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Abstract

Recent time-lapse microscopy experiments on bacterial growth have shown large
cell-to-cell variations in growth rate and protein expression levels. Earlier experiments
at the population level have shown that the expression of different classes of protein
is tightly regulated to achieve fast growth in various conditions. We have built a
coarse-grained model of bacterial metabolism that incorporates both the stochasticity
of protein production and division, and the regulation that optimises growth.

We introduce novel variables that quantify the coupling from gene expression to
growth, which we call growth control coefficients. Analysis of the system in the optimal
state shows that stochasticity in the growth rate has its main cause in the stochasticity
of frequently occurring proteins, even though these fluctuate relatively little.

The global regularity of protein expression is explained by optimising the system
for growth rate. We include a regulatory mechanism in our model that achieves this
in close approximation. The regulation also counteracts the growth-inhibiting effects
of stochasticity, by lowering the amplitude and decorrelation time of fluctuations in
the protein concentrations. We use the model to compute crosscorrelations between
protein expression and growth rate. The resulting graphs reproduce several features
present their experimental counterparts.
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1 Introduction

Growing bacteria show a fascinating contrast: the macroscopic scale of growing cultures
shows striking regularity, whereas the behaviour of individual cells is highly stochastic[1].
Data on cultures in balanced exponential growth in varying conditions show that the average
composition of cells is tightly regulated, so the behaviour of bacterial cultures is predictable
and, usually, deterministic. However, individual bacteria are small and some of their key
constituents occur only in small copy numbers. With the advent of more precise measuring
techniques, research on cell-to-cell variability has increased in prominence[2]. Experiments
show that the small copy numbers lead to significant amounts of noise in the biochemical
networks that govern the cells. Interestingly, noise properties of the cellular composition
and growth rate are nontrivially related.

We are interested in understanding the contrast between culture-wide regulation and cell-
to-cell stochasticity from a modelling perspective. We will focus on cultures in steady-state,
balanced, exponential growth. As I stated in the previous paragraph, the growth rate and
gene expression levels are coupled in both the population average and in noise properties.
It is natural to suggest that this coupling is due to the same system[3]. This is the central
thesis of my thesis. We try to answer question such as:

• Can a simple, coarse-grained, model reproduce the features of both global regulation
and stochasticity?

• What is the influence of global gene regulation on stochastic expression and growth?

• How can we quantify the coupling between stochasticity in protein abundance and
growth rate?

In this thesis I will present my work on the coupling between noise and macroscopic laws
in the context of bacterial growth. I will present a coarse-grained model of the metabolism
resulting in protein production. Noise is incorporated in the final step of the metabolism,
wherein the proteins are produced stochastically. The metabolic intermediates regulate the
production of proteins in a way that gives rise to the observed macroscopic laws. Further-
more, I will introduce an analytic tool to quantify the dependence of the cell’s growth rate
on its composition, called growth control coefficients.

We will see that even large amounts of noise will leave the population laws intact, even
though they may shift them a little. We will also see that the presence of noise in multiple
enzymes can explain how, in a population, the most frequently occurring growth rate is not
the optimal growth rate, or even the fastest growth rate that is present in the population. In
addition, the model can be used to calculate cross-correlations between growth rate, protein
production, and protein abundance. We will compare these functions to recently measured
data on E. coli.

In the rest of this chapter, I will explain the experiments that lead up to our research
more thoroughly. I will start by describing the work on the culture level, followed by the
experiments on stochastic gene expression and growth. I will close the chapter with a short
description of our modelling approach.

1.1 Macroscopic bacterial growth laws

The regularity of bacteria in balanced exponential growth has been quantified thoroughly.
There are many empirical relationships that express physiological parameters as functions
of the growth rate. These relationships are usually called laws.

The first example of an empirical law is the Monod law, named after its discoverer.
Monod observed bacterial populations that were limited by the availability of a nutrient
source. He found that the growth rate µ depended on the concentration [N ] of the nutrient[4]
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according to a simple asymptotic relationship:

µ ∝ [N ]

K + [N ]

where K is a constant that depends on the type of bacteria and nutrient.
Another important observation was the dependence of cell size on growth[5]. When

bacteria grow fast, they will be larger on average. The dependence is exponential:

log Ω ∝ µ

where Ω denotes the cell size and µ the growth rate.
More recent experiments have uncovered linear relations between the proteome compos-

ition of cells and their growth rate. At first, the analysis was limited to two types of protein:
ribosomal proteins and catabolic proteins [6]. Upon limiting the catabolic proteins, by vary-
ing the source of carbon, the expression of catabolic proteins increased while the expression
of ribosomal proteins decreased. Upon limiting the ribosomal proteins, by adding varying
amounts of ribosome-inhibiting antibiotics, the expression of catabolic proteins decreased
while the expression of ribosomal proteins increased. Expressed as a function of the growth
rate, the relative expression levels were linear. We will refer to these linear relationships as
the growth laws.

These two protein sectors were not enough to cover the entire proteome. About half
of the cell consists of proteins that do not change in expression level with growth rate. In
follow-up experiments the analysis was first expanded to include a separate growth law for
anabolic proteins[7]. The most recent experiments used comprehensive mass spectrometry
to classify hundreds of proteins in different classes, according to the trends in their expression
under different types of limitation[8]. All of the relative expression levels are linear functions
of growth rate.

The growth laws relating cellular composition and growth rate are understood in terms
of optimal resource allocation. For example, if the cell is limited by its nutrient supply, it
needs to produce more catabolic proteins. This comes at the cost of producing ribosomes,
so the growth rate decreases.

This discussion on macroscopic laws highlights that physiological state variables and gene
expression levels are linked, at least in the population-averaged sense. In the next section,
we will see that the same general statement holds for single cells.

1.2 Single-cell stochastic gene expression
Advances in fluorescence microscopy have made it possible to observe intracellular stochasti-
city in real-time. Cell strains can be engineered to express small fluorescent proteins (usually
GFP). Fluorescent proteins can be expressed on their own (to study expression noise in gen-
eral or in engineered networks[9, 10]), at the same time as another protein (to study the
expression noise of that protein[11]), or they can be fused to non-fluorescent proteins (to
study protein dynamics[12]).

Recently, Kiviet et al. used the second of these techniques in combination with optical
microscopy to obtain stochastic data of both cell size (and thence growth rate) and lac
protein abundance (and thence production rate)[13]. The fluctuations in these quantities
are very large and correlated among themselves in interesting ways. The experimenters can
control the growth rate by varying the average expression of lac proteins, through inducing
production by the chemical IPTG1.

On average, it is observed that upward fluctuations in the growth rate follow production
of lac enzymes. The time scale, relative to the cell division time, of the production versus

1This induction usually occurs by way of lactose, when cells grow on this sugar. In the experiments, the
cells grow on lactulose. This lactose derivative can be catabolised by the lac enzymes, but it does not induce
their production.
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growth rate cross-correlation decreases with growth rate. The cross-correlation becomes
less skewed as well. The cross-correlation between the concentration of lac enzymes and
growth rate is symmetrical at low growth rate. At high growth rate, upward fluctations in
the growth rate are preceded by high lac enzyme concentrations in some systems, and by
low lac enzyme concentrations in other system. The authors explain this by the interplay
between "common noise" that couples to both lac enzyme production and growth, and
"dilution" decreasing all enzyme concentrations when the cell grows fast.

1.3 Approach
To understand the interplay between the growth laws and the stochastic gene expression,
we will make a coarse-grained model, inspired by metabolic regulation at the transcrip-
tion/translation level. Protein sectors will be represented by single representative enzymes,
one type per sector. We keep the regulation mostly phenomenological. Stochasticity is
included in the processes of cell division and protein production.

In chapter 2, I will describe the model in full detail. Chapter 3 contains an analysis on
the system when it is optimised for growth rate. Chapter 4 covers the results of simulations
where we regulated the system manually. Chapter 5 finally displays the results on simulations
on the fully regulated system. I will close this thesis with a discussion on the results of my
research, and suggest avenues of further research.
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2 Description of the model

In this chapter I will describe our model in terms of its separate components. In section 2.1 I
will explain the metabolism. Section 2.2 covers the relations between growth and production,
and section 2.3 treats the process of cell division. Section 2.4 introduces noise in protein
production. I will finally introduce the system’s regulation in section 2.5. I will start,
however, with some preliminary remarks.

As noted before in section 1.1, the macroscopic growth laws are formulated in terms of
a coarse-grained model that divides the bacterial proteome into a small number of protein
sectors. Inspired by this, we will investigate four classes of protein: "housekeeping" proteins,
catabolic proteins, anabolic proteins and ribosomal proteins. We represent each class as a
single enzyme in a minimal metabolic model.

We know that the fractional abundance of about half of the proteome does not change
with growth rate. In the model, we represent this "housekeeping" sector by a protein, called
"Q". This protein does not function as an enzyme in metabolism.

The first metabolically active protein is an enzyme that transports nutrient molecules
from the environment of the cell to the inside. It represents the class of catabolic enzymes
and is denoted "T", for transporter. The product of its reaction is a molecule that we call
the catabolite, denoted with the letter "c".

The second metabolic protein is an enzyme that transforms the catabolite into amino
acids. This protein represents the class of anabolic enzymes and is denoted by the letter
"E". We denote the amino acids with the letter "a".

The third metabolic protein represents the ribosomes, that is, ribosome are also modelled
as single proteins. The letter "R" denotes the ribosomal protein. This enzyme consumes
amino acids and directly produces all proteins T, E, R, and Q.

A cartoon of the metabolism is pictured in Figure 2.1. We use the following notation
convention: capitals in italic (T , E, R, and Q) refer to the number of proteins of their
respective protein class in a cell.

The (buoyant) density of bacterial cells is remarkably constant between genetically
identical cells in the same and even different growth conditions[14]. This suggests, that
it is justifyable to equate the total protein abundance in a cell with cell size. We denote the
cell size as Ω = T +E +R+Q. For protein class X, the protein fraction φX = X

Ω can then
be interpreted as the concentration.

c a

Figure 2.1: Cartoon of the metabolic model. Thick, black arrows indicate chemical re-
actions; thin, black lines with barred ends denote product inhibition. Differently coloured
letters indicate different molecular species: capitals denote proteins, lower case letters denote
metabolic intermediates. Food from outside the cell is imported by a transporter protein "T"
and converted into the first metabolic intermediate "c". This is converted by the enzyme
"E" into the second intermediate "a", that is in turn converted by the ribosome "R" into
the four proteins themselves (including the housekeeping proteins "Q", that do not feature
in the metabolism). The colour coding from this figure is used throughout this thesis: cyan
for transporters, purple for enzymes, yellow for ribosomes, navy for housekeeping proteins;
red for catabolic intermediates, and green for amino acids.
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2.1 Metabolism
We assume that, for a given protein composition, the cellular metabolism reaches its equilib-
rium fast. This allows us to model it deterministically, using ordinary differential equations.
The metabolism is assumed to be in quasi-steady state throughout protein production.

