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Abstract

We consider an existing deterministic bio-mathematical model describing the
initial stage of atherosclerosis, an inflammatory disease characterized by the
formation of plaques within the arterial wall. Several experimental studies have
suggested that irradiation of the heart or neck region by X-rays increases the
risk of getting atherosclerosis. Radiation dependence is included in the model
via a stochastic initiation process. We extend the deterministic growth model
by incorporating the formation of a necrotic core in plaques. We present a
set of differential equations which is combined with the stochastic initiation
process to fit to data from irradiated mice. The model returns multiple possible
growth scenario’s, that require more insight in biological processes for further
improvements. The actual number of plaques is under-estimated because of
overlap. We present a method to model the plaque-covered area in the artery,
taking the possibility of overlap into account.
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Introduction
Atherosclerosis is a chronic disease during which cholesterol accumulates in
plaques in the arterial wall. The vessels narrow, eventually restricting the blood
flow to organs such as the heart and lungs, which may lead to heart attacks
or strokes. In the Netherlands, cardiovascular diseases have been and are the
second most common cause of death according to the Dutch Heart Foundation.

Several experimental studies have demonstrated that irradiation of the heart
or neck region increases the risk of getting atherosclerosis [4, 18, 17]. Given the
increasing use of radiation in health care and associated burden, it is important
to gain insight in how radiation promotes plaque growth. Mathematical modeling
in combination with biological experiments can be used to gather understanding
on the development of atherosclerosis, which in turn can help reducing the
mortality from cardiovascular diseases.

In this study, we first consider an existing plaque growth model from [6, 10],
which is discussed in Chapter 1. In that chapter, the biological processes playing
a part in atherosclerosis are summarized and some analysis is done on the model.
In [6], radiation dependence is included in the model via a stochastic initiation
process as outlined in Chapter 2. We extend the model by describing the growth
of a plaque after initiation, characterized by the formation of a necrotic core in
plaques. In Chapter 3, we give an outline of the relevant biological processes
before deriving a new set of differential equations. We test the model by fitting
its solution to observational data based on the method from [6] and analyze the
equations. Finally, in Chapter 4 we introduce a new way to model the coverage
of a piece of artery by plaques, taking into account that they can start to overlap
as they grow. The equations are evaluated using numerical simulations. Further
discussion and conclusions are provided in the final chapter.
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1 Initial model describing the first stage

in plaque growth
Atherosclerosis is an inflammatory disease during which white blood cells and
lipids accumulate in plaques in the artery walls. In [6, 10], a model to describe
the growth of these plaques is discussed. In this chapter, the biological processes
playing a part in atherosclerosis are described. We refer to Appendix B for a list
of descriptions of the biological terms that are the most frequently used in this
thesis. Next, the system of differential equations describing these processes are
explained and some analysis is done on the system.

Figure 1.1: Cross section of an artery.
Atherosclerosis starts in the intima after
the endothelium damages.

The artery walls are composed of
three layers; the intima, the media
and the adventitia [10]. The intima,
which is where atherosclerosis starts,
is separated from the bloodstream by
a layer only one cell thick which is
called the endothelium, see Figure 1.1.
The bloodstream is called the lumen.
The two main ingredients for ather-
osclerosis are white blood cells and
low-density lipoproteins (LDL) in the
blood, which are structures built up
from proteins that are filled with lip-
ids. They transfer the lipids through
the blood from and to the organs.
Atherosclerotic plaques start to form
when there is a dysfunction of the en-
dothelial cells, which can be caused by
radiation, smoking or obesity among
others [4]. This dysfunction makes it
possible for the LDL particles in the bloodstream to diffuse through the endothe-
lium into the intima, something that does not happen in a healthy artery. Once
in the intima, the cholesterol oxidizes under the influence of reactive oxygen
species (ROS) after which it is referred to as modified LDL or modLDL in
short. Sometimes in literature it is called oxLDL, for oxidized LDL. ROS are
always present in the blood, but levels rise under the influence of for example
smoking and radiation. In [1], it is described how alongside the ROS, there are
high levels of antioxidant content in the bloodstream which makes it unlikely
for LDL particles to oxidize while in the lumen. This is in contrast to the
intima, where there are no or few antioxidants and where LDL particles oxidize
almost immediately. The oxidized LDL particles get trapped in the intima [1]
setting of an inflammatory reaction in which the endothelium expresses adhesion
molecules to which white blood cells such as monocytes and T-cells attach. The
white blood cells enter the artery wall after which the monocytes differentiate
into macrophages. Macrophages take up the unwanted modLDL and sectrete
cytokines while doing so. Cytokines are messengers, regulating inflammatory
reactions by increasing or decreasing the number of white blood cells that are
attracted. The cytokines secreted by macrophages are pro-inflammatory; they
attract even more monocytes. The T-cells are activated by macrophages and
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respond to this by secreting anti- and pro-inflammatory cytokines. In the case
of atherosclerosis, the attracting of white blood cells does not stop making
it a chronic inflammation. The macrophages will fill up with modLDL and
turn into lipid-laden foam cells. These foam cells are larger in size than empty
macrophages, causing them to get stuck in the intima which is the beginning
of an atherosclerotic plaque. The processes described above are schematically
shown in Figure 1.2. The oxidation of LDL happens fast and is therefore not
shown in this figure.

Figure 1.2: First stage of plaque development. M stands for macrophage, T
for T-cells, LDL denotes modLDL particles and F stands for foam cell. 1: The
endothelium gets damaged. 2: LDL enters the intima which makes that the
endothelial cells attract white blood cells. 3: T-cells and macrophages enter
the intima. 4: Macrophages take up the LDL particles and turn into foam
cells. T-cells react to the macrophages taking up modLDL by attracting more
macrophages.

1.1 Initial model

The starting point of this thesis is a model described in [6, 10]. It describes
the early stage of plaque growth in atherosclerosis and we will extend it in
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Chapter 3 to describe the growth of a plaque in the next stage. It is assumed
that LDL particles oxidize and monocytes differentiate the moment they enter
the intima and so equations for modLDL and macrophages can be considered
instead of non-oxidized LDL and monocytes. In the model, given in (1.1) below,
the molar concentration of modLDL particles in the artery wall is denoted by l.
The variable n stands for the molar concentration of internalized lipid, meaning
the modLDL particles that are ingested by macrophages. Instead of modeling
macrophage concentration, the macrophage capacity concentration is considered.
Capacity is denoted by m and it is defined as the amount of modLDL (in units
of mol/l) that can in theory still be internalized by the macrophages in a unit
volume of the artery wall. The concentration of macrophages which is denoted by
M , is used to derive an equation for m in [6] and will later be used in this thesis
as well. Estimates by [6] suggest that one macrophage can up in the order 109

modLDL particles, a quantity that is denoted by ξ. The capacity concentration
then simply follows from M and n by the relation m = ξM −n. Note that when
lipid is ingested the capacity of the macrophages decreases, but the number
of macrophages remains the same. In Table 1.1, the in- and efflux terms that
should be considered are listed. Each term in the equations is discussed in more
detail below.

Table 1.1: In- and efflux for the initial plaque growth model.

influx efflux
modLDL l influx due to endothelial damage uptake by macrophages

macrophages M
endothelial response to modLDL
T-cell feedback

capacity m
endothelial response to modLDL
T-cell feedback

uptake of modLDL

ingested lipids n uptake of modLDL

dl

dt
= F0︸︷︷︸

influx

− ρ1U(l)lm︸ ︷︷ ︸
uptake

(1.1a)

dm

dt
= Fml︸︷︷︸

endothelial
response

+ ρ2R(l,m)lm︸ ︷︷ ︸
T-cell feedback

− ρ1U(l)lm︸ ︷︷ ︸
uptake

(1.1b)

dn

dt
= ρ1U(l)lm︸ ︷︷ ︸

uptake

(1.1c)

l(0) = l0, m(0) = m0, n(0) = n0 (1.1d)

In [10], different options for U(l) and R(l,m) are discussed and in this thesis,
we use the same functions as in [6]:

U(l) =
1

1 + l
lth

, R(l,m) =
1

1 + s(ml )2
. (1.2)

Oxidized LDL. The parameter F0 stands for the constant rate of change in
lipid concentration due to the influx of modLDL particles from the lumen into
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the intima. The function U(l) describes to what extend the macrophages take
up unwanted modLDL. Basic requirements are that if l equals zero, there is
no uptake while for high values of l the uptake saturates and tends to some
maximum value ρ1lthm. The parameter lth stands for the maximum amount of
modLDL that can be present in a unit volume of the artery wall. The parameter
ρ1 describes the rate of uptake per unit ingested modLDL.

Macrophage capacity. The recruitment of macrophages by the endothelium
is a response to the presence of modLDL in the intima and is modeled by
the term Fml. Here, the parameter Fm denotes the capacity concentration
influx rate caused by one unit concentration modLDL. T-cells may recruit extra
macrophages as a response to the cytokines released by macrophages ingesting
modLDL. If m/l is small, there is a low macrophage capacity compared to
the amount of free modLDL particles and extra capacity is attracted. This is
incorporated in the feedback function R. The parameter s controls the steepness
of this function and should always be strictly positive. Parameter ρ2 describes
the rate of recruitment per unit of ingested modLDL particles. The macrophage
capacity decreases when oxidized LDL particles are ingested. The same uptake
as in the equation for modLDL is used, since the uptake process of modLDL
affects the free modLDL concentration in the intima and the theoretical uptake
capacity of macrophages in a identical manner.

Internalized lipids. The internalized lipids concentration increases as the
free lipids concentration decreases because of uptake by macrophages, so the
uptake term is used in the last equation as well. The volume of a plaque can be
computed using this variable, as in this phase of plaque development the volume
is built up from these foam cells only.

The existence of solutions and steady states is checked for (1.1) before we
will extend the model in Chapter 2.

1.2 First analysis of the model

The first question that should be asked is whether there exist solutions to (1.1)
or not. In order to answer this question, the fundamental existence theorem for
nonlinear differential equations from [3, p. 42] is used.

Theorem 1.1 (Existence and uniqueness). Let Ω be an open subset of R× Rn
and let F : Ω→ Rn be continuous and locally Lipschitz continuous in the second
variable. Then there is a locally defined unique solution for the initial value
problem X ′ = F (t,X), X(0) = X0.

To prove that a function satisfies the Lipschitz condition, the following lemma
can be used.

