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Abstract

In this master thesis, an approach to discovering architectural patterns within static modular
architectures based on software dependencies is developed and investigated. Architectural pat-
terns represent reusable design of software architecture at a high level of abstraction. They can
be used to structure new applications and to recover the modular structure of existing systems.
Techniques like Architecture Compliance Checking (ACC) focus on testing whether the realised
artefacts adhere to the architecture. Typically, these techniques require a complete architecture
as input.

In this thesis, we focus on defining architectural patterns in such a way that we can use
ACC tools to recognise architectural pattern instances and on algorithms by which to discover
them, for the purposes of Software Architecture Reconstruction (SAR). The central problem is
that it is difficult to distinguish a possible instance of an architectural pattern from a genuine
instance. Addressing this requires us to explicitly define architectural patterns in terms of
allowed and disallowed software dependencies. We base ourselves on Semantically Rich Modular
Architectures (SRMAs). Defining architectural patterns this way allows us to reason about
them. For example, about how patterns should be interpreted as incomplete architectures and
how different interpretations affect the pattern recognition process. Recognising architectural
patterns using ACC techniques thus has great potential in architecture design, ACC and SAR.

Our way of finding potential patterns, what we call pattern candidates, is a two step process.
The modular decomposition step establishes the modules of which a selection is used in the
second step. There, we go through possible mappings of the found modules (referred to as
software units) to the modules of architectural patterns (called pattern modules). The ACC tool
we employ to do this is HUSACCT.

We have devised two main approaches to finding pattern candidates. There is the more
cumbersome brute force approach and the more elegant genetic approach. Both algorithms
require further development before they can be used in practice, but we manage to show that
this is a promising line of research which may already result in several publications. Some
preliminary evaluations provide a handful of lessons to be applied in any future work, which
we envision as GEAR: Guided Evolutionary Architecture-Reconstruction. This vision is also
described within the thesis, by means of providing a rudimentary illustration of a practical tool
based on our work.

This master thesis is primarily about providing several proofs of concept, it is not intended
as a specification for future realisations or as a formal analysis of the algorithms provided within.
It also raises certain questions and discussion points, such as the nature of architectural patterns
as open architectures within larger systems.





Preface

This master thesis represents the culmination of years of studying at Utrecht University and
thus the end of an era. From highly mathematical courses on physics, through unambiguously
business-oriented courses on IT management, I came to software architecture. As my background
is an odd blend of technical and non-technical areas, so is the field I find myself in today; albeit
not always necessary for a single individual to combine the deeply technical aspects of software
architecture with the often neglected organisational side. In fact, this is deemed unnecessary far
too often in practice.

Just like software architecture is based on a delicate balance, IT-research as an academic
field in general tends to exist on this wonderful point in between the academic extremes of an
R&D employee and an ivory tower recluse. When I realised this, it rekindled a passion for doing
research and developing ideas that I had lost when, several years ago, I came to the conclusion
that although astrophysics is an excellent conversation topic over a glass of dark abbey beer, its
sort of research was not what I wanted for myself as a working career. IT seemed more exciting,
more practical yet still very broad, probably due to its youthfulness. Even if my work thus far
is not quite a turning point in human history, it represents a watershed for me.

Although I did learn to program during my years of studying physics, I had to learn a lot
during the course of this thesis. First of all, I had never laid my hands on a single line of
Java before. Moreover, computational physics and data processing were always restricted to a
handful of code classes, whereas in this thesis I had to learn to work with a relatively large open-
source application. I had to get used to Eclipse and GitHub, which demanded a few frustrating
moments, and much of the literature mentioned concepts that I had not been taught during my
formal education. The sort of programming was quite different from the computer models that
a physicist is required to produce, so my work in this thesis project has been a lot of trial and
error.

Surely, a more experienced developer would have worked faster and would have produced a
cleaner result. Although I find code optimisation a very interesting topic, I do not know much
about it. Also, someone with a more pronounced background in software architecture would
have read through the relevant papers more swiftly. But maybe that is the point of a master
thesis. It could scarcely have been more educational for me.

Experimental design research is a marvellous thing, although its freedom and flexibility come
with a certain degree of frustration when attempting to plan ahead more than a few weeks. I
wish there had been time to do extensive case studies, proving conclusively that my ideas can
indeed form another tool on the tool belt of architecture reconstruction. But these things take
time and go through several steps of maturation. This thesis is primarily about proofs of concept.

It is often said that a master thesis should be at least somewhat readable to a layperson.
Actually, it can be a burden to make sure that even an expert will not lose track of what is
meant by a certain term or why a particular step makes sense. I will not pretend that this work
is as technically dense as that produced by my fellows at Computing Science, who regretfully
receive more opportunities to apply their mathematical skills than I do and breeze through Java
coding tasks, but I have attempted to flesh out certain parts of my thesis whenever I deemed it
necessary.

I hope this document succeeds in portraying a rather interesting side of both software ar-
chitecture and IT in general. I also hope it conveys a sense of excitement over the sort of work
that remains to be done.

Cheers,
Joeri





Glossary

“Must use” heuristic :
“x must use y” is one of the seven relation rules within HUSACCT’s SRMA language
uses. This rule is only violated when module x does not directly depend on module y
at all, which then counts as a single violation. One would presume that the appropriate
modules of an architectural pattern do depend on one another, so this violation is of vital
importance to the discovery of patterns.

ACC (Architecture Compliance Checking):
The act of studying the degree to which a system’s software architecture complies with its
documentation. This may be in order to verify that the architecture is correct or in order
to check that the documentation is kept up to date.

Aggregation :
The term used for the scenario when multiple software units are mapped to the same
pattern module, creating groups of software units and thus complicating the mapping.

Architectural element :
The word used for any module found within software architecture, whether it be from the
as-is architecture or not.

Architectural pattern :
A type of generic software architecture design aimed at promoting qualities such as re-
usability, maintainability and separation of concerns.

Brute force :
A brute force approach or brute force attack is a way of finding the solution to a problem
by attempting all possible solutions.

Chromosome :
A molecule of DNA, which in genetic algorithms represent individual solutions. In our
case, each chromosome is a pattern candidate.

Dependency :
A direct software dependency between two modules. Throughout this thesis, we do not
distinguish between any dependency types. By “using”, “accessing”, “depending on” and
“calling on” we thus mean the same thing.

Design pattern :
A type of software design that exists on a much smaller scale than architectural patterns,
though the distinction is not always clear. The most famous design patterns are known as
the Gang of Four (GoF) patterns.



Gene :
A section of a chromosome that encodes for something, in our case the mapping of a single
software unit to a pattern module. The value of a gene is called the allele.

Genetic algorithm :
An approach from evolutionary computing inspired by neo-Darwinian evolution to find
solutions to a particular problem by modelling the solutions as a reproducing population
of individuals.

HUSACCT (Hogeschool Utrecht Software Architecture Compliance Checking Tool):
The ACC tool used in this thesis. It is intended for SRMA support and thus distinguishes
itself from other such tools through the richness of its semantics. It analyses Java and C#
source code and is itself built in Java.

Pattern candidate :
A particular mapping of software units to pattern modules such that the whole is a possible
instance of an architectural pattern and can be associated with a certain fitness score.

Pattern instance :
A genuine occurrence of an architectural pattern.

Pattern module :
An architectural element from an architectural pattern, as opposed to software units.

Remainder :
The collective name for software units that are not part of a pattern candidate in that
they are not mapped to any pattern module.

SAR (Software Architecture Reconstruction):
An act similar to ACC, although it implies a lack of architecture documentation. The
software architecture of an existing system is reconstruction based on a number of many
characteristics. A person performing this task may be known as a re-engineer or re-
architect.

Software unit :
The name for an architectural element from the analysed (as-is) architecture, thus it is a
class or package from the source code.

SRMA (Semantically Rich Modular Architecture):
The term used for architectures with rich semantics, meaning various types of modules,
rules, exceptions, violations and software dependencies. HUSACCT supports a set of
architectural elements that are commonly found in SRMAs.

Violation :
A software dependency that exists in spite of an architectural rule. The dependency is
then said to violate that rule. The opposite of a violation is a dependency in accordance
with a rule, an affirmation.
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Chapter 1

Introduction

A system’s software architecture is similar to the architecture of a building, in that it tells
the knowledgeable observer how it was constructed and how its components fit together. “The
software architecture of a system is the set of structures needed to reason about the system, which
comprise software elements, relations among them, and properties of both” (Bass, Clements &
Kazman, 2012, Ch. 1).

The software architecture is comprised of multiple structures. Some are static, these are
the modules of the system and they can exist on many levels of decomposition. These modules
form a tree, with the largest structures in the root and the smallest in the leaves. This tree is
usually imagined upside down, so the lowest level consists of the smallest modules, which would
likely be code classes in the case of a logical decomposition. The highest levels may contain
layers or major components, e.g. separating responsibilities like presentation from database
logic. The uses of such decomposition include project structuring, object-oriented design and
allowing specific modules to be reused elsewhere.

Dynamic structures are related to runtime behaviour, which means that they are concerned
with services, interaction and synchronisation among the various structures. These are also
known as component-and-connector structures (Bass et al., 2012). This has far more to do with
performance and availability than the static side of the architecture.

Finally, there is the allocation of these structures to development teams, file structure or
hardware. Assigning a particular module to a particular tester is a typical example of an
allocation structure. These structures are often overlooked or at least not considered part of
a software architecture, and one can imagine why, but this is an essential part of complete
architecture documentation. Particularly project managers would be interested in the work
assignment and deployment aspects of an architecture, as opposed to developers who would be
more concerned with the other two types of structures.

Figure 1.1 shows the context of software architecture as a diagram. Another way to categorise
various aspects of software architecture is to look at views and viewpoints, which are also
indicated in this diagram. A view is defined as “a representation of one or more structural
aspects of an architecture that illustrates how the architecture addresses one or more concerns
held by one or more of its stakeholders” (Rozanski & Woods, 2011, Ch. 3). In other words, a view
is a set of figures and descriptions that together depict a particular aspect of the architecture.
This is strongly related to ISO Standard 420101.

A viewpoint can be thought of as the specification of such a view, which may include things
like design guidelines. Rozanski and Woods define it as: “a collection of patterns, templates and
conventions for constructing one type of view. It defines the stakeholders whose concerns are

1http://www.iso-architecture.org/ieee-1471/ads/

http://www.iso-architecture.org/ieee-1471/ads/


Chapter 1: Introduction Utrecht University

Figure 1.1: The context of software architecture. Source: (Rozanski & Woods, 2011,
Ch. 3).

reflected in the viewpoint and the guidelines, principles, and template models for constructing
its views” (Rozanski & Woods, 2011, Ch. 3).

There exist seven core view(point)s, each serving a different purpose, which are shown in Fig-
ure 1.2. Operational views deal with support strategies, deployment views are about hardware
and runtime environments, concurrency views describe threads and interprocess communica-
tion, information views are concerned with data flow and storage, the functional views mention
functional elements and responsibilities, the development viewpoint is concerned with the sys-
tem’s construction and the context deals with the system’s environment. For a more in-depth
discussion on views and viewpoints, please see the book by Rozanski and Woods (2011).

This thesis is primarily and predominantly concerned with the static, modular and technical
structure of software architecture, i.e. the technical aspects of the functional view. To put it
differently, this thesis is about the relationship between the object-oriented source code and the
technical architecture.

To fully understand what software architecture is, one should also understand how the field
of software architecture relates to other academic areas of research. Computer science and
information science come together in the domain of software architecture, as it is not all technical
and mathematical. Information science itself can be said to be the interface between business

2
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Figure 1.2: The various viewpoints of software architecture. Source: (Rozanski & Woods,
2011, Ch. 15).

(science) and IT, so software architecture can be seen as the most technical aspect of information
science. These terms are all quite arbitrary and confusing, especially since there are some major
differences in the terminology used among researchers and in educational curricula.2

Presumably, many software architects and scientists would completely disagree with this
conceptualisation, but the reader is invited to look at the positioning of software architecture
in the fashion illustrated by Figure 1.3. Another way to look at it would be a similar interface
between Requirements Engineering and Software Engineering, as this too is the contrast between
the non-technical side of business clients and their needs with the technical side of software design
and development.

Computer 
Science

Information 
Science

Business 
Science 

Software 
Architecture

Figure 1.3: A highly contested conceptual visualisation of what constitutes software archi-
tecture.

The notions explained in the previous paragraphs should assist the reader not familiar with

2There even exists a language barrier. In Dutch, to give one example, computer science is often called
“informatica” and information science is “informatiekunde”, although “computerwetenschappen” and “inform-
atiewetenschappen” would be the literal translations from these English terms. But how to translate the term
informatics then becomes slightly problematic and different solutions to this semantic problem may lead to some
confusion.
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the field of software architecture to grasp these and upcoming basic concepts as they apply to
this thesis. Software Architecture is a young and developing field, like many other fields within
the broader IT domain filled with unclear terminology and imprecise definitions. Much has been
written about the role of the software architect within software producing organisations and even
more anecdotes can be found from developers and IT managers about the pains of having an
architect be either too technical (more of a lead developer) or not technical enough (more of a
project manager). Some companies show little appreciation for the architecture of their software
products, while some realise very well how absolutely vital a good software architect and good
architecture documentation can be.

Software producing companies that make use of software architecture documentation often
do so primarily at the start, before development (i.e. coding) has begun. It is not uncommon
for the architecture to get eroded, meaning that the architecture as it was originally intended
does not entirely comply with the architecture as it was actually realised by the development
team(s). But because the architecture is an abstraction of the system, it is usually not very
obvious that the two are not in agreement.

Sometimes, there may not even be any documentation of the intended architecture. Main-
taining, updating or reusing parts of the system could then require the reconstruction of the
architecture, studying the system until one can decipher what was originally intended architec-
turally. This is a rather difficult task, since it includes deriving the correct abstractions of the
systems logical or functional elements. This is where we hope to make a contribution.

This thesis will emphasise one aspect of software architecture: static modular architectures
derived from source code. We are interested in studying the possibility of using architectural
patterns, commonly used designs of modular architecture described shortly, to reconstruct ar-
chitectures. For this, we rely on the software tool HUSACCT, which will be further explained
in the subsequent chapters. Suffice it to say, for now, that this tool can be used to design ar-
chitectures or check whether an existing architecture agrees with its documentation. The main
distinguishing properties of HUSACCT are that it is open-source and relies on architectural
elements that are commonly found in semantically rich architectures, i.e. it understands a good
amount of different architectural elements such as module types.

The research approach will be discussed before delving into the core subject in the next
chapter. After that, this thesis will look into software architecture reconstruction (Chapter
3), the role that architectural patterns can play (Chapter 4), and the way a software tool like
HUSACCT can be used for these purposes (Chapter 5). The algorithms are presented in Chapter
6. Then, the approach undergoes some preliminary evaluation (Chapter 7) before future work is
discussed (Chapter 8). After the Conclusion (Chapter 9) and the Acknowledgements (Chapter
10), the reader can find the bibliography and the appendices filled with tables, images and code
samples that were deemed too excessive for the main body of the text.

4



Chapter 2

Research Approach

As explained in Chapter 1, the aim of this research project is to develop tool support for detecting
the use of architectural patterns in architecture reconstruction, using HUSACCT as a framework
for development of this tool support by extending it and making use of its rich semantics to
empower the method.

“HUSACCT” is an acronym that stands for “Hogeschool Utrecht Software Architecture
Compliance Checking Tool.” “Hogeschool” is Dutch for high school, although this refers to
tertiary education and not secondary, as opposed to the American term. Specifically, this is a
university of applied sciences, higher vocational university, or college. The University of Applied
Sciences Utrecht (the Netherlands) produced an Architecture Compliance Checking (Chapter
3) tool in 2011 as part of an advanced software engineering course. This software tool has been
further developed in the subsequent years, with several individuals contributing up to this very
day through the open source repository service Github. More will be said about HUSACCT in
Section 3.2.

This thesis represents a type of science that falls within the domain of design research.
The research process is iterative by nature, meaning that different sub-problems are studied
and solved consecutively. The steps of design research are 1) analyse, 2) design, 3) realise,
4) evaluate. Due to the time restrictions of the master thesis project, later iterations of the
research are described on a purely theoretical basis, lacking physical realisation (code) and some
are reserved for the future work section in their entirety. It is important that a design research
approach leaves some room for such considerations, but it is also of great import that concrete
goals are set. For this purpose, the next section will elaborate on the main research question
and its sub-questions.

2.1 Research Questions

In order to understand our main research question, two things have to be defined. First, a
candidate pattern is a particular mapping of several software modules found by modular decom-
position to an architectural pattern, with which certain numbers of violating and non-violating
dependencies are associated. A pattern instance is an architectural pattern that is genuinely
present in the intended architecture. By genuinely, we mean the distinction between an archi-
tectural pattern that seems to be a good match for the realised system, and the pattern that
was actually used by the software architect(s) in the intended architecture. Therefore, the main
research question is defined as:
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RQ: How can architectural patterns be identified from source code in such a way that the correct
pattern instances, those that were genuinely realised, can be found in a, possibly undocu-
mented, software system?

Because such an open research question consists of several minor questions, sub-questions
should be clearly defined. The ordering of these sub-questions could be taken to imply an
ordering by priority. In this case, the ordering refers to the absolute times at which the answers
to these questions were anticipated.

Initially, the literature study should answer a question on the research topic’s background.
Using the definitions of Software Architecture Reconstruction (hereinafter SAR) and Architec-
ture Compliance Checking (hereinafter ACC) as provided in Section 3.1, this sub-question is
formulated as:

SQ1: How are architectural patterns used in Architecture Compliance Checking and Software
Architecture Reconstruction?

After this research based on existing literature, the various methods of decomposition into
software modules must be investigated. This is due, in part, to the envisioned reconstruction
approach that will be shown in Section 5. Subsequent pattern matching approaches would rely
on this decomposition step. It was decided at this point in time that the initial tool support is
already provided in this regard, namely decomposition based on Java package definitions or C#
namespaces, but a detailed description of this and alternative techniques had to be provided in
the final thesis nonetheless.

SQ2: How can the individual software modules that correspond to an architectural pattern in-
stance be correctly identified in an application’s source code?

Decomposition is one part of the problem, pattern matching is another. Delving slightly
deeper into the literature, the question of how exactly a pattern might be detected must be
investigated.

SQ3: How can candidate architectural patterns be identified within a software system?

Although this question is already partially answered by the literature study, it cannot be
fully satisfied until this is realised within HUSACCT and any problems that may occur have
been dealt with.

The question remains of how the set of candidates can be whittled down to a few or even a
single possible candidate. There has to be some way to compare candidates and find an optimal
solution. The first question is how to address the fitness metric. We want to somehow express
the degree to which an architecture complies to a particular pattern, the fitness of that pattern
candidate. But formulating a function that describes this fitness is not trivial, there may be
several formulations that would prove useful.

SQ4: How can the fitness of a candidate architectural pattern be expressed?

Based on this, various candidates must somehow be compared.

SQ5: How can multiple candidate architectural patterns be compared with one another?

It is not trivial how this comparison leads to a definite conclusion, so this is also a sub-
question. The “best” candidate would be the most likely, the most plausible, the most acceptable
pattern candidate, because it may just be a genuine pattern instance. Thus:

6
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SQ6: How can the best candidate architecture patterns be chosen from a list of candidates?

Once the goals of the research have been established through the listed research question and
sub-questions, another issue that remains to be addressed is the rationale of this thesis: why is
it relevant to detect the use of architecture patterns with a tool like HUSACCT?

2.2 Relevance

This research project is focussed on the overlapping area of several other topics of scientific
rigour: Software Architecture Reconstruction, Architecture Compliance Checking, architectural
patterns, design patterns, graph matching, software development, etc. This particular focus,
namely the (partial) recognition of architectural patterns in static architecture reconstruction
using a modular decomposition based on packages/namespaces and a subdivision of dependen-
cies, modules and rules into various types, appears to be quite unique.

Uniqueness alone does not imply usefulness. As indicated by Pruijt, Köppe and Brinkkem-
per (2013), however, semantic richness can be a powerful tool in Software Architecture Recon-
struction. Since such semantics are currently so underdeveloped and underused elsewhere, this
richness allows for much contribution to be made to the scientific knowledge base.

Additionally, as indicated by the collection of papers on the subject, detecting architectural
patterns can be a great aid to architecture recovery. The combination of the aforementioned
research areas in this thesis can thus be said to provide a scientific contribution to a field in
need of maturity.

Research topics as presented here provide purely academic benefits first and further social or
market applications later. The results of this project are not immediately user-friendly or even
usable beyond an academic context, since it would be of little academic interest and a complete
waste of time for a master thesis to overly concern itself with the design of a user interface
beyond what is presented in Section 8.1. As such, the results of this thesis are restricted to
hard-coded methods. Nevertheless, the fact that HUSACCT is a free and open-source product
allows for almost immediate use by third parties. Also, the intention is that this thesis results
in more research and development, for which the UI will most definitely be interesting and not
at all wasteful in terms of time spent, if only to provide some initial ideas.

Bass et al. (2012, Ch. 2) mention that some 80% of all costs in software development are
related to maintenance activities. Architecture reconstruction, and the Architecture Compliance
Checking that is automatically enabled by it, is thought to be advantageous in this regard. In
conclusion, although it might be relatively haughty to speak of scientific and especially social
relevance for an exploratory design research project such as this master thesis, one might reason
that it is indeed a relevant topic of research.

7
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Chapter 3

Architecture Reconstruction

In this chapter, the differences between reconstruction and compliance checking are elucidated, as
are the software tool HUSACCT and its meta-model for software architectures. These concepts
need to be understood before the bulk of the research can be considered, since these are the
fundamentals upon which the whole thesis is built. The chapter is concluded with a running
example that illustrates how HUSACCT can be used at this time.

3.1 SAR & ACC

In Software Architecture Reconstruction (SAR), the architecture of an already realised system is
re-engineered. “Architecture reconstruction is an interpretive, interactive, and iterative process
involving many activities; it is not automatic” (Bass et al., 2012, Ch. 20). In this book, two main
purposes of reconstruction are listed: documentation and conformance checking. This means
that a re-engineer (someone who is re-engineering the system, also called re-architect or some
similar term) tries to understand the software architecture of a software system, which is rather
difficult to do even if the system is relatively small.

Why might someone want to do such a thing? For a number of possible reasons, in fact,
most notably because a particular system might have no proper architecture documentation
and someone is in desperate need of some good descriptions. Perhaps a legacy system has to be
modified or extended, or several systems have to be combined. It is not uncommon that there
is some documentation that is hopelessly outdated or otherwise flawed. Another reason could
be that a particular structure or view was not described in the original document and now it
has become of the utmost importance to current development or maintenance. Whatever the
reason, reconstruction can be an essential albeit challenging task for the re-engineer to perform.
Luckily enough, there is tool support.

Bridging the gap between the actual architecture and what was originally intended or, at
least, how it is currently documented can be treated as a search for violations, software depend-
encies that ought not to be there, which can result in updating the documentation or adapting
the architecture. This documentation verification process is known as Architecture Compliance
Checking.

ACC is subtly different from SAR. It is a process where existing documentation is taken
into account. Perhaps the documentation is outdated, but not hopelessly so. Perhaps it is
incomplete, but not entirely useless. Or perhaps you just want to see if the development team
built as they were bid and did not ignore the designs of the software architect as they realised
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(or implemented, as programmers tend to say, perhaps erroneously1) the software system you
have been anticipating.

Two concepts are strongly tied to the rationale behind doing ACC or SAR: architecture
erosion and architectural drift, which are real problems in software architecture. The first is
defined as “the introduction of architectural design decisions into a system’s descriptive archi-
tecture that violate its prescriptive architecture” (Taylor, Medvidović & Dashofy, 2009, Ch. 3).
Architectural drift is a highly similar concept, where changes in the descriptive architecture
(other terms include implemented, realised and as-built architecture) may not be described in
the prescriptive architecture (also known as intended, defined, as-designed architecture and so
on) but do not actually violate it. ACC is therefore focussed on erosion but not on drift, as
the latter is by definition not detectable through violations. Static ACC tools use the modu-
lar decomposition of source code and dependency relations between these modules to check for
compliance with user-defined architecture rules (Pruijt, Köppe & Brinkkemper, 2013).

So where does ACC stop and SAR begin? Is the possession of existing architecture docu-
mentation the be-all and end-all distinction in these matters? Consider the following scenario:
we have no documentation and are trying to reconstruct a technical component of some software
system. We look through the source code, draw a number of diagrams on a white board and at
some point we think we might start to fathom at least a portion of the structural decomposi-
tion. What do we do? We verify our hypothesis, we try to find out whether our idea agrees with
reality. We check whether the architecture we just drew on the white board complies with the
actual architecture of the software system. So, how is that different from compliance checking?
The source of the hypothesis is documentation in the case of ACC or someone’s ideas with SAR,
that is essentially the distinction.

Because ACC and SAR blur together in such circumstances software tools intended for ACC
support may well be used for SAR purposes. This is a fundamental insight for this thesis (albeit
unlikely to be an original one), as it allows for a reconstruction approach with an ACC tool
at its very core. However, how does this translate to the chosen ACC tool used in this thesis,
HUSACCT?

3.2 SRMA & HUSACCT

As mentioned in Chapter 2, this thesis’ working tool is HUSACCT, developed by Leo Pruijt
at the University of Applied Sciences Utrecht as part of his PhD thesis at Utrecht University.
HUSACCT is obviously made for the purposes of Architecture Compliance Checking, but it can
also be used to support a re-engineer during the process of Software Architecture Reconstruction.
The reason why this is possible boils down to the argumentation as to why ACC and SAR overlap,
presented in Section 3.1.

HUSACCT’s distinctive characteristics include its support for rich sets of module and rule
types (Pruijt, Köppe, Van der Werf & Brinkkemper, 2014). It allows the user to define a software
architecture using a series of modules, rules and exceptions with relation to specific kinds of
dependencies. It then allows this architecture to be compared to the architecture as derived from
source code, in either Java or C#. By mapping the discovered software elements to the defined

1Implementation is used by IT managers, CEOs and information scientists to refer to a system being adopted
by and inserted into a real-life organisation, while they call the actual creation realisation. Developers and
computer scientists tend to think of realisation as too broad a term for the implementation of software design.
The question on the interchangeability of these terms is debatable though ultimately meaningless, in this student’s
humble opinion, due to the fluidity of language and semantics in the real world. Since academic writing demands
technical precision, this thesis will favour the information scientists’ terminology.
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architecture, violations of architecture rules can be identified by the user. Different severity
ranks may even be used to highlight certain types of violations over more minor irregularities.

Figure 3.1: The meta-model of Semantically Rich Modular Architectures (SRMAs).
Source: (Pruijt & Brinkkemper, 2014).

Seven tools for the purpose of ACC were compared by Pruijt, Köppe and Brinkkemper
(2013), when the first version of HUSACCT had already been created, showing that on average
74 % of dependency relations were discovered in a benchmark test. These tests resulted in
a series of recommendations, such as enriching violation messages with a severity ranking. It
partially underlines the strength of HUSACCT, with its semantic richness described in another
paper (Pruijt et al., 2014).

A portion of the meta-model of Semantically Rich Modular Architecture Compliance Check-
ing, as was published in a subsequent paper, is displayed in Figures 3.1 and 3.2, showing the
relationships between the different concepts. Figure 3.1 shows, for instance, that both modules
and rules consist of multiple types. Multiple rules can apply to the same module and a rule can
apply to any number of modules, albeit that exceptions are allowed. It is important to note that
a sub-module has only one parent module, although that parent can itself be a sub-module of
another individual parent module.

In Figure 3.2, the relationship between dependencies and violations is most relevant. Each
dependency is of a specific type and each violation breaks a specific type of rule.

SRMAs combine various types of modules with rule types to express architectural elements
and their constraints. This enhances expressiveness and supports architecture reasoning in terms
comparable to regular language (Pruijt & Brinkkemper, 2014). Using the module and rule types
understood by HUSACCT, we want to express architectural patterns.

HUSACCT supports the following types of software modules: subsystems, layers, compon-
ents, interfaces and external systems. Subsystems are modules with clear responsibilities. A layer
has the additional property of a hierarchical level, which enforces strict layering as HUSACCT
automatically adds rules banning skip-calls and back-calls to the relevant levels. Components
are modules whose contents are hidden behind and accessed through an interface module. Fi-
nally, external systems represent libraries, modules that are not actually part of the system
under consideration (Pruijt & Brinkkemper, 2014)(Pruijt et al., 2014).

The rule types can be placed in one of two categories: property rule types and relation
rule types (Pruijt & Brinkkemper, 2014). The former consists of conventions such as naming
and inheritance. Only the façade convention is used in this thesis. This convention states that
interface Module A always has to act as the interface for component Module B. The second
category, relation rule types, consists of a further subdivision into: “Is not allowed to use” and

11
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Figure 3.2: The meta-model of Architecture Compliance Checking. Source: (Pruijt &
Brinkkemper, 2014).

“Is allowed to use” rules, which are themselves two basic rule types that can be used to express
rules like “Module A is not allowed to use Module B”. These rule types are further explained
in Section 4.2.

In the next section, we will look at a brief illustration of what HUSACCT can do.

3.3 Running Example

Starting off, “we”, i.e. the architecture re-engineer(s), have the source code of an undocumented
system. Its software architecture is currently unknown and too large for a mere mortal to
comprehend by simply reading the code. What we do have, however, is the HUSACCT tool. It
allows us to study the static dependencies in the code, so that it is perfectly clear to us which
classes call on which, what inheritance relations hold, etc. This dependency analysis is all to a
certain degree of completeness, though, since no tool guarantees that all relations can be found.

Without any kind of documentation to go on, we would have to make several poorly suppor-
ted decisions. Depending on our process, we could start with grouping the most interconnected
modules, essentially assuming the system was designed with the guidelines of low coupling and
high cohesion in mind. We could allow naming conventions and regular expressions to guide
our efforts, slowly building up to an architecture that makes sense, i.e. complies with our biases
and preferences. Or perhaps we could use a tool/algorithm to identify design patterns, hoping
to come to a better understanding of the architecture that way.

Instead of a bottom-up approach, we could proceed in a top-down manner by defining large
modules first and determining which sub-modules fit them best. We could, for example, assume
the system was created with Module-View-Controller in mind and thus force the implemented
modules into this pattern. In order to do this properly, we might look at comments, names for
classes and methods, or perhaps external libraries that are accessed.

12
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One would presume that it is in the interest of the re-engineer to have as many options and
techniques available as possible, allowing him or her to select those most appropriate in a given
situation. Although static architectural patterns have been noted as a possible approach, their
use in a more bottom-up fashion seems, as of yet, underused in the scientific literature.

Ideally, we want to be told by a tool that the architecture under analysis contains a specific
architectural pattern. Instead of forcing Module-View-Controller upon a system, we want to
know how likely it is that this pattern was used and whether other patterns might actually be
more suitable.

Figure 3.3: The root, Analyse and Define folders in the HUSACCT v1.0 source directory.

If we look at Figure 3.3, we see some code files from HUSACCT 1.0, which was built in
2011. On the left is the root directory, and to the right are two components of the architecture
on display, namely Analyse and Define. The former is responsible for analysing an existing
system and registering as many of its dependencies as possible, while the latter is concerned
with the user defining an architecture to which the actual architecture can then be mapped
(either based on documentation in ACC or the user’s ideas in SAR). Just by looking at the
source code directory, we cannot be sure what the architecture looks like, as it would be a rather
crude guess. And yet, there is too much code within these folders (113,155 LOC) to go through
it all.

Using HUSACCT itself (version 4.1) to analyse these files, we get Figure 3.4. This is based
on package definitions within the Java code. There is no reason why this has to comply with the
source directory, but we can see that there is some similarity. Package definitions also do not
have to reflect the intended architecture, but as we will see, they most certainly might. Modules
are linked to each other by a variety of dependency types and sub-types. We can tell that
some elements are more interconnected than others. Although not yet known to HUSACCT,
Analyse and Define are modules of the component-type, which means they both have an interface
(IAnalyseService and IDefineService).

In a perfect world, either the directory structure or the packages/namespaces could show
exactly how the architecture was designed by corresponding to the appropriate modules. In-
stead of relying on these, one could rely on a clustering algorithm to create various modules
based on coupling. Since the re-engineer would have no knowledge of the number of modules,
the clustering approach would have to be one that determines an optimal amount of clusters
(e.g. hierarchical clustering). HUSACCT finds a large amount of dependencies compared to
many tools, including underused types such as Import statements(Pruijt, Koppe & Brinkkem-
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Figure 3.4: HUSACCT’s analysis of the two components, with the Analyse component
selected.

per, 2013)(Pruijt, Köppe & Brinkkemper, 2013), which provides a good basis for dependency
analysis and perhaps also clustering/layering.

Based on these modules, we want to make an educated guess as to what the original cre-
ator(s) intended for this system. We are going to attempt to do this by looking at architectural
patterns. The higher level modules are fed to a pattern matching algorithm that attempts
to map known architectural patterns to the dependency graph. Contrary to design patterns,
architectural patterns do not specify particular dependency types and imply an even greater
implementation variety. As such, pattern violations are to be expected and do little to indicate
that an architectural pattern was not intended. The pattern with the smallest number of viola-
tions should, however, be the most plausible one.

We use the following definitions, here and throughout the thesis:

Candidate pattern:
A particular mapping of software units to pattern modules in the defined architecture.

Pattern instance:
A pattern candidate that is genuinely part of the actual architecture.

As a result of the matching algorithm, we receive a list of architectural patterns, their map-
pings to various modules and the number of violations associated with each candidate pattern.
By studying the mapping and looking at module names, we can determine the most likely inten-
ded pattern instance. We subsequently come to the conclusion that two architectural patterns

14



Chapter 3: Architecture Reconstruction Utrecht University

Figure 3.5: A 5-Layered pattern in the Analyse component, with violations in red.

were used here: a slightly violated 5-Layered pattern in Analyse (Figure 3.5) and a more severely
violated 4-Layered pattern in Define (Figure 3.6).

Although one would not normally have architecture documentation in a reconstruction pro-
cess, the documentation of HUSACCT is available and these two pattern instances match the de-
scriptions rather well, including the violations of the pattern rules. Task (as shown in Figure 3.5)
is allowed to use Infrastructure for external libraries and Abstraction for export mechanisms.

The documentation on the Define component is incomplete for HUSACCT v1.0, so its pat-
tern would not be verifiable were we to use this example as a test. However, it does seem
like a similar layered structure, albeit one layer fewer. The most dubious set of relationships
is that going up from Task to Presentation, since here a layer is not circumvented (which is a
common exception with layered patterns), but a layer uses the layer above. It was confirmed by
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Dr. Pruijt, since he was HUSACCT’s primary creator, that these dependencies were unwanted
pattern violations of which he was well aware.

Figure 3.6: A 4-layered pattern in the Define component, with violations in red.

This process can be repeated within different parts of the architecture, which may contain
multiple patterns, more complex (user-defined) patterns, or unhelpful names in their package
definitions. If successful, one can thus come to a greater understanding of the intended archi-
tecture. As such, this thesis’ approach stands out from similar approaches due to the fact that
it looks at architectural patterns specifically instead of focussing on design patterns and that it
relies on HUSACCT, which incorporates many types and sub-types of static dependency rela-
tions as well as various types of modular elements. This latter aspect allows for rich definitions
of architectural patterns in terms of components, subsystems, layers and external libraries.

In the next chapter, we will look at architectural patterns; at how they relate to design
patterns and how they can be defined in terms of HUSACCT’s architectural language.
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Architectural Patterns

Architectural patterns are a kind of reusable software design intended to prevent architects and
developers from trying to reinvent the wheel. Architectural patterns establish the relationship
between a context, a problem and a solution (Bass et al., 2012, Ch. 13). Throughout the scientific
publications, the various terms for these patterns are favoured by different authors, such as
architectural styles instead of patterns. Some authors may consider there to be a distinction
between styles and patterns, e.g. Taylor et al. (2009), whereas others may simply consider them
to be interchangeable concepts. Throughout most of the thesis, architectural pattern will be
the preferred terminology, as this is more similar to the term design pattern. Since these two
kinds of pattern may be considered extremes of the same spectrum, with architectural patterns
representing system level design and design patterns more detailed design, similar sounding terms
seem most appropriate. The two kinds of pattern represent the same idea (proven, maintainable,
scalable, reusable design), though on a different level of abstraction whilst lacking complete
clarity on what would be the distinguishing level.

We do use a notion of style, though. We take style to be the overall pattern, such as layering.
This really only becomes relevant if we are concerned with additional patterns as well, such as
when this layered style contains more detailed patterns within the layers.

Figure 4.1: An example of a Layered pattern. Source: Bass et al. (2012, Ch. 13).
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Architectural patterns exist on a high level of abstraction, which means that they have a less
concrete mapping to source code than other kinds of reusable design. To illustrate what such a
pattern would look like, let us take a relatively straightforward pattern. Figure 4.1 is an example
of an N-Layered pattern. Specifically, this is a 3-Layered solution with additional segmentation
within the layers. A pattern is incomplete without architectural rules, which forbid some of
the pattern’s modules from interacting. Often, architecture rules connected to such a pattern
are not apparent in such a diagram. In this particular case, the “Not allowed to use” rules, or
however else one might formulate them, are completely absent, but the main point of a layered
architecture is that classes within a layer may only call on classes in that same layer or the layer
below. They may not call on the layer above (back-calls) and they may not circumvent a layer
(skip-calls). UI is not to call on Data Access, Business Logic is not to call on UI and Data
Access is not supposed to call on either of the other layers.

If this were the architecture of an existing system and its software producer wished to build
another type of system that would work differently underwater but utilise the same user interface,
it would be fairly convenient to simply take the UI layer and reuse it. Not only would the layer
be a single structure, its connections to the other layers ought to be relatively simple. As long
as the pattern was used correctly, the UI layer should only be connected to the Business Logic
layer thanks to the skip-call rule, and only in one direction of dependency thanks to the back-call
rule. Similarly, the same system can be smoothly shifted from a standalone to a browser-based
interface by replacing the UI layer.