Given a cell with a certain composition (in terms of the protein numbers T , E, R, and
Q), we will calculate the steady-state concentrations of catabolic intermediate molecules
and amino acids in the system. These concentrations will determine the rates at which the
ribosome produces new proteins.
Box 2.1: Michaelis-Menten kinetics

The most basic enzymatic reaction mechanism is called the Michaelis-Menten mechanism.
This mechanism considers three molecules: E, S, and P . The molecule E functions as an
enzyme, transforming the substrate S into the product P . When E binds S, they form a
complex C. This complex can disintegrate back into E and S, or the reaction can progress
to form E and P . The product cannot bind to the complex again. In a reaction scheme:

E + S 
 C → E + P (2.1)

Using this enzymatic reaction instead of linear kinetics means that the enzyme limits the
reaction. The substrate can saturate the enzyme, so the reaction rate will remain bounded
even if the substrate concentration is very large.
Defining the total turnover rate v of the reaction as the rate at which molecules of P are
produced, the following equation can be derived[15]:

v =
dP

dt
= −dS

dt
= k(E + C)

[S]/M

1 + [S]/M
≡ kEtot

s

1 + s
(2.2)

where [S] denotes the concentration of the substrate and P , S, E, and C the number of
molecules in the system of product, free substrate, free enzyme and complex, respectively.
The total number of enzymes is Etot = E + C. The system has two parameters: the
Michaelis constant M and the rate constant k. We can rescale the substrate concentration
to become dimensionless by dividing by the Michaelis constant: s = [S]

M . The production
rate of P molecules then depends only on the total number of enzymes and the dimensionless
substrate concentration.

The three metabolically active proteins function as enzymes. A straightforward way
of modelling enzymatic reactions is by assuming Michaelis-Menten kinetics, described in
Box 2.1. This approach was used in [16] as part of a deterministic model. However, when
we applied this mechanism to stochastic systems, some problems emerged, which we will
describe below. We will start by studying the Michaelis-Menten approach anyway, because
it is instructive to see the analysis proceed for this relatively simple scheme. In our more
complicated model, the steps are not easily written down.

We will calculate the metabolic state of the system when the protein numbers T , E,
and R are given. Note that the Q proteins do not contribute to metabolism, so we do not
need to specify Q. Let us first assume that the proteins T, E, and R function as Michaelis-
Menten enzymes, with rate constants kT, kE, and kR, respectively. The total turnover rates
of transporters, enzymes, and ribosomes are

vT = kTT
σ

1 + σ
(2.3)

vE = kEE
c

1 + c
(2.4)

vR = kRR
a

1 + a
(2.5)

We consider the metabolic intermediates in terms of their rescaled concentrations c = [c]
ME
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and a = [a]
MR

; we want to express these variables as a function of the protein copy numbers.
The external nutrient concentration is a parameter. Just as the concentrations of the meta-
bolic intermediates, we divide by the Michaelis constant of the reaction that consumes it. σ
denotes the rescaled nutrient concentration.

In metabolic steady state the turnover rates at all enzymes must be equal. The functional
form of the metabolite concentrations c(T,E,R) and a(T,E,R) must reflect that vT = vE =
vR. Solving these equations for c and a yields them as functions of the protein numbers:

c =
kTT

σ
1+σ

kEE − kTT
σ

1+σ

(2.6)

a =
kTT

σ
1+σ

kER− kTT
σ

1+σ

(2.7)

Notably, c and a have finite positive values only when kEE > kTT
σ

1+σ and kRR >
kTT

σ
1+σ . In the case where the inequalities do not hold, no metabolic steady state exists.

In other words, steady state exists only if

T <
kE

kT

1 + σ

σ
E (2.8)

and T <
kR

kT

1 + σ

σ
R (2.9)

are both true. We can interpret this limitation in the following way, beginning with the
first one. Suppose that kTT

σ
1+σ > kEE. This means that the transporter T is pumping

catabolite molecules into the cell faster than the enzymes E can handle even when they are
functioning at maximum efficiency. The concentration of catabolites will thus diverge and
no steady state can exist. The turnover rate of the transporter will always be larger than
the turnover rate of the enzyme.

In equations: because c
1+c < 1 and kEE < kTT

σ
1+σ , vE < vT for all (T,E) ∈ N2.

Likewise, when kRR < kTT
σ

1+σ , vR < vT for all (T,R) ∈ N2 because a
1+a < 1.

Leaving these considerations aside for a moment, we will now consider the way in which
this metabolism occurs in real life. Real cells are constantly competing with each other
for environmental resources. A faster growing cell has an advantage over its competitors,
because it will claim resources more quickly than them. Over eons of natural selection,
bacteria have become optimised for growth rate and any model of real cells must be very
close to the optimally growing state. In our model, we would like to consider this ideal state
as the baseline, and consider stochastic fluctuations around the optimum.

It is obvious that cells with a faster metabolism (higher turnover rates) will grow faster,
because they produce their constituents at a higher rate. In fact, in our model, the two
are directly related (see section 2.2). According to equation (2.3), the turnover rate in the
Michaelis-Menten model is directly proportional to T—an optimal cell will have as many
transporters as possible.

When we return to the inequalities (2.8) and (2.9), we see that the number of trans-
porters is limited. This conflicts with the desire to maximise T . The best we can do, while
keeping the Michaelis-Menten kinetics intact, is choosing the system suboptimally with high,
but finite, metabolite concentrations. This, however, leads to its own problems when we in-
troduce stochasticity. Due to noise in protein production, the protein concentrations will
not always have their average values. Because of the fluctuations in protein abundances, it
is possible that the inequalities (2.8) and (2.9) are violated sometimes. This becomes more
frequent the closer we choose the average composition to the optimum.

All this suggests that we have to modify the metabolic kinetics of the model to incorpor-
ate these points. An analysis of real metabolic networks suggests that the aforementioned
problems are encountered by real cells as well as our simple model. These networks con-
tain several types of metabolic feedback loops that keep metabolite pools finite. Examples
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include product inhibition, where an end product inhibits the first enzyme of the pathway
that produces it, leakage of metabolites from the cytoplasm to the cell’s environment, and
reactions that can be catalysed by enzymes working in both directions. An overview of the
metabolism of E. coli can be found on the web[17].

A general theory of metabolic feedback has been developed by Savageau[18]. Unfor-
tunately, this theory is not fully applicable to our work, because it does not account for
the allocation of finite enzyme production resources. As the most important feature of the
feedback mechanism is the reduction of metabolite pools, we choose an extension of the
Michaelis-Menten model for which we do not need to introduce any new proteins to the
model: product inhibition. The differences between the simple ichaelis-Menten model and
the one including product inhibition are explained in Box 2.2.
Box 2.2: Product inhibition

This extension of the Michaelis-Menten kinetics ensures that the end product of an enzymatic
reaction inhibits the reaction that produces it directly. It does so by binding to the enzyme.
The Michaelis-Menten reaction scheme (2.1) is extended to[15]

E + S 
 C1 → E + P

E + P 
 C2

Note that there are two possible enzyme complexes. C1 forms when E binds S, and C2

when E binds P . Once a product molecule P is formed, it cannot be turned back into a
substrate molecule S. In this reaction scheme, the turnover rate becomes

v = k(E + C1 + C2)
[S]/MS

1 + [S]/MS + [P ]/MP
≡ kEtot

s

1 + s+ p
(2.10)

The only difference with the Michaelis-Menten turnover rate (2.2) is the presence of the
suitably rescaled product concentration in the denominator. There are three parameters
per reaction, namely the reaction rate k and two constants MS and MP functioning in the
same way as the Michaelis constant.

The reactions that produce c and a are inhibited by their respective products. This is
not true for the reaction that produces proteins. In this model, the turnover rates of T, E,
and R are modified from equation (2.3) to

vT = kTT
σ

1 + σ + βcc
(2.11)

vE = kEE
c

1 + c+ βaa
(2.12)

vR = kRR
a

1 + a
(2.13)

where the parameters βc =
ME,c

MT,c
and βa =

MR,a

ME,a
are the fractions between the concentration

constants associated with each of the two metabolites.
As before, the equations vT = vE = vR can be solved for c and a. Although this amounts

to a third-order linear equation, the closed form is convoluted and uninformative. However,
we can readily see that the turnover rate in the product-inhibited scheme depends on all
enzymes, not just the transporter. This is due to the presence of at least one of c(T,E,R)
and a(T,E,R) in each of the three expressions (2.11), (2.12), and (2.13). The dependence
of the turnover rate (and hence the growth rate) on the different protein abundances will be
quantified in Section 3.3.
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2.2 Intensive and extensive variables
Up until now we have talked about the total turnover rate per reaction in the entire cell.
The resulting turnover rate of the ribosome is the change of total protein number over
time. We assume that the proteins in our model are stable for several cell cycles, so we
ignore protein degradation. Recall that we the total protein number equates to the cell size:
Ω = T + E + R + Q. In the metabolic steady state then, we can define the metabolic flux
J = vT = vE = vR, for which

J =
dΩ

dt

Note that the metabolic flux scales linearly with the size of the cell, because the total
turnover rates are proportional to the enzyme numbers. Because J scales with the size of
the system, we can call it an extensive quantity, in analogy to thermodynamics.

When a culture reaches balanced exponential growth, its composition in terms of con-
centrations does not change with the size of the population any more—a state of exponential
growth calls for intensive variables, that are constant with varying system size. In balanced
exponential growth, the logarithm of the cell size increases linearly with time. We can
introduce the instantaneous growth rate µ as

µ =
d log Ω

dt
=

1

Ω

dΩ

dt
=
J

Ω

which is simply the flux divided by the cell size. As the flux is an extensive quantity, the
growth rate must be an intensive quantity.

It is insightful to note here that the equations J = vT = vE = vR can be rewritten to
µ = vT

Ω = vE
Ω = vR

Ω . Dividing Equations (2.11), (2.12), and (2.13) by Ω amounts to changing
X to φX for X ∈ {T,E,R}. Equating these expressions and solving them for a and c works
exactly as before, so the functional forms of (c, a)(T,E,R) and (c, a)(φT, φE, φR) must be
exactly equal. In other words, the metabolite concentrations and the growth rate µ depend
only on the ratios of the protein abundances.