Lemma 1.2. Let Ω be an open subset of Rn and f : Ω→ R be a differentiable
function. If f has bounded partial derivatives, then it satisfies the Lipschitz
condition for some k ∈ R≥0.
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Proof. Let X1, X2 ∈ Ω. Define the differentiable function g(t) = f(tX1 + (1−
t)X2) for t ∈ [0, 1]. The mean value theorem states that there exists a c ∈ (0, 1)
such that g′(c) = g(1)− g(0). Rewrite the derivative of g to find

g′(t) =
d

dt
f(tX1 + (1− t)X2) = ∇f(tX1 + (1− t)X2) · (X1 −X2). (1.3)

It follows that

f(X1)−f(X2) = g(1)−g(0) = g′(c) = ∇f(cX1 +(1−c)X2) ·(X1−X2). (1.4)

Since f has bounded partial derivatives, there exists some constant k ∈ R≥0

such that k = ‖∇f(cX1 + (1 − c)X2)‖. The Lipschitz condition follows when
taking Euclidean norms:

‖f(X1)− f(X2)‖ ≤ k‖X1 −X2‖. (1.5)

The above will be used to show that a unique solution to (1.1) exists. The
domain Ω is chosen to be I × (−δ, L) × (−δ, C) × (−δ,N) where lth > δ > 0
and L,C,N are positive real numbers. I is some time interval containing t = 0.
Negative values for l,m and n do not exist, but are considered anyway in order
to be able to choose l(0) = m(0) = n(0) = 0 as initial condition. This is done
because of biological reasons, since in a healthy artery wall there are no modLDL
particles and macrophages present. System (1.1) has for X = (l,m, n) right
hand side

F (t,X) =

 F0 − ρ1U(l)lm
Fml + ρ2R(l,m)lm− ρ1U(l)lm

ρ1U(l)lm

 . (1.6)

Note that we have chosen the domain Ω such that (1 + l/lth) > 0 which means
that U(l)lm is continuous in l,m. For the feedback function R(l,m)lm continuity
follows immediately for l 6= 0. By noting that

R(l,m)lm =
lm

1 + s(ml )2
= l2

x

1 + sx2
, with x =

m

l
(1.7)

is continuous even for x tending to negative or positive infinity, which corresponds
to l tending to zero. The feedback function is continuous and so, (1.6) is
continuous. Furthermore, F is differentiable with respect to l,m, n with the
partial derivatives of U(l)lm and R(l,m)lm given by:

∂

∂l
[Ulm] =

m

(1 + l
lth

)2
,

∂

∂m
[Ulm] = U(l)l, (1.8a)

∂

∂l
[Rlm] = m

1 + 3s(ml )2

[1 + s(ml )2]2
,

∂

∂m
[Rlm] = l

1− s(ml )2

[1 + s(ml )2]2
. (1.8b)

The partial derivatives of the uptake function are bounded by choice of Ω,
meaning that U(l)lm satisfies the Lipschitz condition. For boundedness of the
partial derivatives of the feedback function, denote again m/l = x. For any
value of x, even infinity, the fractions in (1.8b) are bounded, meaning that for
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any (l,m) ∈ Ω, the partial derivatives of the right hand side of our system are
bounded.

m
1 + 3sx2

(1 + sx2)2
, l

1− sx2

(1 + sx2)2
(1.9)

It follows that (1.6) satisfies the Lipschitz condition, so there exists a locally
defined unique solution to the model (1.1).

The next step in our analysis of a model is to verify whether it has non-
trivial steady states. If it is possible to describe under what conditions the time
derivatives equal zero then we find conditions under which the inflammatory
process will not escalate. This means that a plaque will not grow and thus that
the artery wall will stay healthy. In the case of a steady state, there is an X̃ such
that F (t, X̃) = 0 with F defined as in (1.6). From F1(t,X) = 0 it follows that
F0 = ρ1U(l)lm, but from F3(t,X) = 0 we deduce that ρ1U(l)lm = 0. These
two conditions contradict each other unless F0 = 0, which would mean that
there is no influx of modLDL at all and thus that the plaque would not start
to form at all. It is however possible to determine parameter values such that
F1(t,X) and F2(t,X) are equal to zero. This would correspond to a linearly
growing plaque since then we would have for the internalized lipid equation
F3(t,X) = ρ1U(l)lm = F0. From F1(t,X) follows that

F1(t,X) = 0 ⇒ m(l) =
F0

ρ1U(l)
. (1.10)

Solving F2(t,X) = 0 gives

−F0 + Fml + ρ2
lm

1 + s(m/l)2
= 0

⇒ m(l) =
−ρ2l ±

√
(ρ2l)2 − 4s/l2(−F0 + Fml)2

2s/l2(−F0 + Fml)
.

(1.11)

The fixed value for l can be found by (1.10) and (1.11), from which m can be
determined. In (1.11), the determinant D = (ρ2l)

2−4s/l2(−F0+Fml)
2 should be

greater than or equal to zero in order to have real m. Since 4s/l2(−F0+Fml)
2 ≥ 0

is
√
D ≤ ρ2l and so the denominator of (1.11) has to be strictly negative in

order to have positive m. This gives the following condition on l:

l <
F0

Fm
. (1.12)

The determinant is positive when

ρ2l ≥ −2
√
s/l2(−F0 + Fml)

⇒ l ≥ −
√
sFm +

√
sF 2

m + 2
√
sρ2F0

ρ2
.

(1.13)

The last two conditions determine whether it is possible to find a real positive
fixed value for l and m; if the expression in (1.12) is smaller than the expression
in (1.13), there is no solution and so plaques grow faster than linearly.
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2 Relation of development of plaques to

radiation
Various studies indicate that high dose radiation can play a role in atherosclero-
sis. Epidemiological studies concerning cancer patients who were treated with
radiotherapy for left-sided breast cancer or Hodgkin’s disease have shown that
radiation is a risk factor for development of cardiovascular diseases [4, 18]. Also
studies among atomic bomb survivors in Japan have shown a possible relationship
between radiation and heart disease [17]. Radiation may cause inflammatory
reactions which can have an effect on the structure of the artery and can in-
crease the vascular permeability. This makes it possible for LDL particles and
monocytes to enter the intima promoting the inflammatory reaction described
in Chapter 1 [18]. The role of low dose radiation is less clear. In [6], the effect
of high dose acute radiation on the initiation and progress of atherosclerosis
in mice is tested using the system of differential equations given by (1.1). The
method and results from the article [6] will be discussed here before the model
is extended in Chapter 3.

The data that were used in [6] and in Chapter 3 is taken from [4]. In the
experiment, genetically modified mice were irradiated with 0, 8 or 14 Gray (Gy)
X-ray around the age of thirteen weeks. This specific kind of mice, ApoE(-/-)
mice, develops plaques with characteristics similar to human plaques [9]. Per dose
group, there were ten to twelve animals. The sham group (0 Gray) was treated
exactly the same as the other groups, meaning that they were also moved to the
X-ray machine but without receiving an actual dose. This is done to rule out the
effects of stress caused by moving the mice. Around the age of ten months they
were sacrificed in order to measure the area covered by plaques in the carotid
arteries. A first look at the data shows that the sizes of the atherosclerotic
plaques do not differ significantly for irradiated and non-irradiated mice. The
number of plaques however does differ, as is shown in Table 2.1 and Figure 2.1.
It is therefore assumed that the acute irradiation has little or no effect on the
growth of the plaques but does have an effect on the initiation of plaques. It
might be possible though that chronic radiation has a more pronounced effect
on growth of plaques.

Plaque initiations are modeled using a non-homogenous Poisson process.
The effect of acute, one time only radiation on initiations disappears after
approximately two weeks after the time of irradiation ti, meaning that the
plaque initiation rate is elevated for two weeks following the irradiation and then
drops back to the background initiation rate. This is described in [18]. The
time window of approximately 14 days is denoted by τ . The Poisson process is

Table 2.1: Area in mm2 and number of plaques per dose group. Each dose group
has ten to twelve mice. Doses are in Gray (Gy).

mean area min area max area mean nr. min nr. max nr.
0 Gy 0.1485 0.00262 0.5988 2.7 0 5
8 Gy 0.1636 0.0114 0.5632 4.6 1 7
14 Gy 0.1501 0.01345 0.4885 5.4 4 8
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Figure 2.1: Mean values and standard deviation of the numbers and the area of
plaques per dose group.

described by the following event rate

λ(t) = λ0(1 + αD[H(t− ti)−H(t− ti − τ)]), (2.1)

with H the Heaviside step function. The parameter D describes the dose of
the irradiation and λ0 is the baseline event rate, i.e. the rate at which plaques
form without radiation. From the Poisson process, a likelihood function can be
derived and this can be used to compare the data with the model. In the next
section, the concept of likelihood functions is explained briefly and the likelihood
function for this specific model is derived.

2.1 Maximum likelihood

The maximum likelihood method can be used to estimate unknown parameters in
a random process. Let a random variable X behave according to some stochastic
model with one or multiple unknown parameters π. For a fixed data set of n
independent observations Xobs = {x1, . . . , xn}, the maximum likelihood method
is used to find the parameter value πmle for π which makes the set of observations
most probable to occur. This is done by defining a likelihood function ` that
returns for a given value of π how likely it is to observe Xobs. This likelihood
function is equal to the probability of finding Xobs given a certain value for π,
as defined below. The function is then maximized in order to find πmle.

πmle = max
π

`(π | Xobs) = max
π

P (Xobs | π) = max
π

n∏
i=1

P (xi | π) (2.2)

It has great computational advantages to minimize the negative log(`) instead
of maximizing `. The maximum likelihood method becomes less suitable for
models with many unknown parameters in comparison with the number of
variables. The more parameter values are unknown, the more general the model
becomes. When a model gets too general, it is possible to describe any data
set. Furthermore, the method is less efficient if the number of observations n is
small, since then it is difficult to identify the effect of parameters on the random
variable. There are numerous books describing the maximum likelihood method,
of which we refer to [2, ch. 5]. Next, a likelihood function is derived in order to
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fit the mouse plaque size data to the stochastic initiation of plaques using the
deterministic growth curve from (1.1).

For the fitting process described below, the parameters in the deterministic
model (1.1) are denoted by a vector β and θ denotes the parameters of the
random initiation process given by (2.1). When fixing values for the parameters
β, the growth curve V (t|β) of the plaque volume follows from (1.1) by stating
V = κ · n. Here, κ is a parameter that transforms the molar concentration of
internalized lipids into volume of internalized lipids per control volume. Now, let
a mouse have its time of birth at t = 0 and time of death at t = T . Let it have
n plaques with sorted observed areas {Ã1, . . . , Ãn} at the time of death. We
assume that every plaque has the same deterministic growth curve defined by
the system described in Chapter 1. The observed values in the data set describe
plaque area instead of volume and so to use the data, the estimation Ṽ ≈ Ã3/2 is
used. The set of observed areas is transformed to a set of volumes {Ṽ1, . . . , Ṽn}.
The unknown initiation time for plaque i is denoted by ti. From the growth
curve V and an observed volume, it is possible to compute an expectation of
how long a plaque has been developing. For plaque i, the expected initiation
time is then given by

ti = T − V −1(Ṽi | β), (2.3)

where V −1(Ṽi | β) is the expected growth time of a plaque which follows from

the inverse growth function V −1 evaluated at the observed plaque volume Ṽi.
Since the volume of a plaque strictly increases after initiation, ti is unique. The
initiation times are ordered according to the plaque sizes; for Ṽi > Ṽj we find
ti < tj . For every plaque, an initiation time can be computed resulting in a set
Sn = {ti | i = 1, . . . , n}. For this set, a likelihood function is computed. This
means that P (Sn | β, θ), the probability of having exactly n plaque initiations
at times t1, . . . , tn depending on β and θ, has to be found. This is done by
discretizing the time in steps ∆t, computing the probability and then finally by
taking the limit of ∆t→ 0.

