the pseudo-magnetic fields that arises due to strain in the sample might provide this
magnetic field. It is well-known that mechanical deformations in graphene can lead to
pseudo-magnetic fields. In this sample, there are deformations due to the substrate and
the hydrogen atoms, but these deformations are nevertheless not large enough to generate
pseudo-magnetic fields. It is then the chemical strain that the hydrogen atom imposes
on the carbon bonds that generates the pseudo-magnetic fields. However, we can model
the deformations plus the chemical strain by some effective deformation, which will lead
to a pseudo-magnetic field. Notice furthermore that this is a general model that applies
to mechanical deformations in graphene in general, which are strong enough to generate
pseudo-magnetic fields. Secondly, the principle of fingering in electronic droplets is irrel-
evant of the mechanism that generates the (pseudo-)magnetic fields, thus it is anyhow
instructive for the experiment to study them, and it is theoretically interesting on its
own. In Chapters 7 and 8, we will explain this mechanism in detail and investigate how
we possibly could apply this to this experimental set-up.
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Chapter 3

The quantum Hall effect

3.1 Introduction

In 1879, Edwin Hall discovered that a current through an electrical conductor in a per-
pendicular magnetic field not only produces a voltage in the direction of the current, but
also a voltage transverse to it (called the Hall voltage). This was called the Hall effect,
named after its discoverer. It can be explained classically by the Lorentz force which is
exerted on the electrons by the magnetic field. This force is perpendicular to the motion
of the electrons and will cause the electrons to pile up at one edge of the conductor,
creating a potential difference that can be measured transverse to the direction of the
current, as shown in Fig. 3.1. In Section 3.2, we will explain in detail the procedure to set
up the equations of motion for the electrons and to calculate the Hall resistance. It will
turn out that it is is linear in the magnetic field strength. This is a classical effect, that is
only valid for sufficiently high temperatures. At low temperatures and in high magnetic
fields, quantum mechanical effects start to play a dominant role and will change this
continuous, linear behavior. Klaus von Klitzing discovered in 1980 that in this quantum
mechanical regime the Hall resistance is quantized, taking the values

RH =
h

e2
1

ν
, (3.1)

where h/e2 is the resistance quantum and ν is called the filling factor, which takes integer
values. One of the most salient features of this integer quantum Hall effect (IQHE) is
that the system size is irrelevant. From the relation between resistance R and resistivity
ρ,

R = ρL(2−d),

where L is the length of a hypercube in d dimensions, we can see that in two dimensions,
the resistance and resistivity coincide and the resistance is indeed scale invariant [9]. This
means that one can measure the resistance of a sample to very high accuracy without
having to measure the dimensions of the sample. The so-called von Klitzing constant
RK = h/e2 has been determined up to an accuracy in the order of 10−10, and has been
adopted as a new standard for resistance [10].

In Fig. 3.2, the typical character of the quantum Hall effect is depicted. There are
plateaus in the transverse resistivity at the quantized values h/e2ν and the plateaus are
accompanied by a vanishing longitudinal resistivity. At the transition from one plateau
to the next one, there is a peak in the longitudinal resistivity. The explanation of the
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Figure 3.1: A two-dimensional electron gas in a perpendicular magnetic field shows the
classical Hall effect at high temperatures. The Hall resistance is measured transverse to
the direction of the applied current. Figure from Ref. [11].

quantum Hall effect is more involved than the classical analogue. It relies on quantization
of electronic orbitals into so-called Landau levels and the presence of impurities in the
sample. In Section 3.3, we will derive the Landau quantization, which will predict the
quantization of the resistivity. In Section 3.4, we will explain how the impurities cause
localization of electrons in the bulk, which explains this characteristic picture of plateaus
and peaks shown in Fig. 3.2.

Three years after the discovery of the IQHE, Tsui, Störmer and Gossard discovered
a Hall resistance quantization of ν = 1/3 [12]. Since then, a whole range of plateaus
at fractionally filled Landau levels has been discovered, as shown in Fig. 3.3 [11]. This
opened the door to an even more mysterious field of the fractional quantum Hall effect
(FQHE). Whereas the IQHE was easily understood in terms of the Landau quantization of
the kinetic energy of the electrons, the FQHE relies on strong electronic interactions [11].
Since it occurs when a Landau level is partially filled, the kinetic energy is constant and
plays no role. Instead, the interactions between the electrons become relevant. Since
we are dealing with strongly-correlated electrons, perturbation is useless to describe the
system. In 1983 Laughlin proposed a trial wave function to describe the FQHE for
ν = 1/p, where p is an odd integer, as an incompressible electron liquid [13]. Another
description for the values ν = p/(2sp± 1), where p and s are integers was given by Jain
in terms of composite fermions. For these values, the FQHE can be viewed as and IQHE
for quasi-particles consisting of a combination of electrons and flux quanta [14, 15]. The
fractional regime indeed exhibits a plethora of exotic phenomena, the description of which
is outside the scope of this thesis.

Since graphene is also a two-dimensional electron system, one may expect to find
quantum Hall effects in graphene. Indeed, in 2005, a quantization of the Hall resistance at
filling factors ν = 2(2n+1) was reported in graphene [16,17]. Due to the special structure
of graphene, the electrons do not behave like electrons in normal two-dimensional electron
gases (2DEGs), but rather like massless, relativistic particles. This leads to a change in
the Landau levels and hence in the quantization of the Hall resistivity. Furthermore, since
the typical spacing between the energy levels is much larger in graphene, the quantum
Hall effect can be observed at temperature as high as room temperature. In Section 4.4,
we will give a detailed description on the quantum Hall effect in graphene.

9



Figure 3.2: Plateaus in the transverse resistivity are visible for high magnetic fields. They
are accompanied by a vanishing longitudinal resistivity. At the transition between the
plateaus the longitudinal resistivity becomes finite. Figure from Ref. [18].

Figure 3.3: Characteristic behavior of the FQHE. The Hall resistivity shows plateaus at
numerous fractional values of the filling factor, accompanied by peaks in the longitudinal
resistivity. Figure from Ref. [11]
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Figure 3.4: Electron at position r makes a cyclotron motion around the guiding centered
at R in a perpendicular magnetic field B.

3.2 Classical Hall effect

For a particle with charge −e and mass m, moving in the xy-plane under the influence of
a magnetic field B = Bẑ, the equation of motion is ma = −ev×B. The two components
of this equation are given by

ẍ = −ωcẏ,
ÿ = ωcẋ, (3.2)

where we defined the cyclotron frequency ωc ≡ eB/m. It can easily be seen that the
solution to this set of equations is given by

x(t) = X + r sin(ωct+ φ),

y(t) = Y + r cos(ωct+ φ), (3.3)

where φ is some arbitrary phase and X and Y are the coordinates of the guiding center
R around which the particle moves in a circular motion, as shown in Fig. 3.4. For future
reference, we also define the cyclotron variable η = r−R, which described the cyclotron
motion.

Subsequently, we consider an additional, external electric field E = Exx̂ + Eyŷ. The
equation of motion is now ma = −eE − ev ×B, which corresponds to

v̇x =
−eEx
m
− ωcvy,

v̇y =
−eEy
m

+ ωcvx. (3.4)

Taking time derivatives on both sides and solving for v̇ is straightforward and yields

v̇x = C cos(ωct),

v̇y = C sin(ωct),

where C is some constant. Substituting this back into Eq. (3.4) and solving for vx and
vy leads to

vx =
C

ωc
sin(ωct) +

eEy
mωc

,

vy = −C
ωc

cos(ωct)−
eEx
mωc

.
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Hence, the velocity of the particles v = vc + vD consists of a cyclotron velocity that
accounts for the cyclotron motion of the particle, as illustrated in Eq. (3.3), and a constant
that describes the drift velocity due to the electric field. This drift velocity is called the
Hall drift and it is defined by

vD =
E ×B
B2

. (3.5)

To determine the resistivity and conductivity we look for static solutions to the equa-
tion of motion, i.e., dp/dt = 0. Furthermore, we add an impurity term −p/τ , which
describes the decrease in momentum due to the diffusion of electrons by impurities,
where τ is the relaxation time. Therefore, we solve

0 =
dp

dt
= −e

(
E +

1

m
p×B

)
− p
τ
.

This yields the two equations

eEx = −ωcpy −
px
τ
,

eEy = ωcpx −
py
τ
,

which may be rewritten as

σ0Ex = −enel
px
m
− (ωcτ)enel

py
m
,

σ0Ey = (ωcτ)enel
px
m
− enel

py
m
. (3.6)

Here, σ0 is the Drude conductivity given by σ0 = nele
2τ/m. The current density is related

to the momentum by j = −enelp/m, with nel denoting the electron density. With this
we can write Eq. (3.6) in matrix form as E = ρj. The resistivity ρ can then be obtained,
together with its inverse, the conductivity σ. They read

ρ =

(
1/σ0

B
enel

− B
enel

1/σ0

)
, σ =

(
σL −σH ,
σH σL

)
,

where

σL =
σ0

1 + ω2
cτ

2
, σH = ωcτ

σ0
1 + ω2

cτ
2
.

In the limit of vanishing impurities, i.e., τ → ∞, the resistivity and conductivity
reduce to

ρ =

(
0 B

enel

− B
enel

0

)
, σ =

(
0 − enel

B
,

enel

B
0

)
. (3.7)

Notice that because of the matrix form, we arrive at the somewhat peculiar situation
where the longitudinal components of both the resistivity and conductivity vanish in the
limit of pure samples. The transverse, or Hall resistance ρH = B/enel is linear in B. This
result holds in the classical regime at high temperatures.
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3.3 Landau quantization

In order to eventually understand the quantum Hall effect, we will first study the quantum
mechanical behavior of charged particles in a perpendicular magnetic field, in the absence
of electric fields. For convenience, we will ignore spin degeneracy here. First, we will set
up the Lagrangian for this situation, from which we can derive the Hamiltonian and
the canonical variables. Then, we will continue to quantize the theory and arrive at the
Hamiltonian operator and its eigenvalues.

In order to set up the Lagrangian for this problem, we first write the magnetic field
in terms of the vector potential, B = ∇×A, such that the force on the particle can be
written as:

F = −e(v ×∇×A)

= −e∇(v ·A)−A(∇ · v)

= −e∇(v ·A).

Since the potential energy U is related to the force by F = −∇U , we can derive that
U = e(v ·A). The Lagrangian is then given by

L(x, y, ẋ, ẏ) =
m

2
(ẋ2 + ẏ2)− e(Axẋ+ Ayẏ).

From this Lagrangian, we can derive the canonical momentum

px =
∂L

∂ẋ
= mẋ− eAx, py =

∂L

∂ẏ
= mẏ − eAy.

Obviously, this canonical momentum is not invariant under a gauge transformation A→
A+∇χ, but the mechanical momentum Π ≡ mṙ = p+ eA is. Therefore, we will write
the Hamiltonian in terms of the latter,

H(x, y, px, py) = ẋpx + ẏpy − L(x, y, ẋ, ẏ)

=
1

2m

(
(px + eAx)

2 + (py + eAy)
2
)

=
1

2m

(
Π2
x + Π2

y

)
. (3.8)

Notice that we can express the cyclotron variable, introduced in section 3.2, in terms of
this mechanical momentum as

ηx = −Πy

eB
, ηy =

Πx

eB
. (3.9)

In this Hamiltonian formalism, we can now continue to quantize the theory by im-
posing canonical commutation relations between the position and canonical momentum:

[x, px] = [y, py] = i~, [x, y] = [px, py] = [x, py] = [y, px] = 0.

To compute the commutator of Πx and Πy, we may use the formula

[A, f(B)] =
df

dB
[A,B], (3.10)
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which is valid for any two operators A and B for which [A, [A,B]] = [B, [A,B]] = 0. In
this case, we have [x, [x, px]] = [y, [y, py]] = 0, and we may write

[px, Ay(x, y)] =
∂Ay
∂x

[px, x] = −i~∂xAy,

[py, Ax(x, y)] =
∂Ax
∂y

[py, y] = −i~∂yAx, (3.11)

where we denoted ∂x ≡ ∂
∂x

and ∂y ≡ ∂
∂y

. Notice that the commutator of Ax(x, y) and

Ay(x, y) vanishes because x and y commute. Hence, we have

[Πx,Πy] = i~e(∂yAx − ∂xAy) = −i~e(∇×A)z = −i~eB.

We define the magnetic length as lB ≡
√
~/eB, which allows us to write

[Πx,Πy] = −i~
2

l2B
. (3.12)

Notice that since the x- and y-components of the mechanical momentum do not commute,
they can not be determined simultaneously. Hence, if you measure the velocity of a
particle in the x-direction, you can not determine the velocity in the y-direction at the
same time, due to the uncertainty principle.

If we consider the Hamiltonian given by Eq. (3.8) together with the commutator
in Eq. (3.12), we notice that the system is similar to the one-dimensional quantum-
mechanical harmonic oscillator. In that light, we will introduce ladder operators

a ≡ lB√
2~

(Πx − iΠy), a† ≡ lB√
2~

(Πx + iΠy), (3.13)

such that
[a, a†] = 1.

The Hamiltonian in Eq. (3.8) can then be rewritten as

H = ~ωc
(
a†a+

1

2

)
. (3.14)

From the well known properties of the harmonic oscillator, we can now readily conclude
that the energy levels of a charged particle in a magnetic field are given by

εn = ~ωc
(
n+

1

2

)
.

These energy levels are referred to as Landau levels.

3.3.1 Degeneracy of Landau levels

We have seen that Πx and Πy are conjugate variables, which gave rise to a harmonic os-
cillator with frequency ωc and energy εn, where n is a quantum number that describes the
levels of the system. Physically, it is clear that the mechanical momentum is conserved,
which means that Πx and Πy are constants of motion. If we compare the original Hamil-
tonian in Eq. (3.8) with the one in Eq. (3.14), we notice that the former is described
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by two sets of conjugate variables (x, px) and (y, py), whereas the latter only contains
one set of conjugate variables (a, a†). This would imply there exists another quantum
number, which we will denote by m, which we must include to describe the complete
system. Since the energy does not depend on m, this quantum number must represent
a degeneracy of the energy levels. Corresponding to m, there will be a set of conjugate
variables, independent of Πx and Πy, that are constants of motion. We will show that
X and Y , which are the guiding centers of the cyclotron motion in the classical picture,
satisfy these criteria and will constitute the degeneracy.

In order to show this, we first compute the commutation relation of X and Y . From
Eqs. (3.2) and (3.3) one can write

X = x− 1

ω2
c

ẍ = x− 1

mωc
(py + eAy), Y = y − 1

ω2
c

ÿ = y +
1

mωc
(px + eAx). (3.15)

The commutator is then given by

[X, Y ] =
1

mωc
([x, px]− [py, y])− e

m2ω2
c

([py, Ax] + [Ay, px])

=
2i~
mωc

− ei~
m2ω2

c

(∂xAy − ∂yAx)

= il2B, (3.16)

where we used Eq. (3.11) and the fact that (∂xAy − ∂yAx) = (∇ × A)z = B. Hence,
X and Y are conjugate variables. We can also compute the commutator of X with the
Hamiltonian:

[X,H] =
1

2m
[x− 1

mωc
Πy,Π

2
x + Π2

y]

=
1

2m

(
[x,Π2

x]−
1

mωc
[Πy,Π

2
x]

)
=

1

2m

(
2[x, px]−

2

mωc

i~2

l2B

)
= 0.

Using a similar derivation, we can show that [Y,H] = 0. Since X and Y do not explicitly
depend on time and have a vanishing commutator with the Hamiltonian, we can conclude
that they are in fact constants of motion. Therefore, there is indeed a second quantum
number m associated with the conjugate variables X and Y on which the system depends.
We can make this dependence explicit in the Hamiltonian by writing it as

H = ~ωc(a†a+
1

2
) + ~ω′(b†b+

1

2
),

with ω′ → 0. Here, b and b† are ladder operators defined by

b =
1√
2lB

(X + iY ), b† =
1√
2lB

(X − iY ), (3.17)

satisfying the usual commutation relation [b, b†] = 1. The eigenvalue of b†b is the quantum
number m. Then, a state in this system is described by

|n,m〉 =
(a†)n√
n!

(b†)m√
m!
|0, 0〉. (3.18)
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The physical interpretation of this degeneracy can be made clear if we consider the
uncertainty relation that follows from the commutator of X and Y. It indicates that
the components of the guiding center can not be determined simultaneously, i.e., each
guiding center is on average occupying some minimal surface ∆X∆Y = 2πl2B. In each
Landau level there are thus 1/2πl2B states per unit area available. If we rewrite this as
1/2πl2B = eB/2π~ = B/he = B/φ0, with φ0 the magnetic flux quantum, we can conclude
that the number of states per unit area, per Landau level, is equal to the number of flux
quanta nB = B/φ0. When we are dealing with electrons, we are dealing with fermions
that obey Pauli’s exclusion principle. Hence, in each state there can be only one electron
(we ignore spin degeneracy here). The many-body ground state is thus formed by filling
up the states, starting from the lowest-energy state. The electrons will preferably occupy
the lowest Landau level, but if that level is completely filled, the electrons must start
occupying the second lowest level, etc. If there are nel electrons in the system, we can
define the filling factor ν = nel/nB, which indicates the filling of the Landau levels.

3.3.2 Gauge invariance

As we discussed before, the mechanical momentum is gauge invariant. This means that
we have some freedom in choosing the gauge fieldA, without altering the physical results.
There are two choices for A that we will use, which will turn out to be convenient in
different situations. The first one is the Landau gauge, which is given by

AL = B(−y, 0, 0).

It is convenient for a rectangular system with translational invariance in the x-direction,
since this gauge matches that spatial symmetry. The other gauge we will use is the
symmetric gauge, given by

AS =
B

2
(−y, x, 0).

It is particularly convenient for systems with a circular geometry, since this gauge is
rotationally invariant.

3.3.3 Wave functions in real space representation

Now that we have established the Hamiltonian of the system, we can compute the ground-
state wave function, i.e., the wave function for the lowest Landau level. We will do this for
both the Landau and the symmetric gauge, in real space representation. We start off in
the symmetric gauge: AS = B

2
(−y, x, 0). In real space, a state is represented by the wave

function φn,m(x, y) = 〈x, y|n,m〉. To derive the ground state wave function φ0,m(x, y),
we use the property of the ground state that it must be destroyed by the annihilation
operator, i.e., a φ0,m(x, y) = 0. In the symmetric gauge, the annihilation operator defined
by Eq. (3.13) reduces to:

a =
lB√
2~

[
px −

eBy

2
− i
(
py +

eBx

2

)]
=
−ilB√

2~

[
eB

2
(x− iy) + ~ (∂x − i∂y)

]
= −i

√
2

(
1

4lB
z + lB∂z∗

)
,
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where we define the complex variable z ≡ x − iy, such that z∗ = x + iy, opposite
to conventional complex coordinates. The derivatives with respect to these complex
variables are then given by ∂z = (∂x + i∂y)/2 and ∂z∗ = (∂x − i∂y)/2. The real space
representation of b in the symmetric gauge can be determined similarly, such that we
obtain

a = −i
√

2

(
1

4lB
z + lB∂z∗

)
, a† = i

√
2

(
1

4lB
z∗ − lB∂z

)
,

b = −i
√

2

(
1

4lB
z∗ + lB∂z

)
, b† = i

√
2

(
1

4lB
z − lB∂z∗

)
. (3.19)

If we now apply the ground state condition a φ0,m(z, z∗) = 0, we find(
1

4lB
z + lB∂z∗

)
φ0,m(z, z∗) = 0,

which yields the differential equation

−1

4l2B
zφ0,m(z, z∗) = ∂z∗φ0,m(z, z∗).

The z∗ dependence of φ0,m(z, z∗) is fixed by this equation, which allows us to write the
solution for the ground-state wave function as

φ0,m(z, z∗) = f(z)e−|z|
2/4l2B , (3.20)

where f(z) is an analytic function, i.e., ∂z∗f(z) = 0. The choice of f(z) is related to the
degeneracy. In order to determine f(z), we can use Eq. (3.18), if we have an expression
for the vacuum state |0, 0〉. First, we determine the wave functions for which m = 0.
They can be calculated similarly as before, by requiring bφn,0(z, z

∗) = 0, which yields a
similar differential equation:(

1

4lB
z∗ + lB∂z

)
φn,0(z, z

∗) = 0.

For m = 0, the wave function is of the form

φn,0(z, z
∗) = g(z∗)e−|z|

2/4l2B , (3.21)

where g(z∗) is an anti-analytic function. The state φ0,0(z, z
∗) should obey both Eq. (3.20)

and Eq. (3.21), which means that it is given by the Gaussian e−|z|
2/4l2B multiplied by a

function that is both analytic and anti-analytic, which can only be a constant. That
constant is fixed by normalization as 1/

√
2πl2B. We can now use Eq. (3.18) to determine

the general form of the wave function in the lowest Landau level, including the degeneracy,

φ0,m(z, z∗) =
(b†)m√
m!

φ0,0(z, z
∗)

=
(
i
√

2
)m( 1

4lB
z − lB∂z∗

)m
1√

2πl2Bm!
e−|z|

2/4l2B

=
im√

2πl2Bm!

(
z√
2lB

)m
e−|z|

2/4l2B . (3.22)
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Hence, wave functions in the lowest Landau level are Gaussians multiplied by some power
of z.

Lastly, using this wave function, we can compute the expectation value of the guiding
center R, by writing it in operator form using Eq. (3.15) and computing explicitly 〈R〉 =
〈0,m|R|0,m〉. We obtain

〈R〉 = 0, 〈|R|〉 = lB
√

2m+ 1, (3.23)

for the n = 0 Landau level. The guiding centers are positioned on circles centered at the
origin, with radius lB

√
2m+ 1. Since the symmetric gauge is suited to describe systems

with a rotationally symmetric geometry, we consider a disk with an area A. We can then
compute the maximal value that the quantum number m can take, because the cyclotron
radius can not exceed the size of the dis. Hence mmax is such that the area corresponding
to the cyclotron radius is equal to the area of the disk A = πl2B(2mmax + 1). In the
thermodynamic limit, this leads to

mmax =
A

2πl2B
= NB,

where NB is the number of flux quanta. Similarly, we can derive that, for m = 0, the
average value of the cyclotron variable is

RC ≡ 〈|η|〉 = lB
√

2n+ 1.

This quantity is denoted by RC and is called the cyclotron radius.

Now that we have established the wave functions in the symmetric gauge, we will also
determine them in the Landau gauge AL = B(−y, 0, 0). It is appropriate to use this
gauge if the sample is translationally invariant in the x-direction. In that case, px = ~k
is a good quantum number and we may use the plane-wave ansatz for the wave function:
φn,k(x, y) = eikxχ(y). If we write the Hamiltonian given by Eq. (3.8) in the Landau gauge,
we find

HL =
1

2m

[
(~k − eBy)2 + p2y

]
=

p2y
2m

+
1

2
mω2

c (y − y0)2. (3.24)

But this is just the Hamiltonian of a one-dimensional harmonic oscillator centered around
the position y0 = l2Bk. The well known eigenstates of this Hamiltonian are given in terms
of the Hermite polynomials Hn(y),

χn,k(y) = Hn

(
y − y0
lB

)
e−(y−y0)

2/2l2B .

Note that this expression depends on k through y0.

3.4 Integer quantum Hall effect

In the previous section, we have seen that the energy of an electron in a magnetic field
is quantized in highly degenerate Landau levels, with a level spacing of ~ωc. Besides
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these Landau levels, there are two more ingredients needed to form the quantum Hall
effect. The first requirement is that the sample has boundaries, which is in practice of
course always the case. We will model the boundaries by a confinement potential, which
will lead to chiral edge states, as we will show. Each Landau level will contribute then
one quantum of conductance to the electronic transport, which is conducted via the edge
states. This will explain the quantized conductance.

The second ingredient needed to explain the plateaus in the resistivity (see Fig. 3.2)
are some impurities in the sample. This gives rise to an impurity potential that will
localize the electrons for partially filled Landau levels, such that they do not contribute
to electronic transport. When a Landau level is filled up, there is a phase transition to
the next plateau.

In the following, we will calculate the conductance of a completely filled Landau level
and show that it coincides with the classical values at integer filling.

3.4.1 Conductance of a completely filled Landau level

In order to calculate the conductivity and resistivity, we consider a rectangular sample
of width W and length L, such that L � W . Here, we assume that the system is
translationally invariant in the x-direction, thus we impose periodic boundary conditions
in the x-direction. In practice, there are usually boundaries in the sample, but as long
as the length of the sample is much larger than the width, we can neglect the effects of
the edges in the x-direction. Just as in the classical case, we send a current across the
length of the sample and we are then interested in calculating the induced transverse
Hall voltage. By determining the relation between the current and the Hall voltage,
we can determine the conductance. Due to the translational invariance, the electric
potential energy associated to the Hall current is independent of x, hence U = U(y).
Furthermore, we assume that the Landau level structure is preserved by imposing that
the energy between the Landau levels is much larger than the variation of the potential
over a cyclotron radius, which is proportional to lB, as we have calculated in Eq. (3.23).
Hence, we impose the condition

|∇U | � ~ωc
lB

. (3.25)

In Section 3.3.3, we have seen that in the absence of an electric field, the Hamiltonian
in the Landau gauge is that of a harmonic oscillator centered around y0 = kl2B, thus the
wave functions are peaked around this value. Since the variation in the electric potential
energy that is now added to the Hamiltonian is much smaller than the Landau level
spacing, we may assume that the wave functions are still roughly centered around y0.
Hence, we expand U(y) up to first order around y0,

U(y) = U(y0) +
∂U

∂y

∣∣∣∣∣
y0

(y − y0) +O
(
∂2U

∂y2

)
≈ U(y0) + eE(y0)(y − y0). (3.26)
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If we add this expansion to the Hamiltonian in the Landau gauge, given by Eq. (3.24),
we obtain the following expression by completing the square in y − y0:

H =
p2y
2m

+
1

2
mω2

c (y − y0)2 + eE(y0)(y − y0) + U(y0)

=
p2y
2m

+
1

2
mω2

c

(
y − y0 +

eE(y0)

mω2
c

)2

+ U(y0)−
e2E2(y0)

mω2
c

=
p2y
2m

+
1

2
mω2

c (y − yk)2 + U(y0)−
e2E2(y0)

mω2
c

, (3.27)

where we have defined

yk = y0 −
eE(y0)

mω2
c

.

