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Abstract

A quantized spin wave, a magnon, behaves as a weakly-interacting bosonic
particle. In recent experiments [Demokritov et al., 2006] a Bose-Einstein
condensate (BEC) of magnons has been realized in a thin film of Yttrium-
iron-garnet (YIG) at room temperature by using a technique called para-
metric pumping. The interactions within this condensate are investigated,
because it has been suggested that they are attractive [Tupitsyn et al., 2008],
hence the condensate could be unstable and collapse. The influence of re-
laxation and parametric pumping on the stability of the BEC, however are
not yet well understood. In this thesis we find as estimate for the critical
density, 105 cm−2 < ncrit < 107 cm−2, for a magnon BEC in YIG. We also
find that increased pumping tends to make the BEC unstable and that in
general increased damping tends to make the BEC stable.
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Chapter 1

Introduction

1.1 Research area

In nature we can distinguish between two major classes of particles, bosons
and fermions. One of the main differences between these two is that bosons
can occupy the same state but fermions have to obey the Pauli exclusion
principle, which precludes them from occupying the same state. A result
of this difference is that only bosons can undergo a phase transition into
a Bose-Einstein condensate (BEC), the state in which the ground state is
macroscopically occupied (see Section 1.2), at sufficiently high density and
low temperature.

The existence of a Bose Einstein condensate was already theoretically
predicted in 1924 by Satyendra Bose [1] and Albert Einstein [2, 3] in an
ideal Bose gas of non-interacting particles. It took until 1995 before the first
weakly-interacting BEC was experimentally realized [4]. The first BEC’s
were realized by trapping a dilute gas of atoms at extremely low tempera-
tures, i.e. at a few nanokelvin.

In this thesis we are not dealing with atoms but instead with spin waves.
A spin wave (see Section 1.3) is a propagating disturbance in a magnetically
ordered system. In the groundstate of a ferromagnet all spins are aligned.
When one of the spins is deflected from its original direction, the magnetic
field associated with this spin is changed, its neighboring spins will feel this
change of magnetic field and will also be deflected in order to become aligned
again, and so on, producing a propagating wave of deflected spins, a spin
wave. The quantized spin wave, the magnon, was introduced in 1940 by
Holstein and Primakoff [5]. They predicted that magnons should behave
as bosonic particles. This gives rise to the question whether or not it is
possible to produce a BEC of magnons. In 2006 the first observation of a
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BEC of magnons at room temperature was claimed [6]. It was produced in a
thin film of a ferromagnetic material called Yttrium-iron-garnet (YIG). This
material is very suitable for the experimental investigation of a magnon BEC
because of two important reasons. First, because it allows for the creation
of additional magnons with energy values near the ground energy by using
parametric pumping, such that even at room temperature densities can be
reached that are sufficient to achieve the BEC transition. Second, it has
very low Gilbert damping, hence a very long spin-lattice relaxation time,
thus it allows for magnons to live a lot longer then that it takes for magnons
to thermalize through scattering mechanisms, hence allowing magnons to
relax into a quasi-equilibrium state with nonzero chemical potential which
facilitated BEC formation. Motivated by these and other experiments, a
research area called “magnonics” has developed because of the technological
applications of magnonic devices in data storage and information processing
[7].

In a paper [8] published in 2008 the stability of magnon BEC’s in thin
films of YIG realized in experiments has been investigated. The study of the
stability and possible collapse of a BEC has some similarity with that of col-
lapse of a neutron star due to its own gravity. Because if there are attractive
interactions in a BEC it might also collapse due to these interactions. This
has also been studied in the context of atomic condensates, see e.g. Ref.
[9]. The theoretical study mentioned above, ignored the effects of parametric
pumping and damping. In this thesis we study the stability of these BEC’s
and consider dynamics by using a Gaussian ansatz for the BEC wavefunction
and include the effects of the Gilbert damping and the parametric pumping
on the stability of the BEC. It is organized as followed. In Chapter 2 we set
up a theoretical framework to compute the dispersion relation for the lowest
energy band and derive the magnon quantum many-body Hamiltonian up to
fourth order in the magnon operators. In Chapter 3 we use this framework in
order to obtain results for the dispersion relation and interaction, and derive
an estimate for the critical density of the magnon BEC. In Chapter 4 we
study the dynamics of the BEC. We use a Gaussian ansatz for the wavefunc-
tion of the BEC, derive the equations of motion, and study the influence of
Gilbert damping and parametric pumping on the stability of the BEC.

1.2 Bose-Einstein condensation

Bose-Einstein condensation is one of the most fascinating phenomena in
quantum physics. It is a state of matter with the main characteristic that
the number of particles in the ground state is on the same order of magni-
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tude as the total number of particles. The first BEC’s in experiments were
realized by trapping a dilute ultracold atomic gas [4]. In order to get a better
understanding of Bose-Einstein condensation we consider the Bose-Einstein
distribution

〈N〉 =
∑
k

Nk =
∑
k

1

e(h̄ωk−µ)/kBT − 1
, (1.2.1)

with N the total number of particles, Nk the number of particles in the
state with energy h̄ωk, µ the chemical potential, kB the Boltzmann constant
and T the temperature. This distribution describes what the probability is
of finding a particle with energy h̄ωk in a non-interacting ideal Bose gas at
temperature T and with chemical potential µ. If µ = h̄ωk0 , this distribution
is ill-defined for k = k0, with k0 the minimum of the single particle energy
h̄ωk. Thus in order for the system to become a BEC, hence 〈Nk0〉 ∼ 〈N〉,
the chemical potential must be as high as the minimum of the single particle
energy.

Let us consider a system with a fixed number of bosonic particles. If
we lower the temperature of the system then for the number of particles to
remain constant the chemical potential will increase until µ = h̄ωk0 , as can
be seen from eqn. (1.2.1). By further lowering the temperature particles
in excited states will be forced into lower energy states, causing 〈Nk0〉 to
increase, hence forming a BEC. For a system with fixed temperature it is
also possible to achieve a BEC but then the number of particles has to be
raised. Looking at eqn. (1.2.1) we see that then the chemical potential will
also increase, hence eventually a BEC can form.

1.3 Magnon

The ground state of a ferromagnet is the state in which all spins are aligned
with the magnetic field. A spin wave corresponds to the excited state in which
a deviation of the spin from the direction of the magnetic field at a certain
lattice site propagates through the material by deflecting neighboring spins,
which in turn deflect neighboring spins and so on. A characteristic property
of spin waves is that the deflected spins precess around the direction of the
magnetic field until they return to their initial position due to dissipation
into the lattice. In Fig. 1.1 a schematic presentation of the ground state of
a ferromagnet and of a spin wave are shown.

From quantum mechanics it is well-known that by quantizing a wave
one obtains the corresponding particle, as for example a photon corresponds
to a quantized electromagnetic wave. The quantized spin wave is called a
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Figure 1.1: The upper row corresponds to spins in the ground state of a
ferromagnet, while the lower row corresponds to a spin wave.

magnon. Note that a magnon is not an elementary particle but is a quasi-
particle, because it is the particle-like description of the collective excitation
of the spins of unit cells of an underlying material.

1.4 Magnon BEC

In the experiment described in Section 1.1 the number of magnons is not con-
served, because they dissipate to the lattice via spin-orbit coupling. In ther-
modynamic equilibrium the chemical potential is thus equal to zero. However
h̄ωk0 is not equal to zero, as will later be shown. By using parametric pump-
ing, magnons with energy near the energy minimum can be created and the
chemical potential of the magnon gas can be raised in order to bring the
system close to the condition for BEC transition. Even for a system at room
temperature it can be possible to achieve a BEC if the number of magnons
injected into the system is high enough. Because the spin-lattice relaxation
time of YIG films can be above 1µs, and the thermalization time can be
as low as 100 − 200 ns it is possible to realize a quasi-equilibrium state for
the magnon gas, hence making it possible to create a magnon BEC. If the
interactions in a BEC are attractive the condensate can become unstable and
the magnon gas will tend to collapse.
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Chapter 2

Magnon-magnon interactions in
a thin film of YIG

In this chapter we derive the magnon quantum many-body Hamiltonian up
to fourth order in the magnon operators. This is the basis for our study of
the stability of a magnon Bose-Einstein condensate in a film of YIG at room
temperature.

2.1 The spin Hamiltonian

Let us consider a film of YIG at room temperature and focus on the lowest
magnon band, because this is the band that is most important on the energy
scales relevant to experiments [6]. Though the crystal structure of YIG is
rather complex, at this low-energy scale, i.e. for longer wavelengths, the
properties of YIG can be described by an effective spin quantum Heisenberg
ferromagnet on a cubic lattice with lattice spacing a = 12.376 Å. The effective
spin Hamiltonian contains exchange and dipole interaction, and reads as
[8, 10, 11, 12]

Hspin = −1

2

∑
i,j

∑
α,β

[Jijδ
αβ +Dαβ

ij ]Sαi S
β
j −B

∑
i

Szi , (2.1.1)

where α, β ∈ {x, y, z} label the spatial components and i, j ∈ {1, . . . , N},
with N being the total number of lattice sites, indicate the lattice site. Sαi is
the α-component of the spin operator at lattice site i. The third term contains
B = µBe, which denotes the energy associated to a static magnetic field,
Be, that is pointing in the positive z-direction with µ = gµB the magnetic
moment, where g = 2 is the effective g-factor and µB the Bohr magneton.
The exchange interaction, Jij, is equal to J ≈ 1.29 K if i and j denote
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lattice sites that are nearest neighbors and is zero otherwise [8]. The matrix
elements for the dipole interaction are given as

Dαβ
ij = (1− δij)

µ2

|Rij|3
[3R̂α

ijR̂
β
ij − δαβ] (2.1.2)

with Rij = Ri−Rj and R̂ij =
Rij

|Rij | , where Ri is the position of the i-th spin.