Denote Nt,t+∆t for the number of initiations in the time interval [t, t+∆t] and

Λt,t+∆t =
∫ t+∆t

t
λ(s)ds for the integrated event rate, which equals the expected

number of initiations in this time interval. For a Poisson process, the probability
of k events occurring in a time interval [t, t+ ∆t] equals

P (Nt,t+∆t = k) =
(Λt,t+∆t)

k

k!
exp(−Λt,t+∆t). (2.4)

The expression above with k = 0, 1 is used to compute the probability of having
one initiation in [ti, ti + ∆t] and having no new initiation up till time ti+1, which
is given by

P (Nti,ti+∆t = 1)·P (Nti+∆t,ti+1
= 0)

= [Λti,ti+∆t exp(−Λti,ti+∆t)] ·
[
exp(−Λti+∆t,ti+1

)
]

= Λti,ti+∆t · exp(−Λti,ti+1).

(2.5)

Taking the limit of ∆t tending to zero in (2.5) gives the probability of having an
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initiation at exactly ti and no other up till ti+1.

P (init. at ti)·P (no init. in (ti, ti+1))

= lim
∆t→0

P (Nti,ti+∆t = 1) · P (Nti+∆t,ti+1 = 0)

∆t

= exp(−Λti,ti+1) · lim
∆t→0

Λti,ti+∆t

∆t

(2.6)

We use expression (2.6) to find the probability P (Sn | β, θ). Below, tn+1 stands
for T .

P (Sn|β, θ)=P (no init. in (0, t1))·
n∏
i=1

P (init. at ti)·P (no init. in (ti, ti+1))

= exp(−Λ0,t1) ·
n∏
i=1

exp(−Λti,ti+1) · lim
∆t→0

Λti,ti+∆t

∆t

= exp(−Λ0,T ) ·
n∏
i=1

lim
∆t→0

Λti,ti+∆t

∆t

(2.7)

Each limit in the last line in (2.7) above is the derivative of the integrated event
rate Λ(t).

lim
∆t→0

Λti,ti+∆t

∆t
= lim

∆t→0

Λ0,ti+∆t − Λ0,ti

∆t
=

d

dt
Λ0,t

∣∣∣∣∣
t=ti

= λ(ti) (2.8)

This shows that, using (2.7), the likelihood function for one mouse with observed

plaque volumes {Ṽ1, . . . , Ṽn} equals

`(β, θ) = P (Sn | β, θ) = exp(−Λ0,T )

n∏
i=1

λ(ti) (2.9)

with ti given by (2.3). The parameters β are incorporated in the times ti via
the growth curve and parameters θ can be found in Λ and λ.

If an experiment consist of tests on j = 1 . . . N mice, each with its own
number of plaques nj , time of death Tj and likelihood function `j , the total
likelihood is given by

L(β, θ) =

N∏
j=1

`j(β, θ) =

N∏
j=1

(
exp(−Λ0,Tj )

nj∏
i=1

λ(ti,j)

)
. (2.10)

This likelihood function should be maximized with respect to the parameter sets
β, θ in order to find a solution set which describes the growth and initiation of
plaques fitting to the data. This is equivalent to minimizing the negative of the
ln-likelihood.

LLH(β, θ) = − lnL(β, θ) =

N∑
j=1

Λ0,Tj −
N∑
j=1

nj∑
i=1

lnλ(ti) (2.11)

Results of fitting the data to model (1.1) in Chapter 1 using the likelihood
method described above are discussed in [6]. The same method will be used to
test a new model that is derived in Chapter 3.
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3 Extended model: adding cell death
The early plaque growth model from Chapter 1 returns a rapidly growing function
for the internalized lipids n (plots are shown in Section 3.2.1). Plaque volumes
are assumed to be proportional to the internalized lipid concentration, so as
κ · n where κ is some constant of proportionality. In later stages, plaques often
contain a core composed of dead cells, lipid deposits and cellular debris [15]
and a cap of muscle cells can form around the plaque which may or may not
rupture [10]. The volume of a plaque will not be built up from n only, but also a
necrotic core contributes to the volume. The rupturing of plaques is dangerous
because plaque content can end up in the blood stream, which can block the
artery or smaller blood vessels. Our goal is to extend the plaque growth model
by including the formation of this core of necrotic material.

An important process in the formation of a necrotic core is apoptosis, which
is a programmed form of cell death. Under normal conditions, apoptosis is a
controlled process that is initiated by the cells itself. In [7, 12, 13] it is described
that during this process, the cell shrinks and condensates and the nucleus breaks
up. The cell membrane starts to deform and small envelopes filled with cell
content are separated from the cell, a process that is called budding. The small
envelopes are called the apoptotic bodies (AB’s). The apoptotic bodies are
removed by a process which is called phagocytosis, in which cleaning cells such
as macrophages enclose unwanted particles in order to remove them. Apoptosis,
followed by phagocytosis, is a clean way of removing cells and the apoptotic
bodies are rapidly removed. Apoptosis, when triggered by signals such as ionizing
radiation or oxidized lipids, is often more acute compared to initiation by the
body itself. In atherosclerosis, foam cells go through apoptosis because of the fact
that the ingested lipids are oxidized which makes them toxic for cells that take
them up [7, 12, 15]. If death of foam cells happens too fast for the cleaning cells to
remove all apoptotic bodies, debris that has not been phagocytosed may rip and
its contents are released into the plaque. This process is called secondary necrosis
and the released contents will form the necrotic core [7, 15, 16]. Besides the fact
that there are too many apoptotic bodies to clean, there is also the presence
of modLDL that has not yet been ingested that influences the phagocytosis.
The surface of the apoptotic bodies resembles the surface of modLDL particles,
which makes that cleaning particles that should clear the apoptotic bodies also
take up modLDL. This means that there is a competition between modLDL and
the remains of the apoptotic foam cells [7, 15]. The leakage of cell content from
apoptotic bodies into the plaque also has inflammatory effect [7, 13].

In Figure 3.1, the processes described above are depicted schematically. In
Section 3.1, we discuss how the death of cells and the formation of a necrotic
core can be modeled. The resulting system of differential equations is tested,
compared to the initial growth system and then analyzed in Section 3.2.
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Figure 3.1: Formation of a necrotic core after the first stage of plaque development.
F stands for foam cells. AB denotes apoptotic bodies. M,T and LDL are as
in Figure 1.2. 4: Macrophages take up the LDL particles and turn into foam
cells. T-cells react to the macrophages taking up modLDL and attract more
macrophages. 5: Foam cells undergo apoptosis and break up in AB’s. Be
reminded that one AB contains many modLDL particles. 6: Macrophages clear
AB’s and modLDL particles. AB’s that are not engulfed undergo secondary
necrosis.

3.1 Adding apoptosis

We will add a new equation to (1.1) to incorporate apoptosis of foam cells.
Again, a distinction between free modLDL and internalized lipids is made. The
variables l,m,M and n are still used for the concentrations of free modLDL,
macrophage uptake capacity, macrophages and internalized lipids respectively.
A variable a for molar concentration of apoptotic body content is added and will
be used to derive the equations. From the equation for a, an equation for molar
concentration of necrotic core content c follows. Again, ξ is used to denote the
approximate modLDL uptake capacity of one macrophage. Some terms in the
original model stay the same, some are changed and some new ones are added.

Since apoptosis and subsequent phagocytosis typically occurs at a time scale
of hours [13], we assume that the apoptosis, in our plaque growth time scale of
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days, is instantaneously followed by either phagocytosis or if the phagocytosis
fails by secondary necrosis. These large time scale differences will be discussed
later in Section 3.2.2. We assume that apoptotic bodies that are not cleared
end up in the necrotic core. The apoptotic bodies that are cleared are removed
from the plaques and will not contribute to the plaque volume anymore. We
also assume that on average all macrophages are either busy cleaning modLDL
or cleaning apoptotic bodies, so there are no inactive macrophages. Which
one of modLDL or AB’s is cleaned by one particular macrophage depends on
a competition between the two. Little information is available about how the
competition works, so we here assume that it depends on the ratio between
modLDL concentration and the concentration of apoptotic bodies. We suspect
that the size of AB’s compared to the size of modLDL particles, the number
of receptors on the surface of the particles and the ability to move around in
the artery wall also play a part in the competition. How we incorporate these
uncertainties in the model is explained later in this chapter. Since apoptotic
bodies are considerably larger than modLDL particles and since macrophages in
plaques generally take up only one AB [14], we assume that only macrophages
that are not filled up with modLDL can absorb apoptotic bodies. In reality,
macrophages taking up AB’s do not have to be completely empty and likewise,
macrophages undergoing apoptosis have not necessarily taken up ξ modLDL
particles. In our model however, we use ”empty” and ”full” as criteria for
macrophages.

The effects of apoptosis of foam cells are modeled as follows. First, foam cells
which are full macrophages fall apart and internalized lipid ends up in apoptotic
bodies, resulting in a decrease in n and M and a concomitant increase in a. Note
that a cell undergoing apoptosis affects the macrophage concentration M but
not the macrophage capacity m, since only macrophages that are assumed to be
full and thus have no capacity left undergo apoptosis. The macrophage capacity
is only changed in case of uptake of either modLDL or AB’s. The apoptotic
process has no further effects on the capacity m. The apoptotic bodies are partly
removed by empty macrophages (phagocytosis) which hence leads to a decrease
in macrophages M and a. Second, apoptotic debris that is not taken up and
cleared by macrophages remains in the plaque volume and becomes a part of the
necrotic core, which yields an increase in c. Apoptosis has an inflammatory effect

Table 3.1: In- and efflux for the model with apoptosis incorporated.

Influx Efflux
modLDL l influx uptake by macrophages

macrophages M
endothelial response to modLDL
T-cell feedback
influx due to AB’s

foam cell apoptosis
phagocytosis

capacity m
endothelial response to modLDL
T-cell feedback
influx due to necrosis

uptake of modLDL
phagocytosis

ingested lipids n uptake of modLDL foam cell apoptosis

apoptotic bodies a foam cell apoptosis
phagocytosis
secondary necrosis

necrotic core c secondary necrosis
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meaning that extra macrophages are recruited and an increase in M should be
modeled. The uptake of oxidized lipids is adjusted to incorporate the competition
between modLDL and AB’s. Since macrophages can ingest modLDL or AB’s,
two different uptake terms should be incorporated in the macrophage capacity
equation. The in- and efflux terms that should be considered are listed in Table
3.1.