This is just an example of reusability being benefited, but similar advantages apply to attrib-
utes like maintainability and extensibility, to mention two examples. All in all, this architectural
pattern essentially adds the benefits of object-oriented design to a modular software architecture.

Another well-known architectural pattern is presented in Figure 4.2: the Model-View-Controller
pattern. There happens to be some similarity between this pattern and the diagram in Figure 4.1,
because of the separation of the presentation portion of the system into a module of its own.
The same principle of the diagram merely implying architectural rules is at work here. The idea
is that the allowed dependencies are, in fact, the only dependencies that are allowed between
these three parts of the system.

This pattern is sometimes described as a combination of three design patterns, a class of
patterns discussed in the next subsection.
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Figure 4.2: An example of a Model-View-Controller pattern. Source: Bass et al. (2012,
Ch. 13).

4.1 Design Patterns

Design patterns were first introduced by the so-called Gang of Four (GoF), Gamma, Helm,
Johnson and Vlissides (1994). Each design pattern describes a template for solving a particular
object-oriented software design problem, accompanied by motivations and consequences. They
are essentially well-documented solutions to common problems, establishing a terminology and
promoting reuse of the designs of others. Examples are the Adapter pattern (Figure 4.3), which
includes converting an interface into one or more usable by client classes, and the Bridge pattern
(Figure 4.4), which says to decouple an abstraction from its implementation in order to allow
both to vary (Shalloway & Trott, 2004). There is no need to go into further detail here, suffice
it to say that design patterns are established instruments in software systems design, even if
there are some who object against relying too much on them.

Design patterns can be relevant to SAR and ACC since they are so widely used in software
design that recognising them can assist the re-engineer in understanding the intended architec-
ture. Design patterns tend to be more familiar to developers than architectural patterns, which
are more the domain of software/system architects. However, architecture reconstruction ap-
proaches that use patterns in some way, whether as input or as output, tend to use either of the
two types of pattern. In order to evaluate existing approaches to pattern-based reconstruction,
it is imperative that the distinction between the two kinds is abundantly clear. We identify the
following five distinguishing characteristics: scale, specificity, frequency, strictness, and the sign
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Figure 4.3: A generic depiction of the Adapter pattern. Source: Shalloway and Trott
(2004).

Figure 4.4: A generic depiction of the Bridge pattern.
Source: Shalloway and Trott (2004).

of rules. Some of these characteristics might be seen as consequences of the difference in scale,
in fact. They represent our response to the questions asked about the distinction between the
two kinds of pattern raised in Chapter 13 of the book by Bass et al. (2012).

Scale: Design patterns tend to be about individual classes of code or perhaps small aggreg-
ates of such classes, whereas an architectural pattern might split a whole system into a number
of divisions. Thinking of the modular hierarchy as a tree, architectural patterns exist near the
root, whereas design patterns exist near the leaves. This is by no means a clear division, however,
since design patterns can exist on several levels of abstraction and an element in an architectural
pattern may well be identified with a large class in the source code. Although in the latter case,
this class is likely to be massive in size and might have an extremely low cohesion, i.e. it does
too many different things. This is strongly in line with the emphasis on cohesion and coupling
in the book by Shalloway and Trott (2004) about design patterns. If this were true in all cases,
one could state that when a single class corresponds to a single element of an architectural
pattern one-to-one, then that class has been poorly written according to object-oriented design
principles. But this is by no means an exhaustive or accepted rule.

Specificity: Design patterns are concerned with properties of rather high granularity, such
as class abstraction, method visibility and instantiation (like in Figure 4.3). One class is supposed
to be the child of another and it is clear which class instantiates this child. Architectural patterns,
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on the other hand, speak of software elements in much broader and vaguer terms (Figure 4.1).
There is no mention of instantiation or inheritance here. This implies that the existence of
specific properties of small scale has little or no relation to the existence of architectural patterns.
Another way of phrasing this might be that architectural patterns are more language agnostic
than design patterns.

Frequency: If an application has been made with object-oriented design principles in mind,
one would expect to see the same design patterns over and over again. A large system may
contain the Bridge pattern from Figure 4.4, for example, hundreds if not thousands of times.
See Dong, Sun and Zhao (2008) for examples of phenomenon. Such a system may also contain
several instances of the same or similar architectural patterns, but it is unlikely that these will
be anywhere near as frequent. Approaches that look for frequent patterns therefore have a
significant disadvantage when trying to identify architectural patterns.

Strictness: One might come up with one’s own version of a particular design pattern, but
this is not highly encouraged among developers. Most deviations from a design pattern are
simply taken to be rule violations. Books like those by Gamma et al. (1994) and Shalloway
and Trott (2004) do not claim that there are no more design patterns to be formulated, but the
specificity of their pattern definitions do imply a kind of strictness. The rules of an architectural
pattern, however, are almost literally made to be broken, in the sense that exceptions are to
be expected. This implies that the number and nature of violations of a pattern’s rules are
far more relevant for identifying architectural patterns than for design patterns, the latter of
which could often be found by looking for an exact match. A useful design pattern detection
algorithm may be unable to identify a previously unknown variation; an architectural pattern
detection algorithm that only recognises instances of strict adherence to the patterns’ rules is
quite useless.

Sign: The specification of design patterns is usually about which classes use which, who
instantiates whom and what the method calls ought to be. Compare Figures 4.3 and 4.1, for in-
stance. Architectural patterns’ rules contradict this observation, as they tend to be most clearly
and concisely explained using negations of legality: this layer is not allowed to call on that layer,
these modules are not supposed to use those modules directly, etc. These rules can be said to
be of a different sign, meaning that they are negative whereas the design patterns’ rules are
positive, which implies that architectural patterns are more so defined by the absence of certain
relationships than by their presence. Nevertheless, as is discussed later on, architectural patterns
can make use of “positive” rules in order to enforce that a collection of architectural elements
actually constitutes an architectural pattern, as opposed to being merely a set of elements that
happen not to break any rules.

In short, design patterns are usually small, specific, common and strict, whereas architectural
patterns are far more grand, vague, uncommon and loosely defined. Additionally, architectural
patterns might be better described using bans, instead of requirements, than design patterns.
With architectural patterns sufficiently distinguished from design patterns, the following section
will look at the specific definition of architectural patterns within HUSACCT’s framework of
available rules and modules.

4.2 Pattern Definition

As has already been noted, architectural patterns could be defined using HUSACCT’s termin-
ology of rules and exceptions. This is, however, not entirely clear cut. HUSACCT essentially
links two graphs: the one defined by the realised architecture and the one defined by the user.
We wish to replace that defined architecture with an architectural pattern in order to look for
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Table 4.1: The 7 relation rule types, split into two sub-categories.

Is not allowed to use
Is not allowed to back-call (layers)
Is not allowed to skip-call (layers)

Is allowed to use
Is only allowed to use
Is the only module allowed to use
Must use

that pattern in the realised architecture. The realised architecture contains the software units
(which may themselves have sub-units, so it is a special kind of graph that allows for this)
linked by software dependencies. The pattern contains pattern modules linked by rules about
the legality of dependencies. When software units are mapped unto the pattern modules, these
dependencies may or may not conflict with these rules.

HUSACCT contains the following rule types in its framework: “Is not allowed to use”,
“Is only allowed to use”, “Is the only module allowed to use”, “Must use” and three kinds of
convention (inheritance, naming and visibility). These conventions are most likely not relevant
to any architectural pattern, although names could play a role in identifying pattern modules.
There is also the “Is allowed to use” rule type, but this is only used to define an exception to
one of the aforementioned rules.

The other rule types, which of course each refer to two modules, are not completely mutually
exclusive. In fact, three of these rule types can be equivalent in particular contexts. The
exception is the “Must use” rule type, which cannot be precisely expressed using the other
three. This type of rule should be a trivial part of any pattern definition, since modules are not
part of the same pattern if there are no correct dependencies between them at all. Counting
the number of violations is, therefore, not enough. The seven relation rule types are depicted in
Table 4.1.

There are three additional rule types that are only available within HUSACCT’s intended
architecture definition functionality when a specific module type has been chosen. These are:
“Is not allowed to skip-call” and “Is not allowed to back-call” for layer modules and the façade
convention for component modules. This latter convention simply enforces that an interface
module should act as the interface (or façade) for a component-type module. These rule types
may therefore also be used within pattern definitions, but only if the respective module types
are used within the pattern.

To illustrate how some rule types are equivalent, let us once again take the 3-Layered pattern
as an example, because of its simplicity and straightforwardness.

There are three layers and the following rules are how one would naturally express the pat-
tern in terms of skip- and back-calls:

Rule set 1, Skip-calls and back-calls:

1. Layer 1 is not allowed to skip-call to Layer 3.

2. Layer 2 is not allowed to back-call to Layer 1.

3. Layer 3 is not allowed to back-call to Layer 2.

4. Layer 3 is not allowed to back/skip-call to Layer 1.
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This formulation is already a step up from the generic “skip- and back-calls are not allowed,”
but HUSACCT would require a more precise formulation still, in terms of its rule types, in order
to be able to work with such a pattern definition in general. The fact that HUSACCT’s layer-
type modules possess hierarchical levels that constrain dependencies already suggests one way
of defining the N-Layered pattern. However, we want to be able to use other module types as
well, e.g. in order to use component-type modules as layers. Which means we have to translate
this set to one consisting of rules that do not rely on hierarchical levels.

A translation to “Is not allowed to use” rules would result in the following set of architectural
rules for this pattern:

Rule set 2, “Is not allowed to use”:

1. Layer 2 is not allowed to use Layer 1.

2. Layer 3 is not allowed to use Layer 2.

3. Layer 3 is not allowed to use Layer 1.

4. Layer 1 is not allowed to use Layer 3.

This set of rules could also be formulated in terms of the “Is only allowed to use” rule type,
namely as follows:

Rule set 3, “Is only allowed to use”:

1. Layer 1 is only allowed to use Layer 2.

2. Layer 2 is only allowed to use Layer 3.

3. Layer 3 is not allowed to use Layer 1.

4. Layer 3 is not allowed to use Layer 2.

This third rule set appears to signify the exact same pattern as the previous two. However,
what happens when this set is used as a pattern definition within a system’s architecture? Let us
imagine the rest of the architectural elements of this system as a single module, the Remainder.

The Remainder:
All architectural elements that are not part of the architectural pattern under consideration.
These elements are not sub-modules of any of the pattern’s modules and are not mapped to
the pattern. The Remainder is a collective term that depicts the non-pattern architecture
as a single module. As such, the Remainder is also with respect to some pattern.

According to the first set of rules, the Remainder can call on any of the layers within the
3-Layered pattern and any of these layers can call upon the Remainder. This is depicted in
Figure 4.5. “Must use” rules have been added as well, in order to make sure that the layers
depend on each other the right way. Each layer must use the next. Otherwise, it would not be
much of a 3-Layered pattern.

To graphically depict the patterns, we adopt a UML-like syntax. Expanded packages rep-
resent architectural elements, i.e. pattern modules and the Remainder. Collapsed packages
indicate sub-modules. Legal dependencies are represented by dashed lines and directed associ-
ations figure as the architectural rules. Additional symbols are used to indicate the rule type
being employed, as depicted in Table 4.2. Conflicting rules result in exceptions. HUSACCT
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Figure 4.5: The 3-Layered pattern and the Remainder, defined with “Is not allowed to use”
rules and showing allowed dependencies as dashed lines.

Table 4.2: This legend presents the different rule types for the provisional diagram notation
used here.

“Is not allowed to use” X

“Is only allowed to use” O

“Is the only module allowed to use” |

“Is allowed to use”

“Must use” !

allows for rule exceptions by specifying the module that is exempt from the given rule(Pruijt
et al., 2014). So if “Module A is the only module allowed to use Module B” and “Module C
must use Module B” are both true, it is implied that Module C is an exception to the first rule.
In essence, the first rule should be understood as “Module A is the only module allowed to use
Module B, except for Module C”.

If one were to use the third rule set, which makes use of the “Is only allowed to use”
rule type, the situation changes to what is shown in Figure 4.6. Only Layer 3 is allowed to
use the Remainder now, because the other two layers are only allowed to use the layer below
themselves. But the Remainder, i.e. the rest of the system, can still make use of any of these
layers, without restriction. Evidently, equivalent rule types turn out to be not so equivalent at
all when additional architectural elements come into play.

Let us now consider the third type of rule, “Is the only module allowed to use.” The same
initial set of architectural rules would then be transformed into:
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Figure 4.6: The 3-Layered pattern and the Remainder, defined with “Is only allowed to
use” rules.

Rule set 4, “Is the only module allowed to use”:

1. Layer 1 is the only module allowed to use Layer 2.

2. Layer 2 is the only module allowed to use Layer 3.

3. Layer 3 is not allowed to use Layer 1.

This is slightly more concise, but it is almost trivial to see that this changes the situation in
a profound manner when one includes a Remainder, as is apparent from Figure 4.7. Now, the
Remainder is only able to utilise Layer 1, while any of the layers can call on the Remainder.

These supposedly equivalent sets of architectural rules create very specific nuances when it
comes to the interaction with the rest of the architecture, all while the inherent rules of the
N-Layered pattern, skip-call and back-call illegality, are correctly observed.

One might even prefer a hybrid form, such as the one displayed in Figure 4.8 and in the
following rule set 5.

Rule set 5, Hybrid example:

1. Layer 1 is the only module allowed to use Layer 2.

2. Layer 2 is only allowed to use Layer 3.

3. Layer 3 is not allowed to use Layer 1.

4. Layer 1 is not allowed to use Layer 3.

This last interpretation of the 3-Layered pattern creates a scenario where the Remainder can
call upon Layers 1 and 3, but not 2, while Layer 2 is the only layer that cannot communicate
with the Remainder. This version essentially isolates Layer 2, while leaving a lot of freedom to
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Figure 4.7: The 3-Layered pattern and the Remainder, defined with “Is the only module
allowed to use” rules.

_

O

X

!

!

X

Figure 4.8: The 3-Layered pattern and the Remainder, defined with two different rule types
(see rule set 5).

the other two layers.

Layer-type modules are special within HUSACCT, because they automatically receive rules
that refer to their respective hierarchical numbers. This means that the back- and skip-call
rules are actually implied by creating modules as layers. This implied rule set, generated by
HUSACCT, is equivalent to the “Is not allowed to use” rule set from before. Whether this
interpretation of the N-Layered pattern would be desirable is left up to the user.
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4.3 Pattern Catalogue

In Section 4.2, it was described how architectural patterns can be defined in terms of HUSACCT’s
architecture rules, with respect to the various rule types that the ACC tool uses as part of its
SRMA support. In the current section, the lessons learnt from Section 4.2 are applied to form
a collection of architectural patterns for subsequent usage: a pattern catalogue, as it were.

Within the Java realisation of HUSACCT’s reconstruction facilities, an abstract pattern class
is used as a generic realisation of the architectural pattern. This source code is displayed in its
entirety in Code Sample B.1, but can be summarised as follows:

// Abstract pattern class , parent of all architectural pattern classes.

public abstract class Pattern {

protected ArrayList <SoftwareUnitDTO > unitsToMap;

protected ArrayList <ModuleDTO > patternModules;

// Add modules to the intended architecture in line with an architectural

pattern.

protected abstract void defineModules ();

// Add rules to the intended architecture that apply to the pattern modules

and form part of the pattern.

protected abstract void defineRules ();

protected abstract void defineMustUseRules ();

// Map specific SoftwareUnitDTOs from the analysed application to the defined

pattern modules.

public abstract void mapPattern(ArrayList <String > patternNames);

public abstract void mapPatternAllowingAggregates(Map <Integer , ArrayList <

String >> patternUnitNames);

}

Code Sample 4.1: The abbreviated source code for the abstract Pattern class.

The abstract class contains methods to add rules (with or without exceptions) and a series
of protected attributes, which are mostly services needed by the child classes. The patterns thus
depend heavily on inheritance. Abstract child classes represent general pattern (N-Layered,
MVC, Broker), whereas their children are actual interpretations of these patterns. The abstract
children typically define “Must use” rules, pattern modules and the methods that allow for the
mapping of software units. If such pattern classes are to be created dynamically in the future,
the decorator pattern may be a useful design pattern. But since this would not add anything
at the moment and since this hypothetical future realisation would likely require rewriting,
or at least refactoring, anyway, two layers of inheritance was considered sufficient in terms of
Object-Oriented design.

Each pattern subsequently created must fulfil the requirements of this abstract class. These
include the definition of pattern modules within the intended architecture, much like a human
user would do manually in HUSACCT’s Define intended architecture window. When modules
are created, they require certain specifications, depending on and including the module type.

For example, a layer-type module requires an integer argument known as the hierarchical
level. This argument determines whether this layer would be the top layer (level = 1), the one
below (level = 2) and so on. Similarly, a component-type module demands an interface, which is
a particular class that fulfils HUSACCT’s façade convention for the rest of the component. The
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word component is used for all sorts of concepts within IT and beyond, but it has a very specific
meaning here: a component is a kind of module that is only accessed through an interface class.
HUSACCT requires this interface be defined when a component is added.

N-Layered Pattern

As explained in Section 4.2, several interpretations of the N-Layered pattern are possible, where
it was shown that pattern definitions relying on the various rule types may not be equivalent as
long as there is a Remainder. None of these seemed to match the idea of layered architectures
significantly better than the others, so they are all deemed valid variants of this architectural
pattern. The naming of these pattern definitions is not particularly fascinating, one might simply
list a few (there are many more possibilities) of them as follows:

• N-Layered pattern (Layered Types): equivalent to Complete Freedom, but with actual
layer-type modules. Corresponds to Rule Set 1 and Code Sample B.7.

• N-Layered pattern (Complete freedom): there are no restrictions with regard to the
Remainder. Corresponds to Figure 4.5, Rule Set 2 and Code Sample B.4.

• N-Layered pattern (Free Remainder): the Remainder can call on any layer. Corres-
ponds to Figure 4.6, Rule Set 3 and Code Sample B.5.

• N-Layered pattern (Restricted Remainder): the Remainder cannot call on any layer.
Corresponds to Figure 4.7, Rule Set 4 and Code Sample B.6.

• N-Layered pattern (Isolated internal layers): intermediary layers are never called
by and can themselves not call on the Remainder. Corresponds to Figure 4.8, Rule Set 5,
and Code Samples 4.3 and B.3.

As mentioned earlier, 3-Layered, 4-Layered and 5-Layered patterns are all essentially the
same and convey the same idea of strict layering. The N-Layered pattern is, therefore, the exact
same pattern as far as the realisation is concerned and the value of N is merely an argument
for the pattern class’ constructor. The different interpretations of the N-Layered pattern are
implemented as subclasses of an abstract N-Layered pattern class (Code Sample 4.2 for the
summary, B.2 for the full code), itself a child of the abstract pattern class. As per example, the
N-Layered (Isolated internal layers) pattern definition source code is displayed in Code Sample
B.3 and summarised in Code Sample 4.3.

public abstract class LayeredPattern extends Pattern {

// The abstract class for all N-Layered patterns. Constructor and mapping

methods can be defined here , as well as "MustUse" rules.

@Override

protected void defineModules () {

for (int i = 1; i <= numberOfModules; i++) {

defineService.addModule("Layer" + i, "**", "Subsystem", i, null);

}

}

@Override

protected void defineMustUseRules () {

for (int i = 1; i < numberOfModules; i++)

addSingleRule("Layer" + (i + 1), "Layer" + i, "MustUse", null);

}
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@Override

public void mapPattern(ArrayList <String > mapping) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

for (int i = 1; i <= mapping.size(); i++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get(i - 1)));

defineService.editModule("Layer" + i, "Layer" + i, i, temp);

temp.clear();

}

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int i = 0; i < patternUnitNames.size(); i++) {

for (int j = 0; j < patternUnitNames.get(i).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(i).get(j)));

}

defineService.editModuleWithAggregation("Layer" + (i + 1), "Layer" + (i +

1), i + 1, temp);

temp.clear();

}

}

}

Code Sample 4.2: The abbreviated source code for the abstract class of the N-Layered
pattern.

public class LayeredPattern_IsolatedInternalLayers extends LayeredPattern {

// The version of the N-Layered pattern in which the internal layers are

isolated from the Remainder.

@Override

protected void defineRules () {

for (int i = 1; i < numberOfModules; i++) {

addSingleRule("Layer" + i, "Layer" + numberOfModules , "IsNotAllowedToUse",

null);

if (i == 1) {

addSingleRule("Layer" + 2, "Layer" + 1, "IsTheOnlyModuleAllowedToUse",

null);

} else {

addSingleRule("Layer" + (i + 1), "Layer" + i, "IsOnlyAllowedToUse", null

);

}

}

}

@Override

protected void defineModules () {

for (int i = 1; i <= numberOfModules; i++) {

defineService.addModule("Layer" + i, "**", "Subsystem", i, null);

}

}

}

Code Sample 4.3: The abbreviated source code for one interpretation of the N-Layered
pattern, namely the case with isolated internal layers.
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MVC Pattern

The Model-View-Controller (hereafter MVC) pattern is considered to be a design pattern by
some, but it also exists on a system level. As such, it can be used to separate graphics/present-
ation/UI logic from the underlying model logic by restricting communication between the two.
A Controller acts as a mediator between them, with the essential restriction that Model cannot
use Controller (Bass et al., 2012).

Multiple interpretations of MVC exist, since many interpretations and adaptations of this
pattern occur in the field. For example, sometimes the View incorporates the concerns of the
Controller, leaving only two modules in this MVC version. Also, whereas the rule that Model
cannot depend on Controller seems rather well accepted, it is unclear whether Model can depend
on View and vice versa. If it cannot, there is a clear separation of concerns. However, a common
interpretation of the pattern states that View can perform a state query on Model and that Model
can update View (e.g. Bass et al. (2012)). One way of solving this is to distinguish between
allowing a dependency to exist and requiring it to.

The MVC pattern is often confused with the MVP (Model-View-Presenter) pattern(Qureshi
& Sabir, 2014)(Potel, 1996). View and Model are completely decoupled in MVP. One would be
inclined to suspect an instance of MVC when these three module names appear in, for example,
Java package definitions. However, it might actually be more akin to MVP dependency-wise.
Two possible interpretations of these patterns can be formulated as follows:

Rule set 6, interpretation of classic MVC:

1. Controller must use Model.

2. Controller must use View.

3. View must use Model.

4. Model is not allowed to use Controller.

5. If Model is not allowed to use View,
violations should only be change updates.

6. If View is not allowed to use Controller,
violations should all be triggered by user actions.

Rule set 7, interpretation of MVP:

1. Presenter must use Model.

2. Presenter must use View.

3. View is not allowed to use Model.

4. Model is not allowed to use View.

5. Model is not allowed to use Presenter.

We focus on the classic MVC pattern. It is clear that different interpretations of MVC would
lead to several SRMA pattern definitions for this pattern as well. In fact, such ambiguity should
be expected for all architectural patterns and this is precisely what we want to address with our
research.

The most obvious three versions are a) complete freedom with regards to the Remainder for
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all three modules, and b) only the Controller module is allowed to have dependencies going to and
from the Remainder and c) Model takes on this interface role. The second can be deemed more
obvious than to have the same arrangement with either the View- or Model-module, because
the Controller is supposed to be the counterpart that is in control of the other two, as the
name implies. It would, therefore, make sense that the Controller would operate as an interface
for the whole pattern. Albeit perfectly reasonable that one would consider Model to be more
suitable for this position, since one can make the argument that Controller merely controls the
interaction between Model and View, whereas Model houses all the model data.

Furthermore, would this mean that the entire pattern should be viewed as a component,
with the Controller as its interface? If not, should this pattern be defined so that Model and
View are isolated from the Remainder, or not? These different interpretations imply, once again,
distinct possible pattern definitions.

public abstract class MVCPattern extends Pattern {

// The abstract class for all Model -View -Controller patterns. Constructor and

mapping methods can be defined here , as well as "MustUse" rules and

// the modules themselves.

@Override

protected void defineModules () {

defineService.addModule("Model", "**", "Subsystem", 1, null);

defineService.addModule("View", "**", "Subsystem", 1, null);

defineService.addModule("Controller", "**", "Subsystem", 1, null);

}

@Override

protected void defineMustUseRules () {

addSingleRule("Model", "Controller", "MustUse", null);

addSingleRule("Model", "View", "MustUse", null);

addSingleRule("View", "Controller", "MustUse", null);

}

@Override

public void mapPattern(ArrayList <String > mapping) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (0)));

defineService.editModule("Model", "Model", 1, temp);

temp.clear ();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (1)));

defineService.editModule("View", "View", 1, temp);

temp.clear ();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (2)));

defineService.editModule("Controller", "Controller", 1, temp);

temp.clear ();

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int j = 0; j < patternUnitNames.get (0).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(0).get(j)));

}

defineService.editModuleWithAggregation("Model", "Model", 1, temp);

temp.clear ();

for (int j = 0; j < patternUnitNames.get (1).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(1).get(j)));
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}

defineService.editModuleWithAggregation("View", "View", 1, temp);

temp.clear();

for (int j = 0; j < patternUnitNames.get (2).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(2).get(j)));

}

defineService.editModuleWithAggregation("Controller", "Controller", 1, temp)

;

}

}

Code Sample 4.4: The shortened source code for the abstract Model-View-Controller pattern
class

There can, obviously, be many different interpretations of this pattern and a few of these
were realised. The abstract class is depicted in Code Sample B.8 (with a brief impression of the
most important methods in Code Sample 4.4) and the following list describes its subclasses. The
abstract class defines the modules and the “Must use” rules, as well as the mapping methods.
Of course, one could come up with many more interpretations and the previously mentioned
distinction with the MVP pattern means that there are similar versions possible for MVC-
inspired patterns as well. Let us not go into all of these non-classic MVC patterns too, as it
would be rather tedious and unenlightening.

• MVC Pattern (Controller Interface): Both the Model- and the View-module are
inaccessible to the Remainder, nor can the Remainder be used by them. Corresponding to
Figure 4.9 and Code Sample 4.5.

• MVC Pattern (Model Interface): Both Controller and View are inaccessible to the
Remainder, nor can the Remainder be used by them. Corresponding to Figure B.4 and
Code Sample B.12.

• MVC Pattern (Complete Freedom): There are no restrictions with regard to the
Remainder. Corresponding to Figure B.1 and Code Sample B.9.

• MVC Pattern (Free Remainder): Model and View are accessible to the Remainder,
but they are themselves not able to circumvent Controller. Corresponding to Figure B.2
and Code Sample B.10.

• MVC Pattern (Restricted Remainder): Model and View can depend on the Re-
mainder, but they are inaccessible for that Remainder. Corresponding to Figure B.3 and
Code Sample B.11.
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Figure 4.9: The Controller Interface interpretation of the classic MVC pattern.

package husacct.analyse.task.reconstruct.patterns;

public class MVCPattern_ControllerInterface extends MVCPattern {

public MVCPattern_ControllerInterface () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("Controller", "View", "IsOnlyAllowedToUse", "Model");

addSingleRule("View", "Model", "IsOnlyAllowedToUse", null);

addSingleRule("Model", "Controller", "IsTheOnlyModuleAllowedToUse", "View");

addSingleRule("View", "Controller", "IsTheOnlyModuleAllowedToUse", "Model");

}

}

Code Sample 4.5: The source code for the Model-View-Controller (Controller Interface)
pattern class.

Broker Pattern

Let us discuss one more common architectural pattern: the Broker pattern. Part of the concep-
tual essence of this pattern is that a set of modules which require several services from other
modules are placed in one particular pattern module. This module, called Client(s) or Re-
quester(s), makes use of the necessary services within the module that is often called Service(s),
but also Provider(s). In this thesis, they are referred to as Requester and Provider.

Regardless of this naming, the fundamental idea is that these two are separated by a module
called Broker. As its name suggests, this module brokers between the two and, by doing so,
shields the two from each other. The Requester software units might require many different
actions from the Provider software units, such as various data processing tasks, depending on
different possible types of input. The Broker prevents the need for the Requester’s software units
to all be aware of the numerous services and when to call on which. All the service selection logic
can be handled in one central location, the Broker, with the Requester simply communicating
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its needs. In summation, the Broker pattern is an exemplary embodiment of the separation of
concerns, one of the pillars of object-oriented design principles.

As with the Model-View-Controller pattern, it is not totally unambiguous how the ideas of
the Broker pattern are to be interpreted. One relatively obvious way to look at it might be that
the Broker pattern is an alteration of this Model-View-Controller pattern, since Requester and
Provider do not talk just like Model and View do not, with the difference being that not Broker
but Requester seems to be the most suitable interface with the rest of the architecture. After
all, the Requester requests a service from the Broker based on some functionality that has come
before. It is the Requester that asks for something, not the Broker that decides that the Client
ought to be doing something.

public abstract class BrokerPattern extends Pattern {

@Override

protected void defineMustUseRules () {

addSingleRule("Provider", "Broker", "MustUse", null);

addSingleRule("Broker", "Requester", "MustUse", null);

}

@Override

protected void defineModules () {

defineService.addModule("Broker", "**", "SubSystem", 1, null);

defineService.addModule("Provider", "**", "SubSystem", 1, null);

defineService.addModule("Requester", "**", "SubSystem", 1, null);

}

@Override

public void mapPattern(ArrayList <String > mapping) {

IAnalyseService analyseService = ServiceProvider.getInstance ().

getAnalyseService ();

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (0)));

defineService.editModule("Broker", "Broker", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (1)));

defineService.editModule("Provider", "Provider", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (2)));

defineService.editModule("Requester", "Requester", 1, temp);

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

IAnalyseService analyseService = ServiceProvider.getInstance ().

getAnalyseService ();

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int i = 0; i < patternUnitNames.size(); i++) {

for (int j = 0; j < patternUnitNames.get(i).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(i).get(j)));

}

if (i == 0)

defineService.editModuleWithAggregation("Broker", "Broker", 1, temp);

else if (i == 1)

defineService.editModuleWithAggregation("Provider", "Provider", 1, temp)

;

else if (i == 2)

defineService.editModuleWithAggregation("Requester", "Requester", 1,

temp);
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temp.clear();

}

}

}

Code Sample 4.6: The source code summary for the abstract Broker pattern class.

The abstract pattern class for the Broker pattern is depicted in Code Sample 4.6 (B.13 for
all methods and attributes) and various interpretation are presented in the following list:

• Broker Pattern (Requester Interface): Both the Broker- and the Provider-module
are inaccessible to the Remainder, nor can the Remainder be used by them. Corresponding
to Figure 4.10 and Code Sample 4.7.

• Broker Pattern (Complete Freedom): There are no restriction with regard to the
Remainder. Corresponding to Figure B.5 and Code Sample B.14.

• Broker Pattern (Free Remainder): Broker and Provider are accessible to the Re-
mainder, but they are themselves not able to bypass Requester. Corresponding to Figure
B.6 and Code Sample B.15.

• Broker Pattern (Restricted Remainder): Broker and Provider can depend on the
Remainder, but they are themselves inaccessible for this Remainder. Corresponding to
Figure B.7 and Code Sample B.16.

!! _ _

O O

Figure 4.10: The Requester Interface interpretation of the Broker pattern.

package husacct.analyse.task.reconstruct.patterns;

public class BrokerPattern_RequesterInterface extends BrokerPattern {

// In this interpretation , the Requester acts as an interface for the other

two modules.

public BrokerPattern_RequesterInterface () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("Requester", "Broker", "IsOnlyAllowedToUse", "Provider");

addSingleRule("Provider", "Broker", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("Broker", "Provider", "IsOnlyAllowedToUse", null);
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addSingleRule("Broker", "Requester", "IsTheOnlyModuleAllowedToUse", "

Provider");

}

}

Code Sample 4.7: The source code for the Broker (Requester Interface) pattern class.

Other patterns might be formulated in the same way, let alone additional interpretations of
the three mentioned patterns, but these patterns were deemed enough to make the point that
architectural patterns can be defined by means of the SRMA supporting architectural elements
as used by HUSACCT. It leads one to think of how to interpret each pattern and how it ought
to be used by being forced to contemplate and choose between the different rule types. New
patterns can be added, even entirely novel pattern that not yet exist in literature, in the manner
demonstrated here. Figure 4.11 shows an overview of the class hierarchy.
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Figure 4.11: The class diagram of the realised architectural patterns within the Reconstruct package, generated using the ObjectAid
UML Explorer plug-in (www.objectaid.com) for the Eclipse IDE.
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Chapter 5

Proposed Approach

Now that the essential concepts have been described and pattern definitions within the frame-
work of HUSACCT’s SRMA support have been shown, the envisioned approach by which these
architectural patterns might be discovered is provided. This is where the bulk of the literature
study can be presented, since most of it relates to existing approaches related to this thesis.

5.1 Patterns in SAR

The researched literature has influenced the choice of terminology used here. Although archi-
tectural pattern is the preferred term in the rest of the thesis, the terminology of each particular
paper is temporarily adopted when discussing that paper as part of the literature study in this
section.

In order to provide an overview of related literature concerning architectural patterns, the
evolution of this concept and its gradual adoption into the field of Software Architecture Recon-
struction is illustrated here. An early example of architectural patterns being used in scientific
literature is by Abowd, Allen and Garlan (1993). They introduce the notion of architectural
styles, which consist of precise syntactic and semantic descriptions of both static and dynamic
characteristics. A deep understanding of a style and its constraints can then be used for formal
analysis of that style, studying potential sub-styles and comparing it with other styles. The
paper’s appendix briefly explains the Z language, which is the mathematical notation they use
to define styles and which is strongly based on predicate logic. Similar notations are used by
other papers to express the various components, connectors and constraints of patterns.

A paper by Garlan, Allen and Ockerbloom (1994) is also strongly concerned with architec-
tural styles, identifying two categories: a) idioms and patterns, and b) reference models. This
distinction is not very well accepted and seems to be related to the poorly accepted distinction
between styles and patterns. Next to describing a few of these styles, such as Pipe-and-Filter,
this paper introduces a system for the developments of style-specific architecture development
environments.

Harris, Reubenstein and Yeh (1995) use architectural style representations in reverse engin-
eering by building both a style library and a query library to analyse a C/Unix type system.
The discovery of styles is then a top-down approach, based on existing documentation or cluster-
ing techniques for hypothesised styles. Performing a similar approach twenty years later would
inevitably demand a more Object-Oriented perspective, as the researchers themselves anticipate.

At the beginning of the current century, Paakki, Karhinen, Gustafsson, Nenonen and Verkamo
(2000) wrote a paper on architectural pattern mining, in which they manage to discover design
patterns by translating UML diagrams to Prolog (predicate logic) statements and treating it as
an arc consistency (AC-3) constraint satisfaction problem in the Maisa tool. They connect this
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to software metrics, hoping to assist the design phase of a system. Their approach would struggle
with inexact matches and pattern violations, as they restrict themselves to those patterns with
a precise structure, making it not entirely ideal for the purposes of this thesis.

Another thing worth noting about the paper by Paakki et al. (2000) is the use of the term
architectural patterns early in the text to refer to design patterns, architectural patterns, anti-
patterns and idioms. And yet, while the rest of the paper does refer to architectural patterns,
the only examples are of design patterns like Abstract Factory.

Another approach from early in the decade that makes use of architectural styles is called
MAP (Mapping Architecture for Product lines) (Stoermer & O’Brien, 2001). MAP is a method
with many steps and it is only the Qualification step, as it is called, that relies on architectural
styles and design patterns. Since these architectural styles consist of well-documented architec-
tures, their effect on Quality Attributes is known. There is no automation here, though, as it
relies on interviews with architects and developers. It indicates what an automated technique
might add to existing methods like this, presumably because interviews are notoriously costly
in terms of time spent.

Pinzger and Gall (2002) extend an existing architecture recovery framework by including
patterns (architectural, design and code patterns). They hope to find instances of these patterns
by starting at the source code level and working their way up. ESPaRT (Enhanced String
Pattern Recognition Tool) is used for this, as it has been extended by the researchers to allow
for pattern specification in XML. This relies on what they call hot-spots, which are essentially
heuristic indicators of a pattern instance in the code. They manage to show that the application
uses a Client-Server pattern, but to do this they had to refine their socket pattern search query
a few times and steer the algorithm to this conclusion. Their work is very useful, although
rather code-specific and it might not be so successful in a large application with many unrelated
patterns.

Sartipi presents an extensive pattern-based and data mining approach to SAR that makes use
of both clustering and editing-cost-based graph-matching techniques (Sartipi, 2003). Although
it is a rather sophisticated and admirable approach, with a strong mathematical background
and promising results, this complexity may also turn out to be its weakness. It requires iterative
user input that seems to make this approach quite dense for everyday use, though this may well
be unavoidable for SAR. At least the usage of patterns adds to a level of intuitive understanding.

AcmeStudio is a tool that incorporates architectural style as well. Developed by Schmerl
and Garlan (2004), it is aimed at the design phase of an application and allows for new styles to
be defined by the user. Although it may not be relevant in terms of architecture reconstruction
or pattern recovery, the paper does provide some interesting insights into the definition of such
patterns. If a user wishes to design a system, he can select a particular architectural style to
help him in the process. This is a way of speeding up the architect’s work. AcmeStudio relies
on Acme, as the name implies, which they describe as a style-neutral Architecture Description
Language (ADL). They document two successful case studies, one with Ford Motor Company
and one with NASA Jet Propulsion Lab.

Dynamic (runtime) analysis has been used to discover “architecture styles”, which is an
unusual variation of the term. The DiscoTect system uses state machines to do this, each one
being specifically tailored to a particular model (Yan, Garlan, Schmerl, Aldrich & Kazman,
2004). This is a complex task and is aimed at dynamic discovery rather than static recovery,
but an interesting indication of (relatively) recent developments nonetheless.

In a paper by J. S. Kim and Garlan (2006), architectural styles are analysed automatically
for properties such as consistency and compatibility. This is done by, again, writing a style in the
Acme ADL. Using a set of relatively straightforward translation rules, this is then turned into
Alloy (a language based on predicate logic) and fed to the Alloy Analyzer. Within the Analyzer,
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one can check whether various properties of styles hold according to the logical description.