2.2 Holstein-Primakoff transformation

To go from the effective spin Hamiltonian in eqn. (2.1.1) to a Hamilto-
nian of a quantum many-body system involving magnons we will perform
a Holstein-Primakoff transformation [5]. An additional advantage of the
Holstein-Primakoff transformation is that it allows a Taylor series expansion
in spin deviations that converges quickly for deviations that are relatively
small compared with the total spin. This expansion allows us to separate
terms that have a different order in magnon creation and annihilation oper-
ators.

First let us introduce the spin raising and lowering operators

S+
i = Sxi + iSyi , S−i = Sxi − iS

y
i , (2.2.1)

⇒ Sxi =
1

2

(
S+
i + S−i

)
, Syi =

i

2

(
S−i − S+

i

)
. (2.2.2)

By plugging eqn. (2.2.2) into eqn. (2.1.1) we can express the Hamiltonian
in terms of spin raising and lowering operators, and the z-component of the
spin operator.

The Holstein-Primakoff transformation allows us to rewrite the spin rais-
ing and lowering operators and the z-component of the spin operator as

S+
i =
√

2S

√
1− b†ibi

2S
bi, (2.2.3a)

S−i =
√

2Sb†i

√
1− b†ibi

2S
, (2.2.3b)

Szi = S − b†ibi. (2.2.3c)

with respectively bi and b†i a magnon annihilation and a magnon creation
operator, i.e.,

[bi, b
†
j] = δij. (2.2.4)
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Note that the magnon creation and annihilation operator obey a bosonic
commutation relation, hence magnons are bosons. Here, S = MSa

3

µ
is the

effective spin with MS the saturation magnetization. The saturation mag-
netization of YIG at room temperature is MS = 1750

4π
G, hence S ≈ 14.2

[8].

We perform a Taylor expansion in
b†i bi
2S

: this corresponds to focusing on
spin deviations that are relatively small compared to the total spin. The
Taylor expansion allows us to write the raising and lowering spin operators
as

S+
i =
√

2S

[
bi −

b†ibibi
4S

+ . . .

]
, S−i =

√
2S

[
b†i −

b†ib
†
ibi

4S
+ . . .

]
. (2.2.5)

By plugging eqn. (2.2.5) into eqn. (2.2.2) we obtain

Sxi =

√
S

2

[
bi + b†i −

b†ibibi
4S
− b†ib

†
ibi

4S
+ . . .

]
, (2.2.6)

Syi = i

√
S

2

[
b†i − bi −

b†ib
†
ibi

4S
+
b†ibibi
4S

+ . . .

]
(2.2.7)

By plugging eqn. (2.2.6), eqn. (2.2.7) and eqn. (2.2.3c) into eqn. (2.1.1) we
obtain the quantum many-body Hamiltonian.

2.3 The many-body Hamiltonian

We consider the quantum many-body Hamiltonian up to fourth order in the
magnon operators to get a better understanding of the effects of interactions
on the stability of a magnon Bose-Einstein condensate and contributions from
the fourth order term are dominant over higher order terms. The Hamiltonian
can then be written as

H = H0 +H2 +H3 +H4, (2.3.1)

where the subindices correspond to the order of magnon operators. Actually,
in the derivation of the expansion of the Hamiltonian in terms of magnon
operators there also appears a term linear in the magnon operators. The
presence of this term might indicate that the assumed ground state spin
configuration is not correct [13]. By requiring that the linear order term,
which is not physical, is zero one can obtain the correct angles for the spins
in the ground state configuration. In eqn. (2.3.1) we have neglected H1
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because its contribution is small compared to the other terms. By plugging
eqn. (2.2.5) in eqn. (2.2.2) and plugging the result from that in eqn. (2.1.1)
we obtain the zeroth-order term, H0, as

H0 = −S
2

2

∑
i,j

[
Jij +Dzz

ij

]
−NSB. (2.3.2)

While the quadratic term, H2, is

H2 =
∑
i,j

[
Aijb

†
ibj +

(
Bij

2
bibj + h.c.

)]
, (2.3.3)

with Aij and Bij given as

Aij = Bδij − S

[
Jij − δij

∑
n

Jin

]
− S

[
Dxx
ij +Dyy

ij

2
− δij

∑
n

Dzz
in

]
, (2.3.4a)

Bij = −S
2

[
Dxx
ij − 2iDxy

ij −D
yy
ij

]
. (2.3.4b)

Note that B without subindices is the external magnetic field. The cubic
term, H3, reads as

H3 =

√
S

2

∑
i,j

[(
Dxz
ij + iDyz

ij

)
(b†ib

†
jbj +

1

4
b†ib
†
ibi) + h.c.

]
. (2.3.5)

The quartic term, H4, is

H4 = −1

2

∑
i,j

[
Jij

(
b†ibib

†
jbj −

1

2
(b†ib

†
jbjbj + h.c.)

)
− 1

4

((
Dxx
ij + 2iDxy

ij −D
yy
ij

)
b†ib
†
jb
†
jbj + h.c.

)
− 1

4

((
Dxx
ij +Dyy

ij

)
(b†ib

†
jbjbj + h.c.)

)
−Dzz

ij b
†
ibib

†
jbj

]
. (2.3.6)

2.4 The dispersion relation

In order to obtain the dispersion relation for the lowest magnon band we
perform a Fourier transformation of the Hamiltonian. The thickness, d, of the
film of YIG is relatively small compared to its width and length, hence we can
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approximate the latter two to be infinite. Since there is discrete translational
invariance in the yz-plane, we perform a partial Fourier transform, namely
only for the y- and z-direction. We set Ri = (xi, ri), with ri = (yi, zi) and
introduce the two-dimensional wave-vector k = (ky, kz). The partial Fourier
transformation yields

bi =
1√
NyNz

∑
k

bk(xi)e
ik·ri , b†i =

1√
NyNz

∑
k

b†k(xi)e
−ik·ri , (2.4.1)

with Ny, Nz respectively the number of layers of lattice sites in the y-direction
and in the z-direction.

We use the uniform mode approximation, i.e. we ignore that the system
is not translation-invariant in the x-direction and approximate its eigenfunc-
tions by plane-waves. The validity of this analytical approximation has been
studied in Ref. [10] and in general it shows quite good agreement with ex-
perimental results. We look at the lowest magnon band, kx = 0, hence
approximate as

bk(xi) =
1√
Nx

bk, b†k(xi) =
1√
Nx

b†k. (2.4.2)

eqn. (2.4.2) combined with eqn. (2.4.1) yields

bi =
1√
N

∑
k

bke
ik·ri , b†i =

1√
N

∑
k

b†ke
−ik·ri (2.4.3)

and accordingly

Aij =
1

N

∑
k

Ake
ik·(ri−rj), Bij =

1

N

∑
k

Bke
ik·(ri−rj), (2.4.4)

where we have used that Aij and Bij only depend on the difference ri − rj.
The explicit calculation of Ak and Bk follows in the next section. However,
for convenience we will use that Ak and Bk turn out to be real. Let us focus
on the quadratic term in the Hamiltonian, in order to obtain the dispersion
relation. By plugging eqn. (2.4.3) and eqn. (2.4.4) into eqn. (2.3.3) we
obtain the quadratic term as

H2 =
∑
k

[
Akb

†
kbk +

1

2
Bkb−kbk +

1

2
Bkb

†
kb
†
−k

]
=
∑
k

(
b†k b−k

)( Ak
1
2
Bk

1
2
Bk 0

)(
bk
b†−k

)
. (2.4.5)
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In order to obtain the dispersion relation we need to diagonalize eqn. (2.4.5)
via a Bogoliubov transformation, i.e.(

bk
b†−k

)
=

(
u∗k −vk
−v∗k uk

)(
ak
a†−k

)
, (2.4.6)

where uk and vk are complex numbers, and ak and a†k are new operators.
From eqn. (2.4.6) we obtain that

b†k = uka
†
k − v

∗
ka−k, b†k = −v∗−ka−k + u−ka

†
k, (2.4.7)

which combined yield that uk = u−k and vk = v−k. As usual, we demand
that the operators ak and a†k obey the same commutation relations as bk and

b†k, i.e. ak and a†k also are bosonic operators. By solving [bk, b
†
k′ ] = [ak, a

†
k′ ]

for uk and vk we obtain the constraint

|uk|2 − |vk|2 = 1. (2.4.8)

Requiring that the quadratic part of the Hamiltonian becomes diagonal by
performing the Bogoliubov transformation yields that the Bogoliubov coeffi-
cients are real and must obey

Bkv
2
k +Bku

2
k − 2Akukvk = 0. (2.4.9)

By using the quadratic formula on eqn. (2.4.9) and using eqn. (2.4.8) we
obtain that

uk =

√
Ak + h̄ωk

2h̄ωk

, vk =

√
Ak − h̄ωk

2h̄ωk

, (2.4.10)

with

h̄ωk =
√
A2

k −B2
k. (2.4.11)

By plugging eqn. (2.4.10) into eqn. (2.4.6) and inserting that into eqn.
(2.4.5) combined with eqn. (2.4.11) yields

H2 =
∑
k

[
h̄ωka

†
kak +

1

2
(h̄ωk − Ak)

]
. (2.4.12)

Leaving out the constant terms yields the second order term as

H2 =
∑
k

h̄ωka
†
kak. (2.4.13)
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2.5 The dipole interaction

In order to obtain Ak and Bk explicitly we need to calculate the Fourier
transform of the exchange interaction and of the dipole interaction term. The
Fourier transform of the exchange interaction of the lowest magnon band is

Jk = 2J (1 + cos(kya) + cos(kza)) . (2.5.1)