Apoptosis. When modeling apoptosis, it should in principle be taken into
account that the uptake of modLDL is a random and spatially heterogeneous
process, the latter because of how a plaque is build up. There will be less
macrophage activity close to the core than at the outer region of the plaque.
This makes it difficult to express the remaining capacity of a macrophage and
whether it is subjected to apoptosis. We therefore do not incorporate spatial
aspects in our model. Instead, the average overall occupation of the macrophages
is defined to be the ratio between internalized lipids and the total amount of
lipids that can be internalized; n/(ξM), a fraction that is always between 0 and
1. When there is a high overall occupation, the probability of a macrophage to
be almost full and thus to break into pieces is large. The degree of occupation
n/(ξM) is therefore used as probability for a macrophage to fall apart and it
estimates what fraction of the macrophages is expected to undergo apoptosis.
We introduce the parameter ρ3 which is the apoptosis rate per day. Note that for
every macrophage that undergoes apoptosis, approximately ξ internalized lipids
are released into apoptotic bodies. The change in number of macrophages caused
by apoptosis, (dM/dt)a, and the change in number of internalized lipids caused
by apoptosis, (dn/dt)a, can now be modeled as in (3.1). The increase in a caused
by apoptosis,(da/dt)a, equals the decrease in internalized lipids (dn/dt)a. Note
that a does not express the number of apoptotic bodies but the concentration of
lipids that end up in apoptotic bodies.(

dM

dt

)
a

= −ρ3M
n

ξM
,

(
dn

dt

)
a

= ξ ·
(
dM

dt

)
a

= −ρ3n,(
da

dt

)
a

= ρ3n (3.1)

Competition. Since in the new model, macrophages can engulf oxidized
LDL and AB’s, two different uptake functions have to be defined in which the
competition between modLDL and apoptotic bodies is considered. As explained
earlier, we do not know exactly how this competition works, but we assume
that it mainly depends on the ratio between l and AB concentration, the latter
being proportional to a. To include the uncertainty that we have about the
competition, we introduce a dimensionless parameter ε that we refer to as the
competition parameter. Now we define the probability for a macrophage to
engulf modLDL, Pl, or AB’s, Pa, as

Pl =
1

1 + εal
, Pa =

1

1 + 1
ε
l
a

. (3.2)

The given probabilities satisfy the assumption that a macrophage is always
active, either engulfing l or AB’s, since Pl + Pa = 1. As we desire, Pl → 0 as
l → 0 and Pa → 0 as a → 0, reflecting the fact that no modLDL particles or
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AB’s are engulfed if they are not present. These probabilities will be used to
define the two uptake functions.

modLDL. Neither apoptosis nor secondary necrosis influences the number of
lipids that move into the artery wall. The influx term from the original model
is therefore kept. In the new model, the uptake of modLDL particles depends
on the competition between free oxidized lipids and apoptotic bodies and the
presence of m and l. We use Pl ·m for the fraction of macrophage capacity that
is expected to be available for the uptake of modLDL particles. In the original
model, a saturation term was incorporated in the uptake function (expressed as
lth) but in the new equation we drop this term for simplicity. The new uptake
term is the product of the free oxidized lipid concentration and the concentration
of macrophage capacity available for modLDL. Like in the original model, ρ1

denotes the uptake speed.

dl

dt
= F0︸︷︷︸

influx

− ρ1
1

1 + εal
lm︸ ︷︷ ︸

uptake of l

(3.3)

Macrophages. Apoptosis of foam cells does not affect the recruitment of
macrophages by endothelial cells as a reaction to the presence of modLDL. We
assume that it neither influences the T-cell feedback, so all influx terms from
the original model are used. We add two efflux terms, one for apoptosis and
one for phagocytosis. Apoptosis of full macrophages is modeled as discussed
above in (3.1). Phagocytosis of apoptotic bodies affects both M and m, since
macrophages that ingest apoptotic bodies are removed. We use the probability
Pa of a macrophage engulfing apoptotic debris as was derived in (3.2). The
dependence on macrophages with enough capacity left is modeled using the
overall occupation n/ξM . This gives (1−n/ξM) ·M for the expected number of
macrophages that are available, meaning empty enough, for phagocytosis. This
results in a product of probabilities, the probability that a macrophage is not
full multiplied by the probability that a macrophage is engulfing a, Pa. The
dependence on presence of apoptotic bodies is added and the parameter ρ4 is
introduced for the phagocytosis speed per pair of macrophages and apoptotic
bodies. Next to the new efflux terms, there is one new influx term for the
inflammatory effect of the apoptotic bodies. The parameter FA is introduced to
denote the speed of macrophage recruitment resulting from the presence of AB.

dM

dt
= FM l︸︷︷︸

endothelial
response

+ ρ̃2R(l,m)lm︸ ︷︷ ︸
T-cell feedback

− ρ3M
n

ξM︸ ︷︷ ︸
apoptosis

− ρ4
1

1 + 1
ε
l
a

(
1− n

ξM

)
Ma︸ ︷︷ ︸

phagocytosis

+ FAa︸︷︷︸
inflammation
due to AB’s

(3.4)

An equation for macrophage capacity can be derived from this equation, using
the relation m = ξM − n. Note that here, ξFM equals Fm and ξρ̃2 equals ρ2

from (1.1). Denote in the same fashion ξFA = Fa.
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Internalized lipids. Since in the new model macrophages can fall apart and
lose internalized lipids in the process, there is an efflux term as derived in (3.1) in
addition to the uptake of modLDL that was already used in the original model.
The uptake of l is adjusted and the apoptosis is added according to (3.1).

dn

dt
= ρ1

1

1 + εal
lm︸ ︷︷ ︸

uptake of l

− ρ3n︸︷︷︸
apoptosis

(3.5)

Macrophage capacity. Combining (3.4) and (3.5) using the relation m =
ξM − n gives a differential equation for the macrophage capacity.

dm

dt
= Fml + ρ2

1

1 + s(ml )2
lm+ Faa

−ρ1
1

1 + εal
lm− ρ4

1

1 + 1
ε
l
a

am︸ ︷︷ ︸
competition between uptake of l and a

(3.6)

Apoptotic bodies content. The concentration of apoptotic bodies increases
when foam cells undergo apoptosis. A term to describe this is derived in (3.1).
We do not know the number of apoptotic bodies but we do know the amount of
n ending up as a. The clearance of a by macrophages (phagocytosis) is modeled
as derived in the differential equation for m. Also the secondary necrosis has to
be modeled. Since this is an inevitable event for AB’s that are not cleared, we
model it to be proportional to the apoptotic body content. The parameter ρ5 is
introduced for the rate of necrosis. A differential equation for apoptotic bodies
follows.

da

dt
= ρ3n︸︷︷︸

apoptosis

− ρ4
1

1 + 1
ε
l
a

am︸ ︷︷ ︸
phagocytosis

− ρ5a︸︷︷︸
necrosis

(3.7)

Necrotic core content. The equation for necrotic core content follows directly
from the equation for apoptotic bodies. The decrease in a by necrosis equals the
increase in c.

dc

dt
= ρ5a︸︷︷︸

necrosis

(3.8)
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Resulting model. All together, the new model with apoptosis incorporated
is as follows.

dl

dt
= F0 − ρ1

lm

1 + εal
(3.9a)

dm

dt
= Fml + ρ2

lm

1 + s(m/l)2
+ Fa · a

−ρ1
lm

1 + εal
− ρ4

am

1 + 1
ε
l
a

(3.9b)

dn

dt
= ρ1

lm

1 + εal
− ρ3n (3.9c)

da

dt
= ρ3n− ρ4

am

1 + 1
ε
l
a

− ρ5a (3.9d)

dc

dt
= ρ5a (3.9e)

l(0) = l0, m(0) = m0, n(0) = n0, a(0) = a0, c(0) = c0 (3.9f)

To check whether the new system is well defined, we verify the smoothness
of the new and adjusted terms. The term describing apoptosis (ρ3n) is smooth
and the new macrophage capacity influx term (Faa) does not cause any trouble
either. Like in Section 1.2, we would like to define an open domain Ω with
negative lower bounds, so we could take initial values to be zero. When checking
the modLDL uptake term (ρ1Pllm, with Pl as in (3.2)), it shows that it is only
smooth for l, a strictly positive. For εa = −l, the denominator of the uptake
term equals zero. When taking l, a strictly positive, the partial derivatives of
Pl · lm given in (3.10) are continuous and bounded for m, l, a bounded. The same
reasoning can be used for the term expressing phagocytosis of AB’s (ρ4Paam
with Pa as in (3.2)).

∂

∂l
[Pllm] = m

l2 − 2εla

(l + εa)2
,

∂

∂m
[Pllm] =

l2

l + εa
,

∂

∂a
[Pllm] = − l2εm

(l + εa)2
(3.10)

There are no other constraints for the variables in order to have a well defined
system. We have shown that there exists a unique solution to (3.9) in the domain
(l,m, n, a) ∈ (0, L)× (−δ, C)× (−δ,N)× (0, A) with L,C,N,A, δ some strictly
positive real numbers. Because of the fact that Pl → 0 and Pa → 0 for l and a
tending to zero respectively, we can define Pl = 0 for l = 0 and Pa = 0 for a = 0.
This way, we can take zero as closed lower bound for the domain of l and a.

An overview of the model parameters and their meaning is given in Table 3.2.
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Table 3.2: Model parameters. M stands for molar concentration, d for days and
V stands for volume.

dimension meaning
F0 M · d−1 concentration change per day

Fm d−1 macrophage capacity influx per day caused by one
unit modLDL

Fa d−1 macrophage capacity influx per day caused by one
unit AB’s

ρ1 d−1 ·M−1 modLDL uptake speed
ρ2 d−1 ·M−1 macrophage capacity influx speed per unit cytokines
ρ3 d−1 apoptosis speed
ρ4 d−1 ·M−1 phagocytosis rate per unit ingested AB’s
ρ5 d−1 necrosis rate of one unit AB’s
s [−] control parameter for T-cell feedback

ε [−]
competition parameter for phagocytosis of AB’s
and modLDL

κ VM−1 plaque volume per molar concentration lipid

3.2 Fitting the apoptosis model to data

The model has been tested using the same data as discussed in Chapter 2. The
difference between the early plaque growth model and the new apoptosis model
only lies in the growth curve and thus in the calculated initiation times. The
initiation rate given by (2.1) does not change, which means that the likelihood
functions ` derived in Chapter 2 can still be used. In the new model, (3.9),
the volume of a plaque consists of foam cells and necrotic core content so we
compute a plaque volume as V = κ(n + c), again using κ as a conversion
parameter. All parameters are strictly positive and some parameters can be
fixed according to [6]; F0 is fixed to be 3.32 · 10−8M · d−1 and parameter s from
the T-cell feedback function is fixed at 1010. In the same article, it is derived
that Fm ∼ 10−2 · s−1 ∼ 101 ·d−1. For the parameters that are not fixed, a search
domain is defined in which the likelihood function should be maximized (or the -
ln-likelihood should be minimized). Solving the system of equations numerically
is done by a Fortran routine called DASSL, which can be found online for free1

[11]. Minimizing the likelihood function (2.11) is done using a Fortran routine
called Adaptive Simulated Annealing (ASA), which will be explained briefly
before discussing the optimizations.

The underlying algorithm to ASA is Simulated Annealing (SA), an algorithm
designed to find the global minimum for some function. In order to minimize a
function f using SA, a starting point x0 in the search domain is chosen. From
a point xk with k ≥ 0 in the search domain, a new point xk+1 is constructed.
This new point is accepted according some acceptance rule such that f(xk)
converges to the optimal value for f as k grows. The way of generating a
new solution from an old one depends on the solution space and the problem
that is solved. A solution xk+1 is always accepted if f(xk+1) ≤ f(xk). If
xk+1 is not an improvement compared to xk, it can still be accepted with

1http://cse.cs.ucsb.edu/software
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probability exp(−∆f/T (k)). Here, ∆f = f(xk+1)− f(xk) and T (k) is referred
to as ’temperature’. The temperature decreases as k increases. This makes
that solutions that are a degradation are accepted easily when computations
just started and less easily when computations advance. By accepting ’bad’
solutions, the risk of getting stuck in a local minimum instead of finding the global
minimum is reduced. The decrease in temperature depends, like generating new
solutions, on the problem. ASA is used to optimize a D−dimensional problem.
Some parameters may be more sensitive to change than others and therefore,
the model is re-initialized after a certain number of steps. More information
about ASA can be found on the website of the author of the code2. The general
simulated annealing algorithm is often used and information about it can be
found in many books and online. In [5], both simulated annealing and adaptive
simulated annealing are discussed.