The state of the system can be expressed in terms of the protein fractions φX alone,
which are subject to the constraint that∑

X

φX = 1 (2.14)

We will now relate the protein fractions and their constraint to the protein production rates
in steady state.

When the system is at steady state, production rates of all proteins are constant. Recall
that the total turnover rate of the ribosomes is vR = kRR

a
1+a . We assume that this rate

of protein production is split between the different proteins, such that the abundance of
protein X changes over time as

dX

dt
= rXR

a

1 + a
(2.15)

with constant
kR =

∑
X

rX (2.16)

In steady-state growth, the amount of each protein type grows exponentially with the same
growth rate µ and their fractional abundances remain constant. We may write

dX

dt
= X0eµt = φX,0Ω0eµt = φXΩ0eµt (2.17)

with X0 the number of X proteins, Ω0 =
∑

XX0 the cell size, and φX,0 = X0

Ω0
the fractional

abundance of X, all at time t = 0. In steady state, φX,0 = φX at all times.
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We can now consider two types of protein, X and Y. We can express the ratio of the
time derivatives of their total abundances using both equation (2.15) and equation (2.17):

dX
dt
dY
dt

=
rX

rY
=
φX

φY

This means that, in the steady state, the proteome fraction and the production rate differ
only by a constant. In other words:

φX =
rX

kR

and the constraints (2.14) and (2.16) are different sides of the same coin.

2.3 Cell division

Of course, the model cell cannot grow indefinitely—real cells undergo a cell cycle at the
end of which they divide into two daughter cells. We need to include the mechanism that
keeps the cell size small, the mechanism that produces new cells: cell division. There are
two components to the process of cell division: when it occurs and what the result is. Also,
as noted in Section 1.1, the average size of unicellular organisms scales exponentially with
the growth rate. This effect is important for our model, because the size of a cell influences
the amplitude of noise in the system. A large cell is relatively unaffected by noise, because
the fluctuations are small compared to the average. A small cell feels the effects of noise
strongly. Because slow-growing cells are smaller, we expect that the effects of noise are more
apparent at slow growth. We must therefore include the exponential dependence of average
cell size on growth rate.

There are many different types of models that explain the exponential dependence, all
using different sensors that organisms may use to determine progress along their way from
division to division. For example, cells may have a way to measure their current size, or the
time that has passed since the last division. Single-cell data [19, 20] suggest a model[21]2
where cells are regulated to add an amount ∆̂ to the initial size before starting division.
This is called an "adder" model. In E. coli this model works well, but different unicellular
organisms may be wired differently[22] with correspondingly different models[23].

Unfortunately, a simple implementation of the adder model failed to be stable in our
simulations. Because the exact way of implementing the exponential dependence of cell size
on growth rate does not matter very much for the noise properties of the protein abundances,
we chose to implement a so-called "sizer" model, where the cell senses its own size and
divides when it has reached a size ∆̂. We let TD denote the time scale in the exponent and
∆ (without the hat) the cell size extrapolated to zero growth rate. Empirically, TD is about
equal to the time DNA takes to replicate, which in E. coli is about one hour3. We leave
noise out of the picture here and simply divide the cell when it reaches a size ∆ exp(µTD).

Note that the growth rate needs to be known in order to do this—we use the optimal
growth rate from section 3.1. How the cell would know its own growth rate so it could
regulate this is interesting in its own right, but beyond the scope of this thesis. It is likely
linked to the precise choice of the sensor that the cell uses to determine the start of division,
and should take the details of the metabolism into account[25, 26].

Now we have described when in our model cell division occurs, it remains to describe
what the process actually entails. When the cell size is larger than the threshold, each
protein has a probability of 1

2 to end up in daughter cell 1, and equal probability to end up
in daughter cell 2. This amounts to a binomial distribution of proteins between daughter

2The authors of this paper state that this model was first put forward by Voorn et al., "Mathematics of
cell division in Escherichia coli", Curr Top Mol Genet 1:187-194, 1993, but I have not been able to confirm
this.

3Note that cells can double much faster than once per hour, which means that fast-growing cells will
contain DNA for multiple generations to come![24]
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cells. We now choose to continue our analysis with one of the two daughters. We always
choose daughter cell 1. 4

2.4 Stochasticity of protein production

In addition to the binomial distribution at cell division, stochasticity is introduced in the
model at protein production. In this section I will explain how this can be described as a
stochastic process, and how we simulate it.

If proteins X are produced at the rate rX, one at a time, we can describe the stochasticity
in a chemical master equation (CME) [27]

Ṗ (T,E,R,Q, t) =
a

1 + a


rT(E−1

T − 1)+

rE(E−1
E − 1)+

rR(E−1
R − 1)+

rQ(E−1
Q − 1)

RP (T,E,R,Q, t) (2.18)

where EX is the step operator for protein species X, defined as E−1
X f(X) = f(X − 1). Note

that we are basically describing four different processes in one equation, namely ribosomes
R producing T, E, R, and Q. The ribosomes work only at a fraction a

1+a of their maximal
rate and each active ribosome is producing X-proteins at a rate rX.

Most chemical M-equations have not been solved for nontrivial boundary conditions5, al-
though some progress has been made for single enzymes[28]. Equation (2.18) is no exception
and we have been unable to make progress in an analytical sense.

However, it is possible to simulate the CME with a Gillespie algorithm [29]. This works
in the following way[30]:

1. Compute the rates, also called propensities, at which the reactions occur. For the
production of protein X, this rate is

pX = rX
a

1 + a
R (2.19)

Denote ptot =
∑

X pX for the rate at which any reaction occurs. Index the reactions
as iT = 1, iE = 2, iR = 3, andiQ = 4 and denote piX ≡ pX.

2. Draw two random numbers y1, y2 from the uniform distribution on the unit interval[31].

3. Compute the time δt until the next event occurs. One should draw from an exponential
waiting time distribution, so with the first random number given, the waiting time is

δt = − ln(1− y1)

ptot

4. Determine which of the events occurs. The production of one molecule of X occurs
when

iX−1∑
i=1

pi < ptoty2 <

iX∑
i=1

pi

which is equivalent to saying that the probability for the production of X to occur is
pX
ptot

.

4This strategy does not guarantee agreement between the statistics of the lineage and the statistics of
the population at a particular time point, see chapter 6.

5A trivial boundary condition would be P (T,E,R, t) ∝ δ(R) such that Ṗ (T,E,R, t) = 0.
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In reality, it is known that the production of proteins does not occur one by one as a Poisson
process, but in bursts. This is due to the fact that a gene is first transcribed into a strand
of RNA before that strand is translated several times by ribosomes. The RNA transcripts
have a short half life, on the order of minutes. It has been experimentally observed that the
burst size is geometrically distributed[32].

We do not model transcription explicitly. Instead, we let protein production occur in
bursts of varying size.6 The burst size b is drawn from a geometric distribution. The burst
size does not depend on the type of protein—the only variables that differ between proteins
are the rates rX.

This means that the simulation procedure outlined above is changed in two ways. The
first one is, that step 4 now produces n molecules of type X instead of one, where n ≥ 1
is distributed geometrically with mean b. The second, and more subtle one, is as follows.
Because each reaction produces on average b copies, each reaction has to occur only 1

b times
as often so as to result in the same average production rate. So the formula (2.19) for
computing the propensities is modified to

pX =
rX

b

a

1 + a
R

2.5 Gene regulation

Cells do not have a fixed composition. Rather, they adapt to their environment by adjusting
their gene expression levels to the conditions that they find themselves in. The regulation
of gene expressions typically needs a biochemical network consisting of several additional
proteins. One protein will sense some property of the system, typically by binding an
intracellular or extracellular molecule, another will bind to that protein, and so on, ending
in interactions between a protein and the transcription or translation machinery.

In our model, we use a course-grained description of gene regulation, where the produc-
tion rates of the proteins are functions of the two metabolic intermediate concentrations.
Because the state of the metabolic network is determined by only three proteins, with the
additional constraint that their fractional abundances (corresponding to their concentra-
tions) must add up to a constant, two regulatory variables (c and a) should be sufficient to
specify the metabolic state.

The mechanism that we use for the regulation of transporter production was described
by You et al.[7] They also gave evidence for this mechanism of regulation. A small molecule,
called cyclic AMP (or cAMP), is responsible for the regulation of catabolic enzymes, by
sensing the concentrations of small metabolic precursors. A high precursor concentration
inhibits the production of cAMP. The molecule binds to a regulatory protein, called CRP.
The presence of CRP-cAMP complexes stimulates the production of catabolic enzymes at
the transcript level. The net result of this is, that high concentrations of metabolic precursors
inhibit the production of catabolic enzymes, and thereby their own production.

In our model, this scheme is represented by making the production of the transporter
dependent on the concentration c of the first metabolic intermediate, which is the one that
is produced by the transporter.

The mechanism that we use for the regulation of ribosome production is likewise inspired
on a known molecular regulation mechanism. When the pool of amino acids that are available
for protein synthesis is small, there will be many uncharged tRNAs present7. When these
tRNAs bind to the ribosome, protein production stalls. This sends a signal to increase
the production of a signalling molecule, ppGpp. This molecule inhibits the transcription
of ribosomal RNA and thereby the production of ribosomes. In summary, a small amino

6I like to call my bursty model by the names of its metabolites a and c, and its proteins T, E and R,
which becomes b-acTER.

7tRNA molecules present amino acids to ribosomes. An uncharged tRNA is a tRNA molecule that does
not have an amino acid bound to it.
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acid pool inhibits the production of ribosomes. The mechanism was studied in detail by
Bosdriesz et al.[33] in the context of optimal ribosome synthesis.

Our model again glosses over the molecular details and we simply make the production
of the ribosomal proteins depend on the concentration a of the amino acids—a large amino
acid pool will stimulate the production of ribosomal proteins.

This general scheme of gene regulation was analysed by Scott et al.[34] They show that
this way of coordinating gene expression with nutrient conditions is able to produce the
growth laws from section 1.1. They also show that the occurrence of the growth laws is
insensitive to the precise shape of the regulatory functions.