The Fourier transform of the dipole interaction in eqn. (2.1.2) is

Dαβ
k = µ2

∑
xij ,yij ,zij

e−i|k|(yij sin θk+zij cos θk)

(x2
ij + y2

ij + z2
ij)

5
2

[3R̂α
ijR̂

β
ij − δαβ]. (2.5.2)

Where the in-plane wave-vector is parametrized as k = |k| (sin θkey + cos θkez).
Let us replace the sum in eqn. (2.5.2) by an integration as

∑
xij ,yij ,zij

→ 1

a3

∫ d
2

− d
2

∫ ∞
−∞

∫ ∞
∞

dxdydz. (2.5.3)

By going to cylindrical coordinates we obtain

Dxx
k =

µ2

a3

∫
e−i|k|r cos(θ−θk)

(x2 + r2)
3
2

(
3x2

x2 + r2
− 1

)
dθdrdx, (2.5.4a)

Dyy
k =

µ2

a3

∫
e−i|k|r cos(θ−θk)

(x2 + r2)
3
2

(
3r2 sin2 θ

x2 + r2
− 1

)
dθdrdx, (2.5.4b)

Dzz
k =

µ2

a3

∫
e−i|k|r cos(θ−θk)

(x2 + r2)
3
2

(
3r2 cos2 θ

x2 + r2
− 1

)
dθdrdx, (2.5.4c)

Dxy
k =

µ2

a3

∫
e−i|k|r cos(θ−θk)

(x2 + r2)
3
2

3xr sin θ

x2 + r2
dθdrdx, (2.5.4d)

Dxz
k =

µ2

a3

∫
e−i|k|r cos(θ−θk)

(x2 + r2)
3
2

3xz cos θ

x2 + r2
dθdrdx, (2.5.4e)

Dyz
k =

µ2

a3

∫
e−i|k|r cos(θ−θk)

(x2 + r2)
3
2

3r2 sin θ cos θ

x2 + r2
dθdrdx. (2.5.4f)
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Let us perform explicitly the integrations in eqn. (2.5.4). Integrating in the
order θ, x and as last r yields

Dxx
k = −4πµ2

a3
e−

|k|d
2 , (2.5.5a)

Dyy
k =

4πµ2

a3

(
1

2
+
(
e−

|k|d
2 − 1

)
sin2 θk

)
, (2.5.5b)

Dzz
k =

4πµ2

a3

(
1

2
+
(
e−

|k|d
2 − 1

)
cos2 θk

)
, (2.5.5c)

Dxy
k = 0, (2.5.5d)

Dxz
k = 0, (2.5.5e)

Dyz
k =

2πµ2

a3

(
e−

|k|d
2 − 1

)
sin(2θk). (2.5.5f)

Actually, so far we have ignored the fact that the dipole interaction does not
lead to a self interaction. In order to account for the factor (1 − δij) in the
dipole term in eqn. (2.1.2) we subtract the contribution from integrating
e−ikrDαβ

ij over an infinitesimally small sphere around the origin to the dipole
terms in eqn. (2.5.5). That contribution is

Dxx
k = −4πµ2

3a3
, (2.5.6a)

Dyy
k =

2πµ2

3a3
, (2.5.6b)

Dzz
k =

2πµ2

3a3
, (2.5.6c)

Dxy
k = 0, (2.5.6d)

Dxz
k = 0, (2.5.6e)

Dyz
k = 0. (2.5.6f)
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Subtracting the quantities in eqn. (2.5.6) from the values in eqn. (2.5.5)
yields

Dxx
k =

4πµ2

a3

(
1

3
− fk

)
, (2.5.7a)

Dyy
k =

4πµ2

3a3

(
1

3
+ (fk − 1) sin2 θk

)
, (2.5.7b)

Dzz
k =

4πµ2

a3

(
1

3
+ (fk − 1) cos2 θk

)
, (2.5.7c)

Dxy
k = 0, (2.5.7d)

Dxz
k = 0, (2.5.7e)

Dyz
k =

2πµ2

a3
(fk − 1) sin(2θk). (2.5.7f)

In the above expression we introduced the form factor

fk =
1− e−|k|d

|k|d
, (2.5.8)

which up to first order in |k|d equals e−
|k|d
2 = 1− |k|d

2
+O(|k|2d2). From now

on we will use the form factor from eqn. (2.5.8), because it has been shown
in previous results [14] that it provides a more accurate approximation to
numerical results than the uniform mode approximation does. By combining
eqn. (2.4.4) with eqn. (2.5.1) and eqn. (2.5.7) we obtain an explicit form of
Ak and Bk that we can write as

Ak = B + 2JS (2− cos(kya)− cos(kza))− S

2
(Dxx

k +Dyy
k ) + S

4πµ2

3a3
,

(2.5.9a)

Bk = −S
2

(Dxx
k −D

yy
k ) . (2.5.9b)
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2.6 Magnon-magnon interactions

2.6.1 Three-magnon interactions

We perform a Fourier transformation of the cubic term of the Hamiltonian,
that is given in eqn. (2.3.5), to obtain H3 as

H3 =

√
S

2N

∑
k1,k2,k3

[
δk1+k2+k3,0

×
{(

Dxz
k2

+ iDyz
k2

+
1

4
Dxz

0 +
i

4
Dyz

0

)
b†k1
b†k2
b−k3 + h.c.

}]
.

(2.6.1)

For the sake of simplicity we rewrite eqn. (2.6.1) as

H3 =
1√
N

∑
k1,k2,k3

[
δk1+k2+k3,0

(
1

2
Γb̄bb1;23b

†
1b−2b−3 +

1

2
Γb̄b̄b12;3b

†
1b
†
2b−3

)]
, (2.6.2)

where the sub-index i corresponds to ki and −i corresponds to −ki, and with

Γb̄b̄bpq;r =

√
S

2

[
Dxz

kp + iDyz
kp

+ (kp → kq) +
1

2
Dxz

0 +
i

2
Dyz

0

]
, (2.6.3a)

Γb̄bbp;qr =
(

Γb̄b̄brq;p

)∗
. (2.6.3b)

By plugging the Bogoliubov transformation given in eqn. (2.4.6) into eqn.
(2.6.2) we obtain

H3 =
1√
N

∑
k1,k2,k3

[
δk1+k2+k3,0

(
1

3!
Γaaa123a−1a−2a−3 +

1

2
Γāaa1;23a

†
1a−2a−3

+
1

2
Γāāa12;3a

†
1a
†
2a−3 +

1

3!
Γāāā123a

†
1a
†
2a
†
3

)]
, (2.6.4)

with

Γaaa123 =v1v2u3Γb̄b̄b12;3 + v1v3u2Γb̄b̄b13;2 + v2v3u1Γb̄b̄b23;1

− v1u2u3Γb̄bb1;23 − v2u1u3Γb̄bb2;13 − v3u1u2Γb̄bb3;12, (2.6.5a)

Γāaa1;23 =− u1v2u3Γb̄b̄b12;3 − u1u2v3Γb̄b̄b13;2 − v1v2v3Γb̄b̄b23;1

+ u1u2u3Γb̄bb1;23 + v1v2u3Γb̄bb2;13 + v1u2v3Γb̄bb3;12, (2.6.5b)

Γāāa12;3 =
(
Γāaa3;12

)∗
, (2.6.5c)

Γāāā123 = (Γaaa123)∗ . (2.6.5d)
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2.6.2 Four-magnon interactions

Let us perform a Fourier transformation of the quartic term of the Hamilto-
nian, which is given in eqn. (2.3.6), to rewrite H4 as

H4 = − 1

2N

∑
k1,k2,k3,k4

[
δk1+k2+k3+k4,0

{(
Jk2+k3 +Dzz

k2+k3
− 1

2
Jk2 −

1

2
Jk4

−1

4
Dxx

k2
− 1

4
Dyy

k2
− 1

4
Dxx

k4
− 1

4
Dyy

k4

)
b†k1
b†k2
b−k3b−k4

−1

4

[(
Dxx

k2
+ 2iDxy

k2
−Dyy

k2

)
b†k1
b†k2
b†k3
b−k4 + h.c.

]}]
.

(2.6.6)

For the sake of simplicity we rewrite eqn. (2.6.6) as

H4 =
1

N

∑
k1,k2,k3,k4

[
δk1+k2+k3+k4,0

(
1

(2!)2
Γb̄b̄bb12;34b

†
1b
†
2b−3b−4

+
1

3!
Γb̄b̄b̄b123;4b

†
1b
†
2b
†
3b−4 +

1

3!
Γb̄bbb1;234b

†
1b−2b−3b−4

)]
, (2.6.7)

with

Γb̄b̄bbpq;rs = −1

2

(
Jkp+kr + Jkp+ks + Jkq+kr + Jkq+ks +Dzz

kp+kr

+Dzz
kp+ks +Dzz

kq+kr +Dzz
kq+ks −

4∑
i=1

(
Jki +

1

2
Dxx

ki
+

1

2
Dyy

ki

))
,

(2.6.8)

Γb̄b̄b̄bpqr;s =
1

4
( Dxx

kp + 2iDxy
kp
−Dyy

kp
+ (kp → kq) + (kp → kr)

)
, (2.6.9)

Γb̄bbbp;qrs = ( Γb̄b̄b̄bqrs;p

)∗
. (2.6.10)

By plugging eqn. (2.4.6) into eqn. (2.6.7) we obtain H4 as

H4 =
1

N

∑
k1,k2,k3,k4

[
δk1+k2+k3+k4,0

(
1

4!
Γaaaa1234a−1a−2a−3a−4

+
1

3!
Γāaaa1;234a

†
1a−2a−3a−4 +

1

(2!)2
Γāāaa12;34a

†
1a
†
2a−3a−4 (2.6.11)