There are different aspects to judging a solution. First of all, the likelihood of
a solution should be good. While testing the model, it showed that the routine
often gives a good likelihood but with a biological unlikely solution. The system
has a lot of parameters and too many to produce one unique good fit, especially
when using a small data set. In our tests, many different sets of parameter
values return a good likelihood. The fact that our data set only contains plaque
area’s and no information about the formation of necrotic core also makes that
there is no unique best fit. The optimization code is written such that ASA
returns likelihood value 1030 if the new system cannot be solved with the selected
parameters in the given search domain. The likelihood is therefore primarily
used to determine whether the parameters that were found define a solvable
system or not and secondly, to judge the likelihood of the solution. We find
different types of behavior from the system and therefore, the resulting curves
are judged on biological plausibility as well. Multiple fits were done, of which
two scenario’s that we thought to be biologically plausible are shown in Figure
3.2. The scenario’s had an equal likelihood. Figure 3.3 shows single terms from
each of the equations and parameters corresponding to these scenario’s are listed
in Table 3.3. The different scenario’s are discussed in more detail below.

sc. 1 sc. 2
ρ1 1.53 · 10−2 2.47 · 10−2

ρ2 1.92 · 103 3.09 · 102

ρ3 3.13 · 10−3 4.48 · 10−2

ρ4 6.85 · 102 2.05 · 103

ρ5 4.06 · 102 1.28 · 101

Fm 9.15 · 101 3.87 · 102

Fa 2.88 · 102 1.31 · 10−1

ε 1.80 · 106 2.24 · 106

κ 2.90 · 105 1.52 · 106

(a) Deterministic fit parameters.

F0 3.32 · 10−8

s 1010

τ 14

(b) Fixed parameters.

sc. 1 sc. 2
α 0.08901 0.3931
λ0 0.01338 0.01230

(c) Stochastic fit parameters.

Table 3.3: Parameter values for the scenario’s shown in Figure 3.2 and Figure
3.3. Dimensions of the deterministic fit parameters are listed in Table 3.2

2http://www.ingber.com/ASA
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(a) modLDL particles (b) macrophage capacity

(c) internalized lipid (d) apoptotic body content

(e) necrotic core content (f) plaque volume

Figure 3.2: Two possible scenario’s resulting from fitting the apoptosis model
(3.9) to experimental data. The parameter values corresponding to the scenario’s
are listed in Table 3.3. Time t is in days, volume V is in mm3.
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(a) Macrophage capacity recruitment. Solid: endothelial response. Dashed: T-cell feedback.
Dotdashed: inflammation caused by apoptotic bodies.

(b) Probabilities for a macrophage to take up modLDL or AB’s. Solid: Pl. Dashed: Pa.

(c) Plaque components. Solid: necrotic core. Dashed: internalized lipid.

Figure 3.3: Separate components from each of the equations in the new model
describing apoptosis. The parameter values corresponding to the scenario’s are
listed in Table 3.3. Time t is in days, volume V is in mm3.
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In the new model, there are three terms that express the recruitment of extra
macrophage capacity; the endothelial response to modLDL, the T-cell feedback
and the inflammatory effect of apoptotic bodies. The three separate terms are
depicted in Figure 3.3a. In the first scenario, the largest part of the macrophage
capacity influx is due to the T-cell feedback, while in the second scenario the
endothelial response is the leading mechanism. The parameter values for ρ2

for T-cell feedback and Fm for endothelial response as listed in Table 3.3 fit
this observation; in the first scenario is Fm < ρ2 and in the second scenario is
Fm > ρ2. The inflammation caused by apoptosis, expressed by the term Faa,
can be neglected compared to the other two recruitment mechanisms, which is a
consequence of the apoptotic body content being small.

In Figure 3.2c, we see that the first scenario has a higher internalized lipid
concentration than the second scenario. The ratio between the uptake parameter
ρ1 and the apoptosis rate ρ3 explains this; in the first scenario is ρ1 > ρ3 while
in the second scenario we found ρ1 < ρ3. The value for ρ3 also influences
the apoptotic body content, shown in Figure 3.2d. The apoptosis rate ρ3 in
the second scenario is large compared to the first scenario, resulting in a large
apoptotic body content. In both solutions, the AB content is small, which is
a result of ρ4 and ρ5 being large in comparison with ρ3. More about this is
discussed in Section 3.2.2. The difference in necrotic core content in the two
scenario’s, shown in Figure 3.2e, is a direct consequence of the difference in the
values found for ρ5.

The competition parameter ε does not have a clear meaning, as there is no
information available about the correlation between phagocytosis and the uptake
of modLDL. We defined the search domain for ε such that εa ∼ l, so that the
probabilities Pa and Pl do not take values one and zero. In this way, the uptake
of modLDL and the phagocytosis of AB’s are both modeled.

3.2.1 Comparing the initial growth model with the apop-
tosis model

The initial growth model (1.1) returned a rapidly growing function for the plaque
volume. We expect that in reality the growth curve of a plaque flattens after
some time, which we tried to model by incorporating apoptosis and subsequent
necrosis. A comparison is made between a scenario of the early plaque growth
model (1.1) from [6] and the apoptosis model (3.9) in Figure 3.4. The plots show
that in the apoptosis model, the plaque growth is less explosive or even flattens
after some time, as desired. To what extend the plaque volume curve flattens
depends on what part of the apoptotic bodies is phagocytosed and removed from
the plaque. As we mentioned before, we have no information about the necrotic
core size and thus about the effectiveness of phagocytosis. We stress that the
apoptosis scenario’s depicted in Figure 3.4 are two possible solutions among
many. The plots only show that it is possible to find solutions for the apoptosis
model for which the plaque growth speed slows down after some time.
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(a) scenario 1 (b) scenario 2

Figure 3.4: Plaque growth curves resulting from the early growth model (1.1)
and the apoptosis model (3.9). The parameter values for the two scenario’s are
as listed in Table 3.3.

3.2.2 Time scales and quasi steady states

As mentioned before, the processes of phagocytosis and secondary necrosis are
considerably faster than the other processes in our model. This means that in
comparison to ρ3 the parameters ρ4 and ρ5, which describe the rate of these
fast processes, are large regardless of what time scale we use. In the time scale
of plaque growth, the formation of apoptotic bodies and the almost immediate
removal is barely noticeable. In other words, the concentration of apoptotic
body content increases slowly but decreases rapidly. This makes that a adapts to
the other, slow, variables quickly and we can therefore use a quasi steady state
approximation (qssa) for a. By doing so, we can remove one variable. We find
the quasi steady state for a (denoted by ā(t)) when setting the time derivative
of a to be zero. From this, a dependence of a on the model parameters and
variables follows:

da

dt
= 0

⇒ ā(t) =
ρ3nε− ρ5l +

√
(ρ3nε− ρ5l)2 + 4ρ3nl(ρ4εm+ ρ5ε)

2(ρ4εm+ ρ5ε)
.

(3.11)

We verified that this approach works for a simple linear example, which is
demonstrated in the Appendix. We also refer to [2, p. 267] for an example of
the usage of the qssa. For the two scenario’s, we computed a(t) numerically and
the quasi steady state approximation ā(t) as given in (3.11). In Figure 3.5, we
depict the absolute relative error η = |a(t)− ā(t)|/a(t) between the two functions.
The figure shows clearly that, after a first short initialization period, the error
becomes small.
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Figure 3.5: The absolute error η = |a(t) − ā(t)|/a(t) between the numerical
solution a(t) of (3.9) and the quasi steady state approximation ā(t), as given in
(3.11). The two scenario’s are as listed in Table 3.3 and time t is in days.

Next, we numerically compute the solution to the subsystem (3.9a), (3.9b),
(3.9c), (3.9e) substituting the qssa ā(t). We use the parameter values from
the scenario’s listed in Table 3.3. Again, we compute the absolute relative
error between the solutions l(t),m(t), n(t), c(t) of the complete system and the
solutions l̄(t), m̄(t), n̄(t), c̄(t) of the subsystem using ā(t). The results are shown
in Figure 3.6.

Summary. We conclude that it is possible to find the expected biological
behavior from our new apoptosis model. However, the amount of parameters
is too high, so in practice the model can be only used to compute possible
scenario’s. The time scale differences in the biological processes can be used
to eliminate one variable from the system, namely the apoptotic body content
a. This results in a system with four differential equations for modLDL (l),
macrophage capacity (m), internalized lipid (n) and necrotic core content (c).
For apoptotic body content we can use the quasi steady state approximation
ā(t). Would there be more known about the parameter values that appear in
the expression (3.11) for the qssa, the expression ā could be simplified and we
would probably be able to draw conclusions about the asymptotic behavior of a.
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(a) modLDL (b) macrophage capacity

(c) internalized lipid (d) necrotic core content

Figure 3.6: The absolute relative error η between the solution of the complete
set of equations and the solution to the subset of equations (l̄, m̄, n̄, c̄) using the
quasi steady state approximation for apoptotic body content ā. Time t is in
days.
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4 Overlapping plaques
In addition to the data that was modeled in the previous chapter, there are new
data available [8]. Again, mice have been irradiated with X-rays, but this time
to a dose of 0, 0.3 or 6 Gray. In total, 27 mice were (sham) irradiated at the
age of 60 days and sacrificed at the age of 360 days. The number of plaques
and plaque areas were evaluated in the descending aorta and the aortic arch.
This data was fitted using the same procedure as discussed in Chapter 2 using
the initial set of differential equation for early plaque growth (1.1). Results
from these fits returned large values for the expected plaque area compared to
the measured values which was a reason to look into the data more carefully.

(a) 0 Gy

(b) 0.3 Gy

(c) 6 Gy

Figure 4.1: Histograms of measured
plaque areas per dose group. There were
9 mice in each dose group. Plaques are
measured in the descending aorta. Note
the difference scales on the axes.

A striking feature of the data can
be observed in Figure 4.1; there is
a large spread in plaque sizes. The
data showed that for the sham treated
mice, the largest and second largest
plaques are almost equal in size, but
they differ a factor 1.5× with the third
largest plaque. For the 0.3 Gy dose
group, the largest plaque in the des-
cending aorta is a factor 1.5× larger
than the second largest plaque. For
the 6.0 Gy dose group, this differ-
ence is even a factor 2×. Measured
values for the descending aorta are
shown in Figure 4.1. Plaques in the
aortic arches are considerably larger
than in the descending aorta. For the
0.3 Gy dose group, the difference in
largest and second largest plaque is
also a factor 1.5×. For the other dose
groups, plaque sizes are distributed
more evenly but still there is a large
size difference between small and large
plaques.

In a model with a universal growth
curve for each plaque, the plaque
growth rate should be large enough
to reach the largest plaque size within
360 days, the lifespan of the mice. The
largest plaque in a dose group will be
formed at an early age. The smaller
plaques have their expected initiation
time many days later due to the large
difference in size. This makes that the
expected initiation times of the smal-
ler plaques will be modeled to lie in
the last days or weeks before the mice
were sacrificed. We have shown before however that radiation has an increasing
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effect on the initiation rate of plaques and thus that more plaques are expected
to be formed in the time window between irradiation and the following two
weeks. The mice were irradiated at 60 days, so the result of most of the plaques
being formed in the last days before the sacrifice does not seem plausible. From
all this, it was deduced that the largest plaques are probably multiple plaques
that merged together. The possibility of overlapping plaques was later confirmed
by researchers of the Erasmus Medical Center.