Nonetheless, the regulation must take into account the constraints that we have en-
countered so far. In particular, we will assume that the maximal production rate rX of
protein X is given by some fraction FX(c, a) of the total turnover rate kR of one ribosome:

rX = kRFX(c, a) (2.20)

where ∑
X

FX(c, a) = 1 (2.21)

As a result, φX → FX(c, a) when c and a remain constant for a long time.
The housekeeping proteins are not regulated explicitly. Their production rate is constant,

irrespective of the growth conditions:

rQ = kRφQ (2.22)

For the metabolic proteins, we can use the following expressions to ensure that equa-
tion (2.21) holds, while using c to regulate T directly and using a to regulate R directly:

FT = (1− φQ)
fT(c)

fT(c) + 1 + fR(a)
(2.23)

FE = (1− φQ)
1

fT(c) + 1 + fR(a)
(2.24)

FR = (1− φQ)
fR(a)

fT(c) + 1 + fR(a)
(2.25)

with fT(c) and fR(a) yet to be determined regulation functions. Because a large pool of
catabolites inhibits the production of transporters, fT must be monotonically decreasing.
Likewise, fR must be monotonically increasing, because a large pool of amino acids stimu-
lates the production of ribosomes.

An important feature of this type of regulation, incorporating the constraints, is what we
may call implicit regulation. If, for example, the production rate of transporters increases
due to a small catabolite pool, the production rates of enzymes and ribosomes decreases.
This is due to the fact that the machinery that is now producing transporters is not available
for the production of enzymes and ribosomes. In the expressions(2.23), (2.24), and (2.25),
it shows in an increase in the denominator.

We will choose the following regulation functions:

fT(c) =

(
θT

c

)nT

fR(a) = γR
anR

θnR

R + anR

Here θT and θR are parameters that describe the range of the (dimensionless) concentrations,
nT and nR are parameters that describe the steepness of the functions and γR is a parameter
that describes the maximum expression of ribosomes.
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This particular choice is made because it appears that these shapes optimise the growth
rate. We will describe the process of choosing these functions and parameters in more detail
in section 5.1. The shape of fR(a) is called a Hill function and it is very common as a
regulation function, due to its sigmoidal shape. Power laws such as fT(c) are less common,
because they are not bounded, although they are generally used to model regulation func-
tions if the range of possible concentrations is small[18]. In our model, the actual production
rate rT of the transporters is bounded, even though fT may not be, because of the presence
of fT in both the numerator and the denominator of (2.23).

I have now described every component of our model. For a graphical representation of
the general idea, see Figure (2.2). The parameters that we have used in our simulations,
which I will discuss in the rest of this thesis, are summarised in Table (2.1).
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Figure 2.2: Cartoon of the metabolism of Figure 2.1 embedded in a cell with growth rate
µ, including the gene regulation via the metabolite concentrations (red and green dashed
arrows). A high concentration c of catabolites will inhibit the production rT of transporter
proteins, as denoted by the line segment perpendicular to the arrow. This will have the effect
of increasing the productions rE and rR of enzymatic and ribosomal proteins. In contrast,
a high concentration a of amino acids will stimulate rR, as denoted by the pointed arrow,
effectively decreasing rTand rE. The production rQ of housekeeping proteins is fixed.

Table 2.1: Parameters of the system with chosen values, separated into the categories de-
scribed in chapter 2. The parameters in the regulation are optimised as described in 5.1,
with uncertainties in the last digit according to the fits.

Class Description Symbol Value

Metabolism

External substrate concentration σ 10
Maximal transporter turnover rate kT variablea
Maximal enzyme turnover rate kE 15 h−1

Maximal ribosome turnover rate kR 10 h−1 or variableb
ratio of Michaelis constants for catabolite βc 0.1
ratio of Michaelis constants for amino acid βa 0.1

Cell division time scale of cell size/growth rate dependence TD 1 h
cell size at division for zero growth ∆ 1000 molecules

Noise burst size b 10 molecules

Regulation

housekeeping proteome fraction φQ 0.55
response size of ribosome regulation γR 1.4920(2)
threshold for transporter regulation θT 18.1(2)
threshold for ribosome regulation θR 3.6120(9)

cooperativity of transporter regulation nT 1.509(4)
cooperativity of ribosome regulation nR 1.708(1)

akT ∈ (0.1, 0.4, 1, 1.5, 2, 2.6, 3.3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 21, 26, 32, 48, 64, 128) h−1 was used in
chapter 3. For the simulations of Sections 4 and 5 the first three of this list were dropped.

bkR ∈ (1, 2, 3, 4, 5, 6, 7, 8.5, 10, 12) h−1 was used in section 3.2.
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3 Noiseless cells in optimal state
We will build up the model step-by-step. First we will consider a model that only consists
of the growth and metabolism described above. Stochasticity and gene regulation will be
included at a later stage. Given a set of external and internal parameters, there is a unique
optimal state of the system, defined as the state where the growth rate is maximised. We will
see that the optimal state reproduces the growth laws and the Monod law. Furthermore, we
will consider the effect of perturbations of the cellular composition on growth by introducing
an analytic framework built on growth control coefficients, defined in section 3.3.

3.1 Maximising growth rate
As described in sections 2.1 and 2.2, we can compute the growth rate of the system with
any given protein composition. One example plot of the growth rate as a function of protein
composition is plotted as a so-called simplex plot in Figure 3.1a. Here the operation rate
kT of the transporter is taken to be of the same order of magnitude to the operation rate
kEof the enzyme. Specifically, kT = 10 h−1; recall that kE = 15 h−1. There is a composition
that maximises the growth rate, in this case close to the point where all non-housekeeping
proteins occur equally frequently with just a little less E. The precise position of the optimum
depends on the parameters in Table 2.1. When any of the metabolic proteins do not occur at
all, the cell does not grow. There are regions far from the optimum where just one protein
is limiting growth. For example, when φR = 1

6φQ the growth rate is constant anywhere
between φT = 2

3φQ and φT = 1
6φQ. In this area the growth rate is therefore limited by the

ribosome abundance.

(a)

ϕT=1-ϕQϕE=1-ϕQ

ϕR=1-ϕQ

ϕT=1-ϕQϕE=1-ϕQ

ϕR=1-ϕQ

(b)

Figure 3.1: A point in the triangle corresponds to the configuration of the system as a point
(φT, φE, φR) ∈ R3 constrained onto the plane φT + φE + φR = 1 − φQ. In the top corner,
the only proteins present in the system are R and Q, whereas on the bottom line, no R is
present and the system consists of T, E, and Q only. Horizontal lines correspond to constant
φR. The plot works similarly for T (maximal in the bottom right) and E (maximal in the
bottom left). (a) Growth rate µ (h−1) as a function of cellular composition, for kT = 10 h−1

and kR = 15 h−1. The growth rate is maximised at (φT, φE, φR) ≈ (0.178, 0.115, 0.156) ≈
(0.397, 0.256, 0.347)× (1−φQ). (b) When varying kT through the range of values described
in Table 2.1, the optimal composition of the cell changes. The green points indicate the
optimal composition, with a linear fit through them. For convenience, the optimum from
figure (a) is coloured purple and the point where φT = φE = φR =

1−φQ

3 = 0.15 is shown in
red.
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With a numerical procedure in hand to compute the growth rate, it is straightforward
to use numerical optimisation techniques to find the maximal growth rate, and hence the
optimal composition of the cell. I performed this part of the computations in Wolfram
Mathematica, using the inbuilt NMaximize[] function. I computed the maximal growth
rate and the optimal composition for a range of different values of kT. This amounts to
different efficiencies of the transporter, corresponding to different qualities of nutrient. The
changing optimal composition is plotted in Figure 3.1b.

3.2 Growth laws
The empirical growth laws, discussed in section 1.1, are formulated in terms of composition
as a function of growth rate, so we have to invert the data. A plot of the composition as a
function of the optimal growth rate is shown in Figure 3.2a. The fractional abundances of
proteins indeed follow the linear dependences on growth rate as introduced before. That is,
the system reproduces the growth laws in the optimal state.

The controlled parameter in these simulations was the the efficiency kT of the trans-
porter. If kT increases, φT can decrease while keeping the total flux through the transporters
constant. Therefore φE and φR can increase, so the total flux through these enzymes can
increase8. The growth rate thereby increases.

The parameters from Table 2.1 have been chosen such that they resemble the experi-
mental results semi-quantitatively, but we have not fitted the parameters to the data from
[6]. It is possible to increase the steepness of e.g. the φE(µ)-line by decreasing the efficiency
kE of the enzyme E. Increasing all rate constants kX simultaneously will increase the max-
imum growth rate, which is given by the interception of φT(µ) with the horizontal axis. We
did change the value of kR independently of the others, as will be described towards the end
of this section.

The increasing efficiency in the uptake of nutrients has the same effect as increasing the
available amount of nutrient, as quantified by Monod’s law. We have plotted the dependence
of the growth rate on the transporter efficiency in Figure 3.2b and fitted a function of the
form µ(kT) = µmax

kT
kT+K . The fit is excellent.

We can now analyse the effect of changing nutrient quality kT on the size of the metabolite
pools. As shown in Figure 3.2c, the metabolite pools become larger at larger growth rate in
a nonlinear fashion. As a metabolite pool increases, the first effect is a further saturation of
the enzyme that consumes the metabolite. This is true until they are of order β−1 = 10. For
even larger metabolite pools, product inhibition becomes important too. This is illustrated
in Figure 3.2d. At low growth rates, the transporter is saturated by the external substrate,
whereas with increasing growth rate the enzyme is inhibited more and more by its product,
the catabolite. The efficiency of the general enzyme increases; in other words, the saturation
by its substrate, the catabolite, is stronger than the inhibition by its product, the amino
acids. The efficiency of the ribosomes increases very slowly with growth rate, but is generally
high at all growth rates.

Secondly, to investigate the effect on the optimum of antibiotics that target the ribosome,
I changed the efficiency kR of the ribosome for several values of kT already indicated in
Figure 3.2b. The results on the proteome fraction of the ribosomes and transporters are
shown in Figures 3.3a and 3.3b. If kR decreases, the flux through the ribosomes and hence
the growth rate decrease. This is counteracted by an increase in φR so φT and φE decrease.

8This means that φT decreases less than what would keep the total flux constant, because the total flux
through the transporter must increase just like the total flux through the other enzymes.
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Figure 3.2: Plots describing the optimal state of the system for various nutrient qualities kT,
leading to varying growth rate. (a) Amount of transporter (cyan), enzymatic (purple), and
ribosomal (yellow) proteins as a fraction of the total—the empiric linear relations are referred
to as the growth laws. (b) The growth rate as a function of the transporter efficiency kT,
following Monod’s law. Shown in blue are the values of kT for which kR was also varied (see
Figure 3.3). (c) Concentrations of the metabolic intermediates as a function of the growth
rate. The metabolite concentrations are scaled to the Michaelis constants of the reaction
that produces them. The red points denote the dimensionless catabolite concentration c,
the green points the dimensionless amino acid concentration a. (d) Fraction of the proteins
that are in the active state, being the fractions σ

1+σ+βcc
for T, c

1+c+βaa
for E, and a

1+a for
R, using the now familiar colour coding for variables belonging to the T, E, and R proteins.
Fit parameters for (a) and (b) are tabulated in appendix A.
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Figure 3.3: Descriptions of the optimal state for five values of kT, and varying kR with
fitted straight lines. Amount of (a) ribosomal and (b) transporter protein. Lowering kR

corresponds to the /in vivo/ addition of antibiotics inhibiting the ribosome activity. This
leads to an increased R fraction and a decreased T fraction. In the limit where kR = 0 (the
ribosomes are fully inhibited), the cell consists of ribosomal protein only.