+
1

3!
Γāāāa123;4a

†
1a
†
2a
†
3a−4 +

1

4!
Γāāāā1234a

†
1a
†
2a
†
3a
†
4

)]
, (2.6.12)
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with

Γaaaa1234 =v1v2u3u4Γb̄b̄bb12;34 + v1v3u2u4Γb̄b̄bb13;24 + v1v4u2u3Γb̄b̄bb14;23

+ v3v4u1u2Γb̄b̄bb34;12 + v2v4u1u3Γb̄b̄bb24;13 + v2v3u1u4Γb̄b̄bb23;14

− v1v2v3u4Γb̄b̄b̄b123;4 − v1v2v4u3Γb̄b̄b̄b124;3 − v1v3v4u2Γb̄b̄b̄b134;2

− v2v3v4u1Γb̄b̄b̄b234;1 − v1u2u3u4Γb̄bbb1;234 − v2u1u3u4Γb̄bbb2;134

− v3u1u2u4Γb̄bbb3;124 − v4u1u2u3Γb̄bbb4;123, (2.6.13a)

Γāaaa1;234 =− u1v2u3u4Γb̄b̄bb12;34 − u1u2v3u4Γb̄b̄bb13;24 − u1u2u3v4Γb̄b̄bb14;23

− v1v2v3u4Γb̄b̄bb23;14 − v1v2u3v4Γb̄b̄bb24;31 − v1u2v3v4Γb̄b̄bb34;12

+ v1v2v3v4Γb̄b̄b̄b234;1 + u1u2v3v4Γb̄b̄b̄b134;2 + u1v2u3v4Γb̄b̄b̄b124;3

+ u1v2v3u4Γb̄b̄b̄b123;4 + u1u2u3u4Γb̄bbb1;234 + v1v2u3u4Γb̄bbb2;134

+ v1u2v3u4Γb̄bbb3;124 + v1u2u3v4Γb̄bbb4;123, (2.6.13b)

Γāāaa12;34 =u1u2u3u4Γb̄b̄bb12;34 + u1v2v3u4Γb̄b̄bb13;24 + u1v2u3v4Γb̄b̄bb14;23

+ v1u2v3u4Γb̄b̄bb23;14 + v1u2u3v4Γb̄b̄bb24;13 + v1u2v3v
∗
4Γb̄b̄bb34;12

− u1u2v3u4Γb̄b̄b̄b123;4 − u1u2u3v4Γb̄b̄b̄b124;3 − u1v2v3v4Γb̄b̄b̄b134;2

− v1u2v3v4Γb̄b̄b̄b234;1 − u1v2u3u4Γb̄bbb1;234 − v1u2u3u4Γb̄bbb2;134

− v1v2v3u4Γb̄bbb3;124 − v1v2u3v4Γb̄bbb4;123, (2.6.13c)

Γāāāa123;4 =
(
Γāaaa4;123

)∗
, (2.6.13d)

Γāāāā1234 = (Γaaaa1234 )∗ . (2.6.13e)

The main results of this chapter are the non-interacting magnon dispersion
relation in eqn. (2.4.11), and the four-magnon interactions in eqn. (2.6.13c).
In the next chapter we will use these results to determine the stability of the
magnon condensate.
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Chapter 3

Critical density

In this chapter we provide results obtained from applying the theoretical
model described in Chapter 2 to a thin film of YIG in an external magnetic
field. In the last part of this chapter we obtain a critical density of magnons
in a BEC in a way similar to Ref. [8].

3.1 Dispersion of the lowest magnon band

We have found that the dispersion of the lowest magnon band is given by eqn.
(2.4.11). In Fig. 3.1 a graph of the spectrum is depicted. We have chosen
to consider an external magnetic field He = 700 G and a film thickness
d = 5µm, because for this field strength and film thickness the dispersion
shows the features that are relevant for this research and these values are
used in experiments [6]. We have numerically calculated that for this field
strength the minimum of the dispersion occurs at the wave-vector

k0 = 5.5µm−1. (3.1.1)

We have calculated the value of the wave-vector at the minimum of the
dispersion as a function of the external magnetic field. The result obtained
is depicted in Fig. 3.2. This figure shows that the value of the wave-vector
at the the minimum of the dispersion increases, but decreasingly fast, as the
strength of the external magnetic field increases.

3.2 Attractive interaction in BEC

We are interested in the behavior of the interactions in the BEC in order to
investigate the stability of the BEC. We plotted the vertex, Γ = Γāāaak0k0;−k0−k0
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Figure 3.1: The dispersion of the lowest magnon band with He = 700 G and
d = 5µm.
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Figure 3.2: The value of the wave-vector at the minimum of the dispersion
as a function of the external magnetic field.

given in eqn. (2.6.13c) evaluated at the minimum of the dispersion as a
function of the external magnetic field in Fig. 3.3.

From Fig. 3.3 we can read off that this vertex is negative in the for exper-
imentally relevant magnetic field strengths, because usually field strengths
between 600 − 800 G are being used. This indicates that the interaction is
attractive, because the energy decreases if the density increases, hence it is
possible that the condensate becomes in-stable and collapses in the situation
where this term is dominant in the interaction, for example when only one
valley of the dispersion is occupied.
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Figure 3.3: The vertex, Γ, evaluated at the minimum of the dispersion as a
function of the external magnetic field. Here, kB is the Boltzmann constant.

3.3 Critical density

In order to estimate at what value the density becomes critical, i.e. when the
BEC will collapse, we focus on the term for the interaction within one valley
of which we know it can be negative and introduce the zero-point energy

h̄ωzp = h̄ωk0+ π
L
− h̄ωk0 , (3.3.1)

with L the length of the film in the direction of the wave. The zero-point
energy is the minimum of energy that is present in finite systems due to the
zero-point motion resulting from the confinement. We estimate the critical
density by calculating when the interaction energy is of the same order as the
zero-point energy. This is the density at which the self-attraction overcomes
the stabilizing zero-point motion. The critical density is then given as

ncrit =
h̄ωzp

|Γ|
. (3.3.2)

In the experiment [6] the size of the film is 20 × 2 mm2. We then find as
estimate for the critical densities in the order of magnitude of 10−8 and 10−6,
expressed in magnons per site, for waves in respectively the direction of the
long side and the short side of the film. This result is in good correspondence
with [8]. To convert this to a density with the correct dimensions we divide
by a2 and obtain densities of respectively 105 cm−2 and 107 cm−2.
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Chapter 4

Dynamics in the BEC state

The goal of this chapter is to describe the dynamics in the BEC state. To get
a first insight into the dynamics we perform a stability analysis in the static
BEC ansatz. Next we introduce the Gaussian ansatz and again perform a
static stability analysis. And then we derive equations of motion and study
the influence of the Gilbert damping and the parametric pumping on the
stability of the BEC.

4.1 Energy functional

Let us begin by rewriting the magnon Hamiltonian obtained in Chapter 2
into an energy functional. First rewrite the kinetic part of the second order
term as given in eqn. (2.4.13) as∑

k

h̄ωka
†
kak =

∫
d~x (Φ∗1h̄ω(∂~x)Φ1 + Φ∗2h̄ω(∂~x)Φ2) , (4.1.1)

where h̄ω(∂~x) = h̄ω~k0 −
h̄2∂2x1
2mx1

− h̄2∂2x2
2mx2

and with Φ1 and Φ2 corresponding to

the field at respectively k0 and −k0. mx1 and mx2 are effective masses that
can be determined by Taylor expanding the dispersion relation around k0 up
to second order in k, hence we approximate the behavior of the dispersion
relation near the minimum with a parabola.

We introduce a pumping term∑
k

[
ν∗k
2
a†ka

†
−k +

νk

2
aka−k

]
, (4.1.2)

with νk the pumping frequency, to the magnon Hamiltonian in order to model
the influence of the pumping as described in [6, 11]. Rewrite this pumping
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term as∑
k

[
ν∗k
2
a†ka

†
−k +

νk

2
aka−k

]
=

∫
d~x (ν∗Φ∗1Φ∗2 + νΦ1Φ2) , (4.1.3)

with
ν = νk0 + ν−k0 . (4.1.4)

At low energies the confluence and splitting terms are negligible, thus third
order terms drop and of the fourth order terms only the two-magnon scat-
tering term remains. Rewrite the two-magnon scattering term as

1

2N

∑
k1,k2,k3,k4

δk1+k2+k3+k+4,0Γāāaak1k2;k3k4
a†k1

a†k2
a−k3a−k4 =

1

2N

∑
p1,p2,p3,p4

δp1+p2+p3+p4,0

[
4Γāāaak0−k0;k0−k0

a†k0+p1
a†−k0+p2

ak0−p3a−k0−p4

+ Γāāaak0k0;−k0−k0

(
a†−k0+p1

a†−k0+p2
a−k0−p3a−k0−p4 + a†k0+p1

a†k0+p2
ak0−p3ak0−p4

)]
.

(4.1.5)

By performing an inverse Fourier transform, carrying out the momentum
sums and integrating over the resulting Dirac delta functions we obtain∫

d~x

[
2Γāāaak0−k0;k0−k0

Φ∗1Φ1Φ∗2Φ2 +
1

2
Γāāaak0k0;−k0−k0

(Φ∗1Φ1Φ∗1Φ1 + Φ∗2Φ2Φ∗2Φ2)

]
,

(4.1.6)
which we rewrite as∫

d~x
[γ1

2
(Φ∗1Φ1 + Φ∗2Φ2)2 +

γ2

2
(Φ∗1Φ1 − Φ∗2Φ2)2

]
(4.1.7)

with
γ1 + γ2 = Γāāaak0k0;−k0−k0

, γ1 − γ2 = 2Γāāaak0−k0;k0−k0
(4.1.8)

By combining the derived terms of the Hamiltonian and adding a chemical
potential we obtain the energy functional as in [15],

ε [Φ,Φ∗] =

∫
dr

(
Φ∗1h̄ω(∂~x)Φ1 + Φ∗2h̄ω(∂~x)Φ2 − µ (Φ∗1Φ1 + Φ∗2Φ2)

+ νΦ1Φ2 + ν∗Φ∗1Φ∗2 +
γ1

2
(Φ∗1Φ1 + Φ∗2Φ2)2 +

γ2

2
(Φ∗1Φ1 − Φ∗2Φ2)2

)
.