Until now, fitting was done by computing expected initiation times for every
plaque. This is not possible when modeling overlapping plaques. We do not
know whether a measured plaque actually is built up from multiple plaques and
if so, how many. Instead of considering individual plaques, we decided to model
the covered area in a piece of the artery that is cut open to form a rectangle, see
Figure 4.2. In what follows, we use notations as defined below.

Definition 4.1. Let the size of the rectangular artery subsection be denoted
by F . The size of the area in F that is covered by plaque is denoted by ψ. We
denote for a point x that lies in covered area x ∈ ψ, meaning that we use ψ as a
measure for the covered area but also to denote the set of covered points.

We derive an equation for the expected coverage ψ(t). In an artery, it is
possible for a plaque to be initiated outside of F but within distance of the
plaque radius of F . Then, part of the plaque is in fact in F . This is most easily
modeled using periodic boundary conditions. Cutting an artery might split up
one plaque, which motivates us to use periodic boundary conditions in the other
direction as well. Boundary conditions are depicted in Figure 4.2. As a start,
we model plaques as disks that all have the same size upon initiation. Later, the
growth of plaques is incorporated.

Figure 4.2: Cutting of an artery. We use periodic boundary conditions in our
simulations and in our derivation of the differential equation describing coverage.

4.1 Plaques with a fixed size

As a start, the plaques are modeled as randomly placed disks that all have the
same circular area a0 upon initiation and that are initiated sequentially. In this
model, we allow the disks that represent the plaques to overlap but their center,
which we refer to as initiation point, should lie in area still uncovered by plaques,
i.e. not in ψ. In later stages of atherosclerosis, it is possible for plaques to form
on top of other plaques but this is not investigated here. Further assumptions
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on the spatial distribution are not made meaning that we model the coverage
as if it was uniformly spread over F and ψ will describe the average coverage
in a large sample of arteries. An equation for the expected increase in coverage
dψ in a small time interval [t, t+ dt] caused by random initiation of plaques is
deduced.

Plaques are formed with a certain net initiation rate λ(t), as was described
in Chapter 2. For now, we do not incorporate radiation in this rate. By our
requirement that the initiation points of plaques do not lie in ψ, the number
of plaques that arise in a short time interval gets smaller as the covered part
of the artery gets larger, that is as ψ(t) grows towards F . The net initiation
rate, or successful initiation rate, is thus dependent on the total coverage. It is
however not dependent on the spatial characteristics of the artery, since we aim
to describe the average behavior for arteries in a large sample. We model the
net initiation rate λ(t) as the product of some baseline event rate λ0, which is
the initiation rate per unit free area, and the probability for a plaque to have
its initiation point not in ψ. This probability is proportional to the free space
F −ψ. With λ(t) like this, the rate with which plaques are successfully initiated
approaches zero as ψ approaches F , as desired.

λ(t) = λ0 ·
(
F − ψ(t)

F

)
(4.1)

In a small time interval [t, t+ dt] of length dt, the expected number of successful
initiations equals λ(t)dt. The new plaques will contribute to ψ, but how much
they contribute depends on the size of the part that is already covered. As ψ
increases towards F , the probability for a new plaque to partly overlap with
existing plaques gets larger and the expected contribution of this single plaque to
ψ gets smaller. If there were no restrictions on the initiation point, the expected
contribution to ψ of a plaque P , initiated at time t and with fixed size a0 would
be computed as below.∫

P
P (x uncovered)dx =

∫
P

(
F − ψ(t)

F

)
dx = a0 ·

(
F − ψ(t)

F

)
(4.2)

However, we require the initiation point of a plaque to lie in free area. We should
therefore take into consideration that for a point x in a disk P with its center
c in free area F − ψ, the probability to lie in free area as well is larger then
when the center c of the disk would have been randomly placed in F . This is in
Figure 4.3 and in short, means that

P (x /∈ ψ | x ∈ P) < P (x /∈ ψ | x ∈ P and c /∈ ψ). (4.3)

The true expected contribution to the coverage ψ equals
∫
P P (x /∈ ψ|x ∈

P and c /∈ ψ)dx, which is larger than the expression in (4.2). We were unable to
find an analytical expression for the right hand side probability in (4.3) ourselves
nor did we find an expression in literature. In order to model the probability, we
heuristically add a parameter ν ∈ [0, 1]; we assume that P (x /∈ ψ|x ∈ P and c /∈
ψ) equals ((F − ψ)/F )ν . Combining the above gives us the average expected
increase in ψ in a time interval [t, t+ dt] caused by new plaques, as given below.
The resulting differential equation

dψ

dt
= λ0

(
F − ψ
F

)
· a0

(
F − ψ
F

)ν
(4.4)
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is solvable with solution

ψ(t) = F − F
(

1 +
a0 · λ0 · ν · t

F

)− 1
ν

. (4.5)

Figure 4.3: Plaques may
overlap, but we assumed that
their initiation points lie in
uncovered area. The contri-
bution to ψ of the last ini-
tiated plaque (marked) de-
pends on the earlier formed
plaques. We compute for
each (infinitesimal small)
point on the newest plaque
the probability to lie in
area that has not yet been
covered by previously formed
plaques, given that the ini-
tiation point of the newly
formed plaque lies in un-
covered area.

We did not succeed in finding an exact, analytical value for ν, which may
depend on plaque size a0. We used numerical simulations in which F was taken
to be 1×1 and divided it in a grid of 103×103 = N points. During the simulation,
grid points are labeled to belong to ψ or not in order to determine the coverage,
which is computed as the ratio between grid points belonging to ψ, Nψ, and the
total number of grid points N . At the start of the simulation, ψ is set to be
empty. We took λ0 equal 1/dt in order to simplify calculations; the rate λ0 is set
to one initiation attempt per time step dt = 1. One attempt in the simulation is
just the selection of a random grid point g. Then, it is determined whether this
point belongs to ψ or not. If g /∈ ψ the attempt is successful, meaning that this
point is stored as an initiation point and all grid points surrounding g within
the plaque radius are set to belong to ψ. If g ∈ ψ, no new initiation occurs so
no new points are set to belong to ψ. After every attempt, the ratio Nψ/N is
stored.

We should make a remark about the choices we made in our simulations. An
initiation attempt (selecting a random point g) is independent of the previous
attempts and whether they were successful or not. This means that the attempts
behave as a Poisson process with event rate λ0 and the probability to have k
initiations in a short time step ∆t� dt is as follows:

P (k initiations in ∆t) =
(λ0∆t)k

k!
e−λ0∆t. (4.6)

The case of k > 1 is negligible since powers of λ0∆t are small. With λ0

chosen equal to 1, the probability to have one initiation attempt in ∆t equals
approximately ∆t which leads to an average of one initiation attempt per time
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step dt = 1. We implemented this average by forcing the simulation to choose
one g per time step dt, even though more precise would be to divide dt into
smaller time steps ∆t and perform an attempt (meaning selecting a g randomly)
with probability ∆t each time step. The probability of having no attempt at
all, meaning that no point g is selected and the simulation continues to the next
time step, is then 1−∆t.

The simulations are performed 250 times for plaque radii 0.005, 0.01, 0.05 and
0.1 respectively. Even for the smallest radius one plaque covers multiple grid
points, so the chosen resolution of the grid is assumed to be sufficiently fine. We
fitted the equation in two differen ways. For the first procedure, we computed the
average covered area at every time step from all 250 simulations. We fitted this
mean curve to (4.5) using the standard findfit function in Mathematica, which
resulted in an optimal value for the parameter ν, denoted by ν̃. This is done
because the differential equation (4.4) is derived using averaging and expected
values. The results of these fits are listed in Table 4.1. As an alternative, to
find out how well the solution to the differential equation works for separate
simulations, we fitted the 250 simulated curves for covered area separately to
(4.5). Again, we used the standard findfit function in Mathematica. The mean
of the results of these separate fits, denoted by 〈ν〉 and the standard deviation
are also listed in Table 4.1. Figure 4.4 shows the curves of (4.5) using ν̃ as listed
in Table 4.1 and the curve for ψ that follows from averaging the simulations.

The values for ν̃ and 〈ν〉 are similar for all plaque sizes. The spread in results
in the separate fits is larger for larger plaques, which can be explained as follows.
For relatively large plaques, ψ grows rapidly at the start of the experiment,
causing a fast decrease in the net initiation rate λ(t). In a short amount of
time steps, the difference in spatial configuration of ψ can get large for different
runs and thus, the separately fitted values for ν will differ considerably. By
taking more runs, the standard deviation can be reduced. We started with 100
simulations and later added new runs to get 250 simulations. From the values in
Table 4.1, it seems reasonable to fix ν at the value 0.48.

The difference between the smallest and the largest a0 that we used is a
factor 400, which is quite large and from the simulations, we found no clear
dependence on the disk size. This can be explained by the fact that we used
similarly shaped plaques and the fact that we used periodic boundary conditions.
The main difference between the simulations is the scaling of the system. The
fact that, especially for small plaque sizes, the standard deviation for separate
fits is small and that ν̃ is similar to 〈ν〉 means that (4.5) is a good description.
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Table 4.1: ν̃: results of fitting the mean of 250 simulations to (4.5). 〈ν〉: mean
of the results for ν for 250 separate fits to (4.5). SD: standard deviation of 〈ν〉.

radius 0.1 0.05 0.01 0.005
ν̃ 0.482713 0.484303 0.471230 0.473278
〈ν〉 0.476411 0.483020 0.471186 0.473268
SD 0.09331 0.03941 0.009671 0.004515

(a) (b)

(c) (d)

Figure 4.4: Plots of the uncovered fraction of F . Notice the logarithmic scale
for F − ψ and the different time scales on the different horizontal axes. (4.5) is
plotted using ν̃. The simulations are averaged and the mean covered area from
250 simulations is shown.
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4.2 Growing plaques

The next step is to develop a model for growing plaques. We use the same
notation covered and total area as in the previous section. Again, we assume
that plaques originate in area that is still uncovered so the net initiation rate
λ(t) is equal to (4.1). We assume that all plaques have the same growth curve
a(t) with a(0) = a0 and that they are circular. Note that a(t) describes plaque
area and has nothing to do with the equation for apoptotic body content in
Chapter 3. In reality, the growth of a plaque depends on the age of the test
animal, the plaque location and the amount of plaque that has already formed
in the artery. We also suspect that plaques that overlap develop differently than
plaques that do not, but we ignore this in our model and we describe the plaques
as growing disks. In a number of steps, we deduce the expected increase dψ in
coverage in a small time interval [t, t+ dt] caused by the growth of plaques that
were initiated before time t and the formation of new plaques. Denote initiation
times by ti and let the formation of plaques in the model begin at time t = 0.