3.3 Growth control coefficients

We will now quantify the effect that the number of proteins of different types has on the
growth rate. We want to know what properties of the metabolic network influence growth,
and how strongly. This is especially important when we study the impact that noise has on
the growth rate, as we will explain in section 3.4. We will do this by developing the concept
of growth control coefficients.

We were inspired by metabolic control theory, which introduces the so-called flux con-
trol coefficients[35]. They are defined as the logarithmic derivatives of the flux through a
metabolic network with respect to the enzyme concentrations, so the flux control coefficient
with respect to a protein with concentration [Xi] is given by

CJi =
[Xi]

J

∂J

∂[Xi]

Now we do not use the concentrations of proteins explicitly. Rather, we have developed
the theory in terms of protein fractions, because we have taken the size of the cell to be
identical to the total number of proteins. This means that an upshift in one concentration
will decrease all other concentrations, and taking the partial derivative with respect to
each particular concentration would require careful thought about the constraint (2.14). In
addition to this, we choose to use the intensive variable µ over the extensive variable J (see
section (2.2)).

Because of these issues, we have decided to develop a new framework. In analogy to the
flux control coefficents, we define the growth control coefficients as the logaritmic derivative
of the growth rate with respect to total protein copy number:

CµX =
X

µ

∂µ

∂X
(3.1)

is the growth control coefficient of protein X.
We will use the growth control coefficients (sometimes called GCCs for short) to quantify

how limiting each enzyme is. We can see that CµX is positive if and only if ∂µ
∂X > 0. In other

words, when the GCC of protein X is positive, we would increase the growth rate when
increasing the copy number of X. Therefore, we say that X is limiting growth in this case.
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In the opposite case, when CµX < 0, the growth rate would decrease when we would increase
X. This means that there is a surplus of X when its growth control coefficient is negative.

We now want to apply this concept to the optimally growing state, and see which enzymes
limit the growth rate the most under varying circumstances. We will first develop a sum-
mation theorem similar to what has been done for the flux control coefficients CJ . We will
then calculate the growth control coefficient CµQ of the non-metabolic housekeeping protein,
and finally the growth control coefficients CµX for the metabolic enzymes X ∈ {T,E,R}.

Let us first consider a metabolic system with n enzymes X1, . . . , Xn and growth rate
µ. If we were to increase all copy numbers by the same amount, the growth rate would
not change. (Recall that µ is an intensive quantity.) In other words, scaling the amount of
enzyme with a scale factor α does not change the growth rate9:

µ(α ~X) = µ( ~X) (3.2)

Differentiating both sides with respect to α, using the chain rule, and evaluating the expres-
sion in α = 1, gives the equality

n∑
i=1

Xi
∂µ

∂Xi
= 0

Using definition (3.1) of the growth control coefficients gives

n∑
i=1

CµXi
= 0

or, in slightly different notation, ∑
X

CµX = 0 (3.3)

In words: the growth control coefficients must add up to zero.
In our system, the protein sector Q does not contribute to the metabolism. This means

that the expression of Q proteins is a burden to the cell, as its production takes up metabolic
resources without any return. However, we assume that cells cannot survive in the long run
without these housekeeping proteins. In our model, the fact that Q functions as a load will
mean that its growth control coefficient is negative: the cell would grow faster, at least in
the short run, if it could express less Q proteins.

Because the housekeeping proteins do not contribute to the metabolism, the amino acid
concentration a does not depend on Q, as was already apparent in section (2.1). We can
nevertheless compute the growth control coefficient of Q:

CµQ =
Q

µ

∂µ

∂Q

=
Q

µ

∂

∂Q

(
kRφR

a(T,E,R)

1 + a(T,E,R)

)
=

Q

µ

∂

∂Q

(
kR

R

T + E +R+Q

a(T,E,R)

1 + a(T,E,R)

)
= −Q

µ

1

(T + E +R+Q)2

(
kRR

a(T,E,R)

1 + a(T,E,R)

)
= −Q

µ

µ

T + E +R+Q

CµQ = −φQ (3.4)

9The total flux will change linearly with α: J(α ~X) = αJ( ~X). This is used in a similar way as equa-
tion (3.2) in the text to derive

∑
X C

J
X = 1.
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So surprisingly, the growth control coefficient of the non-metabolic protein is simply equal
to minus the fraction of the proteome allocated to it. Given the summation rule (3.3), this
means for the enzymes X that do feature in metabolism,∑

X6=Q

CµX = φQ (3.5)

This is all we can say in general. We will now consider the growth control coefficients of
the metabolic enzymes X ∈ {T,E,R} in the optimal state for a given cell size. When the
cell grows optimally, i.e., µ(T,E,R) is maximised, it is not possible to increase any copy
number without decreasing the growth rate. This is because an increase in the copy number
of one enzyme will decrease the concentrations of all other enzymes. It means that

∂µ

∂T
=
∂µ

∂E
=
∂µ

∂R
= K (3.6)

for some constant K independent of T , E, and R. To see that this is so, suppose that, for
example, ∂µ

∂T > ∂µ
∂E . Then a cell with an infinitesimal amount of extra T and less E would

have a higher growth rate than this one, which contradicts the assumption that the growth
rate was maximised. It follows that all derivatives must be equal. Now we have

CµX =
X

µ

∂µ

∂X
=
X

µ
K (3.7)

for all proteins X ∈ {T,E,R}. Using equation (3.5) we obtain

φQ =
T + E +R

µ
K (3.8)

We can substitute equation (3.8) back into equation (3.7) to arrive at

CµX =
φQX

T + E +R

=
φQ

1− φQ
φX (3.9)

In conclusion, in the situation where protein resources are allocated optimally, the growth
control coefficient of a metabolic enzyme is proportional to its concentration.

This is a general result. Relation (3.9) holds independent of the specific model of meta-
bolism. But it is also very specific, because it only holds in the optimum. Any amount of
noise will perturb the system such that it no longer holds.

We have already seen that the protein abundances φX are linearly related to the growth
rate. Using these growth laws together with equation (3.9), we see that the growth control
coefficients will also depend linearly on the growth rate.

3.4 Noise transmission and growth control coefficients
The general intuition concerning biological noise is, that its importance stems from the
fact that copy numbers are small. After all, small copy numbers usually result in a large
coefficient of variation (the standard deviation divided by the mean). One may be tempted
to conclude from this that the proteins that are the least abundant are the most important
for the noise properties.

However, the copy number of a certain protein does not necessarily have any implications
for the survival of a cell. Properties that do influence the fitness, such as the growth rate,
depend on the properties and abundances of many proteins in often large networks. The
noise in these properties depends not only on the noise in the copy numbers, but also on
the transmission coefficients. For the case of growth rate, these transmission coefficients are
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the growth control coefficients CµX. As we have seen in the previous section, they depend on
the copy number of the proteins. This means that the noise in the growth rate will depend
nonlinearly on the copy numbers of the network proteins.

As a simplified model, consider the deviation ∆µ = µ− µ̄ of the growth rate µ from its
optimum µ̄. Suppose that the growth rate depends linearly on the amounts X1, . . . , Xn of
some proteins X1, . . . ,Xn that are considered as independent random variables:

µ =
∑
i

∂µ

∂Xi
Xi

We write σ2
i for the variance of the distribution that describes the copy number Xi. If the

protein abundances are independent, the variance σ2
µ of the distribution of ∆µ is given by

σ2
µ =

∑
i

(
∂µ

∂Xi

)2

σ2
i =

∑
i

(
µ

Xi
Cµi

)2

σ2
i

We can rewrite this in terms of the coefficients of variation (the standard deviations divided
by the means). These are quantities that describe the amount of noise relative to the
quantity that is noisy: (

σµ
µ

)2

=
∑
i

(Cµi )
2

(
σi
Xi

)2

≡
∑
i

(Vi→µ)
2

In the optimum and at low concentrations, Cµi ∼ Xi. Furthermore, the coefficient of vari-
ation of a quantity that is produced in a Poisson-like process decreases with its size as the
square root10: σi

Xi
∼ X−1/2

i . Therefore, Vi→µ ∼ Xi.
It follows that the most abundant proteins have the largest effect on the noise in the

growth rate, even though the noise in their concentrations may be relatively small.

10When proteins are produced in exponentially distributed bursts, their abundance is Gamma
distributed[36] and has standard deviation σi =

√
bXi with b the burst size.
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4 Stochasticity in optimally fixed system
In the previous section, we have discussed the optimised system. The first extension to this
is including noise. I therefore performed the simulations described in chapter 2 with one
exception: I left gene regulation (section 2.5) out for the moment. I kept the production
rates of the enzymes fixed at the optimal rate, computed in section 3.1. This approach
enables us to begin analysing the effects of growth and noise on each other.

Recall that, at low growth rates, the cells can be very small. This means that cell division
(see section 2.3) is a significant source of cell-to-cell variability due to the binomial partition.
In fact, when the number of proteins of a single type in the mother cell is very small, it is
possible that one daughter cell inherits no copies at all. This means the cell cannot grow,
so that the simulation aborts. Because of this, it was not possible to simulate at very low
growth rates, which is at very low kT. I only simulated for kT > 1.5.

4.1 Growth laws
The introduction of noise keeps intact the linear dependence of the proteome fractions on
the growth rate (see Figure 4.1a). Moreover, the dependence of growth rate on transporter
efficiency kT still follows a Monod law (see Figure 4.1b).

Although the general trends seen in the optimum are still valid, there are some slight
differences between the growth and Monod laws in the optimal system and those in the
simulated system with fixed optimal rates. Firstly, the linear fits of the ribosome and
enzyme fraction show a slight offset: φE(0) > 0 andφR(0) > 0. Secondly, the maximum
growth rate, as seen both in the intersection of φT(µ) with the horizontal axis in Figure 4.1a
and in the asymptote of the Monod law in Figure 4.1b, is somewhat smaller in the simulated
system as compared with the optimal system. Thirdly, the Monod constant K is smaller.