(4.1.9)
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Interesting to note is that U(1)-symmetry

Φ1 → eiδΦ1, Φ2 → eiδΦ2, (4.1.10)

and likewise the conjugates undergo the inverse transformation, associated
with particle number conservation is broken by the magnon pumping terms.
Also the interactions that are third order in the magnon operators do not
preserve the number of magnons, but since we focus on interactions between
condensed magnons the third order interactions do not play a role here.
Despite the U(1)-symmetry breakdown the energy functional is still invariant
under the transformation

Φ1 → eiδΦ1, Φ2 → e−iδΦ2. (4.1.11)

4.2 Static and homogeneous BEC

By inserting the static Bose-Einstein condensate ansatz Φi =
√
nie

iθi , with
ni the density and θi the phase factor, into eqn. (4.1.9) we obtain

ε

A
= (h̄ωk0 − µ) (n1 + n2) +2ν

√
n1n2 cos(θ1 + θ2 + θν) (4.2.1)

+
γ1

2
(n1 + n2)2 +

γ2

2
(n1 − n2)2 ,

where we have rewritten ν = νeiθν . We perform a change of variables as

n1 =
n+m

2
, n2 =

n−m
2

, (4.2.2)

such that n corresponds to the total density and that m corresponds to the
difference in densities between the two minima. Combining eqn. (4.2.2) and
eqn. (4.2.1) yields

ε

A
= n (h̄ωk0 − µ) + ν

√
n2 −m2 cos(θtot + θν) +

γ1

2
n2 +

γ2

2
m2, (4.2.3)

with θtot = θ1 + θ2. Let us consider ε as ε(n,m, θtot) where 0 ≤ n <∞,−n ≤
m ≤ n and 0 ≤ θtot < 2π. We are interested in what the conditions on
µ, ν, θν , γ1 and γ2 are such that ε(n,m, θtot) has a local minimum. From eqn.
(4.2.3) we obtain that minimizing ε(n,m, θtot) with respect to θtot yields that
θtot = (2k + 1)π − θν with k ∈ {0, 1}. By plugging this value for θtot into
ε(n,m, θtot) allows us to reduce the possible solutions for stable minima of
ε(n,m, θtot), hence we can restrict ourselves to minimizing ε(n,m, (2k+1)π−
θν) with respect to n and m.
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In order for a point to be a stable minimum, it must be a stationary point.
The stationary points of ε(n,m, (2k + 1)π − θν) have to obey

∂ε

∂n
= h̄ωk0 − µ−

nν√
n2 −m2

+ γ1n = 0, (4.2.4a)

∂ε

∂m
= m

(
ν√

n2 −m2
+ γ2

)
= 0. (4.2.4b)

We find two types of solutions. The first is

(n,m, θtot) =

(
−h̄ωk0 + µ+ ν

γ1

, 0, (2k + 1)π − θν
)
, (4.2.5)

under the condition that
−h̄ωk0+µ+ν

γ1
> 0, and the second

(n,m, θtot) =

− h̄ωk0 − µ
γ1 + γ2

,±

√(
h̄ωk0 − µ
γ1 + γ2

)2

−
(
ν

γ2

)2

, (2k + 1)π − θν

 ,

(4.2.6)

with k ∈ {0, 1} and under the conditions that − h̄ωk0−µ
γ1+γ2

> ν
|γ2| and γ2 < 0.

The conditions under which these stationary points are local minima are
given by

∂2ε

∂n2
=

m2ν

(n2 −m2)
3
2

+ γ1 > 0, (4.2.7a)

∂2ε

∂m2
=

n2ν

(n2 −m2)
3
2

+ γ2 > 0, (4.2.7b)

∂2ε

∂n2

∂2ε

∂m2
−
(

∂2ε

∂n∂m

)2

=
ν (γ1n

2 + γ2m
2)

(n2 −m2)
3
2

+ γ1γ2 > 0. (4.2.7c)

By inserting the stationary point given in eqn. (4.2.5) into the conditions
given in eqn. (4.2.7) we obtain that in order for the stationary point from
eqn. (4.2.5) to be a local minimum

γ1 > 0, γ2 > −
ν

n
, (4.2.8)

where we have written n for
−h̄ωk0+µ+ν

γ1
. By plugging the stationary point

given in eqn. (4.2.6) into the conditions given in eqn. (4.2.7) we obtain that
in order for the stationary point from eqn. (4.2.6) to be a local minimum

γ1 > |γ2|, γ2 < −
ν

n
, (4.2.9)
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where we have written n for − h̄ωk0−µ
γ1+γ2

.

Let us consider if there is a stable minimum at a boundary of ε(n,m, (2k+
1)π−θν), hence for m = ±n. We are not interested in the case n = 0, because
there will not be any dynamics. From the expression for ∂ε

∂m
given in eqn.

(4.2.4) we read off that there is no local minimum for m = ±n, because
∂ε
∂m
→ ±∞ if m→ ±n.
Note however that when ν = 0, i.e. when there is no pumping, then the

solution in eqn. (4.2.6) states n = m, thus only one valley is occupied.
In summary, we found that there are two different types of static solutions,

one symmetric and the other asymmetric, that can both be stable. The value
of the pumping is important for the question whether or not the condensates
are stable as follows from the conditions for the symmetric condensate in
eqn. (4.2.8) and for the asymmetric condensate in eqn. (4.2.9).

4.3 Gaussian ansatz

We introduce a Gaussian ansatz in order to take dynamics of the BEC into
account. By using a Gaussian ansatz of the form [9]

Φi(~x, t) ∝
√
Ni(t)

∏
j=1,2

exp

(
−

x2
j

2q2
i,xj

(t)

(
1− i

mxjqi,xj(t)

h̄

dqi,xj
dt

)
+
i

2
θi(t)

)
,

(4.3.1)
with Ni the number of magnons in valley i, qi,xj the Gaussian width of valley
i in the direction xj and θi the phase factor of valley i, in the normalization
requirement ∫

d2x|Φi(~x, t)|2 = Ni(t), (4.3.2)

we obtain that, properly normalized, it is given as

Φi(~x, t) =
√
Ni(t)

∏
j=1,2

(
1

πq2
i,xj

(t)

) 1
4

exp

(
−

x2
j

2q2
i,xj

(t)

(
1− i

mxjqi,xj(t)

h̄

dqi,xj
dt

)
+
i

2
θi(t)

)
.

(4.3.3)
Let us consider the continuity equation

∂

∂t
|Φi(~x, t)|2 + ~∇ · ~ji = 0, (4.3.4)

with

ji,xj = |Φi(~x, t)|2~vs(~x, t) =
h̄

2mxj i

(
Φ∗i (~x, t)∂xjΦi(~x, t)− Φi(~x, t)∂xjΦ

∗
i (~x, t)

)
,

(4.3.5)
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where ~vs(~x, t) is the superfluid velocity. To check the Gaussian ansatz we will
check if eqn. (4.3.4) is obeyed if we set the pumping parameter ν to zero. If
there is no pumping the number of particles in both valleys does not change,
i.e. dNi

dt
= 0. Writing out the continuity equation yields

∂

∂t
|Φi(~x, t)|2 =

∂

∂t

[
Ni(t)

∏
j=1,2

(
1

πq2
i,xj

(t)

) 1
2

exp

(
−

x2
j

q2
i,xj

(t)

)]

= Ni(t)
∑
l=1,2

[(
1

qi,xl(t)

dqi,xl
dt

)(
1− 2x2

l

q2
i,xl

(t)

)] ∏
j=1,2

(
1

πq2
i,xj

(t)

) 1
2

exp

(
−

x2
j

q2
i,xj

(t)

)
,

(4.3.6)

and

~∇ · ~ji =
∑
l=1,2

[
Ni(t)∂xl

((
xl

qi,xl(t)

dqi,xl
dt

) ∏
j=1,2

(
1

πq2
i,xj

(t)

) 1
2

exp

(
−

x2
j

q2
i,xj

(t)

))]

= Ni(t)
∑
l=1,2

[(
1

qi,xl(t)

dqi,xl
dt

)(
1− 2x2

l

q2
i,xl

(t)

)] ∏
j=1,2

(
1

πq2
i,xj

(t)

) 1
2

exp

(
−

x2
j

q2
i,xj

(t)

)
,

(4.3.7)

thus it is indeed obeyed.