A 2010 journal publication, successor to this 2006 workshop paper, investigates several styles
(J. S. Kim & Garlan, 2010). It is a wonderfully detailed paper with a rich appendix, showing
much of what would be needed to reproduce their approach. The connection with architecture
recovery is not clear-cut, however.

Dillon, Wu and Chang (2007) provide an investigation of architectural styles concerning
SOC-based (Service-Oriented Computing) systems in order to derive a reference architecture. It
is an example of the continuing interest in these styles/patterns during the course of the decade.

A relatively rich ontological framework for architectural styles is presented by Pahl, Giesecke
and Hasselbring (2009). Acme is used as the ADL once more and translated to predicate logic.
This style ontology may also be extended to incorporate metrics such as Quality Attributes.
Papers such as this can be used to collect the logical representations of architectural patterns
by whomever might be interested in such expressions.

A systematic literature review on architecture reconstruction was presented by Ducasse and
Pollet (2009), in which they mention architectural patterns and styles several times in their
attempts to build an ontology of various methods. Many of the publications mentioned in this
section were described or at least mentioned by them.

This concludes the overview of the published literature related to architectural pattern re-
covery. More papers have been published, including in the years since 2009, but the main ideas
have been mentioned here.

Design Patterns in SAR

Because design patterns share so many characteristics with architectural patterns, scientific lit-
erature aimed at detecting these lower-level constructions can be highly relevant. Taking into
account the voluminous literature in this sub-domain, the evolution of design pattern detection
is given here in a brief overview.

Shortly after the introduction of design patterns by the GoF in 1994, Shull, Melo and Basili
(1996) released a paper influenced by these ideas. It illustrates a method in which Object-
Oriented Design Patterns can be discovered in an existing application as a step of the overall
method. This method, called BACKDOOR (Backwards Architecting Concerned with Know-
ledge Discovery of OO Relationships), was not at all automated. Tool support was envisioned
for future development, however. It relies heavily on a base of reference patterns, which they
initially filled with design patterns from the GoF publication.

Actual recovery of design patterns was presented in a paper from 1998 (Antoniol, Fiutem &
Cristoforetti, 1998). From an AOL (Abstract Object Language) representation of the code, the
recovery process extracts class metrics. These consist of the number of attributes and opera-
tions, which can be public, private or protected, and the number of relations of various types.
The approach reduces the search space significantly, since metric, structural and delegation con-
straints can be used to minimise the candidate set. The referred paper does not show how their
approach increases system understanding or how the re-engineer would use the tool, but one
can imagine the merits without a concrete example.

A more interactive and iterative recognition algorithm is presented by Niere, Schafer, Wad-
sack, Wendehals and Welsh (2002). They identify a main problem with other design pattern
recovery approaches resulting from the variability of design pattern realisation: either the ap-
proach restricts itself to a level of granularity (such as call graphs and naming conventions) and
thus struggles with false positives for the re-engineer to sort out, or the approach considers fine
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behaviour such as data flows and subsequently struggles with scalability issues.

Their solution is to define patterns with respect to a program’s ASG (Abstract Syntax
Graph) with graph transformation rules, supported by the FUJABA (From UML to Java And
Back Again) environment. This allows the re-engineer to enter new patterns using a notation
much like UML, which would presumably be familiar. A combination of bottom-up and top-
down steps is paused so that the re-engineer can annotate the ASG or stop the algorithm if
analysis is unlikely to prove useful. This method both reduces the number of false positives and
increases the scalability to large systems.

An example of an approach in which static and dynamic analysis were combined is presented
in Heuzeroth, Holl, Hogstrom and Lowe (2003). The former is performed with Recoder, a Java
analyser that constructs an AST (Abstract Syntax Tree). Event generators are then added by
the researchers. Independent of naming conventions, which is something the researchers point
out, the algorithm finds a large set of candidate pattern instances for a given design pattern.
They reason that this set can be whittled down using expert knowledge, static data flow analysis
or dynamic analysis.

The dynamic analysis for each pattern is a different algorithm that checks the runtime usage
of class instances and whether they conform to the given design pattern. Although the number
of candidates from the static analysis can be large, it should result in significantly less effort
for the dynamic analysis to restrict itself to the candidate set than if it were to analyse the
whole application. This approach leads to a high ratio of false negatives to false positives, since
pattern instances can only be confirmed if they are executed during the dynamic analysis.

Guéhéneuc, Sahraoui and Zaidi (2004) use heuristics to cut down the search space in their
search for micro-architectures similar to design motifs, which are the solutions provided by
design patterns. They use quantitative signatures of classes to create roles fingerprints of design
motifs. Metrics such as size, number of children and level of cohesion help them to remove
true negatives from the search space. From a repository that contains 15 design motifs, they
extract metrics and feed them to a rule learner. After some editing of these rules, fingerprints
are integrated with the constraint-based tool PTIDEJ. They manage to achieve a search space
reduction between 69.00% and 89.15% using this method, which is impressive.

Another approach to detecting design patterns was provided by Tsantalis, Chatzigeorgiou,
Stephanides and Halkidis (2006), where the issue was tackled as a graph similarity problem. The
fact that design patterns often employ some inheritance relation is exploited to limit the search
space, an example of heuristics increasing the effectiveness of an algorithm in this field. No
other heuristics were necessary, since the paper presents a rather successful attempt at finding
design patterns in these graphs by translating them to matrices and feeding them to a similarity
scoring algorithm. The approach resulted in a perfect precision and an impressive recall value
of design pattern instances.

Inexact matching is an important advantage, since design patterns may not be realised
exactly. Depending on the developers, variations or violations of the patterns may be built into
the architecture. Another paper where this is taken into account is based on template matching
from computer vision (Dong et al., 2008). Similarity scores are calculated based on matrix
representations, where the process is supported in a tool prototype.

By 2009, design pattern mining was already mature enough that Dong, Zhao and Peng
(2009) considered it time for a systematic literature review of its own. Published in the same
year as the SLR by Ducasse and Pollet (2009), this review provides a more in-depth overview and
classification of tools and approaches for finding design patterns, which is extremely useful for the
purposes of this thesis. Various techniques are discussed, some of which have been mentioned
in this literature section. A noteworthy theme in this SLR is the problem of experimental
comparison: how to contrast or benchmark the various approaches and tools?
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Arcelli Fontana and Zanoni (2011) present a seemingly elaborate design pattern detection
tool, called MARPLE (Metrics and Architecture Reconstruction Plug-in for Eclipse), which was
not mentioned in the literature review by Dong et al. (2009) despite the fact that it was already
described in an earlier workshop publication (Arcelli, Tosi, Zanoni & Maggioni, 2008). The
reason for this might be that the actual process is not described in great detail, since the papers
focus on the design of the whole tool. It detects design pattern subcomponents using static
analysis to build an AST, after which classification algorithms map patterns onto candidates. It
seems that only a few design patterns are currently known by the detection algorithm and the
tool is unfinished.

With this overview of related literature in mind, the next section provides this thesis’ novel
approach to finding architectural patterns using HUSACCT.

5.2 Process-Deliverable Diagram

The proposed method is displayed in Figure 5.1, in which the Process-Deliverable Diagram
notation was used to display both the process side and the deliverable side. Activities are
displayed on the left and their output is shown on the right. Activities with a white shadow, as
it were, consist of additional sub-activities explained elsewhere. If this shadow is black, the sub-
activities are outside the scope of this document. For more information on the PDD notation,
see Van de Weerd and Brinkkemper (2008). PDDs should always be accompanied by an activity
table and a concept table, which are both situated in the appendices (A.1 and A.2).

The two main steps of the process are shown, as well as the sub-steps that currently refer
to the combination of decomposition based on Java package definitions and pattern matching
based on the straightforward analysis of all permutations of a particular set of modules to a
specific architectural pattern. Similar or vastly different approaches might be found that could,
hopefully, fit into either main method of this approach, or perhaps function as a combination of
both steps. In this regard, the approach is essentially modular and built with future improve-
ments in mind.

Taking into account that the aim of architectural patterns is to break down the system into
modules along the lines of object-oriented design principles, how the research tool identifies the
modules themselves is of great importance. This will be discussed in the next section.
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Figure 5.1: The proposed method.

5.3 Modular Decomposition

One possibility of realising an architectural pattern recovery method would be to rely on auto-
matic layering. Such techniques have already been realised by others (Goldstein, Segall &
Carmel, 2015)(Sarkar, Maskeri & Ramachandran, 2009)(Alvine, El Boussaidi & Mili, 2014),
although not necessarily in such a way that one could be immediately implemented within
HUSACCT itself. Using HUSACCT, whether as input to an automatic layering tool or by ex-
tending it with such functionality, would make it a different approach from others. Thanks to
HUSACCT’s rich semantics in terms of various types of modules, dependencies and rules, the
layering technique could be influenced with filter and severity settings. For example, partic-
ular dependency types might be ignored or, conversely, deemed more important than others.
However, architectural patterns include more than simple layers.
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Evidently, it has already been made possible by others to analyse a system and come up
with, e.g. a 4-Layered pattern and 263 violations thereof (skip-calls and back-calls). It would be
valuable if this could be further improved. Making the automatic layering ignore a certain type
of violation is not necessarily useful, since it would merely result in either a different layering
solution or a different number of violations, if not both. There appears to be no particular reason
why such a solution would be an improvement upon the unaltered one, unless manual inspection
were to imply a far more plausible case for the intended architecture that makes perfect sense
for some reason (e.g. based on naming conventions).

Building on this, it could be useful to apply a filtering algorithm after an automatic layer-
ing step, which would not affect the modular decomposition but would reduce the number of
dependencies, possibly including violations. Although the resulting architecture might suddenly
contain several orphaned packages due to this, it could give insight into the common type of
violations and, thus, hint at development decisions concerning architecture rules. It is well pos-
sible that an architectural pattern can be identified due to a particular variation on a more basic
pattern resulting in very few violations.

Either act of filtration or severity ranking, before or after the layering, provides a rather
limited approach to architectural pattern recovery: it is restricted to the application of a strict
layering pattern. Even as far as static modular patterns go, there is more variety than strict
layering. As the field of software architecture develops, and it becomes easier to recognise and
reuse architectural patterns, there will likely be an increase in the number of pattern variations.
Being able to detect more sophisticated patterns would itself be more interesting to re-engineers,
especially since the filtration and severity ranking are a bit obvious and would not necessarily
prove advantageous.

For this reason, the reconstruction method proposed here incorporates automatic layering
in the method activity of decomposition (essentially defining the software units). Other decom-
position approaches should be available as well, such as clustering based on other criteria or the
unadulterated copying of the source code directory structure. The approach currently used by
HUSACCT, taking package definition as a modular decomposition to be edited by the user, is
deemed to be sufficient for the purposes of this thesis and is depicted in Figure 5.2.

In HUSACCT, a pattern could be represented as a set of modules, rules and exceptions.
The way to test for conformance with such a pattern would be to attempt all possible mappings
(limited in scope to deal with the combinatorial explosion) to the dependency graph as extracted
from the decomposition step and choose between the most optimal solutions. Decomposition
might be preceded by filtration, which would currently be useless in HUSACCT, or followed
by it, which would be identical to attempting a variety of the used pattern instead. In both
cases, severity ranking might be used as well, as a weaker version of filtering. This would allow
one to find situations where the architecture rules are not very strict for particular types of
dependencies.

With this decision, with the choice for HUSACCT as a framework as opposed to building
a separate system and with the completion of a method proposal, only one verdict remained
before development could begin: the selection of a pattern matching algorithm to be realised.
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Figure 5.2: A PDD of the modular decomposition using namespaces (C#) or package
definitions (Java).

5.4 Pattern Matching

Let us look at some existing approaches from the scientific literature.

Examples of pattern matching techniques include the one described in the paper by Tsantalis
et al. (2006), where similarity scoring is chosen over inexact graph matching based on edit
distance, because the authors feel this is more likely to give useful results. In other words, they
make the point that edit distance can be rather misleading. Their use of similarity matrices
is quite straightforward. The most difficult aspect would be to implement the creation of such
matrices based on the HUSACCT Data Transfer Objects, but there appears to be no reason
why this would be too complicated.

Sarkar et al. (2009) try to identify layers within an architecture. This is actually more in
line with the decomposition step of the approach presented in this proposal, but they present
it as though it were pattern recovery. This is really only true as long as that pattern is some
simple layered architecture, but this paper is mentioned here nonetheless.

A similar algorithm has been partially built into HUSACCT by Leo Pruijt, based on Goldstein
et al. (2015), which relies on packages. This may have to be completed to study its effect on the
decomposition when compared with packages/namespaces.

A third example is one of template matching (Dong et al., 2008). This is very much the same
as the similarity scoring presented by Tsantalis et al. (2006), since it is also based on matrices
and similarity scores. Dong et al. (2008) also note this and point out the subtle differences, so
one might think of this later paper as an improvement of the former.
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Following the research questions presented in Section 2.1, it is now time to investigate how to
express the fitness of a particular candidate in terms that HUSACCT understands: dependencies
that are either violations or correct observances of the pattern’s architectural rules.

5.4.1 Fitness Function

The fitness of a particular pattern candidate is more than merely the number of violations of
all the pattern’s architectural rules. Counting these violations is obviously essential, but this
number would introduce some problems if it were the sole measure of fitness.

For example, a candidate that has a mapping of three software units to the three modules of
a Model-View-Controller pattern would have a specific number of violations associated with it,
based on the rules of the Model-View-Controller pattern. If this number turns out to be zero,
i.e. there are no violations, then one would be inclined to think that this is a particularly good
candidate. However, the fact that there are no violations in this case could be caused by the
three software units having no direct dependencies connecting them to one another. If there are
no dependencies, how could there be any violations? That the reported number of violations is
zero is therefore trivial and inconsequential.

Would one want this candidate to receive a good fitness score, in light of this insight? Prob-
ably not, as it seems highly unlikely that a Model-View-Controller pattern would be implemented
with its elements not relying on each other in the manner for which this pattern is intended. To
the contrary, this seems to be a terrible candidate for the Model-View-Controller pattern. One
of the software units could, theoretically, be in its correct place, but the whole mapping deserves
a disastrous fitness score more than a perfect one.

But how to arrange this? After all, HUSACCT possesses a “Must use” rule type that applies
to this situation. It requires that one module use another, which is what is needed here. There
is a problem with this, however, and it is illustrated by determining this new fitness score that
includes these ”Must use” rules of the Model-View-Controller pattern.

Using the “Must use” rules, there would be one violation due to the software unit assigned
to the Model not using the one assigned to Controller and one violation for the reverse. The
same goes for View and Controller, so that is a total of four violations for this candidate. Four
may be negligible next to the number of dependencies within this candidate.

Does that make this a terrible candidate? At least Model does not use View and vice versa,
so it is not as bad as it could have been. Adding “Must use” rules to the pattern definition
and counting their violations like HUSACCT would for any rule type is simply not sufficient,
though. Thus, the following solution is implemented instead.

“Must use” rule violations ought to count more heavily towards a poor fitness score. It is a
worse type of violation to any architectural pattern than any other type of rule being broken. A
Model-View-Controller pattern candidate whose modules do not depend on one another simply
is not a Model-View-Controller pattern instance. This type of violation should be ranked so
severely that the current realisation simply rejects such pattern candidates all together. If
the layers of an N-Layered pattern do not use each other in the allowed (required) way, then
these layers do not constitute an N-Layered pattern. If even one pattern module does not rely
on another despite the fact that it is supposed to, that candidate should perhaps be rejected
without even looking at any other dependencies. This has the added benefit of speeding up
computation, since HUSACCT can then swiftly move on to the subsequent candidate.

“Must use” heuristic:
If a “Must use” type rule of an architectural pattern is violated by a pattern candidate for
that pattern, then this candidate can be discarded without further contemplation on any of
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its other architectural rules and how they may or may not be violated by the candidate’s
dependencies.

This heuristic is more extreme than giving this type of violation a large weight, but it is a
powerful way of speeding up computation.

Having established that the fitness function should default to a minimum value based on
this heuristic, another concern needs to be addressed: the total number of dependencies. It is
not difficult to see that a small amount of violations cannot be the only variable of a fitness
expression, even after the heuristic has been applied.

The number of “good” dependencies, those that are supposed to be there, should be relatively
high for a candidate to be a good fit. If a “Must use” requirement is met thanks to a single
dependency, then this is not as strong of an argument for a pattern instance as a hundred
dependencies would be. However, if one only looks at the absolute number of dependencies,
then the candidates with the highest fitness scores will be those that show a high coupling
between their software units. If this absolute number of dependencies be less important, these
strongly coupled software units might be included in the pattern or might be aggregated within
the same pattern module.

A B

C D

1 5

0 0

9

6

11

0

2

13

Figure 5.3: Four imaginary software units and their mutual dependencies.

For example, take software units A, B, C and D. They are connected through a number
of dependencies, as depicted in Figure 5.3. This is another notation, where software units are
represented as circular elements with bidirectional dependencies. In this figure, there are 5
dependencies from A to B and there is 1 from B to A.

If this set were passed to the pattern matching algorithm and were used to attempt the
3-Layered pattern while allowing for unassigned units, there would be P (4, 3) = 24 possible
candidates in the non-aggregation and N(4, 3) = 60 in the aggregation cases. Two of these
possible candidates are displayed in Figure 5.4. In candidate a, the following mapping has been
used: A 7→ Layer 1, B 7→ Layer 2, C 7→ Layer 3, D 7→ Remainder. This means that D is not
assigned to any of the pattern’s modules, which has been explicitly allowed for before. Candidate
b has the following mapping: A 7→ Layer 1, B 7→ Layer 2, C 7→ Remainder, D 7→ Layer 3.

Given these two candidates, which are both possible instances of the 3-Layered pattern,
which one deserves a higher fitness score? The rules of this pattern are:
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Figure 5.4: Two candidates for the 3-Layered pattern. See the set below for the architectural
rules.

1: Layer 1 must use Layer 2.

2: Layer 2 must use Layer 3.

3: Layer 2 is not allowed to use Layer 1.

4: Layer 3 is not allowed to use Layer 2.

5: Layer 3 is not allowed to use Layer 1.

6: Layer 1 is not allowed to use Layer 3.

Given these rules, the conformance check results in the violation that is marked red in Figure
5.4a. Candidate a has only one single violation, which is a back-call from Layer 2 to Layer 1
due to software unit 2 having a dependency to software unit 1.

Candidate b, on the other hand, has absolutely no violations. Regardless of whether either of
these is truly the best pattern candidate for these options and ignoring the question of whether
there truly is a 3-Layered pattern instance here for now, these candidates require certain fitness
scores.

Based on the number of violations, one would judge candidate b to be better than candidate
a. Although, one might be inclined to state that candidate a is better, based on the number of
correct dependencies. These “good” dependencies are simply those that comply with the “Must
use” rules.

18 out of a total of 19 intra-pattern dependencies are in accordance with the “Must use”
rules for candidate a, while there are only 13 required dependencies for candidate b, albeit
that this is the total amount of intra-pattern dependencies in the candidate. Which candidate
is better? Which value is more important, the absolute number of violations or the relative
number compared to the desirable dependencies? Or would an expression that involves both
values be, in fact, ideal?

Perhaps there exist many possible fitness functions that would do the trick. One of them,
which will be used for the rest of this thesis, is inspired by the well-known F-measure from
statistics. This F-measure (or F-score) is a harmonic mean of Precision and Recall, thereby
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describing the accuracy of a test (Sokolova, Japkowicz & Szpakowicz, 2006). Both Precision and
Recall should be as high as possible (maximum of both is 1) in order for the F-measure itself
to be maximal (also 1). Similarly, our fitness function can be formulated in such a way that we
use such a harmonic mean.

Let us first define the variables at our disposal:

• D ε N : # dependencies
The number of dependencies between the pattern modules and with the Remainder.

• M ε N : # “Must use” dependencies
The number of dependencies between pattern modules that are in line with that pattern’s
“Must use” rules. These are essential dependencies, since these are the ones that are
explained by the existence of the pattern.

• V ε N : # violations
The number of violating dependencies. Violation of a “Must use” rule implies that M = 0
for that particular rule.

There are essentially two ratios that ought to be optimised. On the one hand, there is the
number of dependencies explained by the pattern relative to the total number of dependencies
of that pattern candidate: M

D , which should be minimised. On the other hand, we have the
number of violations relative to the number of dependencies. Since M 6= 0 implies that the
number of violations due to “Must use” rules is equal to 0 and since we want both ratios to
vary between 0 and 1 for the sake of the harmonic mean, we should subtract M from D for this
latter expression: V

D−M . This leads us to the following fitness function for f ε R:

f(D,V,M, β) = (1 + β2)
(1− V

D−M
)·M

D

β2·(1− V
D−M

)+M
D

(5.1)

The variable β ε R controls the relative importance of one ratio over the other by controlling
the relative weight of one expression in the mean. To establish this fitness function with both
ratios equally valuable, take β = 1. The fitness function can then be reduced to:

f(D,V,M, 1) = 2
(1− V

D−M
)·M

D

(1− V
D−M

)+M
D

(5.2)

Other fitness functions might tend towards results where there is more or less aggregation,
larger or smaller pattern candidates, more or less emphasis on “Must use” affirmations. This
would have to be extensively studied in future work, in order to learn when a particular function
is best suited.

In summation, (5.1) is a fitness function such that range(f) ⊆ [0, 1]. We thereby maximise
the number of dependencies that can be explained by the pattern and minimise the number of
dependencies that violate the architectural rules of that pattern simultaneously. This is only one
possible fitness function and although other functions could lead to more desirable candidates
receiving a higher fitness score, this expression is deemed sufficiently satisfactory for the time
being. Future work may include experimentation with and improvement of such functions.

5.5 Running Example Continued

In our earlier example, we looked at HUSACCT and how its ACC functionality can be used for
SAR. A small group of software units from a package hierarchy were considered and these were
mapped to the layers of a 3-Layered pattern. Now we will continue with this example, but with
the addition of some yet to be fully realised HUSACCT functionality.
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What if one could tell HUSACCT to insert an architectural pattern into the defined archi-
tecture? With the click of a button, one could have all three layers associated rules appear,
instead of having to do this by hand. Layer-type modules automatically receive rules on skip-
and back-calls when added, this is already part of HUSACCT’s functionality concerning layers,
but architectural patterns use many different types of rules that would otherwise have to be
added manually. If one plans on adding a Broker pattern, all it takes is one click and there it
is: a series of empty modules and architectural rules tying them together that collectively form
a Broker pattern. As long as HUSACCT be familiar with this pattern, adding it to the defined
architecture would be a breeze.

But what about the mapping? Adding a software unit to an empty pattern module is already
a matter of a few mouse clicks so it should be rather straightforward for HUSACCT to to this
for us. The software units are selected and allowed to be mapped. Then, HUSACCT takes care
of the rest: it assigns each unit to a module and can even ask for validation to take place.

So there it is, “we” selected some software units from the package hierarchy and chose
an architectural pattern to attempt, after which HUSACCT automatically tells us about the
violations of the pattern’s rules that incur for one particular mapping of these software units to
the pattern modules. This particular mapping is what is referred to as a (pattern) candidate.

Apart from making our selection of software units and choosing an architectural pattern to
which these are to be assigned, we have other decisions to make. First of all, is it desirable that
the automatic mapper assigns multiple software units to the same pattern module, or do we
want to get a candidate for which each module contains only one software unit?

If we allow for such aggregation of multiple units per module, we have to make a decision
on a subsequent consideration: do we want this candidate to contain all the software units from
our selection, or would we be fine with ending up with a candidate in which some of our selected
units were left out of the pattern and remain unassigned?

The reason why these decisions have to be made is that the obvious next step is concerned
with attempting multiple candidates. We do not just want some random mapping of software
units to pattern modules, just so that HUSACCT can track down the violations that it associates
with this particular candidate, whatever it may be. Instead, we want HUSACCT to then attempt
another candidate, and another, and yet another, until it can tell us with some certainty that it
has found a candidate that fits so well that it might just be a genuine pattern instance.

Once we have provided HUSACCT with these options (software units, an architectural pat-
tern, whether to allow for aggregation and if so, whether to demand that all software units be
used), it can attempt a series of candidates for us. But which candidates do we want it to
consider? Surely, we can come up with hundreds if not thousands of ways to map a selection of
software units to even a simple architectural pattern? Their exact number is addressed in the
next chapter. The automatic mapper goes through each and every one of these candidates and
HUSACCT keeps tracks of which candidates performed particularly well. The matter of how to
express this fitness and compare the candidates is addressed in Section 5.4, but suffice it to say
for now that we remember a top N of candidates once all candidates have been evaluated. The
resulting Process-Deliverable Diagram which specifies the Evaluate candidates activity further
is shown in Figure 5.5.
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Figure 5.5: A PDD brute force approach to the Evaluate candidates activity.
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Chapter 6

Search Algorithms

This chapter deals with the two approaches that were considered in this thesis: brute force and
genetic algorithms. The former is the more straightforward albeit tedious approach, whereas
the latter is the more convoluted yet innovative way of solving this particular problem.

6.1 Number of Candidates

Development was initially focussed on the brute force approach, which is to simply attempt all
permutations of eligible packages mapped to the vacant module slots in an architectural pattern.
This term is used in computer science and cryptography, among others, and is essentially an
exhaustive search. Let us calculate the number of candidates for this brute force approach.

With n the number of software units that we are currently considering for a particular pat-
tern and k the number of modules within that pattern, the total number of candidates N is
quite trivial if we make the following assumption: each module can only store one software unit.
In other words, the mapping has to be one-to-one. In this case, the number of candidates is
simply the multiplication of the number of combinations in which to arrange n into groups of k
and the number of times each such group can be ordered. The ordering refers to the labelling
of the pattern modules. This is depicted in (6.1).

N(n, k) = k! n!
k!(n−k)!

= n!
(n−k)!

= k! ·
(
n
k

)
(6.1)

In the case of a Model-View-Controller pattern, for example, a set of say 10 packages would
result in N(3, 10) = 720 possible mappings. It is unclear at this stage how long this computation
would take, so there is no reason to discard this approach as too computationally expensive
beforehand. Even if this were to take several hours, it would still be faster than a human could
do the same thing. As long as the results are useful, so is the computation. More sophisticated
techniques, aimed at lessening the computation time without sacrificing too much accuracy, are
possible. Inexact graph matching, for example. These would constitute possible extensions after
the brute force mapper has been realised.

However, what happens when multiple software units can be mapped to the same pattern
module? This is not unreasonable, since there is no particular reason why a single software unit
ought to correspond to a single pattern module. In that scenario, which we call the aggregate
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case, the number of candidates drastically increases. This is shown in (6.3), for which the
expression shown in (6.2) is needed. The number of ways in which n can be distributed over k
groups, allowing for aggregates and requiring that each group ends up with a value of at least
one, is called the Stirling Number of the Second Kind. This has to be multiplied by the factorial
of the number of groups in order to correct for the fact that these are labelled groups.

S2(n, k) =
{
n
k

}
= 1

k!

k∑
j=0

(−1)k−jjn
(
k
j

) (6.2)

Na(n, k) = k! ·
{
n
k

}
= k!

k!

k∑
j=0

(−1)k−jjn
(
k
j

)

=
k∑
j=0

(−1)k−jjn k!
j!(k−j)!

(6.3)

The number of possible candidates in this aggregate case, Na(n, k), is still not the whole
story, though. It assumes that each and every one of the software units are mapped to one of the
pattern modules. This may not always be the case, since it can be of added benefit if software
units are left out of the pattern for a particular candidate, if that benefits the fitness score. So
there will always be an additional module, one that is allowed to be empty but not required to
be. This increases the number of possible candidates further, which can be calculated by adding
the number of cases for k+ 1 groups to expression (6.3). This results in expression (6.4), where
Na,r(n, k) is the number of possible mappings in case of aggregation and remaining software
units not assigned to the pattern.

Note that N(n, k) = N r(n, k), i.e. the non-aggregation case assumes the existence of a
remaining portion of software units, as long as n ≤ k. This additional group is bound to be
an aggregation if n > k + 1. Additionally, do note that the existence of a Remainder here
implies that a portion of the selected software units is not mapped to the pattern, whereas there
may already be a Remainder in the sense that this selection does not necessarily encompass all
available software units. Our approach puts a lot of emphasis on the Remainder by incorporating
it in the pattern discovery process, dependencies with software units outside of the selection are
therefore implied to be of no consequence. Whenever software units are of interest, they have
to be included in the selection and thus increase the number of pattern candidates.

These expansions and rewritings do not result in more elegant expressions, but provide a
better indication of how quickly these numbers would grow with increases in n and k. To further
illustrate the combinatorial explosion that these expressions cause, Table 6.1 shows the various
numbers of N for several values of k and n. These numbers range into the order of magnitude
1012 − 1014, which is comparable to the number of fish on Earth, cells in the human body or
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stars in the Andromeda galaxy.

Na,r(n, k) = k! ·
{
n
k

}
+ (k + 1)! ·

{
n
k+1

}
= k!

k!
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(
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j

)
+ (k+1)!

(k+1)!
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j

)
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j
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(−1)k−j j

n

j!

(
k!
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))
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(6.4)

Table 6.1: An illustration of how quickly the number of candidates becomes astoundingly
large. k = 3 could represent a Model-View-Controller pattern and k = 4 a 4-Layered pattern,
for example.

n, k N Na Na,r

3,3 6 6 6

4,3 24 36 60

5,3 60 150 390

6,3 120 540 2,100

7,3 210 1,806 10,206

8,3 336 5,796 46,620

9,3 504 18,150 204,630

10,3 720 55,980 874,500

15,3 990 14,250,606 1,030,793,406

20,3 1,320 3,483,638,676 1,089,054,420,300

4,4 24 24 24

5,4 120 240 360

6,4 360 1,560 3,360

7,4 840 8,400 25,200

8,4 1,680 40,824 166,824

9,4 3,024 186,480 1,020,600

10,4 5,040 818,520 5,921,520

15,4 32,760 1,016,542,800 26,308,573,200

20,4 143,640 1,085,570,781,624 90,990,301,641,624

In the next section, the brute force approach that does actually evaluate each and every
candidate in this table will be described.
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6.2 Realisation of the Brute Force Approach

The choice of aggregation versus non-aggregation leads to distinct methods. Code Sample D.1
in the Appendix shows the actual Java code, but the algorithms can be reduced to the same
simple pseudo code description (Algorithm 1). The methods are very similar: a mapping of
software units to pattern modules is taken from a mapping generator class, this mapping is
placed in HUSACCT’s defined architecture and the validation of this architecture is used to
determine a fitness score. Rather than keeping track of all results, only the top candidates are
stored in the aggregation case, preventing memory problems. When there are no mappings left
to evaluate, the algorithm ends. The best results are presented and the very best is again placed
in HUSACCT’s architecture. Methods and mapping generator vary depending on whether it
be the aggregation case or not, and the aggregation mapping generator needs to be informed if
there is a Remainder, but this is what the code boils down to.

Algorithm 1 A summarised version of the brute force approach.

while mappingGenerator.hasNext() do
mapping ← mappingGenerator.next()
candidate← mapPattern(mapping)
fitness← determineF itness(validate(candidate))
repopulateTopScores(candidate, fitness)

end while

In the non-aggregation case, there is no choice for a Remainder or not. If the selection of
software units is larger than the number of pattern modules, there has to be a Remainder. In
the aggregation case, however, this becomes a deliberate choice. If so decided, the algorithm
has to run again, but with an additional pattern module that represents the Remainder. The
top candidates may then consist of both Remainder and non-Remainder pattern candidates.

6.3 Genetic Algorithms

With the brute force approach completed, or at least its first realisation functioning as a proof
of concept, it is time to move on to a more sophisticated approach. The method envisioned in
this thesis so far is one of guided automation, with a user deciding on a selection of software
units (discovered using a user-selected approach, e.g. charting the package hierarchy) and an
architectural pattern to be attempted.

Furthermore, the user has to decide whether multiple software units are allowed to be as-
signed to the same pattern module and whether some of the selected software units are allowed
to be excluded from the mapping as part of what we have dubbed the Remainder, i.e. the ar-
chitectural elements that do not correspond to any pattern modules or their sub-modules given
a specific candidate.

The brute force approach is itself fully automated: once equipped with all the necessary
information and a fitness function by which to evaluate pattern candidates, the algorithm simply
dictates that all candidates within the given search space must be evaluated. Thorough though
it may be, this exhaustive search is quite costly in terms of computation time. Albeit still faster
than any human could use HUSACCT in this way, faster many times over, it can be said to
be inherently wasteful. Presumably, a great many of the candidates that come about in the
process are hopelessly unfit and therefore form an unnecessary drain on computer resources. In
this section, a possible tactic by which to address this wanton consumption of precious time
and energy is discussed, a tactic that uses a very specific type of search technique: a genetic
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algorithm. This is not the only possible technique, but it is a technique that can be applied
in this situation due to the existence of a fitness function. Genetic algorithms come with a
broad field of scientific research and the knowledge that these algorithms sometimes turn out to
be very powerful. In addition to these reasons, the choice of this technique is in line with the
exploratory part of exploratory design research, as we were rather interested to see where this
train of thought would take us.

Evolutionary computation is a sub-field of artificial intelligence that relies heavily on Dar-
winian evolution as the basis of its algorithms. A particular subset of the evolutionary algorithms
are known as genetic algorithms, which allow for the optimisation of specific search problems
using a heuristic aimed at mimicking natural selection, finding a useful solution to a problem by
allowing some kind of genetic code to evolve (Goldberg & Holland, 1988). Genetic algorithms
rely on a population of “individuals”, essentially programmed chromosomes designed to code
for possible solutions to the problem at hand, and an expression of their suitability via some
sort of fitness function. By allowing this population to reproduce, as it were, according to this
individual fitness and randomly mutate along the way, local optima tend to be found in a much
shorter timespan than would be expected of an exhaustive search. In order for this to be true,
the genetic encoding and the fitness function must, of course, be appropriate.

The identification of architectural patterns within dependency graphs can be thought of as a
graph partitioning problem, where nodes are placed in one of the pattern’s modules or kept out
of the pattern. Genetic algorithms, a subcategory of evolutionary computing, have been used
for graph partitioning problems for many years now. For example, a hybrid, steady-state genetic
algorithm was applied to a k-way partitioning problem by Thang Nguyen Bui and Byung Ro
Moon (1996).

Another approach from around that time emphasised a genetic search in inexact graph
matching instead of graph partitioning, but this can also be related to pattern matching (Cross,
Wilson & Hancock, 1997). Inexact graph matching is called error-correcting graph isomorphism
in Yuan-Kai Wang, Kuo-Chin Fan and Jorng-Tzong Horng (1997), but it is clear that the topic
has received a lot of attention in this context.

In 1999, a paper was published that described a genetic algorithm not for finding particular
sub-graphs, but for the problem of finding an optimal decomposition of software architecture
(Doval, Mancoridis & Mitchell, 1999). This is essentially a genetic alternative to k-means clus-
tering, automatic layering or any other such clustering approach. As such, genetic algorithms
could be applied to the first (decomposition) step of our architectural pattern discovery approach
instead of the second step, as well.

An explanation of the various considerations when using genetic algorithms for a graph
partitioning problem can be found in the paper by J. Kim, Hwang, Kim and Moon (2011).
Such characteristics include normalisation, optimisation and representation. They provide an
overview of related approaches that anyone who uses genetic algorithms might find useful. An
important consideration for our purposes, however, is that a dependency graph is essentially an
edge-weighted directional graph and not all algorithms discussed in papers such as this apply to
our circumstances.

As with most of such techniques, the idea of genetic algorithms is that the discovery of
local optima will eventually lead to convergence on a global optimum. The analogy with (neo-
)Darwinian evolution can be interpreted in many ways, leading to a variety of implementations
of the fundamental observation that biological evolution results in powerful solutions through
the harsh evaluation of many random solutions.

Genetic algorithms, or evolutionary computing in general, are not a method of modelling
natural evolution itself. Rather, it is an attempt at solving very specific kinds of problems. It
involves stochastic searches that use populations of solutions in a way that is inspired by the
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mechanisms behind biological evolution.

In general term, the process is as follows: 1) generate a random population, 2) evaluate the
individuals of this population, 3) evolve the population, 4) repeat steps 2 and 3 until termination
criteria are met.

The evolution of the population is itself a process of several steps. Usually, a combination of
mutation and crossover operations (recombination between “mates”) is used. The new popula-
tion is then evaluated, with some selection criterion determining which individuals are allowed
to “survive”, as it were, into the next generation.

In nature, DNA copies often contain a number of differences from the original in their genetic
code. Mutation is the cause of small copying errors, which are just minor changes in individual
genes that may or may not have profound effects. Chromosomal crossovers are more severe
recombinations of whole sections of DNA that occur during the production of sperm and egg
cells in sexual reproduction.

Let us, for the sake of illustration, consider a simple but useful example. There is an array
of binary integers of length four, and a fitness function f that is merely the value of the integer
that is represented by the binary integers.

f =
∑
i

xi · 2i (6.5)

If the maximum value of i is 4, then f ∈ [0, 15]. If one generates a random initial population,
it might look something like the example in Table 6.2.

Table 6.2: The initial population.

Chromosome f

1001 9

0101 5

1010 10

1000 8

0010 2

0111 7

Mean ∼ 6.83

Using this population, tournament selection is applied when pairing up individuals. This
is a way of increasing the likelihood that fit individuals produce offspring. There is a random
factor at work here, so the resulting parents in Table 6.3 are just an example of what the result
might be.

Table 6.3: The selected population marked with crossover positions.

Chromosome f

100/1 9

101/0 10

1/000 8

1/010 10

01/11 7

10/01 9

Mean ∼ 8.83
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The forward slashes indicate the positions at which single-point crossovers are about to take
place. In this illustrative scenario, crossover can take place at any point of the chromosome, but
only if another chromosome wants to cross over in the same spot (which determines the pairing).
This results in the recombined chromosomes of Table 6.4.