The fact that the growth rate is smaller in the simulation than in the optimised state
is straightforwardly explained. Because the simulation includes noise in the production of
proteins, the fractional abundances will fluctuate over time (even though the rates in the
stochastic process of protein production are constant). This means that the system will
spend most of its time some distance away from the optimum, which necessarily means that
the growth rate is lower. This effect is stronger at smaller growth rate, because then the cell
is smaller. A smaller cell means that the relative size of the fluctuations is larger, so that
the effect of decreasing the growth rate is larger. This explains the larger Monod constant.

We can see the effect of fluctuations on the metabolism clearly in Figure 4.1c. Recall
that, in the optimised system, the metabolite concentrations increased monotonically with
the growth rate. In contrast, in the fixed-rate system we see that the average metabolite
concentrations become very large at low growth rates in the fixed-rate simulations. Recall
that the ratio of concentrations where the metabolic intermediates function as substrates
for the next reaction and where they function as inhibitors for the previous reaction, βc and
βa, were taken to be 0.1. Because the (dimensionless) metabolite concentrations are larger
than β−1

c,a = 10 over the whole range of simulations, product inhibition is important in all
cases. This is seen in Figure 4.1d, showing that the enzyme activities are clearly repressed
in the noisy system as compared to Figure 3.2d.

The departure from the optimum is clearly seen in the average growth control coefficients,
plotted in Figure 4.2a. As we demonstrated in section 3.3, the GCCs should follow the
growth laws if the system is always at the state that optimises growth. This is clearly not
the case in the noisy simulations. The most notable difference is, that the average of CµT is
much smaller than the optimum of CµT =

φQ

1−φQ
φT for all but the very highest growth rates,

and even becomes negative at very slow growth. Because
∑

X C
µ
X = 0 (Equation 3.3) and

CµQ = −φQ (Equation 3.4) must still hold, the average CµE and CµR are much larger than
their optimal values.

However, the growth control coefficients are very sensitive measures of optimality. As
shown in Figures 4.2b, 4.2c, and 4.2d, they are either very large or quite small (negative)
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when the system is not close to the optimum. In other words, the system is limited by
one component if it is far from the optimal growth rate. This has the effect of making the
distributions of the growth control coefficients in the noisy simulation highly skewed and
possibly bimodal, as plotted in Figures 4.2e and 4.2f.

From these considerations it is clear that the system where the proteins are produced
stochastically, but with the production rates fixed at the optimum, finds itself far from the
optimum most of the time.
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Figure 4.1: Plots describing the state of the simulated system at varying nutrient quality
kT, where for each value of kT all protein production rates were held fixed at the optimum.
(a)–(d) as in Figure 3.2. (a) Comparing the growth laws in the simulated system with
fixed production rates with the optimised system, we observe two differences. Firstly, the
simulated transporter fraction departs somewhat from the fit at low and high growth rate,
although the points at intermediate growth rates still follow a straight line. Secondly, the
fits to φR and φE show a small offset in the limit of zero growth. (b) At low to intermediate
values of kT, the growth rate is suppressed compared to the optimised system. (c) The
average metabolite concentrations at low growth rates are very high, the values for a at
kT ≤ 2.6 were even omitted from the figure. (d) Keeping the production rates results in
suppressed activities of transporters at low growth rates. Fit parameters for (a) and (b) are
tabulated in appendix A.
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Figure 4.2: (a) Growth control coefficients Cµ of the four protein types as a function of
growth rate µ, upon variation of kT. The straight lines are the optimal values of Cµ,
given the growth laws of Figure 3.2a and equation 3.9. (b)-(d) Plots of the growth control
coefficients (b) CµT, (c) C

µ
E, (d) C

µ
R, as a function of cell composition, at kT = 10. In the

red areas, the respective control coefficient is large, so the corresponding enzyme is highly
limiting, while in the blue areas, the control coefficient is small, so the corresponding enzyme
is overabundant. The transition between these two conditions is sharp. (e)-(f) Histograms
of CµT for (e) kT = 1.5, (f) kT = 64, with the optimal value denoted as a green line and the
average value as a red line. The system spends most of its time away from the optimum,
with CµT either below or above the optimal value. The bimodality disappears for increasing
growth rate, when the optimal T-fraction approaches zero.
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4.2 Distributions of variables
We can now investigate the distribution of variables in the same manner as we did for the
growth control coefficients. We will focus on the growth rate and the protein fractions. We
will discuss how the distributions compare at low, medium and high growth rate.

We will start with the general features of the distributions. For this we focus on medium
growth rate, which results from transporter efficiency kT = 10. The histogram of the growth
rate probability density function is plotted in Figure 4.3a At first sight, it looks reasonably
like a Gaussian, but remarkably, it is possible to grow faster than the "optimal" growth rate.
This is odd, because it would appear that the cell has no way of growing faster than the
optimum by definition. However, this reasoning assumes that all other parameters remain
constant. In particular, it assumes that the proteome fraction of the housekeeping proteins
φQ remains fixed. This is not the case: for the Q proteins as well as the metabolic ones, the
rate of production is fixed, but their abundance fluctuates due to the stochastic production.
A downward fluctuation of φQ causes a growth rate greater than "optimal".

Of course, φQ is not the only quantity that fluctuates; the other protein fractions do so
too. Their distributions are plotted in Figures 4.3b, 4.3c, and 4.3d. Any fluctuation in these
protein fractions (while φQ remains constant) has the effect of decreasing the growth rate
from the optimum. As explained further in the next section (4.3), this means that the mode
of the growth rate distribution lies below the optimal growth rate. At this intermediate
transporter efficiency, the average protein abundances agree very well with their optimal
values.

We will now discuss the effects on the distributions when the growth rate varies (because
of varying transporter efficiency), starting with the case of low average growth rate (when
kT = 1.5). The distributions of growth rate and fractional protein abundances are plotted
in Figure 4.4. We see here that the growth rate distribution has a large tail to the left,
meaning that growth is especially hindered by fluctuations when the growth rate is already
small. The following observation explains this: a small growth rate means that proteins are
produced at a smaller rate. But the only way of "escaping" from a state of slow growth, is
producing (the right kind of) proteins. Because all production rates are small, the cell gets
trapped in a state of slow growth. This is more apparent when the average growth rate is
small, because then the relative fluctuations in the growth rate are larger.

It appears also that the average φT is somewhat larger than the optimum, while the
average φE and φR are equal to their respective optimal values. The key here is again
in the asymmetry: the distributions of φE and φR are skewed to the right, which means
that most of the time, there are fewer enzymes and ribosomes present than what would be
optimal. That means that there should be more transporters. The skewness arises because
the average copy numbers are as small as a few times the burst size.

For completeness, the distributions at high growth rate (kT = 64) are plotted in Fig-
ure 4.5. The general trends already seen at intermediate growth rate are confirmed. If
anything, the average abundances are even closer to their optimal values. This is because
the relative size of the fluctuations is smaller, as the copy numbers are much bigger. Even
though the fractional abundance of transporters is about equal at kT = 64 to the fractional
abundance of enzymes and ribosomes at kT = 1.5, the former’s distribution is not noticeably
skewed, unlike the latter two. This is also because the total copy number is still quite large,
due to the size of the cell being much greater at high growth rates.
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Figure 4.3: Histograms of (a) growth rate, (b) T fraction, (c) E fraction, (d) R fraction, for
kT = 10 with the optimal value indicated by a green line and the average value by a red
line. Note that the histogram of the growth rate in (a) is slightly skewed to the left, that
the most frequent value is about equal to the average but smaller than the optimum, and
that faster than "optimal" growth is possible due to fluctuations in φQ.
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Figure 4.4: Histograms of (a) growth rate, (b) T fraction, (c) E fraction, (d) R fraction, for
kT = 1.5 with the optimal value indicated by a green line and the average value by a red
line. (a) The growth rate histogram is very much skewed. When the growth rate is small,
the system runs at a slower pace. It therefore takes a long time to exit a state of low growth
rate, which increases the frequency of such states. (b) The growth control coefficient of
transporter proteins, CµT, should be relatively large at low nutrient quality and hence slow
down growth. However, we have seen in Figure 4.2e that CµT is usually negative for kT = 1.5.
This means that adding more T molecules usually slows down growth. When slow-growing
states are more abundant, the result is that states with higher φT occur more frequently.
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Figure 4.5: Histograms of (a) growth rate, (b) T fraction, (c) E fraction, (d) R fraction, for
kT = 64 with the optimal value indicated by a green line and the average value by a red
line.

31



4.3 Dimensionality of noise
As we have seen, the mode of the growth rate distribution is smaller than the optimal
value. We will now present a simplified model of noisy protein expression that explains this,
even without a housekeeping sector. It will appear that the number of different sources of
fluctuations (which we call dimensionality) is important.

Consider the growth rate µ as a function of n independent random variables X1, . . . , Xn

(interpreted as the copy numbers of n proteins that constititute the metabolic network re-
sponsible for growth). Suppose that the Xi’s are normally distributed. In the vicinity of the
optimum, we can approximate µ by a second-order Taylor expansion. In this approximation,
the growth rate depends quadratically on the distance to the optimum in each variable Xi.

Now µ is a random variable too. In fact, it is equal to the optimal growth rate µ̃ minus
a sum of independent squares of n normal variables. This means that, by definition, µ̃− µ
is distributed according to a chi-squared distribution with n degrees of freedom. This is
equivalent to saying that µ is distributed according to a Gamma distribution with shape
k = n

2 . The distribution of µ therefore diverges at µ = µ̃ for n = 1, it has mode equal to the
optimum for n = 2 when it is simply exponentially distributed, and the mode of µ is smaller
than µ̃ for n > 2. In the large-n limit, the distribution approaches a normal distribution
according to the central limit theorem.

4.4 Crosscorrelations
We can now study the effects that noise in the protein abundances and noise in the growth
rate have on eachother. We will compute the crosscorrelations Xφ−µ of these quantities,
defined as

Xφ−µ(∆t) =

´
dt
(
φ(t)− φ̃

)(
µ(t+ ∆t)− µ̃

)
σφσµ

where φ̃, µ̃ denote the averages and σφ, σµ the standard deviations of φ, µ respectively.
They are plotted in Figure 4.6.

The only process that can negate fluctuations is dilution, as a result of the growth in cell
size. This means that the typical time scale of the crosscorrelations in the system without
regulation is the time associated with growth, i.e. the division time. The crosscorrelations
indeed decay on this time scale.