According to the condition in Eq. (3.25), the second term is small in comparison to y0,
thus we may use Eq. (3.26) to write:

U(y0) = U(yk)− eE(y0)(yk − y0)

= U(yk) +
e2E2(y0)

mω2
c

.

Notice that e2E2/2mω2
c = mv2D/2 is the kinetic energy associated to the motion of the

guiding centers, which is much smaller than the total kinetic and potential energy, hence it
can be neglected. We now insert the expression for U(y0) in the Hamiltonian in Eq. (3.27)
and obtain

H =
p2y
2m

+
1

2
mω2

c (y − yk)2 + U(yk),

which is nothing but the Hamiltonian of a harmonic oscillator centered around yk, shifted
by a constant. The energy levels are then readily determined to be

εn,k = ~ωc
(
n+

1

2

)
+ U(yk). (3.28)

Hence, the electric field shifts energy levels by the value of the electric potential at the
harmonic oscillator’s position.

To calculate the conductance, we consider n completely filled Landau levels and cal-
culate the current along the x-direction,

Ixn = − e
L

∑
k

〈n, k|vx|n, k〉.

The expectation value of vx = ẋ can be calculated using the Heisenberg equations of
motion:

i~ẋ = [x,H] =
∂H

∂px
[x, px] = i

∂H

∂k
,

where we used px = ~k. Hence,

〈n, k|vx|n, k〉 =
1

~
∂εn,k
∂k
≈ 1

~
∆εn,k
∆k

=
L

2π~
(εn,k+1 − εn,k),

20



where the approximation is valid if ∆k = 2π/L is small. With this, we can now calculate
the current carried by the n-th Landau level,

Ixn = − e
L

∑
k

L

h
(εn,k+1 − εn,k)

= − e
h

(εn,kmax − εn,kmin
),

where h = 2π~. We can observe that all the intermediate energies cancel out and the
current only depends on the energies at the edges. The difference of those energies is
given by −eV , where V is the voltage that generates the current, such that

Ixn =
e2

h
V. (3.29)

Therefore, each Landau level contributes one quantum of conductance G0 = e2/h to the
current. The total Hall conductance of n filled Landau levels (which is thus a transverse
conductance) is then

GH = n
e2

h
.

It will turn out that this electronic transport is ballistic, meaning that the transmission
of electrons is perfect, i.e., no electrons are back-scattered. Since there is no current in
the y-direction, the longitudinal conductance is zero and we obtain for the conductance
and resistance matrices (which are each others inverses):

G =

(
0 GH

−GH 0

)
, R =

(
0 −RH

RH 0

)
,

where RH = h/e2n is the Hall resistance. In the classical picture we found for the
transverse resistivity:

ρH =
B

enel
=

B

enBν
=

h

e2
1

ν
,

where we used ν = nel/nB and nB = eB/h. This coincides exactly with the classical
picture (3.7) at integer filling, i.e., for ν = n integer.

3.4.2 Impurity and confinement potentials

So far, we have seen that two-dimensional electrons in a perpendicular magnetic field have
quantized energy levels and in the presence of an electric field, which is perpendicular
to the magnetic field, the system produces a Hall voltage that is transverse to the cur-
rent. We have shown that for completely filled Landau levels, the resistivity matches the
classical case. There are, however, two more ingredients needed to describe the quantum
Hall effect completely, including the behavior of the system at fractional filling of the
Landau levels. Firstly, the edges of the sample, which can be modeled by a confinement
potential, will give rise to edge states. These edge states carry the current we have cal-
culated in the previous section without dissipation. Furthermore, for the quantum Hall
effect to arise, there must be some impurity in the sample. The impurities give rise to
an impurity potential, which localizes the electrons, preventing them to contribute to the
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Figure 3.5: Potential lines of the impurity potential in the sample. In the semi-classical
picture, electrons follow the potential lines in a spiraling motion. At the edges, the
confinement potential dominates and forms straight potential lines. Figure from Ref. [11]

macroscopic, electric current. This eventually leads to the plateaus in the resistance, on
which we will elaborate in the next section.

Firstly, we will consider the impurity potential Vimp(r). We assume that it is slowly
varying in space, such that the characteristic length scale on which it varies is large
compared to the magnetic length lB. This will ensure the condition (3.25) to preserve the
Landau level structure is satisfied. An example of such a potential is shown in Fig. 3.5.
It consists of potential hills and valleys enclosed by equipotential lines, comparable to a
landscape with mountains and valleys. This potential breaks the translational invariance
in both directions, hence the degeneracy associated with the position of the guiding
centers is lifted. Therefore, the guiding centers are not constants of motion anymore,
since they do not commute with the Hamiltonian now and thus acquire dynamics:

i~Ẋ = [X,H] = [X,Uimp(X, Y )] =
∂Uimp

∂Y
[X, Y ] = il2B

∂Uimp

∂Y
,

i~Ẏ = [Y,H] = [Y, Uimp(X, Y )] =
∂Uimp

∂X
[Y,X] = −il2B

∂Uimp

∂X
,

where we used Eqs. (3.10) and (3.16). The potential energy Uimp = −eVimp is related to
the electric field by −eEimp = −∇Uimp, thus we can rewrite these equations as

Ṙ =
1

eB

(∇Uimp)×B
B

=
Eimp ×B

B2
= vD,

which shows that the velocity of the guiding centers is indeed the Hall drift velocity as
defined in Eq. (3.5). Since vD ⊥ ∇Vimp, this result agrees with the classical picture of
guiding centers moving along the equipotential lines of the potential. Notice that, if
the equipotential line along which an electron moves is closed, the electron is localized
and does not contribute to macroscopic electronic transport. This is a key feature of
the quantum Hall effect, which causes the formation of plateaus in the resistivity (see
Section 3.4.3), although the localization of the electrons is purely a classical effect.

Next, we consider a rectangular sample in the xy-plane and we assume for now that the
system is translationally invariant in the x-direction. The sample has boundaries in the
y-direction, which can be modeled by a confinement potential Vconf(y). This potential is
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Figure 3.6: Landau levels bend upwards near the edges due to the confinement potential
in the y-direction. Figure from Ref. [11]

strongly varying near the boundaries, thus we can not right away apply the semi-classical
arguments just mentioned. However, in order to be able to account for this potential in
the Hamiltonian, we can use the method of Section 3.4.1 and expand it around y0 = kl2B.
As indicated in Eq. (3.28), the energy levels are then shifted by the potential energy at
the guiding center’s position,

εn,k = ~ωc
(
n+

1

2

)
+ Uconf(y0).

Hence, the Landau levels follow the confinement potential and bend upwards near the
boundaries of the sample, as shown in Fig. 3.6. Notice that here, y0 corresponds to
the position of the guiding center and this results is thus in agreement with the semi-
classical picture we had before. Near the edges, the equipotential lines of the confinement
potential are stretched out along the edge. The electrons that occupy the states on
those lines can travel thus along the length of the sample and contribute to electronic
transport. These states are called edge states. From the definition of the Hall drift
velocity vD = 1

B2 (∇Vconf)×B, we can see that the electrons in the edge states move indeed
in the x-direction and electrons on the opposite edges move in opposite directions, where
the direction is imposed by the gradient of the confinement potential. Since electrons on
one edge move all in the same direction, they are chiral. Even if they would scatter to
another nearby edge state, they would keep moving in the same direction. The only way
to change the direction of the electrons is if they would be able to scatter to edge states
on the other side of the sample. However, the edges are usually too far apart for this
to happen, thus the conduction of electrons at the edges is ballistic. This leads to the
somewhat peculiar situation of a insulating bulk with perfectly conducting edge states.

3.4.3 Occurrence of plateaus in the resistivity

So far, we have derived the Hall resistance at integer filling of the Landau levels, but we
have not yet explained the plateaus in the resitivity that form around the integer filling
factors. In order to do this, we resort to the so-called percolation picture.

If we start off with n completely filled Landau levels, as shown in Fig. 3.7a, the
transverse resistance is RH = h/e2n and the longitudinal resistance is zero, as we have
seen before. Now, if we decrease the magnetic field slightly, as in Fig. 3.7b, the number
of states per Landau level decreases and some of the electrons are forced to populate the
next Landau level. When they do so, they prefer to occupy the states on the equipotential
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lines of the lowest valley of the potential. The next electron will then occupy the next
lowest potential line. We can picture this by imagining a ‘sea’ in a mountain landscape,
where the sea level operates as the filling factor. If the sea level is low, the water will sit
in the lowest valleys and will form small lakes. If the sea level is slightly higher, the water
in the lakes rises and when the sea level increases further, some lakes may merge into
one big lake. At some point, if the sea level increases even more, the water will stretch
out over the whole landscape. This is precisely what happens with the ‘sea’ of electrons
in the sample during the transition between the plateaus. As the filling is increased,
the electrons start occupying the valleys of the potential. Since they are localized, they
do not contribute to macroscopic, electronic transport and thus the resistance remains
the same as in a completely filled Landau level. If we increase the filling even further,
at some point, the puddles of electrons stretch across the sample and electrons in edge
states on one end of the sample can now dissipate to the other edge via the potential
lines (see Fig 3.7c). The point of percolation depends on the impurity potential and can
be different in each sample. At that point, there is a macroscopic current carried by the
edge states which are now extended across the sample. Hence, the resistance is no longer
quantized and follows the classical curve to the next plateau. Furthermore, since the
edge states are now close to each other (see Fig. 3.8), the electrons can tunnel from one
edge state to the other. This backscattering causes the longitudinal resistance to become
finite. The percolation transition happens at the peak in the density of states and if the
filling is then increased further, the same reasoning applies to holes instead of particles.
Hence, the puddles of electrons will then reduce to localized states again and eventually
we end up with n+ 1 edge states and a resistance that is quantized as h/e2(n+ 1).

To summarize the conclusions from this chapter, we have seen that the confinement
potential leads to chiral edge states, in which the electrons move without dissipation.
The impurity potential localizes some of the electrons at filling factors near an integer
value. At the transition to the next Landau level, the electrons in the bulk are spread
out across the sample and dissipation can occur in the edge states. Hence, there is a peak
in the longitudinal resistance at the transition where the electrons are flooding into the
next Landau level and the Hall resistance shifts towards the next plateau. This explains
the integer quantum Hall effect.

3.5 Fractional quantum Hall effect

As mentioned already in the introduction, these plateaus in the resistivity do not only
occur at integer filling, but there are also numerous plateaus observed at fractional filling,
mainly in the lowest Landau levels. The first time that this fractional quantum Hall effect
(FQHE) was observed in 1982, the Hall resistance was found to be quantized for a filling
ν = 1/3 with a corresponding resistance RH = h/e2ν = 3h/e2 [12]. The discovery of
this phenomenon was quite a surprise, because in between two Landau levels, there is
no gap that can lead to the formation of these plateaus via the mechanism of the IQHE.
Remember that for the IQHE a Landau level is completely filled, such that an additional
electron is forced to occupy the next Landau level due to the Pauli principle. There
is a finite energy gap of ∆E = ~ωc between the Landau levels. The system is thus
said to be incompressible, since you cannot change the filling factor by only adding an
infinitesimal amount of energy. However, for a fractionally filled Landau level, there is
nothing that prevents an extra electron to occupy the same Landau level. In fact, at
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Figure 3.7: a) The first n Landau levels are completely filled. b) Upon decreasing the
magnetic field electrons start populating the next Landau level (upper image) and localize
in the valleys of the impurity potential (middle image). Since they do not contribute to
electronic transport, the Hall resistance remains quantized at h/e2n (lower image). c)
Upon increasing the magnetic field further, the edge states percolate and extend across
the sample (middle image). The Hall resistance drops, following the classical value,
while the longitudinal resistance peaks due to backscattering (lower image). Figure from
Ref. [11]

Figure 3.8: The solid arrows indicate the edge states which extend across the sample.
Since they are close together, electrons can tunnel from one edge state to the other, as
indicated by the dashed arrows. Figure from Ref. [9]

25



first sight there is nothing that makes a filling of, say, ν = 1/3 special, thus why would
the quantum Hall effect occur at this fraction? The answer lies in the fact that we have
ignored the interaction between the electrons until now. If a Landau level is fractionally
filled, all electrons in that level have the same kinetic energy. It is precisely therefore
that the Coulomb interaction between the electrons becomes relevant for describing the
low-energy electronic properties. Since we are then dealing with a system of strongly
correlated electrons, perturbation theory is useless, thus we must resort to other methods.

The first method that was proposed to deal with the FQHE came from Laughlin in
1983 [13]. He postulated a trial wave function for filling factors νL = 1/(2s + 1), with
s an integer, based on only a few symmetry arguments. This wave function represents
an incompressible quantum liquid. Incompressibility is required for the FQHE because
an essential ingredient for Hall quantization is the presence of a gap to the next excited
state. Being only an ‘educated guess’, this wave function miraculously turned out to be
very accurate and have a high overlap with exact wave functions calculated for small
systems [19]. Laughlin’s wave function was originally constructed for the lowest Landau
level, but it can easily be generalized to higher ones [20]. In Section 3.5.1, we will elaborate
on the arguments Laughlin used to construct this wave function and explain the so-called
plasma analogy, which relates Laughlin’s incompressible quantum liquid to a classical 2D
one-component plasma.

Another approach for the FQHE, which was designed by Jain short after Laughlin,
was the introduction of composite fermions. Whereas Laughlin’s wave function only holds
for filling factors ν̄ = 1/(2s + 1), Jain’s composite fermion (CF) description can explain
the FQHE for filling factors ν̄ = p/(2ps+ 1). In Section 3.5.2, we will shortly explain the
ideas of CF theory. For a more detailed description we refer to the literature [14,15,21].

3.5.1 Laughlin’s incompressible quantum liquid

In order to demonstrate Laughlin’s trial wave function, we first recall the one-particle
wave function in the lowest Landau level which we derived in Eq. (3.22) in the symmetric
gauge,

φ0,m(z, z∗) ∼ zme−|z|
2/4l2B .

Consider then an arbitrary two-particle wave function in the lowest Landau level. It must
also be analytic in both coordinates z1 and z2, such that it can be written as a linear
combination of the basis states, which are given up to some normalization constant by

ψ(2)(z1, z2) = (z1 + z2)
M(z1 − z2)me−(|z1|

2+|z2|2)/4,

where m, and M are integers, associated to the relative and total angular momentum
respectively. Furthermore, we have absorbed lB in z1 and z2. Because electrons are
fermions, the wave function must be anti-symmetric under exchange of particles. Since

ψ(2)(z2, z1) = (z1 + z2)
M(z2 − z1)me−(|z1|

2+|z2|2)/4

= (−1)mψ(2)(z1, z2),

this implies that m must be odd. The two-particle wave function can be generalized to
the full many-body wave function [11],

ψLm({zi}) =
∏
k<l

(zk − zl)me−
∑

j |zj |2/4, (3.30)
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where {zi} = (z1, z2, · · · , zN). Notice that there is no center-of-mass dependence, i.e.,
M = 0, because a non-zero value for M would break the continuous spatial symmetry.
This wave function in the lowest Landau level can be generalized to higher Landau levels
as well, e.g. by using Eq. (3.18).

In principle, Laughlin’s wave function is a variational wave function, with m its varia-
tional parameter. Minimizing the energy eigenvalue of ψLm with respect to m would yield
its correct value. However, m is in fact completely determined by the filling of the lowest
Landau level. To see this, consider the explicit dependence of the wave function on some
arbitrary coordinate, say, z1,

ψLm(z1) = f(z2, · · · , zN)(z1 − z2)m(z1 − z3)m · · · (z1 − zN)me−
∑

j |zj |2/4.

Since there are N − 1 factors of (z1 − zi) in the product, this implies that the highest
power with which z1 occurs is m(N − 1). In Section 3.3.3, we have seen that this highest
power is fixed by the number of flux quanta NB in a Landau level. Hence m(N−1) = NB,
and in the thermodynamic limit, we thus have a relation that fixes m at

m =
NB

N
=

1

ν
.

Since m must be odd, ν = 1/(2s + 1), for some positive integer s. At these filling fac-
tors, the wave function in the lowest Landau level is thus described by Eq. (3.30), with
m = 2s+ 1.

There is a striking analogy between Laughlin’s quantum liquid and a classical two-
dimensional one-component plasma, invented by Laughlin himself. Consider the square
of the absolute value of the wave function |ψLM |2. As known from quantum mechanics,
this represents a probability distribution. Laughlin identified this with a probability
distribution from classical mechanics: the Boltzmann factor. Hence,

e−βUcl =
∏
k<l

|zk − zl|2me−
∑

j |zj |2/2.

Here, β does not represent temperature (the quantum liquid is at T=0 anyway) like in
the classical case, but is rather some formal parameter which we will set equal to 2/q. If
we put m = q, we obtain

Ucl = −q2
∑
k<l

|zk − zl|+ q
∑
j

|zj|2/4.

This is exactly the energy of a two-dimensional one-component plasma of interacting par-
ticles with charge q in a neutralizing background. The first term in the above-mentioned
energy describes the interactions between the particles, while the interaction with the
background is given by the second term. Hence, we can translate well-known properties
of a classical system to this exotic and less explored quantum liquid.

3.5.2 Composite fermions

The description given by Laughlin, however accurate, was not sufficient to describe all the
fractional quantum Hall states. It only holds for filling factors of the form ν̄ = 1/(2s+1),
with s an integer. In 1989, Jain proposed a description that could explain all states
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ν = 1/3

ν∗ = 1

(a)

(b)

(c)

electron

flux quantum

composite fermion

1

Figure 3.9: (a) ν = 1/3. There is one electron for each three flux quanta. (b) Two flux
quanta, together with one electron form a composite fermion (CF). (c) There is now one
flux quantum for each CF. This corresponds to a CF filling ν∗ = 1.

with filling factor ν̄ = p/(2ps+ 1), with p and s integers, in terms of so-called composite
fermions [14]. Remember that the filling factor is the ratio between the electron density
and the magnetic flux density, such that for these filling factors there are 2ps + 1 flux
quanta for each p electrons. In the model proposed by Jain, each electron forms a
composite fermion (CF) together with 2s flux quanta. For each p CFs there is then
one residual flux quantum. With this we can define a CF filling factor ν̄∗ = nCF/n

∗
B.

This describes the filling of the effective CF Landau levels (also called Λ-levels). The gap
to the next Λ-level is then determined by the Coulomb energy. The CF filling factor can
be written in terms of the original flux density as n∗B = nB − 2snel. This then defines an
effective magnetic field B∗ that acts on the CFs,

B∗ = B − 2sφ0nel = B(1− 2sν̄) (3.31)

An electron filling of ν̄ = p/(2ps + 1) thus corresponds with a CF filling of ν̄∗ = p.
Therefore, the FQHE of electrons maps into an IQHE of CFs. Note that the electrons
do not actually bind to the flux quanta somehow, but it is just a model that maps
a complicated situation of a fractionally filled Landau level to the situation of some
effective Landau level completely filled with CFs such that we can apply the familiar
theory from the IQHE. To illustrate this construction, Fig. 3.9 shows an example for the
state ν = 1/3.
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Chapter 4

Graphene

Ever since its experimental realization, graphene has been of great interest to scientists
all over the world. The one-atom thick layer of carbon atoms arranged in a honeycomb
lattice was first isolated by Geim and Novoselov in 2004, for which they received the Nobel
Prize in 2010. It has enjoyed much attention outside the scientific world as well, due to
the fascinating physics it discloses and the myriad of potential applications. Examples of
such applications include flexible display screens, electronic circuits and energy storage.
Due to its huge mechanical strength, high electron mobility, and its lightweight structure,
graphene might also be used to manufacture new kinds of materials that could be used
for example in biomedical sciences [22].

Besides the technological applications it may be used for, graphene is also of great
interest to theoretical physicists. One of the peculiar features of graphene is that the
electrons behave as if they were massless, relativistic particles. They have the same
linear dispersion, which was first calculated by Wallace in 1947 [23]. This has led to
the emergence of a new field of physics, bridging the gap between condensed-matter and
high-energy physics. Those quantum relativistic phenomena are usually very difficult, if
not impossible, to observe in high-energy physics, but with graphene those phenomena
can now be mimicked and observed on table-top experiments. Furthermore, graphene
is a realization of a two-dimensional electron system, thus it can serve as an example
to study the relatively new field of low-dimensional materials, which exhibit all kinds of
exotic phenomena.

In this section, we will explain the lattice model of graphene, derive its famous linear
dispersion relation and elaborate on Landau quantization and the quantum Hall effect in
graphene.

4.1 Crystal structure of graphene

In this section, we will introduce the crystal structure of graphene and elaborate on how
the carbon atoms hybridize, forming graphene’s characteristic honeycomb lattice.

4.1.1 Hybridization

The carbon atom has six electrons. In the ground state, these electrons are in the
1s22s22p2 configuration. This means that two electrons are in the 1s orbital, which
is close to the nucleus and has the lowest energy. These electrons are tightly bound and
do therefore not influence the electronic properties significantly. The other four electrons
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(a)
(b)

Figure 4.1: (a) Electronic orbitals for the carbon atom in the ground state and the excited
state. (b) sp2 hybridization. Figure from Ref. [24]

are distributed over the 2s and 2p orbitals. Two electrons are in in the 2s orbital,
which is 4 eV lower in energy than the three equivalent 2px, 2py and 2pz orbitals. The
remaining two electrons are in two of those three 2p orbitals. In the presence of other
carbon atoms, it might be favorable to excite one of the electrons in the 2s orbital to the
third 2p orbital, as depicted in Fig. 4.1. In this excited state, the electrons can form a
quantum-mechanical superposition of a 2s state with n of these 2p state (for n = 1, 2, 3).
In graphene, the electrons hybridize into sp2 states, meaning that the 2s-electron form a
quantum-mechanical superposition with two of the three 2p states, say, px and py. The
hybridized orbitals are all in the xy-plane and are rotated over an angle of 120◦ with
respect to each other. Due to the strong overlap of these electrons with the ones of
neighboring carbon atoms, in what we call σ-bonds, these electrons are fixed at their
positions. The fourth electron is in the remaining pz-orbital, perpendicular to the plane.
This electron is responsible for the electronic properties in graphene.

4.1.2 The lattice

As we have seen, graphene consists of a single layer of carbon atoms arranged in a
honeycomb lattice. Since such a configuration can not be constructed with just two
primitive lattice vectors, the honeycomb lattice is not a Bravais lattice. We can, however,
view the honeycomb lattice as two interpenetrating triangular sublattices (see Fig. 4.2a).
Equivalently, this can be modeled as one triangular lattice with two atoms in the unit
cell: one of each sublattice. Since the triangular lattice is indeed a Bravais lattice, we
can construct the two primitive lattice vectors as

a1 =
√

3ax̂, a2 =

√
3a

2

(
x̂+
√

3ŷ
)
, (4.1)

where a = 0.142 nm is the distance between two neighboring carbon atoms. In Fig. 4.2a,
we also denoted the three vectors connecting the atoms of sublattice A to their nearest
neighbors on sublattice B. They are given by

δ1 =
a

2

(√
3x̂+ ŷ

)
, δ2 =

a

2

(
−
√

3x̂+ ŷ
)
, δ3 = −aŷ. (4.2)

Note that the two sublattices are completely equivalent and there is no physical distinction
between them. Given the two lattice vectors in Eq. (4.1), we can now determine the
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Figure 4.2: (a) The crystal structure of graphene is a honeycomb lattice consisting of
two equivalent triangular sublattices, with a1 and a2 its primitive lattice vectors. Figure
from Ref. [24]. (b) Reciprocal space with b1 and b2 the reciprocal lattice vectors. The
gray area is the first Brillouin zone. It has two inequivalent points K and K ′.

reciprocal lattice vectors straightforwardly,

b1 =
2π√
3a

(
x̂− 1√

3
ŷ

)
, b2 =

4π

3a
ŷ.

They span a triangular lattice in reciprocal space. We can then construct the first Bril-
louin zone, that is, the set of all points in reciprocal space that cannot be connected with
one another by reciprocal lattice vectors. It is pictured by the shaded hexagonal region
in Fig. 4.2b. Of the six corners of the Brillouin zone, there are two inequivalent points
K and K ′, and the other four are equivalent to either one of them. Note that K and K ′

are inequivalent because the vector that connects them is not a reciprocal lattice vector.
This inequivalence is a property of the triangular Bravais lattice and is irrespective of the
number of atoms in the unit cell. The K and K ′ points are given by

K =
4π

3
√

3a
x̂, K ′ = − 4π

3
√

3a
x̂. (4.3)

The other corners can then be constructed as K(′) +u1b1 +u2b2, for some integers u1 and
u2.

4.2 Dispersion in graphene

One of the remarkable features of graphene is that its electrons near the Fermi level
have a linear dispersion, just like free relativistic electrons. In this section, we will use
a tight-binding Hamiltonian to model the behavior of the electrons and subsequently we
will derive the dispersion relation. We will follow the derivation that Wallace performed
originally in 1947 [23].

Remember that three of the electrons in the carbon atom are hybridized in strong
σ-bonds and do not contribute to the electronic properties, since they have energies
far away from the Fermi level [25]. The only electrons that are relevant for the low
energy excitation are the pz-electrons, of which there is one on each lattice site. We can
model the wave functions of these electrons using a tight-binding model. Tight-binding
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models are useful in the description of electrons which are tightly bound to their atomic
core, where the local orbital wave function dominates. They behave almost like isolated
electrons. However, the wave functions can overlap due to the closeness of the electrons
on neighboring lattice sites. The tight-binding model includes a correction for this, in
order to accurately describe the behavior of the electrons. Naturally, the effects of these
overlaps are the greatest for electrons close to each other and therefore we only consider
the influence of nearest- and next-nearest-neighbors initially. Later on, we will even
ignore the next-nearest-neighbor interactions, since they will turn out to be about ten
times smaller than the nearest-neighbor interactions.