Table 6.4: The selected population after crossover and marked for mutation.

Chromosome f

1000 8

1011 11

1000 8

1010 10

0101 5

1011 11

Mean ∼ 8.83

Subsequently, mutation occurs at the boldfaced, randomly chosen positions. Since these
genes are binary, 1s change to 0s and 0s change to 1s. The result is displayed in Table 6.5,
together with the new fitness scores. Due to the randomness at work here, there is no guarantee
that the optimal solution (gene: 1111, f = 15) will be found. However, it is very likely that this
solution or the ones close to it would soon dominate the population. See Tables 6.6 and 6.7 for
an example of the next two generations.

Table 6.5: The resulting new generation.

Chromosome f

1010 10

1001 9

0010 2

1100 12

0100 4

1001 9

Mean ∼ 7.67

Table 6.6: The third generation.

Parent chromosomes f Child chromosomes f

10/01 9 1001 1101 13

10/01 9 1010 1011 11

1/100 10 1001 1011 11

1/001 9 1100 1110 14

110/0 12 1100 0100 4

101/0 11 1010 1011 11

Mean: 10 Mean: ∼ 10.67
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Table 6.7: The fourth generation.

Parent chromosomes f Child chromosomes f

1/101 13 1110 1010 10

1/110 14 1101 1100 12

11/10 14 1111 1101 13

10/11 11 1010 0010 2

110/1 13 1101 1001 9

101/1 11 1011 1010 10

Mean: ∼ 12.67 Mean: ∼ 9.33

Evidently, the average fitness has increased thanks to this combination of tournament selec-
tion, chromosomal crossover and random mutation. Other variations of these procedures may
yield somewhat different results and this thesis is not the place to go into all of these consid-
erations. Suffice it to say that, when performed over a number of generations, this algorithm
will result in increasingly fitter populations. The point of genetic algorithms is that this can
be a fast and easy approach at finding good solutions. Fitness might decrease for a particular
generation, as seems to have happened with the fourth generation in the example, depending
on selection criteria and randomisation. Given enough time, though, fitness tends to increase
more than it might sometimes decrease.

Many considerations apply when using genetic algorithms. Selection, crossover and mutation
can all be performed in a variety of ways and the fitness function itself is far from clear cut.
This is why evolutionary computing is taught as a complete master course at Utrecht University
and undoubtedly at other institutions as well.

Instead of formulating a particular implementation beforehand or discussing the effects of
various techniques and parameters through extensive experimentation, this thesis serves primar-
ily as a series of proofs of concept. The aim is to show that it is possible to treat the reconstruc-
tion of software architecture as a genetic local search problem, so that future research can find
optimal approaches to this.

6.4 Genetic Code

Although there may be other ways to encode pattern candidates in a fashion suitable for genetic
algorithms, the following structure is used in this thesis.

In humans, each ordinary cell contains a full genome, constructed out of DNA molecules
and separated into 24 pairs of what are called chromosomes. The two members of each pair
come from the two parents of the person. Other species, especially other mammals, have a very
similar genetic structure, albeit that the amount to chromosomes varies greatly.

In our genetic algorithm, however, things are significantly more concise: a chromosome
represents a single pattern candidate. It is one individual from the total population and its
genetic code contains information on its mapping of software units to the pattern modules (and
possibly the Remainder, if allowed). To keep things relatively simple and straightforward, a
legend is used for the software units, meaning that the selection of software units is indexed and
integers can be used to refer to these units, as place holders for their unique names.

A biological chromosome consists of genes, which are portions of the DNA that code for
something. In living cells, these blocks of code describe protein structure or gene expression. In
our genetic algorithm, each gene codes for the mapping of a software unit, so that means that
there must be as many genes per chromosome as there are software units in the user-provided
selection.
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Each gene has an allele, which is the term for the actual value of a particular gene. In
biology, these are series of nitrogen-bases that correspond to particular amino-acids in groups of
three. In our algorithm, things are again slightly simpler. Whatever the architectural pattern
to which the user is attempting to map the software units, the integer 0 as an allele stands for
a mapping to the Remainder, i.e. not to any of the pattern’s modules. If all software units are
supposed to be assigned to the pattern, then none of the genes is allowed to have an allele of
value 0.

Other integer values for such an allele logically correspond to other mappings. For example,
in the case of a Model-View-Controller pattern, one might code the three pattern modules as the
integers 1, 2 and 3, respectively. Following this, a chromosome may look like the one presented
in Table 6.8. An allele of value 1 represents a mapping of that particular software unit to the
Model-module, 2 to the View-module and a value of 3 means that the software unit is assigned
to the Controller-module. As such, all software units are assigned to the pattern if there be
a non-zero value for each gene. The chromosome in Table 6.8 therefore corresponds to the
schematic in Figure 6.1, with each software unit assigned to its appropriate place with deference
to the displayed legend.

Table 6.8: An example of a chromosome for 7 software units.

Genes: SU-1 SU-2 SU-3 SU-4 SU-5 SU-6 SU-7

Alleles: 2 0 2 1 3 1 0

SU-1

SU-2

SU-5SU-4
8

4

159

35
25

108

267

SU-3SU-6

SU-7

Figure 6.1: The mapping of 7 software units to the MVC pattern & Remainder resulting
from the chromosome in 6.8.

Let us look at a more concrete example of this genetic encoding. We take the Model-
View-Controller (Complete Freedom) pattern as our designated target (i.e. the pattern we are
attempting). The following diagram results from HUSACCT’s analysis of its own source code
and the architectural elements in it are nothing but the unadulterated units taken from the
package hierarchy (Figure 6.2).
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Figure 6.2: Analysis results of HUSACCT’s own source code (v1.0) within its Graphics
subsystem.

Using the legends of Tables 6.12a and 6.12b, we can code this in the fashion of the chromo-
some shown in Table 6.10.

Table 6.9: The legends for this candidate

Model View Controller Remainder

1 2 3 0

(a)

SU-1 SU-2 SU-3 SU-4

Abstraction Presentation Task Util

(b)

Table 6.10: An example of a chromosome for 4 software units mapped to the MVC pattern.

SU-1 SU-2 SU-3 SU-4

2 2 1 3

The resulting violations can be read from the diagram in Figure 6.3, which is how the situ-
ation would look if performed manually within the HUSACCT tool. This particular candidate
has associated with it a particular fitness score. The calculation of the fitness score is presented
in (6.6).

f(D,V,M, 1) = 2
(1− V

D−M
)·M

D

(1− V
D−M

)+M
D

= 2
(1− 108

267+35+25+108+4+159−(267+35+25)
)· 267+35+25

267+35+25+108+4+159

(1− 108
267+35+25+108+4+159−(267+35+25)

)+ 267+35+25
267+35+25+108+4+159

= 2
(1− 108

271
)· 327

598

(1− 108
271

)+ 327
598

≈ 0.5728

(6.6)

Let us now consider a single, random mutation of this chromosome. One particular gene,
say the second gene on the chromosome, undergoes a random mutation. Its current allele value
is 2, so its possible values as a result of the mutation are 1, 3 and, since we allow for assignment
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Figure 6.3: The resulting architecture diagram as if validation were manually called within
HUSACCT. Model is not supposed to use Controller, so the dependencies between Present-
ation and Task result in violations (coloured red).

to the Remainder, 0. Mutation ought to be completely random, like a biological mutation in a
creature’s DNA resulting in an allele that differs from the original as though it were a copying
error. Let us say, for the sake of this example, that this mutation occurs in such a way that the
allele value transitions from 2 to 3. The new chromosome is shown in Table 6.11.

Table 6.11: The chromosome post-mutation.

SU-1 SU-2 SU-3 SU-4

2 3 1 3

Since this new chromosome represents a new pattern candidate, we look at Figure 6.4 for a
new visual depiction of the current mapping. We can tell, given the unchanged legend, that soft-
ware unit 2 has changed positions. The allele value of the second gene, which does the encoding
for software unit 2’s position, changed so that the software unit by the name of Presentation
has been moved from the View- to the Controller-module. The resulting pattern candidate has
a slightly different mapping from the one before the mutation and its fitness should differ by an
amount that depends on the software dependencies between Presentation and the other software
units. The number of dependencies that violate the “Is not allowed to use” rule between Model
and Controller has increased. However, there are no dependencies from View to Model now,
which is a violation of the “Must use” rule. This candidate is therefore immediately excluded,
even though equation 6.6 could easily be applied to these new values.

In the manner described here, pattern candidates can change by randomly mutating the
genes that code for the mapping of individual software units. This way of translating the
pattern matching problem to a format suitable for usage with a genetic algorithm is elegant but
not trivial, nor is it unambiguously unique. For it may be tempting to structure the chromosomes
the other way around: each gene could stand for a pattern module and the allele values would
then correspond to software units. This may seem more intuitive, since one is placing the software
units into different groups and this type of sorting is more similar to a visual representation like
in Figure 6.1.

However, allele values would be more complex in this scheme in the aggregation case. In
Tables 6.12a and 6.12b, the same two candidates for the 3-Layered pattern are depicted for
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Figure 6.4: The new architecture diagram.

Table 6.13: A quick overview of the genetic structure.

Chromosome Single Pattern Candidate

Gene Single Software Unit

Allele Corresponding Pattern Module

a group of five software units. Because multiple software units are assigned to the pattern
modules, each gene needs to hold multiple indices (integers) in order to record which software
units go where in the mapping. Not that this would be impossible to do, but this supposedly
more intuitive way of structuring the genetic code makes the genes themselves unnecessarily
complex. It is easier, both in terms of source code and conceptual understanding, to have the
genes represent software units and have the allele values refer to the pattern modules via simple
integers.

Table 6.12: The legends for this candidate. In both tables, the integers on the lower rows
are indices for the pattern modules.

SU-1 SU-2 SU-3 SU-4 SU-5

1 2 1 3 2

(a)

Layer 1 Layer 2 Layer 3 Remainder

1,3 2,5 4 /

(b)

To conclude, Table 6.13 shows the set-up used to encode the mapping of pattern candidates
in this approach. This approach results in a specification of the second activity of the overall
PDD (Figure 5.1), displayed in Figure 6.5. In the next section, the general gist of the way this
genetic algorithm and encoding were realised is briefly described.
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Evaluate 
Candidates

DEPENDENCY

To-module
From-module
Type
Sub-type

ARCHITECTURAL PATTERN

Name

RULE

1..* A
p

pl
ie

s 
to

1..*

0..*

PATTERN CANDIDATE

#violations
Mapping

1

0..*

1

EXCEPTION

Generate population

Evaluate fitness

PATTERN MODULE

1..*
1..*

[else]

[termination criteria met]

Reproduce chromosomes

POPULATION

1..*

1

Figure 6.5: A PDD of the genetic approach to the Evaluate candidates activity.

6.5 Realisation of the Genetic Approach

The idea of using a genetic approach was conceived relatively late in the project and thus did
not allow for extensive experimentation or analysis. As such, an existing library for genetic
algorithms was used in combination with the existing code. Specifically, JGAP (Java Genetic
Algorithms Package) was chosen, due to its modular nature and accessible documentation1.
JGAP was simply added to the Eclipse project as an external JAR file, leaving only the essen-
tials that still had to be implemented: the fitness function and the specification of chromosomes.
JGAP requires these two classes to be written, but allows for many more aspects of its config-
uration to be changed or expanded. In the future, we can use smarter fitness functions or more
elaborate genetic operators to take the place of the default JGAP configuration. By default,
the mutation rate is set to one in twelve genes randomly changing to another allowed value and
crossovers takes place at random points in the chromosomes at a rate of 35% of the population
size. Future experimentation might result in more optimal values.

The genetic algorithm was applied to the aggregation case only (with or without Remainder),
primarily because there is little reason to use the algorithm for a small amount of candidates,
when the non-aggregation brute force approach would probably be satisfactory. The Java class
of the genetic algorithm is presented in Code Sample D.6, but it is very easy to summarise. The
default JGAP configuration is loaded, chromosomes are constructed using IntegerGenes (JGAP
objects) and a randomised population of size 100 is generated. Evolution subsequently takes
place using JGAP’s classes. The algorithm currently runs for a fixed number of generations,
but more sophisticated termination criteria, like detecting convergence of the population, are
expected to be part of future work.

Although validation and the calculation of a fitness score can be done with the same code

1The JGAP website: http://jgap.sourceforge.net/, overview of JGAP v3.4.4: http://grepcode.com/

project/repo1.maven.org/maven2/net.sf.jgap/jgap/.
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as in the brute force approach, JGAP requires that a fitness function class be overwritten. This
class is presented in Code Sample 6.1.

package husacct.analyse.task.reconstruct.genetic;

import org.jgap.FitnessFunction;

import org.jgap.Gene;

import org.jgap.IChromosome;

import husacct.analyse.task.reconstruct.ReconstructArchitecture;

import husacct.analyse.task.reconstruct.patterns.Pattern;

public class GeneticFitnessFunction extends FitnessFunction {

private static final long serialVersionUID = 1L;

public final static int MAX_BOUND = 4000;

private ReconstructArchitecture reconstruct;

private Pattern pattern;

public GeneticFitnessFunction(Pattern currentPattern , ReconstructArchitecture

reconstructArchitecture) {

reconstruct = reconstructArchitecture;

pattern = currentPattern;

}

// Determine fitness value for given a chromosome (pattern candidate). Higher

fitness should mean a better candidate throughout this class.

public double evaluate(IChromosome a_subject) {

// Take care of the fitness evaluator. It could either be weighting higher

fitness values higher (e.g.DefaultFitnessEvaluator). Or it could

// weigh lower fitness values higher , because the fitness value is seen as a

defect rate (e.g. DeltaFitnessEvaluator)

boolean defaultComparation = a_subject.getConfiguration ().

getFitnessEvaluator ().isFitter(2, 1);

if (defaultComparation == false) {

return 1.0;

}

Gene[] genes = a_subject.getGenes ();

int[] alleles = new int[genes.length ];

for (int i = 0; i < genes.length; i++) {

alleles[i] = (int) genes[i]. getAllele ();

}

double fitness = reconstruct.getFitnessScore(pattern , alleles);

// System.out.println (" Fitness score: " + fitness);

return Math.max (0.0d, fitness);

}

public static int getMaxBounds () {

return MAX_BOUND;

}

}

Code Sample 6.1: The fitness function class for the genetic approach.

We thus have a brute force approach that can incorporate aggregation and a Remainder,
but does not have to. We also have a genetic approach that uses aggregation and can use
a Remainder, achieved with JGAP and using our integer-based chromosomes to encode the
mappings. Both of these rely on packages/namespaces for the modular decomposition step at
the moment, but there is no reason why these algorithms could not be applied to modules
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derived from a clustering technique. With this realisation sufficiently explained for the purposes
of this thesis, let us apply these algorithms to several existing software systems and draw some
conclusions for the sake of future improvements.
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Chapter 7

Evaluation

Finding architectural patterns using architectural rules and a dependency graph by means of
an ACC tool was never intended to be the solution to the problem of software architecture
reconstruction. Rather, it was always envisioned as another tool on the tool belt, a novel way of
doing SAR that could also be used in ACC, since a piece of architecture documentation could
be treated as though it were a pattern. Whenever such exploratory design research is performed
in an academic context, the question of evaluation has to come up at a point that is often a bit
early in the process.

In this case, evaluation would have to be relatively preliminary as well, due to the time
constraints of a master thesis. In truth, this project is far from over and the concrete results
(pattern definitions in SRMAs, brute force and genetic approaches to pattern discovery that can
be used for both ACC and SAR) are only the beginning of what could be a complete method
of architecture reconstruction that incorporates dependency-violation techniques together with
techniques such as nomenclature (names of packages, classes and methods) and a strong human
component (unless artificial intelligence would be incorporated).

As such, it seems too early for any validation process involving professional software archi-
tects in large case studies. This is something that would be rather interesting indeed, but would
be far more worthwhile once this dependency-based approach has been incorporated in a larger
ACC/SAR method. The same goes for extensive verification of the approach, since it makes
more sense to do this type of evaluation once a more elaborate analysis can be performed.

Nevertheless, insights can already be gained from some illustrative runs on existing software
systems. Even if we were to know for a fact that a certain system contained a particular pattern,
we would still face the problem of not knowing whether it was flawlessly implemented. As such,
we are better off studying a few architectures that allow us to identify the current limitations
of our approach whilst reserving proper validation for a more mature approach in the future.

First off, a rather clear and concise example will be discussed with the Yasper architecture.

7.1 Yasper

Yasper (Yet Another Smart Process EditoR) is a software tool for process editing using petri nets
(Van Hee, Oanea, Post, Somers & Van der Werf, 2006). Its source code (C#) contains 16.398
lines of code amongst 5 packages and 55 classes, according to HUSACCT. It is a relatively useful
system to test our approach on, since it is quite small. However, as is apparent from Figure 7.1,
the four existing packages do not unambiguously suggest a particular architectural pattern and
its package hierarchy is rather flat. In fact, none of these packages contains any sub-packages,
only classes.
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Figure 7.1: The package hierarchy of the Yasper system.

Thinking like someone trying to reconstruct the architecture of this system, the most likely
initial hypothesis could be the N-Layered pattern. For the sake of simplicity, let us start with
packages only (no individual classes) in a brute force search for the Complete Freedom form of
the N-Layered pattern, which is the one defined solely by “Is not allowed to use” rules. It makes
little sense to apply a non-aggregation brute force run here, since there are only 390 candidates
for aggregation and remainder when n = 4 and k = 3. However, for the sake of demonstration,
we will run all five cases (brute force: non-aggregation, aggregation with/without Remainder
and genetic with/without remainder). Also for the sake of demonstration, let us look at the
dependencies between these four packages (Figure 7.2).

Because a 3-Layered solution seems so incredibly obvious for these packages, we expect to
see this pattern candidate in all of the following runs. The N(n = 4, k = 3) = 24 candidates of
the non-aggregation case on the Yasper packages for this pattern take only 0.2 seconds (rough
average of several runs) to evaluate1. Note that the required computation time is not just a

1Hardware used for these evaluations:
Processor: Intel Core i5-4210U CPU @ 1.70 GHz, 2401 MHz, 2 Cores, 4 Logical Processors
RAM: 8 GB
OS: Microsoft Windows 10 Pro x64
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Figure 7.2: Dependencies among the root packages the Yasper system. If this is to be a
3-Layered system, it is obvious how these packages should be mapped. Due to Properties
being an independent package, it will not add anything to the fitness score of any pattern.

function of the number of pattern candidates, but also of the number of dependencies that need
to be checked and the number of candidates that can be evaluated quickly due to the “Must
use” heuristic. Also, rules that employ exceptions seem to slow HUSACCT down a lot.

As expected, the following results are given, followed by the best candidate being placed in
the architecture (Figure 7.3). From left to right, the output shows the mapping of the pattern
candidates. UserControls is mapped to Layer 1, Globals to 2 and Registry to 3. Although the
algorithm is supposed to print the top-10 candidates, there is only a single pattern candidate
that does not violate the “Must use” rules of this pattern and thus receives a non-zero score.
None of the other candidates has even a single dependency for each of the three “Must use”
rules, as is already perfectly clear from looking at Figure 7.2.

Candidate number: 21

Candidate number: 22

Candidate number: 23

Candidate number: 24

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:189) - Done 

Best 10 candidates with non-zero fitness score: 

Fitness score: 1.0. Mapping: [Yasper.UserControls, Yasper.Globals, Yasper.Registry]

This last mapping was selected for the intended architecture by default.

Elapsed time: 0.237 seconds.

Figure 7.3: Eclipse console output of the non-aggregation run on the Yasper packages,
looking for the Complete Freedom variety of the 3-Layered pattern.
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Doing the same thing for the aggregation case gives us Na(n = 4, k = 3) = 36 pattern can-
didates. Since this is without a Remainder, all four packages have to be used in each candidate.
We thus expect to see three perfect candidates distinguished from each other by the mapping
of Properties, since we know that package not to add anything in terms of dependencies. The
console output confirms our expectations (Figure 7.4).

Candidate number: 36

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:302) - Done 

Best 10 candidates with non-zero fitness score: 

Fitness: 1.0 --> Mapping: [[Yasper.Properties, Yasper.UserControls], [Yasper.Globals], 

[Yasper.Registry]]

Fitness: 1.0 --> Mapping: [[Yasper.UserControls], [Yasper.Globals, Yasper.Properties], 

[Yasper.Registry]]

Fitness: 1.0 --> Mapping: [[Yasper.UserControls], [Yasper.Globals], [Yasper.Properties, 

Yasper.Registry]]

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:330) - This last mapping was selected for 

the intended architecture by default.

Elapsed time: 0.306 seconds.

Figure 7.4: Eclipse console output of the aggregation run on the Yasper packages, looking
for the Complete Freedom variety of the 3-Layered pattern.

Allowing for a Remainder means the aggregation approach runs twice: once with k = 3 and
once with k = 4. One would thus expect to see the same three candidates as before receiving a
perfect score, plus whatever candidates receive a non-zero fitness score in the k = 4 case. Because
Yasper’s packages are so poorly related to each other, we already know that there should be but
a single additional candidate. The output (Figure 7.5) once again confirms our insights. These
Na,r(n = 4, k = 3) = 60 candidates only took approximately 0.4 seconds to evaluate.

Candidate number: 60

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:302) - Done 

Best 10 candidates with non-zero fitness score: 

Fitness: 1.0 --> Mapping: [[Yasper.UserControls], [Yasper.Globals], [Yasper.Registry]]

Fitness: 1.0 --> Mapping: [[Yasper.Properties, Yasper.UserControls], [Yasper.Globals], 

[Yasper.Registry]]

Fitness: 1.0 --> Mapping: [[Yasper.UserControls], [Yasper.Globals, Yasper.Properties], 

[Yasper.Registry]]

Fitness: 1.0 --> Mapping: [[Yasper.UserControls], [Yasper.Globals], [Yasper.Properties, 

Yasper.Registry]]

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:330) - This last mapping was selected for the 

intended architecture by default.

Elapsed time: 0.39 seconds.

Figure 7.5: Eclipse console output of the aggregation + Remainder run on the Yasper
packages, looking for the Complete Freedom variety of the 3-Layered pattern.

Finally, let us apply the genetic algorithm to these last two cases, to see if it comes up with
the same results. Due to the small number of candidates, there should be no real threat of the
algorithm getting caught in a local optimum. Both these runs took just over a second, but this
is not very illustrative. Both runs used a population size of 100, evolved over 5 generations,
which is more than enough time to evaluate every possible candidate. Hence, this only serves
to demonstrate the lack of any irregularities when running the genetic algorithm. We see the
same results as before (Figure 7.6 without and Figure 7.7 with Remainder).
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Figure 7.6: Eclipse console output of a genetic run on the Yasper packages, still looking
for the Complete Freedom version of the 3-Layered pattern.

Yasper packages & classes

To make this more interesting and more challenging, let us do this again with more software
units. This time, we will include the individual root classes together with the four packages,
which results in 26 software units. Let us also change the particular version of the N-Layered
pattern from Complete Freedom to Isolated Internal Layers, just to see if the results continue
to make perfect sense. With 3-Layered (Isolated Internal Layers), Layer 2 should have no
dependencies with the Remainder going either way. Figure 7.8 depicts the results of the simple
(i.e. no aggregation) brute force approach.

This scenario illustrates precisely when an approach like our genetic one becomes a necessity.
The brute force cases with aggregation would require a very large number of candidates (Na(n =
26, k = 3) = 2, 541, 664, 501, 740), which is exactly when one ought to switch to the genetic
approach instead. Hence, Figure 7.9 shows the Eclipse output for the genetic approach on the
26 software units for the 3-Layered (Isolated Internal Layers) pattern without a Remainder, and
Figure 7.10 likewise for the case with a Remainder.

In either genetic case, there are too many solutions with a perfect score of 1.0 to warrant
listing them all. Far more important than the exact chromosomes that end up in the final
generation is the lesson that can be learnt from this. Namely, that given enough software units
(26, in this example), it may not be difficult to find relatively good pattern candidates. That
is, with enough software units to distribute amongst the pattern modules, there can be many
solutions that do not violate any architectural rules whilst affirming the “Must use” rules. These
scenarios might require more sophisticated fitness functions or subsequent filtering in order to
make sense of all the results, perhaps eliminating those candidates that, though be they in
compliance with the rules, are not very interesting.

Suffice it to say that many good candidates can be found, but their number can grow quite
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Figure 7.7: Eclipse console output of a genetic run (including Remainder) on the Yasper
packages.

large when dealing with individual classes rather than packages. Essentially, such problems boil
down to the first step in Figure 5.1, the modular decomposition of the as-is architecture. We
have relied on namespaces for this evaluation, but a namespace hierarchy such as Yasper’s may
be exactly the sort of hierarchy when a clustering approach would be a great contributor.

Next, we will look at a system with a slightly more accommodating hierarchy.
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Candidate number: 15600

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:189) - Done 

Best 100 candidates with non-zero fitness score: 

Fitness score: 0.009084027252081723. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.InterfaceMode]

Fitness score: 0.027546047416871364. Mapping: [Yasper.MainForm, Yasper.TipsForm, Yasper.Globals]

Fitness score: 0.03088803088803089. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.TipsForm]

Fitness score: 0.0311284046692607. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.about]

Fitness score: 0.04413657818917428. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.Registry]

Fitness score: 0.04633204633204632. Mapping: [Yasper.MainContainer, Yasper.MainForm, 

Yasper.SplashScreenForm]

Fitness score: 0.05363984674329502. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.ZoomContextMenu]

Fitness score: 0.08426733084267338. Mapping: [Yasper.TipsForm, Yasper.Globals, Yasper.Registry]

Fitness score: 0.11513637985275522. Mapping: [Yasper.MainForm, Yasper.UserControls, Yasper.ZoomContextMenu]

Fitness score: 0.13608247422680414. Mapping: [Yasper.PNMLObjectPropertyForm, Yasper.UserControls, 

Yasper.ZoomContextMenu]

Fitness score: 0.13967638005581304. Mapping: [Yasper.BlockProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.UserControls]

Fitness score: 0.1513761467889908. Mapping: [Yasper.netProperties, Yasper.UserControls, 

Yasper.ZoomContextMenu]

Fitness score: 0.1540581650827494. Mapping: [Yasper.netProperties, Yasper.UserControls, Yasper.Globals]

Fitness score: 0.1605647449650495. Mapping: [Yasper.arcProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.UserControls]

Fitness score: 0.16930232558139538. Mapping: [Yasper.placeProperties, Yasper.UserControls, Yasper.Globals]

Fitness score: 0.17051636191089495. Mapping: [Yasper.netProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.UserControls]

Fitness score: 0.17288177470306904. Mapping: [Yasper.PNMLObjectPropertyForm, Yasper.UserControls, 

Yasper.Globals]

Fitness score: 0.17378425080227106. Mapping: [Yasper.placeProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.UserControls]

Fitness score: 0.1872463768115942. Mapping: [Yasper.BlockProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.SelectiveTabControl]

Fitness score: 0.19290040304330022. Mapping: [Yasper.transitionProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.UserControls]

Fitness score: 0.19999999999999998. Mapping: [Yasper.placeProperties, Yasper.UserControls, 

Yasper.ZoomContextMenu]

Fitness score: 0.21942716258643605. Mapping: [Yasper.transitionProperties, Yasper.UserControls, 

Yasper.Globals]

Fitness score: 0.2279431482971306. Mapping: [Yasper.arcProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.SelectiveTabControl]

Fitness score: 0.24419734427291373. Mapping: [Yasper.placeProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.SelectiveTabControl]

Fitness score: 0.24473579658323405. Mapping: [Yasper.netProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.SelectiveTabControl]

Fitness score: 0.255758538522637. Mapping: [Yasper.transitionProperties, Yasper.PNMLObjectPropertyForm, 

Yasper.SelectiveTabControl]

Fitness score: 0.27577674878936764. Mapping: [Yasper.MainForm, Yasper.UserControls, Yasper.Globals]

Fitness score: 0.283430334478648. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.Globals]

Fitness score: 0.31275067412929686. Mapping: [Yasper.UserControls, Yasper.Globals, Yasper.Registry]

Fitness score: 0.3286573146292585. Mapping: [Yasper.transitionProperties, Yasper.UserControls, 

Yasper.ZoomContextMenu]

Fitness score: 0.4007592597217713. Mapping: [Yasper.MainContainer, Yasper.MainForm, Yasper.UserControls]

Fitness score: 0.5189200040148549. Mapping: [Yasper.MainForm, Yasper.Globals, Yasper.Registry]

Fitness score: 0.7514450867052023. Mapping: [Yasper.InterfaceModeObservable, Yasper.InterfaceModeImmutable, 

Yasper.InterfaceMode]

This last mapping was selected for the intended architecture by default.

Elapsed time: 37.319 seconds.

Figure 7.8: Eclipse console output of the non-aggregation run on the Yasper packages and
classes, looking for the Isolated Internal Layers variety of the 3-Layered pattern. N(n =
10, k = 3) = 15, 600 candidates.
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Total evolution time: 33482 ms

Presenting the ordering of software units mapped in the 

chromosomes: 

1: Yasper.BlockProperties

2: Yasper.CommentProperties

3: Yasper.Globals

4: Yasper.InterfaceMode

5: Yasper.InterfaceModeImmutable

6: Yasper.InterfaceModeObservable

7: Yasper.MainContainer

8: Yasper.MainForm

9: Yasper.PNMLObjectPropertyForm

10: Yasper.Properties

11: Yasper.Registry

12: Yasper.RoleAssigner

13: Yasper.RoleAssignerForm

14: Yasper.RoleEditor

15: Yasper.RoleEditorForm

16: Yasper.SearchElementForm

17: Yasper.SelectiveTabControl

18: Yasper.SplashScreenForm

19: Yasper.TipsForm

20: Yasper.UserControls

21: Yasper.ZoomContextMenu

22: Yasper.about

23: Yasper.arcProperties

24: Yasper.netProperties

25: Yasper.placeProperties

26: Yasper.transitionProperties

The best (and unique) chromosomes are printed here. If their 

number is particularly small, it is because the population 

contained many duplicates.

This would mean that the algorithm has converged on a small 

number of solutions. These should indicate at least local 

optima, if not the global optimum.

Chromosome 1: 

12321122223233312322222111

Fitness value: 1.0

Placing best candidate in defined architecture...

Best candidate was successfully mapped and validated.

Chromosome 2: 

12321122233233312322222211

Fitness value: 1.0

Chromosome 3: 

12221122223233312322232111

Fitness value: 1.0

Chromosome 4: 

22321122223233312322222111

Fitness value: 1.0

Chromosome 5: 

12221122223233312322222111

Fitness value: 1.0

Chromosome 6: 

12322122223223312322222221

Fitness value: 1.0

Chromosome 7: 

11221122223233312322222111

Fitness value: 1.0

. . . 

Elapsed time: 33.646 seconds.

Figure 7.9: Eclipse console output of genetic run on the Yasper packages and classes,
showing only the first 7 out of 62 perfect candidates. Ran for 20 generation and population
size 100.
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Total evolution time: 96125 ms

Presenting the ordering of software units mapped in the 

chromosomes: 

1: Yasper.BlockProperties

2: Yasper.CommentProperties

3: Yasper.Globals

4: Yasper.InterfaceMode

5: Yasper.InterfaceModeImmutable

6: Yasper.InterfaceModeObservable

7: Yasper.MainContainer

8: Yasper.MainForm

9: Yasper.PNMLObjectPropertyForm

10: Yasper.Properties

11: Yasper.Registry

12: Yasper.RoleAssigner

13: Yasper.RoleAssignerForm

14: Yasper.RoleEditor

15: Yasper.RoleEditorForm

16: Yasper.SearchElementForm

17: Yasper.SelectiveTabControl

18: Yasper.SplashScreenForm

19: Yasper.TipsForm

20: Yasper.UserControls

21: Yasper.ZoomContextMenu

22: Yasper.about

23: Yasper.arcProperties

24: Yasper.netProperties

25: Yasper.placeProperties

26: Yasper.transitionProperties

The best (and unique) chromosomes are printed here. If 

their number is particularly small, it is because the 

population contained many duplicates.

This would mean that the algorithm has converged on a small 

number of solutions. These should indicate at least local 

optima, if not the global optimum.

Chromosome 1: 

12203030213121102100321001

Fitness value: 1.0

Placing best candidate in defined architecture...

Best candidate was successfully mapped and validated.

Chromosome 2: 

20211100213020002122321001

Fitness value: 1.0

Chromosome 3: 

10321020223121102122321001

Fitness value: 1.0

Chromosome 4: 

11333020203121112222321001

Fitness value: 1.0

Chromosome 5: 

11203020223121122122011101

Fitness value: 1.0

Chromosome 6: 

12203030233121102102321011

Fitness value: 1.0

Chromosome 7: 

11203020223121030202221111

Fitness value: 1.0

. . . 

Elapsed time: 96.281 seconds.

Figure 7.10: Eclipse console output of genetic run (including Remainder) on the Yasper
packages and classes, showing only the first 7 out of 81 perfect candidates. Ran for 20
generation and population size 100.
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7.2 aTunes

aTunes is an open-source, cross-platform music player and library manager. Some of its features
include automatic tag editing, UI customisation and podcast support2. This system is interesting
to us due to its hierarchy structure, the fact that it is open-source and as an example of a system
where we would expect an MVC-like pattern or style. We rely on the publicly available version
3.0.x branch instead of the latest code, due to the latest possibly still being under development.

The root of aTunes can be seen in Figure 7.11. Although it is not completely apparent from
this image, this package hierarchy, for it is Java code, is a lot more structured than Yasper’s.
Both the GUI and Kernel packages contain sub-packages, with all root packages containing
decent amounts of individual classes. As such, aTunes is far more structured along the lines of
these four packages than Yasper is along its namespaces. This can also be observed from the
higher numbers of dependencies between the packages in Figure 7.12.

Figure 7.11: The root of the aTunes package hierarchy, as viewed from HUSACCT’s Ana-
lysed Application Overview.

The names of these four packages very strongly suggest an MVC/MVP type separation.
One might suspect an N-Layered style instead, since the same concerns might just as well be
separated into layers, but the number of mutual dependencies already suggests that this is
unlikely. Since this is a preliminary evaluation that functions partially as a demonstration, in
addition to a means by which to discover what our future work should entail, we will simply
start looking for MVC/MVP pattern within these root packages and leave it at that.

We would expect the following to be the actual instance of this pattern, given the pattern
names: Model = Model, GUI = View and Controller either or both Kernel and Utils.

2The aTunes website: http://www.atunes.org/, SourceForge: http://sourceforge.net/projects/atunes/,
FossHub: http://www.fosshub.com/aTunes.html.
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Figure 7.12: The dependencies in the root of the aTunes package hierarchy, as viewed
with HUSACCT’s Implemented architecture diagram window and excluding all individual
classes.

Let us start by searching for the Complete Freedom interpretation of the MVC-pattern. This
is the one where the only rule besides the “Must use” rules says that Model cannot use Controller,
thus leaving no constraints with regards to the Remainder. Since we do not expect too many
pattern candidates (Na,r(n = 4, k = 3) = 60, again), we will simply run the aggregation case
including Remainder. Figure 7.13 shows the results. The top 20 candidates were requested.

Although the fitness score varies amongst the top results, this is still a relatively substantial
amount of strong candidates. Since the mappings that are produced here show Model, View
and Controller in this very order, some of the candidates do not make much sense from an MVC
perspective. For example, due to the fact that GUI should so obviously be the View if this
be MVC, any candidate where GUI does not take the second position in the mapping seems
unlikely. Assuming that some form of MVC (or MVP, of course) was implemented correctly,
can we apply a particular interpretation of the MVC pattern such that these more reasonable
mappings come out on top?

Figure 7.14 shows the same results for the Model Interface interpretation of MVC, defined
by Figure B.4 in Section 4.3. This interpretation does have consequences for the Remainder. It
takes much longer to search for this pattern interpretation, because it uses rule exceptions in
addition to regular rules.

Since a case can also be made for the Controller being the interface with the Remainder for
the MVC pattern, let us run the same analysis for the MVC interpretation that was displayed
in Figure 4.9 in Section 4.3. The results are shown in Figure 7.15

What can one conclude from these evaluations using aTunes? There are not very many
legitimate pattern candidates for these three interpretations of MVC when run on the four root
packages of aTunes. It turns out that one can find several candidates with a high fitness score
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Candidate number: 60

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:302) - Done 

Best 20 candidates with non-zero fitness score: 

Fitness: 0.7179222303382978 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.7227803179449632 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.model]]

Fitness: 0.7706768944381706 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.model], 

[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.8508080174113313 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils]]

Fitness: 0.8704051515964583 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui]]

Fitness: 0.8952702183695589 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils]]

Fitness: 0.89569112434638 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9028601325427276 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9103082055893321 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9131813861249999 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9140674040519081 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils]]

Fitness: 0.9158521686010996 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel, 

net.sourceforge.atunes.model], [net.sourceforge.atunes.gui]]

Fitness: 0.9169778547242682 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel]]

Fitness: 0.9670807095868765 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9676265719494782 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui]]

Fitness: 0.9702790409799104 --> Mapping: [[net.sourceforge.atunes.model, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel], [net.sourceforge.atunes.gui]]

Fitness: 0.978783151326053 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9861529199277543 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9923966347235345 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel]]

Fitness: 0.9949922797646371 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.kernel]]

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:330) - This last mapping was selected for the intended 

architecture by default.

Elapsed time: 18.109 seconds.

Figure 7.13: Eclipse output of aTunes aggregation + Remainder brute force for Complete
Freedom MVC.

in these cases and that one MVC interpretation does not help us much more than the others.
There are additional MVC/MVP interpretations left for us to attempt, with even more versions
still conceivable, but the lesson we can draw from the analysis of aTunes is clear. If one is so
sure that GUI should be assigned to View, or that Model undoubtedly is the MVC Model, then
this information needs to be fed to the algorithm. Whether it be based on the package names
alone, or on an analysis of syntax and/or semantics of these packages, this would aid a great
deal. It would whittle down both the number of candidates to be considered and the number of
top candidates presented to the user.

