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The scepter of power is fragile in a calloused hand.

— Cho-Arrim saying





A B S T R A C T

Inflation has become a basic paradigm of modern physical cosmol-
ogy. One of the most widely used description of such an accelerating
expanding universe is that of the de Sitter space (dS). We explicitly
derive the exact form of the dS isometries by considering an embed-
ding in a higher dimensional Minkowski spacetime; these are spatial
translations and rotations and spacetime dilations and boosts. For
the boost in particular, we obtain its finite form, while in the litera-
ture we could find only its infinitesimal form. We then proceed to
consider these same isometries in the context of quasi-de Sitter space
via the slow roll formalism, where the dilations and boosts are bro-
ken. Furthermore, we discuss some insights these isometries provide,
such as the dS/CFT duality and the consistency relation for inflaton
correlators, which can be applied even outside of dS.
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I N T R O D U C T I O N





1
P R E FA C E

Exactly one hundred years ago, Albert Einstein published his renowned
theory of general relativity. Spacetime, which for Newton was noth-
ing more than a fixed background in which the laws of physics played
out their roles, became itself an actor. The metric of spacetime—the
object determining distances between any two points—was no longer
a God-given entity assumed a priori, but a dynamical field whose
evolution is described by the famous Einstein field equation. Just as
the evolution of matter is tied to the spacetime it inhabits, so too is
the evolution of spacetime intertwined with the matter it contains.

General relativity remains, to this day, our best theory of gravity,
with what we experience as the gravitational force being nothing
more than the interplay between matter and spacetime. But general
relativity can do far more than simply explaining why apples fall or
why the Earth goes around the Sun.

Cosmology takes the idea of a dynamical spacetime and runs it to
its logical conclusion to study the beginnings, development and end
of the entire universe. By assuming the universe to be filled homoge-
neously with ordinary matter and electromagnetic radiation, we can
determine its entire evolution.

Problem is, matter and radiation cannot handle the task. This is
because these common substances lead to our usual understanding
of gravity being attractive. Any clump of matter or radiation spread
across the universe will tend to collapse in on itself. So spacetime
would either be contracting or in decelerated expansion. We currently
measure our universe to be expanding, but if it is decelerating and has
always been so, that introduces two major concerns in cosmology.

First, the flatness problem. Supernova surveys set the universe’s spa-
tial curvature to zero, within 0.4% [3]. This corresponds to the density
of the universe being close to a certain critical value. If our universe
has always been decelerating, then it was expanding much faster in
the past, in particular in the primordial past. The initial density back
then must have been phenomenally close to the critical one. There
are no known physical processes that would enforce that, other than
sheer coincidence.

The second major issue is called the horizon problem. We assumed
the universe is homogeneous at large scales, because we observe that
to be the case. For instance, the universe is permeatted by a form of
electromagnetic radiation called the cosmic microwave background
(CMB). Pick a random point in the sky and average the frequency of
CMB photons coming from that point, then do the same for the point

3



4 preface

on the opposite side on the sky. You will observe the two frequencies
differ by no more than 1 part in 105 [4]. However, if the universe
was indeed expanding faster in the past, these two points do not
know of each other’s existence right now. That is, if the first point
had emitted a signal at the beginning of the universe, it would still
not have arrived at the other even today. The two points have no
way of knowing each other’s CMB frequency, unless the universe was
conveniently created homogeneously everywhere or faster-than-light
communication is possible.

The hypothesis known as cosmological inflation solves both these is-
sues, as well as others. The crux of the idea is to flip the situation
on its head: rather than a decelerating universe, an accelerating one.
In particular, we suppose that in the primordial era, just right after
the universe’s beginning, the cosmos underwent this accelerated ex-
pansion then later transitioned to ordinary matter and radiation ex-
pansion. Inflation would then consist of an extremely quick and in-
creasingly quicker expansion period in the past. The flatness problem
is then solved, because this procedure flattens the universe whatever
the initial curvature may be. The horizon problem is equally fixed as
everything we can currently see in the sky—the so-called observable
patch—all occupied a very small region of space which had plenty of
time to homogenize. It was then violently inflated into a vast region
of the universe.

There is, of course, one catch: In an accelerated universe, gravity
must somehow become repulsive, rather than attractive. This is not
forbidden by general relativity, but it cannot be accomplished using
simple matter or radiation. The secret identity of the so-called infla-
ton, the field responsible for such a feat, remains unknown. Candi-
dates include the renowned Higgs boson [5] or supersymmetric par-
ticles [6]. Perhaps more importantly, inflation has to end. While we
do observe our universe to be presently accelerating, that is due to
an unrelated dark energy. After inflation, the universe transitioned to
the ordinary, decelerating matter-and-radiation evolution.

Not knowing the inflaton’s nature does not tie our hands. We sim-
ply need an effective theory for the inflaton which displays all its
known characteristics and symmetries in the regime we are consid-
ering. Then it does not matter if this theory is not fundamental and
breaks down during, say, the very early beginning of the universe, as
we will not study that period.

More than that, we can observe the consequecences of inflation to-
day. The inflaton, like any field, is a quantum field, meaning that, even
in its lowest energy state, the field fluctuates. This is in opposition to
classical fields, whose lowest energy state are still and quiet. These
primordial fluctuations at the early beginning of the universe, which
were microscopic in origin, were then forcefully inflated to cosmo-
logical sizes. This leads to the slight deviation from homogeneity we
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see in the CMB and the matter distribution of the universe. In other
words, inflation seeds the inhomogeneities of the universe at large
scales we observe today. Thus, current cosmological observations in-
directly probe the inflaton.

The goal of this thesis is to study the role spacetime symmetries
(isometries) had on these primordial fluctuations during inflation.
The reason for the focus on isometries are three. First, observations
of the CMB and other cosmological sources have certain properties
which correspond to the symmetries of a particular type of inflating
universe, the de Sitter space.

Second, symmetries lead to insight into the basic observable quanti-
ties in a quantum field theory, the correlators. They indicate the prob-
ability of any particle process to happen. Symmetries can be used to
enforce certain forms on the correlators, even if we cannot calculate
them. Furthermore, even when symmetries are broken, it is still possi-
ble to use this breaking to relate different correlators in certain limits.
This is called a consistency relation.

Third, a focus on symmetries highlights an important duality be-
tween gravitational theories living in a given spacetime and gauge
field theories on the boundary of said spacetime. In cosmology, the
relevant spacetime is once again de Sitter space, whereas the bound-
ary field theory is conformal, meaning the theory is the same even
if you zoom in or out. This duality is called the dS/CFT correspon-
dence [7]. Its more famous cousin is the AdS/CFT correspondence,
where de Sitter space is replaced by another space, the anti-de Sitter
space [8]. AdS/CFT has been formidably successful as a dictionary,
allowing conformal field theories to be converted into gravitational
string theories and vice-versa, translating correlators that would be
intractable in one language into the other where they can be com-
puted with minor effort. While the dS/CFT duality still has a long
way to go, future research in this area seems promising.

This thesis starts with exposition of background material in dif-
ferential geometry, cosmology, quantum field theory and inflation,
which is needed for understanding the ideas proposed here. It is then
divided into two main parts. First, we will discuss the symmetries of
the de Sitter spacetime. In particular, de Sitter space has one symme-
try which is not evident, the boost. We will derive a closed form for
this boost, as we could not find its expression in the literature. The
second part consists of moving to quasi-de Sitter. We explore the sym-
metries of de Sitter in this context where they are slightly broken. We
then discuss how these results could be used for deriving consistency
relations in further work.





2
B A C K G R O U N D

2.1 differential geometry

2.1.1 Manifolds, charts and distances

There are also
additional
considerations to
make sure the
manifold is smooth
and doesn’t intersect
itself but we will
ignore these
technicalities.

The basic entity differential geometry deals with are manifolds M of
dimension n, which are nothing more than sets of "points." These
points are abstract objects; they could be actual points in spacetime,
matrices, gauge group elements, etc. For us to actually be able to
manipulate them, we need to describe them with numbers. Therefore,
each manifoldM must also be equipped with a chart X, a map:

X :M → Rn (2.1)

P → x (2.2)

.
The chart is simply a function that given a point P as input returns

a tuple X(P) = x = (x1, ..., xn) of numerical values. In other words, it
is a coordinate system and each xµ is one of the coordinates. A simple
example is the Mercator chart, which maps each point on the surface
of the Earth (except the poles) to two coordinates on a rectangular
plane.

Manifolds may also be endowed with a metric map G which, given
two points A and B on the manifold, returns the distance squared
||AB||2 between them:

G :M×M → R (2.3)

(A, B) → ||AB||2 (2.4)

Once again, without actual numerical values, we cannot employ the
metric to perform any sort of calculation, as G, A and B are abstract
entities if left as they are. By inverting the chart we can obtain a point
given its numerical coordinates x: Charts in reality

may not cover the
whole manifold
when inverting,
which is why we
require an atlas, a
collection of charts
that together cover it
in its entirety. For
simplicity, we will
work only with
global charts that
require no atlas.