4.4 Steady-state stability analysis

To take the finite width and length of the film of YIG into account we add
two single particle harmonic oscillators (one for each spatial dimension) to
the energy functional in eqn. (4.1.9) and obtain

ε[Φ,Φ∗] =

∫
d~x

[
Φ∗1h̄ω(∂~x)Φ1 + Φ∗2h̄ω(∂~x)Φ2 − µ (Φ∗1Φ1 + Φ∗2Φ2) + ν∗Φ∗1Φ∗2

+ νΦ1Φ2 +
γ1

2
(Φ∗1Φ1 + Φ∗2Φ2)2 +

γ2

2
(Φ∗1Φ1 − Φ∗2Φ2)2

+
1

2

(
mx1ω

2
x1
x2

1 +mx2ω
2
x2
x2

2

)
(Φ∗1Φ1 + Φ∗2Φ2)

]
, (4.4.1)

with ωxj = ωk0,j
− ωk0 , where k0,j = k0 + π

Lxj
x̂j and Lxj is the width of the

film of YIG in the xj-direction.
By plugging the Gaussian ansatz into the energy functional in eqn. (4.4.1)

and assuming the steady-state situation, i.e.
dqi,xj

dt
= 0, we obtain
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ε [N1, N2, ~q1, ~q2, θ1, θ2 ] =∑
i=1,2

[(
h̄ω~k0 +

∑
j=1,2

h̄2

4mxjq
2
i,xj

)
Ni

]

− µ (N1 +N2) + ν
√
N1N2 cos (θ1 + θ2 + θν)

∏
j=1,2

√
q1,xjq2,xj√
q2

1,xj
+ q2

2,xj

+
γ1

4π

 N2
1

q1,x1q1,x2

+
2N1N2√

(q2
1,x1

+ q2
2,x1

)(q2
1,x2

+ q2
2,x2

)
+

N2
2

q2,x1q2,x2


+
γ2

4π

 N2
1

q1,x1q1,x2

− 2N1N2√
(q2

1,x1
+ q2

2,x1
)(q2

1,x2
+ q2

2,x2
)

+
N2

2

q2,x1q2,x2


+

1

2

∑
i,j=1,2

[
mxjω

2
xj
q2
i,xj

2
Ni

]
, (4.4.2)

where we have rewritten ν = νeiθν .
We can read-off from this expression that minimizing with respect to θi

will yield that θ1 + θ2 = −θν + kπ, with k ∈ {1, 3}. To further simplify we
approximate our system by assuming that the dispersion is isotropic and that
the lattice width in the x1 and x2-direction are equal. From this it follows
that mx1 = mx2 ≡ m and ωx1 = ωx2 ≡ ω. If we consider a system for which
it holds that qi,x1 = qi,x2 we obtain that the steady-state energy functional
in eqn. (4.4.2) will transform to the isotropic, steady-state energy functional
as

ε [N1, N2, q1, q2] =
∑
i=1,2

[(
h̄ω~k0 − µ+

h̄2

2mq2
i

+
mω2q2

i

2

)
Ni

]
− ν
√
N1N2q1q2

q2
1 + q2

2

+
γ1 + γ2

4π

(
N2

1

q2
1

+
N2

2

q2
2

)
+
γ1 − γ2

2π

N1N2

q2
1 + q2

2

. (4.4.3)

4.4.1 Single BEC

If there is no pumping and only one valley is occupied we obtain that the
energy functional in eqn. (4.4.3) is given as

ε [N, q] =

(
h̄ω~k0 − µ+

h̄2

2mq2
+
mω2q2

2

)
N +

γ1 + γ2

4π

N2

q2
, (4.4.4)
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with N = N1 and q = q1. In the isotropic, steady-state case with only one
valley occupied and without pumping the dimensionless energy functional is

ε [q] =
1

2q2
+
q2

2
+

ΓinN

2q2
, (4.4.5)

with Γin = (γ1+γ2)m

2πh̄2
. We rescaled the Gaussian widths by the harmonic

oscillator length, l =
√

h̄
mω

and divided the energy by Nh̄ω. Note that we

dropped terms in the energy functional that do not depend on q, since we
are only interested in energy differences. Performing a stability analysis of ε
w.r.t. q yields

∂ε

∂q
=
−1

q3
+ q − ΓinN

q3
= 0. (4.4.6)

We find that
q = (1 + ΓinN)

1
4 (4.4.7)

Now we perform the second partial derivative test and apply the condition
on the stationary point for it to be a stable minimum, i.e.

∂2ε

∂q2
=

3

q4
+ 1 +

3ΓinN

q4
> 0. (4.4.8)

Evaluating this condition in the value for q as given in eqn. (4.4.7) yields the
condition that

ΓinN > −1. (4.4.9)

In Fig. 4.1 the the energy as a function of the Gaussian width is depicted
for three different values of ΓinN . This figure clearly shows that if the condi-
tion in eqn. (4.4.9) is satisfied there is a stable solution for the static system
and if the condition is not satisfied the system will be unstable and probably
collapse.

4.4.2 Two symmetric condensates

In the isotropic, steady-state case where both valleys are equally occupied
and there is no pumping the dimensionless energy functional derived from
eqn. (4.4.3) is

ε [q1, q2] =
1

2q2
1

+
1

2q2
2

+
q2

1 + q2
2

2
+Γ1

(
1

2q2
1

+
1

q2
1 + q2

2

+
1

2q2
2

)
+Γ2

(
1

2q2
1

− 1

q2
1 + q2

2

+
1

2q2
2

)
,

(4.4.10)
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Figure 4.1: The energy as function of the Gaussian width for three different
values of ΓinN . The blue line corresponds to ΓinN = 3, the green line to
ΓinN = −1 and the red line to ΓinN = −3.

with Γi = γimN
2πh̄2

. Doing stability analysis w.r.t. q1 and q2, thus first solving
stationary points yields

∂ε

∂q1

= − 1

q3
1

+ q1 + Γ1

(
− 1

q3
1

− 2q1

(q2
1 + q2

2)
2

)
+ Γ2

(
− 1

q3
1

+
2q1

(q2
1 + q2

2)
2

)
= 0,

(4.4.11)

∂ε

∂q2

= − 1

q3
2

+ q2 + Γ1

(
− 2q2

(q2
1 + q2

2)
2 −

1

q3
2

)
+ Γ2

(
2q2

(q2
1 + q2

2)
2 −

1

q3
2

)
= 0.

(4.4.12)

Solving for q1 and q2 yields

q1 =

(
1 +

3

2
Γ1 +

1

2
Γ2

) 1
4

, (4.4.13)

q2 =

(
1 +

3

2
Γ1 +

1

2
Γ2

) 1
4

, (4.4.14)

hence we only find a stationary point if 3Γ1 + Γ2 > −2. Now perform the
second partial derivative test and obtain the conditions for the stationary
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point to be a stable minimum as

∂2ε

∂q2
1

=
8 + 10Γ1 + 6Γ2

2 + 3Γ1 + Γ2

> 0, (4.4.15a)

∂2ε

∂q2
1

∂2ε

∂q2
2

−
(

∂2ε

∂q1∂q2

)2

=
32 (1 + Γ1 + Γ2)

2 + 3Γ1 + Γ2

> 0. (4.4.15b)

Combining the condition that there is a stationary point and the condition
in eqn. (4.4.15b) yields that there is a stable minimum if Γ1 > −1

2
and

Γ2 > −Γ1 − 1 or if Γ1 < −1
2

and Γ2 > −3Γ1 − 2. The condition in eqn.
(4.4.15a) is automatically obeyed if the other two conditions are obeyed. In
Fig. 4.2 a stable solution and an unstable solution are depicted.
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(a) Γ1 = 1 and Γ2 = −1, stable.
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(b) Γ1 = 1 and Γ2 = −4, unstable.

Figure 4.2: The energy as function of the Gaussian widths for a stable and
an unstable system.

In the case where both valleys are equally occupied and pumping is taken
into account, the dimensionless energy, with ν divided by h̄ω, derived from
eqn. (4.4.3) is given by

ε [N, q1, q2] =
1

2q2
1

+
1

2q2
2

+
q2

1 + q2
2

2
− ν q1q2

q2
1 + q2

2

+ Γ1

(
1

2q2
1

+
1

q2
1 + q2

2

+
1

2q2
2

)
+ Γ2

(
1

2q2
1

− 1

q2
1 + q2

2

+
1

2q2
2

)
. (4.4.16)

Note that the term corresponding to pumping is ν q1q2
q21+q22

. Recall that

without pumping there was at most one minimum for which q1 = q2. Note
that the pumping term minimizes the energy when q1 = q2, thus minima
obey q1 = q2. However if q1 = q2 the pumping term only gives a constant
contribution to the energy thus the position of the minimum does not move
due to the pumping, hence the solutions are the same as in Subsection 4.4.2.

30



4.5 Equations of motion

In order to study the dynamics we will deduce equations of motion (EoM)
for Φ and we will show two different ways to do so. The first method begins
with considering the Landau-Lifshitz-Gilbert (LLG) equation

∂~Ω(~x, t)

∂t
= ~Ω(~x, t)×

(
−1

h̄

δε [Ω]

δ~Ω(~x, t)

)
− α~Ω(~x, t)× ∂~Ω(~x, t)

∂t
, (4.5.1)

with ~Ω(~x, t) = 1
S
~S( ~x, t) the normalized spin vector and α > 0 the Gilbert

damping. The LLG equation is an equation of motion for the magnetization.
If α = 0, then the magnetic energy is a constant of motion for the LLG
equation. However we expect that the equilibrium situation is such that
the magnetization points along the effective magnetic field and the magnetic
energy is minimized. Therefore the term proportional to α, i.e. the Gilbert
damping term, is constructed such that the direction of magnetization spirals
towards the effective magnetic field while precessing. Note that the length
of the vector ~Ω is also a constant of motion of the LLG equation [16].

By plugging the Holstein-Primakoff transformation up to fourth order for
~S(~x, t) into the LLG equation we obtain the equation of motion for Φi(~x, t)

ih̄ (1 + iα)
∂Φi

∂t
=

δε

δΦ∗i
. (4.5.2)

An alternative way is by using an adjusted variational principle. The
action of our system is

S =

∫
dt

(∫
d~x (Φ∗1ih̄∂tΦ1 + Φ∗2ih̄∂tΦ2)− ε [Φ,Φ∗]

)
. (4.5.3)

We introduce the Rayleigh dissipation function

R = α

∫
dt

∫
d~x
(
|∂tΦ1|2 + |∂tΦ2|2

)
, (4.5.4)

with α the Gilbert damping term, which plays a role similar to the Gilbert
damping term in the LLG equation. Without the Gilbert damping term
the magnetic energy would be a constant of motion, which would prevent
the system for moving towards its expected equilibrium situation. From the
action and the Rayleigh dissipation function we can also obtain the equation
of motion for Φi(~x, t), but this time from the variational principle, i.e.