Next, we will have a look at architectures with higher numbers of packages in the root.
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Candidate number: 60

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:302) - Done 

Best 30 candidates with non-zero fitness score: 

Fitness: 0.21377152716223544 --> Mapping: [[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui]]

Fitness: 0.21926006528835693 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.model]]

Fitness: 0.23793671117614779 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.kernel], [net.sourceforge.atunes.model]]

Fitness: 0.26023459954944456 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.model]]

Fitness: 0.26798070874397145 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel], [net.sourceforge.atunes.model]]

Fitness: 0.6436759648452426 --> Mapping: [[net.sourceforge.atunes.kernel, net.sourceforge.atunes.model], 

[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui]]

Fitness: 0.7337911352893961 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.model]]

Fitness: 0.8704051515964583 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9028601325427276 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9056513514101198 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9158521686010996 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel, 

net.sourceforge.atunes.model], [net.sourceforge.atunes.gui]]

Fitness: 0.9161527358614355 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils]]

Fitness: 0.9190974398534304 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils]]

Fitness: 0.9273092172891478 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9282290507575109 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9335284370897979 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel]]

Fitness: 0.9745677452563113 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9751080024686278 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui]]

Fitness: 0.9778158737933428 --> Mapping: [[net.sourceforge.atunes.model, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel], [net.sourceforge.atunes.gui]]

Fitness: 0.978783151326053 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9859326940474036 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils]]

Fitness: 0.9861529199277543 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9863081901916854 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.model], 

[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9923966347235345 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel]]

Fitness: 0.994586162598642 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9949922797646371 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.kernel]]

Fitness: 0.9951745671302866 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9952657973921765 --> Mapping: [[net.sourceforge.atunes.model, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.gui], [net.sourceforge.atunes.kernel]]

Fitness: 0.9970890148613452 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9974397935183065 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.kernel]]

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:330) - This last mapping was selected for the intended 

architecture by default.

Elapsed time: 140.152 seconds.

Figure 7.14: Eclipse output of aTunes aggregation + Remainder brute force for Model
Interface MVC.
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Candidate number: 60

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:302) - Done 

Best 30 candidates with non-zero fitness score: 

Fitness: 0.23793671117614779 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.kernel], [net.sourceforge.atunes.model]]

Fitness: 0.23870760327921553 --> Mapping: [[net.sourceforge.atunes.kernel], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui]]

Fitness: 0.26023459954944456 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.model]]

Fitness: 0.2604073714839961 --> Mapping: [[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui]]

Fitness: 0.26798070874397145 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel], [net.sourceforge.atunes.model]]

Fitness: 0.6436759648452426 --> Mapping: [[net.sourceforge.atunes.kernel, net.sourceforge.atunes.model], 

[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui]]

Fitness: 0.7337911352893961 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.model]]

Fitness: 0.8704051515964583 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9028601325427276 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9056513514101198 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9158521686010996 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel, 

net.sourceforge.atunes.model], [net.sourceforge.atunes.gui]]

Fitness: 0.9161527358614355 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils]]

Fitness: 0.9190974398534304 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils]]

Fitness: 0.9273092172891478 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9282290507575109 --> Mapping: [[net.sourceforge.atunes.gui], [net.sourceforge.atunes.model, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9335284370897979 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel]]

Fitness: 0.9745677452563113 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9751080024686278 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui]]

Fitness: 0.9778158737933428 --> Mapping: [[net.sourceforge.atunes.model, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.kernel], [net.sourceforge.atunes.gui]]

Fitness: 0.978783151326053 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9859326940474036 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel, net.sourceforge.atunes.utils]]

Fitness: 0.9861529199277543 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9863081901916854 --> Mapping: [[net.sourceforge.atunes.gui, net.sourceforge.atunes.model], 

[net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9923966347235345 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.model], [net.sourceforge.atunes.kernel]]

Fitness: 0.994586162598642 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui], 

[net.sourceforge.atunes.kernel]]

Fitness: 0.9949922797646371 --> Mapping: [[net.sourceforge.atunes.utils], [net.sourceforge.atunes.model], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.kernel]]

Fitness: 0.9951745671302866 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.gui, 

net.sourceforge.atunes.utils], [net.sourceforge.atunes.kernel]]

Fitness: 0.9952657973921765 --> Mapping: [[net.sourceforge.atunes.model, net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.gui], [net.sourceforge.atunes.kernel]]

Fitness: 0.9970890148613452 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.gui]]

Fitness: 0.9974397935183065 --> Mapping: [[net.sourceforge.atunes.model], [net.sourceforge.atunes.utils], 

[net.sourceforge.atunes.gui, net.sourceforge.atunes.kernel]]

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:330) - This last mapping was selected for the intended 

architecture by default.

Elapsed time: 116.204 seconds.

Figure 7.15: Eclipse output of aTunes aggregation + Remainder brute force for Controller
Interface MVC.

82



Chapter 7: Evaluation Utrecht University

7.3 SweetHome3D

SweetHome3D is a Java application that allows its users to draw plans for houses for Windows,
Mac OS, Linux and Solaris. It lets people apply their interior designs to such plans and view
the results in three dimensions, furniture and all3. It is an open-source project that has had
some time to mature (over ten years). We used the source code freely available on the download
page of SweetHome3D’s website, which is version 5.1.

Figure 7.16: The SweetHome3D package hierarchy root.

This architecture is neither very flat nor very vertical. Figure 7.16 shows eight root packages,
none of which has any sub-packages, although they all have plenty of individual classes. The
developer’s forum describes a combination of 3-Layered with MVC (http://www.sweethome3d
.com/support/forum/viewthread thread,3067). This is difficult to verify by looking at the
package dependencies in Figure 7.17.

3SweetHome3D website: http://www.sweethome3d.com/, SourceForge: http://sourceforge.net/projects/

sweethome3d/, Developer’s forum: http://www.sweethome3d.com/support/forum/.
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Figure 7.17: The dependencies between SweetHome3D’s packages.

However, there are several JUnit tests within the source code that check the package de-
pendencies. Since we actually have the source code, we can import it into Eclipse and run these
JUnit tests (Code Sample D.7). There were no assertion errors. From this, we can get a good
idea of the intended architecture.

From these sources, several things become rather apparent. There is a particular kind of
MVC pattern here, an interpretation derived from classic MVC with View and Controller merged
into one. Model cannot, and does not, depend on this Viewcontroller.

In terms of layering, there is definitely a presentation layer and a business logic layer, judging
by both the dependencies and the forum description. However, the persistence layer that is
supposedly embodied by the IO package appears to completely contradict the idea of the N-
Layered pattern. If we assume this is the third layer, then it does not even adhere to the rule
that “Layer 2 must use Layer 3”, which is part of the reason why the intended pattern does
not appear as a candidate in the Complete Freedom 3-Layered (genetic with Remainder, 20
generations) search of Figure 7.18. If we would take the persistence layer to be Layer 2 or even
1, there would still be no strict layering among these three layers, since the whole problem is
that what is called the business logic layer receives dependencies from both other layers and
does itself not depend on anything.

84



Chapter 7: Evaluation Utrecht University

Figure 7.18: Eclipse output for Complete Freedom 3-Layered with SweetHome3D’s root
packages.

From this evaluation thus far, we can already draw the conclusion that more patterns need
to be defined if one is to use an approach similar to ours in the field. But this insight is rather
trivial and obvious, so let us see if we can learn a bit more from this system. Code Sample
7.1 shows a pattern class for this particular interpretation of the 3-Layered pattern, where the
central layer receives dependencies from layers 1 and 2. This is also depicted in Figure 7.19.
Because the business logic layer is only supposed to have Model in it and because Viewcontroller
is one module, we could treat the Layering-MVC combination as a single pattern. However, if
we define this Model-Viewcontroller as a pattern in and of itself, it would look like Code Sample
7.2 and Figure 7.20.

X

!

!

X

X

X

Figure 7.19: The layering as seems to be employed by SweetHome3D.
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package husacct.analyse.task.reconstruct.patterns;

public class CentralisedLayering extends LayeredPattern_CompleteFreedom {

public CentralisedLayering () {

numberOfModules = 3;

name = "Centralised Layering";

}

@Override

protected void defineRules () {

addSingleRule("Layer" + 1, "Layer" + 2, "IsNotAllowedToUse", null);

addSingleRule("Layer" + 3, "Layer" + 2, "IsNotAllowedToUse", null);

addSingleRule("Layer" + 3, "Layer" + 1, "IsNotAllowedToUse", null);

addSingleRule("Layer" + 1, "Layer" + 3, "IsNotAllowedToUse", null);

}

@Override

protected void defineMustUseRules () {

addSingleRule("Layer" + 2, "Layer" + 1, "MustUse", null);

addSingleRule("Layer" + 2, "Layer" + 3, "MustUse", null);

}

}

Code Sample 7.1: A pattern that corresponds to SweetHome3D’s layering structure.

!X

Figure 7.20: An interpretation of SweetHome3D’s Model-Viewcontroller pattern.

package husacct.analyse.task.reconstruct.patterns;

import java.util.ArrayList;

import java.util.Map;

import husacct.common.dto.SoftwareUnitDTO;
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public class Model_Viewcontroller extends Pattern {

public Model_Viewcontroller () {

numberOfModules = 2;

name = "M-VC";

}

@Override

protected void defineModules () {

defineService.addModule("Model", "**", "Subsystem", 1, null);

defineService.addModule("Viewcontroller", "**", "Subsystem", 1, null);

}

@Override

protected void defineRules () {

addSingleRule("Viewcontroller", "Model", "IsNotAllowedToUse", null);

}

@Override

protected void defineMustUseRules () {

addSingleRule("Model", "Viewcontroller", "MustUse", null);

}

@Override

public void mapPattern(ArrayList <String > mapping) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (0)));

defineService.editModule("Model", "Model", 1, temp);

temp.clear ();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (1)));

defineService.editModule("Viewcontroller", "Viewcontroller", 1, temp);

temp.clear ();

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int j = 0; j < patternUnitNames.get (0).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(0).get(j)));

}

defineService.editModuleWithAggregation("Model", "Model", 1, temp);

temp.clear ();

for (int j = 0; j < patternUnitNames.get (1).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(1).get(j)));

}

defineService.editModuleWithAggregation("Viewcontroller", "Viewcontroller",

1, temp);

temp.clear ();

}

}

Code Sample 7.2: A Complete Freedom interpretation of a Model-Viewcontroller pattern.

One could phrase SweetHome3D’s architecture as follows: the style is a 3-Layered architec-
ture in which the middle layer is called by both of the other layers, with a Model-Viewcontroller
pattern (where Model does not have any outgoing dependencies) distributed over the business
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End evolution iteration 29

Total evolution time: 109273 ms

Presenting the ordering of software units mapped in the 

chromosomes: 

1: com.eteks.sweethome3d.applet

2: com.eteks.sweethome3d.io

3: com.eteks.sweethome3d.j3d

4: com.eteks.sweethome3d.model

5: com.eteks.sweethome3d.plugin

6: com.eteks.sweethome3d.swing

7: com.eteks.sweethome3d.tools

8: com.eteks.sweethome3d.viewcontroller

The best (and unique) chromosomes are printed here. If their 

number is particularly small, it is because the population 

contained many duplicates.

This would mean that the algorithm has converged on a small 

number of solutions. These should indicate at least local optima, 

if not the global optimum.

Chromosome 1: 

21212210

Fitness value: 1.0

Placing best candidate in defined architecture...

Best candidate was successfully mapped and validated.

Chromosome 2: 

20010201

Fitness value: 1.0

Chromosome 3: 

20001010

Fitness value: 1.0

Chromosome 4: 

20110010

Fitness value: 1.0

Chromosome 5: 

21200010

Fitness value: 1.0

Chromosome 6: 

21211000

Fitness value: 1.0

. . . 

Chromosome 69: 

21000200

Fitness value: 1.0

Elapsed time: 109.399 seconds.

Figure 7.21: A genetic (with Remainder) run on SweetHome3D’s packages for the Model-
Viewcontroller pattern, showing only a portion of the results.

logic and presentation layer, respectively. The first of these is not very difficult to find thanks
to the relatively large numbers of dependencies along the lines of the “Must use” rules for both
of these. A high number of “Must use” affirmations results in good fitness scores, because it ex-
plains all these dependencies with the existence of a pattern. The smaller pattern is much harder
to find, due to the large number of candidates that are equally good. Without semantic input,
it is very difficult to discover the pattern. This example raises an issue concerning pattern-based
architectures that is further developed in Section 8.5.

Note also how Figure 7.22 depicts a solution similar to the one we anticipated (except for
the placement of Tools), but upside down in the sense that Layer 1 is Layer 3 and vice versa.
Because of the way the pattern is defined, this does indeed seem just as reasonable. Without
semantic constraints, this sort of confusion is to be expected.

Finally, we will analyse an early version of HUSACCT itself.
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End evolution iteration 29

Total evolution time: 424834 ms

Presenting the ordering of software units mapped in the 

chromosomes: 

1: com.eteks.sweethome3d.applet

2: com.eteks.sweethome3d.io

3: com.eteks.sweethome3d.j3d

4: com.eteks.sweethome3d.model

5: com.eteks.sweethome3d.plugin

6: com.eteks.sweethome3d.swing

7: com.eteks.sweethome3d.tools

8: com.eteks.sweethome3d.viewcontroller

The best (and unique) chromosomes are printed here. If their 

number is particularly small, it is because the population 

contained many duplicates.

This would mean that the algorithm has converged on a small 

number of solutions. These should indicate at least local 

optima, if not the global optimum.

Chromosome 1: 

01320323

Fitness value: 0.971235879278368

Placing best candidate in defined architecture...

Best candidate was successfully mapped and validated.

Elapsed time: 424.991 seconds.

Figure 7.22: A genetic (with Remainder) run on SweetHome3D’s packages for the Cent-
ralised Layering pattern.
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7.4 HUSACCT

Figure 7.23: The intended architecture of HUSACCT’s Analyse component.

Although the thesis has focussed mostly on SAR uses for pattern discovery, there is also a
reason for ACC to apply such an approach, due to the equivalence described in Section 3.1.
SweetHome3D already showed how we can easily add new patterns to search for and what the
limitations are when doing so. In order to demonstrate this more fully and perhaps learn a thing
or two for the sake of future work, let us look at an early version of HUSACCT. HUSACCT is
open-source, like the other systems, and we know its intended architecture.

So let us look at part of HUSACCT’s architecture that is not merely a particular pattern,
but a more complex structure. We take the Analyse component of HUSACCT v1.0, like we did
in Section 3.2. Figure 7.23 shows the intended architecture for this component. Although this
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is a version of layering that might not be considered an established pattern, we can define it as
though it were (Code Sample 7.3).

package husacct.analyse.task.reconstruct.patterns;

import java.util.ArrayList;

import java.util.Map;

import husacct.common.dto.SoftwareUnitDTO;

public class HUSACCT_Analyse extends Pattern {

public HUSACCT_Analyse () {

numberOfModules = 5;

}

@Override

protected void defineModules () {

defineService.addModule("PresentationLayer", "**", "Subsystem", 1, null);

defineService.addModule("TaskLayer", "**", "Subsystem", 1, null);

defineService.addModule("DomainLayer", "**", "Subsystem", 1, null);

defineService.addModule("AbstractionLayer", "**", "Subsystem", 1, null);

defineService.addModule("InfrastructureLayer", "**", "Subsystem", 1, null);

}

@Override

protected void defineRules () {

addSingleRule("TaskLayer", "PresentationLayer", "IsOnlyAllowedToUse", null);

addSingleRule("PresentationLayer","TaskLayer","IsNotAllowedToUse", null);

addSingleRule("PresentationLayer", "DomainLayer", "IsNotAllowedToUse", null)

;

addSingleRule("PresentationLayer", "InfrastructureLayer", "IsNotAllowedToUse

", null);

addSingleRule("TaskLayer", "InfrastructureLayer", "IsNotAllowedToUse", null)

;

addSingleRule("DomainLayer", "InfrastructureLayer", "IsNotAllowedToUse",

null);

addSingleRule("TaskLayer", "DomainLayer", "IsNotAllowedToUse", null);

addSingleRule("AbstractionLayer","TaskLayer","IsTheOnlyModuleAllowedToUse",

null);

addSingleRule("InfrastructureLayer","TaskLayer","IsTheOnlyModuleAllowedToUse

", "AbstractionLayer");

addSingleRule("InfrastructureLayer","AbstractionLayer","IsOnlyAllowedToUse",

null);

}

@Override

protected void defineMustUseRules () {

addSingleRule("TaskLayer", "PresentationLayer", "MustUse", null);

addSingleRule("DomainLayer", "TaskLayer", "MustUse", null);

addSingleRule("AbstractionLayer", "TaskLayer", "MustUse", null);

addSingleRule("InfrastructureLayer", "TaskLayer", "MustUse", null);

// addSingleRule (" InfrastructureLayer", "AbstractionLayer", "MustUse", null);

}

@Override

public void mapPattern(ArrayList <String > patternNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

temp.add(analyseService.getSoftwareUnitByUniqueName(patternNames.get (0)));

defineService.editModule("PresentationLayer", "PresentationLayer", 1, temp);

temp.clear ();

temp.add(analyseService.getSoftwareUnitByUniqueName(patternNames.get (1)));
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defineService.editModule("TaskLayer", "TaskLayer", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(patternNames.get (2)));

defineService.editModule("DomainLayer", "DomainLayer", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(patternNames.get (3)));

defineService.editModule("AbstractionLayer", "AbstractionLayer", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(patternNames.get (4)));

defineService.editModule("InfrastructureLayer", "InfrastructureLayer", 1,

temp);

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int j = 0; j < patternUnitNames.get (0).size(); j++)

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(0).get(j)));

defineService.editModuleWithAggregation("PresentationLayer", "

PresentationLayer", 1, temp);

temp.clear();

for (int j = 0; j < patternUnitNames.get (1).size(); j++)

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(1).get(j)));

defineService.editModuleWithAggregation("TaskLayer", "TaskLayer", 1, temp);

temp.clear();

for (int j = 0; j < patternUnitNames.get (2).size(); j++)

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(2).get(j)));

defineService.editModuleWithAggregation("DomainLayer", "DomainLayer", 1,

temp);

temp.clear();

for (int j = 0; j < patternUnitNames.get (3).size(); j++)

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(3).get(j)));

defineService.editModuleWithAggregation("AbstractionLayer", "

AbstractionLayer", 1, temp);

temp.clear();

for (int j = 0; j < patternUnitNames.get (4).size(); j++)

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(4).get(j)));

defineService.editModuleWithAggregation("InfrastructureLayer", "

InfrastructureLayer", 1, temp);

}

}

Code Sample 7.3: HUSACCT’s Analyse component.

When we ran the brute force approach on this example, no suitable candidates were found.
When we commented out the “Must use” rules between the Abstraction and Infrastructure
layers, the candidates portrayed in Figure 7.24 were produced. Upon closer inspection, it turned
out that the Infrastructure layer did not contain the JXL Excel Export library that was supposed
to be called by the Abstraction layer, as the documentation described. This is exactly what ACC
is for, the documentation did not comply with reality. There appears to be some inconsistency
in the documentation regarding these modules and our approach pointed it out to us rather
quickly, which is a good sign.

Note that the caption under the figure states that we ran the brute force approach including a
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Remainder, but that no such candidates were evaluated. That is because the number of software
units was exactly equal to the number of pattern modules.

Candidate number: 120

HERE STARTS THE REMAINDER LOOP.

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:302) - Done 

Best 30 candidates with non-zero fitness score: 

Fitness: 1.0 --> Mapping: [[husacct.analyse.presentation], [husacct.analyse.task], [husacct.analyse.abstraction], 

[husacct.analyse.domain], [husacct.analyse.infrastructure]]

Fitness: 1.0 --> Mapping: [[husacct.analyse.presentation], [husacct.analyse.task], [husacct.analyse.abstraction], 

[husacct.analyse.infrastructure], [husacct.analyse.domain]]

Fitness: 1.0 --> Mapping: [[husacct.analyse.presentation], [husacct.analyse.task], [husacct.analyse.domain], 

[husacct.analyse.abstraction], [husacct.analyse.infrastructure]]

Fitness: 1.0 --> Mapping: [[husacct.analyse.presentation], [husacct.analyse.task], [husacct.analyse.domain], 

[husacct.analyse.infrastructure], [husacct.analyse.abstraction]]

Fitness: 1.0 --> Mapping: [[husacct.analyse.presentation], [husacct.analyse.task], 

[husacct.analyse.infrastructure], [husacct.analyse.abstraction], [husacct.analyse.domain]]

Fitness: 1.0 --> Mapping: [[husacct.analyse.presentation], [husacct.analyse.task], 

[husacct.analyse.infrastructure], [husacct.analyse.domain], [husacct.analyse.abstraction]]

 INFO [AWT-EventQueue-0] (ReconstructArchitecture.java:330) - This last mapping was selected for the intended 

architecture by default.

Elapsed time: 43.171 seconds.

Figure 7.24: The results of the brute force (aggregation + Remainder) run on the Analyse
component.

Finally, we look at the packages and classes contained within the software units in the
previous run, to see if we get the same layering. There are 23 software units, in that case, which
would result in Na,r(n = 23, k = 5) ≈ 7.3 · 1017 pattern candidates. Obviously, we will use the
genetic approach. Some of the results are presented in Figure 7.25.

There are two problems with these results. First of all, there are a lot of strong candidates.
This is a powerful lesson to be drawn from the evaluations: a large number of software units
can make it too easy to find candidates with high fitness functions, resulting in the need to
somehow filter the results. Secondly, these software units do not really seem to correspond to
the components in Figure 7.23. There was no need to perform any sort of clustering or manual
grouping in the case with Analyse’s packages, but the sub-packages and -classes do not cooperate
as nicely as we would like. This, again, goes to show that the modular decomposition step is
critical: improving the input for either the brute force or the genetic approach would increase
the odds of an improved output.
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Presenting the ordering of software units mapped in the chromosomes: 

1: husacct.analyse.abstraction.export

2: husacct.analyse.domain.AnalyseDomainServiceImpl

3: husacct.analyse.domain.IAnalyseDomainService

4: husacct.analyse.domain.IModelCreationService

5: husacct.analyse.domain.IModelPersistencyService

6: husacct.analyse.domain.IModelQueryService

7: husacct.analyse.domain.famix

8: husacct.analyse.infrastructure.antlr

9: husacct.analyse.presentation.AnalyseDebuggingFrame

10: husacct.analyse.presentation.AnalyseInternalFrame

11: husacct.analyse.presentation.AnalyseUIController

12: husacct.analyse.presentation.ApplicationStructurePanel

13: husacct.analyse.presentation.DependencyPanel

14: husacct.analyse.presentation.DependencyTableModel

15: husacct.analyse.presentation.ExportDependenciesDialog

16: husacct.analyse.presentation.FileDialog

17: husacct.analyse.presentation.Regex

18: husacct.analyse.presentation.SoftwareTreeCellRenderer

19: husacct.analyse.presentation.ThreadedDependencyExport

20: husacct.analyse.task.AnalyseControlerServiceImpl

21: husacct.analyse.task.DependencyExportController

22: husacct.analyse.task.IAnalyseControlService

23: husacct.analyse.task.analyser

The best (and unique) chromosomes are printed here. If their number is particularly small, it is 

because the population contained many duplicates.

This would mean that the algorithm has converged on a small number of solutions. These should 

indicate at least local optima, if not the global optimum.

Chromosome 1: 

52223203110200244542052

Fitness value: 1.0

Placing best candidate in defined architecture...

Best candidate was successfully mapped and validated.

Chromosome 2: 

32443203110201243502052

Fitness value: 1.0

Chromosome 3: 

22253223110204244522052

Fitness value: 1.0

Chromosome 4: 

42253323110203243532002

Fitness value: 1.0

Chromosome 5: 

32243323110200244342052

Fitness value: 1.0

Chromosome 6: 

42223203110200254532052

Fitness value: 1.0

Chromosome 7: 

22253323110200244522202

Fitness value: 1.0

. . . 

Chromosome 89: 

22423203110200224422052

Fitness value: 1.0

Elapsed time: 2216.668 seconds.

Figure 7.25: The results of the genetic (aggregation + Remainder) run on the Analyse
component’s sub-units.
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7.5 Lessons Learnt

With these final lessons, we conclude the evaluation section. In the future, elaborate case studies
involving actual software architects and their systems would be necessary to evaluate a more
mature version of this thesis’ approach. But for the moment, the preliminary evaluations are
fruitful in that they point out the weaknesses and strengths of both the brute force and the
genetic approach to pattern discovery using an ACC tool like HUSACCT.

The degree to which a pattern is difficult to find is likely to be related to the number of mod-
ules and the number of rules. Compare the evaluation of SweetHome3D’s Model-Viewcontroller
with HUSACCT’s layering, for example. This is almost trivial, more constraints result in fewer
pattern candidates.

In conclusion, the key takeaways from these evaluations can be summarised as follows. No-
menclature (semantics) can be a vital aid to our approach, it could influence the fitness of
candidates or reduce the number of candidates. A high number of software units makes it more
likely that there are many candidates with high fitness scores, making it more difficult to decide
on a pattern instance. This may also be remedied using nomenclature, if not by applying a more
sophisticated modular decomposition step.

In the next chapter, our vision of a more mature approach is described.
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Chapter 8

GEAR

The essence of this thesis can be formulated as follows: an Architecture Compliance Checking
software tool, such as HUSACCT, can be made to search for architectural patterns within
object-oriented source code, to aid the performance of Software Architecture Reconstruction.
It is a guided, semi-automated process, in which a re-engineer decides on the architectural
pattern(s) and the software units to use in the search of that/those pattern(s). This can be done
due to the fact that the concepts of ACC and SAR have a significant overlap, since verifying
a hypothesised architecture (or a portion thereof) is equivalent to a compliance check with
architecture documentation.

In theory, anything could be considered a pattern in this approach. There is no reason why
a whole technical architecture could not be entered into the approach as though it were one
of these architectural patterns. With such a high number of architectural elements, or pattern
modules, and a number of selected software units that is at least equal to the number of elements,
the number of possible pattern candidates would be astoundingly massive. The computation
would, therefore, be terrible costly. However, it could be done.

From this insight, one can conclude that not only can an ACC tool be used to perform
SAR, an SAR approach that searches for specific architectures (patterns, in this case) also leads
to new ACC approaches. One might enter portions of the architecture as described by the
architecture documentation into the pattern editor, as described in the previous section, and
look for those. Using the various techniques and considerations that have been mentioned in the
various sections of this master thesis, the best possible mappings could thus be found. Especially
if this would involve semantic constraints on the names of software units or if some measure
of syntactic analysis were included to identify which candidates might be more promising than
others.

We envision GEAR, Guided Evolutionary Architecture-Reconstruction. Guided because the
user has to be kept in the loop for the moment. Evolutionary because we employ techniques
from evolutionary computing. Architecture reconstruction because the ultimate goal is SAR,
while ACC is only a way station1. This chapter will describe parts of GEAR, as an exploration
of possible future work.

8.1 User Interface Design

So far, the reconstruction processes proposed in this thesis have only been discussed in ab-
stract terms. Because these are exploratory techniques aimed at designing future research and
providing proofs of concept, the level of formalisation is relatively low. However, all this design

1And the hyphen so one cannot misunderstand it as the guided reconstruction of evolutionary architecture.
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research is based, in abstract terms, on ACC tools and, concretely, on HUSACCT. Therefore,
this section is aimed at providing a rudimentary design for the concrete implementation of the
reconstruction approach within HUSACCT, with regards to a user interface.

HUSACCT’s menus and screens display a consistent style, so it speaks for itself that any
future developments should be in line with this choice of colours, fonts and other stylistic ele-
ments. This thesis has little to do with visual design, so the mock-ups shown in this section are
intended to be plain examples of what future implementations could or should look like.

Figure 8.1 shows a screen from the current HUSACCT version, called Define intended ar-
chitecture. This is where, in the ACC process, the re-engineer would inform the tool of the
architecture described in the architecture documentation. Modules of the various types can be
added, rules can be formulated and exceptions thereof can be specified. Perhaps most import-
antly, software units that were found in the source code analysis can be assigned to defined
modules. Only then can validation result in certain dependencies being marked as violations, if
they exist in spite of the rules defined here.

Figure 8.1: Define intended architecture window.

One useful but somewhat trivial expansion of this functionality would be to add some menu
options involved with the insertion of architectural patterns. A simple button, called Insert
pattern, for instance. This could even include patterns that are counted among the design
patterns rather than architectural patterns, although these are probably problematic due to
their rules and specifications not complying with HUSACCT’s SRMA elements.

Inserting a pattern would be nothing more than adding multiple modules and rules at a
time. Removing a whole pattern from the intended architecture with the click of a button
would demand that HUSACCT also be aware of this set of modules constituting a pattern. So
that would make things slightly less trivial. Still, this functionality would not be very interesting
at all, from an academic perspective at least, but may contribute to further improvement of the
software tool.

At the moment of writing, all reconstruction functionality is called by a single menu item,
the Reconstruct Architecture item under the Analyse implemented architecture tab on the menu
bar of HUSACCT. This is, obviously, a temporary solution. Decisions about reconstruction
technique, software unit selection or fitness function have to be made within the source code,
which is ridiculous in terms of usability. No efforts were made to create a suitable user interface,
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beyond this design section, because this would be of no academic interest. Also, a master thesis
is limited by a comparatively brief time span, most of which tends to be (and indeed was)
taken up by literature study and achieving a sufficiently high degree of familiarity with the
subject matter. Any remaining time needs to be invested in exploratory implementation, not
into considerations of user friendliness or stylistic concerns. Nevertheless, some visual design
can be useful to illustrate a vision of future development.

The future of HUSACCT’s reconstruction functionality can be envisioned as follows. The
menu button that now calls upon the Reconstruct Architecture class and whatever methods are
programmed to run, should really open a reconstruction screen. A basic mock-up, devoid of
style, of this window is shown in Figure 8.2.

Reconstruction

Selected software units:

Selected pattern: 

Selected fitness function:

Select pattern matching technique:

Allow aggregation

Allow remainder

None (brute force)

OptionsApproach



 

Termination criteria

4 units selected

N-Layered (isolated internal layers)

Default

Brute force

Figure 8.2: A very basic mock up of a user interface that conveys the idea of what a future
implementation could be like.

Obviously, this image implies a set of additional menus and/or windows These will be dis-
cussed one by one.

Select pattern:
Selecting a pattern can be kept rather simple. How to define new patterns or alter existing ones,
however, is not as trivial and will be discussed in the next section.

Select software units:
The selection of software units is an important choice for both the brute force approach and the
genetic algorithm (and presumably for any other method that might be employed by HUSACCT
in the future), since it determines the size and scope of the search space. The current realisation
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has no way of dealing with sub-modules, i.e. one software unit cannot be the child of another
within the same pattern candidate.

The selection of software units is no trivial matter. Throughout this thesis and within the
current exploratory realisation, the package hierarchy (technically the namespace hierarchy in
the case of C# source code) is used. However, as has already been alluded to in previous sections,
other methods could be employed instead. Clustering methods, for example, could construct a
custom hierarchy of software units based on degree of coupling. A K-means algorithm would
be one example thereof, or some sort of hierarchical clustering where the optimal number of
clusters is determined instead of user-provided. Regardless of what technique might be applied
here, several choices will have to be made. See Figure 8.3 for an example of what this might
look like. This is in the case of the package hierarchy being relied on, but this window ought to
adapt to whatever method be selected. In the case of clustering, distance measures would have
to be specified, for instance.

Selected method of decomposition:

Select Software Units

Options

Packages/namespaces

 husacct.analyse (package)
 define.domain (package)
 define.domainParser (class)
 define.IDefineService (Interface)

Figure 8.3: Selecting a technique of modular decomposition and choosing software units.

Select fitness function:
Different fitness functions might point a reconstruction algorithm towards different results. One
function may promote simple pattern candidates with very few violations, while another function
could tend to be maximised by solutions that contain large aggregates of software modules with
many “good” dependencies. Which result is more favourable is unclear and, thus, remains up
to the user.2 Hence, Figure 8.4.

2This is not a coy way of stating that it has not yet been investigated, since there truly seems to by no way of
telling beforehand which type of solution would work best for the architecture.
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Select Fitness Function

New

 Default
 No Must Use
 Custom 1
 Custom 2

Edit

Stored functions

Figure 8.4: Selecting an existing fitness function or editing one (adjusting weights per rule
type).

Ideally, the user would be able to edit or provide new fitness functions. This would require an
interface for describing such functions, some functionality that allows mathematical expressions
to be transcribed into usable code (Java). What sort of construction might fit best here is not
known and not the topic of this research, at least not within the scope of the thesis itself.

Select pattern matching technique:
Selecting a method could be rather straightforward, at least as far as can be foreseen at this
point. Figure 8.5 shows a small menu that might be displayed, with brief descriptions of the
advantages and disadvantages of each technique.

The selection of a technique would then determine the options displayed in Figure 8.5. Some
of these would be the same for both the genetic and brute force approaches, such as whether to
aggregate software units, and some would be relevant to only one, such as termination criteria
(brute force implies all candidates are attempted).

Once all these choices have been made, the algorithm that was selected is allowed to com-
mence. As such, the options that are given in these windows should provide the parameters that
are hard-coded into the reconstruction classes at this time.

While pattern matching is being performed, some sort of output and/or animation could
be shown. This could be useful for the re-engineer and not just entertaining, since this would
give him/her an idea of what is happening. It can be highly informative to observe if the
genetic algorithm is converging, for example, even before termination criteria have been met.
What exactly should be shown would be the concern of future development, as it does little to
illustrate the proposed method for the purposes of this text.

Since the algorithm, whether brute force or otherwise, would be run for one or several
architectural patterns, a series of top n ∈ N candidates ought to be both displayed as results
and saved in case the re-engineer wants to try something else. For this reason, these results
should look something like Figure 8.6.

This screen shows the top candidates in terms of their mapping. Filter options allow the
re-engineer to view only candidates for a specific pattern, in case several have been attempted.
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Select Pattern Matching Technique

Brute Force

The brute force approach to pattern 
matching is the simplest and most 
laborious technique to discover 
architectural patterns. All possible 
candidates (in scope) are attempted, so 
the algorithm does not terminate until 
there are no additional mappings left to 
evaluate.

Genetic Algorithm

Description

Figure 8.5: Selecting a pattern matching technique. Obviously, this list and others could be
extended by additional techniques.

Results

1. [domain, presentation, (control...)] 0.98
2. [domain, presentation, (control...)] 0.98
3. [presentation, domain, (control...)] 0.96
4. [control, presentation, (domain...)] 0.74

Fitness score (asc)
Fitness score (desc)

Number of software units (asc)
Number of software units (desc)

Pattern

Top candidatesSort by

Figure 8.6: The best results displayed as an interactive list.

It is also possible to affect the sorting of the candidates, in terms of fitness values but also
number of software units.3

Perhaps it would also be fruitful if double clicking (or otherwise opening) a specific pattern
candidate were to provide a quick view of the candidate in terms of an architecture diagram.
If the re-engineer clicks on the very best candidate in the list order to study it more closely,
something like Figure 8.7 should appear.

This would give the re-engineer a quick impression of the pattern candidate and why it

3The number of software units per candidate would be equal for all candidates if a Remainder were not allowed,
obviously.
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Single Result

Figure 8.7: Studying a single result more closely.

was considered a particularly good mapping given the provided software units. Perhaps he/she
would notice something valuable, such as the name of these software units relating to the pattern
modules in either a good (the software unit in the Model-module is actually named Model) or
bad (the software units in the View-module have nothing to do with graphics or user interfaces)
way.

8.2 Pattern Editor

A pattern catalogue was presented in Section 4.3, in which several varieties of the Broker,
Model-View-Controller, and the N-Layered patterns were described. It is not inconceivable that
a re-engineer might be interested in an additional variety of one of these architectural patterns,
with a slightly altered interpretation of the pattern’s rules or altered module types of its elements.

At the moment of writing, adding such a new pattern specification to the proof-of-concept
implementation would require that someone alter the source code 4 and create a new pattern
class. This may be rather easy and relatively simple, it would only entail a few straightforward
lines of code, but this is unusable in an end-user application.

Furthermore, varieties of patterns can grow increasingly convoluted at the hands of experi-
enced software architects. Figure 8.8 shows an example of a novel pattern which is, essentially,
a mixture of two others. The three layers form a 3-Layered (Complete Freedom) pattern, but it
contains several exceptions to the architectural rules conventionally associated with this pattern,
because it is merged with the MVC (Controller Interface) pattern.

It would still be relatively convenient to create a pattern specification in which dependencies
of a specific type are exempt from an architectural rule. In fact, this can be interpreted as
simply an additional rule. It is also quite straightforward to exempt a module rather than a
rule type. The more exceptions result in additional pattern definitions, though, the greater the
need for another way to add new patterns to HUSACCT.

4Available on GitHub: https://github.com/HUSACCT.
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Figure 8.8: A combination of MVC and the 3-Layered patterns..

Moreover, the novel pattern in Figure 8.8 shows a blend of a 3-Layered pattern and a
Model-View-Controller pattern, in which the latter’s rules form the exceptions to the former
pattern’s rules. This too could be implemented in the source code directly, though the number
of interpretations of this large pattern would warrant many more such code classes.

The problem is, of course, neither the amount of code nor its duplication, especially when
correctly using design patterns to realise all this. It actually is the tediousness of building all
these pattern specifications and the fact that this is utterly out of the question outside of the
academic contact. HUSACCT cannot be used to discover architectural patterns if the addition
of novel patterns entails programming and compilation of HUSACCT itself, easy though the
programming may be.

For these reasons, a future realisation of this thesis’ HUSACCT extensions ought to include
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some sort of pattern editor. This project is not the time and place to go into the inner workings
of HUSACCT’s Famix model, suffice it to say that architectural patterns should be defined,
edited, merged, and stored using some technique by which a re-engineer can avoid using code
or any knowledge of the underlying mechanisms.