X−1 : Rn → M (2.5)

x → P (2.6)

7



8 background

So if A and B have coordinates x and y respectively in a certain
chart X, we have:

||AB||2 = G
(

X−1(x) , X−1(y)
)
= S(x, y) (2.7)

Suppose now we move the tuple y very close to x, i.e., y = x + dx.
We can then expand S(x, y) to second order:

S(x, x+ dx) = S(x, x)+ dxµ ∂S(x, y)
∂yµ

∣∣∣
y=x

+ dxµdxν ∂2S(x, y)
∂yν∂yµ

∣∣∣
y=x

(2.8)

Notice that x is a tuple of n entries, so whenever we take a deriva-
tive with respect to x, we are really taking a derivative with respect
to each entry. We remind the reader that repeated indices imply sum-
mation, i.e., aµbµ = ∑ aµbµ.

We will always impose that the first derivative ∂S(x,y)
∂yµ

∣∣∣
y=x

should

vanish. This is obvious from a spatial analogy: The distance between
two points is minimal when the two points coincide. Spacetime dis-
tances, however, can be negative. Typically in physics, the Hessian
∂2S(x,y)
∂yν∂yµ

∣∣∣
y=x

= gµν(x) has determinant −1, so together with the con-

dition of vanishing first derivative this implies that, when two space-
time points coincide, the distance between them is an inflection, not
minimum, point. In any case, we can call gµν(x) the coordinates of
the metric in the coordinate chart we are using, and the infinitesimal
squared distance interval S(x, x + dx)− S(x, x) = ds2(x). Thus we get
one of the most important equations in differential geometry:

ds2(x) = gµν(x)dxµdxν (2.9)

2.1.2 Coordinate changes

We know that a given manifold M can be described in different co-
ordinates frames. For instance, flat space can be described with rect-
angular or polar coordinates. This should correspond to the existence
of multiple different charts forM which is hardly a surprising fact.

If in addition to the chart X we add a new one to our manifold, say
U:

U :M → Rn (2.10)

P → x (2.11)

Then we can construct a transition map, namely the composition
f = U ◦ X−1:

f : Rn → Rn (2.12)

x → y (2.13)
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Figure 2.1: An example of a coordinate change. Two charts of the globe are
the equirectangular (left) and the Peirce quincuncial (right). It is
possible to map one to the other (except the poles) via a conve-
nient function. Derivative work of [1, 2].

The function f is a coordinate change. It uses the inverse chart X−1

to map the coordinates of a point back onto the manifold, then applies
U to obtain the coordinates of the very same point in a new system
of coordinates.

The function gµν(x) was for the coordinate chart X. How will it
change in the chart U? We are not remapping or transforming the
manifold so the actual metric map G does not change at all. Thus
distances cannot change under a coordinate change. Furthermore, the
chain rule dictates that:

duµ =
∂uµ

∂xρ
(x) dxρ = Jµ

ρ (x) dxρ (2.14)

dxµ =
∂xµ

∂uρ
(u) duρ = [J−1(u)]µρ duρ (2.15)

where J is the Jacobian of the coordinate change and can be calcu-
lated from u = f (x). Then the invariance of ds2 implies:

ds2 = gµν(x)dxµdxν = gρσ(x) [J−1(u)]ρµ[J−1(u)]σν duµduν (2.16)

ds2 = g̃µν(u)duµduν (2.17)

where g̃ is the new metric in the new coordinate chart. Then we
can see that:

g̃µν(u) = [J−1(x)]ρµ [J−1(x)]σν gρσ(x) (2.18)

A change of coordinates is also called a passive transformation,
because we do not actually change the manifold, simply our point of
view.
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2.1.3 Isometric transformations

We may also imagine transformations that act directly on the mani-
fold to remap it:

T :M → M (2.19)

P → Q (2.20)

If the manifold transforms into something else, so will its metric G.
The new one will be given by G ◦ T. But suppose we have

G ◦ T = G (2.21)

Then the transformation T actually leaves the metric unchanged;
i.e., it preserves distances between points. It is called an isometry. This
is all very well and good, but G and T are abstract maps. How does
this all work in terms of coordinates?

Just like before, suppose we have a chart X. But there won’t be
another chart U, because we do not wish to change coordinates. In-
stead, we use X−1 to obtain a point given its coordinates, transform
the point according to T then use the very same chart X to return
to our coordinate system. This will thus give rise to a function h =

X ◦ T ◦ X−1:

h : Rn → Rn (2.22)

x → y (2.23)

which represents how the coordinates of the point will change un-
der the transformation. This is not a change of coordinates—we are
still in the same chart X but in a new, altered manifold. Because of
this, we call it an active transformation.

Using Equation 2.9, we can represent distances concretely using
coordinates. Thus to check if h (and by extension, T) is an isome-
try, we must transform x → h(x). This is an active transformation
in the same coordinate system, so the metric transforms actively as
gµν(x)→ gµν(h(x)), not passively as described by Equation 2.18.

x → h(x) (2.24)

dxµ → Jµ
ρ (x)dxρ (2.25)

ds2 = gµν(x)dxµdxν → gµν(h(x))Jµ
ρ (x)Jν

σ(x)dxρdxσ (2.26)

→ (ds2)′ (2.27)

An isometry is then ds2 = (ds2)′, which gives:

gµν(x) = Jρ
µ(x)Jσ

ν (x) gρσ(h(x)) (2.28)

[J−1(x)]ρµ [J−1(x)]σν gµν(x) = gρσ(h(x)) (2.29)



2.1 differential geometry 11

But wait. The LHS is exactly what we would get after a change
of coordinates x̃ = h(x) as dictated by Equation 2.18. Therefore, an
isometry of the metric is equivalent to a change of coordinates that
satisfies:

g̃µν(x̃) = gµν(x̃) (2.30)

This means that under this coordinate change, the form of the met-
ric is unchanged; we transform it to this new chart simply by replac-
ing x with x̃.

To recap, any map h of the coordinates can be used passively to
produce a new coordinate chart or actively to produce a new mani-
fold. If, when used passively in a coordinate change, the form of the
metric does not change, then the corresponding active transformation
is an isometry.

Figure 2.2: An example of an isometry. Charting the globe via the equirect-
angular projection, shifting the coordinates horizontally then pro-
jecting back onto the globe with the inverse chart is equivalent
to simply rotating the planet, which leaves distances invariant.
Derivative work of [1, 2].

As an example, consider the following 2D metric in a certain coor-
dinate chart:

ds2 =
dτ2 − dχ2

τ2 (2.31)

or, in other words, gµν(τ, χ) = 1
τ2 ηµν. Then under a space transla-

tion χ → χ + a we have dχ → dχ and the distance ds2 is invariant.
More specifically, gµν(τ, χ) → gµν(τ, χ) and the Jacobian for transla-
tions is just the identity so, by Equation 2.28, it is an isometry. In fact,
whenever the metric does not depend on a variable, a translation of
said variable will be an isometry. We say this isometry is manifest.
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Figure 2.3: An example of a non-isometric transformation. As before, we
chart the globe with the equirectangular projection, but now we
shear it. Inverting back onto the globe results in a planet with
warped distances. Derivative work of [1].

There is another isometry in Equation 2.31, namely the dilation
(τ, χ) → (Λτ, Λχ). This one is not manifest, but it is still fairly
straightforward to see it is indeed an isometry. However, there is yet
a third isometry lurking there. This one is hidden and not obvious at
all. We will return to in Section 3.2.3.

2.1.4 Conformal transformations

There is one final class of spacetime transformations that beckons our
attention. If isometries are maps that preserve distances, conformal
transformations are those which preserve angles. As before, consider
a manifold map T with the coordinate representation h. Under the
change of coordinates x̃ = h(x), we relax Equation 2.30; a simple
rescaling is sufficient rather than exact equality:

g̃µν(x̃) = Ω(x̃)gµν(x̃) (2.32)

If the above holds, then h is a conformal change of coordinates and
the corresponding active transformation T is a conformal transforma-
tion. It should go without saying that all isometric transformations
are also conformal.

We will be specially interested in the conformal transformations
of flat Euclidean space. It should come as no surprise that rotations,
translations and the dilation (rescaling of space) preserve shapes and
are thus conformal. Euclidean space also has one additional con-
formal transformation, called the special conformal transformation
(SCT). Geometrically, the SCT is an inversion ~x → 1

~x = ~x
|~x|2 , then a
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Figure 2.4: The Peirce quincuncial chart (left) is a conformal coordinate sys-
tem of the globe—it locally preserves shapes. The equirectangu-
lar chart (right) is not, with the distortion being evident close to
the poles. Derivative work of [1, 2].

translation by some vector ~b, followed by a final inversion. In short,
the SCT is:

~x → 1
~x
→ 1

~x
+~b→ 1

1
~x +~b

(2.33)

With proper simplification this reduces to:

~x → ~x +~bx2

1 + 2~b ·~x + b2x2
(2.34)

2.2 cosmology

2.2.1 Friedmann equation

We set the speed of
light c = 1 from
now on.

A formal derivation of the Friedmann equation requires working with
the machinery of general relativity. Fortunately, the same result can
be derived within the framework of Newtonian physics, and we shall
do so for accessibility.