δS
δΦ∗i

=
δR

δ (∂tΦ∗i )
, (4.5.5)
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and we indeed obtain eqn. (4.5.2). By performing the functional derivatives
in eqn. (4.5.2) we obtain

ih̄ (1 + iα)
∂

∂t
|Φ〉 =(
h̄ωk0 − µ−

h̄2∂2
x1

2mx1

−
h̄2∂2

x2

2mx2

+
1

2
mx1ω

2
x1
x2

1 +
1

2
mx2ω

2
x2
x2

2

)
|Φ〉

+ ν∗σx|Φ†〉+ γ1〈Φ|Φ〉|Φ〉+ γ2〈Φ|σz|Φ〉σz|Φ〉, (4.5.6)

with |Φ〉 =

(
Φ1

Φ2

)
, 〈Φ| = (Φ∗1,Φ

∗
2) , and σi the Pauli spin matrices.

4.6 EoM in Gaussian ansatz for single BEC

We will use the equations of motion for Φ as derived in the previous section
to obtain equations of motion for the parameters from the Gaussian anzatz
earlier introduced. We consider a system which is isotropic, where only one
valley is occupied and without pumping. The Gaussian ansatz then is

Φ(~x, t) =
√
N(t)

1√
πq(t)

exp

(
−x

2
1 + x2

2

2q2(t)

(
1− im

h̄
q(t)q̇(t)

)
+ iθ(t)

)
.

(4.6.1)
By plugging this ansatz into eqn. (4.4.1) we obtain that the energy functional
for this system is

ε [N, q, q̇] =

(
h̄ω~k0 − µ+

h̄2

2mq2
+
m

2
q̇2 +

mω2q2

2

)
N+

γ1 + γ2

4π

N2

q2
= T [N, q̇]+V [N, q] ,

(4.6.2)
where we left out the explicit time-dependence for notational convenience.
To obtain equations of motion there are several methods available.

4.6.1 Normalization

The first method is by applying ∂t on the normalization equation for Φ as

Ṅ(t) = ∂t

∫
d2x|Φ(~x, t)|2, (4.6.3)

then inserting the equations of motion for Φ and Φ∗ obtained from eqn.
(4.5.6), and performing the spatial integrals in order to obtain

Ṅ = −2α (h̄ωk0 − µ)N

(1 + α2) h̄
− αh̄N

m (1 + α2) q2
− α (γ1 + γ2)N2

(1 + α2) h̄πq2
− αmω2Nq2

(1 + α2) h̄
− αmNq̇2

(1 + α2) h̄

= − 2αN

(1 + α2) h̄

∂ε

∂N
. (4.6.4)

32



4.6.2 Projection of the EoM

The second method is the projection method. From the equations of motion
for Φ we obtain by ”projection” that∫

d~x
∂Φ∗

∂N
ih̄ (1 + iα) ∂tΦ =

∫
d~x
∂Φ∗

∂N

δε

δΦ∗
,∫

d~x
∂Φ∗

∂θ
ih̄ (1 + iα) ∂tΦ =

∫
d~x
∂Φ∗

∂θ

δε

δΦ∗
,∫

d~x
∂Φ∗

∂q
ih̄ (1 + iα) ∂tΦ =

∫
d~x
∂Φ∗

∂q

δε

δΦ∗
. (4.6.5)

We use the Gaussian ansatz, perform the spatial integrals, split real and
imaginary parts and simplify in order to obtain equations of motion for N(t),
q(t) and θ(t) as

Ṅ = − 2αN

(1 + α2)h̄

∂ε

∂N
, (4.6.6a)

θ̇ = − 1

2h̄
mqq̈ +

1

2h̄
mq̇2 − 1

(1 + α2)h̄

∂ε

∂N
, (4.6.6b)

mNq̈ = −∂ε
∂q
− 2αh̄N

q̇

q2
− αm2

2h̄
Nq̇3 +

αm2

2h̄
Nqq̇q̈, (4.6.6c)

mNq̈ = −∂ε
∂q
− 2αh̄N

qq̇
q̈. (4.6.6d)

Note that we obtain two equations of motion for q. We will drop the terms
containing third order time-derivatives in eqn. (4.6.6c), because the LLG
equation as given in eqn. (4.5.1) only contains a damping term that has a
first order time-derivative. The next order damping term we could add to
the LLG equation would be third order in time derivatives, because it has to
break time-reversal symmetry since it is a damping term. Since our original
equation of motion does not take third and higher order time derivatives into
account, it would not be reasonable to do so here. The remaining damping
terms in the two equations of motion for q are equal if q would be an os-
cillating function. The damping term in eqn. (4.6.6c) agrees with previous
results [17] and it can be interpreted as a friction term in this form, thus it
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is reasonable to assume that the correct equations of motion are

Ṅ = − 2αN

(1 + α2)h̄

∂ε

∂N
, (4.6.7a)

θ̇ = − 1

2h̄
mqq̈ +

1

2h̄
mq̇2 − 1

(1 + α2)h̄

∂ε

∂N
, (4.6.7b)

mNq̈ = −∂ε
∂q
− 2αh̄N

q̇

q2
. (4.6.7c)

4.6.3 Variational principle

The last method we consider is based on using the variational principle com-
bined with the use of the Rayleigh dissipation functional. For the isotropic
system, without pumping and when only one valley is occupied we obtain by
using the Gaussian ansatz from eqn. (4.6.1) that the action is

S =

∫
dt

[(
ih̄

2
Ṅ − h̄Nθ̇ +

m

2
Nq̇2 − m

2
Nqq̈ − ε [N, q, q̇]

]
, (4.6.8)

and the Rayleigh dissipation functional is

R = αh̄

∫
dt

[
Ṅ2

4N
+Nθ̇2+N

q̇2

q2
+
mN

h̄

(
qθ̇q̈−θ̇q̇2+

m

2h̄
q̇4+

m

2h̄
q2q̈2−m

h̄
qq̇2q̈

)]
.

(4.6.9)
We again drop third and higher order time derivative terms using the same
argument as we used with the projection method

R = αh̄

∫
dt

[
Ṅ2

4N
+Nθ̇2 +N

q̇2

q2

]
. (4.6.10)

We should obtain the equations of motion from

δS
δN

=
δR
δṄ

,

δS
δθ

=
δR
δθ̇
,

δS
δq

=
δR
δq̇
. (4.6.11)

However, for not yet understood reasons, the extension of the variational
principle from eqn. (4.5.5) does not give results corresponding to those ob-
tained by the two previously discussed methods.
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4.6.4 Damping and interaction

Making the equations of motion in eqn. (4.6.7) dimensionless yields

Ṅ = − 2αN

1 + α2

(
h̄ωk0 − µ

h̄ω
+

1

2q2
+

1

2
q̇2 +

1

2
q2 +

ΓinN

q2

)
, (4.6.12a)

θ̇ = −1

2
qq̈ +

1

2
q̇2 − 1

1 + α2

(
h̄ωk0 − µ

h̄ω
+

1

2q2
+

1

2
q̇2 +

1

2
q2 +

ΓinN

q2

)
,

(4.6.12b)

q̈ =
1

q3
− q +

ΓinN

q3
− 2α

q̇

q2
. (4.6.12c)

Recall from Subsection 4.4.1 that Γin = m(γ1+γ2)

2πh̄2
.
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Figure 4.3: In (a) and (b) are respectively plotted the number of magnons,
N , and the Gaussian width, q

l
, against the time, ωt, for different values of the

Gilbert damping and with Γin = −1
2
.

In Fig. 4.3 plots of the numerical solutions for the equations of motion
in eqn. (4.6.12) are depicted for different values of α, with Γin = −1

2
. We

set h̄ωk0 − µ = 0, because we assume the system to be in a BEC. We chose
q(0) = (1+Γin)

1
4 and q̇(0) = 0 as in correspondence with the stability analysis

done in Subsection 4.4.1. In Fig. 4.3a and Fig. 4.3b respectively the number
of magnons, N , and the Gaussian width, q, are plotted against the time. To
determine whether or not the depicted solutions are stable, i.e. if the density
does not diverge, we focus on N

q2
, because it provides a good measure for the

density of magnons in the valley. From the figures it can be read off that the
density converges. For α = 0 the system does not change in time. For the
other values of α the number of magnons decreases to zero and the Gaussian
width behaves like a damped oscillator that goes to q = 1, thus the density
goes to zero. Hence all of these solutions are stable.
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Figure 4.4: In (a) and (b) are respectively plotted the number of magnons,
N , and the Gaussian width, q

l
, against the time, ωt, for different values of the

interaction and with α = 0.1

In Fig. 4.4 numerical solutions are shown with varying interaction, Γin,
and fixed damping, α = 0.1. For Γin = −2

3
the system does not change in

time. For Γin > −2
3

the number of magnons decreases and the Gaussian width
goes to q = 1, hence the density goes to zero, thus the system is stable. For
Γin < −2

3
the number of magnons increases and the Gaussian width decreases

to 0. Hence the density, N
q2

, diverges, which indicates a collapse of the BEC.

From the equations of motion in eqn. (4.6.12) we find that whether or not
the system is stable does not depend on the damping but depends on the
interaction.