To start off, we can write the total wave function in terms of wave functions of the
two sublattices A and B [24],

ψk(r) = akψ
(A)
k + bkψ

(B)
k . (4.4)

The wave functions on both sublattice are then assumed to be a linear combination of the
atomic orbital wave functions of all the electrons on that particular sublattice. According
to Bloch’s theorem, the wave function of a particle in a periodic potential can be written
as eik·ruk(r), where uk(r) is some function which exhibits the same periodicity as the
potential [26]. Hence, we can write the wave functions on the individual sublattices as

ψ
(j)
k =

∑
Rl

eik·Rl φ(j)(r + δj −Rl),

where the sum runs over all Bravais lattice sites Rl and φ(j)(r + δj −Rl) is the atomic
orbital wave function in the vicinity of the atom at position Rl − δj at sublattice j. We
choose the Bravais lattice to coincide with the A-sublattice, such that δA = 0 and δB is
a vector that connects the two sublattices, which we choose to be equal to δ3, as defined
in Eq. (4.2).

In the tight-binding model, the Hamiltonian is assumed to take the form

H = Ha + ∆V, (4.5)

where Ha is the atomic orbital Hamiltonian [24]. It satisfies the eigenvalue equation

Ha φ(j)(r) = ε0 φ
(j)(r).

Here, ε0 is the atomic orbital energy which is the same for both sublattices, since all the
electrons are in pz-orbitals. Hence, ε0 just shifts the total energy by a constant and is
therefore not physically relevant and we will set it to zero for convenience. Furthermore,
in Eq. (4.5), ∆V is the potential that arises due to the presence of all other atoms. We
now wish to solve the Schrödinger equation

Hψk = ελk ψk,

where λ indicates the different solutions for the energy. Multiplying both sides of this
equation on the left with ψ∗k, integrating over space and substituting Eq. (4.4), we get,
in matrix notation,

(
a∗k b∗k

)
Hk
(
ak
bk

)
= ελk

(
a∗k b∗k

)
Sk
(
ak
bk

)
, (4.6)
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where the Hamiltonian matrix and overlap matrix are given by

Hk =

∫
dr

(
ψ
∗(A)
k Hψ

(A)
k ψ

∗(A)
k Hψ

(B)
k

ψ
∗(B)
k Hψ

(A)
k ψ

∗(B)
k Hψ

(B)
k

)
, Sk =

∫
dr

(
ψ
∗(A)
k ψ

(A)
k ψ

∗(A)
k ψ

(B)
k

ψ
∗(B)
k ψ

(A)
k ψ

∗(B)
k ψ

(B)
k

)
.

Notice that we are working with non-orthogonal wave functions, which means that the off-
diagonal terms in the overlap matrix do not necessarily vanish. By inserting the explicit
expressions for H and ψ

(j)
k , we can compute the matrix elements of the Hamiltonian

matrix as follows,

Hij
k =

∫
dr
∑
Rl

∑
Rm

e−ik·(Rl−Rm) φ(i)∗(r + δi −Rl)∆V φ
(j)(r + δj −Rm)

=

∫
dr
∑
Rl

∑
Rm

e−ik·(Rl−Rm) φ(i)∗(r + δi)∆V φ
(j)(r + δj +Rl −Rm)

= N

∫
dr
∑
Rl

eik·Rl φ(i)∗(r + δi)∆V φ
(j)(r + δj −Rl), (4.7)

where we made the substitution r → r +Rl in the second line, such that we were able
to evaluate one of the sums in the third line. Consider first the off-diagonal term HAB

k .
Remember that δA = 0 and δB = δ3. Since we only consider nearest- and next-nearest-
neighbor interactions, the summation over Rl is now restricted to those sites on the
B-sublattice which are the nearest neighbors of a site on the A-sublattice. Notice that
its next-nearest neighbors are located on the A-sublattice. The three nearest neighbors
of an electron on the A-sublattice are given by the translations δi defined in Eq. (4.2),
for i = 1, 2, 3. Hence, Rl runs over the three vectors δ3 − δ1 = −a2, δ3 − δ2 = −a3 and
0. Here, we have defined a3 ≡ −

√
3a
2

(
x̂−
√

3ŷ
)

= a2 − a1. Inserting these vectors into
the summation in Eq. (4.7), we obtain

HAB
k = Ntγk, (4.8)

where we defined the nearest-neighbor hopping amplitude as

t ≡
∫

dr φ(A)∗(r)∆V φ(B)(r + δ3),

and γk as

γk =
(
1 + e−ik·a2 + e−ik·a3

)
. (4.9)

Notice that the translation from lattice B to lattice A is −δi, for i = 1, 2, 3. Hence, if we
substitute this into the other off-diagonal term HBA

k , we just get extra minus signs in the
exponents, implying that HBA

k = (HAB
k )∗. For the diagonal terms HAA

k = HBB
k , we get

HAA
k = N

∫
dr
∑
Rl

eik·Rl φ(A)∗(r)∆V φ(A)(r −Rl)

Here, Rl runs over the six next-nearest neighbors, which are on the same sublattice.
From Fig. 4.2a, we can see that they are given by the translations ±ai for i = 1, 2, 3.
Hence, for the diagonal terms in the Hamiltonian matrix we obtain

HAA
k = 2Nt′

3∑
i=1

cos(k · ai)

= Nt′
(
|γk|2 − 3

)
, (4.10)
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where we defined the next-nearest-neighbor hopping amplitude as

t′ ≡
∫

dr φ(A)∗(r)∆V φ(A)(r + a1).

Notice that the hopping amplitude is the same for each nearest neighbor due to symmetry.
Similarly, we can determine the matrix elements of the overlap matrix. They are given
by

SABk = (SBAk )∗ = sγ∗k,

SAAk = SBBk = 1,

where the overlap between orbitals on different sublattices is

s ≡
∫

dr φ(A)∗(r)φ(B)(r + δ3).

The wave functions are assumed to be properly normalized, such that the overlap of wave
functions on the same site is equal to one.

From Eq. (4.6), we see that solving the Schrödinger equation boils down to solving(
Hk − ελkSk

)(ak
bk

)
= 0, or equivalently,

det
(
Hk − ελkSk

)
= 0.

Inserting the expressions for the matrix elements of Hk and Sk, this determinant becomes

det

[
t′ (|γk|2 − 3)− ελk (t− sελk)γ∗k

(t− sελk)γk t′ (|γk|2 − 3)− ελk

]
= 0

From this equation, the dispersion can be computed straightforwardly by writing out the
determinant and rearranging the terms, which eventually gives

ελk =
t′ (|γk|2 − 3) + λt|γk|

1 + λs|γk|
, λ = ±1.

Under the reasonable assumptions that the overlap is small, i.e., s � 1, and that the
nearest-neighbor interactions dominate over the next-nearest-neighbor interactions, i.e.,
t′ � t, we may expand this dispersion around small s. This leads to

ελk = t′|γk|2 + λt|γk|. (4.11)

A couple of remarks must be made. First of all, the expansion would actually yield
an additional constant −3t′, which we omit because it is just an irrelevant energy shift.
Furthermore, we have absorbed a term −st into t′, such that t′ − st → t′. We can
view the redefined t′ as some effective next-nearest-neighbor hopping term. Fitting this
dispersion to numerical data yields values for the hopping parameters t ' −3 eV and
t′ ' 0.1t [24]. This confirms that t′ is indeed considerably smaller than t. Notice that
these values do not tell us the true next-nearest-neighbor hopping, but only the effective
amplitude which includes a contribution from the nearest-neighbor overlap. In Fig. 4.3,
the dispersion in Eq. (4.11) is plotted for t′ = 0.1t. The solution for λ = −1 corresponds
to the π-band (or valence band) and the solution for λ = +1 corresponds to the π∗-band
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Figure 4.3: Dispersion in units of t as a function of ak, using t′ = 0.1t. Figure from
Ref. [24]

(or conduction band) [24]. Both bands contain the same number of states, and each
carbon atom contains one π-electron, which can have either spin up or down. Since the
ground state of a fermionic system is formed by filling states from the bottom up, the
valence band is completely filled, while the conduction band is completely empty (or,
equivalently, completely filled with holes). The Fermi level is thus situated at the points
where the bands touch each other. These six points are called Dirac points and they
coincide with the corners of the first Brillouin zone, i.e., the K and K ′ points. From
this plot, we can already see that the dispersion near these points is linear, which is
characteristic for Dirac electrons, hence the name Dirac points. In order to check that
these Dirac points indeed coincide with the K and K ′ points, we can set the dispersion
to zero and solve for k. This boils down to solving |γk| = 0. Since γk is complex, both
the imaginary and the real part of γk must be zero. This gives two equations for the
two unknowns kx and ky. The solution is thus a set of points, and if you work out the
equations you find that it is indeed the set of K and K ′ points that we derived earlier in
Eq. (4.3).

Looking at Eq. (4.11), we can make a few remarks about the symmetries in the system.
First of all, since ελk = ελ−k, the system has time reversal symmetry1. This implies that the
energy around the K-point is the same as around the K ′-point. This twofold degeneracy
at the Dirac points is also called the valley degeneracy. For low enough energies, this
degeneracy survives in the vicinity of the two valleys, as can be seen from Fig. 4.3.
Furthermore, there only is particle-hole symmetry, i.e., ελk = −ε−λk , when t′ vanishes. As
we have seen before, t′ is small in comparison to t. We can therefore neglect it altogether
without significantly affecting the important features of the dispersion.

4.2.1 Effective Hamiltonian

It turns out to be instructive to define an effective Hamiltonian which ignores the fact that
the wave functions are not orthogonal. The matrix elements of the effective Hamiltonian
are then given by the elements of Hk, as defined in Eqs. (4.8) and (4.10), divided by N ,

1Notice that time reversal t→ −t implies k→ −k
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such that

Heff
k =

(
t′|γk|2 tγ∗k
tγk t′|γk|2

)
. (4.12)

This Hamiltonian yields the dispersion relation in Eq. (4.11), thus it basically uses the
effective next-nearest-neighbor hopping amplitude, as we have discussed before. Notice
that in this Hamiltonian we omitted the constant −3t′, just like we did for the dispersion
in Eq. (4.11).

4.2.2 Tight-binding Hamiltonian in second quantization

In the previous section, we derived the tight-binding Hamiltonian for graphene in the
language of first quantization. However, it is often more common to use the formalism of
second quantization, which allows us to write the Hamiltonian in terms of creation and
annihilation operators that act on states in Fock space. We introduce the operators a†σ,i
and aσ,i, which respectively create or annihilate a state on the A-sublattice, on site i, with

spin σ. The operators b†σ,i and bσ,i are defined similarly for the B-sublattice. The hopping
between nearest neighbors (which are on different sublattices) and next-nearest neighbors
(which are on the same sublattice) can then be represented by the Hamiltonian [27]

H = t
∑
〈i,j〉,σ

(a†σ,ibσ,j + h.c.) + t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + h.c.), (4.13)

where the first term runs over all nearest neighbors and the second sums runs over
the next-nearest neighbors. In Appendix A.1, we show that this Hamiltonian is indeed
equivalent to the effective Hamiltonian in first quantization that we derived in Eq. (4.12).
The second quantized Hamiltonian will thus give rise to the same dispersion relation as
the effective Hamiltonian, which is given by Eq. (4.11).

4.2.3 Low energy excitations

In Fig. 4.3, we can see that the low energy excitations occur near the Dirac points ±K.
We may therefore expand the dispersion relation around these points in order to derive
the low energy excitation energies. We consider wave vectors k = ±K + q, where q
represents a small deviation from the Dirac points, such that |q| � |K| ∼ 1/a. We
consider the dispersion in Eq. (4.11), where we set t′ = 0 for convenience. This will not
alter the results much, since the next-nearest-neighbor interactions are much smaller than
the dominant nearest-neighbor interactions, as we have seen before. Then, we obtain the
dispersion ελk = λt|γk|. Expanding this around the Dirac points boils down to expanding
γk around these points. First, we remark that γk, as introduced in (4.9), is defined up
to some arbitrary phase that does not affect the dispersion, since it only depends on the
absolute value of γk. We may make the substitution γk → γke

ik·δ3 = eik·δ1 +eik·δ2 +eik·δ3 .
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Now we expand γ±K+q around |q| = 0,

γ±K+q =
3∑
i=1

ei(±K+q)·δi

'
3∑
i=1

e±iK·δi
(

1 + iq · δi −
1

2
(q · δi)2 + · · ·

)

=
3∑
i=1

e±iK·δi
(
iq · δi −

1

2
(q · δi)2 + · · ·

)
≡ γ(1)q + γ(2)q + · · · , (4.14)

where in the third line we used the fact that the energy is zero at the Dirac points, hence
γ±K = 0. By inserting the vectors K and δi, we can derive the expression for γq. The
Dirac points were given by ±K = ±4π/3

√
3ax̂, and the δi were defined in Eq. (4.2). We

thus obtain K · δ1 = 2π
3

, K · δ2 = −2π
3

and K · δ3 = 0. Substituting this into Eq. (4.14)
yields

γ(1)q = i
a

2

[
(
√

3qx + qy)e
±2πi/3 + (−

√
3qx + qy)e

∓2πi/3
]
− iaqy

= ∓3a

2
(qx ± iqy).

Inserting this into the effective Hamiltonian (4.12) (with t′ = 0), we obtain

Hq = ∓3a

2
t

(
0 qx ∓ iqy

qx ± iqy 0

)
= ξ~vF

(
0 qx − iξqy

qx + iξqy 0

)
,

where we defined the Fermi velocity vF = −3a
2~ t, which is positive, since t is negative.

The parameter ξ = ±1 is the valley index, which corresponds to the inequivalent Dirac
points ±K. The Hamiltonian acts on a spinor ψk,ξ that represents the wave function
in the corresponding valley ξ. We can write this Hamiltonian more compactly by using
Pauli matrices, such that

Hq = ξ~vF (qxσ
x + ξqyσ

y) .

This Hamiltonian already resembles a Dirac Hamiltonian and by flipping the indices of
the ξ = −1 tensor, such that

ψk,ξ=+1 =

(
ψAk,+
ψBk,+

)
, ψk,ξ=−1 =

(
ψBk,−
ψAk,−

)
, (4.15)

the Hamiltonian can be written as

Hq = ξ~vF (qxσ
x + qyσ

y) . (4.16)

Hence, the Hamiltonian describing the low energy excitations in graphene is a two-
dimensional massless Dirac Hamiltonian. It can be rewritten in four-spinor representation
as

Hq = ~vF τ z ⊗ q · σ,
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where σ = (σx, σy) is a vector of Pauli matrices. The valley degeneracy is now captured
in the Pauli matrix τ z and this Hamiltonian acts on the four-spinor

Ψ =


ψAq,+
ψBq,+
ψBq,−
ψAq,−

 .

Besides the true spin of the electrons, we can distinguish to types of pseudospin: sublattice
and valley pseudospin. The former is represented by the Pauli matrices that are indicated
by σi in the above-mentioned Hamiltonian, where ‘spin up’ corresponds to one sublattice
and ‘spin down’ to the other. The valley pseudospin is represented in the Hamiltonian
by the Pauli matrix that is denoted by τ z.

By inserting the expressions we found for γq up to first order in the dispersion (4.11),
we find the linear excitation energies,

ελq = λ~vF |q|.

This linear dispersion is characteristic for relativistic particle, that is why we refer to the
electrons in graphene as relativistic, or Dirac, particles, even though they do not actually
travel at the speed of light.

4.3 Landau levels in graphene

In Section 3.3, we have derived the Landau energy levels of non-relativistic two-dimensional
electrons in a magnetic field by writing down the Lorentz force and inserting it in the
Hamiltonian, which became a function of the mechanical momentum Π = p + eA. The
influence of the magnetic field was then captured in the vector potential A, by the re-
lation B = ∇ × A. Since the components of Π turned out to be non-commuting we
introduced ladder operators in the Hamiltonian, which reduced to the Hamiltonian of the
well-known harmonic oscillator which frequency ωc. The Landau levels for the normal
electrons were thus εn = ~ωc(n+ 1/2).

We now wish to extend the notion of Landau levels to the case of electrons in graphene.
We repeat the above-mentioned procedure, starting with the Hamiltonian we derived in
Eq. (4.16) and make the substitution for the momentum q → Π/~ = q/~ + eA/~. Like
before, the commutator of Πx and Πy reads [Πx,Πy] = −i~2l2B, and again we introduce
the ladder operators

a ≡ lB√
2~

(Πx − iΠy), a† ≡ lB√
2~

(Πx + iΠy),

for which [a, a†] = 1. Substituting this in the Dirac Hamiltonian, we obtain the Hamilto-
nian for Dirac electrons in a magnetic field.

Hξ
B =

√
2ξ~vF
lB

(
0 a
a† 0

)
.

Remember that this Hamiltonian acts on the the reversed tensors defined in Eq. (4.15).
In order to obtain the energies associated to this Hamiltonian, we solve the eigenvalue
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equation Hψn = εnψn, where we represent the general two-spinor ψn by

ψn =

(
αn
βn

)
.

The eigenvalue equation then yields two equations for the two components of ψn,

aβn =
lBεn√
2ξ~vF

αn

a†αn =
lBεn√
2ξ~vF

βn. (4.17)

If we act with a† on the first equation and insert the second one, we obtain an equation
for βn,

a†a βn =

(
lBεn√
2~vF

)2

βn. (4.18)

Notice that ξ2 = 1, which makes the equation independent of ξ. From this equation, we
can see that βn is an eigenstate of the number operator a†a, thus it must be proportional
to the state |n〉, for which a†a|n〉 = n|n〉. Hence, the numerical factor on the right-hand
side of Eq. (4.18) must be equal to n. This provides us with an expression for the energies
εn. Since there can be a positive and a negative solution to this equation, we label these
solutions by λ = ±1,

ελn =
λ
√

2~vF
lB

√
n = λvF

√
2e~Bn. (4.19)

The energy scales with the square root of the magnetic field, in contrast with the ordinary
Landau levels, which are linear in B. Furthermore, the level spacing is not constant as it
was for the usual case, since here we have εn − εn−1 ∼

√
n−
√
n− 1 (see Fig. 4.4). Since

these energy levels describe the energy of massless Dirac electrons in a magnetic field, we
call them relativistic Landau levels. Unlike the usual non-relativistic Landau levels, there
is actually a zero energy level in this case. Notice furthremore that there is a degeneracy
in the system, since the energy does not depend on the valley index ξ, thus it is the same
for both valleys.

The eigenstates of this Hamiltonian may be derived using the fact that βn is an
eigenstate of the number operator, as mentioned before. Hence, βn ∼ |n〉. Firstly, for
n 6= 0, we can insert the expression for the energy in the eigenvalue equations (4.17) and
derive that λξ

√
nαn = aβn =

√
n|n− 1〉. Hence, αn ∼ λξ|n− 1〉. Thus we can write the

normalized eigenstate for n 6= 0 as

ψn =
1√
2

(
|n− 1〉
λξ|n〉

)
For the case that n = 0, we obtain α0 ∼ aβ0 ∼ a|0〉 = 0. Hence, the normalized eigenstate
is

ψn=0 =
1√
2

(
0

|n = 0〉

)
.

Remember that the second component of this spinor represents the K-valley on the B-
sublattice or the K ′-valley on the A-sublattice. Since the first component is zero (not to
be confused with the vacuum state |0〉), the valley-pseudospin and the sublattice index
coincide, since there is no mixing between the valleys and the sublattices. Therefore, the
two sublattices are decoupled in the zero-energy level.
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Figure 4.4: Landau levels in graphene as a function of magnetic field. Figure from
Ref. [11].

4.4 Quantum Hall effect in graphene

As discussed in detail in Chapter 3, the presence of a perpendicular magnetic field in
a 2DEG does not only result in the formation of Landau levels, but as a consequence
also gives rise to the quantum Hall effect. When an electric current is sent through the
sample, a voltage can be measured transverse to the current (the Hall voltage). The
corresponding conductivity and resistivity that follow from it are then quantized. This
feature can be depicted by the characteristic plateaus in the Hall resistivity, accompanied
by a vanishing longitudinal resistivity, as was for example shown in Fig. 3.2. Transitions
to the next plateaus occur at integer filling factors and the Hall resistance is quantized
as

RH =
h

e2
1

ν
. (4.20)

The quantum Hall effect can be observed when the thermal fluctuations that would
otherwise destroy the Landau level structure is much smaller than the energy gap be-
tween the levels. In a usual 2DEG, the Landau level separation is ∆En = ~ωc =
~eB/m = 0.12B[T] meV. The energy of the thermal fluctuations is of order ET =
kBT = 0.086T [K] meV. The highest magnetic field strengths that can be realized exper-
imentally are typically of order B = 30 T. For that value, the temperature should be
much smaller than 40K to be able to observe the quantum Hall effect. Temperatures are
then usually in the order of a couple of Kelvin at most. This makes the observation of
the QHE in conventional 2DEGs rather difficult.

In graphene, we might also expect to see the quantum Hall effect, since the electrons in
graphene are also quantized in Landau levels in the presence of a perpendicular magnetic
field, as was explained in the previous section. However, since the Landau levels in
graphene differ from the ones in a usual 2DEG, the energy gaps between the Landau
levels are also different. In this case,

∆En =

√
2~vF
lB

(√
n−
√
n− 1

)
.

Notice that the gaps to the next Landau levels now depend on the Landau level index,
in contrast to the non-relativistic case. It is again instructive to calculate the typical

40



energy scale of the gaps. For the lowest few Landau levels,
(√

n−
√
n− 1

)
∼ 0.1 − 1,

hence ∆En ∼ vF
√

2e~
√
B. The energy gap scales with the square root of the magnetic

field strength, as we have seen before. The Fermi velocity was defined in Section 4.2.3
as vF = −3a

2~ t ≈ 6 · 106 ms−1. This leads to an inter-Landau level separation energy of

order En ∼ 0.2
√
B[T] eV. For B = 30 T this leads to En ∼ 1 eV, which is much larger

than the typical energy gaps in conventional 2DEGs. The temperature that corresponds
to a thermal energy of 1 eV is T = 104 K. A temperature much smaller than this is easy
to realize. Indeed, in 2007 the quantum Hall effect was observed in graphene at room
temperature [28].

There is another essential difference for the IQHE in graphene. In conventional
2DEGs, the plateaus in the Hall resistivity occur at integer filling factors ν = n, cor-
responding to the particular Landau level n. In graphene, however, the Hall resistivity
is quantized around the filling factors ν = 2(2n + 1). To understand this, remember
that each filled Landau level acts as a conducting channel, contributing one quantum of
conductance. The question is now how many electrons you need to fill the system up to a
certain Landau level n. To illustrate this, consider first the usual case of non-relativistic
electrons. If we ignore spin, then a completely filled Landau level corresponds to a filling
of ν = 1, or more generally, ν = n. If we now consider spinfull electrons and a vanishing
Zeeman effect, then a state can be occupied by an ‘up’ and a ‘down’ electron. Hence, if
the lowest Landau level is completely filled, then we have ν = 2 and in general, ν = 2n.
In the case of graphene, we not only have spin degeneracy, but also a valley degeneracy.
Naively, we could assume that the filling would then become ν = 4n. However, this would
imply that the conductivity is vanishing for n = 0, which violates the fact that there is
a Landau level at n = 0 which has extended states that contribute to the conductivity.
If we look again at Fig. 4.4, we see that for each valley, there are 2n+ 1 extended states.
The 1 comes from the zero-energy Landau level and the 2n refers to the ±n states. Hence,
in total the filling in graphene is ν = 2(2n+ 1) and the resistance (4.20) is quantized at
ν = 2, 6, 10, 14, ....

4.4.1 Fractional quantum Hall effect in graphene

Besides the IQHE, we also expect to see the FQHE, which arises at fractional filling
factors, due to the interaction between the electrons, as elaborated on in section 3.5.
Indeed, in 2009, the FQHE was observed for the first time in graphene, for ν̄ = ±1/3 in
the lowest Landau level [29,30]. In more recent experiments, the FQHE was observed for
a range of other filling factors, mainly in the lowest Landau levels [31–33].

For graphene, we can use the same kind of Laughlin wave function as we introduced
for GaAs in section 3.5.1. They merely need to be generalized to fit the multi-component
character of the wave functions. This was already done by Halperin for electrons with
spin in GaAs, by just taking a product of two individual wave functions for the different
spin species [34]. This is be valid if we ignore interactions between electrons with dif-
ferent spins. This procedure can be straightforwardly generalized to the four spin-valley
components in graphene. The generalized Laughlin wave function is [35]

ψm1,··· ,m4;nij
= φLm1,··· ,m4

φinternij
,
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where

φLm1,··· ,m4
=

4∏
j=1

Nj∏
kj<lj

(
z
(j)
kj
− z(j)lj

)mj

e
−∑4

j=1

∑Nj
kj=1 |z

(j)
kj
|2/4

is the product of the one-component wave functions and

φinternij
=

4∏
i<j

Ni∏
ki

Nj∏
kj

(
z
(i)
ki
− z(j)kj

)nij

described the inter-component correlations.
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Chapter 5

Electron phases in two-dimensional
quantum Hall systems

As mentioned before, the physics of partially filled Landau levels is extremely rich. Be-
sides the FQHE, that occurs for certain fractional values of the filling factor ν = p/(2ps± 1),
with p and s integers, the electrons can also form a normal electron liquid and all kinds
of electron-solid phases, like a Wigner crystal or electron-bubble phases. Furthermore,
it was shown experimentally that, at certain filling-factor intervals, the resistivity shoots
back up to the integer value corresponding to a completely filled Landau level [36, 37].
This feature is called the reentrant integer quantum Hall effect (RIQHE) and it has been
theoretically explained by the formation of electron-solid phases in partially filled higher
Landau levels (n > 0) [38]. In this section, we will study the competition between the
energies of different electron phases in order to determine which phase has the lowest en-
ergy for various values of the filling factor in a partially filled Landau level. We will follow
the derivations done in Ref. [38]. In Chapter 6, we will analyze how these calculations
change in the case of graphene.