Newtonian physics is ill-suited for a dynamical space, but suppose
we have a 3D solid ball living in an otherwise empty 3D flat space. If
the sphere has a time-dependent radius R(t) and a constant mass M,
we can evolve via Newton’s laws. We can then associate the ball with
the universe itself. It is important to understand that the empty space
outside the ball has no physical relevance and is merely an artifact
of the description—in fact, it is absent in general relativity, as we can
evolve space itself without the need of a static ambient. A test particle by

definition is one
whose back-reaction,
that is, its
gravitational effect
on the sphere, is
negligible.

Now put a test particle of mass m on the surface of the ball. It will
experience a Newtonian gravitational force:

F = −GMm
R(t)2 (2.35)
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Using Newton’s second law, we obtain:

F = mR̈(t) (2.36)

=⇒ R̈(t) = − GM
R(t)2 (2.37)

R̈(t)Ṙ(t) = − GM
R(t)2 Ṙ(t) (2.38)∫

dt R̈(t)Ṙ(t) = −
∫

dt
GM

R(t)2 Ṙ(t) (2.39)

1
2

Ṙ(t)2 =
GM
R(t)

+ E (2.40)

where we have called the constant of integration E. Essentially, this
equation describes conservation of energy, with K = 1

2 Ṙ(t) being the
kinetic energy of space, U = − GM

R(t) the potential energy, and E =

K + U the total energy energy of space, which might not be zero.
The mass of the ball is constant, so if its radius changes, so too does

its density:

M =
4π

3
ρ(t)R(t) (2.41)

where we have assumed that the sphere is homogeneous, i.e., the
density ρ doesn’t depend on space. Similarly, by assuming the sphere
is isotropic—it looks the same even after a rotation—we may write:

R(t) = a(t)r (2.42)

where r is constant. Here we have introduced perhaps the most
important quantity in cosmology, the scale factor a(t). To say the uni-
verse expands is to say a increases. If the scale factor doubles in size,
then all distances are doubled. Thus complete knowledge of the scaleAssuming no other

forces. If the scale
factor doubles,

distances inside
tightly bound

systems–the atoms
in your body, the
planets in a star

system, the stars in
a galaxy–will not

change.

factor fully determines the universe—at least the ideal homogeneous
and isotropic universe, without silly impurities such as galaxies and
people.

Inserting Equations 2.41 and 2.42 into 2.40, we get:

1
2

r2 ȧ(t)2 =
4πGr3a(t)3ρ(t)

3ra(t)
+ E (2.43)(

ȧ(t)
a(t)

)2

=
8πG

3
ρ(t) +

2E
r2a2(t)

(2.44)

Equation 2.44 is strictly identical to the Friedmann equation one ob-
tains using general relativity, as long as we understand the following:

• The mass density ρ(t) should replaced by an energy density ε(t).

• The intrinsic distance r is the radius of curvature of space (not
spacetime).
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• The intrinsic energy E is given by −k/2, where k is the sign of
the curvature of space (for example, -1 for a hyperboloid, 0 for
a flat space, and +1 for a sphere).

• We add a cosmological constant term Λ/3. This term has no
Newtonian counterpart but is permissible by general relativity.

The quantity ȧ(t)
a(t) is in fact so important we give a name to it—the

Hubble parameter H(t).
With these considerations in mind, the Friedmann equation is:

H2 =
8πG

3
ε(t) +

Λ
3
− k

r2a2 (2.45)

As we have said, in this universe, any spatial distance d~x scales over
time as a(t)d~x though time intervals dt do not. From this it follows
that the spacetime interval should be:

ds2 = dt2 − a(t)2dΣ~x2 (2.46)

where dΣ~x is a three-dimensional metric for a spatial surface of
constant curvature. If the universe is flat (k = 0) then dΣ~x2 = d~x2 =

dx2
1 + dx2

2 + dx2
3.

However, we could consider a different set of coordinates where
time intervals do scale with time. The so-called conformal time τ is
constructed simply by setting dt = adτ. Then:

ds2 = a(τ)2(dτ2 − dΣ~x2) (2.47)

2.2.2 Fluid equation

The Friedmann equation cannot be solved as is, because knowledge
of ε(t) is lacking. But, once again using the ball of radius R(t) = a(t)r,
we notice that any small heat flow from or into the ball to the ambient
space is:

q = dE + PdV (2.48)

This is simply the first law of thermodynamics. But q = 0; the am-
bient space has no physical meaning and thus heat cannot leak into
it. In other words, the expansion of the universe must be adiabatic.
Then it follows that:

Ė + PV̇ = 0 (2.49)

But we know the volume of the ball:

V =
4π

3
r3a3 =⇒ V̇ = 3V

ȧ
a
= 3VH (2.50)
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Component w

Radiation (relativistic) 1/3

Matter (non-relativistic) 0

Dark energy any <-1/3

Vacuum -1

Table 2.1: Examples of the most commonly cited components of the cosmo-
logical fluid and their corresponding state parameter w.

And obviously the total energy can be given in terms of the energy
density and the volume:

E = εV =⇒ Ė = V ε̇ + εV̇ = V(ε̇ + 3εH) (2.51)

Thus giving the cosmological fluid equation:

ε̇ + 3H(ε + P) = 0 (2.52)
A negative pressure

is equivalent to a
positive tension.

In general, P and ε are related via some equation of state P = wε

where w is usually constant. Values of w for common fluid compo-
nents are given in Table 2.1. Knowledge of the equation of state allows
us to solve the fluid and Friedmann equations together to obtain the
scale factor of the universe. Note that, from Equation 2.52, if P = −ε,
then ε must be a constant—possibly zero, but not necessarily so. This
is the equation of state of the vacuum, of space devoid of any fluid.

2.3 quantum field theory

We set Planck’s
constant h̄ = 1 from

now on.
All the fluids mentioned in the previous section, whether photons or
dark energy, should be described by fields, functions associating one
or more values to each point x = (t,~x) of spacetime. For simplicity,
we consider only scalar fields φ(x), which associate a single numerical
value. A field theory is specified once we construct an action S[φ]. In
the same way the field φ(x) returns a value to each possible point
in spacetime, the action S[φ] returns a value to each possible field
configuration φ(x) in the space of field configurations:

S[φ] =
∫

d4x
√
−det gL(φ(x)) (2.53)

where the Lagrangian L is some function defining the physics
of the theory. Recall from calculus that under a change of coordi-In general relativity,

det g < 0, so a
minus sign is needed

under the root.

nates with Jacobian J, we have d4x → det J d4x, while from Equa-
tion 2.18, det g → det(J−1)2 det g; thus, d4x

√
−det g → d4x

√
−det g.

This means that the action will have the same mathematical form in
whatever coordinates it is written on, if the Lagrangian also has this
property.
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Classically, there is only one configuration in which φ(x) is allowed
to exist, the one for which δS

δφ = 0; this corresponds to the usual La-
grange equations of classical physics. Quantum mechanically, this is
not the case. The field has the right to exist in a quantum superpo-
sition of all possible and conceivable field configurations, with the
caveat that not all configurations are equally likely. Rather, each is
weighted by the amplitude eiS[φ]. Thus the path integral is born:

Z =
∫
Dφ eiS[φ] (2.54)

where
∫
Dφ should be informally understood as a sum over all

field configurations.
Correlators form the basic observables in any quantum field theory,

as they showcase how the values of the fields at different points are
related. For instance, the two-point correlator 〈φ(x)φ(y)〉 is the ampli-
tude for a certain perturbation in the field, i.e., a particle, to propagate
from x to y and is thus connected to the mass of the particle. The cor-
relator, or n-point function, is defined as:

〈φ(x1)φ(x2)...φ(xn)〉 =
∫
Dφ φ(x1)φ(x2)...φ(xn) eiS[φ] (2.55)

2.3.1 Field transformations

Consider a field φ(x) and suppose we perform a transformation of
spacetime consisting of a simple translation: x → x + εa. Then:

φ(x)→ φ(x)′ = φ(x + εa) (2.56)
We use the notation
∂µ = ∂

∂xµ .If ε is infinitesimally small, we expand φ(x+ εa) = φ(x)+ εaµ∂µφ(x).
The infinitesimal variation of the field φ under this transformation
therefore is:

δεφ = φ′ − φ = εµaµ∂µφ (2.57)

We notice we can write δεφ = εa · ∂φ. In general, for any transfor-
mation, its generator G is defined as the linear operator that produces
the infinitesimal variation of the field under this transformation:

δεφ = εGφ (2.58)

In this case, the generator for a translation in the a direction is thus
a · P = aµ∂µ.

Field transformations do not need to be solely spacetime transfor-
mations, though. It is perfectly permissible to mix different fields to-
gether, as is the case of gauge transformations or supersymmetry. If
some function f (such as a correlator) is symmetric under the trans-
formation, we should have δε f = εG f = 0. As a simple example,
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consider a two-point function and let us find its variation under a
symmetry of the field:

δε〈φ(x)φ(y)〉 = 0 (2.59)

〈 (δεφ(x))φ(y) 〉+ 〈 φ(x)(δεφ(y)) 〉 = 0 (2.60)

ε [〈G(x)φ(x)φ(y) 〉+ 〈 φ(x)G(y)φ(y) 〉] = 0 (2.61)

[(G(x) + G(y)] 〈φ(x)φ(y)〉 = 0 (2.62)

where the generator G(x) acts only on φ(x) and similarly for G(y).
In short, for an n-point correlator, the sum of each individual gen-
erator acting on each individual field must annihilate the correlator.
As the generators are typically differential operators, this provides
us with a differential equation that enforces a certain shape on the
correlator, only from the symmetries of the field, without doing any
quantum field theory proper.