For small growth rates, the crosscorrelation of the transporter fraction and growth rate
is negative. In other words, expression of transporters above the mean inhibits growth.
This agrees with the negative average values for the growth control coefficients found in the
low-growth case (Figure 4.2a).
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Figure 4.6: Crosscorrelations of the proteome fractions of (a) transporters φT, (b) ribosomes
φR, and (c) enzymes φE, with the growth rate µ. The crosscorrelation at time ∆t is the
correlation of φX(t) and µ(t+ ∆t) for all times t. The plots show the crosscorrelations at all
values of kT that were simulated, ranging from kT = 1.5 in purple, through blue, kT = 10
in green, and yellow, to kT = 128 in red. The time, on the horizontal axis, was scaled for
each condition to the average division time (the total time taken for the entire simulation,
which ran for 1000 cell cycles, divided by 1000).
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5 Regulated system
In this section we will analyse the system in full simulations. The production rates of the
proteins will be determined by the regulation as described in section 2.5. In these simula-
tions, the protein composition again determines the concentrations of metabolic intermedi-
ates. These concentrations in turn determine the rate of protein production. We will first
describe how we choose the regulation functions so as to regulate the system close to the
optimal state. We will see that this regulation is able to reproduce the growth laws. The
regulation is sensitive to small variations in the regulation functions and unable to optimise
the system exactly. We will also see that the regulation reduces the effects of noise. The
trade-off between a non-optimal average state and less time spent very far away from the
optimum is decided in favour of the latter—the regulated system grows faster than the non-
regulated, fixed-rate system. We will end this section with discussing the noise properties
of the system, by way of the crosscorrelations.

5.1 Choosing regulation functions optimally
As we have seen in section 2.1, all variables, namely T , E, R, c, and a, vary monotonically
with the growth rate µ. This means they also vary monotonically among themselves. As
we are interested in determining fT(c) and fR(a), we can use the fact that a(µ) and c(µ)
are monotonic to write the regulation functions in terms of µ, instead of in terms of a and
c. Likewise, the growth laws allow us to write φT(µ), φE(µ), and φR(µ). In the regulatory
steady state, a and c do not change and FX = φX (see section 2.5). This allows us to write
equations (2.23), (2.24), and (2.25) as

φT(µ) = (1− φQ)
fT(µ)

fT(µ) + 1 + fR(µ)

φE(µ) = (1− φQ)
1

fT(µ) + 1 + fR(µ)

φR(µ) = (1− φQ)
fR(µ)

fT(µ) + 1 + fR(µ)
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Figure 5.1: Fits of the regulation functions used in determining the productions of (a)
transporters given catabolite concentration, (b) ribosomes given amino acid concentration.
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We can now write fT and fR in terms of the proteome fractions φT, φE, and φR for each
value of µ:

fT = φT

1 + φR

1−φQ−φR

1− φQ − φT − φTφR

1−φQ−φR

fR = φR

1 + φT

1−φQ−φT

1− φQ − φR − φRφT

1−φQ−φT

In these expressions, we can use the values of φT, φE, and φR that we found in the optimal
state for a range of different conditions kT. This gives us the values of fT and fR in these
states too. We can then plot the pairs (c, fT) and (a, fR), as in Figure 5.1. This allows us
to fit regulation functions fT(c) and fR(a) as we described in section 2.5.

5.2 Growth laws
Straight lines are still good fits for the proteome fractions as functions of the growth rate, as
seen in Figure 5.2a. We can see that the offsets, φE(0) and φR(0), are a bit more pronounced
than they already were in the fixed-rate system. The maximal growth rate is higher than in
the noisy system without regulation, as evidenced by both the intercept of φT = 0 and the
asymptote of the Monod law in Figure 5.2b.

As plotted in Figure 5.2c, the metabolic intermediates are present in higher concentra-
tions than in the optimised system, but at small growth rate they are far lower than in the
unregulated system. The amino acid concentrations are high enough to inhibit the enzyme
that produces them at all growth rates. Because a is high, the ribosome is more saturated
as well. Both effects are apparent in Figure 5.2d.

This also translates to the GCCs (see Figure 5.2e): CµE is smaller than its optimal value,
while CµR is larger (so the ribosomes are more and the enzymes are less limiting than they
would be in the optimal situation). It is clear from this picture, that the regulated system
grows more robustly than the non-regulated system, because the growth control coefficients
are all positive and show the same trends for changing growth rate as in the optimal state.

5.3 Simplex plots
We will use the triangular plots to analyse the differences between the proteome constitutions
in the optimal, fixed-rate and regulated systems. The plots are in Figure 5.3.

We can see that the average composition of the fixed-rate and the optimal system are
very much alike, and only show an asymmetry at high φT. This happens at low kT, so at
low growth rate, when the cell is at its smallest and stochasticity is at its most important.
The effect of noise is asymmetric in such a way that the system find itself, on average, with
more transporters and less enzymes than it would have optimally.

The same effect is seen at low kT for the regulated system. However, the plot in Fig-
ure 5.3b also shows that the composition of the regulated system is always slightly different
from the optimal system, even though we tried to regulate the system such that the optimal
state would arise in steady state. This suggests that the system is sensitive to the precise
details of regulation.
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Figure 5.2: Plots describing the state of the simulated system at varying nutrient quality kT.
The production rates were regulated following the regulation functions fitted in section 5.1.
(a)–(d) as in Figures 3.2 and 4.1. (e) growth control coefficients as in Figure 4.2a. (a)
The fits to φR and φE show offsets in the limit of zero growth that are larger than in the
non-regulated system. (b) The growth rate as a function of transporter efficiency follows
the same Monod law in the regulated simulations as in the optimised state. (c) The average
metabolite concentrations in the regulated simulation are only slightly larger than in the
optimum. (d) The fractions of active transporters enzymes are lower in the regulated system
compared to the optimum, while the ribosomes are more saturated. All of the fractions
show a smooth, monotonous dependence on growth rate. (e) The GCCs of the metabolic
proteins almost all positive throughout the range of conditions. The average GCCs do
not follow the optimal values well, but the trend is the same in both the regulated and
the optimised system: transporters become less limiting while the enzymes and especially
ribosomes become more limiting with increasing growth rate. Fit parameters for (a) and
(b) are tabulated in appendix A.
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Figure 5.3: Plots showing the composition of the cell with varying kT, as in Figure 3.1b.
Both plots show the optimal state in green, compared with (a) the fixed-rate system in red,
(b) the regulated system in blue.

5.4 Distributions of variables

The fact that the regulation places the system not quite at the optimal state is also reflected
in the distributions of growth rate and cellular composition, plotted for medium, small, and
large growth rate in Figures 5.5, 5.4, and 5.6.

In general, the regulation narrows the distributions. This means that the system spends
more time in fast-growing states near the optimum. However, because the regulation is not
perfect, the modes of the distributions of the protein abundances are somewhat different
from the optimum. The net effect is still an increase in the average growth rate compared
to the fixed-rate system. We observe that there is a trade-off between regulation and noise:
tight regulation means less time spent in states that are very far from the optimum, but
if the regulation is itself too far from the optimum, the average growth rate may decrease.
What this analysis does not take into account, is the cost of maintaining the regulation by
expressing more regulatory proteins. This was analysed in more detail in[37].

There are three more observations to be made from the distributions of abundances.
Firstly, although all distributions of proteome fractions are more narrow than in the fixed-
rate system, this is lesss so for the distribution of φE. This can be easily explained: the
production of the enzymes, unlike that of the other two metabolic proteins, is not directly
regulated.

Secondly, the production of enzymes at kT = 1.5 (slow growth) is about as skewed in
the regulated system as in the fixed-rate system. However, in the regulated system very low
expression of enzymes never occurs. This is due to the shape of the function that determines
the production rate of enzymes: rE ∼ 1

1+fT+fR
. The constant numerator means that it is

hard to regulate the enzyme expression to become very low.
Finally, it appears that the distribution of φT is narrowed more by regulation in con-

ditions of fast growth, and the distribution of φR is narrowed more in conditions of slow
growth. We can explain this by the fact that the main cause of fluctuations is the stochasti-
city in the expression of the housekeeping sector, because FQ is always taken to be constant.
In other words, the Q protein production is unregulated. In the case of, for example, an
upward fluctuation in φQ, all other proteins will be expressed at a lower fraction. However,
when the proteome fraction of a metabolic protein is smaller, its fractional abundance will
be decreased less by this effect. In conditions of fast growth, φT is small and its stochasticity
will be mainly determined by fluctuations in its own production. These fluctuations are sup-
pressed by regulation. Likewise, in conditions of slow growth, φR is small so its fluctuations
are suppressed more by regulation in this case.
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Figure 5.4: Histograms of (a) growth rate, (b) T fraction, (c) E fraction, (d) R fraction, for
kT = 10 with the optimal value denoted as a green line and the average value as a red line.
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Figure 5.5: Histograms of (a) growth rate, (b) T fraction, (c) E fraction, (d) R fraction, for
kT = 1.5 with the optimal value denoted as a green line and the average value as a red line.
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Figure 5.6: Histograms of (a) growth rate, (b) T fraction, (c) E fraction, (d) R fraction, for
kT = 64 with the optimal value denoted as a green line and the average value as a red line.
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5.5 Crosscorrelations

We will now finally turn our attention to the effects that stochasticity and gene regulation
have on each other. We will first compare the timescales of fluctuations in the fixed-rate
and in the regulated system. We will then discuss the production rate versus growth rate,
and proteome fraction versus growth rate crosscorrelations.

The timescale of fluctuations can be quantified by the autocorrelation function, which is
essentially the crosscorrelation function of a quantity with itself. For example,

Aµ(∆t) = Xµ−µ(∆t) =

´
dt
(
µ(t)− µ̃

)(
µ(t+ ∆t)− µ̃

)
σ2
µ

is the autocorrelation function of µ. The autocorrelation function typically decays exponen-
tially with time. The time scale over which the decay takes place is called the autocorrelation
time τ. We have computed Aµ and Aφ for the different simulations that we have run and
fitted exponential functions to them to obtain the autocorrelation times in Figure 5.7.

We can use this analysis to compare the system with fixed production rates to the sys-
tem with regulated production rates. Firstly, the typical time scale in which fluctuations are
diluted away is precisely that: the time scale of dilution, that is the doubling time. In the
unregulated case, the autocorrelation time of the growth rate is smaller than that of the pro-
tein abundances. This occurs because the growth rate is a function of the three abundances.
The growth rate will decorrelate whenever the first of the three abundances decorrelates.
This will happen earlier than whenever the first of only one abundance decorrelates, which
corresponds to the autocorrelation time of the abundances.