Figure 8.9 shows another user interface design, this one intended to provide a brief illustration
of what such an editor might be like. The user can work with an intuitive interface to adapt
existing patterns and create new varieties, or start from nothing and specify entirely new ways
of structuring architectural elements of a technical architecture.

Edit Pattern

New

Save

Load

Pattern name: N-Layered (complete freedom)

Figure 8.9: Simple example of a possible pattern editor.

Although not yet attempted during this research project, adding patterns through some
sort of editor cannot be too difficult. Ideally, patterns can be created or edited in a separate
pattern editor, to be subsequently used to define intended architectures. This would speed up
the process of copying architecture documentation as well, if an ACC process happens to involve
patterns, but this is the least interesting and most trivial implication of these ideas.

8.3 Custom Fitness Function

Similar to the aforementioned pattern editor, a fitness function can be a custom-made (made
by the user) formula based on violations, correct observances and weights per rule type. As
suggested earlier, different fitness functions are likely to result in different pattern candidates
in the list of top candidates. Therefore, fitness functions might be associated with specific
candidate characteristics and with specific architectural patterns, or at least the weight factors
might be.

It is not necessarily true that “Is not allowed to user” rules are equal in importance to “Is
the only module allowed to use” rules for a particular pattern. For example, in the N-Layered
pattern version that was characterised by the internal layers being isolated from the Remainder,
the “Is not allowed to use” rules were the ones that banned back-calls from the lowest layer to
the uppermost. It is therefore not unreasonable to make one type of rule count more towards
a poor fitness score if violated than another rule type. This too can be left to the discretion of
the re-engineer who uses this approach.
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Figure 8.10 shows another rudimentary interface design, showcasing how a re-engineer might
adjust the various weights for a particular fitness function. Altering the fitness function itself
would probably be more complicated to realise and may be unnecessary. If the user could
choose from a selection of fitness functions, different formulations using dependency counts, it
may well be sufficient. If not, there would have to be an interface through which a mathematical
expression can be used to form a novel fitness function.

Edit Fitness Function

Selected: harmonic mean ff

β = 1

Click to adjust rule weights

Adjust values

Figure 8.10: A basic illustration to communicate the idea of a future fitness function editor.

The current fitness function, as described in Section 5.4, does not involve a variation of
weights per rule type. HUSACCT, however, does rank violation by severity. This is why it
would make sense that rule weights be adjusted here, were a future fitness function to take
advantage of this as of yet unused functionality of HUSACCT.

8.4 Additional Constraints

Our approach to architectural pattern discovery has focussed mainly on software dependencies:
does this module depend on that module and does that agree with the suspected pattern? As
we have seen in Chapter 7, dependency analysis is useful but also limited. Although reasonable
pattern candidates can show up in the top results, so can rather unreasonable ones. As noted
in Section 7.2, this problem might be mitigated by semantic analysis.

The names of software units should definitely give us a clue about the architectural pattern
if there is something as obvious as with SweetHome3D’s MVC modules. Not only can we then
be quite certain about the sort of pattern, even if the precise interpretation is still an open
question, we can also be sure of part of the candidate’s mapping. Fixing this during the process
of architectural pattern discovery is an obvious future improvement.

However, what one would truly want in such cases is for a pattern-based SAR approach to
take such things into account as part of its algorithm. Also, this can be far more elaborate than
just package/namespace or class names.

Take the semantic clustering by Kuhn, Ducasse and Gı̂rba (2007), for example. They take
a Latent Semantic Indexing approach to information retrieval from source code that results the
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grouping of source code into topics. This could be used in our approach to provide the software
units, in the Modular Decomposition step, but should also affect the candidate evaluation pro-
cess. The topics hint at the function of the software units, after all. Another example would
be Saeidi, Hage, Khadka and Jansen (2015), who developed an interactive topic modelling en-
vironment called ITMViz that incorporates documented domain knowledge to refine the topic
models. We would have to link patterns and pattern modules to such topic names, thus making
certain candidates more likely than others. Nomenclature might also be involved in the choice
of crossovers, to provide one example where it is not the fitness function that is altered. This
topic demands much more future work.

Another thing entirely is syntactic analysis. In this context, this seems more typical of
the search for design patterns, where there are particular actions like object instantiation that
might hint at certain patterns. In the case of system level architectural patterns, this seems less
applicable. However, the combination of semantic and syntactic analysis can be very applicable,
such as when a module instantiates many GUI-related objects and thus appears to be related
to some kind of presentation pattern module. This could then also have an effect on candidate
evaluation, though much research would still have to be performed if this is to be realised.

8.5 Pattern-based Architectures

“Experienced architects typically think of creating an architecture as a process of selecting,
tailoring, and combining patterns”(Bass et al., 2012). We saw that SweetHome3D is an example
of this in Section 7.3. We thus want to be able to recognise multiple patterns in the same
architecture.

Although one would not expect to see a number of architectural patterns in the same order
of magnitude as the number of design patterns within a given architecture, systems may include
more than one architectural pattern. The exact interpretations of these patterns may result in
subtle constraints or even contradictions. This makes explicit definition of patterns even more
important, especially during a process like ACC or pattern recognition.

To illustrate this point, let us take the example of an architecture with an MVC pattern.
Figure 8.11 shows the “Complete Freedom” variety of MVC. This interpretation uses only the
“Is not allowed to use” rule between Model and Controller besides its “Must use” rules. While
MVC is the overall style, there is a 3-Layered pattern within the Model module. This is quite
reasonable and plausible, as Model might contain business logic and data access functionality
separated from the rest (let us call Layer 1 “communication”) through layering. It begs the
question, however, of who can access whom in this case.

Based on the architectural rules of these two patterns alone, are the lower layers of Model
allowed to have dependencies to and from View and Controller? And, if there happens to be any,
what about the Remainder outside the MVC pattern? From the perspective of this 3-Layered
pattern, View and Controller are part of the Remainder and therefore the particular pattern
definition has a subtle effect. If we were to apply the “Isolated Internal Layers” version of the N-
Layered pattern (Figure 4.8), the data access layer would be allowed to have dependencies to and
from View and Module. The “Free Remainder” interpretation used in Figure 8.11 would allow
dependencies of these outside modules with the data access (in both directions) and business
logic (one way) layers, which may also not be desirable.

Probably, the architect wanted to isolate the lower layers from the other MVC modules.
Thus, the “Restricted Remainder” interpretation (two “Is the only module allowed to use” rules
and one “Is not allowed to use”) ought to be combined with rules that prohibit the data access
layer from accessing anything but those modules that it should require. This may be solved
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Figure 8.11: A combination of Complete Freedom MVC (style) and Free Remainder 3-
Layered (pattern), which fails to isolate the lower Model layers.

with some of the relational rules, or by turning Model into a component type with either the
communication layer or an additional element within Model functioning as the interface for this
component, thereby calling upon the façade convention that was briefly mentioned in Section 2.

If these combinations raise such questions, then pattern recognition within pattern-based
architectures needs to take into account that identifying overall style first could result in a
different conclusion from an approach to pattern recognition starting with the smaller pattern.
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Conclusion and Discussion

This master thesis has looked at Architecture Compliance Checking, Software Architecture
Reconstruction and pattern recognition/discovery through the lens of allowed and disallowed
software dependencies between elements of static, technical, modular architectures. The Ho-
geschool Utrecht Software Architecture Compliance Checking Tool supports several architec-
tural elements commonly found in Semantically Rich Modular Architectures. The definition of
architectural patterns within such a rich “language” results in subtle problems and nuances of
interpretation. Not only are architectural patterns so different from design patterns that dis-
tinct approaches have to be utilised in order to discover such patterns; not only are patterns
like Model-View-Controller so open to interpretation that several versions can be formulated
that all seem to grasp the same fundamental ideas; not only is there the problem of determining
which software units to work with; in addition to all that, there is the problem of the Remainder.
With the examples provided in this thesis, we have illustrated that patterns have an open world,
which needs to be made explicit; whereas a complete architecture is closed and thus all rules are
explicit. Assumptions and consequences, such as those involving the Remainder, will thereby
become apparent.

The thesis describes several related approaches to pattern discovery in modular architectures.
The approach that is conceptually the simplest is the brute force approach, which is to simply
try every possible way the selection of software units, which we consistently take from package
definitions (Java) or namespace names (C#) throughout the thesis, can be assigned to the
pattern modules. These mappings may allow for aggregation, assigning multiple software units
to the same pattern module. They may also allow for a Remainder, by which we mean that not
each and every software unit within the selection has to be assigned to a pattern module at all.
This allows the selection of software units to be relatively crude, as opposed to being a set of
packages that ought to correspond one-to-one to the pattern modules.

Next to this, we have developed the initial version of an evolutionary approach to this
problem, which employs a genetic algorithm provided by the JGAP framework. Although the
thesis has not incorporated extensive experimentation with the effects of adjusting the genetic
operators (mutation rates and crossovers) or the effects of more sophisticated ways of tackling
the algorithm on convergence rates, we have shown that there is promise in this line of research.

We thus envision GEAR, Guided Evolutionary Architecture-Reconstruction, as a hypothet-
ical future incarnation of our work. There is much research yet to be performed, questions to
be answered and code to be (re)written; but we believe one or more publications can already
come out of this thesis’ foundations.

Let us now go through the research questions and discuss whether we have truly answered
them.
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SQ1: How are architectural patterns used in Architecture Compliance Checking and Software
Architecture Reconstruction?

This question has been addressed in the literature study in Section 5.1. Architectural pat-
terns are used by some researchers as a starting point for architectural design or for reconstruc-
tion approaches. We have paid less attention to ACC in literature, since it more of a secondary
concern in this thesis, than to SAR, but the two are so related that many papers are relevant
to both. Many promising techniques from the literature seem to be based either on predicate
logic or on edit-cost graph matching.

SQ2: How can the individual software modules that correspond to an architectural pattern in-
stance be correctly identified in an application’s source code?

This is mostly answered in Section 5.3, where it is written that this thesis opts for the pack-
age/namespace hierarchy. This choice was quite reasonable, since one would not want to waste
too much time looking into clustering techniques based on coupling/nomenclature or automatic
layering approaches when this is not the main research topic. But these two alternatives, and
especially the former, ought to be part of future endeavours. Package hierarchies have proved
themselves to be useful at times, such as when an MVC pattern shows itself through package
names, but this advantage will not always be present. We saw in the evaluations (Chapter
7) that a high amount of software units can make things difficult, which may be solved with
clustering.

SQ3: How can candidate architectural patterns be identified within a software system?

The answer to this question is mostly expressed in the two search algorithms, see Chapter 6.
The discovery of architectural patterns using an ACC tool depends strongly on the definition of
such patterns in that tool’s terms. Because HUSACCT is a tool with extensive SRMA support
and because patterns are open architectures within a larger system if they do not describe the
entire architecture’s style, these definitions form a large portion of the thesis.

SQ4: How can the fitness of a candidate architectural pattern be expressed?

The fitness function is described in Section 5.4. We have based ourselves on several variables,
such as the number of “Must use” affirmations, and used a harmonic mean. Future studies could
investigate what the effects of other such fitness functions might be. One function may force
most software units into the pattern, whilst another may tend towards small-scaled solutions
and thus large Remainders.

SQ5: How can multiple candidate architectural patterns be compared with one another?

Implicitly, we have mostly looked at two characteristics: fitness score and believability. The
fitness score part is obvious, but the top results are nothing more than those candidates with
a high fitness score anyway. Whether a pattern candidate is likely to be a pattern instance
depends on whether one can accept it as such, i.e. is it plausible? This largely depends on
the package/class names, at the moment. However, as was noted in Section 8.4 and in Section
7.5, this may be exactly when the dependency-derived fitness score ought to be combined with
nomenclature analysis to express how one candidate is more likely than another.

SQ6: How can the best candidate architecture patterns be chosen from a list of candidates?
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This question is much tougher to answer than the previous one, similar though it may seem.
Comparing candidates is one thing, but choosing one implies that there are no more candidates
of sufficient standing to compare it with. But there may be other pattern definitions that have
not been attempted, consequences for subsequent pattern searches when a candidate is chosen
and the big question: how do we stop ourselves from settling on the wrong pattern candidate
only because architectural erosion has made it seem that this is the best candidate? Without
verification from the original software architect, do we really now this to be a genuine pattern
instance? We saw in Chapter 7 that it is very much possible to find several pattern candidates
with perfect scores, based on our fitness function.

Without delving into epistemological philosophy, one can only answer this question in a
practical sense. Architectural pattern discovery for the sake of ACC or SAR has a very clear
purpose. High amounts of architectural erosion will always make pattern discovery practically
impossible and it is likely that there will always be some degree of uncertainty when it comes to
any architectural pattern candidate. However, when provided with enough tools, we can make
an educated guess. The ACC-based approach described in this thesis is one such tool and others
have been mentioned, such as the analysis of syntax or semantics rather than dependencies.

Next to phonology, the study of pronunciation, language can be said to have three aspects:
semantics, syntax and pragmatics. Semantics is the vocabulary, the words we choose and what
they mean. Syntax is the grammar, the way we construct sentences to convey meaning. And
pragmatics is intention, the meaning of our sentences and what we really use them for.

One might be able to see a similar distinction in our take on pattern discovery in the context
of reconstructing software architectures. Semantic analysis would be studying the names of
packages, classes and methods; looking at comments and searching for key words. This can give
us an indication of which architectural pattern might have been applied.

Syntactic analysis would constitute looking at the code, at how it is functioning and what it
tries to do. Even if the naming were not to tell us much, the operations within software units,
such as data processing or user interaction handling, may give us a clue about the pattern. The
distinction with semantics would be a bit more pronounced if we were also to look at object
instantiation, to give one example.

Pragmatics would mean investigating the extent to which the source code complies with the
ideas behind a pattern. It is the taking into account of what an architectural pattern is supposed
to do: constraining the dependencies. It allows dependencies between some parts of the system
and prohibits them between others, thus structuring the architecture in a way that promotes
qualities such as maintainability and reusability.

This master thesis has been an attempt to contribute to the latter.

As has been described in several sections of this thesis, there is much work still to be done
thanks to this project opening up several topics for future research and improvement. The
lessons learnt from the preliminary evaluations point out several such topics. Semantics is
already part of our approach in the sense that the names of software units play a strong role,
but it can have a much larger role to play in modular decomposition and the determination of
the fitness score. Incorporating names of packages, classes and perhaps even methods is by far
the most important next step to take with this line of research, as became apparent in Chapter
7. Dependency analysis using SRMA-supporting ACC tools is very promising, but it is difficult
to find only believable pattern candidates without looking at nomenclature.

In the future, we or other researchers may want to experiment with alternative fitness func-
tions. The one described in Subsection 5.4.1 has been useful for the purposes of this thesis.
As the evaluation in this thesis shows, a high fitness does not necessarily imply that the pat-
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tern is a genuine instance. Extensive experimentation with and evaluation of different fitness
functions using systems where the pattern instances are known would allow researchers to draw
conclusions about the characteristics of suitable fitness functions.

This thesis explores the possibilities of a genetic approach using ACC to discover architectural
patterns. Its practical relevance requires a different approach through many case studies. These
may be set up in several ways. Software architecture re-engineers could incorporate pattern
discovery in their reconstruction process, or architects could be asked to judge whether supposed
pattern instances are genuine instances of whatever patterns were discovered. It seems reasonable
to develop a mature version of our approach first, primarily by incorporating semantics, before
delving into case studies in the field. It most be noted, however, that this line of research has
a very strong practical component and must ultimately result in user friendly tooling that aids
the practitioners of ACC and SAR, as opposed to remaining a theoretical exercise.

Next to nomenclature, fitness functions and ultimately case studies, the genetic approach
demands much improvement. JGAP was used to speed up the process of implementing a genetic
algorithm, where the default configuration was used. But this default configuration is likely to
be sub-optimal. Nomenclature and fitness function are both strongly related with improvements
in the genetic operators of the genetic approach. Names may be included in the determination
of crossover mates and perhaps the fitness function can be made decomposable so as to speed
up its evaluation. Experimentation with mutation rates, smart crossovers and sophisticated
termination criteria may allow for fast convergence rates, quickly identifying the global optimum.
All this would have to be preceded by extensive literature research delving into evolutionary
computing, for which there was not enough time during this thesis. The ability to create new
pattern candidate populations using such genetic operators opens up a whole field of study and
a wide range of possibilities.

Finally, the fact that the approach is set up as a two step process, with modular decompos-
ition preceding the actual search algorithm, allows for more future experimentation. Package
hierarchies (or namespaces in the case of C#) do not have to be good indicators of modular
architectures. Clustering techniques, whether based on nomenclature or metrics like coupling,
seem rather promising in this regard. Future research will have to investigate the applicability
of such techniques and when it is best to stick to the hierarchy, as we did.
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Appendix A

PDD Tables

The activity table describes all the activities and sub-activities of the various Process-Deliverable
Diagrams (PDDs) used in the main body of the thesis in one concise overview. The same is true
for the concept table, which is concerned with the deliverable side of the PDDs.
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Table A.1: A quick overview of the genetic structure.

Activity Sub-activity Description

Collect source code Source code must be processed for further analysis.

Decompose modules Analyse namespaces/package definitions
Using the package hierarchy is a relatively simple and
straightforward way to perform the modular decomposition step.

Identify external libraries
HUSACCT filters the external libraries out from
the rest of the software units.

Create software units Software units are generated as a hierarchical structure.

Analyse dependencies
The dependencies between the discovered software units must be
processed and stored to be part of the dependency graph.

Choose pattern
An architectural pattern must be selected. This forms a hypothesis
for the architecture.

Choose software units The selected software units determine the scope of the search.

Evaluate Candidates Select mapping
In the brute force approach, each possible mapping is selected
so that each candidate can be evaluated.

Evaluate fitness
The fitness score of each candidate is determined based on a
given fitness function.

Generate population
A genetic algorithm requires that a population of chromosomes
be created.

Reproduce chromosomes
The pattern candidates must reproduce and evolve, which
involves mutation and crossover.

Finalise candidate list
A number of candidates is presented to the user as the top pattern
candidates, from which a pattern instance may or may not be chosen.
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Table A.2: The concept table for the various Process-Deliverable Diagrams used throughout this thesis.

Concept Description

SOURCE CODE The actual code of the system, presumably organised in a directory filled with class files.

DEPENDENCY GRAPH
Essentially the implemented architecture. The dependency graph consists of software units and their
mutual dependencies.

SOFTWARE UNIT
The modules derived from analysing the source code, as distinct from the hypothesised modules
in the patterns.

DEPENDENCY
A relationship between software units, see (Pruijt, Köppe & Brinkkemper, 2013), (Pruijt et al., 2014),
(Pruijt & Brinkkemper, 2014) and (Pruijt & van der Werf, 2015) for detailed descriptions of these
dependency types and the reasons why these were incorporated into the architectural elements.

RULE An architectural rule, limiting the allowed dependencies between specific software units.

EXCEPTION A particular exception of a defined rule.

ARCHITECTURAL PATTERN The pattern that is being evaluated as a hypothesised piece of the architecture.

PATTERN MODULE An architectural element of a pattern.

PATTERN CANDIDATE A particular mapping of software units to pattern modules.

CANDIDATE LIST
A list of candidates with high fitness scores, intended as a top-N overview from which to
determine possible pattern instance.
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Appendix B

Additional Pattern Definitions

package husacct.analyse.task.reconstruct.patterns;

import java.util.ArrayList;

import java.util.Map;

import husacct.ServiceProvider;

import husacct.analyse.IAnalyseService;

import husacct.common.dto.ModuleDTO;

import husacct.common.dto.RuleDTO;

import husacct.common.dto.SoftwareUnitDTO;

import husacct.define.DomainToDtoParser;

import husacct.define.IDefineService;

import husacct.define.domain.module.ModuleStrategy;

import husacct.define.domain.services.ModuleDomainService;

// Abstract pattern class , parent of all architectural pattern classes.

public abstract class Pattern {

protected DomainToDtoParser domainParser = new DomainToDtoParser ();

protected IDefineService defineService = ServiceProvider.getInstance ().

getDefineService ();

protected ModuleDomainService moduleService = new ModuleDomainService ();

protected ArrayList <SoftwareUnitDTO > unitsToMap;

protected ArrayList <ModuleDTO > patternModules;

protected int numberOfModules;

protected int numberOfRules;

protected String name;

IAnalyseService analyseService = ServiceProvider.getInstance ().

getAnalyseService ();

// Add modules to the intended architecture in line with an architectural

pattern.

protected abstract void defineModules ();

// Add rules to the intended architecture that apply to the pattern modules

and form part of the pattern.

protected abstract void defineRules ();

// Insert a pattern into the intended architecture.

public void insertPattern () {

numberOfRules = 0;

defineModules ();

defineMustUseRules ();

defineRules ();
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}

protected abstract void defineMustUseRules ();

// Map specific SoftwareUnitDTOs from the analysed application to the defined

pattern modules.

public abstract void mapPattern(ArrayList <String > patternNames);

protected void addRule(ModuleStrategy moduleTo , ModuleStrategy moduleFrom ,

String ruleType) {

defineService.addRule(new RuleDTO(ruleType , true , domainParser.parseModule(

moduleTo), domainParser.parseModule(moduleFrom), new String [0], "", null ,

false));

numberOfRules ++;

}

protected void addRule(ModuleStrategy moduleTo , ModuleStrategy moduleFrom ,

String ruleType , ModuleStrategy exception) {

defineService.addRuleWithException(

new RuleDTO(ruleType , true , domainParser.parseModule(moduleTo),

domainParser.parseModule(moduleFrom), new String [0], "", null , false),

exception);

numberOfRules += 2; // An exception is essentially an additional rule (e.g.

two "Is only allowed to use" rules coming from the same module is

// simply one such rule plus an exception of that rule.)

}

public int getNumberOfModules () {

return numberOfModules;

}

public int getNumberOfRules () {

return numberOfRules;

}

public abstract void mapPatternAllowingAggregates(Map <Integer , ArrayList <

String >> patternUnitNames);

public String getName () {

return name;

}

/** Adds a rule to the pattern. Leave exceptionModule null or empty if you don

’t want an exception.

*

* @param moduleFrom

* @param moduleTo

* @param ruleType

* @param exceptionModule */

protected void addSingleRule(String moduleTo , String moduleFrom , String

ruleType , String exceptionModule) {

if (exceptionModule == null || exceptionModule.isEmpty ())

addRule(moduleService.getModuleByLogicalPath(moduleTo), moduleService.

getModuleByLogicalPath(moduleFrom), ruleType);

else

addRule(moduleService.getModuleByLogicalPath(moduleTo), moduleService.

getModuleByLogicalPath(moduleFrom), ruleType ,

moduleService.getModuleByLogicalPath(exceptionModule));

}

}
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Code Sample B.1: The source code for the abstract Pattern class.

package husacct.analyse.task.reconstruct.patterns;

import java.util.ArrayList;

import java.util.Map;

import husacct.common.dto.SoftwareUnitDTO;

public abstract class LayeredPattern extends Pattern {

// The abstract class for all N-Layered patterns. Constructor and mapping

methods can be defined here , as well as "MustUse" rules.

public LayeredPattern(int numberOfLayers) {

numberOfModules = numberOfLayers;

name = "Layered";

}

public LayeredPattern () {

numberOfModules = 3;

name = "Layered";

}

@Override

protected void defineModules () {

for (int i = 1; i <= numberOfModules; i++) {

defineService.addModule("Layer" + i, "**", "Subsystem", i, null);

}

}

@Override

protected void defineMustUseRules () {

for (int i = 1; i < numberOfModules; i++)

addSingleRule("Layer" + (i + 1), "Layer" + i, "MustUse", null);

}

@Override

public void mapPattern(ArrayList <String > mapping) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

for (int i = 1; i <= mapping.size(); i++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get(i - 1)));

defineService.editModule("Layer" + i, "Layer" + i, i, temp);

temp.clear();

}

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int i = 0; i < patternUnitNames.size(); i++) {

for (int j = 0; j < patternUnitNames.get(i).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(i).get(j)));

}

defineService.editModuleWithAggregation("Layer" + (i + 1), "Layer" + (i +

1), i + 1, temp);

temp.clear();

}

}
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}

Code Sample B.2: The source code for the abstract class of the N-Layered pattern.

package husacct.analyse.task.reconstruct.patterns;

public class LayeredPattern_IsolatedInternalLayers extends LayeredPattern {

// The version of the N-Layered pattern in which the internal layers are

isolated from the Remainder.

public LayeredPattern_IsolatedInternalLayers(int numberOfLayers) {

super(numberOfLayers);

}

public LayeredPattern_IsolatedInternalLayers () {

super();

}

@Override

protected void defineRules () {

for (int i = 1; i < numberOfModules; i++) {

addSingleRule("Layer" + i, "Layer" + numberOfModules , "IsNotAllowedToUse",

null);

if (i == 1) {

addSingleRule("Layer" + 2, "Layer" + 1, "IsTheOnlyModuleAllowedToUse",

null);

} else {

addSingleRule("Layer" + (i + 1), "Layer" + i, "IsOnlyAllowedToUse", null

);

}

}

}

@Override

protected void defineModules () {

for (int i = 1; i <= numberOfModules; i++) {

defineService.addModule("Layer" + i, "**", "Subsystem", i, null);

}

}

}

Code Sample B.3: The Isolated Internal Layers variety of the N-Layered pattern.

package husacct.analyse.task.reconstruct.patterns;

public class LayeredPattern_CompleteFreedom extends LayeredPattern {

// The interpretation of the N-Layered pattern for which there exist no

restriction for the Remainder to use the layers.

public LayeredPattern_CompleteFreedom(int numberOfLayers) {

super(numberOfLayers);

}

public LayeredPattern_CompleteFreedom () {

super();

}

@Override

protected void defineRules () {

for (int i = 1; i <= numberOfModules; i++) {
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for (int j = 1; j <= i; j++) {

if (j < i)

addSingleRule("Layer" + (i - j), "Layer" + i, "IsNotAllowedToUse",

null);

if ((i + j + 1) <= numberOfModules)

addSingleRule("Layer" + (i + j + 1), "Layer" + i, "IsNotAllowedToUse",

null);

}

}

}

}

Code Sample B.4: The Complete Freedom variety of the N-Layered pattern.

package husacct.analyse.task.reconstruct.patterns;

public class LayeredPattern_FreeRemainder extends LayeredPattern {

// The version of the N-Layered pattern where the Remainder can all on any

layer , though all but the final layer cannot call on the Remainder.

public LayeredPattern_FreeRemainder(int numberOfLayers) {

super(numberOfLayers);

}

public LayeredPattern_FreeRemainder () {

super ();

}

@Override

protected void defineRules () {

for (int i = 1; i < numberOfModules; i++) {

addSingleRule("Layer" + (i + 1), "Layer" + i, "IsOnlyAllowedToUse", null);

addSingleRule("Layer" + i, "Layer" + numberOfModules , "IsNotAllowedToUse",

null);

}

}

}

Code Sample B.5: The Free Remainder variety of the N-Layered pattern.

package husacct.analyse.task.reconstruct.patterns;

public class LayeredPattern_RestrictedRemainder extends LayeredPattern {

// An interpretation of the N-Layered pattern in which the layers can call

upon the Remainder , but not vice versa.

public LayeredPattern_RestrictedRemainder(int numberOfLayers) {

super(numberOfLayers);

}

public LayeredPattern_RestrictedRemainder () {

super ();

}

@Override

protected void defineRules () {
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for (int i = 1; i < numberOfModules; i++) {

addSingleRule("Layer" + (i + 1), "Layer" + i, "IsTheOnlyModuleAllowedToUse

", null);

}

addSingleRule("Layer" + 1, "Layer" + numberOfModules , "IsNotAllowedToUse",

null);

}

}

Code Sample B.6: The Restricted Remainder variety of the N-Layered pattern.

package husacct.analyse.task.reconstruct.patterns;

public class LayeredPattern_LayerTypes extends LayeredPattern {

// This is the N-Layered pattern with actual layer -type modules and the

associated skip -call and back -call bans.

public LayeredPattern_LayerTypes(int numberOfLayers) {

super(numberOfLayers);

}

public LayeredPattern_LayerTypes () {

super();

}

@Override

protected void defineRules () {

// Skip -call and back -call rules get added automatically , so there ’s no need

for them here.

}

@Override

protected void defineModules () {

for (int i = 1; i <= numberOfModules; i++) {

defineService.addModule("Layer" + i, "**", "Layer", i, null);

}

}

}

Code Sample B.7: The Layer Types variety of the N-Layered pattern.

package husacct.analyse.task.reconstruct.patterns;

import java.util.ArrayList;

import java.util.Map;

import husacct.common.dto.SoftwareUnitDTO;

public abstract class MVCPattern extends Pattern {

// The abstract class for all Model -View -Controller patterns. Constructor and

mapping methods can be defined here , as well as "MustUse" rules and

// the modules themselves.

public MVCPattern () {

numberOfModules = 3;

name = "MVC";

}

@Override

protected void defineModules () {

defineService.addModule("Model", "**", "Subsystem", 1, null);
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defineService.addModule("View", "**", "Subsystem", 1, null);

defineService.addModule("Controller", "**", "Subsystem", 1, null);

}

@Override

protected void defineMustUseRules () {

addSingleRule("Model", "Controller", "MustUse", null);

addSingleRule("Model", "View", "MustUse", null);

addSingleRule("View", "Controller", "MustUse", null);

}

@Override

public void mapPattern(ArrayList <String > mapping) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (0)));

defineService.editModule("Model", "Model", 1, temp);

temp.clear ();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (1)));

defineService.editModule("View", "View", 1, temp);

temp.clear ();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (2)));

defineService.editModule("Controller", "Controller", 1, temp);

temp.clear ();

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int j = 0; j < patternUnitNames.get (0).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(0).get(j)));

}

defineService.editModuleWithAggregation("Model", "Model", 1, temp);

temp.clear ();

for (int j = 0; j < patternUnitNames.get (1).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(1).get(j)));

}

defineService.editModuleWithAggregation("View", "View", 1, temp);

temp.clear ();

for (int j = 0; j < patternUnitNames.get (2).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(2).get(j)));

}

defineService.editModuleWithAggregation("Controller", "Controller", 1, temp)

;

}

}

Code Sample B.8: The source code for the abstract Model-View-Controller pattern class.

package husacct.analyse.task.reconstruct.patterns;

public class MVCPattern_CompleteFreedom extends MVCPattern {

public MVCPattern_CompleteFreedom () {

// TODO Auto -generated constructor stub

}
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@Override

protected void defineRules () {

addSingleRule("Controller", "Model", "IsNotAllowedToUse", null);

}

}

Code Sample B.9: The Complete Freedom variety of the MVC pattern.

!

X

!

!

Figure B.1: The Complete Freedom interpretation of the classic MVC pattern.

package husacct.analyse.task.reconstruct.patterns;

public class MVCPattern_FreeRemainder extends MVCPattern {

public MVCPattern_FreeRemainder () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("View", "Model", "IsOnlyAllowedToUse", null);

addSingleRule("Model", "View", "IsOnlyAllowedToUse", "Controller");

addSingleRule("Controller", "View", "IsOnlyAllowedToUse", "Model");

addSingleRule("View", "Controller", "IsOnlyAllowedToUse", "Model");

addSingleRule("Model", "Controller", "IsOnlyAllowedToUse", "View");

}

}

Code Sample B.10: The Free Remainder variety of the MVC pattern.
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Figure B.2: The Free Remainder interpretation of the classic MVC pattern.

package husacct.analyse.task.reconstruct.patterns;

public class MVCPattern_RestrictedRemainder extends MVCPattern {

public MVCPattern_RestrictedRemainder () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("View", "Model", "IsTheOnlyModuleAllowedToUse", "Controller");

addSingleRule("Model", "View", "IsTheOnlyModuleAllowedToUse", "Controller");

addSingleRule("Controller", "View", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("View", "Controller", "IsTheOnlyModuleAllowedToUse", "Model");

addSingleRule("Model", "Controller", "IsTheOnlyModuleAllowedToUse", "View");

}

}

Code Sample B.11: The Restricted Remainder variety of the MVC pattern.

135



Chapter B: Additional Pattern Definitions Utrecht University

!

!

!

_

_
_

_

_

Figure B.3: The Restricted Remainder interpretation of the classic MVC pattern.

package husacct.analyse.task.reconstruct.patterns;

public class MVCPattern_ModelInterface extends MVCPattern {

public MVCPattern_ModelInterface () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("View", "Model", "IsTheOnlyModuleAllowedToUse", "Controller");

addSingleRule("View", "Controller", "IsTheOnlyModuleAllowedToUse", "Model");

addSingleRule("Controller", "View", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("Model", "View", "IsOnlyAllowedToUse", "Controller");

addSingleRule("Model", "Controller", "IsOnlyAllowedToUse", "View");

}

}

Code Sample B.12: The Model Interface variety of the MVC pattern.
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Figure B.4: The Model Interface interpretation of the classic MVC pattern.

package husacct.analyse.task.reconstruct.patterns;

import java.util.ArrayList;

import java.util.Map;

import husacct.ServiceProvider;

import husacct.analyse.IAnalyseService;

import husacct.common.dto.SoftwareUnitDTO;

public abstract class BrokerPattern extends Pattern {

// In the Broker Pattern , the Requester calls on the Broker to use the correct

services of the Provider. The Provider may want to use the Broker

// and the Broker could depend on the Requester , but this is not required. If

one of these three modules were to be an interface with respect to

// the Remainder , i.e. the rest of the architecture , it would make most sense

of the Requester were placed in this role.

public BrokerPattern () {

numberOfModules = 3;

name = "Broker";

}

@Override

protected void defineMustUseRules () {

addSingleRule("Provider", "Broker", "MustUse", null);

addSingleRule("Broker", "Requester", "MustUse", null);

}

@Override

protected void defineModules () {

defineService.addModule("Broker", "**", "SubSystem", 1, null);

defineService.addModule("Provider", "**", "SubSystem", 1, null);

defineService.addModule("Requester", "**", "SubSystem", 1, null);

}

@Override

public void mapPattern(ArrayList <String > mapping) {

IAnalyseService analyseService = ServiceProvider.getInstance ().

getAnalyseService ();

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>(1);
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temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (0)));

defineService.editModule("Broker", "Broker", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (1)));

defineService.editModule("Provider", "Provider", 1, temp);

temp.clear();

temp.add(analyseService.getSoftwareUnitByUniqueName(mapping.get (2)));

defineService.editModule("Requester", "Requester", 1, temp);

}

@Override

public void mapPatternAllowingAggregates(Map <Integer , ArrayList <String >>

patternUnitNames) {

IAnalyseService analyseService = ServiceProvider.getInstance ().

getAnalyseService ();

ArrayList <SoftwareUnitDTO > temp = new ArrayList <>();

for (int i = 0; i < patternUnitNames.size(); i++) {

for (int j = 0; j < patternUnitNames.get(i).size(); j++) {

temp.add(analyseService.getSoftwareUnitByUniqueName(patternUnitNames.get

(i).get(j)));

}

if (i == 0)

defineService.editModuleWithAggregation("Broker", "Broker", 1, temp);

else if (i == 1)

defineService.editModuleWithAggregation("Provider", "Provider", 1, temp)

;

else if (i == 2)

defineService.editModuleWithAggregation("Requester", "Requester", 1,

temp);

temp.clear ();

}

}

}

Code Sample B.13: The source code for the abstract Broker pattern class.

package husacct.analyse.task.reconstruct.patterns;

public class BrokerPattern_CompleteFreedom extends BrokerPattern {

// The version of the Broker pattern in which there are no restrictions with

regard to the Remainder (so dependencies to and from are allowed).

public BrokerPattern_CompleteFreedom () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("Requester", "Provider", "IsNotAllowedToUse", null);

addSingleRule("Provider", "Requester", "IsNotAllowedToUse", null);

}

}

Code Sample B.14: The source code for the Broker (Complete Freedom) pattern class.

138



Chapter B: Additional Pattern Definitions Utrecht University

!!

X

X

Figure B.5: The Requester Interface interpretation of the Broker pattern.

package husacct.analyse.task.reconstruct.patterns;

public class BrokerPattern_RestrictedRemainder extends BrokerPattern {

// In this variety of the Broker Pattern , the pattern modules are free to call

on the Remainder.

public BrokerPattern_RestrictedRemainder () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("Broker", "Requester", "IsTheOnlyModuleAllowedToUse", "

Provider");

addSingleRule("Requester", "Broker", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("Provider", "Broker", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("Broker", "Provider", "IsTheOnlyModuleAllowedToUse", "

Requester");

}

}

Code Sample B.15: The source code for the Broker (Free Remainder) pattern class.

!!
O

O O

O

Figure B.6: The Requester Interface interpretation of the Broker pattern.
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package husacct.analyse.task.reconstruct.patterns;

public class BrokerPattern_RestrictedRemainder extends BrokerPattern {

// In this variety of the Broker Pattern , the pattern modules are free to call

on the Remainder.

public BrokerPattern_RestrictedRemainder () {

// TODO Auto -generated constructor stub

}

@Override

protected void defineRules () {

addSingleRule("Broker", "Requester", "IsTheOnlyModuleAllowedToUse", "

Provider");

addSingleRule("Requester", "Broker", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("Provider", "Broker", "IsTheOnlyModuleAllowedToUse", null);

addSingleRule("Broker", "Provider", "IsTheOnlyModuleAllowedToUse", "

Requester");

}

}

Code Sample B.16: The source code for the Broker (Restricted Remainder) pattern class.

!!