Let us once again consider the example of translations. If the fields
are invariant under them, our two-point function should satisfy:

φ(x)φ(y)〉 = F(x, y) (2.63)

and
[
a · Px + a · Py

]
〈φ(x)φ(y)〉 = 0 (2.64)

=⇒
[
a · Px + a · Py

]
F(x, y) = 0 (2.65)

aµ

[
∂F
∂xµ

+
∂F
∂yµ

]
= 0 (2.66)

∂F
∂xµ

= − ∂F
∂yµ

(2.67)

with solution F(x, y) = F(x − y). In other words, the two-point
function can only depend on the vector connecting the two points,
not on the points themselves. If we were to now repeat this proce-
dure with rotational symmetry, we would’ve seen that F(x − y) =

F(|x − y|), i.e., it depends only on the distance between the points.
While we would need to actually calculate the path integral to obtain
the expression for F, symmetries allows us to quickly ascertain what
form correlators should have, even when the path integral cannot be
performed.

In general, any isometry of spacetime will be a symmetry of the
field if the field’s vacuum state (i.e., with no particles present) is in-
variant under that isometry. This is not a trivial assumption, as the
phenomenon of spontaneous symmetry breaking by a non-symmetric
vacuum state is not at all uncommon in field theory

There is one final concept regarding transformations we will make
use of, that of an integral curve. The generators produce infinitesi-
mal transformations, but what about the finite transformations? We
can imagine performing an infinite number of infinitesimal transfor-
mations. If a parameter λ describes "for how long" we perform this
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procedure, then φ(t,~x)(λ) is a collection of different field configura-
tions φ(t,~x), one for each λ describing the "amount" of transforma-
tion. Then we have that:

d
dλ

φ(λ) = δεφ = εGφ (2.68)

This is called an integral curve because we are essentially integrat-
ing the generator by solving the differential equation above.

2.4 inflation

We now have the machinery in place to describe cosmic inflation. The
players of the game will be the dynamical metric gµν and a scalar field
φ called the inflaton, which is coupled to gravity.

2.4.1 Slow-roll background

Let us assume that the metric takes the form of a Friedmann met-
ric like Equation 2.46, but the evolution of the scale factor a(t) re-
mains unknown. Let us focus only on the background evolution of
φ, thought to be a homogeneous perfect fluid. But the energy density
and pressure of a fluid with a potential V are known:

ε(t) =
1
2

φ̇(t) + V(φ) (2.69)

P(t) =
1
2

φ̇(t)−V(φ) (2.70)

so the equation of state is P = −ε + φ̇. It is almost the equation of
state of the vacuum, P = −ε. In any case, plugging this energy and
pressure into the fluid Equation 2.1 yields:

φ̈ + 3Hφ̇ + V ′(φ) = 0 (2.71)

where we have used d
dt V(φ) = dφ

dt
∂

∂φ V(φ) = φ̇V ′(φ). Together with
the Friedmann Equation 2.44:

H2 =
8πG

3

(
1
2

φ̇ + V(φ)

)
(2.72)

it will determine a(t). Notice that the inflaton φ is the only one
playing a role in the dynamics of the metric; we are treating the con-
tributions by the cosmological constant or any curvature as negligi-
ble. The slow-roll approximation consists of neglecting φ̈ compared
to V ′(φ) in the fluid Equation 2.71 and φ̇ to V(φ) in the Friedmann
Equation 2.72. These conditions are equivalent to saying that:∣∣∣∣V ′(φ)V(φ)

∣∣∣∣� 1
∣∣∣∣V ′′(φ)V(φ)

∣∣∣∣� 1 (2.73)
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from where the name "slow roll" comes from: The field slowly rolls
down the potential. If this holds, the fluid and Friedmann equations
simplify to:

φ̇ = −V ′(φ)
3H

(2.74)

H2 =
8πG

3
V(φ) (2.75)

But the time derivative of Equation 2.75 is 2ḢH = 8πG
3 φ̇V ′(φ) and

using Equation 2.74 to eliminate φ̇ results in:

Ḣ = −4πG
9H2 [V

′(φ)]2 (2.76)

Ḣ
H2 = −4πG

9H4 [V
′(φ)]2 (2.77)

Now we use Equation 2.75 once again to fully eliminate H4 from
the RHS:

Ḣ
H2 = − 1

16πG

[
V ′(φ)
V(φ)

]2

= −ε (2.78)

where ε is the slow roll parameter. Thus, one of the conditions for
slow-roll inflation is that ε� 1.

Knowledge of ε—which depends uniquely on the inflaton poten-
tial—fixes the background dynamics of the expanding spacetime. For
example, suppose ε = 0. Then Ḣ = 0. So we have:

d
dt

(
ȧ
a

)
= 0 (2.79)

äa− ȧ2

a2 = 0 (2.80)

äa− ȧ2 = 0 (2.81)

=⇒ a = a0eHt (2.82)

where we have ignored the collapsing e−Ht solution. Then using
dt = adτ, we get τ = − 1

H e−Ht and can put the metric in the conformal
form described by Equation 2.47:

ds2 =
dτ2 − d~χ2

(Hτ)2 (2.83)

which we have already seen before; it is the metric of Equation 2.31

with three dimensions of space.
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2.4.2 Primordial fluctuations

The solution discussed in Section 2.4.1 is only for the background of
the inflaton. In reality, the full inflaton takes the form:

φ(τ,~χ) = φ0(τ) + π(τ,~χ) (2.84)

where φ0 is the background and π a perturbation. This is neces-
sary because the universe is not, in fact, perfectly homogeneous. As
such, the Friedmann metric will no longer work. However, at low am-
plitudes of π, we may employ the perturbed Friedmann metric. The
procedure is highly technical but the metric we will consider takes
the form [9]:

ds2 = a(τ)2
(

dτ2 + e−2Hπ(~χ)d~χ2
)

(2.85)

For those familiar
with the curvature
perturbation ζ, we
have ζ ≈ −Hπ

[10].

in the limit of τ → 0. In this limit, it is known π(τ,~χ) freezes out,
that is, stops evolving in time and becomes a function of space only.

The objective then is to calculate correlators of the inflaton perturba-
tions, such as 〈π(~χ1)π(~χ2)〉. For three-point functions, this was first
done in [11] using the in-in formalism. There is also hope that we
might use a dS/CFT duality to relate gravitational string theories in
de Sitter space (the space of the metric of Equation 2.83) with con-
formal field theories on the τ → 0 boundary (see Section 4.2). This
has been greatly successful with the AdS/CFT correspondence. Un-
fortunately, no solutions to string theory are known in de Sitter space,
which limits this method for the time being.

As a final remark, the practical reader might be interested in know-
ing how to relate the calculation of inflaton correlators to an actual
measurement. One of the best source of experimental data in cos-
mology is the cosmic microwave background (CMB), a sea of low- Think of the CMB

temperature in a
certain region as
associated with the
average energy of
the photons in it.

frequency photons that permeates the entirety of space. The CMB is
extremely homogeneous, but not perfectly so. At any given point ~χ
in the sky, we associate a temperature contrast [T(~χ)− T̄]/T̄ where
T(~χ) is the measured temperature and T̄ the average temperature of
the entire sky. Working in spherical coordinates (θ, ϕ), we can expand
the contrast in terms of spherical harmonics, to work with the linearly
independent modes a`m:

T(θ, ϕ)− T̄
T̄

=
+∞

∑
`=0

+`

∑
m=−`

a`mY`m(θ, ϕ) (2.86)

where the functions Y`m are known.
Intuitively, the multipole ` reflects the scale of the a`m component,

with small ` being large scale features, and m the orientation of these
features.

We can define the CMB power spectrum as the average:
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C` =
1

2`+ 1

+`

∑
m=−`

|a`m| (2.87)

Very little information is lost by averaging over m because the CMB
is isotropic, i.e., it looks the same in all directions. In momentum
space, we can denote the two-point correlator 〈π(~k1)π(~k2)〉 = P(k)
due to translational and rotational symmeties (recall Section 2.3.1).
The function P(k) is called the power spectrum of the primordial fluc-
tuations. Then we can relate C` to P(k) via the following convolution
[12]:

C` =
2
π

∫
k2dk P(k)∆`(k)2 (2.88)

where the so-called transfer function ∆(k) is typically found numer-
ically. Now it is a simple matter of deconvolving the above expression
to obtain the primordial power spectrum P(k) directly from C`. This
gives the powerful conclusion that quantum fluctuations of the early
universe seed the statistical fluctuations of the CMB we observe today.
Thus, to look at the CMB is to indirectly look at the inflaton.