5.1 The model

We consider spinless electrons and restrict their dynamics to the n-th Landau level. In
the absence of inter-Landau-level excitations, all the n − 1 lowest Landau levels are
completely filled and the Landau levels higher than n are empty. Hence, we can express
the partial filling of the n-th Landau level as ν̄ = ν − [ν] = N̄el/NB, where N̄el is the
number of electrons in the last Landau level and NB = A/2πl2B is the degeneracy in each
Landau level, as derived in Section 3.3.1. Since all electrons in the n-th Landau level
have the same kinetic energy ~ωc(n+ 1/2), this will just be an irrelevant constant in the
Hamiltonian when calculating energy minima and we can omit it. The Hamiltonian then
consist only of Coulomb interactions between the electrons,

H =
1

2

∫
d2rd2r′ψ†n(r)ψn(r)v(r − r′)ψ†n(r′)ψn(r′). (5.1)

The fermion field operators of the electrons in the n-th Landau level at a position r in
space are given by

ψn(r) =
∑
y0

〈r|n, y0〉cn,y0 , (5.2)
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where cn,y0 (c†n,y0) destroys (creates) an electron in the state |n, y0〉. As we have derived in
Section 3.3.3, the wave functions in the Landau gauge can be written in terms of Hermite
polynomials Hn(x),

〈r|n, y0〉 =
(
L
√
π2nn!lB

)−1/2
Hn

(
y − y0
lB

)
eiy0x/l

2
Be−(y−y0)

2/2l2B .

In order to write the Hamiltonian in reciprocal space, we first make a Fourier transform
of the density operator ρn(r) = ψ†n(r)ψn(r),

ρn(q) =

∫
d2rψ†n(r)ψn(r)eiq·r.

Substituting the expressions for ψ†n(r) and ψn(r) from Eq. (5.2), we can derive (see
Appendix B.1) that the density operator in reciprocal space takes the form

ρn(q) = 〈n|eiq·η̂|n〉
∑
y0,y′0

〈y0|eiq·R̂|y′0〉c†n,y0cn,y′0

= Fn(q)ρ̄(q), (5.3)

where the cyclotron variable η̂ and the guiding center operator R̂ where defined in Sec-
tion 3.3. The density operator is now split into two parts: the form factor Fn(q) =
〈n|eiq·η̂|n〉, which captures all the Landau-level dependence, and the projected density

operator ρ̄(q) =
∑

y0,y′0
〈y0|eiq·R̂|y′0〉c†n,y0cn,y′0 , which projects ρn(q) to the lowest Landau

level, such that ρ̄(q) does not depend on n. The explicit form of the projected density
operator depends on the particular choice of the gauge. In the Landau gauge, it is given
by [38]

ρ̄(q) =
∑
y0

e−iqyy0c†
n,y0+qxl2B/2

cn,y0−qxl2B/2. (5.4)

Since the cyclotron variable η̂ is gauge invariant (see Section 3.3 for more details), the
form factor is independent of the gauge as well. It is given explicitly in terms of the
Laguerre polynomials Ln(x) by (see Appendix B.1)

Fn(q) = Ln(q2l2B/2)e−q
2l2B/4. (5.5)

The Hamiltonian in reciprocal space can now be written in terms of these projected
density operators. Furthermore, we absorb the form factor into the potential, such that
we get for the Hamiltonian

H =
1

2A

∑
q

vn(q)ρ̄(−q)ρ̄(q). (5.6)

where
∑
q = A

∫
d2q/(2π)2 and vn(q) is the effective Coulomb potential given by

vn(q) = v(q)[Fn(q)]2, v(q) = 2πe2/εq. (5.7)

Hence, we have basically shifted the Landau-level dependence from the density operators
to the potential. Therefore, the Hamiltonian depends on this effective potential that
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Figure 5.1: (a) Effective potential in real space, in units of e2/εlB; (b) Scaled potential,
in units of e2/εlB. A universal length scale of ∼2RC arises. Fig. replotted from Ref. [38].

captures the structure of the Landau level of interest and on the lowest-Landau-level
projected density operators.

Using the anti-commutation relations for fermions, {cn,y0 , c
†
n′,y′0
} = δn,n′δy0,y′0 and

{cn,y0 , cn′,y′0} = {c†n,y0 , c
†
n′,y′0
} = 0, we can derive the commutator between ρ̄(q) and ρ̄(k)

(see Appendix B.2),

[ρ̄(q), ρ̄(k)] = 2i sin

(
(q × k)zl

2
B

2

)
ρ̄(q + k). (5.8)

The Hamiltonian (5.6) with the interaction potential (5.7), together with the commuta-
tion relations (5.8) define the quantum mechanical model we are interested in.

In order to understand the effect of the form factor that reveals the Landau level
structure, we plot the effective potential in real space for different values of n, as shown
in Fig. 5.1. At first sight, no general conclusions can be drawn from this plot. Let us
now define the rescaled potential ṽn(r/RC) = vn(r)(RC/lB) = vn(r)

√
2n+ 1, where RC

is the cyclotron radius. This potential has in fact universal features, independent of the
particular Landau level, as can be seen from Fig. 5.1. For all Landau levels n > 0,
the potential is no longer scale free, since a “shoulder” arises at a characteristic length
scale of ∼ 2RC . This can lead to the formation of a Wigner crystal or a bubble phase,
depending on the interparticle distance d. If d � 2RC , then the particles interact via
the potential tail, which is just the Coulomb interaction. In that regime, the electrons
will arrange themselves in a triangular lattice in order to minimize the Coulomb energy.
This state is called a Wigner crystal. If d ∼ 2RC it becomes energetically favorable for
electrons to form clusters, since this decrease the energy. This “short-range attraction”
can be intuitively understood from a toy model. Consider electrons in one dimension
distributed in a homogeneous way, let us say, separated by d = 2RC , as shown in Fig. 5.2.
The interaction among four electrons costs 3v0 (see Fig. 5.1b). On the other hand,
if the electrons form two clusters of two electrons separated by 1RC , than the total
energy is approximately 2v0, because the energy cost between the two clusters, which
are separated by 4RC , is negligible. In general, the overall energy will be lower in this
so-called bubble phase and the clusters of electrons interact via the Coulomb tail of the
interaction potential, forming a Wigner crystal with M electrons per site.

Notice that in the lowest Landau level there is no length scale in the potential, since
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2RC 2RC 2RC
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Figure 5.2: Formation of a bubble phase. In the upper line, four electrons are separated
from each other by 2RC . If the inner two electrons move towards the outer two electrons,
as in the lower line, they can reduce their total energy by forming bubbles.

the Laguerre polynomial for n = 0 is just a constant. Hence, in the lowest Landau level
there can be a Wigner crystal, but no bubble phases.

5.2 Electron-solid phases

To describe the electron-solid phases, we resort to mean-field theory and use the Hartree-
Fock approximation for the Hamiltonian. We follow the calculations done in Ref. [38].
In the Hartree-Fock approximation, we replace the two-body interaction term by an ef-
fective one-body term [39]. That is, in the Hamiltonian we replace the operator product
c†y0+γqcy0−γqc

†
y′0+γq

cy′0−γq → 〈c
†
y0+γqcy0−γq〉c

†
y′0+γq

cy′0−γq − 〈c
†
y0+γqcy′0−γq〉c

†
y′0+γq

cy0−γq . The first

term is referred to as the Hartree term and the second one as the Fock, or exchange,
term. Substituting this mean-field approximation into the Hamiltonian, we get two con-
tributions: the Hartree part of the Hamiltonian,

HH =
1

2A

∑
q

vn(q)
∑
y0,y′0

eiqy(y0−y
′
0)〈c†y0−γqcy0+γq〉c

†
y′0+γq

cy′0−γq

=
1

2A

∑
q

vn(q)〈ρ̄(−q)〉ρ̄(q),

where we used the definition of ρ̄(−q) in the second line, and the Fock term

HF =
1

2A

∑
q

vn(q)
∑
y0,y′0

eiqy(y0−y
′
0)〈c†y0−γqcy′0−γq〉c

†
y′0+γq

cy0+γq .

We wish to express this in terms of 〈ρ̄(−q)〉ρ(q) as well. To bring the Fock Hamiltonian in
this form, we make a few substitutions. Firstly, we remark that for the expectation value
we want something of the form 〈c†a−bca+b〉, hence we make the substitution y0 → a − b,
y′0 → a+ b. This leads to

HF =
1

2A

∑
q

vn(q)
∑
a,b

e−2iqyb〈c†a−b−γqca+b−γq〉c
†
a+b+γq

ca−b+γq .

Then, we substitute a− γq → x0, a+ γq → x′0 and b→ γp = pxl
2
B/2, to obtain

HF =
1

2A

∑
q

vn(q)
∑
x0,px

e−iqypxl
2
B〈c†x0−γpcx0+γp〉c

†
x′0+γp

cx′0−γp .
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Finally, to find the desired form of the exponents, we multiply by 1, using the identity

1 =
1

NB

∑
py ,x′0

eipy(x0−x
′
0+2γq),

where NB = nBA is the number of states per Landau level. This finally leads to,

HF =
1

2ANB

∑
q

vn(q)
∑
px,py

e−i(qypx−pyqx)l
2
B

∑
x0,x′0

eipy(x0−x
′
0)〈c†x0−γpcx0+γp〉c

†
x′0+γp

cx′0−γp

=
1

2ANB

∑
q

vn(q)
∑
px,py

e−i(qypx−pyqx)l
2
B〈ρ̄(−p)〉ρ̄(p)

=
1

2A

∑
p

uF (p)〈ρ̄(−p)〉ρ̄(p),

where we have absorbed all the extra terms coming from the substitutions in the Fock
potential uF (p). The total Hamiltonian HHF = HH −HF is then linear in the projected
density operators,

HHF =
1

2A

∑
q

uHFn (q)〈ρ̄(−q)〉ρ̄(q), (5.9)

where

uHFn (q) = vn(q)− uFn (q)

= vn(q)− 1

NB

∑
p

vn(p)e−i(pyqx−qypx)l
2
B . (5.10)

For the lowest few Landau levels, we can calculate the exchange potential uFn (q) explicitly,
e.g., for n = 1 we have,

uFn=1(q) =

√
π

2

e2

εlB

e−q
2l2B/4

8nB

[
(6− 2q2l2B + q4l4B)I0

(
q2l2B

4

)
− q4l4BI1

(
q2l2B

4

)]
, (5.11)

where Ij are the modified Bessel functions (see Appendix B.3).
From the Hartree-Fock Hamiltonian, we can now derive the cohesive energy of the

electron-solid phases Ecoh = 〈HHF 〉/N̄el, which is the energy per electron needed to form
a certain phase. We express it in terms of the order parameter ∆(q) ≡ 〈ρ̄(q)〉/nBA,
which is proportional to the average (projected) electron density, such that it can detect
whether the electrons are uniformly distributed or arranged in a certain structure, making
it indeed behave as an order parameter. The cohesive energy of a charge density wave in
the n-th Landau level thus reads

ECDW
coh (n, ν̄) =

1

2AN̄el

∑
q

uHFn (q)〈ρ̄(−q)〉〈ρ̄(q)〉

=
nB
2ν̄

∑
q

uHFn (q)|∆(q)|2. (5.12)

For the bubble phase, clusters of M electrons are arranged in a two-dimensional
triangular lattice, represented by lattice vectors Rj. Notice that the normal Wigner
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crystal is essentially a bubble phase with M = 1. The distribution of the electrons is
described by a local guiding-center filling factor ν̄(r) =

∑
j Θ(rB − |r − Rj|), where

rB = lB
√

2M is the radius of a bubble with M electrons and Θ is the step function. The
partial filling factor is the fraction of the unit cell that is occupied by a bubble, hence

ν̄ =
area bubble

area unit cell
=

πr2B√
3Λ2

B/2
, (5.13)

where ΛB is the lattice spacing of the triangular lattice. Since the local filling factor
describes the local electron density per flux quantum, the order parameter can be written
in terms of its Fourier transform. Hence,

∆M(q) =
1

A

∫
d2r ν̄(r)eiq·r

=
1

A

∑
j

∫
d2rΘ(rB − |r −Rj|)eiq·(r−Rj)eiq·Rj

=
1

A

∫ rB

0

dr r

∫ 2π

0

dφr e
iqr(sinφq sinφr+cosφq cosφr)

∑
j

eiq·Rj ,

where we used the definition of ν̄(r) and wrote the results in polar coordinates, i.e.
q = (q cosφq, q sinφq) and r = (r cosφr, r sinφr). These integrals can be evaluated as

∆M(q) =
2π

A

∫ rB

0

dr rJ0(qr)
∑
j

eiq·Rj

=
2πlB
√

2M

Aq
J1(qlB

√
2M)

∑
j

eiq·Rj ,

where Jn(x) are Bessel functions of the first kind. By replacing this result for the order
parameter in the expression for the cohesive energy that we derived in Eq. (5.12), we
obtain for the energy of the bubble phase,

EB
coh(n;M, ν̄) =

nB
2ν̄

A

(2π)2

∫
d2q uHFn (q)

8π2l2BM

A2q2
J1(lBq

√
2M)2

∑
j,j′

eiq·(Rj−Rj′ )

=
nBl

2
BM

ν̄Apc

∫
d2q uHFn (q)

J1(lBq
√

2M)2

q2

∑
j

eiq·Rj ,

where we used the fact that Rj −Rj′ is again a lattice vector, such that we can write∑
j,j′ e

iq·(Rj−Rj′ ) = N
∑

j e
iq·Rj , with N the number of lattice sites. In the triangular

lattice, there is one lattice site in the unit cell, hence the total number of sites can be
determined by N = A/Apc, where Apc is the area of the unit cell, which in this case reads
Apc =

√
3Λ2

B/2. Furthermore, we can use the identity
∑

j e
−iq·Rj = (2π)2/Apc

∑
l δ(q −

Gl), whereGl are the reciprocal lattice vectors (see Appendix B.4). Using also Eq. (5.13),
we can now write the cohesive energy of an M -electron-bubble phase in the n-th Landau
level as a function of ν̄,

EB
coh(n;M, ν̄) =

nB ν̄

M

∑
l

uHFn (Gl)
J1(
√

2MlB|Gl|)2

l2B|Gl|2

=
ν̄

2πl2BM

∑
l

uHFn (Gl)
J1(
√

2MlB|Gl|)2

l2B|Gl|2
, (5.14)
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where we used that nB = 1/2πl2B in the second step. Notice that if we plot the energy in
terms of e2/εlB, all the other lB dependence will drop out. In Appendix B.5, we elaborate
on this and other details concerning this function and its graphical representation.

As a last remark, we mention the possibility for the electrons to form other kinds
of crystal phases, such as the so-called striped phase, where the electrons are arranged
periodically in long bands. In this thesis, we will not go further into the details of these
phases.

5.2.1 The effect of impurities

The model that we have derived thus far to describe the electron-solid phase does not
take into account the fact that there are always some impurities in the sample, while
they can actually play an important role in the physics of the system. As we have seen
for the IQHE for example, impurities can localize electrons, which causes the formation
of plateaus in the resistivity. In the FQHE, the effect of impurities is less important,
because the Laughlin liquid is incompressible en therefore less susceptible to external
perturbations. However, in the electron-solid phases, the impurities can pin the crystal
such that the collective sliding mode is suppressed [38]. The crystal can deform slightly
(while still remaining near their lattice sites) such as to find a configuration that minimizes
the energy due to the impurities. This can then lower the total cohesive energy of the
crystal compared to the energies that we have just derived.

To model the impurities, we consider a short-range Gaussian impurity potential with
correlation length ξ and potential strength V0 in the weak-pinning limit. In this limit,
the energy gained by following the impurity potential is small compared to the elastic
energy it costs to deform the crystal. The energy density that describes this competition
is given by [40,41]

ε(L0) =
µξ2

L2
0

− V0
√
nel
L0

,

where µ is the elasticity of an M -electron bubble and is given by µ ≈ 0.25M2e2n
3/2
M /ε,

with nM = ν̄/2πMl2B the bubble density [38]. Furthermore, L0 is the Larkin length, which
is the typical length scale on which a straight line is collectively pinned by impurities.
Minimizing this energy with respect to L0 yields

L∗0 =
1

4π

√
Mν̄e2ξ2

εl2BV0
.

The reduction of the cohesive energy due to the impurities is thus

δEB
coh(M, ν̄) =

ε(L∗0)

nel
= −(2π)3/2l2B√

Mν̄3/2
V 2
0 /ξ

2

e2/εlB
.

The parameters V0, ξ and ε are properties of the material and are not known in advance.
However, we can treat the dimensionless ratio

Epin ≡
V0/ξ

e2/εl2B
,
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as one parameter that we can tune via lB. The energy difference is then given in terms
of this dimensionless pinning parameter as

δEB
coh(M, ν̄) = − e2

εlB

(2π)3/2√
Mν̄3/2

E2
pin.

In Section 5.4, we will plot the energies of the bubble phases taking into account this
pinning energy to see how it changes the competition between the solid- and liquid phases.

5.3 Electron-liquid phases

For filling factors ν̄L = 1/M , with M odd-integer, the FQHE occurs and the system is in
an incompressible quantum-liquid state. For these values of the filling factor, the system
can be described by Laughlin’s wave functions, which we derived in Section 3.5.1,

ψM =
N∏
i<j

(zi − zj)Me−
∑

k |zk|2/4,

where zj = xj − iyj.
The cohesive energy of the liquid state can be derived using the plasma analogy. This

analogy boils down to identifying |ψM |2 with the Boltzmann factor of a classical 2D one-
component plasma e−βUcl , where ψM is the Laughlin wave function for ν = 1/M . To
derive the energy, we follow the steps used in Ref. [42]. We start off by writing the energy
corresponding to the Laughlin wave function in the statistical physics analogy,

UM =
ν

2

∫ ∞
0

dr r [g(r)− 1]V (r),

where V (r) is the Coulomb interaction potential and g(r) is the radial distribution func-
tion given by

g(z1, z2) =
N(N − 1)

Zρ2

∫
d2z3 · · · d2zN |ψM({z})|2,

where ρ is the density, Z = 〈ψM |ψM〉 and dzj = dxjdyj. In order to evaluate this function,
we write the z1 and z2 dependence of the wave function explicitly and absorb the rest
of the coordinates in some general function. Furthermore, we rewrite z+ = z1 + z2 and
z = z1 − z2. We then obtain a polynomial in z+ and z, where z turns out to appear only
with odd powers,

ψM =
N∏
i<j

(zi − zj)Me−
∑

k |zk|2/4

=
∞∑

n,m=0

an,2m+1(z3, · · · , zN)zn+z
2m+1e−(|z+|

2+|z|2)/8.

In the radial distribution function we use |ψM |2, thus we write this again explicitly in
terms of z and z+,

|ψM |2 =
∞∑

n,n′,m,m′=0

an,2m+1(z3, · · · , zN)bn′,2m′+1(z
∗
3 , · · · , z∗N)zn+(z∗+)n

′
z2m+1(z∗)2m

′+1e−(|z+|
2+|z|2)/4.
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We replace this in g(z1, z2) and, without evaluating the integral explicitly, we absorb all
the terms that do not depend on z in some general function Am,m′ that thus depends on
z+, since all the other coordinates are integrated out,

g(z) =
∞∑

m,m′=0

Am,m′(z+)z2m+1(z∗)2m
′+1e−|z|

2/4.

This is the most general form of the radial distribution function using this particular wave
function. Remember that the original wave function depends onM = 1/(2s+1), the filling
fraction at which is was defined. To emphasize this dependence, we write Am,m′ = Asm,m′ .
Now, we make two assumptions to be able to simplify this expression. First of all, we
assume that the center-of-mass coordinate z+ is uniformly distributed, which is reasonable
in a liquid. This implies that Am,m′ does not depend on z+. Furthermore, we assume
that there is no orientational order, such that g(z) only depends on |z|, implying that
Asm,m′ = 0 if m 6= m′. Hence, we can write

Asm,m′ = bsmδm,m′ ,

such that the radial distribution function reduces to

g(z) =
∞∑
m=0

bsm|z|2(2m+1)e−|z|
2/4.

Since ρg(|z|) represents the average particle density at a distance |z| from a given particle,
we have that lim|z|→∞ g(|z|) = 1, because at large distances the correlation between
particles vanishes and the average density is then just the bulk density. In order to
satisfy this constraint, we write bsm as

bsm =
2

42m+1(2m+ 1)!

(
1 + cs2m+1

)
,

with limm→∞ cs2m+1 = 0. Substituting this in g(z) we obtain

g(z) = 2
∞∑
m=0

(|z|2/4)2m+1

(2m+ 1)!

(
1 + cs2m+1

)
e−|z|

2/4

= 1− e−|z|2/2 + 2
∞∑
m=0

cs2m+1

(|z|2/4)2m+1

(2m+ 1)!
e−|z|

2/4.

We can impose further constraints on the coefficients c2m+1 by using the charge-neutrality,
perfect screening and compressibility sum rules, which yield [42]∑

m

cs2m+1 = −s/2,∑
m

(2m+ 2)cs2m+1 = −s/4,∑
m

(2m+ 3)(2m+ 2)cs2m+1 = s2/2.

As a final constraint, we can look at the short-range behavior of g(r), which goes like
g(r) ∼ r2(2s+1). From this, we can deduce that cs2m+1 = −1 for m < s. With these con-
straints, we can calculate the values for cs2m+1 for m = {s, s+1, s+2}, assuming cs2m+1 = 0
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cs1 cs3 cs5 cs7 cs8 cs11 cs13
s = 1 -1 17/32 1/16 -3/32 0 0 0
s = 2 -1 -1 7/16 11/8 -13/16 0 0
s = 3 -1 -1 -1 -25/32 79/16 -85/32 0
s = 4 -1 -1 -1 -1 -29/8 47/4 -49/8

Table 5.1: Coefficients cs2m+1, where s represents the fractional filling ν̄ = 1/(2s+ 1).

for m > s+ 2, since cs2m+1 should vanish for large m. For s = 1, 2, 3, 4 (corresponding to
filling factors ν = 1/3, 1/5, 1/7, 1/9) the coefficients are given in Table 5.1.

The energy of the Laughlin liquid in the lowest Landau level is defined with respect
to the uncorrelated liquid and can be written in reciprocal space as [38]

U =
1

2A

∑
q

v0(q)[s̄(q)− 1], (5.15)

where s̄(q) = 〈ρ̄(−q)ρ̄(q)〉/N̄el is the projected structure factor, which relates to the
static structure factor s(q) by s̄(q) = s(q) − (1 − e−q2/2) [43]. Since the structure factor
is the Fourier transform of g(r), we can derive the projected structure factor to be [38]

s̄(q) = (1− ν̄) + 4ν̄
∞∑
m=0

cs2m+1L2m+1(q
2)e−q

2/2,

where L2m+1(x) are Laguerre polynomials. The energy of the Laughlin liquid in the n-th
Landau level can be obtained by replacing v0(q) by the effective potential vn(q). It can
be written in the form

U = − ν̄

2A

∑
q

vn(q) + EL
coh(n, s), (5.16)

with the cohesive energy given by

EL
coh(n, s) =

ν̄

π

∞∑
m=0

cs2m+1V
n
2m+1, (5.17)

where V n
2m+1 are Haldane’s pseudo potentials,

V n
2m+1 =

2π

A

∑
q

vn(q)L2m+1(q
2)e−q

2/2.

5.3.1 Quasiparticle- and quasihole excitations

The energy derived in Eq. (5.17) is valid at the filling factors ν̄L = 1/(2s+ 1). For filling
factors that are slightly different from ν̄L, we need to take into account the quasiparticle
and quasihole excitation energies. For filling factors in the vicinity of ν̄L, the situation
can be mapped into completely filled Landau levels of composite fermions and hence the
quasiparticles and -holes can be treated as non-interacting. The cohesive energy for the
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quantum-liquid phase is then given by the Laughlin energy plus a small contribution from
the energy of the quasiparticles (∆n

+(s)) or quasiholes (∆n
−(s)),

Eq−l
coh (n, s, ν̄±) = EL

coh(n, s) + [±ν̄(2s+ 1)− 1]∆n
±(s),

where ν̄+ (ν̄−) indicate a filling that is slightly higher (lower) than the Laughlin filling
factor ν̄ = 1/(2s+ 1). The quasiparticle and -hole excitation energies may be computed
analytically using Murthy and Shankar’s Hamiltonian theory [44, 45]. They treat the
problem in terms of composite fermions (CFs), which were introduced in Section 3.5.2.
For an electron filling of ν̄ = 1/(2s+ 1), the problem maps to a completely filled Λ-level
with an effective magnetic length l∗B =

√
~/eB∗ = lB/

√
1− c2, where we used Eq. (3.31)

to derive c2 = 2ps/(2p + 1). The density operator of the CFs can then be described by
the so-called preferred combination [45]

ρ̄p(q) = ρ̄(q)− c2χ̄(q).

It is given explicitly in terms of CF creation- and annihilation operators as

ρ̄p(q) =
∑

j,j′;m,m′

〈m|e−iq·R|m′〉〈j|ρ̄p(q)|j′〉c†j,mcj′,m′ .

The matrix elements of this operator are given by

〈m|e−iq·R|m′〉 =

√
m′!

m!

(
−iq∗l∗B√

2

)m−m′
Lm−m

′

m′

(
q2l∗2B

2

)
e−q

2l∗2B /4,

〈j|ρ̄p(q)|j′〉 =

√
j′!

j!

(
−iql∗Bc√

2

)j−j′
e−q

2l∗2B c2/4

×
[
Lj−j

′

j′

(
q2l∗2B c

2

2

)
− c2(1−j+j′)e−q2/2c2Lj−j

′

j′

(
q2l∗2B
2c2

)]
,

where we use the complex notation q = qx − iqy and Lj−j
′

j′ are the generalized Laguerre
polynomials.