4.6.5 A pumped BEC

Consider the equations of motion in eqn. (4.6.12), add pumping to the system
and assume that the pumping only changes the equation of motion for N as

Ṅ = − 2αN

1 + α2

(
h̄ωk0 − µ

h̄ω
+

1

2q2
+

1

2
q̇2 +

1

2
q2 +

ΓinN

q2

)
+ ν, (4.6.13)

with ν the pumping parameter dimensionless.
In Fig. 4.5 plots of the number of magnons and the Gaussian width

are depicted with fixed interaction, Γin = −1
2
, and damping, α = 0.1, and

varying pumping. We can read off that for higher pumping frequencies the
system becomes unstable but for lower pumping the system is not. Due to
the pumping the number of magnons will not go to zero but decreases to a
stable value.
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Figure 4.5: In (a) and (b) are respectively plotted the number of magnons,
N , and the Gaussian width, q

l
, against the time, ωt, for different values of the

pumping and with α = 0.1 and Γin = −1
2
.
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Figure 4.6: In (a) and (b) are respectively plotted the number of magnons,
N , and the Gaussian width, q

l
, against the time, ωt, for different values of the

damping and with Γin = −1
2

and ν = 0.3.

In Fig. 4.6 the same values for α and Γin have been used as in Fig. 4.3
but now we have added pumping, with ν = 0.3. We can read off that the
pumping causes the systems with lower damping to become unstable, while
the systems with higher damping remain stable.

The final result for the analysis of the stability of the one valley system
with pumping is given in Fig. 4.7. Shown is whether or not the system is
stable depending on the damping and the pumping for different values of the
interaction. One can read off that as the interaction becomes more attrac-
tive, i.e. Γin becomes more negative, the region where the system is stable
decreases in area. If the interaction is strong enough then even for high

37



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Damping

P
u
m

p
in

g

I

(a) Γin = 0.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Damping

P
u
m

p
in

g

I

II

(b) Γin = −1
6 .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Damping

P
u
m

p
in

g

I

II

(c) Γin = −1
3 .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Damping

P
u
m

p
in

g

I

II

(d) Γin = −1
2 .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Damping

P
u
m

p
in

g

II

(e) Γin = −2
3 .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Damping

P
u
m

p
in

g

II

(f) Γin = −5
6 .

Figure 4.7: Plotted are the regions of values for the damping and the pumping
for which the system is stable, I, and for which the system is unstable, II.

damping and low pumping the system becomes unstable. We can also read
off that the boundary between the stable and unstable regions is a mono-
tonically increasing line with a monotonically decreasing inclination. Hence
higher damping does make the system ”more” stable, but the influence on
the system of increased damping decreases for higher values of the damping.

4.7 Two pumped BEC’s

Let us consider the isotropic system, but now with both valleys occupied and
also include pumping. By plugging the Gaussian ansatz of eqn. (4.3.3) into
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the energy functional of eqn. (4.4.1) and setting qi,x1 = qi,x2 we obtain that

ε [N1, N2, q1, q2, θ1, θ2] =
∑
i=1,2

[(
h̄ω~k0 +

h̄2

2mq2
i

+
m

2
q̇2
i +

mω2q2
i

2

)
Ni

]
+4ν

√
N1N2q1q2

(q2
1 + q2

2) cos (θtot + θν)− m
h̄

(q2
1q2q̇2 + q2

2q1q̇1) sin (θtot + θν)

(q2
1 + q2

2)
2

+ m2

h̄2
(q2

1q2q̇2 + q2
2q1q̇1)

2

+
γ1 + γ2

4π

(
N2

1

q2
1

+
N2

2

q2
2

)
+
γ1 − γ2

2π

N1N2

q2
1 + q2

2

,

(4.7.1)

with θtot = θ1 + θ2. To derive the equations of motion we use the projec-
tion method analogous to Subsection 4.6.2. We derive that the equations of
motion are

h̄Ṅi = − 2αNi

1 + α2

∂ε

∂Ni

+
1

1 + α2

∂ε

∂θi
, (4.7.2a)

h̄θ̇i =
1

2
mq̇2

i −
1

2
mqiq̈i −

1

1 + α2

∂ε

∂Ni

− α

2Ni (1 + α2)

∂ε

∂θi
, (4.7.2b)

mNiq̈i == − ∂ε
∂qi

+
m

2h̄
q̇i
∂ε

∂θi
− 2αh̄Ni

q̇i
q2
i

. (4.7.2c)

Where we have used the same arguments for the EoM for qi as we have used
in Subsection 4.6.2 for the EoM for q to drop higher order time derivatives
and to be able to interpret the damping term as a friction term. By making
the EoM dimensionless we obtain

Ṅi = − 2αNi

1 + α2

∂ε

∂Ni

+
1

1 + α2

∂ε

∂θi
, (4.7.3a)

θ̇i =
1

2
q̇2
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1

2
qiq̈i −

1

1 + α2

∂ε

∂Ni

− α

2Ni (1 + α2)
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∂θi
, (4.7.3b)

Niq̈i = − ∂ε
∂qi

+
1

2
q̇i
∂ε

∂θi
− 2αNi

q̇i
q2
i

. (4.7.3c)

4.7.1 Symmetric condensates

First consider the situation with the system symmetric, i.e. q1(0) = q2(0),
N1(0) = N2(0) and without pumping. This system is identical with that
considered in Subsection 4.6.4 if we would replace Γin by Γin + 1

2
Γex, with

Γex = m(γ1−γ2)

πh̄2
. When we add pumping to the system, we can still add up

the interactions in the same way. In Fig. 4.8 the regions for values of the
damping and the pumping where the systems are stable and where they are
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unstable are depicted. In comparison with the regions in Fig. 4.7 we notice
that for the diagrams labeled with (b), (c) and (e) the boundary line between
the two regions no longer runs through the origin. From diagrams (b) and
(c) we read off that the systems with small damping still remain stable for
higher values of the pumping compared to the diagrams (b) and (c) in Fig.
4.7. The diagram labeled with (e) in Fig. 4.8 shows a small stable region
for low damping, α < 0.1 and low pumping but for a system with higher
damping, around α = 0.1, and equal pumping it would be unstable. This
result is disputable, because one would expect that higher damping would
cause the density of magnons to be lower, hence not shift a stable system
to an unstable system. The boundary lines in diagrams (b), (c) and (d) are
all monotonously increasing as where the lines in Fig. 4.8. Indicating that
for higher damping the system becomes more stable, with an exception for
diagram (e) for values of the damping, α < 0.1.
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Figure 4.8: The regions of values for the damping and the pumping for which
the system is stable, I, and for which the system is unstable, II.
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Figure 4.9: In (a) and (b) are plotted the number of magnons and the Gaus-
sian width, respectively, against the time, ωt, with Γin = −1

2
, Γex = 1

2
,

α = 0.05 and ν = 0.01.

4.7.2 Asymmetric condensates

We consider a system which is not symmetric. In the situation where Γex = 0
and ν = 0 the system behaves like two independent condensates, which both
behave as the BEC described in Subsection 4.6.4.

In general there is a multitude of parameters that influence the system,
among which: Γin, Γex, α, ν, N1(0), N2(0), q1(0) and q2(0). A full analyses of
the system would be rather extensive due to the high number of parameters,
hence we limit ourselves to considering a specific case which shows charac-
teristics different from the systems we have considered in this thesis so far.
In Fig. 4.9 the number of magnons and the Gaussian widths are depicted for
a system with two asymmetric condensates. The system becomes unstable
because the condensate with a relatively higher number of magnons at t = 0,
indicated by the blue line, collapses. The condensate with a lower number
of magnons at t = 0, indicated by the red line, does not seem to collapse.
Unfortunately our model does not allow us to describe the behavior of the
system after one of the two condensates has collapsed. That the number
of magnons increases in the already more populated condensate and that
the number of magnons decreases in the less populated condensate can be
explained from the value of Γex. In eqn. (4.7.1) we see that the term multi-
plying Γex goes with N1N2, which maximizes for N1 = N2 and minimizes if
the magnons shift from the already less populated condensate to the more
populated condensate.
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Chapter 5

Conclusion

We have studied the stability of magnon BEC’s in YIG at room temperature,
which were realized in the experiment of Ref. [6]. First, in Chapter 2, we
derived the magnon quantum many-body Hamiltonian up to fourth order in
the magnon operators. We calculated that there are attractive interactions,
hence deduced that it is possible for the condensate to be unstable. In
Chapter 3 we made an estimate of the critical density by partially following
a calculation as was done in [8]. In Chapter 4 we studied the effects of
dynamics on the BEC by using a Gaussian ansatz. We specifically focused
on the influence of the Gilbert damping and the parametric pumping and
determined for several different cases if the condensate would be stable or
not.

For studying the dynamics we derived equations of motion for the func-
tions introduced by using the Gaussian ansatz. What the best method to
obtain the equations of motion is, is not totally clear. The equation of mo-
tion for the Gaussian width was obtained partially based on physical intu-
ition but a mathematically more rigorous method is desirable. The extension
of the variational principle including the Rayleigh dissipation functional for
the equations of motion for the wavefunctions, given in eqn. (4.5.5), to the
Gaussian functions is failing, but why is not well understood. It is difficult
to directly apply the theoretical model studied in this thesis to the exper-
iments performed [6], because values for several parameters amongst which
the interaction strengths and Gaussian widths are unknown.

It is interesting for future research to look for numerical solutions of the
equations of motion for the wavefunctions describing the BEC’s, instead of
introducing a variational ansatz, deriving equations of motion for the varia-
tional parameters and look for numerical solutions of those as we have done.
This approach would allow for comparison with experiment [6] more nat-
urally than our approach does. It would also be interesting to study the
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relaxation process by which pumped magnons relax into magnons forming
the BEC. This would allow for a better understanding of the effect of the
parametric pumping on the stability of the magnon BEC. Another possible
focus for future research could be to obtain a better understanding of the
methods used for the derivation of the equations of motion in the variational
ansatz.
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