If C` contains all the information you need to recreate the sky we ob-
serve, we say it is Gaussian. If that is not the case, it is non-Gaussian.
The search for non-Gaussianities remains one of the most important
goals of observational cosmology, because if they exist they will relate
to higher inflaton correlators such as 〈πππ〉. This would shed further
light into the type of interactions the inflaton undergoes, which is cru-
cial knowledge if we wish to one day discern its fundamental nature.



Part II

D E S I T T E R

We will derive the finite isometries of de Sitter space in the
so-called flat slicing coordinates, showing explicitly how
they are inherited from the isometries of Minkowski space.
This part starts with a 2D de Sitter space embedded in a
3D Minkowski space; we then extend the procedure to the
full 4D de Sitter.





3
I S O M E T R I E S O F 2 D D S

3.1 global coordinates

We denote Minkowski space in three dimensions as M3 and the three
corresponding coordinates by (x, y, z) where z is timelike; the metric
signature is (−−+). Then the two-dimensional de Sitter space is a
submanifold of M3. It is characterized by the following embedding
condition: In general,

||x||2 = − 1
H2 for an

arbitrary Hubble
scale.

||x||2 = −1 =⇒ −x2 − y2 + z2 = −1 (3.1)

Figure 3.1: The de Sitter hyperboloid embedded in Minkowski space, with
the x + z = 0 plane cutting diagonally through it.

Geometrically, the
embedding equation
is that of a
hyperboloid, though
||x||2 = −1 is by
definition a sphere.

Because we embedded it in a three dimensional Minkowski space,
our de Sitter space will inherit all M3 isometries that preserve the
embedding condition ||x||2 = −1. So from the full Poincaré group, it
is clear we lose the three translations of spacetime, but the Lorentz
group SO(1, 2) will persist as an isometry group, consisting of the
zx-boost, the zy-boost and the xy-rotation. From this we conclude
2D de Sitter space possesses three isometries; for a two-dimensional
manifold this means it must be maximally symmetry. A maximally

symmetric manifold
of dimension n has
n(n+1)

2 isometries.

25
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There is still the issue of the coordinate system used to represent
dS. The global coordinates x, y, z are inadequate for most purposes.
To see this, we eliminate z in favor of x and y using the embedding
condition:

z2 = x2 + y2 − 1 (3.2)

From this, recalculating the metric results in:

ds2 = dz2 − dx2 − dy2 =
(xdx + ydy)2

x2 + y2 − 1
− dx2 − dy2 (3.3)

The metric is not diagonal. It is convenient to parametrize x and y
into a more favorable coordinate system that shall diagonalize it.

3.2 flat slicing coordinates

There are three useful parametrizations of the global coordinates that
will produce the desired diagonal metric, each corresponding to one
of the three possible spatial curvatures signs k we saw in the Fried-
mann Equation 2.44. In this thesis, we concern ourselves only with
the so-called flat slicing chart, the one with k = 0. They are the coor-
dinates (t, χ) given by:

x = cosh(t)− 1
2

exp(t)χ2 y = exp(t)χ (3.4)

and they cover only the part of the hyperboloid for which x+ z ≥ 0.
In this new coordinate system, the metric becomes:

ds2 = dt2 −
(
et)2 dχ2 (3.5)

which is a diagonal and flat Friedmann metric with scale factor
a(t) = et. The time t here is cosmic; we can further simplify the metric
by going to conformal time τ. Using a(t) = et and dt = adτ, we get
τ = −e−t, or t = − ln(−τ) from which it immediately follows that:

ds2 =
dτ2 − dχ2

τ2 (3.6)

for τ < 0. Naturally, we have seen this already—it is the metric
of Equation 2.83. Thus the de Sitter space is simply an inflationary
background with slow roll parameter ε = 0. We already know two
isometries: the dS translation χ→ χ + a and the dS dilation (τ, χ)→
Λ(τ, χ). The symmetry that remains hidden we shall call a dS boost,
for reasons that will later become apparent.
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Figure 3.2: The portion of dS space covered in flat slicing coordinates. The
slightly thicker lines (red in the digital version of this thesis) are
lines of equal τ, whereas the thinner (blue) lines are of equal χ.

Meanwhile, in conformal coordinates, the chart simplifies to:

x =
1
2

(
−1− τ2 + χ2

τ

)
y = −χ

τ
(3.7)

Also of importance is the z coordinate:

z = −1
2

(
1− τ2 + χ2

τ

)
(3.8)

To study how the dS isometries arise from Minkowski transforma-
tions acting on (x, y, z), we must invert the above equations to express
τ and χ in terms of x, y and z. This gives the result: There are in fact two

possible solutions,
but only one satisfies
τ > 0 and
x + z ≥ 0.

τ = − 1
x + z

χ =
y

x + z
(3.9)

Importantly, the dS isometries in flat coordinates are not in an one-
to-one correspondence to the Minkowski isometries, so it will not
follow that we can find each dS isometry simply by applying the three
generators of SO(1, 2) on (x, y, z) and then using the above equations
to write τ and χ after each transformation.

3.2.1 dS dilation

One special lucky case, however, is that the dS dilation corresponds
exactly to a zx-boost in Minkowski.

Explicitly, the Lorentz transformation for this boost with a rapidity
ϕ is:

z′ = cosh(ϕ)z + sinh(ϕ)x (3.10)

x′ = sinh(ϕ)z + cosh(ϕ)x (3.11)

y′ = y (3.12)
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Then the factor 1/(x + z) will transform like:

x′ + z′ = [cosh(ϕ) + sinh(ϕ)] (x + z) = Λ−1(x + z) (3.13)

where Λ−1 = cosh(ϕ) + sinh(ϕ). Thus the coordinates (τ, χ) trans-
form like:

τ′ = Λτ (3.14)

χ′ = Λχ (3.15)

Since Λ ∈]0,+∞[ for ϕ ∈]−∞,+∞[, we have indeed obtained the
dS dilation.

3.2.2 dS translation

Because this isometry is manifest, we know its form:

τ′ = τ (3.16)

χ′ = χ + a (3.17)

Recalling that

τ = − 1
x + z

χ =
y

x + z
(3.18)

we see that to obtain the translation, we must have

x′ + z′ = x′ + z′ (3.19)

y′ = y + a(x + z) (3.20)

A generic Lorentz transformation in M3 can be written in terms of
the zx-boost Bx, zy-boost By and xy-rotation R:This can be done in

any order, but since
the transformations
don’t commute, the

order does change
the angles.

M = Bx(ϕ)By(ψ)R(θ) (3.21)

where ϕ, ψ, θ are the rapidities and angles of the three Lorentz ma-
trices:

Bx(ϕ) =

 cosh ϕ 0 sinh ϕ

0 1 0

sinh ϕ 0 cosh ϕ

 By(ψ) =

 1 0 0

0 cosh ψ sinh ψ

0 sinh ψ cosh ψ



R(θ) =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (3.22)
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We now must simply apply M on (x, y, z) and demand that the
result be identical to Equations 3.19 and 3.20 for any x, y, z. This will
solve for the three angles, giving the following result:

ϕ = log
(

1√
1 + a2

)
(3.23)

ψ = arcsinh(a) (3.24)

θ = arctan(a) (3.25)

3.2.3 dS boost

This is the most complicated. To figure out the finite form of this
isometry, we must start with the infinitesimal generator (Appendix
A):

K = 2χτ∂τ + (τ2 + χ2)∂χ (3.26)

The finite transformation is described by the integral curve of the
infinitesimal generator (see Section 2.3.1). The integral curve can be
seen as the trajectory of a point in the manifold, indicating to where
the point moves to as the transformation is continuously applied,
which is described by the parameter λ. The equation of motion for
τ(λ) is obtained by applying the generator to τ, i.e., τ′(λ) = δετ =

εKτ; ditto for χ. Thus:

τ′ = 2εχτ (3.27)

χ′ = ε(τ2 + χ2) (3.28)

Going to x, y, z coordinates, we get the equivalent system of differ-
ential equations:

(z + x)′ = −2εy (3.29)

y′(z + x)− (z + x)′y = ε(1 + y2) (3.30)

Solving these (Appendix B), we obtain the integral curves, resulting
in the finite form of the transformation in terms of a parameter b:

z + x → z + x + 2by + b2(z− x) (3.31)

y → y + b(z− x) (3.32)



30 isometries of 2d ds

Going back to τ, χ coordinates, the transformations are:

τ → Bb(τ, χ) τ (3.33)

χ → χ + b(χ2 − τ2) (3.34)

where the boost factor is:

Bb(τ, χ) =
1

1 + 2bχ + b2(χ2 − τ2)
(3.35)

thus giving the finite form of the dS boost in flat slicing coordinates.
We still want to know how this transformation is inherited from

the Minkowski isometries, as it will be important in the 4D case. To
do this, we once again enforce that a certain Lorentz transformation
of the form M = Bx(ϕ)By(ψ)R(θ) produces the above transformation.
We thus get:

ϕ = log(
√

1 + b2) (3.36)

ψ = arcsinh(b) (3.37)

θ = arccos
(

1√
1 + b2

)
(3.38)

Because M acts on each x, y and z, we can now write down the
transformation for the x and the z individually, not just x + z, some-
thing which was not possible from the integral curve alone. Simply
applying M we obtain the full transformation:

x → x + by− 1
2

b2x (3.39)

y → y + b(z− x) (3.40)

z → z + by +
1
2

b2z (3.41)
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The procedure outlined in the previous chapter generalizes straight-
forwardly to any number dimensions; we will consider the usual four-
dimensional spacetime here. Given Minkowski M5 with (x0, x1, x2, x3, x4)

and signature (+−−−−), with x0 being timelike, de Sitter space is
characterized by the embedding:

||x||2 = −1 =⇒ −x2
0 + x2

1 + x2
3 + x2

4 + x2
5 = 1 (4.1)

Again, the isometry group will be the subgroup of M5 that leaves
the embedding invariant—the Lorentz group SO(1, 4). We will now
have three boosts and three rotations. But first we must diagonalize
the metric once again.