The quasiparticle and -hole excitation energies are then given respectively by [38]

∆n
qp(s, p) =

1

2

∫
q

vn(q)〈p|ρ̄p(−q)ρ̄p(q)|p〉 −
∫
q

vn(q)

p−1∑
j′=0

|〈p|ρ̄p(q)|j′〉|2,

∆n
qh(s, p) = −1

2

∫
q

vn(q)〈p− 1|ρ̄p(−q)ρ̄p(q)|p− 1〉+

∫
q

vn(q)

p−1∑
j′=0

|〈p− 1|ρ̄p(q)|j′〉|2,

where
∫
q

=
∫
d2q/(2π)2 and |p〉 denotes a state with p completely filled Λ-levels.

5.4 Competition between phases

We have derived the energies of different possible electron phases. The competition
between these energies will determine which phase will be the ground state. In Fig. 5.3a,
we replotted from Ref. [38] the different energies in order to investigate the behavior of
the system in the n = 1 Landau level. The energies for the quantum liquid, the Wigner
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crystal phase (1-electron-bubble phase) and the 2-electron-bubble phase are shown. The
energy for the striped phase, which we did not discuss here, is also indicated. Notice that
we only plot the regime where 0 ≤ ν̄ < 0.5, due to particle-hole symmetry. Fig. 5.3b
shows measurements of the Hall resistance done by Eisenstein et al. [46], as a function of
magnetic field strengths that correspond to a fractional filling of the n = 1 Landau level.
At integer filling (when ν̄=0), the resistance is quantized as Rxy = h/e2ν, where ν = 3
(notice that due to spin degeneracy, a completely filled lowest Landau level corresponds
to a filling ν = 2, hence a filling of ν = 3 corresponds to the n = 1 Landau level). If we
start increasing the filling, then the electrons in the slightly filled Landau level, will be
individually pinned by impurities, which give rise to the integer quantum Hall plateau.
As the filling increases further, the electrons will form a Wigner crystal, which remains
collectively pinned by impurities. In the transport response, there is simply a plateau in
the Hall resistivity, although at some point the physics changed from single-particle to
collective (Wigner crystal) localization. At even higher filling, we can see from Fig. 5.3a
that the quantum liquid has the lowest energy and the FQHE can be observed at ν̄ = 1/5
in Fig. 5.3b. If we now increase the filling further, the Wigner crystal phase becomes again
energetically favorable and the electrons solidify into a denser electron crystal. Since the
lattice itself is pinned by impurities it cannot slide, such that there is no conductance of
electrons in this partially filled Landau level. Hence, the only states that contribute to
the conductance are the edge states of all the n filled Landau levels underneath. This will
then give rise to the same value of the resistance as for the ν̄ = 0 situation. Therefore,
the resistance shoots back up to the integer value. As the filling is increased, the solid-
and liquid phases are alternating, giving rise to the FQHE and the RIQHE.

In the lowest Landau level we expect no bubble phases to occur, but a Wigner crystal
might be possible. From the blue solid line in Fig. 5.4a, we see that the Laughlin liquid
always has the lowest energy, therefore there are no solid phases in the lowest Landau
level. Disorder may nevertheless alter this picture because they may lower the energy
of the Wigner crystal, especially at very low doping, whereas they let the energy of the
Laughlin liquid unaltered. Indeed, in Section 5.2.1, we have shown that they may lower
the cohesive energy of the crystals by an amount characterized by the dimensionless
pinning energy parameter Epin = (V0/ξ)/(e

2/εl2B). In Fig. 5.4a, the dashed lines show
the effect of impurities for Epin = 2.5 · 10−5 and Epin = 10−4. From this graph, we can
conclude that the qualitative behavior of the phase diagram remains roughly the same,
the only difference is that some of the occurrences of the FQHE may be washed out by the
impurities. For example, in both the n = 0 and n = 1 Landau level, the Laughlin liquid
is the ground state for ν̄ = 1/7 if we ignore the impurities, while the Wigner crystal is the
lowest in energy if the impurity potential is very strong (blue dashed line in Fig. 5.4b).
Furthermore, the width of the plateaus in the Hall resistivity may be changed under the
influence of impurities, since the melting- and freezing points are shifted.
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Figure 5.3: (a) Cohesive energies for M = 1 and M = 2 bubble phases and for the
quantum liquid. (b) Experimental data for the Hall resistance as a function of the filling.
It shoots back up to the integer value at the regions where the solid phase is energetically
favorable. Figures from Ref. [38]
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Figure 5.4: Cohesive energies of the liquid phase (black), the Wigner crystal (solid blue)
and 2-electron bubble (solid orange). Dashed (dashed-dotted) lines represent the phases
with a strong (weak) impurity potential taken into account, in the n = 0 (a) and n = 1
(b) Landau level.
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Chapter 6

Electron phases in graphene

In order to generalize the theory of electron-solid and liquid phases in Chapter 5 to
graphene, we must investigate which properties of the electrons change with respect
to those in GaAs. As we have seen in Chapter 4, there are two major characteristics
that distinguish graphene from other two-dimensional electron systems. First of all, the
dispersion is different. Electrons in graphene have a linear (or relativistic) dispersion,
in contrast to the parabolic dispersion of electrons in a normal 2DEG. The change in
dispersion is reflected in the Landau-level structure as well. In graphene, the energy levels
of electrons in a magnetic field scale with

√
Bn, as opposed to Bn for non-relativistic

electrons. However, this is not relevant for the purpose of this chapter, because we will
only consider interactions between the electrons when a Landau level is partially filled. In
that case, the kinetic energy is the same for all electrons and becomes just an irrelevant
constant. Hence, it does not matter what the Landau levels look like, since all electrons
are in the same Landau level. The story becomes more complicated when we include
Landau-level mixing. In our analysis we will ignore it, but we will comment on the effect
it can have when we investigate the different phases in graphene.

The second difference between graphene a usual 2DEG is the fact that graphene has a
multi-component wave function, as elaborated on in Section 4.2. When ignoring the spin
degeneracy, graphene still has an extra degree of freedom due to the sublattice symmetry
that it possesses. In reciprocal space, this symmetry manifests itself as the existence
of two valleys. These are the two inequivalent points in the Brillouin zone where the
Dirac cones are located. The wave function of the electrons correspondingly has two
components. In the following sections, we will show that this leads to a change in the
form factor and subsequently also in the effective electron-electron interaction. We will
investigate how this will alter the results for the charge-density waves and the Laughlin-
liquid, which we obtained in Chapter 5.

6.1 Change of the form factor

We want to set up a model for the interaction between the electrons in graphene similar
to the one in Chapter 5. In this section, we follow the calculations done in Ref. [47].

We start by writing out the density operator, using the two-component wave functions
in the Landau gauge. As derived in Section 4.3, the real space wave function of electrons
in graphene under a perpendicular magnetic field reads

ψσ(r) = eiσK·rχσ(r), (6.1)
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where σ = ±1 denotes the valley at the point ±K and the two components of χσ(r)
represent the two sublattices,

χ+(r) =
1√
2

∑
n,m

(
i
√

1 + δn,0 〈r||n|,m〉
sgn(n)〈r||n| − 1,m〉

)
, χ−(r) =

1√
2

∑
n,m

(
sgn(n)〈r||n| − 1,m〉
i
√

1 + δn,0 〈r||n|,m〉

)
.

(6.2)

Here, sgn(n) = 0 for n = 0 and 〈r||n|,m〉 are the usual (non-relativistic) one-particle
wave functions [47]. As mentioned before, we ignore Landau level mixing and therefore
the density operator projected onto a Landau level n on a sublattice α is

ρnα(r) =
∑
σ,σ′

ψ†α,σ(r)ψα,σ′(r).

In reciprocal space, the total density operator is then the Fourier transform of the density
in real space, summed over the two sublattices. It can be expressed in terms of a projected
density operator and a form factor.

ρn(q) = ρn1 (q) + ρn2 (q) =
∑
σ,σ′

F σ,σ′

n (q)ρ̄σ,σ
′
(q),

where the projected density operators are given by

ρ̄σ,σ
′
(q) =

∑
m,m′

〈m|e−i[q+(σ−σ′)K]·R|m′〉c†n,m,σcn,m′,σ′ .

Notice that for σ = σ′ they reduce to the normal non-relativistic projected density oper-
ators. The form factors are given by

F σ,σ
n =

1

2

[
L|n|

(
q2l2B

2

)
+ L|n|−1

(
q2l2B

2

)]
eq

2l2B/4,

F σ,−σ
n =

λilB[q + q∗ − σ(K +K∗)]

2
√

2|n|
L1
|n|−1

(
l2B|q − σK|2

2

)
e−l

2
B |q−σK|2/4,

where we used the complex notation q = qx − iqy and K = Kx − iKy. A detailed
derivation of these results is presented in Appendix C.1. The interaction Hamiltonian
given in Eq. (5.1) then becomes, in reciprocal space,

H =
1

2

∑
σ1,··· ,σ4

∑
q

vσ1,··· ,σ4n (q)ρ̄σ1σ3(−q)ρ̄σ2σ4(q),

where the effective interaction is given by

vσ1,··· ,σ4n (q) = v(q)F σ1σ3
n (−q)F σ2σ4

n (q), (6.3)

with v(q) = 2πe2/εq the usual Coulomb potential in two dimensions. It can be shown (see
Appendix C.1) that terms of the form F σ,σ

n (∓q)F σ′,−σ′
n (±q) or F σ,−σ

n (−q)F σ,−σ
n (q) are ex-

ponentially small in a/lB. Furthermore, backscattering terms of the form F σ,−σ
n (−q)F−σ,σn (q)

are algebraically small in a/lB. Thus, up to leading order in perturbation theory, we may
write the interaction Hamiltonian as

H =
1

2

∑
σ,σ′

∑
q

vgn(q)ρ̄σ(−q)ρ̄σ′(q), (6.4)
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where ρ̄σ(q) ≡ ρ̄σσ(q) and vgn(q) is the effective interaction in graphene, given by

vgn(q) = v(q)[F g
n(q)]2, (6.5)

with F g
n(q) the graphene form factor

F g
n(q) =

{
1
2

[
L|n|

(
q2l2B
2

)
+ L|n|−1

(
q2l2B
2

)]
eq

2l2B/4 n 6= 0,

eq
2l2B/4 n = 0.

(6.6)

Notice that if graphene is valley polarized (i.e., if we only consider one particular valley),
the effective Hamiltonian in Eq. (6.4) reduces to the one for the usual 2DEGs defined in
Eq. (5.6), apart from the different form factor. Furthermore, for n = 0 the form factor
of graphene coincides with the one from the conventional 2DEGs. Hence, the special
characteristics of graphene do not change the structure of the lowest Landau level.

6.2 Effective interaction in graphene

From the effective interaction, we can already gain some information about the possible
electronic phases of the system. In Chapter 5, we have shown that for normal 2DEGs
there is some universal behavior in the effective interaction in real space. When we scale
the potential by lB/RC and the coordinates by RC , the curves for the potential become
quasi-universal and a characteristic length scale emerges. The presence of this length
scale gives rise to the formation of electron bubbles. The question arises whether such
universal behavior also occurs in graphene and whether we can reveal a length scale in the
system. To this end, we plot the effective potential (6.5) in real space, together with the
scaled potential ṽn(r/RC) = vn(r)

√
2n+ 1, as shown in Fig. 6.1. Indeed, here we also see

this universal length scale emerging in the scaled potential. However, this does not seem
to hold for the n = 1 Landau level, which remains scale free. This can be understood
because the form factor in graphene in the n-th Landau level is a combination of the
normal form factors in the n-th and (n− 1)-th Landau level. Since the effective potential
for normal electrons in the lowest Landau level is scale free, we might expect that this
characteristic also shows up in the n = 1 Landau level in graphene, which indeed seems
to be the case. Hence, there are can only be a Wigner crystal or a liquid phase in the
n = 1 Landau level, since the existence of bubbles is intrinsically linked to the effective
attractive interaction at length scales RC < r < 2RC , which manifest as a shoulder (a
plateau) in the effective rescaled potential for n > 1.

Another remark that can be made about Fig. 6.1 is that the scaled potential still looks
as if the various graphs are not all scaled to the same length scale. Notice that we have
scaled both the potential and the distance by

√
2n+ 1. However, since the potential in

graphene mixes the n-th and (n − 1)-th Landau level, we may assume that the scaling
should also incorporate this mixing. If we scale the distance by the average cyclotron
radius, that is,

R̄C =
lB
2

(√
2n+ 1 +

√
2(n− 1) + 1

)
, (6.7)

and the potential by lB/R̄C , then we obtain the results shown in Fig. 6.2. We can
conclude that scaling by this average cyclotron radius yields a better universal result and
that there is a length scale of approximately 2R̄C emerging in the system.
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Figure 6.1: (a) Effective real space potential in various Landau levels. (b) The rescaled
potential. A universal length scale emerges, except in the n = 1 Landau level.
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Figure 6.2: Effective scaled potential in graphene, using the most appropriate R̄C , which
takes into account the mixing of Landau levels in graphene. The scaling parameters are
defined in Eq. (6.7).

6.3 Electron-solid phases in graphene

As a first step in describing electron-solid phases in graphene, we consider a fully spin
and valley polarized state, such that the interaction Hamiltonian reads

H =
1

2

∑
q

vgn(q)ρ̄(−q)ρ̄(q),

where vgn(q) was defined in Eq. (6.5). Since the only difference between this Hamiltonian
and the one we considered in the case of GaAs is captured by the effective potential, we
can use precisely the same derivation as before to arrive at the Hartree-Fock Hamiltonian

HHF =
1

2

∑
q

uHFn (q)〈ρ̄(−q)〉ρ̄(q),
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where

uHFn (q) = vgn(q)− uFn (q)

= vgn(q)− 1

NB

∑
p

vgn(p)e−i(pyqx−qypx)l
2
B . (6.8)

The Fock exchange potentials uFn (q) will also be different, since they depend on vgn(q).
The calculation of these potentials is straightforward, just like before and the explicit
results are given in Appendix C.2. From this Hamiltonian, we can again calculate the
cohesive energy and the expression will be the same as before in Eq. (5.14), apart from
the Hartree-Fock potential that we have established already.

We can then plot the energies for the electronic phases in graphene. In Fig. 6.4, the
Wigner crystal and the 2-electron-bubble phase are shown and compared with the usual
results for GaAs in the n = 1 Landau level. The Wigner crystal phase (1-electron bubble)
clearly has lower in energy in graphene than in GaAs for filling factors larger than 0.1,
whereas the 2-electron-bubble phase in graphene has a higher energy for small filling
factors and a lower energy for filling factors larger than 0.3, approximately. In Fig. 6.5,
the relevant bubble phases in the n = 2 and n = 3 Landau levels in graphene are also
shown. One common feature with the GaAs electronic phase diagram is that they seem
to obey the empirical observation that in the n-th Landau level, there are n + 1 bubble
phases, although this might be spoiled by other phases that can become the ground state
near half filling. For example, in Fig. 6.5b, the 4-electron bubble is the ground state only
in a very small regime near ν̄ = 0.5. However, in that region, the striped phase often
turns out to be the ground state and this could completely wash out the 4-electron-bubble
phase in this Landau level.

One important comment regarding the energies near a filling of ν̄ = 1/2 should be
made. Recall that for the n = 1 Landau level in graphene, the effective potential was
scale free and we concluded that there are then no bubble phases present. However,
from Fig. 6.4, one might argue that the 2-electron-bubble phase has a lower energy than
the Wigner crystal for filling factors slightly below 0.5. This contradiction arises from
the fact that the system is in a very special regime near half-filling, where there can
arise other kinds of solid phases that we have not discussed here, like a striped phase,
or phases that need a whole different theory to describe them. To understand why the
latter emerge, remember the composite fermion approach to describe states of fractional
filling described in Section 3.5.2. We can make a composite fermion by attaching an even
number of flux quanta to one electron. We then get an IQHE of composite fermions in
an effective magnetic field B∗ = B − 2sφ0nel, where 2s is the number of attached flux
quanta. However, for a filling of ν̄ = 1/2 there are two flux quanta for each electron,
hence by forming composite fermions, there are no flux quanta left and we obtain an
effective magnetic field B∗ = 0. The system will behave as a Fermi liquid then, at least,
in the lowest Landau level (for fillings ν = 1/2 and ν = 3/2). The projected Fermi-liquid
state wave function was first written down by Rezayi and Read [48]. Since this wave
function described a compressible state, there is no quantization of the Hall resistance
at half filling in the lowest Landau level, which is in accordance with experiments [11].
In higher Landau levels, the Fermi liquid is unstable due to the wave function overlap
of two interacting particles. Particles will tend to pair up, similar to Cooper pairing in
superconductors. A wave function for this system was proposed by Moore and Read [49]
and it includes a Pfaffian, which makes that these half-filled states in higher Landau
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Figure 6.3: Numerical calculations of various electron-solid phases done by Zhang et
al. [50] for graphene in the n = 1 (a), n = 2 (b) and n = 3 (c) Landau level. Figure
extracted from Ref. [50].

levels are also referred to as Pfaffian states. A more rigorous description of these states
is outside the scope of this thesis. We must just keep in mind that our theories do not
apply in the half-filling regime.

When comparing our results to numerical calculations of the bubble energies using
Green’s functions [50], we can conclude that the results are in excellent agreement, as
shown in Fig. 6.3. The transition points between the Wigner crystal and the various
bubble phases are at the same filling factors. They also considered the oblique Wigner
crystal, which becomes the ground state near half filling.

In Section 6.5, we will compare the results for the liquid phase and for all the solid
phases in graphene to determine which phase has the lowest energy.

6.4 Electron-liquid phase in graphene

In order to derive the cohesive energy of the liquid phase in graphene, we follow the deriva-
tion done in Section 5.3. Two important ingredients in the derivation are the Laughlin
wave function ψM and the plasma analogy that identifies |ψM |2 with the Boltzmann fac-
tor. The energy is then straightforwardly derived like in classical, statistical physics. The
question is now how this derivation will change if the electrons in consideration are those
in graphene.
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Figure 6.4: Cohesive energy of the M = 1 (Wigner crystal) and M = 2 bubble phases
for normal 2DEGs (solid line) and graphene (dashed line) in n = 1 Landau level.
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Figure 6.5: Various bubble phases in the n = 2 (a) and n = 3 (b) Landau level in
graphene.

We expect that the Laughlin wave function will be the same in graphene, since it was
postulated based on only a few general symmetry arguments, which are also present in
graphene. In particular, in the derivation of this wave function, Laughlin did not use
the fact that the electrons are either Schrödinger or Dirac electrons. We might expect
that the wave function is thus just as valid in graphene as in GaAs. Furthermore, we
can then employ the plasma analogy argument again to derive the cohesive energy in
the same manner as before. The only thing that will change is the effective potential
in Eq. (5.15). Thus, a change in the form factor is the only thing necessary to adjust
the cohesive energy of the Laughlin liquid to the case of graphene, just like in the solid
phase. Our results for the ground-state Laughlin-liquid energies in graphene are shown in
Table 6.1. To be able to compare our findings to numerical calculations, we also compute
the total ground-state energies, given by

Etot(ν) = Ecoh(ν)− ν̄

2

∫
dq F 2

n(q),
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which was derived in Eq. (5.16). Table 6.2 shows the total ground-state energies calculated
analytically for graphene in various Landau levels, compared with numerical calculations
done by Zlatko Papic. Fig. 6.6 shows his exact diagonalization result in the n = 0, n = 1
and n = 2 Landau level. The n = 0 Landau level is the same as in GaAs, thus this
can serve as a check to verify whether this numerical results also match with the GaAs
case, which has been studied more extensively. Comparing these numerical results with
our analytic calculations, we can conclude that they are in excellent agreement with each
other, except for the ν̄ = 1/3 case in the n = 2 Landau level. Later on, we will see that
this can be explained by the existence of a bubble phase at that particular filling. Hence,
the numerical calculations may not be accurate to describe the liquid phase in this case
because it is not the ground state. We will see in the next section that of all the energies
calculated numerically, this is indeed the only filling at which we expect the solid phase
to be lower in energy than the liquid phase. Altogether, we can conclude that this theory
to describe the FQHE in graphene is very accurate.

ν̄ = 1/3 ν̄ = 1/5 ν̄ = 1/7 ν̄ = 1/9
n = 1 -0.2263 -0.2247 -0.2098 -0.1958
n = 2 -0.1463 -0.2025 -0.2012 -0.1917
n = 3 -0.1244 -0.1549 -0.1833 -0.1822

Table 6.1: Cohesive energies of the ground state of the Laughlin liquid phase in graphene
(in units of e2/εlB) at different partial filling factors.

For the energies of the quasiparticle- and quasihole gaps, the situation is somewhat
more involved. Since they are based on a very elaborate Hamiltonian theory [44, 45],
it is presumably not enough to just change the form factor. For example, the multi-
component character of the wave function becomes relevant and many equations will
acquire a matrix form, which makes the problem significantly more complicated. Another
reason to doubt that our analytical result will match numerical calculations is that for the
case of GaAs, which was studied in Ref. [38], and which we have described in Chapter 5,
it is known that the quasiparticle and quasihole energies calculated analytically using
Murthy and Shankar’s theory are actually quite far off numerical calculations. In Fig. 6.7,
this is illustrated by a comparison of the gaps ∆ = ∆qp + ∆qh calculated analytically
by the Hamiltonian theory of Murthy and Shankar [45] and numerically by Park et
al. [51] for a normal 2DEG in the lowest Landau level. It is plotted as a function of
the thickness parameter λ, which appears in the so-called Zhang-Das Sarma potential
as v(q) = (2πe2/εq)e−qlBλ [44]. It is basically a Coulomb interaction that takes into
account the thickness of the sample. In the whole scope of this thesis, we use λ = 0, and
evidently in graphene λ must be particularly small. From this figure, we see that for λ = 0

ν̄ = 1/3 ν̄ = 1/5 ν̄ = 1/7
analytic numerical analytic numerical analytic numerical

n = 0 -0.409 −0.409± 0.001 -0.327 −0.327± 0.002 -0.280 −0.281± 0.003
n = 1 -0.370 −0.369± 0.001 -0.311 −0.311± 0.002 -0.271 −0.271± 0.004
n = 2 -0.265 −0.290± 0.002 -0.273 −0.273± 0.003 -0.252 −0.251± 0.005

Table 6.2: Comparison of our analytic results for the total ground state energies of the
Laughlin liquid phase in graphene (in units of e2/εlB), with numerical results of Z. Papic.
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(a) (b)

(c)

Figure 6.6: Numerical calculations for the ground state energy of the Laughlin liquid
state in the n = 0 (a), n = 1 (b) and n = 2 (c) Landau levels. Inset values are obtained
from extrapolations to the thermodynamic limit. Courtesy of Zlatko Papic.

the gap calculated with the Hamiltonian theory is twice as large as the numerical one.
Remarkably though, the theory explained in Chapter 5 that uses the analytic results to
compute the quasiparticle and quasihole energies agrees extremely well with experimental
measurements [52]. This is the main reason why we attempt at these calculations, in any
case.

In the next section, we will plot all the energies for the various phases and we will also
include the quasiparticle and quasihole gaps that we calculated, keeping in mind that
they may not be very accurate.

6.5 Competition between electron-phases in graphene

We will now compare the energies of the solid phases with those of the liquid phase to
determine the phase diagram in various Landau levels. Remember that in the lowest
Landau level the form factor in graphene is the same as in GaAs. Since the energies
were calculated using an effective theory, in which the special behavior of the electrons
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Figure 6.7: Quasiparticle-/hole gaps in the lowest Landau level calculated analytically
using the Hamiltonian theory of Murthy and Shankar and numerically by Park et al. The
p = 1 case corresponds to a filling ν̄ = 1/3. Figure from Ref. [44].

in graphene was completely captured by the form factor, the phase diagram in the lowest
Landau level in graphene is the same as in GaAs (see Fig. 5.4).

For the n = 1 Landau level, the results are shown in Fig. 6.8. In principle, the
Laughlin liquid energies are always lower than those for the Wigner crystal (blue solid
line) or bubble phase (orange solid line). Away from the filling factors ν̄ = 1/(2s + 1),
the liquid energies might be a bit higher, but it is very unlikely that they will exceed the
electron-solid energies. However, as we have seen before, impurities in the sample lower
the energy of the electron-solid phases, while letting the energies of the electron-liquid
phase basically untouched. This is depicted in Fig. 6.8 by the dashed lines, for the same
impurity potential strengths as we considered before (Epin = 2.5 · 10−5 and Epin = 10−4).
The ν̄ = 1/3 and ν̄ = 1/5 liquid state are nevertheless still lower in energy. However, for
a strong impurity potential the Wigner crystal phase can become the lowest in energy for
small filling factors. a reentrant behavior, where solid and liquid phases alternate with
each other, is also conceivable if the impurity potential is very strong, but it is most likely
that there are no solid phases whatsoever in this Landau level. This case is actually quite
similar to the lowest Landau level. This resemblance is understandable because the form
factor in graphene is a combination of the n-th and the (n− 1)-th form factor of GaAs,
hence the lowest Landau level behavior may dominate in this case.

For the n = 2 Landau level (see Fig. 6.9), the FQHE does not occur at ν̄ = 1/3, since
the 2-electron-bubble phase is lower in energy. The other FQH states might be visible,
but the dashed lines in Fig. 6.9 show that if there are a lot of impurities in the sample, the
FQH states at low fillings might be dominated by the Wigner crystal. The ν̄ = 1/5 state
seems to be the most likely to occur in the n = 2 Landau level. For filling factors within
the range 0.2 − 0.32 there might also be a Wigner crystal coexisting with a 2-electron
bubble.

For the n = 3 Landau level, the ν̄ = 1/3 and the ν̄ = 1/5 Laughlin states are always
higher in energy than the bubble phases, thus they will not be visible. The FQH states
at lower fillings may only be seen in very clean samples, as indicated by the dashed
lines in Fig. 6.10. At higher filling factors, there are 2-electron-, 3-electron- and possibly
4-electron bubbles appearing and perhaps also coexisting.
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Although charge-density waves have been observed in graphene, the underlying mech-
anisms are very different to the one described in this thesis. For example, charge-density
waves were observed in twisted graphene layers [53]. However, in graphene, there have
been no experimental signs thus far of a charge-density wave that arises due to electronic
interactions in a quantum Hall system. This is expected for the lowest two Landau levels,
but in the n = 2 Landau level, we certainly expect crystal phases at filling factors above
about 0.3.
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Figure 6.8: Solid and liquid phases in the n = 1 Landau level in graphene. The dashed
lines are the energies when taking impurities into account.
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Figure 6.9: Solid and liquid phases in the n = 2 Landau level in graphene. The dashed
lines are the energies when taking impurities into account.
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Figure 6.10: Solid and liquid phases in the n = 3 Landau level in graphene. The dashed
lines are the energies when taking impurities into account.