Fix the current time at t. For one plaque that was initiated at ti ≥ 0, the
growth in [t, t+ dt] without taking overlap into account is given by the following:

a(t+ dt− ti)− a(t− ti). (4.7)

Now consider a historical, short time interval [s, s + ds] with s + ds ≤ t. The
expected number of initiations in this time interval can be computed using the
initiation rate λ(s) as defined in (4.1):

λ0 ·
(
F − ψ(s)

F

)
· ds. (4.8)

When combining (4.7) - (4.8), the expected increase in ψ in the time interval
[t, t + dt] that is caused by plaques that were initiated around s but without
taking overlap into account can be computed. For infinitesimally small dt, the
time derivative of the growth curve a in time t− s can be introduced, denoted
by a dot.

expected number of formed plaques︷ ︸︸ ︷
λ0 ·

(
F − ψ(s)

F

)
· ds ·

growth per plaque︷ ︸︸ ︷
[a(t+ dt− s)− a(t− s)]

= λ0 ·
(
F − ψ(s)

F

)
· ds · ȧ(t− s)dt

(4.9)

All plaques that were formed up to time t will grow, so we have to account for
all initiation times up to t. This is done by integrating over s, which results in
a term describing the expected growth of all plaques that were initiated up to
time t, but still without taking overlap into account :∫ t

0

λ0 ·
(
F − ψ(s)

F

)
· ȧ(t− s)dt · ds. (4.10)

The actual expected increase in ψ in the interval [t, t+dt] turns out to be smaller
than (4.10). This is because in the expression (4.10), we still did not deal with
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the random overlap. As time t gets larger only a fraction of the integral will
contribute, so a correction factor dependent on t must be added. This factor
is modeled in the same fashion as the correction factor in the previous section.
The expected difference in ψ caused by the growth of existing plaques, dψhist is
given by

dψhist =

(
F − ψ(t)

F

)µ
·
∫ t

0

λ0 ·
(
F − ψ(s)

F

)
· ȧ(t− s)dt · ds. (4.11)

The expected growth in ψ caused by newly initiated plaques in [t, t+ dt] with
fixed initial size a0, dψnew is modeled by (4.4) as explained in the previous
section:

dψnew = λ0

(
F − ψ(t)

F

)
dt · a0

(
F − ψ(t)

F

)ν
. (4.12)

The two equations (4.11) and (4.12) are combined to find, after taking the limit
of dt → 0, an overall differential equation that describes the total expected
increase in ψ:

dψ

dt
= λ0 · a0 ·

(
F − ψ
F

)ν+1

+ λ0

(
F − ψ
F

)µ
·
∫ t

0

(
F − ψ(s)

F

)
· ȧ(t− s)ds.

(4.13)

4.2.1 Using simulated annealing to find parameter values

The values for µ and ν are unknown, as it was for ν in the previous section.
Again, we performed computer simulations in order to find the best fitting
parameters. The simulations were set up like the simulations for plaques with a
fixed size; an area F = 1× 1 was divided into a grid, but this time the grid was
2000× 2000 in order to be able to start with small values for a0. Initially, all
grid points belong to uncovered area. We set λ0 = 1, meaning that in every time
step dt we perform one initiation attempt. As before, we pick one grid point g
randomly during each time interval [t, t+dt]. The same remark as in the previous
section can be made about the simulations. Actually, the attempts behave as a
Poisson process. Taking λ0 = 1/dt = 1 leads to on average one attempt per time
step dt and this average is what we implemented in our simulations. Whether a
plaque is in fact initiated depends on the position of g; if it lies in uncovered
area it serves as a new initiation point and the initiation attempt resulted in a
new plaque. If g is chosen and if this grid point does not belong to ψ, an area
of size a0 around g is set to belong to ψ. For every plaque, the initiation point
g and its initiation time ti are stored. After this, growth of existing plaques is
computed. This is done by computing the radius of an existing plaque at the
current time t, r =

√
a(t− ti)/π, and setting all grid points within a distance r

from the initiation point g to belong to ψ. Different growth curves a(t) are used,
see (4.15) and (4.16). After each time step, the coverage Nψ/N is stored. This
results in a solution vector ψs containing ψs(t) at times t = 0, 1, 2, . . ..

Equation (4.13) cannot be solved analytically, so the standard Mathematica
findfit function cannot be used. The equation is, however, numerically solvable
using the Fortran routine DASSL [11]. This routine computes values of ψ at
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times tk that are determined by the routine itself. It is possible to define a
maximum step size. We denote ψd for the solution vector containing ψ(tk) of
DASSL. The maximum time step size is set to be 0.1 and the integral (4.10) until

time tk is computed as a discrete sum
∑k
j=1(tj − tj−1) · (1− ψ(tj)) · ȧ(t− tj),

since F = 1. This sum is used to find ψd(tk+1) and since the maximal time step
is limited, it will be a reasonable approximation for the integral.

We have used a simulated annealing (SA) routine to minimize the relative
absolute error η per simulation time step between the simulated curve ψs and
solutions by DASSL ψd, resulting in the best fitting parameter values for µ
and ν. For more general information about simulated annealing, we refer to
Section 3.2. In the SA routine, the simulation vector ψs and initial values
for the parameters (µ0, ν0) are given as input. Also, a lower and upper bound
for the parameters is given (µmin, µmax, νmin, νmax) and a maximum number of
simulated annealing steps cmax. Furthermore, the starting temperature T is
given as input. One SA step consists of first picking new parameters in the
search domain randomly. We have implemented this by picking two uniformly
distributed random numbers p, r ∈ [0, 1]. If p < 0.5, the next value for µ, µc is
computed according to µc = µc−1 − r · (µc−1 − µmin). If p ≥ 0.5, we compute
µc = µc−1 +r ·(µmax−µc−1). The same is done for ν. By picking new parameters
in this way, the value to which the parameters converge is solely defined by
the quality of the solution given these parameter values and not by how the
parameters are chosen from the search domain. Using DASSL, the solution to
our differential equation (4.13) with these new parameter values is computed.
Next, the absolute relative error ηc between the simulation and the DASSL
solution is computed.

The DASSL solution ψd is given on times tk, while the simulated curve is
given on time t = 0, 1, 2, . . . so to compute the relative absolute error, linear
interpolation is used to find the DASSL solution ψ̄d at times t = 0, 1, 2, . . .. Now,
the relative absolute error can be computed:

ηc =
1

tend

tend∑
t=1

|ψ̄d(t)− ψs(t)|
ψs(t)

. (4.14)

If the error with new parameters (ηc) is smaller than the error with the previous
parameters (ηc−1), the new parameters are adopted. If on the contrary the new
parameters decrease the quality of the fit, we pick a random number p ∈ [0, 1]
and if p < exp[−(ηc−ηc−1)/T ], we accept the new parameters even though it is a
degradation. If they are rejected, we set µc = µc−1, νc = νc−1. The temperature
is decreased at each step by multiplying with a factor smaller than one. This
multiplication factor and the initial temperature are dependent on the problem.

4.2.2 Results from fitting

We use growth curves a(t) that are given in (4.15). We chose these strictly
increasing curves arbitrarily such that they stay below the order 10−1 at least
until t = 300, as we took F = 1× 1.

a(t) = 10−5 + 10−3t (4.15a)

a(t) = 10−5(1 + t2) (4.15b)
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Again, we did 250 simulations and started by computing the average of all these
curves. The mean growth curve of the simulations is fitted to the differential
equation (4.13). The search domain for µ, ν is set to [0, 1] × [0, 1] and the
temperature multiplication factor depends on the growth scenario. For linear
growth we use factor 0.9999 and for quadratic growth 0.99975. We pick start
values at T0 = 1.0, ν0 = 0.5 and µ0 = 0.5 and we set the number of simulated
annealing steps for linear growth to be 125.000 and for quadratic growth 50.000.
These initializations are all based on some first trial runs. During the fitting,
we kept track of the parameter values and corresponding η at each simulated
annealing step.

The values that were found for both parameters are listed in Table 4.2 and
denoted by µ̃ and ν̃. For linearly growing plaques, the optimal curve resulting
from the fit is depicted in Figure 4.5 together with the mean coverage of 250
simulations. The plots also show the values for µ and ν per simulated annealing
step. We see that the value for µ converges but the value for ν does not. The
error η as a function of µ and ν is also shown. From these plots, we conclude that
ν, in this setting, has no influence on the quality of the fits. For the quadratic
growth curve, similar results hold (not shown). From the fitting results, we can
also conclude that for different growth curves a(t), different optimal parameter
values hold. Again as a next step, we fit the DASSL solution of our differential
equation to every simulation separately for each of the growth curves in (4.15).
The means of the optimal parameter values that were found, denoted by 〈µ〉, 〈ν〉,
and the standard deviations are listed in Table 4.2. They show clearly that the
standard deviation for the values of ν is large, in contrast to the values of µ and
that indeed, ν has no optimal value in this setting.

The fact that the parameter ν, which appears in the term describing the
increase in covered area caused by newly initiated plaques, seems to have no
influence on the error between simulations and (4.13) might be a consequence of
a0 being small in comparison to the growth of already existing plaques. Even
though in real life plaques have no volume when they are initiated and a0 should
therefore be modeled as a point mass, we perform simulations using linear and
quadratic growth but with a larger starting volume a0. We perform simulations
with the following two growth curves.

a(t) = 10−2 + 10−3t (4.16a)

a(t) = 10−2 + 10−5t2 (4.16b)

The input for the simulated annealing routine is almost the same as in the
previous runs for plaques with a smaller a0. For linearly growing plaques, we
perform again 125.000 simulated annealing steps but the temperature T is
multiplied by 0.9998. For quadratically growing plaques, we perform 75.000
simulated annealing steps and multiply the temperature T by 0.99975. The
initial temperature is taken to be 1 for both growth curves and for both growth
curves, we use µ0 = ν0 = 0.5.

Again, as a first step the mean of 250 simulations is computed and fitted
to (4.13). The resulting µ̃, ν̃ are listed in Table 4.3. Even though linear and
quadratic growth showed similar results, the effect of the parameters was most
noticeable in the figures for quadratically growing plaques, which are shown in
Figure 4.6. The parameters per simulated annealing step show that both µ and
ν converge to an optimal value µ̃ and ν̃ now. Especially the dependence of η on
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both parameters in the last plot in Figure 4.6 shows that ν has some influence
on the quality of the fit and that there is a correlation between µ and ν. As a
next step again, the fitting is done for every simulation separately. The mean of
these fitting results are listed in Table 4.3, as well as the corresponding standard
deviations. The standard deviations for ν are still large in comparison to that of
µ. This is probably a result of the large differences between configurations in
the separate simulations.