4.1 flat slicing coordinates

The flat slicing coordinates are now given by the following chart, al-
ready using conformal time:

x4 =
1
2

(
−1− τ2 + χ2

τ

)
(4.2)

xi = −χi

τ
, for i = 1, 2, 3 (4.3)

with χ2 = |~χ|2. The metric is now, unexcitingly:

ds2 =
dτ2 − d~χ2

τ2 (4.4)

The parametrization for x0 follows from the embedding condition
and is:

x0 = −1
2

(
1− τ2 + χ2

τ

)
(4.5)

It should come as no surprise that the inversion of the coordinates
is:

τ =
−1

x0 + x4
(4.6)

χi =
xi

x0 + x4
for i = 1, 2, 3 (4.7)

Because each xi is in a one-to-one correspondence with each χi, the
transformations in 3D space follow immediately from the 1D trans-
formations.
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4.1.1 dS dilation, translation and rotation

Previously, the dS dilation was realized by the Lorentz boost Bx. Not
much has changed except x is now called x4. The dilation (τ,~χ) →
Λ(τ,~χ) is thus realized by the Lorentz boost Bx4 .

As for the translation, we saw it was a result of the Lorentz trans-
formation Bx(ϕ)By(ψ)R(θ). Now, when one χi translates, the others
remain invariant, and since we have a one-to-one correspondence be-
tween the χi and the xi for i = 1, 2, 3, we keep the same Lorentz trans-
formation as before. Therefore, the χi translation will be realized by
Bx4(ϕ)Bxi(ψ)Rxix4(θ) with the same expression for the rapidities and
angles described by Equation 3.23.

Finally, we have the rotation. This one is new—we did not have
rotations in 1D space. However, it is immediately obvious that the
rotations Rx1x2 , Rx2x3 and Rx3x1 in Minkowski space match the corre-
sponding rotations for χ1,χ2 and χ3 of de Sitter one-to-one.

4.1.2 dS boost

We could, of course, solve the integral curve once again to obtain
the 4D dS boost, but the differential equations now become labori-
ous to solve. Now that we know how the boost is inherited via the
Lorentz transformations, though, there is no need for the integral
curves. The argument is similar to that of the translations—each dS
boost is realized by the Lorentz transformation Bx4(ϕ)Bxi(ψ)Rxix4(θ)

for i = 1, 2, 3 with the same angles as given by Equation 3.38. Simply
do the Lorentz transformation then convert to the flat slicing chart.
So a boost along χ1 is given by:

τ → τ

1 + 2bχ1 + b2(χ2 − τ2)
(4.8)

χ1 →
χ1 + b(χ2 − τ2)

1 + 2bχ1 + b2(χ2 − τ2)
(4.9)

χ2 →
χ2

1 + 2bχ1 + b2(χ2 − τ2)
(4.10)

χ3 →
χ3

1 + 2bχ1 + b2(χ2 − τ2)
(4.11)

with similar expressions for the boosts along χ2 and χ3. Since a
boost in a spatial direction leaves the others unchanged except for a
multiplicative factor, this justifies the name "boost" we gave before.

If we choose~b = (b, 0, 0), the expression for the boost can be com-
pactly written as:

τ → B~b(τ, χ) τ (4.12)

~χ → B~b(τ, χ) [~χ +~b(χ2 − τ2)] (4.13)
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where the boost factor in 3D is now:

B~b(τ,~χ) =
1

1 + 2~b · ~χ + b2(χ2 − τ2)
(4.14)

This expression is invariant under rotations, which are another
isometry. So we extend the above transformation rule for any generic
boost along any direction.

The infinitesimal transformation, taken by considering the limit of
an infinitesimal vector~b, is to first order:

τ → τ + 2(~b · ~χ) τ

~χ → ~χ− 2(~b · ~χ) ~χ + (χ2 − τ2)~b (4.15)

which agrees with results found in literature [13].

4.2 ds/cft

It was advertised that a field theory living in the curved spacetime of
4D de Sitter should correspond to a conformal theory in its 3D flat
boundary. Let us discuss this fact.

We take the boundary of dS to correspond to the limit of infinite
future τ → 0. Then we notice that all ten dS isometries preserve this
condition, that is, they map τ = 0 to τ = 0.

Now let us assume that we have a field theory of one or more fields
living in dS. For simplicity we take these fields to be scalars φ(τ,~χ).
On the boundary, they will become φ0(~χ) = φ(0, χ). As explained
in Section 2.3.1, if the fields’ vacua are symmetric under the metric
isometries—and we shall assume they are—then said isometries will
be symmetries of the fields as well. Our fields, whether φ in the 4D
bulk or φ0 int the 3D boundary, are therefore symmetric under trans-
lations, rotations, dilations and boosts.

The boundary is purely spatial, i.e., φ0 is simply a function of space.
Thus φ0 is symmetric under three spatial translations and three spa-
tial rotations, which are precisely the isometries of flat Euclidean
space in three dimensions.

Meanwhile, the dS boost takes a very special form in the boundary.
Setting τ = 0 gives:

~χ→ ~χ +~bχ2

1 + 2~b · ~χ + b2χ2
(4.16)

which, as we have seen in Section 2.1.4, is the SCT.
So, to recap, our field φ has translational and rotational symmetry

and, on the boundary, φ0 preserves these symmetries. But since these
are precisely the isometries of flat space, we might see φ0 as being in
flat space. But even under this view, φ has two other remaining sym-
metries: dilations and the SCT. These are not isometries of flat space,
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but they do correspond to its conformal transformations. Therefore,
field theories in de Sitter space should be equivalent to field theories
living on the τ → 0 boundary, where they inhabit a flat space but also
possess the conformal symmetries of this space. In other words, they
are conformal field theories. Do note that the conformal scaling di-
mension ∆ of the boundary field should depend on the τ-dependence
of the bulk field [14].

This equivalence is called the dS/CFT correspondence.



Part III

Q U A S I - D E S I T T E R

We will now apply the symmetries of the previous part to
the quasi-de Sitter space which corresponds to slow roll
inflation. Some symmetries will be preserved, others will
be broken, and some will reemerge in a restricted form.
Finally, we discuss an application of these results.





5
I S O M E T R I E S O F Q U A S I - D S

5.1 construction of quasi-ds

Describing the inflationary background of our universe as the de Sit-
ter universe, while convenient, consigns inflation to never end—this
is because dS is a non-evolving space, with constant curvature every-
where and at all times. Any physically relevant model of inflation, In flat slicing

coordinates
ds2 = dτ2−d~χ2

τ2 , even
the boundary of
infinite future
τ → 0 has constant
curvature; it is not a
gravitational
singularity.

however, has to end. Perhaps the most famous of such models is the
quasi-de Sitter space. By breaking the time symmetries of de Sitter
by a small amount ε � 1, we obtain a space that evolves in time
while still being homogeneous. We have already seen this slow roll
parameter in Section 2.4.1, where it was defined as:

ε = − Ḣ
H2 (5.1)

where H = ȧ
a is the Hubble parameter. Then, using dt = a dτ:

d
dτ

(
1

aH

)
=

dt
dτ

d
dt

(
1

aH

)
(5.2)

= a
−ȧH − Ḣa

a2H2 (5.3)

= − Ḣ
H2 −

ȧ
aH

(5.4)

= ε− 1 (5.5)

So far this is exact. The slow roll approximation consists, first, in
setting ε to a nonzero constant. Then we can solve the above equation
straightforwardly:

1
aH

= (ε− 1)τ (5.6)

Further assume that ε� 1 but nonzero. As we saw, with ε = 0 we
retrieve pure dS, hence the name quasi-dS for small ε. In any case, we
get:

aH =
−(1 + ε)

τ
(5.7)

From the definition of the Hubble parameter, we obtain:

H =
1
a

da
dt

=
1
a

da
dτ

dτ

dt
=

1
a2

da
dτ

(5.8)
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From Equations 5.7 and 5.8, this solvable differential equation fol-
lows:

a′

a
= −(1 + ε)τ (5.9)

a =

(
C
τ

)1+ε

(5.10)

where C is a dimensionful constant of integration. The scale factor
is dimensionless, so by dimensional consistency and comparing it to
the ε = 0 case of Equation 2.31, we must have C = 1

H∗ where H∗ is
some fixed Hubble scale. As it will not be necessary for the calcula-
tions that follow, we set H∗ = 1; it can be retrieved via dimensional
analysis. The Friedmann metric is now found, again in the (τ,~χ) co-
ordinates:

ds2 = a(τ)2(dτ2 − d~χ2) (5.11)

=
dτ2 − d~χ2

τ2+2ε
(5.12)

As it was advertised, quasi-dS remains homogeneous: Any purely
spatial isometry inherited from exact dS remains an isometry. Isome-
tries involving time, however, are now clearly broken, but only slightly
so, as characterized by the small ε.