6.5.1 The effect of Landau level mixing

Besides sample impurities, there are some other factors that can have an influence on
the energies of the liquid- and solid phases. One of them is Landau level mixing. Thus
far, we have assumed that there are no inter-Landau-level excitations. All dynamics is
restricted to one single Landau level. However, if the Coulomb interaction energy becomes
of the same order as the inter-Landau-level separation ~vF/lB, then these excitations can
have a considerable probability, even if the a Landau level is only partially filled. This
probability is related to the mixing parameter κ, defined by

κ =
e2/εlB
~vF/lB

=
e2

ε~vF
.

The only parameters that determine the value of κ are the Fermi velocity vF and the
dielectric constant ε. These are material properties, which depend on the substrate. For
free-standing graphene, κ ≈ 2.2, while on substrates, such as SiO2 or BN, it takes slightly
lower values κ ≈ 0.9 and κ ≈ 0.5−0.8 respectively [54]. In Ref. [54], the effect of Landau
level mixing in graphene on the Laughlin liquid states in the ν̄ = 1/3 case is investigated
in the n = 0 and n = 1 Landau level. This effect turns out to be negligible for κ . 2
in the lowest Landau level and for κ . 1 in the n = 1 Landau level. Hence, for not
too large values of κ most states will be unaffected. However, this Landau level mixing
breaks particle-hole symmetry, thus the presence of a FQH state at ν̄ = 1/3 does not
automatically imply one at ν̄ = 2/3.

For the solid phases, we resort to Ref. [55], in which the authors have investigated
the validity of the single-Landau-level approximation. In turns out that there are no
qualitative changes in the phase diagram, e.g., in the n = 2 Landau level there are still
phase transitions from Wigner crystal to 2-electron bubble and then to 3-electron bubble,
but these transitions might occur at slightly different filling factors. Furthermore, the
cohesive energies stay in the same range as they were (within about 10%). As a last
remark, we note that the inter-Landau-level spacing becomes smaller for higher Landau
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levels, since it scales like
√
n+ 1−

√
n, which goes to zero for increasing n, and we might

argue that Landau-level mixing then becomes dominant. However, in Ref. [55] it was also
shown that this argument is too simplistic, and it turns out that the single-Landau-level
approximation stays in fact applicable, even for large n.

Lastly, it is important not to confuse the notion of Landau-level mixing with the
fact that the form factor in graphene is a sum of the usual form factors in the n-th and
(n − 1)-th Landau level. In a sense, it mixes two consecutive Landau levels, but this is
not the kind of mixing that we refer to in the previous arguments. Even if the form factor
has these two terms, it still assumes that there are no inter-Landau-level excitations.

6.6 Conclusion

We have seen that graphene placed in a perpendicular magnetic field has a different wave
function than a usual 2DEG. Due to the two valleys in graphene, the wave function has
two components, which is reflected in the fact that the effective form factor in graphene
consists of a sum of the regular form factors in the n-th and (n − 1)-th Landau level.
To derive the phase diagram of a partially filled Landau level in graphene, it is sufficient
to adjust only the form factor and use the same methods as for normal 2DEGs. Since
we ignore inter-Landau-level excitations, the kinetic energy is constant and thus we can
model the system solely by the Coulomb interaction between the electrons. The different
dispersion of graphene therefore does not play an important role. By deriving the cohesive
energies of the Wigner crystal phase, various bubble phases and the Laughlin liquid
phases, we were able to compare them and construct the phase diagram in the first four
Landau levels.

In the lowest Landau level, the form factor of graphene is the same as in usual 2DEGs,
and hence the phase diagram is the same. The absence of a length scale in the effective
potential ensures that there are no bubble phases. Furthermore, the liquid state is always
lower than the Wigner crystal, hence in the lowest Landau level there are no solid phases.

In the n = 1 Landau level, the liquid phase is in principle lower in energy than the
solid phases. However, impurities in the sample might lower the solid energies and Wigner
crystal formation might be possible at low filling factors (ν̄ . 0.15), which should simply
enlarge the IQH plateau. Since the effective potential for graphene is also scale free for
n = 1, there are no bubbles phases.

In the n = 2 Landau level, the 2-electron-bubble phase is lower in energy than the
ν̄ = 1/3 Laughlin liquid state. The other FQH states can be seen if the sample has not
too many impurities. The ν̄ = 1/5 is expected to be the most stable. In this Landau level,
we certainly expect to see a 2-electron-bubble phase, liquid phase and possibly a Wigner
crystal for low fillings and perhaps a 3-electron bubble around half-filling, although we
cannot say much about that regime due to its special character.

In the n = 3 Landau level, we expect a 2-electron bubble, a 3-electron bubble and
possibly a 4-electron bubble in the regime 0.18 < ν̄ < 0.5. For small fillings, it is likely
that the FQH states at ν̄ = 1/7 and ν̄ = 1/9 might be present if the sample is clean
enough. Otherwise, the Wigner crystal will be lower in energy.
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Chapter 7

Hydrodynamical description of a
quantum Hall system

Having explained the electronic properties of graphene and the phenomena that can arise
in two-dimensional electron systems due to interactions between electrons, we will now
focus on the hydrogenated graphene experiment. As explained in Chapter 2, an AFM
measurement of the sample reveals islands with fractal-like structures. The origin of
these islands is not evident yet. However, we have reasons to perceive them as patterns
in the charge distribution (see Chapter 2), meaning that there is some mechanism that
causes the electrons to cluster into islands and form these fingered patterns. An additional
motivation for this belief stems from an article by Agam et al. [4], which provides a theory
that could explain this underlying mechanism. In short, they prove that an electronic
droplet in the quantum Hall regime can form these fingered islands if there is an additional
inhomogeneous magnetic field outside the droplet. This system behaves similar to two
classical fluids confined in a two-dimensional geometry, one with a small viscosity that
is injected into a more viscous one (see Fig. 7.1). The growth process of these fingered
structures is called Laplacian growth. In the hydrogenated graphene experiment, this
inhomogeneous magnetic field can be provided by a pseudo-magnetic field that arises
from deformations in the graphene sheet. The hydrogen, together with the underlying
substrate, can cause these deformations.

In Section 7.1, we will elaborate on the process of viscous fingering and explain the
theory that connects this classical problem to quantum Hall liquids. In Section 7.2, we
will show how this theory can be applied to predict the shape of these electronic droplets.
Lastly, in Section 7.3, we will explain in more detail how deformations in graphene can
lead to pseudo-magnetic fields.

Figure 7.1: Viscous fingering in a Hele-Shaw cell. Figures from Ref. [1].
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Figure 7.2: The map w(z) maps the exterior of the droplet to the exterior of the unit
disk.

7.1 Viscous fingering of electronic droplets

The fingering patterns that arise in the experiment illustrate a Laplacian growth process.
This phenomenon is ubiquitous in nature and can be found, for instance, in the formation
of snow flakes, riverbeds or bacterial colonies. The underlying mechanism that generates
this growth process can be different in each case. The class of viscous fingering is one of
the most studies forms of Laplacian growth. It is also referred to as the Saffman-Taylor
problem. In the classical version, a viscous fluid is confined between two glass plates
called a Hele-Shaw cell, and a less viscous fluid is then injected into the more viscous
one. The velocity with which the injected fluid propagates is proportional to the gradient
of the pressure. This relation is called D’Arcy’s law: v = −∇p, and it characterizes
Laplacian growth. Indeed, if we assume incompressibility of the fluids, then the density
ρ(r, t) = ρ is constant and hence we can use the continuity equation

−∇ · [ρ(r, t)v(r, t)] = ∂tρ(r, t),

to derive that ∇ · v = 0. Using D’Arcy’s law, we then obtain the Laplace equation
∇2p = 0. If we assume that the difference between the viscosities is large and if we ignore
surface tension, then the pressure is constant in the less viscous fluid and on the interface
C. Hence, vn(z) = −δnp(z) for z ∈ C and n denoting the outward direction normal to the
interface. We will present the ingredients to proof that D’Arcy’s law also holds for an
electronic droplet in the quantum Hall regime under the influence of an inhomogeneous
magnetic field outside the droplet. For the complete proof, we refer to Ref. [4].

Firstly, we consider the case of two classical fluids. To model the shape of the droplet,
it is common to use complex coordinates z = x + iy and a conformal map w(z). As
shown in Fig. 7.2, w(z) maps the exterior of the droplet (which we call Dex) to the
exterior of the unit disk (called Uex), which can be done according to the Riemann
mapping theorem. At a certain time t, the boundary of the droplet can be parametrized
by a curve γt : [a, b] ⊂ R→ C. The map w(z, t) maps, at time t, each point z in Dex to
some point w(z) in Uex. It can be shown that w(z) extends continuously to the boundary
of its domain1, such that the interface of the droplet is mapped to the unit circle.

1This is Carathéodory’s theorem, which states that if U is a simply connected open subset of the
complex plane C, whose boundary is a Jordan curve Γ, then the Riemann map f : U → D from U to
the unit disk D extends continuously to the boundary, giving a homeomorphism F : Γ → S1 from Γ to
the unit circle S1.
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One important tool in handling Laplacian growth problems are harmonic moments.
These are integrals of integer powers of z over some domain. In this case, the harmonic
moments of the exterior of the droplet are given by

tk = − 1

πk

∫
Dex

z−kd2z.

One of the reasons why we use these integrals is that they characterize the shape of the
droplet, which is what we are interested in, since we want to investigate how the droplet
grows. Secondly, it can be shown that D’Arcy’s law holds if and only if the harmonic
moments are constants of motion, i.e., ∂ttk = 0 [4]. Hence, if we want to show that an
electronic droplet in the quantum Hall regime under the influence of an inhomogeneous
magnetic field outside of the droplet satisfies D’Arcy’s law, it is sufficient to show that
the harmonic moments of the droplet do not depend on time. This problem can then be
seen as a quantum mechanical version of the Saffman-Taylor problem.

Next, we will set up the quantum mechanical problem, as done in Ref. [4]. We consider
a constant magnetic field B0 perpendicular to the plane, situated in a disk of radius R0.
The disk is surrounded by an annulus R0 < |z| < R1, in which there is a magnetic
field B1, which is directed opposite to B0, such that the total flux Φ of the whole disk
|z| < R1 is equal to Nφ0, where φ0 is the elementary flux quantum. Inside the inner
disk, there is some potential that confines N electrons in a circular droplet, such that the
lowest Landau level is completely filled. Here, we neglect the interactions between the
electrons. One can tune the magnetic field B1 to ensure that the radius of the droplet RD

is much smaller than R0 (see Fig. 7.3). In Section 3.3.3, we have derived that electrons
in a perpendicular magnetic field in the lowest Landau level are performing a cyclotron
motion around a guiding center, which is located on a circle with radius lB

√
2m+ 1,

where m is the quantum number associated to the degeneracy of the Landau level. We
have shown that the maximum value that m can take is NB. If the lowest Landau level
is completely filled, the total filling ν = N/NB is equal to 1, which implies that NB = N .
We can thus write the radius of the droplet as RD = lB

√
2N + 1, where N is the number

of electrons. Next, one places a nonuniform magnetic field δB inside the disk, but away
from the droplet (δB = 0 inside the droplet), such that the total flux is unchanged by
this field, i.e.,

∫
d2z δB(z) = 0. Note that this nonuniform magnetic field must thus

have both positive and negative components. The number of states per Landau level is
NB = AB/φ0, where A is the area of the total disk. We assume that the lowest Landau
level always stays completely filled, thus by tuning B1, while keeping the other fields
fixed, one can then increase the number of electrons.

Consider the Hamiltonian of these spin polarized electrons in a perpendicular magnetic
field,

H =
1

2m
(−i~∇− eA)2 − µBB.

The wave functions can be written in the Coulomb gauge (i.e., ∇ ·A = 0) as ψn(z) =
Pn(z)e−W (z)/~, where W (z) is the potential that obeys B = −∇2W and Pn(z) is some
holomorphic polynomial [4]. The total wave function of the droplet can then be written
as

Ψ(z1, · · · , zN) =
1√
N !τN

∏
n<m<N

(zn − zm) e
1
~
∑

nW (zn),
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Figure 7.3: Schematic set-up of the electronic droplet with radius RD, placed in a disk
of radius R0 (with magnetic field B0), surrounded by an annulus R0 < |z| < R1 (with
magnetic field B1). Outside the droplet there is an inhomogeneous magnetic field δB.

where τN is some proportionality constant. To take into account the nonuniform part of
the magnetic field, one considers its potential V , defined by δB = −∇2V . The following
equations that determine this potential will be the most important ones in understanding
the fingering problem:

V (z) =
1

2
Re
∑
k≥1

tkz
k for z ∈ Din (7.1)

tk =
1

πk

∫
Dex

δB(z)z−kd2z (7.2)

From this equations, one can see how the nonuniform magnetic field influences the shape
of the droplet. Notice that tk are the harmonic moments of the deformed part of the
magnetic field. The integral runs over the exterior of the droplet. Furthermore, we can
see that although δB = 0 inside the droplet2, V (z) is non-zero there and depends on
the harmonic moments of the region outside the droplet. The electrons in the droplet
are thus influenced by this potential V (z) that arises due to distant homogeneities in the
magnetic field. This effect is called the Aharonov-Bohm effect and is purely quantum
mechanical [56]. Intuitively, one can say that in the quantum-mechanical description, the
electrons are not completely localized inside the droplet, but they also have a small, yet
finite, probability of exploring the regions outside the droplet. Hence, they can indeed
be influenced by the nonuniform magnetic field far away from the droplet.

Here, we will not go into details of the proof that these harmonic moments tk are
constants of motion (which prompts D’Arcy’s law), but refer the reader to Ref. [4]. We
will rather use Eqs. (7.1) and (7.2) to make some more explicit calculations regarding the
evolution of the droplet’s shape, in the following section.

7.2 The shape of the droplet

Having set up the theoretical tools to handle Laplacian growth problems, we proceed
to work out an explicit example, to obtain a better intuition about how these fingering

2This can indeed be verified by calculating δB = −∇2V = −4∂z∂z̄V (z, z̄) = −∂z∂z̄
∑

k≥1(tkz
k +

tkz̄
k) = 0.
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patterns emerge. In this section, we will follow Ref. [57].
We consider a potential of the form

V (z) =
1

2
Re
(
tM+1z

M+1
)
, (7.3)

where M is some positive integer. By choosing a simple potential, the corresponding
conformal map that sends the boundary of the droplet to the unit circle also has a simple
form [57],

z(w) = rMw + uMw
−M , (7.4)

where rM and uM are real functions of N , which can be related to Eq. (7.3) by

tM+1 =
uM

(M + 1)rMM
, N =

r2M −Mu2M
2

. (7.5)

If the potential V (z) is given, i.e., if tM+1 is fixed, Eq. (7.4), together with Eq. (7.5),
are sufficient to describe the evolution of the droplet, as the number of electrons N is
increasing. We will consider the cases M = 1 and M = 2 explicitly and subsequently
prove some statements about the evolution of the droplet for general M .

First, consider M = 1. We will show that this corresponds to an ellipse with constant
eccentricity. For this case, Eq. (7.5) reads

t2 =
u1
2r1

, N =
r21 − u21

2
.

From this, we can derive r1(N) and u1(N) as function of N for constant t2,

r1(N) =

√
2N√

1− 4t22
, u1(N) =

2t2
√

2N√
1− 4t22

.

The shape of the droplet is given by Eq. (7.4). Its maps the unit circle into the boundary
of the droplet. The unit circle can be parametrized as w(t) = eit, for 0 ≤ t ≤ 2π. The
interface of the droplet is then parametrized by

zBM=1(N) = [r1(N) + u1(N)] cos(t) + i[r1(N)− u1(N)] sin(t), 0 ≤ t ≤ 2π.

In Fig. 7.4, the interface is shown for various values of N . Be careful not to confuse t with
time. Here, t is used to parametrize the boundary of the droplet, whereas the number
of electrons N basically serves as the time variable, since electrons are injected into the
droplet at a constant rate.

For M = 2, the droplet grows in a more irregular way. We will see that it starts
developing cusps, i.e., singularities appear at the boundary of the droplet. Repeating the
same procedure as in the previous case, we obtain

zBM=2(N) = [r2(N) cos(t) + u2(N) cos(2t)] + i[r2(N) sin(t)− u2(N) sin(2t)], 0 ≤ t ≤ 2π,

where

r2(N) =

√
1− γ(N)

6t3
, u2(N) =

1− γ(N)

12t3
,
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M = 1

x

y

Figure 7.4: For M = 1, the droplet is an ellipse that grows as the number of electrons in
increased.

with γ(N) =
√

1− 144t23N . In Fig. 7.5, the evolution of the boundary of the droplet into
cusps is shown.

For general M ≥ 2, it turns out that the boundary simultaneously develops M + 1
cusps at some critical number of electrons N∗, such that it has an (M +1)-fold rotational
symmetry. In Appendix D.1, we derive this critical point to be

N∗ =
1

2
(M − 1)M−(M+1)/(M−1)[(M + 1)tM+1]

−2/(M−1). (7.6)

Furthermore, it can also be shown that a finger at position x(N) for N . N∗, grows into
a cusp at position x∗ = x(N∗),

x∗ − x(N) =
2√

M − 1

√
N∗ −N +O(N∗ −N). (7.7)

The speed dx/dN at which the finger approaches the singularity is universal, in the sense
that is does not depend on tM+1.

For M > 2 it is very difficult, if not impossible, to derive an analytic expression
for the boundary zBM(t). However, it is possible to reconstruct the growth process by
Monte Carlo simulations. This can be done by using the plasma analogy, which we have
introduced already in Section 3.5.1. We identify the probability density of the electron
droplet |ΨM |2 with the Boltzmann factor eβUcl/N !τN , where

Ucl = −
∑
i<j

ln |zi − zj|+
N∑
i=1

[
|zi|2/4− V (zi)

]
.

Thus, if the potential V (z) is known, we can in principle determine the evolution of the
droplet by using Monte Carlo simulations.
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Figure 7.5: As the number of electrons in the droplet is increasing, the boundary develops
cusps at some critical N∗.

7.3 Pseudomagnetic fields in graphene

Before we can apply any of these theories to the hydrogenated graphene experiment, we
must first investigate how corrugations in graphene, which arise due to a combination
of the hydrogen atoms and the substrate, can lead to a pseudo-magnetic field. Indeed,
in 2010, it was experimentally shown that the strain from a nanobubble in an otherwise
flat sheet of graphene may lead to a pseudo-magnetic field with a strength greater than
300 T [58].

Each site xα of the graphene unperturbed lattice is shifted by uα({xβ}), such that the
total displacement is small in comparison with the inter-atomic distance, |u| � a. The
deformed coordinates are given by

x′α = xα + uα, (7.8)

for α = x, y, z. The distance between infinitesimally distant points changes then from

dl2 = dxαdxα

to

dl′
2

= dx′αdx
′
α

=
∂x′α
∂xβ

∂x′α
∂xγ

dxβdxγ,

where β, γ = x, y since they correspond to the coordinates of the original, flat graphene
surface, which has no dz component. Furthermore, we sum over repeated indices. Sub-
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stituting Eq. (7.8) for x′α, we obtain

dl′
2

=

(
∂xα
∂xβ

+
∂uα
∂xβ

)(
∂xα
∂xγ

+
∂uα
∂xγ

)
dxβdxγ

=

(
∂xα
∂xβ

∂xα
∂xγ

+
∂xα
∂xβ

∂uα
∂xγ

+
∂uα
∂xβ

∂xα
∂xγ

+
∂uα
∂xβ

∂uα
∂xγ

)
dxβdxγ

= dl2 +

(
δα,β

∂uα
∂xγ

+ δα,γ
∂uα
∂xβ

+
∂uα
∂xβ

∂uα
∂xγ

)
dxβdxγ

= dl2 +

(
∂uβ
∂xγ

+
∂uγ
∂xβ

+
∂uα
∂xβ

∂uα
∂xγ

)
dxβdxγ.

By interchanging the dummy indices α and γ, we can write this results as

dl′
2

= dl2 + 2uαβdxαdxβ,

where

uαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

+
∂uγ
∂xα

∂uγ
∂xβ

)
(7.9)

is the deformation tensor.
Since each point in the graphene lattice is shifted, the hopping amplitudes for the

three nearest neighbors will not be a constant. It will in fact be a different value for each
nearest neighbor (ignoring next-nearest-neighbor hoppings). The change in the hopping
amplitudes can be included in the Hamiltonian by writing [59]

H = σ · (−i~vF∇−A) , (7.10)

where σ is a vector of Pauli matrices. The first term in this Hamiltonian is the usual
Hamiltonian for flat graphene, as derived in Eq. (4.16). The second term is the contribu-
tion to the Hamiltonian from the deformations. Its components relate to the deformation
tensor by [59]

Ax = cβt (uxx − uyy) , (7.11)

Ay = −2cβt uxy, (7.12)

where β = −∂ ln t/∂ ln a is the so-called electron Grüneisen paramter. It is a dimen-
sionless property of the crystal and for graphene it is approximately β ≈ 2 − 3 [60].
Furthermore, c is some numerical constant, which depends on the details of the chemical
bonding. Since it is not relevant for the physics, we will absorb it in β from now on.
Lastly, t is the hopping amplitude and a the lattice spacing. Notice that the Hamil-
tonian (7.10) has the same form as that of flat graphene in a magnetic field B that is
generated by a vector potential A. In that light, we can compute the pseudo-magnetic
field corresponding to the vector potential of the deformations, which is given by

evFBps =
∂Ay
∂x
− ∂Ax

∂y
, (7.13)

where the factor evF is to ensure that Bps has indeed units of magnetic field.
One important property of these pseudo-magnetic fields is that they preserve time-

reversal symmetry, unlike real magnetic fields. What this means, is that the two valleys
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in graphene feel an opposite magnetic field. Remember that the valleys represent point
in momentum space, so they are in fact related to each other by time reversal (since
K ′ = −K). By explicit calculation, it can be shown that

BK = −BK′ ,

which always follows intuitively, because deformations alone can not break time-reversal
symmetry [59].
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Chapter 8

Hydrodynamical theory applied to
graphene

The aim of this section is to create a model that can be used to apply the theory from
Chapter 7 to the experimental set-up described in Chapter 2. Although the experiment
is the starting point of our derivations, we will not use the model to draw detailed
conclusions about the experiment, since the model just serves as a rough way to bridge
the gap between the theory of Chapter 7 and the experiment at hand.

Furthermore, we should remark that in the experiment, it was shown that not the
mechanical deformations themselves produce the pseudo-magnetic field, but actually the
chemical strain that is imposed by the hydrogen atoms on the bonds between the carbon
atoms. However, this model serves in the first place as an example of a system where
the pseudo-magnetic fields are generated by mechanical strain. In practice, this means
that the deformations should be sufficiently large to be able to produce pseudo-magnetic
fields.

In this model, we attempt to calculate the harmonic moments tk, which appear as the
coefficients in the expansion of the potential V (z), as shown in Eqs. (7.1) and (7.2). By
using the first order approximation for V (z), given by Eq. (7.3), it is then in principle
possible to perform Monte Carlo simulations, in order to model the fingering process of
the electron droplets.

First of all, the question that arises is how to model the deformations in the graphene
sample, which emerge due to the hydrogen atoms and the SiC substrate, such that we can
calculate the pseudo-magnetic fields associated to these corrugations. In Section 8.1, we
will present a toy model that provides a way to capture the effect of one hydrogen atom.
Subsequently, we will derive the corresponding pseudo-magnetic field in Section 8.2 and,
as an example, calculate the harmonic moments for different values of the parameters in
the system.

8.1 The model

Let us start by considering the effect of the substrate. In Chapter 2, we explained that not
every silicon atom in the SiC substrate binds to a carbon atom from the graphene buffer
layer. Some of them are left freely ‘dangling’. The actual sheet of graphene on top of
the buffer layer still feels the effect of these unsaturated bonds. This causes the graphene
to form little bumps above them. Since these dangling bonds emerge in a triangular
lattice with a lattice spacing of 2 nm, the bumps will form the same triangular lattice. In
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Figure 8.1: Cross-section of buffer layer and actual graphene layer on top of the SiC
substrate. The bumping effect is the largest in the buffer layer, but it is still visible in
the top graphene layer. Figure from Ref. [8].

Fig. 8.1, we can see that the height of the bump is small in comparison with the spacing
between the bumps. This ensures that the deformation is smooth enough to generate a
pseudo-magnetic field without distorting the structure of the graphene too much. The
hydrogen that is then applied on top of the corrugated graphene layer occupies preferably
the sites in one sublattice op top of the bumps. They will increase the bump and allow
for the formation of the pseudo-magnetic fields. We choose to model these bumps by the
following height profile:

h(x, y) =
h0
3

+
2h0
9

[
cos

(
2πx√

3λ
− 2πy

λ

)
+ cos

(
2πx√

3λ
+

2πy

λ

)
+ cos

(
4πx√

3λ

)]
, (8.1)

where h0 is the height of a bump and λ is the lattice spacing. This function is a simple
example of a triangular lattice of bumps, which have the shape of cosines. Note that
there are more ways to model the bumps and we just chose a simple one.