Summary. We conclude that for the first set of simulations using fixed plaque
sizes, the coverage equation ψ(t) that was derived (4.5) is a good fit. The quality
of the separate fits decrease as the plaques get bigger in comparison to the artery
subsection F . For growing plaques, we conclude the following. From the first
set of simulation using growth curves with a small initial size a0, we conclude
that optimal parameter values for µ differ for the different growth curves. From
the simulations using growth curves with a larger initial size a0, we conclude
that there is a correlation between µ and ν. The correlation is strong when the
history term and the new initiation term from (4.11)-(4.12) both influence the
coverage of F . For the fits using a small initial plaque size, we conclude that ν
has no influence on the quality because of a0 being small. For the problem of
overlapping plaques, this means that ν will play no part since a0 → 0. Separate
fits for growing plaques do not work as well as the fits for fixed plaque sizes.
However, we eventually want to fit the coverage equation (4.13) to experimental
data. In the data sets, arteries are never fully covered. The quality of the
separate fits to simulations will probably increase if the simulations are ended
well before F is fully covered. In future research, we can take a plaque growth
curve a(t) following from the growth model presented in Chapter 3. Further
discussion about our simulations and fitting results is presented in Chapter 5
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Table 4.2: Fitting results of the two different growth curves (4.15) to the
differential equation given in (4.13). ·̃ are the optimal parameters found when
fitting the mean coverage of 250 simulations. 〈·〉 are the means of the optimal
parameter values for 250 separate fits. SD〈·〉 are the corresponding standard
deviations for the separate fits.

linear quadratic
µ̃ 0.7700 0.9165
ν̃ 0.1068 0.9685
〈µ〉 0.8177 0.9075
SD〈µ〉 0.09779 0.07728
〈ν〉 0.4935 0.7863
SD〈ν〉 0.3433 0.3313

Table 4.3: Fitting results of the two different growth curves (4.16) to the
differential equation given in (4.13). ·̃ are the optimal parameters found when
fitting the mean coverage of 250 simulations. 〈·〉 are the mean values of the
optimal parameters for 250 separate fits. SD〈·〉 are the corresponding standard
deviations from the separate fits.

linear quadratic
µ̃ 0.7474 0.7873
ν̃ 0.07284 0.3532
〈µ〉 0.7295 0.8264
SD〈µ〉 0.07790 0.06177
〈ν〉 0.3255 0.3554
SD〈ν〉 0.4178 0.3605
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(a) Mean coverage of 250 simulations com-
pared to the optimal curve resulting from the
simulated annealing routine

(b) Absolute relative error η per SA step. One
run consisted of 125.000 steps.

(c) Values for µ per SA step. One run con-
sisted of 125.000 steps.

(d) Values for ν per SA step. One run con-
sisted of 125.000 steps.

(e) The error η as a function of µ and ν. The white dot
indicates the final values that were found for the parameters.

Figure 4.5: Results from fitting the average of the covered area curves of 250
simulations. In the figures, plaques grow linearly.
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(a) Mean coverage of 250 simulations com-
pared to the optimal curve resulting from the
simulated annealing routine

(b) Absolute relative error η per SA step. One
run consisted of 125.000 steps.

(c) Values for µ per SA step. One run con-
sisted of 125.000 steps.

(d) Values for ν per SA step. One run con-
sisted of 125.000 steps.

(e) The error η as a function of µ and ν. The white dot
indicates the final values that were found for the parameters.

Figure 4.6: Results from fitting the average of the covered area curves of 250
simulations. In the figures, plaques grow quadratically and have a large initial
size a0.
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5 Discussion and conclusion
Roughly, this report can be divided into three parts. In Chapter 1 and Chapter 2,
an existing mathematical model as presented in [6] is described and analyzed.
In Chapter 3, a new model is developed using this early plaque growth model
as a starting point. The new model, describing the formation of a necrotic core
in plaques is tested and analyzed as well. A problem that arises from fitting
experimental data to the original model from [6] is that plaques may overlap.
This influences the outcome from the fitting. In Chapter 4, we present a new
approach to model plaque growth in mice taking plaque overlap into account.
In what follows, we discuss our new results that are presented in Chapter 3 and
Chapter 4.

Plaque growth model incorporating apoptosis. Our first new result is
a system of differential equations describing the formation of plaques and a
necrotic core. In biological literature, many articles about the first stage in
plaque growth can be found. However, there is little information about apoptosis
and subsequent necrosis. The assumptions that we made when developing the
apoptosis model are supported by many articles that we cited. However, research
in the future should bring more insight on how the formation of necrotic cores
works.

The presented apoptosis model contains a lot of unknown parameters. The
number of degrees of freedom is too high to find a unique biological plausible fit
to the experimental data. The data that were used only provide plaque sizes and
no information about the size of the necrotic cores in the plaques. This means
that the results that are discussed in Section 3.2 can only be used as possible
scenario’s and not as an absolute truth. We conclude that it is possible to find
behavior from the model that we consider to be biologically plausible. When
more data will be available about necrotic core sizes, the system of equations
(3.9) can be used to model core growth. Future experiments might also give
insight in the order of magnitude of some of the parameters.

We have shown that it is possible to eliminate one model variable using
the quasi steady state approximation if there are large parameter differences.
A simple example in the appendix illustrates the idea of quasi steady state
approximations and numerical results confirm the fact that the quasi steady
state approximation works. Again, more insight in the parameter values is
necessary to draw better supported conclusions from the model results.

Overlap model. The overlap model originated from the large size differences
of plaques in the data sets. The equations and simulations presented in Chapter 4
are a first effort to model overlapping plaques. In developing the model, we
made some rough assumptions. Assuming that plaques grow the same in every
mouse might be justified as a start. We should however incorporate the effect of
overlap on the growth of plaques, as it does not seem plausible for plaques to
continue growing circularly even when they are growing on top of each other.
Even though the overlap model has no spatial dependence, it can be improved
to account for the changes in growth behavior when plaques start to overlap. As
a next step, also the influence of radiation can be incorporated.

In our simulations of growing plaques, we pick a random grid point where a
plaque might or might not originate. In every time step after the initiation of a
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plaque, we let the plaque-covered regions grow circularly around their initiation
points. In this way, it could happen that a small plaque gets completely covered
by a much larger plaque if this larger plaque keeps growing. One possible way
to take growth changes resulting from overlap into account in the simulations
can be implemented as follows. When two plaques start to overlap, there is a
grid point that is set to belong to the covered region twice. We could mark
these grid points the instant they are covered double and implement a different,
slower growth behavior for the marked points. Another possibility is to keep
the growth behavior the same for overlapping and non-overlapping plaques but
to move the initiation points. By moving the initiation points of overlapping
plaques in the opposite direction of where the overlap takes place, the plaques
will grow away from each other. Implementing one of these options probably
means that the equation describing covered area changes as well.

The final goal of the overlap model is to fit it to data, using possible scenario’s
for the growth curve that follow from the model (3.9) in Chapter 3. In the
maximum likelihood method as explained in Chapter 2, we fitted every plaque
separately by computing an expected initiation time. The overlap model however
can only be used to fit the total covered area per mouse. This means that more
test animals are required in order to gather enough data to find a good fit.

General remarks. The results presented in Chapter 3 and Chapter 4 can
be improved but are a good start to model atherosclerosis in mice and the
formation of necrotic cores. The numerical error in the numerical simulations
and optimizations that were done in both chapters should be analyzed in order
to evolve the models. In general, there should be more data available to fit the
models and to find well justified results.
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A Illustration of the quasi steady state

approximation
We wish to demonstrate the quasi steady state approximation for a simple linear
set of differential equations. Take the equations as in (A.1)-(A.2) and assume
that k1, k2 � k3. We will show that solving the equations analytically before
imposing the large difference in parameter values yields the same result for m(t)
as when we use the quasi steady state approximation.

dm

dt
= k1 − k2a (A.1)

da

dt
= m− k3a (A.2)

Analytical solution. Differentiation of (A.1) and substitution gives us the
following.

d2m

dt2
= −k2

da

dt
(A.3)

= −k2m+ k2k3a (A.4)

= −k2m− k3
dm

dt
+ k3k1 (A.5)

We substitute m(t) = c1 + c2 exp(λt) into (A.5).

c2λ
2eλt = −k2c1 − k2c2e

λt − k3c2λe
λt + k3k1 (A.6)

Collecting the exponents gives us a value for c1 and λ as follows.

−k2c1 + k3k1 = 0 ⇒ c1 =
k3k1

k2
(A.7)

c2e
λt · (λ2 + k3λ+ k2) = 0 ⇒ λ1,2 =

−k3 ±
√
k2

3 − 4k2

2
(A.8)

Combining the above, we find a new expression for m(t).

m(t) =
k3k1

k2
+ d1e

λ1t + d2e
λ2t (A.9)

The values for di can be found by using the initial values m(0) that follows from
(A.9) and ṁ(0) that follows from (A.9) and (A.1).

m0 −
k3k1

k2
= d1 + d2 (A.10)

k1 − k2a0 = λ1d1 + λ2d2 (A.11)

Subtracting λ2 times (A.10) from (A.11) gives us a value for d1.

d1(λ1 − λ2) = k1 − k2a0 − λ2m0 + λ2
k3k1

k2
(A.12)
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From this expression and (A.10), we can compute d2.

d2 = m0 −
k3k1

k2
− d1 (A.13)

When imposing k3 � k1, k2, approximate values for λ1,2 given by (A.8) can be
computed.

λ1 ≈ −
k2

k3
, since for x small

√
1− x ≈ 1− x

2
λ2 ≈ −k3 (A.14)

We find

λ1 − λ2 ≈ k3 (A.15)

which results in the value for d1 given below.

d1 ≈
1

k3

(
k1 − k2a0 + k3m0 − k3

k3k1

k2

)
≈ m0 −

k3k1

k2
(A.16)

Finally, substituting this in (A.13), we find

d2 ≈ 0. (A.17)

We found the following solution for m(t).

m(t) =
k3k1

k2
+

(
m0 −

k3k1

k2

)
e−

k2
k3 t (A.18)

Quasi steady state approximation. We state that we can set the time
derivative of a to be zero because of the fact that k3 � k1, k2. We find the
following dependence for a.

da

dt
= m− k3a = 0 ⇒ a =

m

k3
(A.19)

Substitute this expression in (A.1).

dm

dt
= k1 − k2

m

k3
(A.20)

The equation for m(t) that follows is

m(t) =

(
m0 −

k3k1

k2

)
e−

k2
k3 t +

k3k1

k2
(A.21)

which equals the equation given in (A.18).
We conclude that, when considering the slow variable m, we can use the

quasi steady state approximation for the fast variable a.
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B Terminology
Apoptosis

Form of cell death, induced by the cell itself. The cell falls apart in
fragments (apoptotic bodies), surrounded by a membrane and filled with
cell content. No cell content is spilled.

Apoptotic body
See apoptosis.

Cytokines
General name for small proteins released by cells. They regulate all kinds
of processes by communicating between cells. In atherosclerosis, they
regulate the recruitment of macrophages.

Endothelium
Layer between the bloodstream and the artery wall, only one cell thick.

Foam cell
Loaded macrophage, completely filled up by LDL particles.

Intima
Inner layer of the artery wall, closest to the bloodstream.

LDL
Low-density lipoprotein. Structures filled with lipid that is transferred
from and to the organs through the blood.

Lumen
Bloodstream.

Macrophage
Type of white blood cell that cleans unwanted material by engulfing it.
The cleaning is an inflammatory process.

Necrotic core
Cellular debris that is spilled in the center of a plaque after secondary
necrosis. Usually only detectable in advanced plaques. See secondary
necrosis.

Phagocytosis
The engulfing of (unwanted) particles by a macrophage.

ROS
Reactive oxygen species. Reactive molecules and free radicals derived from
molecular oxygen that are a potential cause of damage to cells.

Secondary necrosis
Form of cell death that happens to apoptotic bodies when they are not
cleared fast enough. The apoptotic body breaks up and its content is
spilled in the plaque, forming a necrotic core.

T-cell
Type of white blood cell that regulates inflammatory reactions by reacting
to cytokines.
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