5.2 approximate isometries

Space translations and rotations remain exact isometries of quasi-dS.
As for dilations and boosts, they will be slightly broken as they in-
volve a transformation of time. Nonetheless, we can still calculate
how the metric changes under the transformations.

5.2.1 quasi-dS dilation

Recall that the dilation, which was an isometry of our original pure
de Sitter space, took the form:

τ → Λτ (5.13)

~χ → Λ~χ (5.14)

Obviously, then dτ → Λdτ and d~χ → Λd~χ under a dilation. We
quickly observe that the spacetime distance indeed is not invariant:

ds2 → Λ2dτ2 −Λ2d~χ2

Λ2+2ετ2+2ε
(5.15)

ds → 1
Λε

ds (5.16)
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From this we can also see that the dilation is what is called a quasi-
isometry, because the distance between any two points cannot grow
arbitrarily large.

5.2.2 quasi-dS boost

Meanwhile, the exact dS boost isometry by some vector ~b took the
form we derived in Equation 4.13:

τ → B~b(τ,~χ) τ (5.17)

~χ → B~b(τ,~χ) [~χ +~b(χ2 − τ2)] (5.18)

where the boost factor is:

B~b(τ, χ) =
1

1 + 2~b · ~χ + b2(χ2 − τ2)
(5.19)

We now have to calculate how the spacetime forms dτ and d~χ trans-
form under the boost. As one may imagine, this is fairly laborious,
but otherwise a trivial task. For simplicity, we shall only quote the
final result for the transformation of the interval ds under the boost
isometry:

ds→ 1
B~b(τ, χ)ε

ds (5.20)

Curiously, the symmetry breaking is spacetime-depended; the dis-
tance between two points can grow arbitrarily large depending on
their respective spacetime coordinates. It becomes obvious at this
point that a full understanding of the boost factor is necessary.

5.2.2.1 Boost factor

Using rotational invariance, let us set ~χ = (χ, 0, 0) and pick ~b =

(b, 0, 0) so that we may plot B~b(τ,~χ) for some value of b (Figure 5.1).
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Figure 5.1: Plot of the boost factor B~b(τ,~χ) for ~χ = χ~u1 and~b = 0.7~u1.

As we can see, there are two lines forming a "V" shaped figure—these
correspond to B~b(τ,~χ) = ±∞. Their equations are given by

1 + 2~b · ~χ + b2(χ2 − τ2) = 0 (5.21)

τ2 =
1
b2 (1 + 2~b · ~χ + b2χ2) (5.22)

In the case of the plot of Figure 5.1, this reduces to χ = ±τ −
1
b . Note that because ds → 1

B~b(τ,χ)ε ds and ε � 1, the metric isn’t

immediately degenerate for B~b(τ,~χ)� 1.

5.2.2.2 Perfect submanifold

Let us now focus on B~b(τ,~χ) = 1. This equation defines a submani-
fold of quasi-dS in which ds → ds, i.e., where the boost becomes an
exact isometry once again, for any value of ε. We thus see that:While the equation

for the perfect
submanifold

embedding appears
similar to the

embedding of dS in
M4, it is not itself a

dS, because the
ambient space is

quasi-dS, not M4.

1 + 2~b · ~χ + b2(χ2 − τ2) = 1 (5.23)

b2τ2 − b2χ2 − 2~b · ~χ = 0 (5.24)

τ2 − χ2 − 2
~b
b2 · ~χ−

1
b2 = − 1

b2 (5.25)

τ2 −
(
~χ +

1
~b

)2

= − 1
b2 (5.26)

where 1
~b
=

~b
b2 , i.e., the inversion of~b.This establishes the perfect sub-

manifold, that is, the submanifold of quasi-de Sitter space in which
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Figure 5.2: For every vector~b, there exists a circle of radius 1
b centered on 1

~b
in which the SCT is an exact isometry.

the dS boost is an exact, not approximate, symmetry of the metric. Do
note that we have one such manifold for each vector~b.

Of particular interest is the case where the boost becomes the spe-
cial conformal transformation, that is, on the boundary of infinite
future τ → 0. Then the submanifold equation is simply:(

~χ +
1
~b

)2

=
1
b2 (5.27)

i.e., that of spheres of radii 1
b centered on 1

~b
. Since translations are

still exact isometries, we could transform ~χ → ~χ − 1
~b

for a specific

vector~b to center the corresponding sphere at the origin.





6
C O N S I S T E N C Y R E L AT I O N S

Here we discuss how the isometries of de Sitter space or quasi-de
Sitter space we found can be non-linearly realized for the inflaton
field and possible applications of this result.

Symmetries of the metric are not automatically symmetries of our
field. If the field’s background is symmetric, then the field will evolve
in a symmetric manner. For the inflaton it cannot be the case. This is
because the homogeneous inflaton background φ0(t) has to be a clock
to keep track of when inflation ends. In fact, with proper change of
coordinates and field redefinitions, we can write: We return to the use

of cosmic time t
rather than
conformal time
τ = − 1

H e−Ht.
φ(t,~χ) = φ0(t) + π(t,~χ) (6.1)

φ0(t) = t (6.2)

where φ0 is the homogeneous background and π a perturbation.
Clearly, the background is not symmetric under any de Sitter isom-
etry that involves time. However, it is still possible to realize these
isometries if φ possesses additional symmetries. Let us see this proce-
dure in action. The time dilation τ → Λτ in cosmic time is:

t→ t− log Λ
H

(6.3)

Suppose now φ is shift-symmetric, i.e., φ → φ + c for constant c is
a symmetry of the action. The current effective models for inflation
do predict the inflaton has this property in dS and approximately in
quasi-dS [15]. Then a dilation will add the − log Λ/H term, but a
shift of c = log Λ/H will kill it. In this way, the background φ0 will
remain invariant under the combined dilation-shift and we associate
the shift of the inflaton to a shift in the perturbation. But from the
metric of Equation 2.85 in the infinite future,

ds2 = dt2 − a(t)2e−2Hπ(~χ)d~χ2 (6.4)

a shift π → π − log Λ/H realizes a spatial dilation by Λ. So a con-
stant shift to π corresponds to a dilation.

Similarly, boosts will transform time as follows, to first order in~b:

t→ t + 2~b · ~χ (6.5)

Thus, for this symmetry to be linearly realized, the inflaton needs
to have not a shift symmetry, but a Galilean symmetry φ → φ +~b · ~χ.
In any event, this will introduce a gradient to π, which is realized by
a first order SCT [13].
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Even if the inflaton does not possess the required symmetries to
non-linearly realize the de Sitter isometries, we may still obtain con-
sistency relations related to the breaking of this symmetry, but only
if there is a single inflaton. If multiple fields contribute to inflation,
the situation becomes far more complex, as there are then multiple
inflation clocks.

6.1 derivation of consistency relations

Consider the correlator between one long mode πL(~χ) and two short,
πS(~χ1) and πS(~χ2). A long mode in this context means that the long
mode is predominantly composed of Fourier components of small
wavelength in momentum space.A consistency

relation is also called
a soft relation.

All modes eventually freeze, but long modes do so much earlier.
At the moment when the short modes freeze, the long mode has long
since become a non-dynamical background field. Thus:

〈πL(~χ)πS(~χ1)πS(~χ2)〉 =
〈

πL(~χ) 〈πS(~χ1)πS(~χ2)〉πL(~χ)

〉
where a subscript in a correlator means it is evaluated in the cor-
responding background. Meanwhile, a non-dynamical mode simply
acts on the dynamical ones as a spacetime transformation ~χ → ~χ′

[13]. This means a power spectrum of short modes evaluated under
the background of a long mode is the same power spectrum without
the background but under a spacetime transformation:

〈πS(~χ1)πS(~χ2)〉πL(~χ) = 〈πS(~χ
′
1)πS(~χ

′
2)〉 (6.6)

So we have removed the background, but information about the
long mode is still encoded via the spacetime transformation. For vis-
ibility, we will omit the space variables and simple denote π = π(~χ)

and π̃ = π(~χ′). Multiply both sides by another copy of the long mode
πL and take the average:

〈πL 〈πSπS〉πL〉 = 〈πL 〈π̃Sπ̃S〉〉 (6.7)

But if the generator of the transformation is G = G(~χ1) + G(~χ2)

(recall Equation 2.62), we have:

〈π̃Sπ̃S〉 = 〈πSπS〉+ G〈πSπS〉 (6.8)

to first order in the transformation. Now:

〈πL 〈πSπS〉πL〉 = 〈πL G〈πSπS〉〉 (6.9)

because 〈πL 〈πSπS〉〉 = 0. From this, we now get the consistency
relation between a long mode and two short:

〈πLπSπS〉 = 〈πL G〈πSπS〉〉 (6.10)
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Notice that if G is a symmetry of the power spectrum 〈πSπS〉, then
the result is zero. In other words, because the long mode is just a
spacetime transformation, if said transformation leaves the power
spectrum invariant, then of course there can be no correlation be-
tween long and short modes. But the equation is still true if the sym-
metry is broken, as it is in quasi-de Sitter, which gives us a consis-
tency relation between the two correlators based on the breaking of
the symmetry.