The set-up of the theoretical model in Section 7.1 is based on an electronic droplet
in a constant magnetic field, which serves to quantize the kinetic energy, together with
a nonuniform magnetic field outside the droplet. Hence, we have to determine which
parts of the pseudo-magnetic fields will fulfill which role. In this model, we assume
that the pseudo-magnetic field that is generated by the periodic deformations due to the
substrate and the hydrogen atoms acts as the uniform field. Although the field is not
exactly uniform, the bumps are uniformly distributed over the graphene layer. Hence,
it can indeed play the role of the uniform part of the magnetic field B0(z). For the
nonuniform part, we consider one extra hydrogen atom that sits on top of one of the
bumps, next to an already present hydrogen atom, thereby increasing the bump even
further. The pseudo-magnetic field of that configuration, minus the overall field, will
serve as the nonuniform part δB(z) = B(z) − B0(z). Since the effect of the hydrogen
atom is to increase the height of one of the bumps, we model it by a Gaussian function
with a standard deviation equal to λ/4, in order to keep the radius of the bump roughly
the same. The height profile of the Gaussian bump is thus

hH(x, y) =
h0
H
e−8[(x−x0)

2+(y−y0)2]/λ2 , (8.2)

where (x0, y0) is the position of the hydrogen atom and H = h0/H0 is defined as the ratio
between the height h0 of the deformations due to the substrate and the height H0 of the
additional Gaussian bump.

For the electronic droplet, we assume that there is a circular droplet of radius RD. In
the experiment, the droplet could be confined by either impurities or by the deformations
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x/λ

y/λ

z/h0

Figure 8.2: Bumps in a triangular lattice, due to the substrate. The peak is the defor-
mation due to one hydrogen atom that is locate there. The red and black circles indicate
respectively the position of the droplet and the radius R0, as defined in Section 7.1.

of the graphene layer, but for now we just consider it to be there and do not worry about
the origin of its formation. In Fig. 8.2, the configuration of this toy model is shown for
H = 1.

8.2 Results

We will proceed to derive the pseudo-magnetic field that arises due to the deformations
formed by the silicon dangling bonds, using the height profile given in Eq. (8.1). Notice
that, in the absence of in-plane deformations, the deformation tensor (7.9) is of the form

uαβ =
1

2

∂h

∂xα

∂h

∂xβ
. (8.3)

Using Eqs. (7.11) and (7.12), together with Eq. (7.13), we can readily derive the pseudo-
magnetic field due to the dangling bonds (see Appendix E.1 for derivation),

B0
ps =

βt

evF

256π3h20
243λ3

[
cos

(
2πy

λ

)
− cos

(
2
√

3πx

λ

)]
sin

(
2πy

λ

)
. (8.4)

In Fig. 8.3, this pseudo-magnetic field is shown, together with the deformed graphene
sheet. The peaks of the pseudo-magnetic field are also arranged in a triangular lattice,
with a lattice constant 1/

√
3. We can see that the magnetic field has its peaks (either

positive of negative) on the lowest points in the graphene sheet, while the magnetic field
is zero in the middle of the bumps.

Next, we calculate the nonuniform part of the magnetic field δB(x, y) = B(x, y) −
B0(x, y) (see Appendix E.1). For a hydrogen atom in the origin, it is given approximately
by

δB(x, y) = 4096
tβ

evF

H2
0

λ6
(y3 − 3x2y) e−16(x

2+y2)/λ2 .
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Figure 8.3: Pseudo-magnetic field in units of βth20/evFλ
3 (blue) of a period deformation

of the graphene layer (orange) consisting of a triangular lattice of bumps.

This is exactly the pseudo-magnetic field that arises due to the single Gaussian bump
defined in Eq. (8.2), which turns out to be the dominant term. In Fig. 8.4, this nonuniform
pseudo-magnetic field is shown. It has a three-fold rotational symmetry. At first sight,
this may seem counter intuitive, because it is the magnetic field that arises due to a
configuration that possesses a full rotational symmetry. However, we must keep in mind
that the formulas that are used to calculate these magnetic fields are specific for graphene.
They originated from deformations of the hexagonal lattice. At a lattice point, graphene
has precisely this three-fold rotational symmetry. Hence, even if we consider the system
in the continuum limit, where typical distances are much larger than the lattice spacing of
graphene, the system still ‘remembers’ the underlying lattice and its symmetry properties.

δB

x/λ

y/λ

Figure 8.4: Pseudo-magnetic field that arises due to a Gaussian bump in the graphene
layer. δB is given in units of βtH2

0/evFλ
3.
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Using this pseudo-magnetic field, we want to compute the harmonic moments tk, as
defined in Eq. (7.2),

tk =
1

πk

∫
Dex

δB(z)z−kd2z

= − 2i

πk

∫
Dex

dxdy δB(x, y)(x+ iy)−k

= − 2i

πk
λ2−k

∫
Dex

dx′dy′ δB(x′, y′)(x′ + iy′)−k,

where x′ = x/λ and y′ = y/λ. If we consider the model, as described in the previous
section, there are two parameters that we can tune: the radius of the droplet RD and the
distance from the droplet to the hydrogen atom, which we will call L. They enter in the
integral for tk as

tk = − 2i

πk
λ2−k

∫ 2π

0

∫ ∞
RD

dφdr δB(r cos(φ− φ0)− L, r sin(φ− φ0))r
1−ke−ikφ,

where we wrote the integral in polar coordinates and places δB at a distance L from the
origin under an arbitrary angle φ0. In principle, the r-integral has to run to infinity, but
in practice it is sufficient to integrate up to some cut-off radius RC , which has to be larger
than L + λ in any case, since the field quickly falls off to zero away from δB, which has
a typical radius of approximately λ.

We calculate tk in units of h20βt/evFλ, such that the integral only depends on the pa-
rameter H, which we will set equal to 2. Furthermore, the factor λ−k that appears in front
of tk will be absorbed in zk when we substitute tk in the potential V (z) = Re

∑
k≥1 tkz

k/2,
such that z is dimensionless and all tk have the same units. To compute tk, we use the
full nonuniform magnetic field given in Eq. (E.1).

First, we will set the distance from the hydrogen atom to the center of the droplet to
L = 3 (we will represent space in units of λ in the rest of this chapter) and fix φ0 = 0. In
Table 8.1 the values for tk are shown for various k and RD. Note that RD can maximally
go up to about 2, otherwise the magnetic field starts to overlap with the droplet, which
violates the assumption that δB is outside the droplet. We repeat the same calculations
for L = 2. From both results, we can conclude that for large separations tk does not
change if you bring the hydrogen atom closer to the droplet. Only when the electronic
droplet is almost touching the magnetic field, i.e., L−RD ≈ 1, it starts to ‘feel’ its effect.
We can also say that if RD is decreased below L−1, the corresponding tk does not change.

On the other hand, if we fix RD and vary L, there is not such a clear point where the
effect of the magnetic field kicks in, as can be seen from Table 8.2. Rather, tk changes
smoothly as L is increased. It converges slowly to zero, unlike in the previous case where
tk converged to some finite value upon decreasing RD.

Lastly, we investigate the dependence of tk of the angle φ0 at which the hydrogen
atom is places. We fix L = 2 and RD = 1, such that we consider the point where the
droplet really start to feel the effect of the magnetic field. In Table 8.3, the values for tk
are shown for various values of φ0 between 0 and π. For π < φ0 ≤ 2π, the results are the
same as for 2π − φ0. We notice that they take values in the range [−t0k, t0k] for some t0k.

Notice that we can not draw any
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1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
t1 2.55 2.55 2.55 2.55 2.56 2.59 2.76 3.44
t2 1.70 1.70 1.70 1.70 1.70 1.72 1.80 2.11
t3 0.942 0.942 0.942 0.943 0.944 0.953 0.992 1.14

tk
RD

L = 3

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
t1 12.9 12.9 12.9 12.9 12.9 13.0 13.6 15.6
t2 12.8 12.8 12.8 12.8 12.8 13.0 13.5 15.2
t3 10.5 10.5 10.5 10.5 10.6 10.7 11.2 12.7

tk
RD

L = 2

Table 8.1: tk (in units of 10−3 h20βt/evFλ) for various values of RD. tk starts to change
round RD ≈ 2 for L = 3 and RD ≈ 1 for L = 2.

1.8 1.9 2 2.1 2.2 2.5 2.75 3
t1 19.4 14.6 11.7 10.1 9.65 5.72 4.18 2.55
t2 25.6 17.4 13.0 10.1 7.97 4.22 2.62 1.70
t3 23.8 15.2 10.7 7.92 6.00 2.80 1.59 0.942

tk
L

RD = 1

2.8 2.9 3 3.1 3.2 3.5 3.75 4
t1 4.42 3.15 2.59 2.24 1.97 1.38 1.04 0.807
t2 2.95 2.13 1.72 1.44 1.23 0.786 0.557 0.403
t3 1.71 1.22 0.953 0.776 0.640 0.374 0.247 0.168

tk
L

RD = 2

Table 8.2: tk (in units of 10−3 h20βt/evFλ) for various values of L.

0 π/8 π/4 3π/8 π/2 5π/8 3π/4 7π/8 π
t1 2.55 2.35 1.80 0.975 0 -0.975 -1.80 2-.35 -2.55
t2 1.70 1.20 0 -1.20 -1.70 -1.20 0 1.20 1.70
t3 0.942 0.360 -0.666 -0.871 0 0.871 0.666 -0.496 -1.30

tk
φ0

RD = 1, L = 2

Table 8.3: tk (in units of 10−3 h20βt/evFλ) for various values of φ0.
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Figure 8.5: The superposition of the K (solid line) and K ′ (dashed line) electrons leads
to a doubling in the number of cusps.

8.2.1 The formations of cusps in pseudo-magnetic fields

Until thus far, we have not taken into account the special feature of pseudo-magnetic
fields that they preserve time-reversal symmetry, unlike real magnetic fields, as discussed
in Section 7.3. When we do, we notice that the electrons in the, say, K valley experience
a non-uniform magnetic field δB, while the electrons in the K ′ valley then feel a field
−δB. Through Eqs. (7.1) and (7.2), which relate δB(z) to the potential V (z), we can
deduce that the potential that influence the electrons is also opposite in the two valleys.
Since we cannot distinguish between the K and K ′ electrons, the superposition of the
two potentials will give rise to an increase in the number of cusps, as shown in Fig. 8.5.

8.3 Discussion of the results

We have shown a way to set up a model that can apply the theory described in Chapter 7
to the experiment from Chapter 2. We have used the pseudo-magnetic fields that arise in
graphene due to deformations as the driving mechanism for the fingering of an electronic
droplet. By identifying the field generated by deformations due to the substrate as the
uniform part and the effect of one additional hydrogen atom on top op the graphene
layer as the non-uniform part, we were able to calculate some of the harmonic moments
tk for various values of the radius of the droplet RD and the distance between the droplet
and the hydrogen atom L. It turns out that if we fix L and compute tk for increasing
values of RD, it is only from the moment that RD ≈ L− 1 (in units of λ) that the values
start to change, which happens independent of k. Hence, the droplet ‘feels’ the magnetic
field when they are (almost) touching, since the radius in which the magnetic field is
essentially non-zero is approximately 1. When you increase the radius of the droplet even
further, the magnitude of tk becomes even larger, but it is a bit tricky to do this, since it
violates the assumption that the magnetic field is outside of the droplet.

Similarly, if we fix RD an vary L, tk starts to change when the magnetic field is in
the vicinity of the boundary of the droplet. Hence, it is the parameter L − RD which
determines when the magnitude of tk starts to grow, which should be around L−RD ≈ 1.
Furthermore, the larger L is, the smaller the magnitude of tk. This makes sense because
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of the r1−k term in the integral, which becomes smaller for increasing r.
We must remark that we cannot draw any conclusions from the actual values of tk. We

can merely compare them for different values of the parameters. For example, consider
the angle φ0, which determines the position (L, φ0) of the hydrogen atom. We certainly
expect it to influence the shape of the droplet (and hence tk), since we can intuitively
suspect that the droplet will form a finger towards the magnetic field (or away from it if
the magnetic field is of opposite sign). When we calculate tk for L− RD = 1 for various
φ0, we note that it varies all the way from −t0k to +t0k for some value t0k. From this
observation, we cannot derive the dependence of the shape of the droplet on φ0, since we
do not posses a direct way to ‘translate’ tk into the shape of the boundary z(w).

This model serves as an example for the application of the theory to practical situa-
tions. Calculating the harmonic moments of the nonuniform part of the magnetic field
is crucial here, since they completely determine the potential which drives the growth
process of the electronic droplet. Knowledge of this potential enables one to reveal the
evolution of the shape of the droplet, using Monte Carlo simulations.

We have not performed this simulations here and it might be interesting to investigate
in further research if one can reproduce the patterns that were observed in the experiment
using Monte Carlo simulations.

Furthermore, it would be very instructive to obtain a more profound understanding
of the analytic solutions for the shape of the boundary. It is only for the simply form of
the potential in Eq. (7.3) that it was possible to derive the exact form of the boundary,
which was already a highly non-trivial procedure.
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Chapter 9

Conclusion and outlook

Motivated by hydrogenated graphene experiments, in which fractal-like structures were
observed in the electron density, we have investigated two different kinds of interactions
in graphene under the influence of a perpendicular magnetic field. We have used existing
models for conventional two-dimensional electron systems like GaAs, and adjusted them
to fit the special characteristics of graphene.

To begin with, we have considered the interactions between electrons in a single
partially filled Landau level. In this regime, the kinetic energy is quenched, making the
Coulomb interaction between the electrons the dominant contribution to the Hamiltonian.
We have calculated and compared the energies of the Wigner crystal phase, the bubble
phases and the electron-liquid phase. As a start, we have shown that the Landau level
structure of the Hamiltonian can be collected in the form factor, which determines the
form of the effective interaction. The multi-component character of the wave function in
graphene causes this form factor to change with respect to the familiar one for GaAs.
The form factor in graphene for the n-th Landau level combines the form factors of GaAs
in the n-th and (n − 1)-th Landau level. This blending of two adjacent Landau levels
also influences the electronic phase diagram. We have seen that, for the lowest Landau
level, graphene behaves the same as GaAs, which exhibits no charge density waves but
only electron-liquid phases. Thereby, the fractional quantum Hall effect can be observed
at filling factors ν̄ = 1/(2s + 1), for integer s. For the n = 1 Landau level in graphene,
there are still some characteristics of the lowest Landau level present, as a consequence
of the Landau level blending. We have shown that the liquid phases are lower in energy
than the solid phases for all filling fractions. However, impurities in the sample can lower
the solid energies, especially at low filling. Indeed, if the impurity potential is sufficiently
strong, the ν̄ = 1/7 and ν̄ = 1/9 fractional quantum Hall states can be washed out. The
plateau in the resistivity will then be broadened because the electrons are collectively
pinned by the impurities and do not contribute to macroscopic electronic transport. In
higher Landau levels, the electron-solid phases become more pronounced. In the n = 2
Landau level, for instance, the ν̄ = 1/3 fractional quantum Hall state is dominated by
the 2-electron bubble phase, even without impurities. As the Landau level increases,
more bubble phases emerge and there could also be phase coexistence between different
electron-solid phases.

Furthermore, we have compared our analytic calculations for the electron-liquid en-
ergies to numerical ones and we have found that they are in excellent agreement, which
confirms the validity of our presumption that all of graphene’s special features can be
captured in the form factor.
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Until thus far, no signs of these types of electron-solid phases have been observed
in experiments. For the lowest Landau levels this is not surprising, since we expect the
liquid phase to dominate. It would be interesting to see whether future experiments in
higher Landau levels can verify our theoretical predictions of the various electron phases
in graphene, just like they did for GaAs.

In the second part of the thesis, we have analyzed the interaction between electrons
and an inhomogeneous magnetic field. Here, the electrons are in the completely filled
lowest Landau level, such that we can ignore electron-electron interactions. The motiva-
tion for this study was an existing theory that describes fingering of electronic droplets
in the integer quantum Hall regime, due to a nonuniform magnetic field outside the
droplet. Since this could provide an explanation for the fractal-like structures in the
hydrogenated graphene experiment. We have set up a model that uses pseudo-magnetic
fields in graphene to quantize the energy levels and to provide a nonuniform magnetic
field. We have seen that these pseudo-magnetic fields can arise due to deformations in
the graphene sheet, which can be generated by the underlying substrate or the hydrogen
atoms on top of the graphene layer. Subsequently, we have calculated the coefficients
of the potential that drives the fingering growth process and compared them for differ-
ent values of various parameters. With this, we have laid the groundwork for further
investigations that can be done using Monte Carlo simulations.

This model was inspired by the experiment but is actually much more general than
that and it could be used to describe the behavior of electrons in deformed graphene,
under the influence of a nonuniform magnetic field. For future research, it would be
very insightful to do Monte Carlo simulations to see whether it is possible to reproduce
the structures that were observed in the experiment. More experimental research on the
origin of the deformations would also be very instructive, since there are indications that
this pseudo-magnetic field is caused by chemical interactions instead of mechanical strain.
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Appendix A

Appendices to Chapter 4

A.1 Hamiltonian in first and second quantization

Here, we will show that the second-quantized Hamiltonian (4.13) in real space is equiva-
lent to the effective first-quantized Hamiltonian (4.12) in momentum space. First of all,
we write down the former,

H = t
∑
〈i,j〉,σ

(a†σ,ibσ,j + h.c.) + t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + h.c.),

and do a Fourier transform to momentum space, that is

aσ,i =
1√
N

∑
k

aσ,k e
ik·ri ,

where ri is the position of site i. The Fourier transform of the operators on the B-
sublattice are defined similarly. For notational convenience we will drop the spin index
σ from now on. For the nearest-neighbor hopping term we then obtain∑

〈i,j〉
a†ibj =

1

N

∑
k,k′

∑
〈i,j〉

a†kbk′e
−ik·rieik

′·rj

=
1

N

∑
k,k′

∑
〈i,j〉

a†kbk′e
−ik·(ri−rj)eirj ·(k

′−k).

Since we sum only over nearest neighbors, ri − rj = δm, where δm is one of the nearest-
neighbor vectors, as defined in Eq. (4.2). Hence, the sum over nearest neighbors reduces
to

∑
〈i,j〉

a†ibj =
1

N

∑
k,k′

N∑
j=1

a†kbk′e
irj ·(k′−k)

3∑
m=1

eik·δm

=
∑
k,k′

N∑
j=1

a†kbk′e
irj ·(k′−k)

3∑
m=1

eik·δm .

In the continuum limit, the sum over j of the exponent becomes and integral and yields a
delta-function δ(k − k′). Then the sum over k′ also becomes an integral which can then
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be evaluated. This leads to ∑
〈i,j〉

a†ibj =
∑
k

a†kbk

3∑
m=1

eik·δm .

The next-nearest neighbor term can be calculated in the same manner, except that now
ri− rj is one the of the six vectors connecting the next-nearest neighbors of a particular
site, which are ±a1, ±a2 and ±a3 ≡ ±(a1 + a2), where a1,2 are the primitive lattice
vectors of the sublattices, as defined in Eq. (4.1). The next-nearest neighbor term of the
Hamiltonian in momentum space thus becomes

∑
〈i,j〉

a†iaj =
1

2

∑
k

a†kak

3∑
m=1

(e−ik·am + eik·am)

=
∑
k

a†kak

3∑
m=1

cos(k · am),

where the factor 1/2 in the first line comes from the fact that we only sum over one
sublattice, which contains half of all the sites. The rest of the terms in the Hamiltonian
can be transformed similarly and we obtain for the Hamiltonian in momentum space

H = t
∑
k

3∑
m=1

(a†kbke
ik·δm + akb

†
ke
−ik·δm) + 2t′

∑
k

3∑
m=1

(a†kak + b†kbk) cos(k · am).

Subsequently, write it in matrix form as follows,

H =
(
a†k b†k

)
Heff
k

(
ak
bk

)
,

such that we can read off the matrix elements. They read

Heff
k =

3∑
m=1

(
2t′ cos(k · am) teik·δm

te−ik·δm 2t′ cos(k · am).

)
Using the notation introduced in Eq. (4.9),

γk =
(
1 + e−ik·a2 + e−ik·a3

)
,

we can write

3∑
m=1

eik·δm = eik·δ3γ∗k,

which can be seen by using the relations between δi and aj. The exponent on the right-
hand side is just a phase shift that is irrelevant for the physics of the system, which can
be seen from the dispersion relation (4.11), which only depends on the modulus of γk.
Furthermore, for the diagonal terms in the Hamiltonian we can write

3∑
m=1

2 cos(k · am) = |γk|2 − 3,
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which can be derived straightforwardly by writing out the expressions on both sides.
Notice that the term −3 will contribute to the Hamiltonian a constant term −3t′ which
we omit, just like we did originally for the effective Hamiltonian (4.12) because a constant
shift in the Hamiltonian is not relevant for the physics of the system. We then obtain

Heff
k =

(
t′|γk|2 tγ∗k
tγk t′|γk|2

)
,

which is exactly the effective first-quantized Hamiltonian in momentum space for which
we wanted to show the equivalence to the second-quantized Hamiltonian in real space we
started out with.
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Appendix B

Appendices to Chapter 5

B.1 Derivation of the form factor

In Eq. (5.3), we have written the density operator in reciprocal space in terms of the
projected density operator and a form factor, the latter given explicitly in Eq. (5.5). Here,
we will demonstrate how we can separate the density operator in those two contributions
and derive the explicit expression of the form factor. We start off by writing out the
density in reciprocal space and inserting the expression for ψn(r) given by Eq. (5.2),

ρn(q) =

∫
d2r ψ†n(r)ψn(r)eiq·r

=
∑
y0,y′0

∫
d2r 〈n, y0|r〉eiq·r〈r|n, y′0〉c†n,y0cn,y′0 .

We remark that |r〉 is an eigenstate of the position operator r̂ with eigenvalue r. Hence,
we can write

eiq·r̂ =

∫
d2r eiq·r̂|r〉〈r| =

∫
d2r eiq·r|r〉〈r|,

where we inserted a complete set of states in the first step and applied the position
operator in the second step. With this, we can write

ρn(q) =
∑
y0,y′0

〈n, y0|eiq·r̂|n, y′0〉c†n,y0cn,y′0 .

We can write the position operator as a sum of the guiding center position operator and
the cyclotron variable, as shown in Section 3.2, such that

eiq·r̂ = eiq·R̂+iq·η̂ = eiq·R̂eiq·η̂e−[R̂,η̂]/2 = eiq·R̂eiq·η̂,

where we used the Baker-Hausdorff formula and the fact that R̂ and η̂ commute. Fur-
thermore, since η̂ only acts on |n〉 and R̂ only on |y0〉, as we have elaborated on in
Section 3.3.1, we can split the two terms, such that

ρn(q) = 〈n|eiq·η̂|n〉
∑
y0,y′0

〈y0|eiq·R̂|y′0〉c†n,y0cn,y′0

= Fn(q)ρ̄(q).
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The form factor can now be computed by evaluating the matrix elements of eiq·η̂. Firstly,
we use Eqs. (3.9) and (3.13) to express η̂ in terms of the ladder operators,

η̂x =
ilB√

2

(
a† − a

)
, η̂y =

lB√
2

(
a† + a

)
.

Using this, we can write the form factor as

Fn(q) ≡ 〈n|eiq·η̂|n〉

= 〈n|e−qxlB(a†−a)/
√
2+iqylB(a†+a)/

√
2|n〉

= 〈n|e−lBqa†/
√
2+lBq

∗a/
√
2|n〉

= 〈n|e−lBqa†/
√
2 elBq

∗a/
√
2|n〉 el2Bq2/4[a†,a],

where we defined q ≡ qx− iqy and hence q∗ = qx + iqy in the second equality and we used
the Baker-Hausdorff formula in the third equality. Inserting a complete set of states, we
obtain

Fn(q) =
∞∑
j=0

〈n|e−lBqa†/
√
2|j〉〈j|elBq∗a/

√
2|n〉 e−l2Bq2/4.

Using the definition of the creation operator a†|j〉 =
√
j + 1|j + 1〉, we can derive that

〈n|e−lBqa†/
√
2|j〉 =

∞∑
m=0

√
(j +m)!

j!

1

m!

(
−lBq√

2

)m
〈n|j +m〉

=
∞∑
m=0

√
(j +m)!

j!

1

m!

(
−lBq√

2

)m
δn,j+m

=


√

n!
j!

1
(n−j)!

(
−lBq√

2

)n−j
if j ≤ n,

0 if j > n.
(B.1)

The second term appearing in 〈n|eiq·η̂|n〉 is basically the Hermitian conjugate of the first
one, thus we can combine both terms to obtain

Fn(q) =
n∑
j=0

n!

j!

1

(n− j)!2
(−1)n−j

(
l2Bq

2

2

)n−j
e−l

2
Bq

2/4

=
n∑
j=0

(
n
j

)
(−1)j

j!

(
l2Bq

2

2

)j
e−l

2
Bq

2/4

= Ln

(
q2l2B

2

)
e−l

2
Bq

2/4,

where Ln(x) is the n-th Laguerre polynomial.

B.2 Density operator commutation relations

We will derive the commutation relation in Eq. (5.8). For convenience, we will use the
expression for ρ̄(q) in the Landau gauge, since it can be shown that this commutation
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relation is in fact gauge invariant [43]. We start by writing out the definition of the
projected density operators given in Eq. (5.4),

[ρ̄(q), ρ̄(k)] =
∑
y0,y′0

e−iqyy0e−ikyy
′
0 [c†n,y0+γqcn,y0−γq , c

†
n,y′0+γk

cn,y′0−γk ], (B.2)

where we defined γq ≡ qxl
2
B/2. Using the following identity, which holds for fermionic

operators,

[AB,CD] = −AC{B,D}+ A{B,C}D − C{A,D}B + {A,C}DB,

we can write out the commutator on the right hand side in Eq. (B.2),

[c†n,y0+γqcn,y0−γq , c
†
n,y′0+γk

cn,y′0−γk ] = −c†n,y0+γqc
†
n,y′0+γk

{cn,y0−γq , cn,y′0−γk}

+ c†n,y0+γq{cn,y0−γq , c
†
n,y′0+γk

}cn,y′0−γk − c
†
n,y′0+γk

{c†n,y0+γq , cn,y′0−γk}cn,y0−γq
+ {c†n,y0+γq , c

†
n,y′0+γk

}cn,y′0−γkcn,y0−γq
= c†n,y0+γqcn,y′0−γkδy0−γq ,y′0+γk − c

†
n,y′0+γk

cn,y0−γqδy0+γq ,y′0−γk .