Furthermore, it is clear that the autocorrelation times of the three proteome fractions
are smaller in the regulated system than in the fixed-rate system. This is the effect of
regulation: if a perturbation in one proteome fraction occurs, the system will perceive
this disturbance and change its production rates accordingly. In the case of, for example,
an upfluctuation in the abundance of transporters, the rate of transporter production will
decrease and the other rates will increase. This restores the balance more quickly than when
the production rates would have been kept constant. Curiously, the autocorrelation time of
the growth rate appears to be relatively constant throughout growth conditions and even
between the two differently coordinated systems. We may speculate that this means that the
fluctuations in the growth rate are highly influenced by the fluctuations in the abundance
of the housekeeping sector. This makes sense, because the housekeeping proteins make up
about half of the entire cell.

Additionally, we see in the regulated system that the autocorrelation times of φTand φR

show clear, and opposite, trends with varying growth rate. The autocorrelation time of φT

decreases with growth rate while the autocorrelation time of φR increases with growth rate.
In addition to the autocorrelation times, we have also calculated the crosscorrelation

between the proteome fractions and the growth rate for the regulated system, just as we did
in Section 4.4 for the fixed-rate system. We show the results in Figure 5.8. The corrrelations
(the crosscorrelations at zero lag ∆t) paint the same picture as the analysis on the growth
control coefficients. At small growth rate (blue), caused by low transporter efficiency kT,
the concentration (fractional abundance) of transporters is at its most limiting. This means
that the φT − µ correlation is large. With increasing growth rate, the φT − µ correlation
decreases, indicating a shift in limitation away from the transporters. In fact, the limitation
shifts to the ribosomes, because these show the opposite trend.

The φT − µ crosscorrelation is especially interesting, because it was measured in [13].
Our transporter protein corresponds to the catabolic protein fraction, which is represented
by the lac enzymes in the experiments. The experiments also see a decrease in the φT − µ
crosscorrelation at zero lag upon increasing growth. In addition, they find a peak at negative
lag ∆t for high growth rates, when the φT − µ crosscorrelation at zero lag is almost zero.
Our model is not able to reproduce this.
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Figure 5.7: Autocorrelation times of growth rate µ and proteome fractions φT, φE, and φR

for varying kT in the case of (a) fixed production rates (see chapter 4), and (b) regulated
production rates. The autocorrelation times τ are plotted in units of the average cell cycle
time, in the same way as the crosscorrelation functions from Figure 4.6. Values for τ were
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Figure 5.8: Crosscorrelations of the proteome fractions of (a) transporters φT, (b) ribosomes
φR, and (c) enzymes φE, with the growth rate µ, as in Figure 4.6.
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In addition to the crosscorrelation of proteome fractions with growth rate, we are able
to compute the crosscorrelation of production rates with growth rate as well, because the
production rates are no longer fixed. The results of this are plotted in Figure 5.9. The
production rates are here

pX = rXφR
a

1 + a

This is the total production rate of protein X per unit of volume, including the regulated
rate rX, the concentration of ribosomes φR and the degree of saturation of the ribosomes by
the amino acids a

1+a . We want to analyse this combined quantity, because pT was measured
in [13].

The crosscorrelation of pT and µ in our model shows two features. Firstly, it decreases
with increasing growth rate, just like the crosscorrelation of φT and µ. It also appears that
the time scale (rescaled to the division time) at which the crosscorrelation decays becomes
smaller when the growth rate increases. This is exciting, because the same phenomenon
is visible in the experimental data. The data also show that the pT − µ crosscorrelation
is skewed to positive lag ∆t for small growth rate, and that the skewness decreases with
increasing growth rate. The presence or absence of this effect in our model cannot be clearly
determined from our simulation data, because the signal is too weak.

The crosscorrelations of pE and pR with µ have not been measured, but we can of
course compute them anyway. They both look very similar and their magnitudes strongly
increase with growth rate. It appears that they are dominated by the φR-contribution to the
productions pE and pR. However, in conditions causing slow growth, there is an additional
time scale visible in the crosscorrelations. They show a clear peak at small negative ∆t.
This means that, on average, an upward fluctuation in production of enzymes and ribosomes
follows an upward fluctuation in the growth rate.

We cannot explain this effect, but we can speculate on the existence of an additional
timescale. The effect occurs in cells that grow slowly, and are therefore quite small. In
addition, enzymes and ribosomes occur in small copy numbers. These two considerations
mean that a cell will produce only a handful of bursts of E (and R) proteins per cell cycle.
One burst of E (or R) production will therefore have a large effect on the fractional abundance
of E (or R), whereas one burst of T production will have only a small effect—it takes many
bursts of T to even out the fluctuation caused by the one burst of E (or R). The time scale
of the negation of one burst is therefore large at slow growth, and invisible at fast growth
when compared to the cell cycle time.
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Figure 5.9: Crosscorrelations of the production rates pX = rXφX
a

1+a of (a) transporters φT,
(b) ribosomes φR, and (c) enzymes φE, with the growth rate µ, plotted in a similar way as
Figures 4.6 and 5.8.
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6 Discussion

In this final section of my thesis, I will first describe the main results of our research. I will
finish by mentioning several ways in which I think my work could be continued.

As we have seen in chapter 3, our minimal metabolic model reproduces the growth
laws when its constitution maximises the growth rate for a given parameter set, even when
stochasticity is introduced in the system. Moreover, we have implemented a simple model
for regulation that still keeps the linear relationships between the average expression and
growth rate intact. Interestingly, introducing stochasticity and regulation in the system
creates small offsets in the growth laws.

We have introduced the growth control coefficients as a measure to quantify the coupling
from protein abundance to growth rate. They describe by how much proteins are limiting
growth. They also function as transmission coefficients for the propagation of fluctuations in
protein copy numbers to fluctuations in growth rate. We have seen that the growth control
coefficients are proportional to the fractional abundance of their respective proteins in the
growth-maximised state. This means that stochasticity in the growth rate is mainly caused
by stochasticity in the copy numbers of frequently occurring proteins.

The growth control coefficients are sensitive to perturbations away from the optimal
state. In the unregulated, fixed-rate experiment we have seen that the GCCs were far from
proportional to the fractional abundances, while in the regulated experiment they were
closer to their optimal values. This indicates that regulation is able to keep the system
from going far away from its optimum. This was verified by the distributions of protein
copy numbers: these were considerably narrower in the regulated simulations than in the
fixed-rate simulations.

In the regulated system, the average protein composition was suboptimal. However, the
average growth rate was larger than in the unregulated system. Therefore the narrowing of
the copy number distributions was more important than the suboptimal regulation.

We have also seen that the timescale of fluctuations is of the order of the cell cycle
time. The timescale of fluctuations in gene copy numbers dropped when regulation was
introduced to the system. Additionally, in the regulated system, the autocorrelation time
of the transporter protein concentration decreases with increasing growth rate, while that
of the ribosomal protein concentration increases.

The crosscorrelation functions of protein abundances versus growth rate show a gradual
shift in limitation from transporters to ribosomes when the growth rate increases. Also,
the time scale of the transporter production versus growth rate crosscorrelation decreases.
These two results from our simulations agree with experiments. In addition to this, at slow
growth we observe an additional peak in the crosscorrelations of the enzyme and ribosome
production versus growth rate.

I will now discuss some limitations of our model, and suggest improvements and topics
for further research. Firstly, we have used only four proteins in total, to describe four sectors
of proteins. An obvious way to extend the model would be to increase the number of proteins
in order to include additional protein sectors, and investigate the effect of additional ways of
limitation. For instance, it may be worthwile to separate the catabolic sector into multiple
parts, such that one of them may be controlled in the same way as IPTG concentrations
control the lac protein expression in the experiments.

Another way of extending the proteome would be to include more details on the regu-
lation of ribosomal proteins. This would likely prompt us to distinguish transcription and
translation, so as to include the effects of rRNA regulation.

Furthermore, fluctuations in the housekeeping fraction remain large, because they are
unregulated. It should be interesting to investigate possible mechanisms of Q-sector regula-
tion.

A problem of our model is the following: because we use so few enzymes, the cell size
is artificially small. This means that fluctuations in the total protein number, due to direct
stochasticity in the protein copy numbers, are relatively large compared to actual cells. We
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would expect that stochasticity in the size of real cells is dominated by long-time stochasticity
in the regulation of the production rates rather than stochasticity in the copy numbers. This
may be solved by relaxing the requirement that the cell size is equal to the total protein
number. However, additional regulation is required to ensure that fluctuations in the average
density remain small.

On a related note, in our model fluctuations in one enzyme have a strong effect on the
concentrations (proteome fractions) of the other proteins, due to the effect of dilution. This
important feature led us to develop the growth control coefficients in terms of the total
abundances. When the cell contains many different proteins that all occur in low copy
numbers, the concentrations are a good measure of the amounts of proteins present. In that
case, the flux control coefficients may be sufficient.

A different limitation of our analysis is, that our simulations gathered data on lineages of
bacteria. Our analysis is not directly applicable to experimental data on populations, where
faster growing cells are selected for and therefore occur more frequently. In other words,
the time average over a single lineage differs from the ensemble average over a population
of cells. It is possible to correct for this by selecting daughter cells carefully at the time of
cell division.

In summary, the modelling approach that I presented in this thesis is able to describe both
intracellular stochasticity and culture-level regularities reasonably accurately, even though
it glosses over many specific details. Coarse-grained modelling in the spirit of this thesis is
a valuable tool to furthen our understanding of complex networks, and I believe that it can
be used to study stochasticity in biological cells in more detail.
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A Fit parameters

Table A.1: Fit parameters with uncertainties for the linear fits that determine the growth
laws, in the form φX(µ) = φX,0 + αXµ .

system protein X φX,0 αX

optimal (Figure 3.2a)
T 0.4334± 0.0024 −0.1722± 0.0016
E 0.0120± 0.0016 0.0691± 0.0011
R 0.0046± 0.0008 0.1031± 0.0005

fixed rates (Figure 4.1a)
T 0.418± 0.004 −0.172± 0.003
E 0.0266± 0.0015 0.0643± 0.0010
R 0.0174± 0.0011 0.1017± 0.0008

regulated (Figure 5.2a)
T 0.415± 0.004 −0.1660± 0.0024
E 0.0345± 0.0012 0.0616± 0.0008
R 0.0145± 0.0003 0.09654± 0.00019

Table A.2: Fit parameters with uncertainties for the fits to the Monod curves, in the form
µ = µmax

kT
K+kT

.

system µmax (h−1) K (h−1)

optimal (Figure 3.2b) 2.480± 0.011 6.90± 0.10
fixed rates (Figure 4.1b) 2.439± 0.008 8.15± 0.08
regulated (Figure 5.2b) 2.414± 0.013 6.96± 0.12
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