_
_

_
_

Figure B.7: The Requester Interface interpretation of the Broker pattern.
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Class Diagram

Figure C.1: The class diagram of the Reconstruct package, generated using the ObjectAid
UML Explorer plug-in (www.objectaid.com) for the Eclipse IDE.

http://www.objectaid.com/
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Additional Code Samples

package husacct.analyse.task.reconstruct;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Comparator;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.TreeMap;

import org.apache.log4j.Logger;

import org.jgap.Chromosome;

import org.jgap.Gene;

import husacct.ServiceProvider;

import husacct.analyse.IAnalyseService;

import husacct.analyse.domain.IModelQueryService;

import husacct.analyse.task.reconstruct.bruteForce.AggregateMappingGenerator;

import husacct.analyse.task.reconstruct.bruteForce.MappingGenerator;

import husacct.analyse.task.reconstruct.genetic.GeneticAlgorithm;

import husacct.analyse.task.reconstruct.patterns.LayeredPattern_CompleteFreedom;

import husacct.analyse.task.reconstruct.patterns.Pattern;

import husacct.common.dto.RuleDTO;

import husacct.common.dto.SoftwareUnitDTO;

import husacct.define.DomainToDtoParser;

import husacct.define.IDefineService;

import husacct.define.domain.module.ModuleStrategy;

import husacct.validate.IValidateService;

/** Software Architecture Reconstruction based on architectural patterns (i.e.

NOT design patterns).

*

* @author Joeri Peters */

public class ReconstructArchitecture {

private final Logger logger = Logger.getLogger(ReconstructArchitecture.class);

private IModelQueryService queryService;

private IDefineService defineService;

private IValidateService validateService;

private ArrayList <SoftwareUnitDTO > internalRootPackagesWithClasses;

// The first packages starting from the project root that contain one or more

classes.

// This is the selection of software units for the pattern search.
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// External system variables

private String xLibrariesRootPackage = "xLibraries";

private ArrayList <SoftwareUnitDTO > xLibrariesMainPackages = new ArrayList <

SoftwareUnitDTO >();

// Layer variables

private TreeMap <Integer , ArrayList <SoftwareUnitDTO >> layers = new TreeMap <

Integer , ArrayList <SoftwareUnitDTO >>();

private int layerThreshold = 10; // Percentage of allowed violating

dependencies (back -calls)

// for adding layers.

private int skipCallThreshold = 10; // Percentage of allowed violating

dependencies (skip -calls)

// for partially merging layers.

int betaSquared = 1;

// Beta^2 affects the F-measure -inspired fitness function. betaSqaured = 1

means F1 , although it

// is not actually the harmonic mean of recall

// and precision , but of various validation results.

/** The main method for the ReconstructArchitecture class. Currently requires

hard -coded

* modification instead of arguments.

*

* @param queryService */

@SuppressWarnings("unused")

public ReconstructArchitecture(IModelQueryService queryService) {

long start = System.currentTimeMillis ();

this.queryService = queryService;

defineService = ServiceProvider.getInstance ().getDefineService ();

validateService = ServiceProvider.getInstance ().getValidateService ();

identifyExternalSystems ();

determineInternalRootPackagesWithClasses (0);

// determineInternalRootPackagesWithClassesIncludingClasses (0);

// If source code is not well structured in a package hierarchy , including

individual

// classes in the root might help. This can make n way too

// big , though , so be careful if you’re taking the brute force approach.

This may cause

// memory issues.

int numberOfTopCandidates = 10; // Only relevant for the brute force

approach.

boolean aggregation = true;

boolean remainder = true; // Not relevant for brute force if aggregation =

false.

int generations = 10; // Only relevant for the genetic approach.

int numberOfLayers = 3; // Only matters for N-Layered patterns.

logger.info("Number of rules before applying patterns: " + defineService.

getDefinedRules ().length);

Pattern currentPattern = null;

currentPattern = new LayeredPattern_CompleteFreedom(numberOfLayers);

// currentPattern = new LayeredPattern_FreeRemainder(numberOfLayers);

// currentPattern = new LayeredPattern_IsolatedInternalLayers(numberOfLayers

);

// currentPattern = new LayeredPattern_LayerTypes(numberOfLayers);

// currentPattern = new LayeredPattern_RestrictedRemainder(numberOfLayers);

// currentPattern = new MVCPattern_CompleteFreedom ();

// currentPattern = new MVCPattern_ModelInterface ();

// currentPattern = new MVCPattern_ControllerInterface ();
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// currentPattern = new MVCPattern_FreeRemainder ();

// currentPattern = new MVCPattern_RestrictedRemainder ();

// currentPattern = new BrokerPattern_CompleteFreedom ();

// currentPattern = new BrokerPattern_FreeRemainder ();

// currentPattern = new BrokerPattern_RequesterInterface ();

// currentPattern = new BrokerPattern_RestrictedRemainder ();

// currentPattern = new CentralisedLayering ();

// currentPattern = new Model_Viewcontroller ();

// currentPattern = new HUSACCT_Analyse ();

currentPattern.insertPattern (); // This adds modules and rules (including

exceptions if need

// be) to the intended architecture.

logger.info("Number of rules after applying patterns: " + defineService.

getDefinedRules ().length);

if (currentPattern != null) {

bruteForceApproach(currentPattern , remainder , aggregation ,

numberOfTopCandidates);

// geneticApproach(currentPattern , remainder , generations);

}

System.out.println("Elapsed time: " + (( System.currentTimeMillis () - start)

/ 1000.0) + " seconds.");

}

/** SAR approach using a genetic algorithm to find architectural pattern

candidates.

*

* @param currentPattern

* @param aggregates */

private void geneticApproach(Pattern currentPattern , boolean remainder , int

generations) {

try {

String [] patternUnitNames = new String[internalRootPackagesWithClasses.

size()];

for (int i = 0; i < patternUnitNames.length; i++)

patternUnitNames[i] = internalRootPackagesWithClasses.get(i).uniqueName;

ArrayList <Chromosome > bestSolutions = new ArrayList <Chromosome >(10);

ServiceProvider.getInstance ().getControlService ().setValidate(true);

bestSolutions.addAll(GeneticAlgorithm.run(currentPattern , patternUnitNames

, true , this , remainder , generations)); // TODO:

// print

// best

// candidates

// elsewhere.

ServiceProvider.getInstance ().getControlService ().setValidate(false);

for (int i = 0; i < bestSolutions.size(); i++) {

if (bestSolutions.get(i).getFitnessValue () - 1 > 0.0) {

Gene[] genes = bestSolutions.get(i).getGenes ();

System.out.println("Chromosome " + (i + 1) + ": ");

for (int j = 0; j < genes.length; j++) {

System.out.print(genes[j]. getAllele ().toString ());

}

System.out.println("\nFitness value: " + (bestSolutions.get(i).

getFitnessValue () - 1));

if (i == 0) {

System.out.println("Placing best candidate in defined architecture

...");

int[] bestAlleles = new int[genes.length ];

for (int j = 0; j < genes.length; j++) {
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bestAlleles[j] = (int) genes[j]. getAllele ();

}

placeBestSolutionInIntendedArchitecture(currentPattern , bestAlleles)

;

}

}

}

} catch (Exception e) {

e.printStackTrace ();

}

}

/** The exhaustive search for architectural pattern candidates as an SAR

approach.

*

* @param currentPattern

* @param aggregates */

private void bruteForceApproach(Pattern currentPattern , boolean remainder ,

boolean aggregation , int numberOfTopCandidates) {

String [] patternUnitNames = new String[internalRootPackagesWithClasses.size

()];

for (int i = 0; i < patternUnitNames.length; i++)

patternUnitNames[i] = internalRootPackagesWithClasses.get(i).uniqueName;

if (aggregation)

aggregationBruteForce(currentPattern , numberOfTopCandidates ,

patternUnitNames , remainder);

else

simpleBruteForce(currentPattern , numberOfTopCandidates , patternUnitNames);

}

// This is the brute force (try everything !) approach without aggregation.

private void simpleBruteForce(Pattern currentPattern , int

numberOfTopCandidates , String [] patternUnitNames) {

MappingGenerator mapgen = new MappingGenerator(patternUnitNames ,

currentPattern.getNumberOfModules ());

ArrayList <String > patternNames = new ArrayList <String >( currentPattern.

getNumberOfModules ());

double [][] candidateScores = new double[numberOfTopCandidates ][2];

double fitness = 0;

double lowestTopFitness = 0;

ServiceProvider.getInstance ().getControlService ().setValidate(true);

patternNames = mapgen.next();

int candidateNumber = 0;

while (patternNames != null) {

// This is where validation is requested and a top N is generated.

currentPattern.mapPattern(patternNames);

fitness = determineFitnessHarmonic(validatePatternCandidateSimple(

patternNames));

lowestTopFitness = keepScore(numberOfTopCandidates , candidateScores ,

fitness , lowestTopFitness , candidateNumber)[0];

patternNames = mapgen.next();

System.out.println("Candidate number: " + (candidateNumber + 1));

candidateNumber ++;

}

ServiceProvider.getInstance ().getControlService ().setValidate(false);

sortCandidates(candidateScores);

logger.info("Done \n");

System.out.println("Best " + numberOfTopCandidates + " candidates with non -

zero fitness score: ");

ArrayList <String > bestMapping;

for (int i = 0; i < numberOfTopCandidates; i++) {
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bestMapping = mapgen.getMapping ((int) candidateScores[i][1]);

if (i < numberOfTopCandidates - 1) {

if (candidateScores[i][0] > 0.0)

System.out.println("Fitness score: " + (candidateScores[i][0]) + ".

Mapping: " + bestMapping);

} else

System.out.println("Fitness score: " + (candidateScores[i][0]) + ".

Mapping: " + bestMapping);

}

bestMapping = mapgen.getMapping ((int) candidateScores[numberOfTopCandidates

- 1][1]);

currentPattern.mapPattern(bestMapping);

System.out.println("This last mapping was selected for the intended

architecture by default.");

}

private double [] keepScore(int numberOfTopCandidates , double [][]

candidateScores , double fitness , double lowestTopFitness , int i) {

if (fitness == -1)

return new double [] { lowestTopFitness };

candidateScores [0][0] = fitness;

candidateScores [0][1] = i;

sortCandidates(candidateScores);

double oldCandidateNumber = candidateScores [0][1];

if (oldCandidateNumber > 0) { // Worst of the top mappings needs to be

removed.

return new double [] { candidateScores [1][0] , oldCandidateNumber };

} else {

return new double [] { candidateScores [0][0] , -1.0 }; // All top mappings

must be kept.

}

}

// This is the aggregation case of the brute force approach.

private void aggregationBruteForce(Pattern currentPattern , int

numberOfTopCandidates , String [] patternUnitNames , boolean remainder) {

AggregateMappingGenerator mapCal = new AggregateMappingGenerator(

patternUnitNames , currentPattern.getNumberOfModules (), false ,

numberOfTopCandidates);

Map <Integer , ArrayList <String >> patternMapping = new HashMap <Integer ,

ArrayList <String >>();

// Although this is the brute force approach and not the genetic , the same

genetic encoding

// is used for the mapping here.

numberOfTopCandidates ++;

double [][] candidateScores = new double[numberOfTopCandidates ][2];

double fitness = 0;

double lowestTopFitness = 0;

ServiceProvider.getInstance ().getControlService ().setValidate(true);

int candidateNumber = 0;

List <List <String >> map = new ArrayList <List <String >>();

double [] scoreResult;

map = mapCal.next(-2);

while (true) {

if (map == null)

break;

for (int i = 0; i < map.size(); i++)

patternMapping.put(i, (ArrayList <String >) map.get(i));

currentPattern.mapPatternAllowingAggregates(patternMapping);

fitness = determineFitnessHarmonic(validatePatternCandidateAggregation(

patternMapping));
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System.out.println("Candidate number: " + (candidateNumber + 1));

if (fitness >= 0.0) {

scoreResult = keepScore(numberOfTopCandidates , candidateScores , fitness ,

lowestTopFitness , candidateNumber);

if (scoreResult.length > 1) { // A mapping must be replaced.

if (scoreResult [1] > -1) { // Unless he is stilling filling up the top

-10.

lowestTopFitness = scoreResult [0];

map = mapCal.next((int) scoreResult [1]);

} else

map = mapCal.next(-1);

} else // No mapping has to be replaced.

map = mapCal.next(-1);

} else

map = mapCal.next(-2);

candidateNumber ++;

}

sortCandidates(candidateScores);

// =================================================================== Moving

on to include

// Remainder

AggregateMappingGenerator mapCalRemainder = null;

int remainderNumber = candidateNumber;

if (remainder) {

System.out.println("HERE STARTS THE REMAINDER LOOP.");

if (patternUnitNames.length >= currentPattern.getNumberOfModules () + 1) {

mapCalRemainder = new AggregateMappingGenerator(patternUnitNames ,

currentPattern.getNumberOfModules (), true , numberOfTopCandidates);

map = mapCalRemainder.next(-2);

while (true) {

if (map == null)

break;

for (int i = 0; i < map.size(); i++) {

patternMapping.put(i, (ArrayList <String >) map.get(i));

}

currentPattern.mapPatternAllowingAggregates(patternMapping);

fitness = determineFitnessHarmonic(validatePatternCandidateAggregation

(patternMapping));

System.out.println("Candidate number: " + (candidateNumber + 1));

if (fitness >= 0.0) {

scoreResult = keepScore(numberOfTopCandidates , candidateScores ,

fitness , lowestTopFitness , candidateNumber);

if (scoreResult.length > 1) { // A mapping must be replaced.

if (scoreResult [1] > -1) { // Unless he is stilling filling up the

// top -10.

if (scoreResult [1] < remainderNumber) {

lowestTopFitness = scoreResult [0];

map = mapCalRemainder.next(-1);

} else {

lowestTopFitness = scoreResult [0];

map = mapCalRemainder.next((int) scoreResult [1] -

remainderNumber);

}

} else

map = mapCalRemainder.next(-1);

} else // No mapping has to be replaced.

map = mapCalRemainder.next(-1);

} else

map = mapCalRemainder.next(-2);
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candidateNumber ++;

}

sortCandidates(candidateScores);

}

}

ServiceProvider.getInstance ().getControlService ().setValidate(false);

logger.info("Done \n");

System.out.println("Best " + (numberOfTopCandidates - 1) + " candidates with

non -zero fitness score: ");

ArrayList <ArrayList <ArrayList <String >>> newBestMappings = new ArrayList <

ArrayList <ArrayList <String >>>( numberOfTopCandidates);

for (int i = 0; i < numberOfTopCandidates; i++) {

newBestMappings.add(i, new ArrayList <ArrayList <String >>());

if (i == 0 && remainder == false)

continue;

if (candidateScores[i][0] > 0) {

if ((int) candidateScores[i][1] >= remainderNumber) {

for (int j = 0; j < currentPattern.getNumberOfModules (); j++)

newBestMappings.get(i).add(j, mapCalRemainder.getMappingMap ((int)

candidateScores[i][1] - remainderNumber + 1).get(j));

} else {

for (int j = 0; j < currentPattern.getNumberOfModules (); j++)

newBestMappings.get(i).add(j, mapCal.getMappingMap ((int)

candidateScores[i][1] + 1).get(j));

}

if (i > 0)

System.out.println("Fitness: " + candidateScores[i][0] + " --> Mapping

: " + newBestMappings.get(i).toString ());

}

}

if (newBestMappings.get(numberOfTopCandidates - 1).isEmpty ()) {

logger.info("No suitable candidate with non -zero fitness scores were found

");

} else {

HashMap <Integer , ArrayList <String >> bestCandidate = new HashMap <Integer ,

ArrayList <String >>();

for (int i = 0; i < currentPattern.getNumberOfModules (); i++) {

bestCandidate.put(i, newBestMappings.get(numberOfTopCandidates - 1).get(

i));

}

currentPattern.mapPatternAllowingAggregates(bestCandidate);

logger.info("This last mapping was selected for the intended architecture

by default.");

}

}

/** Fitness scores are calculated for a chromosome. This allows for

aggregation (multiple SUs in

* one pattern module).

*

* @param pattern

* @param alleles

* @return */

public double getFitnessScore(Pattern pattern , int[] alleles) {

Map <Integer , ArrayList <String >> patternUnitNames = new HashMap <Integer ,

ArrayList <String >>();

for (int i = 0; i < alleles.length; i++) {

if (alleles[i] != 0) {

ArrayList <String > temp = new ArrayList <String >(1);

if (patternUnitNames.get(alleles[i] - 1) != null) {
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temp = patternUnitNames.get(alleles[i] - 1);

temp.add(internalRootPackagesWithClasses.get(i).uniqueName);

patternUnitNames.put(alleles[i] - 1, temp);

} else {

temp.add(internalRootPackagesWithClasses.get(i).uniqueName);

patternUnitNames.put(alleles[i] - 1, temp);

}

}

// else

// System.out.println (" Remainder: " +

// internalRootPackagesWithClasses.get(i).uniqueName);

}

if (patternUnitNames.keySet ().size() == pattern.getNumberOfModules ()) {

pattern.mapPatternAllowingAggregates(patternUnitNames);

return determineFitnessHarmonic(validatePatternCandidateAggregation(

patternUnitNames)) + 1;

} else

return -1;

}

// This calculates the fitness function , which is defined as follows:

// f(N_d , N_d -m, N_d -m,v, N_d ,m, beta) = 2 * (1-N_d -m,v/N_d -m)*N_d ,m/Nd) /(1-

N_d -m,v/N_d -m) +

// N_d ,m/Nd)

// This is the harmonic mean of the two ratios , meaning it is a balance

between the number of

// violations over the number of non -essential

// dependencies and the number of essential dependencies explained by the

pattern.

// It is inspired by the F-measure , although that is not what it is since this

fitness score is

// not about true/false negatives/positives.

private double determineFitnessHarmonic(int[] validation) {

if (validation == null)

return -1; // In case of excluded candidate.

double sum = 0;

sum += validation [1];

double nvScore = 1 - sum / (validation [0] - validation [2]); // nvScore is

based on the

// relative number of

// violations.

if (!( nvScore >= 0))

nvScore = 1;

double nmScore = (double) validation [2] / validation [0];

try {

return (1 + betaSquared) * nvScore * nmScore / (betaSquared * nvScore +

nmScore);

} catch (Exception e) {

if (betaSquared <= 0)

System.out.println("Beta^2 is negative: " + betaSquared);

else

System.out.println("Unknown exception.");

return 0.0;

}

}

// This calculates the numbers necessary for determining the fitness score in

the

// non -aggregation case.

private int[] validatePatternCandidateSimple(ArrayList <String > patternNames) {

// int numberOfViolations = new int [7];
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int numberOfViolations = 0;

int numberOfMustUseAffirmations = 0;

int i = 6;

validateService.checkConformance ();

for (RuleDTO currentAppliedRule : defineService.getDefinedRules ()) {

i = determineCategoryIndex(currentAppliedRule.ruleTypeKey);

if (i == 0) { // If the number of MustUse violations is zero , that’s good.

if (validateService.getViolationsByRule(currentAppliedRule).length != 0)

{

return null;

} else {

for (String name : patternNames) {

if (currentAppliedRule.moduleFrom.logicalPath.equals(defineService.

getModule_BasedOnSoftwareUnitName(name).logicalPath)) {

for (String other : patternNames) {

if (currentAppliedRule.moduleTo.logicalPath

.equals(defineService.getModule_BasedOnSoftwareUnitName(

other).logicalPath)) {

numberOfMustUseAffirmations +=

getNumberofDependenciesBetweenSoftwareUnits(name , other);

}

}

}

}

}

} else if (i != 6)

try {

// numberOfViolations[i] +=

// validateService.getViolationsByRule(currentAppliedRule).length;

numberOfViolations += validateService.getViolationsByRule(

currentAppliedRule).length;

} catch (Exception e) {

System.out.println("Problem countring violations of: " +

currentAppliedRule);

}

}

int[] results = new int [3];

int numberOfDependencies = 0;

ArrayList <String > remainderUnits = new ArrayList <String >(

internalRootPackagesWithClasses.size());

for (SoftwareUnitDTO unit : internalRootPackagesWithClasses) {

if (! patternNames.contains(unit.uniqueName))

remainderUnits.add(unit.uniqueName);

}

for (String name : patternNames) {

for (String otherName : remainderUnits) {

numberOfDependencies += getNumberofDependenciesBetweenSoftwareUnits(name

, otherName);

numberOfDependencies += getNumberofDependenciesBetweenSoftwareUnits(

otherName , name);

}

for (String otherPatternName : patternNames) {

if (!name.equals(otherPatternName))

numberOfDependencies += getNumberofDependenciesBetweenSoftwareUnits(

name , otherPatternName);

}

}

results [0] = numberOfDependencies;

// The total number of relevant dependencies but "Must use".

results [1] = numberOfViolations; // The total number of violations of the

above
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// dependencies , sorted per rule type.

results [2] = numberOfMustUseAffirmations; // The total number of correct

dependency

// instances of the "Must use" rule type.

return results;

}

// This calculates the numbers necessary for determining the fitness score in

the aggregation

// case.

private int[] validatePatternCandidateAggregation(Map <Integer , ArrayList <

String >> patternUnitNames) {

// int[] numberOfViolations = new int [7];

int numberOfViolations = 0;

int numberOfMustUseAffirmations = 0;

int i = 6;

validateService.checkConformance ();

for (RuleDTO currentAppliedRule : defineService.getDefinedRules ()) {

i = determineCategoryIndex(currentAppliedRule.ruleTypeKey);

if (i == 0) { // If the number of MustUse violations is zero , that’s good.

if (validateService.getViolationsByRule(currentAppliedRule).length != 0)

{

return null;

} else {

for (int j = 0; j < patternUnitNames.size(); j++) {

for (String name : patternUnitNames.get(j)) {

if (currentAppliedRule.moduleFrom.logicalPath.equals(defineService

.getModule_BasedOnSoftwareUnitName(name).logicalPath)) {

for (int k = 0; k < patternUnitNames.size(); k++) {

if (j != k) {

for (String otherName : patternUnitNames.get(k)) {

if (currentAppliedRule.moduleTo.logicalPath

.equals(defineService.

getModule_BasedOnSoftwareUnitName(otherName).logicalPath)) {

numberOfMustUseAffirmations +=

getNumberofDependenciesBetweenSoftwareUnits(name , otherName);

}

}

}

}

}

}

}

}

} else if (i != 6) {

try {

numberOfViolations += validateService.getViolationsByRule(

currentAppliedRule).length;

} catch (Exception e) {

System.out.println("Problem counting violations of: " +

currentAppliedRule);

}

}

}

boolean contains = false;

ArrayList <String > remainderUnits = new ArrayList <String >(

internalRootPackagesWithClasses.size());

for (SoftwareUnitDTO unit : internalRootPackagesWithClasses) {

for (ArrayList <String > value : patternUnitNames.values ()) {

if (value.contains(unit.uniqueName)) {

contains = true;
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break;

}

}

if (contains == false)

remainderUnits.add(unit.uniqueName);

}

int[] results = new int [3];

int numberOfDependencies = 0;

for (int j = 0; j < patternUnitNames.size(); j++) {

for (String name : patternUnitNames.get(j)) {

for (int k = 0; k < patternUnitNames.size(); k++) {

if (j != k) {

for (String otherPatternName : patternUnitNames.get(k)) {

if (!name.equals(otherPatternName))

numberOfDependencies +=

getNumberofDependenciesBetweenSoftwareUnits(name , otherPatternName);

}

}

}

for (String otherName : remainderUnits) {

numberOfDependencies += getNumberofDependenciesBetweenSoftwareUnits(

name , otherName);

numberOfDependencies += getNumberofDependenciesBetweenSoftwareUnits(

otherName , name);

}

}

}

results [0] = numberOfDependencies;

// The total number of relevant dependencies but "Must use".

results [1] = numberOfViolations; // The total number of violations of the

above

// dependencies , sorted per rule type.

results [2] = numberOfMustUseAffirmations; // The total number of correct

dependency

// instances of the "Must use" rule type.

return results;

}

//

// /** A particular pattern candidate is validated while allowing for multiple

software units

// assigned to the same pattern module.

// *

// * @param patternUnitNames

// * @return */

// private int [][] validatePatternCandidateAllowingAggregates(Map <Integer ,

ArrayList <String >>

// patternUnitNames) {

// int [][] results = new int [2][6];

// validateService.checkConformance ();

// int[] numberOfViolations = new int [6];

// int i = 6;

// for (RuleDTO currentAppliedRule : defineService.getDefinedRules ()) {

// i = determineCategoryIndex(currentAppliedRule.ruleTypeKey);

// if (i == 0) {

// if (validateService.getViolationsByRule(currentAppliedRule).length != 0) {

// logger.info(" Candidate was excluded due to violation of MustUse rule(s)");

// results [0] = null;

// results [1] = null;

// return results;

// }

153



Chapter D: Additional Code Samples Utrecht University

// } else if (i != 6)

// numberOfViolations[i] += validateService.getViolationsByRule(

currentAppliedRule).length;

// }

// int[] totalNumberOfDependencies = new int [1];

// for (int j = 0; j < patternUnitNames.size(); j++) {

// for (String name : patternUnitNames.get(j)) {

// for (int k = 0; k < patternUnitNames.size(); k++) {

// for (String otherName : patternUnitNames.get(k)) {

// if (j != k) {

// if (name != otherName)

// totalNumberOfDependencies [0] += getNumberofDependenciesBetweenSoftwareUnits

(name , otherName);

// }

// }

// }

// }

// }

// // logger.info(" Number of dependencies within pattern: " +

totalNumberOfDependencies [0] + ",

// resulting in a total of "

// // + IntStream.of(numberOfViolations).sum() + " violations .");

// results [0] = totalNumberOfDependencies;

// results [1] = numberOfViolations;

// return results;

// }

/** Determine the rule type of a rule.

*

* @param currentRuleType

* @return */

private int determineCategoryIndex(String currentRuleType) {

if (currentRuleType == "MustUse")

return 0;

else if (currentRuleType.equalsIgnoreCase("IsNotAllowedToMakeBackCall"))

return 1;

else if (currentRuleType.equalsIgnoreCase("IsNotAllowedToMakeSkipCall"))

return 2;

else if (currentRuleType.equalsIgnoreCase("IsNotAllowedToUse"))

return 3;

else if (currentRuleType.equalsIgnoreCase("IsOnlyAllowedToUse"))

return 4;

else if (currentRuleType.equalsIgnoreCase("IsTheOnlyModuleAllowedToUse"))

return 5;

else

return 6;

}

/** Sorting two candidates based on their fitness scores. This uses a custom

Comparator.

*

* @param candidateScores */

private void sortCandidates(double [][] candidateScores) {

Arrays.sort(candidateScores , new Comparator <double []>() {

@Override

public int compare(double [] o1, double [] o2) {

double fitness1 = o1[0];

double fitness2 = o2[0];

return Double.compare(fitness1 , fitness2);

}
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});

}

private int getNumberofDependenciesBetweenSoftwareUnits(String fromUnit ,

String toUnit) {

IAnalyseService analyseService = ServiceProvider.getInstance ().

getAnalyseService ();

return analyseService.getDependenciesFromSoftwareUnitToSoftwareUnit(fromUnit

, toUnit).length;

}

/** Identify the external libraries within the source code. */

private void identifyExternalSystems () {

// Create module "ExternalSystems"

ArrayList <SoftwareUnitDTO > emptySoftwareUnitsArgument = new ArrayList <

SoftwareUnitDTO >();

defineService.addModule("ExternalSystems", "**", "ExternalLibrary", 0,

emptySoftwareUnitsArgument);

// Create a module for each childUnit of xLibrariesRootPackage

int nrOfExternalLibraries = 0;

for (SoftwareUnitDTO mainUnit : queryService.getChildUnitsOfSoftwareUnit(

xLibrariesRootPackage)) {

xLibrariesMainPackages.add(mainUnit);

ArrayList <SoftwareUnitDTO > softwareUnitsArgument = new ArrayList <

SoftwareUnitDTO >();

softwareUnitsArgument.add(mainUnit);

defineService.addModule(mainUnit.name , "ExternalSystems", "ExternalLibrary

", 0, softwareUnitsArgument);

nrOfExternalLibraries ++;

}

logger.info(" Number of added ExternalLibraries: " + nrOfExternalLibraries);

}

/** Determine which packages form the root of the source code hierarchy ,

excluding single

* classes. If there is just a single package in that root , this package

becomes the root and

* packages are identified within it. */

private void determineInternalRootPackagesWithClasses(int level) {

internalRootPackagesWithClasses = new ArrayList <SoftwareUnitDTO >();

SoftwareUnitDTO [] allRootUnits = queryService.getSoftwareUnitsInRoot (); //

Get all root

// units

for (SoftwareUnitDTO rootModule : allRootUnits) {

if (! rootModule.uniqueName.equals(xLibrariesRootPackage)) { // Get all

root units that

// are not libraries

for (String internalPackage : queryService.getRootPackagesWithClass(

rootModule.uniqueName)) {

// Get root packages

internalRootPackagesWithClasses.add(queryService.

getSoftwareUnitByUniqueName(internalPackage));

}

}

}

if (internalRootPackagesWithClasses.size() == 1) {

// Temporal solution useful for HUSACCT20 test. To be improved!

// E.g., classes in root are excluded from the process.

String newRoot = internalRootPackagesWithClasses.get (0).uniqueName;

internalRootPackagesWithClasses = new ArrayList <SoftwareUnitDTO >();
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for (SoftwareUnitDTO child : queryService.getChildUnitsOfSoftwareUnit(

newRoot)) {

if (child.type.equalsIgnoreCase("package"))

internalRootPackagesWithClasses.add(child);

}

if (level == 1) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <SoftwareUnitDTO >();

for (int i = 0; i < internalRootPackagesWithClasses.size(); i++) {

newRoot = internalRootPackagesWithClasses.get(i).uniqueName;

for (SoftwareUnitDTO child : queryService.getChildUnitsOfSoftwareUnit(

newRoot)) {

if (child.type.equalsIgnoreCase("package"))

temp.add(child);

}

}

internalRootPackagesWithClasses = new ArrayList <SoftwareUnitDTO >(temp);

}

}

}

/** Determine which packages form the root of the source code hierarchy ,

including single

* classes. If there is just a single package in that root , this package

becomes the root and

* packages are identified within it.

*

* @param level */

@SuppressWarnings("unused")

private void determineInternalRootPackagesWithClassesIncludingClasses(int

level) {

internalRootPackagesWithClasses = new ArrayList <SoftwareUnitDTO >();

SoftwareUnitDTO [] allRootUnits = queryService.getSoftwareUnitsInRoot (); //

Get all root

// units

for (SoftwareUnitDTO rootModule : allRootUnits) {

if (! rootModule.uniqueName.equals(xLibrariesRootPackage)) { // Get all

root units that

// are not libraries

for (String internalPackage : queryService.getRootPackagesWithClass(

rootModule.uniqueName)) { // Get

// root

// packages

internalRootPackagesWithClasses.add(queryService.

getSoftwareUnitByUniqueName(internalPackage));

}

}

}

if (internalRootPackagesWithClasses.size() == 1) {

// Temporal solution useful for HUSACCT20 test. To be improved!

// E.g., classes in root are excluded from the process.

String newRoot = internalRootPackagesWithClasses.get (0).uniqueName;

internalRootPackagesWithClasses = new ArrayList <SoftwareUnitDTO >();

for (SoftwareUnitDTO child : queryService.getChildUnitsOfSoftwareUnit(

newRoot)) {

internalRootPackagesWithClasses.add(child);

}

if (level == 1) {

ArrayList <SoftwareUnitDTO > temp = new ArrayList <SoftwareUnitDTO >();

for (int i = 0; i < internalRootPackagesWithClasses.size(); i++) {

newRoot = internalRootPackagesWithClasses.get(i).uniqueName;
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for (SoftwareUnitDTO child : queryService.getChildUnitsOfSoftwareUnit(

newRoot)) {

temp.add(child);

}

}

internalRootPackagesWithClasses = new ArrayList <SoftwareUnitDTO >(temp);

}

}

}

// At the end , you want the very best solution to actually be placed in the

intended

// architecture again , so that’s what happens here.

private void placeBestSolutionInIntendedArchitecture(Pattern currentPattern ,

int[] bestAlleles) {

Map <Integer , ArrayList <String >> patternUnitNames = new HashMap <Integer ,

ArrayList <String >>();

for (int i = 0; i < bestAlleles.length; i++) {

if (bestAlleles[i] != 0) {

ArrayList <String > temp = new ArrayList <String >(1);

if (patternUnitNames.get(bestAlleles[i] - 1) != null) {

temp = patternUnitNames.get(bestAlleles[i] - 1);

temp.add(internalRootPackagesWithClasses.get(i).uniqueName);

patternUnitNames.put(bestAlleles[i] - 1, temp);

} else {

temp.add(internalRootPackagesWithClasses.get(i).uniqueName);

patternUnitNames.put(bestAlleles[i] - 1, temp);

}

}

}

if (patternUnitNames.keySet ().size() == currentPattern.getNumberOfModules ())

{

currentPattern.mapPatternAllowingAggregates(patternUnitNames);

validatePatternCandidateAggregation(patternUnitNames);

System.out.println("Best candidate was successfully mapped and validated."

);

} else

System.out.println("Failed to map best candidate");

}

// private void identifyComponents () {

//

// }

//

// private void identifySubSystems () {

//

// }

//

// private void IdentifyAdapters () { // Here , and adapter is a module with a

// IsTheOnlyModuleAllowedToUse rule.

//

// }

//

// private void createModule () {

//

// }

@SuppressWarnings("unused")

private void createRule(ModuleStrategy moduleTo , ModuleStrategy moduleFrom ,

String ruleType) {

DomainToDtoParser domainParser = new DomainToDtoParser ();
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defineService.addRule(new RuleDTO(ruleType , true , domainParser.parseModule(

moduleTo), domainParser.parseModule(moduleFrom), new String [0], "",

null , false));

}

/** Automatic layering algorithm , to be improved. */

@SuppressWarnings("unused")

private void identifyLayers () {

// 1) Assign all internalRootPackages to bottom layer

int layerId = 1;

ArrayList <SoftwareUnitDTO > assignedUnits = new ArrayList <SoftwareUnitDTO >();

assignedUnits.addAll(internalRootPackagesWithClasses);

layers.put(layerId , assignedUnits);

// 2) Identify the bottom layer. Look for packages with dependencies to

// external systems only.

identifyTopLayerBasedOnUnitsInBottomLayer(layerId);

// 3) Look iteratively for packages on top of the bottom layer , et

// cetera.

while (layers.lastKey () > layerId) {

layerId ++;

identifyTopLayerBasedOnUnitsInBottomLayer(layerId);

}

// mergeLayersPartiallyBasedOnSkipCallAvoidance ();

// Extra step to minimise the number of skip -calls by moving problematic

// modules to lower layers.

// 4) Add the layers to the intended architecture

int highestLevelLayer = layers.size();

if (highestLevelLayer > 1) {

// Reverse the layer levels. The numbering of the layers within the

// intended architecture is different: the highest level layer has

// hierarchcalLevel = 1

int lowestLevelLayer = 1;

int raise = highestLevelLayer - lowestLevelLayer;

TreeMap <Integer , ArrayList <SoftwareUnitDTO >> tempLayers = new TreeMap <

Integer , ArrayList <SoftwareUnitDTO >>();

for (int i = lowestLevelLayer; i <= highestLevelLayer; i++) {

ArrayList <SoftwareUnitDTO > unitsOfLayer = layers.get(i);

int level = lowestLevelLayer + raise;

tempLayers.put(level , unitsOfLayer);

raise --;

}

layers = tempLayers;

for (Integer hierarchicalLevel : layers.keySet ()) {

defineService.addModule("Layer" + hierarchicalLevel , "**", "Layer",

hierarchicalLevel , layers.get(hierarchicalLevel));

}

}

logger.info(" Number of added Layers: " + layers.size());

}

private void identifyTopLayerBasedOnUnitsInBottomLayer(int bottomLayerId) {

ArrayList <SoftwareUnitDTO > assignedUnitsOriginalBottomLayer = layers.get(

bottomLayerId);

@SuppressWarnings("unchecked")

ArrayList <SoftwareUnitDTO > assignedUnitsBottomLayerClone = (ArrayList <

SoftwareUnitDTO >) assignedUnitsOriginalBottomLayer.clone();

ArrayList <SoftwareUnitDTO > assignedUnitsNewBottomLayer = new ArrayList <

SoftwareUnitDTO >();
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ArrayList <SoftwareUnitDTO > assignedUnitsTopLayer = new ArrayList <

SoftwareUnitDTO >();

for (SoftwareUnitDTO softwareUnit : assignedUnitsOriginalBottomLayer) {

boolean rootPackageDoesNotUseOtherPackage = true;

for (SoftwareUnitDTO otherSoftwareUnit : assignedUnitsBottomLayerClone) {

if (! otherSoftwareUnit.uniqueName.equals(softwareUnit.uniqueName)) {

int nrOfDependenciesFromsoftwareUnitToOther = queryService.

getDependenciesFromSoftwareUnitToSoftwareUnit(softwareUnit.uniqueName ,

otherSoftwareUnit.uniqueName).length;

int nrOfDependenciesFromOtherTosoftwareUnit = queryService

.getDependenciesFromSoftwareUnitToSoftwareUnit(otherSoftwareUnit.

uniqueName , softwareUnit.uniqueName).length;

if (nrOfDependenciesFromsoftwareUnitToOther > ((

nrOfDependenciesFromOtherTosoftwareUnit / 100) * layerThreshold)) {

rootPackageDoesNotUseOtherPackage = false;

}

}

}

if (rootPackageDoesNotUseOtherPackage) { // Leave unit in the lower

// layer

assignedUnitsNewBottomLayer.add(softwareUnit);

} else { // Assign unit to the higher layer

assignedUnitsTopLayer.add(softwareUnit);

}

}

if (( assignedUnitsTopLayer.size() > 0) && (assignedUnitsNewBottomLayer.size

() > 0)) {

layers.remove(bottomLayerId);

layers.put(bottomLayerId , assignedUnitsNewBottomLayer);

bottomLayerId ++;

layers.put(bottomLayerId , assignedUnitsTopLayer);

}

}

@SuppressWarnings("unused")

private void mergeLayersPartiallyBasedOnSkipCallAvoidance () {

for (int currentLayerID = layers.size(); currentLayerID > 2; currentLayerID

--) {

ArrayList <SoftwareUnitDTO > unitsInCurrentLayer = layers.get(currentLayerID

);

ArrayList <SoftwareUnitDTO > unitsInCurrentLowerLayer;

ArrayList <SoftwareUnitDTO > assignedUnitsNewLowerLayer = new ArrayList <

SoftwareUnitDTO >();

ArrayList <SoftwareUnitDTO > assignedUnitsNewUpperLayer = new ArrayList <

SoftwareUnitDTO >();

for (SoftwareUnitDTO softwareUnit : unitsInCurrentLayer) {

int nrOfDependenciesFromSoftwareUnitToOtherWithinLayer = 0;

int nrOfSkipCallsFromSoftwareUnitToOtherLayers = 0;

for (SoftwareUnitDTO otherSoftwareUnit : unitsInCurrentLayer) {

nrOfDependenciesFromSoftwareUnitToOtherWithinLayer += queryService

.getDependenciesFromSoftwareUnitToSoftwareUnit(softwareUnit.

uniqueName , otherSoftwareUnit.uniqueName).length;

}

for (int currentLowerLayerID = currentLayerID - 2; currentLowerLayerID <

0; currentLowerLayerID --) {

unitsInCurrentLowerLayer = layers.get(currentLowerLayerID);

for (SoftwareUnitDTO lowerSoftwareUnit : unitsInCurrentLowerLayer) {

if (! lowerSoftwareUnit.uniqueName.equals(softwareUnit.uniqueName)) {

nrOfSkipCallsFromSoftwareUnitToOtherLayers += queryService

.getDependenciesFromSoftwareUnitToSoftwareUnit(softwareUnit.

uniqueName , lowerSoftwareUnit.uniqueName).length;

159



Chapter D: Additional Code Samples Utrecht University

}

}

}

if (nrOfSkipCallsFromSoftwareUnitToOtherLayers < ((

nrOfDependenciesFromSoftwareUnitToOtherWithinLayer / 100) *

skipCallThreshold)) {

assignedUnitsNewUpperLayer.add(softwareUnit);

// Keep in current layer.