To understand which spacetime transformations correspond to the
long mode we simply expand πL to first order in the gradient around
the origin (because space translations are still exact isometries, we
can expand around it without loss of generality):

πL(~χ) = πL(0) + ~χ ·~∂χπL(0) (6.11)

But as we have seen, a constant background corresponds to a dila-
tion and a gradient to a first-order boost. This means we can use the
associated generators for the spatial dilation and SCT to derive the
consistency relations which are available in the literature [13].

Implications of this thesis’s result includes the possibility of using
the finite de Sitter boost we obtained to get the corresponding non-
linearly realized symmetry to any order. This could be used for exam-
ple to expand the field to higher order in the gradient, which would
be relevant for consistency relations involving two long modes, or to
derive the relations to higher order in the coordinates. This is an area
of active research [16, 17].





Part IV

C O N C L U S I O N
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C O N C L U S I O N A N D O U T L O O K

Inflation remains the preferred solution to several problems encoun-
tered in physical cosmology. As we have seen, de Sitter space is a
useful gravitational background for our models of inflation and the
importance of this space’s isometries was therefore highlighted. We
have explicitly shown how the de Sitter isometries are inherited from
the Minkowski embedding, which allowed us to construct the finite
form of the de Sitter boost in flat coordinates, a result which we be-
lieve was not available in the literature before. The link between de
Sitter space and conformal field theories (dS/CFT) was also estab-
lished. This is a modern area of research, which could flourish if a
better understanding of string theories in dS is achieved.

Second, we studied what role these isometries play in quasi-de Sit-
ter space. This is important because often the limit of exact de Sitter is
not acceptable and we must employ the slow roll approximation. We
have derived how some of these isometries are broken and discussed
the properties of the broken boost. Furthermore, even if the inflaton
background is not symmetrical under these isometries (either in dS or
quasi-dS), the non-linear realization of these transformations allows
us to relate correlators to the amount of symmetry breaking. This
means the full and exact isometry group of de Sitter space that we
have obtained is of great importance even outside of dS.

A valid counterpoint that could be presented to this thesis is that
we did not consider the other two coordinate system for dS, namely
the closed and open charts. It is true that a full treatment of de Sitter
isometries would repeat the procedure for these two, but we believe
this is not an issue of great importance. The flat coordinate system is
the most widely employed and physically convenient system of dS.
If necessary, though, the procedures outlined in this thesis to obtain
the exact isometries of dS generalizes to closed and open dS in a
straightforward manner.

This thesis’s results naturally extend to further study of non-linearly
realized inflaton symmetries. With the exact expression of the boost,
we can easily expand it to any order. This could then be employed
to calculate to higher order the effects of one or more long infla-
ton modes with respect to short modes in a correlator. We hope this
will lead to new insights into the consistency relations of cosmology,
which are an essential experimental tool in the observation of CMB
non-Gaussianities.
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A P P E N D I X





A
K I L L I N G V E C T O R S O F D S

In the flat conformal chart, the metric of the 2D de Sitter space takes
the form:

ds2 =
dτ2 − dχ2

τ2 (A.1)

What are the Killing vectors ξ of dS, written in this chart? Obvi-
ously the metric doesn’t depend on χ, so one Killing vector should
be ξµ = (0, 1). Now, using that

gµν =
1
τ2 ηµν =⇒ ∂ρgµν = − 2

τ3 δ0
ρηµν (A.2)

we can calculate:

Γρ
µν =

1
2

gρσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
(A.3)

=
1
τ

(
ηρ0ηµν − δ0νδ

ρ
µ − δ0µδ

ρ
ν

)
(A.4)

The Killing equations are:

∇µξν +∇νξµ = 0 (A.5)

=⇒ ∂µξν + ∂νξµ − 2Γρ
µνξρ = 0 (A.6)

giving three equations:

∂0ξ0 +
1
τ

ξ0 = 0 (A.7)

∂1ξ1 +
1
τ

ξ0 = 0 (A.8)

∂0ξ1 + ∂1ξ0 +
2
τ

ξ1 = 0 (A.9)

Equation A.7 is separable, i.e., ∂ξ0
ξ0

= − ∂τ
τ and thus readily admits

the solution

ξ0(τ, χ) =
f (χ)

τ
(A.10)

where f (χ) is an unknown function. Let us write by ansatz that
f (χ) = AχB. Then Equation A.8 becomes:

∂ξ1

∂χ
+

AχB

τ2 = 0 (A.11)

53



54 killing vectors of ds

which, being also separable, admits the solution:

ξ1(τ, χ) = − AχB+1

(B + 1)τ2 + g(τ) (A.12)

where g(τ) is another unknown function. It can be found via Equa-
tion A.9, which now reads:

ABχB−1

τ
+

2
τ

g(τ) + g′(τ) = 0 (A.13)

and is solved by

g(τ) = −1
2

ABχB−1 +
C
τ2 (A.14)

As g(τ) is not a function of χ, the above solution is patent nonsense
unless the χ-dependency vanishes. This forces A = 0, B = 0 or B = 1.
We can now write three independent Killing vectors:

When A = 0, B = 0 and C = −1, we have:

ξµ = (0,− 1
τ2 ) (A.15)

ξµ = (0, 1) (A.16)

which is the spatial translation vector, as expected.
When A = 1, B = 0 and C = 0, we have:

ξµ = (
1
τ

,− χ

τ2 ) (A.17)

ξµ = (τ, χ) (A.18)

corresponding to dilations.
Finally, if A = 2, B = 1 and C = 0, we have:

ξµ = (
2χ

τ
,−χ2 + τ2

τ2 ) (A.19)

ξµ = (2χτ, χ2 + τ2) (A.20)

which is a dS boost vector.
Incidentally, since we have found three Killing vectors and a max-

imally symmetric 2D manifold has three isometries, this establishes
that dS is maximally symmetric.

From the Killing vector fields, we get the infinitesimal generators
for spatial translations, dilations and boosts, respectively:

P = ∂χ (A.21)

D = τ∂τ + χ∂χ (A.22)

K = 2χτ∂τ + (χ2 + τ2)∂χ (A.23)



B
T H E D S B O O S T I N T E G R A L C U RV E

Let us call w+ = z + x and w− = z − x. Then we must solve the
following system of differential equations:

w′+ = −2εy (B.1)

y′w+ − w′+y = ε(1 + y2) (B.2)

By applying the chain rule y′ = dy
dλ = dy

dw+

dw+
dλ and using the first

equation, the second one becomes:

−2εyw+
dy

dw+
+ 2εy2 = ε(1 + y2) (B.3)

−2yw+
dy

dw+
= 1− y2 (B.4)

−2y
1− y2 dy =

dw+

w+
(B.5)∫ y

y0

−2ȳ
1− ȳ2 dȳ =

∫ w+

w0+

w̄+

w̄+
(B.6)

log
(

y2 − 1
y2

0 − 1

)
= log

(
w+

w0+

)
(B.7)

∴ y2 =
w+(y2

0 − 1)
w0+

+ 1 (B.8)

But recall the embedding condition:

z2 = x2 + y2 − 1 (B.9)

z2 − x2 = y2 − 1 (B.10)

w+w− = y2 − 1 (B.11)

which means the initial conditions w0 and y0 are related via

y2
0 − 1
w0+

= w0− (B.12)

This simplifies our solution for y to a much nicer form:

y2 = w0−w+ + 1 (B.13)
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It remains to solve for w+. Let us return to the first differential
equation w′+ = −2εy. With the solution for y in hand, we now pro-
ceed:

w′+ = ±2ε
√

w0−w+ + 1 (B.14)
dw+√

w0−w+ + 1
= ±2εdλ (B.15)∫ w

w0+

dw̄+√
w0−w̄+ + 1

= ±2ε
∫ λ

0
dλ̄ (B.16)

2
√

w0−w+ + 1
w0−

− 2
√

w0−w0+ + 1
w0−

= ±2ελ (B.17)

But, once again, the embedding implies w0−w0+ + 1 = y2
0, from

which we get:

2
√

w0−w+ − 1
w0−

− 2y0

w0−
= ±2ελ (B.18)

∴ w+ = w0+ ± ελy0 + (ελ)2w0− (B.19)

Coming back to y, we now have:

y2 = 1 + w0−w0+ ± 2ελw0−y0 + (ελ)2w0− (B.20)

= y2
0 ± 2ελw0−y0 + (ελ)2w0− (B.21)

= (y0 ± ελw0−)
2 (B.22)

∴ y = y± ελw0− (B.23)

Calling b + ±ελ a generic parameter, the transformation thus take
the following form:

w+ → w+ + 2by + b2w− (B.24)

y → y + bw− (B.25)
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