We substitute this back into Eq. (B.2) and perform the sum over y′0,

[ρ̄(q), ρ̄(k)] =
∑
y0

e−iqyy0e−iky(y0−γq−γk)c†n,y0+γqcn,y0−γq−2γk

+ e−iqyy0e−iky(y0+γq+γk)c†n,y0+γq+2γk
cn,y0−γq

= e−iy0(qy+ky)
(
eiky(γq+γk)c†n,y0+γqcn,y0−γq−2γk + e−iky(γq+γk)c†n,y0+γq+2γk

cn,y0−γq

)
To rewrite this into a more convenient form, we shift y0 → y0 +γk in the first term in the
sum and y0 → y0 − γk in the second. The expression above then reduces to,

[ρ̄(q), ρ̄(k)] =
∑
y0

e−iy0(qy+ky)
(
e−iγkqyeikyγq + eiγkqye−ikyγq

)
c†n,y0+γq+γkcn,y0−γq−γk

=
∑
y0

e−iy0(qy+ky)
(
ei(qxky−qykx)l

2
B/2 + e−i(qxky−qykx)l

2
B/2
)
c†n,y0+γq+γkcn,y0−γq−γk

=
∑
y0

e−iy0(qy+ky) 2i sin

[
(q × k)zl

2
B

2

]
c†n,y0+γq+γkcn,y0−γq−γk

= 2i sin

(
(q × k)zl

2
B

2

)
ρ̄(q + k).

This is the expression we wanted to derive.
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B.3 Exchange potential in n = 1 Landau level

We calculate the Fock exchange potential in Eq. (5.9) for n = 1, by using the definition
of the effective potential vn(p) given by Eq. (5.7) in terms of a Laguerre polynomial,

uF1 (q) =
1

NB

∑
p

v1(p)e
−i(pyqx−qypx)l2B

=
1

NB

∑
p

2πe2

εp
L1(p

2l2B/2)2e−p
2l2B/2e−i(pyqx−qypx)l

2
B

=
1

NB

∑
p

2πe2

εp
(1− p2l2B/2)2e−p

2l2B/2e−i(pyqx−qypx)l
2
B .

Notice that we can write NB = nBA and furthermore, we substitute the sum by an
integral using

∑
p → A

∫
d2p/(2π)2. In the second line, we write the integrand in polar

coordinates p = p(cosφp, sinφp) and q = q(cosφq, sinφq). This leads to,

uF1 (q) =
2πe2

εnB

1

(2π)2

∫
d2p

1

p
(1− p2l2B/2)2e−p

2l2B/2e−i(pyqx−qypx)l
2
B

=
e2

εnB

1

2π

∫
dp (1− p2l2B/2)2e−p

2l2B/2

∫
dφp e

−ipq(sinφp cosφq−cosφp sinφq)l2B

=
e2

εnB

1

2π

∫
dp (1− p2l2B + p4l4B/4)e−p

2l2B/2 2πJ0(pql
2
B)

=
e2

εnB

{
e−q

2l2B/4

lB

√
π

2
I0

(
q2l2B

4

)
− e−q

2l2B/4

2lB

√
π

2

[
(2− q2l2B)I0

(
q2l2B

4

)
+ q2l2BI1

(
q2l2B

4

)]

+
e−q

2l2B/4lB
8

√
π

2

[
(6/l2B − 6q2 + l2Bq

4)I0

(
q2l2B

4

)
+ (4q2 − l2Bq4)I1

(
q2l2B

4

)]}

=
e2

εnB

e−q
2l2B/4

8lB

√
π

2

{
(6− 2q2l2B + q4l4B)I0

(
q2l2B

4

)
− q4l4BI1

(
q2l2B

4

)}
.

This is the desired form of Eq. (5.11) that we wanted to derive.

B.4 A useful identity

In this section, we will derive the identity used in Section 5.2,∑
j

e−iq·Rj =
(2π)2

Apc

∑
l

δ(q −Gl), (B.3)

where Rj are the lattice vectors, Gl the reciprocal lattice vectors and Apc the area of the
primitive cell in real space. To prove this identity, we start by remarking that the real
space and reciprocal space lattice vectors relate to each other according to the identity

Rj ·Gl = 2πδj,l.

Hence, we can write 1 = eiRj ·Gl for all j and l and thus also

1 =
∑
l

eiRj ·Gl/#l, (B.4)
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where #l is the total number of reciprocal lattice vectors that is summed over by l. We
can express this number as the ratio ABZ/Arec, where ABZ is the area of the Brillouin
zone and Arec the area of reciprocal space corresponding to the area in real space, which
is Arec = (2π)2/A. Hence,

#l =
ABZ
Arec

=
(2π)2/A

(2π)2/Apc
=
Apc
A
.

If we now multiply the left hand side of Eq. (B.3) by 1, using the expression from Eq. (B.4),
we obtain ∑

j

e−iq·Rj =
∑
j

e−iq·Rj
A

Apc

∑
l

eiRj ·Gl

=
1

Apc

∑
l

A
∑
j

e−iRj ·(q−Gl)

=
1

Apc

∑
l

(2π)2
∫
d2r e−iRj ·(q−Gl)

=
(2π)2

Apc

∑
l

δ(q −Gl),

which is precisely the right-hand side of Eq. (B.3). This proves this identity.

B.5 Plotting the cohesive energy of the bubble phase

In Section 5.2, we derived the cohesive energy of an M -electron-bubble phase in the n-th
Landau level. It reads

EB
coh(n;M, ν̄) =

ν̄

2πl2BM

∑
l

uHFn (Gl)
J1(
√

2MlB|Gl|)2

l2B|Gl|2
. (B.5)

In order to compare the energies of the different bubble phase and the liquid phase, we
want to plot this energy in units of e2/εlB. We do this explicitly for the n = 1 Landau
level, the other Landau levels are then a straightforward generalization. First of all, we
write out the expression for the Hartree-Fock energy in the n = 1 Landau level, using
Eqs. (5.7) and (5.11),

uHF1 (q) = v1(q)− uF1 (q)

=
2πe2

εq
[L1(q

2l2B/2)]2e−q
2l2B/2

−
√
π

2

e2

εlB

e−q
2l2B/4

8nB

[
(6− 2q2l2B + q4l4B)I0

(
q2l2B

4

)
− q4l4BI1

(
q2l2B

4

)]
=

e2

εlB

2πl2B
qlB

[L1(q
2l2B/2)]2e−q

2l2B/2

− e2

εlB

√
π

2

πl2B
4
e−q

2l2B/4

[
(6− 2q2l2B + q4l4B)I0

(
q2l2B

4

)
− q4l4BI1

(
q2l2B

4

)]
,
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where we used nB = 1/2πl2B. If we write the energy in units of e2/εlB and the momentum
in units of 1/lB we can write it more compactly in a dimensionless way as

uHF1 (q/lB)

(e2/εlB)
=

2πl2B
q

[L1(q
2/2)]2e−q

2/2

−
√
π

2

πl2B
4
e−q

2/4

[
(6− 2q2 + q4)I0

(
q2

4

)
− q4I1

(
q2

4

)]
.

From this we can see that we keep a factor of lB which cancels exactly the factor of 1/l2B
that appears in the cohesive energy in Eq. (B.5).

Furthermore, to actually evaluate the cohesive energy, we have to sum over the re-
ciprocal lattice vectors. The reciprocal lattice of a triangular lattice is again a triangular
lattice with primitive lattice vectors

b1 =
2π

ΛB

(
x̂− 1√

3
ŷ

)
, b2 =

4π√
3ΛB

ŷ.

Using the relation between the real space lattice spacing and the partial filling factor
obtained in Eq. (5.13), we can write

ΛB = lB

(
4πM√

3ν̄

)1/2

.

The reciprocal lattice vectors are linear combinations of the primitive vectors, such that

Gl = αlb1 + βlb2

= αl
2π

lB

(√
3ν̄

4πM

)1/2(
x̂− 1√

3
ŷ

)
+ βl

4π√
3lB

(√
3ν̄

4πM

)1/2

ŷ

=
1

lB

(√
3πν̄

M

)1/2 [
αlx̂+

1√
3

(2βl − αl)ŷ
]
.

From this we can conclude that the terms lB|Gl| appearing in the cohesive energy are
independent of lB. Notice that the reciprocal lattice vectors do depend on the partial
filling factor. Hence, the only parameters that appear in the cohesive energy are indeed
the number of electrons per bubble M and the Landau level index n.

Since we sum only over the length of the reciprocal lattice vectors, we can make use
of the sixfold symmetry of the triangular lattice to simplify the computation. We can
then divide the triangular lattice intro rings of lattice points around a given point (see
Fig. B.1). In the k-th ring, there are six sets of k lattice vectors that have the same
length. These are given by

|Gk
l | = |kb1 + lb2|,

for l = 0, · · · , k − 1. The cohesive energy can then be written as

EB
coh(n;M, ν̄) =

3ν̄

πl2BM

∑
k

k−1∑
l=0

uHFn (Gk
l )
J1(
√

2MlB|Gk
l |)2

l2B|G
k
l |2

. (B.6)

The advantage of writing it in this form is that the sum over l is now finite and since
k runs over sets of vectors with increasing lengths, we can use a natural cut-off for k
such that we sum over those vectors with the smallest length, which have the largest
contribution to the energy, since all the terms appearing in the energy become small if
|Gk

l | becomes large.
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b2

b1

1

Figure B.1: Reciprocal triangular lattice of the bubble crystal. The colors indicate the
separate groups of lattice points that we sum over in Eq. (B.6).
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Appendix C

Appendices to Chapter 6

C.1 Derivation of the form factor in graphene

In this appendix, we derive the form factors of graphene for general valley indices and
subsequently show that the terms with different indices in the interaction are not con-
tributing to the leading order in perturbation theory.

First of all, we write out the density operator in reciprocal space

ρn(q) =
∑
α

ρnα(q)

=
∑
α

∑
σ,σ′

∫
d2r ψ†α,σ(r)ψα,σ′(r)eiq·r

=
∑
α

∫
d2r

[
ψ†α,+(r)ψα,+(r) + ψ†α,−(r)ψα,−(r) + ψ†α,+(r)ψα,−(r) + ψ†α,−(r)ψα,+(r)

]
eiq·r

=
∑
α

∫
d2r

[
χ†α,+(r)χα,+(r) + χ†α,−(r)χα,−(r)

+χ†α,+(r)χα,−(r)e−2iK·r + χ†α,−(r)χα,+(r)e2iK·r
]
eiq·r,

where we inserted the wave function given in Eq. (6.1). Using the definition of χσ(r)
given by Eq. (6.2), where α denotes its components, we obtain

ρn(q) =
1

2

∑
m,m′

∫
d2r eiq·r{(c†n,m,+cn,m′,+ + c†n,m,−cn,m′,−)

×
[
(1 + δn,0)〈|n|,m|r〉〈r||n|,m′〉+ sgn2(n)〈|n| − 1,m|r〉〈r||n| − 1,m′〉

]
+ sgn(n)i

√
1 + δn,0(e

−2iK·rc†n,m,+cn,m′,− + e2iK·rc†n,m,−cn,m′,+)

× [〈|n| − 1,m|r〉〈r||n|,m′〉 − 〈|n|,m|r〉〈r||n| − 1,m′〉]}.
Using a similar derivation as was done for the normal form factor in Appendix B.1, we
can write ∫

d2r eiq·r|r〉〈r| = eiq·r̂,
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where r̂ = R̂+ η̂ is the position operator, which can be expressed in terms of the guiding-
center position operatorR and the cyclotron variable η. As shown for the non-relativistic
case, the wave function then decompose into

〈n,m|eiq·r̂|n′,m′〉 = 〈n|eiq·η̂|n′〉〈m|eiq·R̂|m′〉.

Substituting these results into the density operator, we obtain

ρn(q) =
1

2

∑
m,m′

{(c†n,m,+cn,m′,+ + c†n,m,−cn,m′,−)〈m|eiq·R̂|m′〉

×
[
(1 + δn,0)〈|n||eiq·η̂||n|〉+ sgn2(n)〈|n| − 1|eiq·η̂||n| − 1〉

]
+ sgn(n)i

√
1 + δn,0 〈m|ei(q−2K)·R̂|m′〉c†n,m,+cn,m′,−

×
[
〈|n| − 1|ei(q−2K)·η̂||n|〉 − 〈|n||ei(q−2K)·η̂||n| − 1〉

]
+ sgn(n)i

√
1 + δn,0 〈m|ei(q+2K)·R̂|m′〉c†n,m,−cn,m′,+

×
[
〈|n| − 1|ei(q+2K)·η̂||n|〉 − 〈|n||ei(q+2K)·η̂||n| − 1〉

]}.
For n 6= 0 we can write this as

ρn(q) =
1

2

∑
m,m′

∑
σ

c†n,m,σcn,m′,σ〈m|eiq·R̂|m′〉
[
〈|n||eiq·η̂||n|〉+ 〈|n| − 1|eiq·η̂||n| − 1〉

]
+

1

2

∑
m,m′

∑
σ

〈m|ei(q−2σK)·R̂|m′〉c†n,m,σcn,m′,−σ

× sgn(n)i
[
〈|n| − 1|ei(q−2σK)·η̂||n|〉 − 〈|n||ei(q−2σK)·η̂||n| − 1〉

]
(C.1)

=
∑
σ

[
ρ̄σ,σ(q)F σ,σ

n (q) + ρ̄σ,−σ(q)F σ,−σ
n (q)

]
.

We can shift q → q + σK in the second term and subsequently we can read off the
expressions for ρ̄σ,σ

′
(q) and F σ,σ′

n (q). Firstly,

ρ̄σ,σ(q) =
∑
m,m′

〈m|eiq·R̂|m′〉c†n,m,σcn,m′,σ,

ρ̄σ,−σ(q) =
∑
m,m′

〈m|ei(q−σK)·R̂|m′〉c†n,m,σcn,m′,−σ,

which we can generalize to

ρ̄σ,σ
′
(q) =

∑
m,m′

〈m|ei(q+(σ′−σ)K)·R̂|m′〉c†n,m,σcn,m′,σ′ .

For the form factors we obtain

F σ,σ
n (q) =

1

2

[
〈|n||eiq·η̂||n|〉+ 〈|n| − 1|eiq·η̂||n| − 1〉

]
=

1

2

[
L|n|

(
q2l2B

2

)
+ L|n|−1

(
q2l2B

2

)]
eq

2l2B/4,
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where we used the expressions for the non-relativistic form factors we derived in Ap-
pendix B.1, since the two terms correspond to F|n|(q) and F|n|−1(q). For the form factor
with different valley indices we get

F σ,−σ
n (q) =

1

2
λi
[
〈|n| − 1|ei(q−σK)·η̂||n|〉 − 〈|n||ei(q−σK)·η̂||n| − 1〉

]
,

where λ = sgn(n). The two terms in between the square brackets can be computed using
the expressions for these matrix elements derived in Eq. (B.1). We obtain

F σ,−σ
n (q) = λi

−lB[q + q∗ + σ(K +K∗)]

2
√

2|n|
e−l

2
B |q+σK|2/4

×
n−1∑
j=0

[
n!

j!(n− j)!
1

(n− 1− j)!
(−1)n−1−j

(
l2B|q + σK|2

2

)n−1−j]

=
λilB[q + q∗ − σ(K +K∗)]

2
√

2|n|
L1
|n|−1

(
l2B|q − σK|2

2

)
e−l

2
B |q−σK|2/4,

where we used the definition of the generalized Laguerre polynomial in the second line.
Next, we investigate the form factors in the lowest Landau level. We write the density

operator in Eq. (C.1) for n = 0,

ρ0(q) =
∑
m,m′

∑
σ

c†n,m,σcn,m′,σ〈m|eiq·R̂|m′〉〈|n||eiq·η̂||n|〉

=
∑
σ

F0(q)ρ̄σ,σ(q),

where F0(q) is the non-relativistic form factor in the lowest Landau level. Hence, for
n = 0 the form factor for graphene and for normal 2DEGs coincide.

Having derived the interaction in Eq. (6.3) in terms of the form factors, we show here
that the leading order term in a/lB is of the form

vn(q) = v(q)[F σ,σ
n (q)]2.

We can distinguish three cases that will not contribute to the leading order term. Notice
that |K| ∼ 1/a. First of all, terms of the form v(q)F σ,σ

n (∓q)F σ′,−σ′
n (±q) or v(q)F σ,−σ

n (−q)F σ,−σ
n (q)

(the latter are so-called umklapp-scattering terms) have as leading order term e−l
2
B |q−σK|2 ∼

e−(lB/a)
2
, hence they are exponentially small in a/lB. Furthermore, backscattering terms

of the form

v(q)F σ,−σ
n (−q)F−σ,σn (q) ∼ f(q − σK)e−l

2
B |q−σK|2lB/q

∼ f(q)e−l
2
B |q|2/|q + σK|

∼ a/lB,

where f(q) is some general function. In the second step we have shifted q → q + σK.
Hence, the leading order terms in a/lB are of the form v(q)[F σ,σ

n (q)]2.
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C.2 Exchange potentials in graphene

Here we write down the explicit forms of the exchange potentials by evaluating the equa-
tion (6.8). We calculate the expressions for Landau levels n = 1, 2, 3, using the same
derivation as was done in Appendix B.3 for the normal case. The potential is in units of
e2/εlB and q is in units of 1/lB,

uF1 (q) =
e−q

2/4

32nB

√
π

2

[
(22 + 2q2 + q4)I0

(
q2

4

)
− (4q2 + q4)I1

(
q2

4

)]
,

uF2 (q) =
e−q

2/4

512nB

√
π

2

[
(290− 12q2 + 28q4 − 2q6 + q8)I0

(
q2

4

)
− (56q2 + 30q4 + q8)I1

(
q2

4

)]
,

uF3 (q) =
e−q

2/4

18432nB

√
π

2

[
(9270− 1458q2 + 1809q4 − 360q6 + 114q8 − 14q10 + q12)I0

(
q2

4

)
−(1836q2 + 1563q4 − 192q6 + 92q8 − 12q10 + q12)I1

(
q2

4

)]
.
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Appendix D

Appendices to Chapter 7

D.1 Derivation of the critical point N ∗

We will derive the critical number of electrons N∗ given in Eq. (7.6), at which the droplet
develops a cusp. We start by writing down the equation for the boundary, for general M ,

zBM(t) = rMe
it + uMe

−iMt

Remember that the N -dependence is in rM and uM . The boundary is parametrized in
such a way that one of the fingers is positioned at the x-axis, which corresponds to t = 0.
We will use this finger to determine the time at which it grows into a cusp. At the
critical point, the derivative of both the x- and y-coordinate of the finger with respect
to t vanishes. Since we use complex coordinates, the x- and y-coordinates corresponds
respectively to the real and imaginary part of zBM(t) at t = 0. Taking the derivative of
zBM(t) , we get

d

dt
zBM(t) = irMe

it − iMuMe
−iMt

= irM [cos(t) + i sin(t)]− iMuM [cos(Mt)− i sin(Mt)]

= −rM sin(t)−MuM sin(Mt) + i[rM cos(t)−MuM cos(Mt)].

The finger corresponds to t = 0, hence we need to set the equation above to zero and put
t to zero. This leads to

rM(N∗) = MuM(N∗). (D.1)

Now, we can use this relation, together with Eq. (7.5), to write N∗ in terms of uM only,

N∗ =
r2M −Mu2M

2

=
M(M − 1)

2
u2M .

To clean up the notation, we have refrained from writing the explicit N -dependence of
rM and uM . Next, we can derive uM as a function of tM+1 by first writing rM in terms
of tM+1, using Eq. (7.5) and equating it to the expression for rM that we derived in
Eq. (D.1). This yields [

uM
(M + 1)tM+1

]1/M
= MuM .
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Raising both sides of the equation to the power M and bringing all uM to one sides, we
obtain

uM = M−M/(M−1) [(M + 1)tM+1]
−1/(M−1) .

Substituting this expression into the equation for N∗, we get

N∗ =
M(M − 1)

2
M−2M/(M−1) [(M + 1)tM+1]

−2/(M−1)

=
1

2
(M − 1)M−2M/(M−1)+1 [(M + 1)tM+1]

−2/(M−1)

=
1

2
(M − 1)M−(M+1)/(M−1) [(M + 1)tM+1]

−2/(M−1) .
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Appendix E

Appendices to Chapter 8

E.1 Derivation of the pseudo-magnetic fields

Firstly, we will derive the pseudo-magnetic field that is mentioned in Eq. (8.4), which
arises due to deformations caused by the silicon dangling bonds. We start with the height
profile of these deformations, which is given by Eq. (8.1),

h(x, y) =
h0
3

+
2h0
9

[
cos

(
2πx√

3λ
− 2πy

λ

)
+ cos

(
2πx√

3λ
+

2πy

λ

)
+ cos

(
4πx√

3λ

)]
.

Using this function, we compute components of the deformation tensor, via Eq. (8.3),

uxx =
1

2

(
∂h

∂x

)2

=
1

2

(
2h0
9

)2 [
− 2π√

3λ
sin

(
2πx√

3λ
− 2πy

λ

)
− 2π√

3λ
sin

(
2πx√

3λ
+

2πy

λ

)
− 4π√

3λ
sin

(
4πx√

3λ

)]2
=

32π2h20
243λ2

[
2 cos

(
2πx√

3λ

)
+ cos

(
2πy

λ

)]2
sin2

(
2πx√

3λ

)
,

uyy =
1

2

(
∂h

∂y

)2

=
1

2

(
2h0
9

)2 [
−2π

λ
sin

(
2πx√

3λ
− 2πy

λ

)
− 2π

λ
sin

(
2πx√

3λ
+

2πy

λ

)]2
=

32π2h20
81λ2

cos2
(

2πx√
3λ

)
sin2

(
2πy

λ

)
,

uxy =
1

2

∂h

∂x

∂h

∂y

=
16π2h20
81
√

3λ2

[
2 cos

(
2πx√

3λ

)
+ cos

(
2πy

λ

)]
sin

(
4πx√

3λ

)
sin

(
2πy

λ

)
.
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The components of the vector potential can then be calculated by using Eqs. (7.11)
and (7.12) (with c absorbed in β, like in the rest of that section),

Ax = βt (uxx − uyy)

= βt
32π2h20
243λ2

{[
cos

(
2πy

λ

)
sin

(
2πx√

3λ

)
+ sin

(
4πx√

3λ

)]2
− 3 cos2

(
2πx√

3λ

)
sin2

(
2πy

λ

)}
,

Ay = −2βt uxy

= −βt 32π2h20
81
√

3λ2

[
2 cos

(
2πx√

3λ

)
+ cos

(
2πy

λ

)]
sin

(
4πx√

3λ

)
sin

(
2πy

λ

)
.

Finally, we can compute the pseudo-magnetic field, using Eq. (7.13). It reads

B0
ps =

1

evF

(
∂Ay
∂x
− ∂Ax

∂y

)
=

βt

evF

256π3h20
243λ3

[
cos

(
2πy

λ

)
− cos

(
2
√

3πx

λ

)]
sin

(
2πy

λ

)
.

Next, we calculate the nonuniform part of the pseudo-magnetic field δB = B − B0,
where B0 is the field due to the dangling bonds, which we just derived and B is the total
magnetic field that is produced by the combined effect of the dangling bonds and one
hydrogen atom that sits on top of one of the bumps, thereby enlarging it. The height
profile of the total configuration is given by h(x, y) + hH(x, y), as defined by Eqs. (8.1)
and (8.2). The components of the deformation tensor are

uxx =
1

2

(
∂h

∂x
+
∂hH
∂x

)2

=
1

2

(
∂h

∂x

)2

+
1

2

(
∂hH
∂x

)2

+
∂h

∂x

∂hH
∂x

= u0xx + uHxx +
∂h

∂x

∂hH
∂x

,

uyy =
1

2

(
∂h

∂y
+
∂hH
∂y

)2

=
1

2

(
∂h

∂y

)2

+
1

2

(
∂hH
∂y

)2

+
∂h

∂y

∂hH
∂y

= u0yy + uHyy +
∂h

∂y

∂hH
∂y

,

uxy =
1

2

(
∂h

∂x
+
∂hH
∂x

)(
∂h

∂y
+
∂hH
∂y

)
=

1

2

∂h

∂x

∂h

∂y
+

1

2

∂hH
∂x

∂hH
∂y

+
1

2

(
∂h

∂x

∂hH
∂y

+
∂hH
∂x

∂h

∂y

)
= u0xy + uHxy +

1

2

(
∂h

∂x

∂hH
∂y

+
∂hH
∂x

∂h

∂y

)
.

The total deformation tensor can thus be written as utotαβ = u0αβ + uHαβ + uMαβ, where uMαβ
consists of the terms that mix both height functions. The components u0αβ will give rise
to the magnetic field B0, which we will have to subtract later. Hence, to compute δB,
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we have to calculate the vector potential and subsequently the magnetic field that is
generated by uHαβ + uMαβ. The derivation of said formula is analogous to the calculation
we did for B0. In the end, we obtain

δB(x, y) =
βt

evF

h20
λ3

[
4096(y3 − 3x2y)

H2
e−16(x

2+y2) +
512π

27H
C(x, y) e−8(x

2+y2)

]
, (E.1)

where we defined

C(x, y) =− πy cos

(
4πx√

3

)
+
√

3x sin

(
2πx√

3

)[
16y cos

(
2πx√

3

)
+ 8y cos(2πy) + π sin(2πy)

]
+ cos

(
2πx√

3

)
[πy cos(2πy) + 12(x− y)(x+ y) sin(2πy)] ,

and x and y are in units of the lattice spacing λ. This magnetic field is dominated by the
first term, hence we can approximate

δB(x, y) =
βt

evF

H2
0

λ3
4096(y3 − 3x2y) e−16(x

2+y2),

which is exactly the pseudo-magnetic field that arises due to the single Gaussian bump
defined in Eq. (8.2).
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