} else {

assignedUnitsNewLowerLayer.add(softwareUnit);

// Move to one layer below.

}

}

layers.remove(currentLayerID);

if (assignedUnitsNewLowerLayer.size() > 0) {

logger.info(" Number of modules moved downwards: " +

assignedUnitsNewLowerLayer);

layers.put(currentLayerID , assignedUnitsNewUpperLayer);

layers.get(currentLayerID - 1).addAll(assignedUnitsNewLowerLayer);

}

}

}

}

Code Sample D.1: The main reconstruction class. Currently has a very low cohesion and
high coupling to other classes, in line with the fact that this is an experimental setup and
not a finalised product.

package husacct.analyse.task.reconstruct.bruteForce;

import java.util.ArrayList;

import java.util.Iterator;

// This MappingGenerator provides you with all the permutations by which a group

of size N can be arranged into groups of size r.

// This is simply a multiplication of the number of combinations in one respect ,

the number of ways N can be split into groups of size r,

// times the number of combinations in the other respect , namely the number of

ways a group of size r can be arranged.

// These permutations can be used for a "brute force" approach to pattern

matching , where all possible mappings are considered.

public class MappingGenerator {

private static int Slots;

private static String [] PackageList;

private static ArrayList <ArrayList <String >> permutations = new ArrayList <

ArrayList <String >>();

private static Iterator <ArrayList <String >> mappingIterator;

public MappingGenerator(String [] packageList , int numberOfModules) {

Slots = numberOfModules;

PackageList = packageList;

getPermutations ();

mappingIterator = permutations.iterator ();

}

private static void addToPermutations(ArrayList <ArrayList <Integer >> arrayList)

{

for (int i = 0; i < arrayList.size(); i++) {
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ArrayList <String > temp = new ArrayList <String >( Slots);

for (int j = 0; j < Slots; j++) {

temp.add(PackageList[arrayList.get(i).get(j)]);

}

permutations.add(temp);

}

}

private String [][] getPermutations () {

combine(generatePackageNumbers ());

String [][] permutationsArray = new String[permutations.size()][];

for (int i = 0; i < permutationsArray.length; i++) {

permutationsArray[i] = permutations.get(i).toArray(new String[permutations

.get(i).size()]);

}

return permutationsArray;

}

private int[] generatePackageNumbers () {

int[] packageNumbers = new int[PackageList.length ];

for (int i = 0; i < PackageList.length; i++) {

packageNumbers[i] = i;

}

return packageNumbers;

}

private void combine(int[] packageNumbers) {

int[] combinations = new int[Slots];

combineRecursive(packageNumbers , combinations , 0, 0, Slots);

}

private static void combineRecursive(int[] array , int[] result , int

currentIndex , int level , int r) {

if (level == r) {

addToPermutations(permute(result));

return;

}

for (int i = currentIndex; i < array.length; i++) {

result[level] = array[i];

combineRecursive(array , result , i + 1, level + 1, r);

if (i < array.length - 1 && array[i] == array[i + 1]) {

i++;

}

}

}

private static ArrayList <ArrayList <Integer >> permute(int[] combinations) {

ArrayList <ArrayList <Integer >> result = new ArrayList <ArrayList <Integer >>();

result.add(new ArrayList <Integer >());

for (int i = 0; i < combinations.length; i++) {

ArrayList <ArrayList <Integer >> current = new ArrayList <ArrayList <Integer

>>();

for (ArrayList <Integer > l : result) {

for (int j = 0; j < l.size() + 1; j++) {

l.add(j, combinations[i]);

ArrayList <Integer > temp = new ArrayList <Integer >(l);

current.add(temp);

l.remove(j);

}

}

result = new ArrayList <ArrayList <Integer >>(current);
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}

return result;

}

public ArrayList <String > next() {

if (mappingIterator.hasNext ()) {

return (ArrayList <String >) mappingIterator.next();

} else

return null;

}

public ArrayList <String > getMapping(int i) {

return (ArrayList <String >) permutations.get(i);

}

}

Code Sample D.2: The mapping generator for non-aggregation mappings of the brute force
approach.

package husaccttest.analyse;

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertNotNull;

import static org.junit.Assert.assertTrue;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import javax.swing.plaf.synth.SynthSeparatorUI;

import org.junit.BeforeClass;

import org.junit.Test;

import husacct.analyse.task.reconstruct.bruteForce.MappingGenerator;

public class MappingGeneratorTest {

private static int testSlots;

private static String [] testPackageList;

@BeforeClass

public static void setUp () {

testSlots = 3;

testPackageList = new String [] { "package1", "package2", "package3", "

package4", "package5", "package6", "package7" };

}

@Test

public void testNumberOfPermutations () {

MappingGenerator mg = new MappingGenerator(testPackageList , testSlots);

List <String > singleMapping = new ArrayList <String >();

int countN = 0;

assertNotNull(mg.next());

countN ++;

ArrayList <List <String >> mappingList = new ArrayList <List <String >>();

while (true) {

singleMapping = mg.next();
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if (singleMapping == null) {

// System.out.println ("NO MORE MAPPINGS LEFT");

// System.out.println(countN);

break;

} else {

assertTrue("MAPPING LIST CONTAINS DUPLICATES", !mappingList.contains(

singleMapping));

mappingList.add(singleMapping);

// System.out.println(singleMapping);

countN ++;

}

}

assertEquals("INCORRECT NUMBER OF PERMUTATIONS: ", factorial(testPackageList

.length) / factorial(testPackageList.length - testSlots), countN);

}

private static int factorial(int n) {

int fact = 1;

for (int i = 1; i <= n; i++)

fact *= i;

return fact;

}

}

Code Sample D.3: Test code for the mapping generator.

package husacct.analyse.task.reconstruct.bruteForce;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collection;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

// Calculating all possible mappings in the aggregation case is a bit of a pain.

The current implementation can undoubtedly be sped up , possibly

// by the use of sets instead of lists whenever we don’t care about ordering.

This I reserve for future improvements. The crucial step in slowing down

// the pattern matching approach is not the mapping generation , anyway. Earlier

version of this mapper tended to run into heap space problem due to

// the large amounts of data being stored. Now , however , it works as follows:

the given set of software unit names is converted to integers in a

// reverse ordering , e.g. (5,4,3,2,1). This list in then split into the number

of groups equal to the amount of pattern modules (+1 in case of a

// Remainder). After that , the mapping is excluded if the integers within a

single sublist (a pattern module) are not in order. TODO: rewrite this

// algorithm so that this step is unnecessary. After that , subsequent

permutations of the original list are used to regroup the integers , only

// accepting ordered results and thus preventing duplicates. The permutation

ends when the completely ordered list , (1,2,3,4,5), is found. Because

// this guarantees that no new mapping will be the same as an earlier one , there

is no need to store all mappings in a variable. This circumvents the

// heap space problem. Perhaps there is a simpler way of doing this , I assume

there is, but this will do for now. -- Joeri Peters

public class AggregateMappingGenerator {

List <List <List <Integer >>> result;

Map <Integer , List <List <Integer >>> finalResult;

String [] stringNames;

int numberOfGroups;

163



Chapter D: Additional Code Samples Utrecht University

int currentMappingSize;

boolean isThereARemainder;

List <Integer > currentPermutation;

Map <Integer , List <List <Integer >>> storedResults;

int mappingSizeAtClearing;

public AggregateMappingGenerator(String [] packageNames , int

numberOfPatternModules , boolean remainder , int numberOfTops) {

numberOfGroups = numberOfPatternModules;

isThereARemainder = remainder;

if (remainder)

numberOfGroups ++; // Call this class once with and once without remainder

to get all possible mappings.

stringNames = packageNames;

currentPermutation = convertToIntegers(stringNames);

finalResult = new HashMap <Integer , List <List <Integer >>>();

currentMappingSize = -1;

mappingSizeAtClearing = 0;

storedResults = new HashMap <Integer , List <List <Integer >>>(numberOfTops);

}

// Convert from strings to integers (makes things easier).

private List <Integer > convertToIntegers(String [] names) {

List <Integer > list = new ArrayList <Integer >(names.length);

for (int i = 0; i < names.length; i++)

list.add(i, names.length - i - 1);

return list;

}

// Takes a list of integers and returns all possible ways to group them

according to the given number of groups. For instance , [1,2,3,4] can be

// arranged as [1],[2,3,4], as [1,2],[3,4] etc. The ordering within the groups

has no effect.

private void multipleSplit(List <Integer > individualPermutation , int

numberOfGroups) {

split(individualPermutation , numberOfGroups);

preventDuplicates ();

}

// The current way of calculating all possible distributions results in many

duplicates due to the fact that [1,2],[3,4] is not truly different

// from [1 ,2] ,[4 ,3]. This method prevents such duplicates.

private void preventDuplicates () {

int index = currentMappingSize;

for (List <List <Integer >> singleGrouping : result) {

if (groupingIsOrdered(singleGrouping) != false) {

finalResult.put(index , singleGrouping);

index ++;

}

}

}

private boolean groupingIsOrdered(List <List <Integer >> singleGrouping) {

for (int j = 0; j < singleGrouping.size(); j++) {

for (int i = 0; i < singleGrouping.get(j).size() - 1; i++) {

if (singleGrouping.get(j).get(i) > singleGrouping.get(j).get(i + 1))

return false;

}

}

return true;

}
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// Splitting a list into groups in all possible ways.

private void split(List <Integer > listSU , int numberOfGroups) {

if (numberOfGroups <= 0 || numberOfGroups > listSU.size())

throw new IllegalArgumentException("Invalid number of groups");

result = new ArrayList <>();

computeSplit(listSU , 0, new List[numberOfGroups], 0, result);

}

// Recursive method to generate splits.

@SuppressWarnings("unchecked")

private void computeSplit(List <Integer > listSU , int i, List[] combination , int

j, List <List <List <Integer >>> resultTemp) {

if (combination.length - j == 1) {

combination[j] = listSU.subList(i, listSU.size());

List <List <Integer >> temp = new ArrayList <>();

temp.addAll ((Collection <? extends List <Integer >>) new ArrayList <>(Arrays.

asList(combination)));

if (! resultTemp.contains(temp))

resultTemp.add(deepClone(temp));

} else {

for (int index = 0; index <= (listSU.size() - i) - (combination.length - j

); index ++) {

combination[j] = listSU.subList(i, i + index + 1);

computeSplit(listSU , i + index + 1, combination , j + 1, resultTemp);

}

}

}

// Java always passes by value , but that value is a reference in the case of a

nested list (essentially). Deep cloning creates a brand new list.

private ArrayList <List <Integer >> deepClone(List <List <Integer >> listOfLists) {

ArrayList <List <Integer >> cloneList = new ArrayList <List <Integer >>(

listOfLists.size());

ArrayList <Integer > clone;

for (List <Integer > nestedList : listOfLists) {

clone = new ArrayList <Integer >( nestedList.size());

for (Integer element : nestedList)

clone.add(element);

cloneList.add(clone);

}

return cloneList;

}

public List <List <String >> next(int remove) {

if (currentMappingSize == -1) { // The next permutation must not be called

the first time.

currentMappingSize ++;

multipleSplit(currentPermutation , numberOfGroups);

}

while (currentMappingSize - mappingSizeAtClearing == finalResult.size()) {

currentPermutation = nextPermutation(currentPermutation);

if (currentPermutation != null) {

multipleSplit(currentPermutation , numberOfGroups);

} else {

if (remove != -2) { // The previous call (if there was one), was not in

the top N.

storeResult(true);

}

return null; // If not , there exist no more mappings and the brute force
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loop is complete.

}

}

if (remove != -2) { // The previous call (if there was one), was not in the

top N.

if (remove == -1) { // The previous call fills up the top N

storeResult(true);

} else { // The previous call replaces a top candidate.

storeResult(true);

removeStored(remove);

}

}

return convertBack(finalResult.get(currentMappingSize));

}

private List <List <String >> convertBack(List <List <Integer >> next) {

List <List <String >> mapping = new ArrayList <List <String >>(next.size());

ArrayList <String > temp;

for (int i = 0; i < next.size(); i++) {

temp = new ArrayList <String >();

for (int j = 0; j < next.get(i).size(); j++) {

temp.add(stringNames[next.get(i).get(j)]);

}

mapping.add(i, temp);

}

if (isThereARemainder)

mapping.remove(numberOfGroups - 1);

currentMappingSize ++;

return mapping;

}

public Map <Integer , ArrayList <String >> getMappingMap(int i) {

Map <Integer , ArrayList <String >> map = new HashMap <>();

List <List <String >> bestOne = convertBack(storedResults.get(i - 1));

for (int j = 0; j < bestOne.size(); j++) {

ArrayList <String > temp = new ArrayList <String >();

for (int k = 0; k < bestOne.get(j).size(); k++) {

temp.add(bestOne.get(j).get(k));

}

map.put(j, temp);

}

return map;

}

private List <Integer > nextPermutation(final List <Integer > currentPermutation)

{

int first = getFirst(currentPermutation);

if (first == -1)

return null; // no greater permutation

int toSwap = currentPermutation.size() - 1;

while (currentPermutation.get(first) <= currentPermutation.get(toSwap))

--toSwap;

swap(currentPermutation , first++, toSwap);

toSwap = currentPermutation.size() - 1;

while (first < toSwap)

swap(currentPermutation , first++, toSwap --);

return currentPermutation;

}

private static int getFirst(final List <Integer > currentPermutation) {

for (int i = currentPermutation.size() - 2; i >= 0; --i)
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if (currentPermutation.get(i) > currentPermutation.get(i + 1))

return i;

return -1;

}

private static void swap(final List <Integer > currentPermutation , final int i,

final int j) {

final int tmp = currentPermutation.get(i);

currentPermutation.set(i, currentPermutation.get(j));

currentPermutation.set(j, tmp);

}

private void storeResult(boolean store) {

if (store)

storedResults.put(currentMappingSize - 1, finalResult.get(

currentMappingSize - 1));

if (currentMappingSize > 3000 && currentMappingSize == finalResult.size()) {

finalResult.clear ();

mappingSizeAtClearing = currentMappingSize;

}

}

private void removeStored(int i) {

if (storedResults.containsKey(i))

storedResults.remove(i);

else

System.out.println("ERROR!");

}

}

Code Sample D.4: The mapping generator for the aggregation case of the brute force
approach.

package husaccttest.analyse;

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertNotNull;

import static org.junit.Assert.assertTrue;

import java.util.ArrayList;

import java.util.List;

import org.junit.Test;

import husacct.analyse.task.reconstruct.bruteForce.AggregateMappingGenerator;

public class AggregateMappingGeneratorTest {

@Test

public void nextTest () {

List <ArrayList <List <String >>> mappingList = new ArrayList <ArrayList <List <

String >>>();

String [] names = new String [] { "A", "B", "C", "D", "E", "F" };

int numberOfGroups = 3;

AggregateMappingGenerator mappingCalculator = new AggregateMappingGenerator(

names , numberOfGroups , false , 10);

List <List <String >> singleMapping;

int count = 0;

singleMapping = mappingCalculator.next(-2);
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assertNotNull(singleMapping);

count ++;

while (true) {

// if (count == 42)

// singleMapping = mappingCalculator.next();

// else

singleMapping = mappingCalculator.next(-1);

if (singleMapping == null) {

// System.out.println ("NO MORE MAPPINGS LEFT");

// System.out.println ("Count: " + count);

break;

} else {

assertTrue("MAPPING LIST CONTAINS DUPLICATES", !mappingList.contains(

singleMapping));

mappingList.add(deepClone(singleMapping));

count ++;

}

}

assertEquals("INCORRECT NUMBER OF MAPPINGS", 540, count);

// System.out.println(mappingCalculator.getMappingMap (42));

assertNotNull(mappingCalculator.getMappingMap (42));

}

@Test

public void nextIncludingRemainderTest () {

String [] names = new String [] { "package1", "package2", "package3", "

package4", "package5", "package6","p7","p8" };

int numberOfGroups = 3;

AggregateMappingGenerator mappingCalculatorRemainder = new

AggregateMappingGenerator(names , numberOfGroups , true , 10);

List <List <String >> singleMapping;

int count = 0;

assertNotNull(mappingCalculatorRemainder.next(-2));

count ++;

while (true) {

if (count %2==0) {

singleMapping = mappingCalculatorRemainder.next(-1);}

else

singleMapping = mappingCalculatorRemainder.next(count);

if (singleMapping == null) {

// System.out.println ("NO MORE MAPPINGS LEFT");

// System.out.println ("Count: " + count);

break;

} else {

// System.out.println(singleMapping);

count ++;

// System.out.println ("Count: " + count);

}

}

assertEquals("INCORRECT NUMBER OF MAPPINGS", 40824, count);

assertNotNull(mappingCalculatorRemainder.getMappingMap (42));

}

private ArrayList <List <String >> deepClone(List <List <String >> listOfLists) {

ArrayList <List <String >> cloneList = new ArrayList <List <String >>( listOfLists.

size());

ArrayList <String > clone;

for (List <String > nestedList : listOfLists) {

clone = new ArrayList <String >( nestedList.size());

for (String element : nestedList)

clone.add(element);
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cloneList.add(clone);

}

return cloneList;

}

}

Code Sample D.5: The test code for the aggregate mapping.

package husacct.analyse.task.reconstruct.genetic;

import java.util.ArrayList;

import org.jgap.Chromosome;

import org.jgap.Configuration;

import org.jgap.FitnessFunction;

import org.jgap.Gene;

import org.jgap.Genotype;

import org.jgap.IChromosome;

import org.jgap.Population;

import org.jgap.audit.EvolutionMonitor;

import org.jgap.impl.DefaultConfiguration;

import org.jgap.impl.IntegerGene;

import husacct.analyse.task.reconstruct.ReconstructArchitecture;

import husacct.analyse.task.reconstruct.patterns.Pattern;

public class GeneticAlgorithm {

private static int MAX_ALLOWED_EVOLUTIONS;

private static int numberOfGenes;

private static int numberOfModules;

public static EvolutionMonitor m_monitor;

private static ArrayList <Chromosome > bestSolutions;

private static ReconstructArchitecture reconstructArchitecture;

private static Pattern pattern;

private static int allowRemainder;

@SuppressWarnings("unchecked")

public static void determineBestCandidates(boolean a_doMonitor) throws

Exception {

Configuration conf = new DefaultConfiguration ();

// Care that the fittest individual of the current population is always

taken to the next generation. With that , the population size may

// exceed its original size by one.

conf.setPreservFittestIndividual(true);

conf.setKeepPopulationSizeConstant(false);

// Set the fitness function we want to use , which is our

GeneticFitnessFunction. We construct it with the target amount of change

passed in to

// this method.

FitnessFunction myFunc = new GeneticFitnessFunction(pattern ,

reconstructArchitecture);

conf.setFitnessFunction(myFunc);

if (a_doMonitor) {

// Turn on monitoring/auditing of evolution progress.

m_monitor = new EvolutionMonitor ();

conf.setMonitor(m_monitor);

}

Gene[] sampleGenes = new Gene[numberOfGenes ];

for (int i = 0; i < numberOfGenes; i++) {

sampleGenes[i] = new IntegerGene(conf , allowRemainder , numberOfModules);
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}

IChromosome sampleChromosome = new Chromosome(conf , sampleGenes);

conf.setSampleChromosome(sampleChromosome);

conf.setPopulationSize (100);

// Create random initial population of Chromosomes.

Genotype population = Genotype.randomInitialGenotype(conf);

long startTime = System.currentTimeMillis ();

for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) {

if (! uniqueChromosomes(population.getPopulation ()))

throw new RuntimeException("Invalid state in generation " + i);

if (m_monitor != null) {

System.out.println("Begin evolution iteration " + i);

population.evolve(m_monitor);

System.out.println("End evolution iteration " + i);

} else {

System.out.println("Begin evolution iteration " + i);

population.evolve ();

System.out.println("End evolution iteration " + i);

}

}

long endTime = System.currentTimeMillis ();

System.out.println("Total evolution time: " + (endTime - startTime) + " ms")

;

bestSolutions = new ArrayList <Chromosome >( population.getPopulation ().size())

;

bestSolutions.addAll(population.getFittestChromosomes(population.

getPopulation ().size()));

for (int i = 0; i < bestSolutions.size(); i++) {

for (int j = i + 1; j < bestSolutions.size(); j++) {

if (bestSolutions.get(i).equals(bestSolutions.get(j))) {

bestSolutions.remove(j);

j--;

}

}

}

}

public static ArrayList <Chromosome > run(Pattern currentPattern , String []

softwareUnits , boolean monitor , ReconstructArchitecture reconstruct , boolean

remainder ,

int generations) throws Exception {

if (softwareUnits.length < 2) {

System.out.println("Too few software units. ");

} else if (softwareUnits.length > GeneticFitnessFunction.getMaxBounds ())

System.out.println("Too many software units. ");

else if (currentPattern.getNumberOfModules () > softwareUnits.length)

System.out.println("Too few pattern modules. ");

else {

numberOfGenes = softwareUnits.length;

numberOfModules = currentPattern.getNumberOfModules ();

reconstructArchitecture = reconstruct;

pattern = currentPattern;

MAX_ALLOWED_EVOLUTIONS = generations;

if (remainder)

allowRemainder = 0;

else

allowRemainder = 1; // Allowing a Remainder (software units not mapped

to any of the pattern ’s module) means that genes should have

// allele values starting with 0, otherwise they should start

with 1. Hence the integer value here.
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}

determineBestCandidates(monitor);

System.out.println("Presenting the ordering of software units mapped in the

chromosomes: \n");

for (int i = 1; i <= softwareUnits.length; i++) {

System.out.println(i + ": " + softwareUnits[i - 1]);

}

System.out.println(

"\nThe best (and unique) chromosomes are printed here. If their number

is particularly small , it is because the population contained many

duplicates.");

System.out.println(

"This would mean that the algorithm has converged on a small number of

solutions. These should indicate at least local optima , if not the global

optimum.");

System.out.println ();

return bestSolutions;

}

// Check that all chromosomes are unique

public static boolean uniqueChromosomes(Population a_pop) {

for (int i = 0; i < a_pop.size() - 1; i++) {

IChromosome c = a_pop.getChromosome(i);

for (int j = i + 1; j < a_pop.size(); j++) {

IChromosome c2 = a_pop.getChromosome(j);

if (c == c2)

return false;

}

}

return true;

}

}

Code Sample D.6: The genetic algorithm class.

/**

* PackageDependenciesTest.java

*/

package com.eteks.sweethome3d.junit;

import java.io.IOException;

import jdepend.framework.DependencyConstraint;

import jdepend.framework.JDepend;

import jdepend.framework.JavaPackage;

import jdepend.framework.PackageFilter;

import junit.framework.TestCase;

/**

* Tests if dependencies between Sweet Home 3D packages are met.

* @author Emmanuel Puybaret

*/

public class PackageDependenciesTest extends TestCase {

/**

* Tests that the package dependencies constraint is met for the analyzed

packages.

*/

public void testPackageDependencies () throws IOException {

PackageFilter packageFilter = new PackageFilter ();

// Ignore Java packages and Swing sub packages

packageFilter.addPackage("java.*");
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packageFilter.addPackage("javax.swing.*");

// Ignore JUnit tests

packageFilter.addPackage("com.eteks.sweethome3d.junit");

JDepend jdepend = new JDepend(packageFilter);

jdepend.addDirectory("classes");

DependencyConstraint constraint = new DependencyConstraint ();

// Sweet Home 3D packages

JavaPackage sweetHome3DModel = constraint.addPackage("com.eteks.sweethome3d.

model");

JavaPackage sweetHome3DTools = constraint.addPackage("com.eteks.sweethome3d.

tools");

JavaPackage sweetHome3DPlugin = constraint.addPackage("com.eteks.sweethome3d

.plugin");

JavaPackage sweetHome3DViewController = constraint.addPackage("com.eteks.

sweethome3d.viewcontroller");

JavaPackage sweetHome3DSwing = constraint.addPackage("com.eteks.sweethome3d.

swing");

JavaPackage sweetHome3DJava3D = constraint.addPackage("com.eteks.sweethome3d

.j3d");

JavaPackage sweetHome3DIO = constraint.addPackage("com.eteks.sweethome3d.io"

);

JavaPackage sweetHome3DApplication = constraint.addPackage("com.eteks.

sweethome3d");

JavaPackage sweetHome3DApplet = constraint.addPackage("com.eteks.sweethome3d

.applet");

// Swing components packages

JavaPackage swing = constraint.addPackage("javax.swing");

JavaPackage imageio = constraint.addPackage("javax.imageio");

JavaPackage imageioStream = constraint.addPackage("javax.imageio.stream");

// Java 3D

JavaPackage java3d = constraint.addPackage("javax.media.j3d");

JavaPackage vecmath = constraint.addPackage("javax.vecmath");

JavaPackage sun3dLoaders = constraint.addPackage("com.sun.j3d.loaders");

JavaPackage sun3dLoadersLw3d = constraint.addPackage("com.sun.j3d.loaders.

lw3d");

JavaPackage sun3dUtilsGeometry = constraint.addPackage("com.sun.j3d.utils.

geometry");

JavaPackage sun3dUtilsImage = constraint.addPackage("com.sun.j3d.utils.image

");

JavaPackage sun3dUtilsUniverse = constraint.addPackage("com.sun.j3d.utils.

universe");

JavaPackage sun3dExpSwing = constraint.addPackage("com.sun.j3d.exp.swing.

JCanvas3D");

// XML

JavaPackage xmlParsers = constraint.addPackage("javax.xml.parsers");

JavaPackage xmlSax = constraint.addPackage("org.xml.sax");

JavaPackage xmlSaxHelpers = constraint.addPackage("org.xml.sax.helpers");

// JMF

JavaPackage jmf = constraint.addPackage("javax.media");

JavaPackage jmfControl = constraint.addPackage("javax.media.control");

JavaPackage jmfDataSink = constraint.addPackage("javax.media.datasink");

JavaPackage jmfFormat = constraint.addPackage("javax.media.format");

JavaPackage jmfProtocol = constraint.addPackage("javax.media.protocol");

// SunFlow

JavaPackage sunflow = constraint.addPackage("org.sunflow");

JavaPackage sunflowCore = constraint.addPackage("org.sunflow.core");

JavaPackage sunflowCoreLight = constraint.addPackage("org.sunflow.core.light

");

JavaPackage sunflowCorePrimitive = constraint.addPackage("org.sunflow.core.
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primitive");

JavaPackage sunflowImage = constraint.addPackage("org.sunflow.image");

JavaPackage sunflowMath = constraint.addPackage("org.sunflow.math");

JavaPackage sunflowSystem = constraint.addPackage("org.sunflow.system");

JavaPackage sunflowSystemUI = constraint.addPackage("org.sunflow.system.ui")

;

// iText for PDF

JavaPackage iText = constraint.addPackage("com.lowagie.text");

JavaPackage iTextPdf = constraint.addPackage("com.lowagie.text.pdf");

// FreeHEP Vector Graphics for SVG

JavaPackage vectorGraphicsUtil = constraint.addPackage("org.freehep.util");

JavaPackage vectorGraphicsSvg = constraint.addPackage("org.freehep.

graphicsio.svg");

// Batik for SVG path parsing

JavaPackage orgApacheBatikParser = constraint.addPackage("org.apache.batik.

parser");

// Java JNLP

JavaPackage jnlp = constraint.addPackage("javax.jnlp");

// Mac OS X specific interfaces

JavaPackage eawt = constraint.addPackage("com.applet.eawt");

JavaPackage eio = constraint.addPackage("com.applet.eio");

// Describe dependencies : model don’t have any dependency on

// other packages , IO and View/Controller packages ignore each other

// and Swing components and Java 3D use is isolated in sweetHome3DSwing

sweetHome3DTools.dependsUpon(sweetHome3DModel);

sweetHome3DTools.dependsUpon(eio);

sweetHome3DPlugin.dependsUpon(sweetHome3DModel);

sweetHome3DPlugin.dependsUpon(sweetHome3DTools);

sweetHome3DPlugin.dependsUpon(sweetHome3DViewController);

sweetHome3DViewController.dependsUpon(sweetHome3DModel);

sweetHome3DViewController.dependsUpon(sweetHome3DTools);

sweetHome3DJava3D.dependsUpon(sweetHome3DModel);

sweetHome3DJava3D.dependsUpon(sweetHome3DTools);

sweetHome3DJava3D.dependsUpon(sweetHome3DViewController);

sweetHome3DJava3D.dependsUpon(java3d);

sweetHome3DJava3D.dependsUpon(vecmath);

sweetHome3DJava3D.dependsUpon(sun3dLoaders);

sweetHome3DJava3D.dependsUpon(sun3dLoadersLw3d);

sweetHome3DJava3D.dependsUpon(sun3dUtilsGeometry);

sweetHome3DJava3D.dependsUpon(sun3dUtilsImage);

sweetHome3DJava3D.dependsUpon(sun3dUtilsUniverse);

sweetHome3DJava3D.dependsUpon(imageio);

sweetHome3DJava3D.dependsUpon(sunflow);

sweetHome3DJava3D.dependsUpon(sunflowCore);

sweetHome3DJava3D.dependsUpon(sunflowCoreLight);

sweetHome3DJava3D.dependsUpon(sunflowCorePrimitive);

sweetHome3DJava3D.dependsUpon(sunflowImage);

sweetHome3DJava3D.dependsUpon(sunflowMath);

sweetHome3DJava3D.dependsUpon(sunflowSystem);

sweetHome3DJava3D.dependsUpon(sunflowSystemUI);

sweetHome3DJava3D.dependsUpon(xmlParsers);

sweetHome3DJava3D.dependsUpon(xmlSax);

sweetHome3DJava3D.dependsUpon(xmlSaxHelpers);

sweetHome3DJava3D.dependsUpon(orgApacheBatikParser);

sweetHome3DSwing.dependsUpon(sweetHome3DModel);

sweetHome3DSwing.dependsUpon(sweetHome3DTools);
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sweetHome3DSwing.dependsUpon(sweetHome3DPlugin);

sweetHome3DSwing.dependsUpon(sweetHome3DViewController);

sweetHome3DSwing.dependsUpon(sweetHome3DJava3D);

sweetHome3DSwing.dependsUpon(swing);

sweetHome3DSwing.dependsUpon(imageio);

sweetHome3DSwing.dependsUpon(imageioStream);

sweetHome3DSwing.dependsUpon(java3d);

sweetHome3DSwing.dependsUpon(vecmath);

sweetHome3DSwing.dependsUpon(sun3dUtilsGeometry);

sweetHome3DSwing.dependsUpon(sun3dUtilsUniverse);

sweetHome3DSwing.dependsUpon(sun3dExpSwing);

sweetHome3DSwing.dependsUpon(jmf);

sweetHome3DSwing.dependsUpon(jmfControl);

sweetHome3DSwing.dependsUpon(jmfDataSink);

sweetHome3DSwing.dependsUpon(jmfFormat);

sweetHome3DSwing.dependsUpon(jmfProtocol);

sweetHome3DSwing.dependsUpon(iText);

sweetHome3DSwing.dependsUpon(iTextPdf);

sweetHome3DSwing.dependsUpon(vectorGraphicsUtil);

sweetHome3DSwing.dependsUpon(vectorGraphicsSvg);

sweetHome3DSwing.dependsUpon(jnlp);

sweetHome3DIO.dependsUpon(sweetHome3DModel);

sweetHome3DIO.dependsUpon(sweetHome3DTools);

sweetHome3DIO.dependsUpon(eio);

// Describe application and applet assembly packages

sweetHome3DApplication.dependsUpon(sweetHome3DModel);

sweetHome3DApplication.dependsUpon(sweetHome3DTools);

sweetHome3DApplication.dependsUpon(sweetHome3DPlugin);

sweetHome3DApplication.dependsUpon(sweetHome3DViewController);

sweetHome3DApplication.dependsUpon(sweetHome3DJava3D);

sweetHome3DApplication.dependsUpon(sweetHome3DSwing);

sweetHome3DApplication.dependsUpon(sweetHome3DIO);

sweetHome3DApplication.dependsUpon(swing);

sweetHome3DApplication.dependsUpon(imageio);

sweetHome3DApplication.dependsUpon(java3d);

sweetHome3DApplication.dependsUpon(eawt);

sweetHome3DApplication.dependsUpon(jnlp);

sweetHome3DApplet.dependsUpon(sweetHome3DModel);

sweetHome3DApplet.dependsUpon(sweetHome3DTools);

sweetHome3DApplet.dependsUpon(sweetHome3DPlugin);

sweetHome3DApplet.dependsUpon(sweetHome3DViewController);

sweetHome3DApplet.dependsUpon(sweetHome3DJava3D);

sweetHome3DApplet.dependsUpon(sweetHome3DSwing);

sweetHome3DApplet.dependsUpon(sweetHome3DIO);

sweetHome3DApplet.dependsUpon(swing);

sweetHome3DApplet.dependsUpon(java3d);

sweetHome3DApplet.dependsUpon(jnlp);

jdepend.analyze ();

assertTrue("Dependency mismatch", jdepend.dependencyMatch(constraint));

}

}

Code Sample D.7: The JUnit tests for SweetHome3D’s package dependencies.
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Appendix E

WICSA/CompArch 2016 paper

Next is a paper submitted to the Young Researchers Forum track of the joint WICSA/CompArch
2016 conference in Venice. We are currently awaiting provisional acceptance.

The paper is focussed on the pattern definitions and the problems that arise with the Re-
mainder, including the issues raised in Section 8.5. We thought it seemed wiser to reserve
the search algorithms and the SAR aspects of this thesis for a later publication, possibly in
combination with case studies, as well as improved code and formalisation.
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Abstract—Architectural patterns represent reusable design of
software architecture at a high level of abstraction. They can be
used to structure new applications and to recover the modular
structure of existing systems. Techniques like Architecture Com-
pliance Checking (ACC) focus on testing whether the realised
artefacts adhere to the architecture. Typically, these techniques
require a complete architecture as input. In this paper, we
focus on defining architectural patterns in such a way that we
can use ACC tools to recognise architectural pattern instances.
This requires us to explicitly define architectural patterns in
terms of allowed and disallowed software dependencies. We base
ourselves on Semantically Rich Modular Architectures. Defining
architectural patterns this way allows us to reason about them.
For example, how patterns should be interpreted as incomplete
architectures and how different interpretations affect the pattern
recognition process. Recognising architectural patterns using
ACC techniques also has great potential in architecture design
and Software Architecture Reconstruction.

I. INTRODUCTION

“The software architecture of a system is the set of struc-
tures needed to reason about the system, which comprise
software elements, relations among them, and properties of
both” [1]. One can distinguish three types of structures within
software architecture (static, dynamic and allocation) [1], or
look at a categorisation based on views and viewpoints, such
as functional, development, and concurrency [2]. This paper
is restricted to static, technical architectures, the branch of
software architecture that looks at the arrangement of source
code into modules such as components and layers. We study
their connecting dependencies without incorporating runtime
behaviour.

Architectural patterns prevent software architects from rein-
venting the wheel in much the same way as design patterns
do for developers. They establish the relationship between a
context, a problem and a solution [1]. Examples of such pat-
terns include Model-View-Controller, Broker and N-Layered
patterns. Another concept related to architectural patterns is
architectural style [3]. We consider the style to be the highest
level architectural pattern when multiple patterns are applied,
such as a system split into three layers (the overall style of
the system) with a smaller Model-View-Controller pattern used
within one or more of these layers.

This paper describes our ongoing research into pattern
recognition using Architecture Compliance Checking (ACC).
ACC works by checking whether realised artefacts, such as

source code, adhere to the intended architecture [4]. Static
ACC is thus aimed at the analysis of software dependencies
between static modules and their correspondence to architec-
ture documentation. ACC relies on a proper and adequate
architecture description, which is typically tool dependent.

“A semantically rich modular architecture includes modules
of semantically different types, while a variety of rule types
may constrain the modules” [5]. Design and validation of such
Semantically Rich Modular Architectures (SRMAs) is possible
with the ACC tool HUSACCT, since it provides support
for such a diverse variety of architectural elements [6] [7].
These elements can be said to be HUSACCT’s architectural
language.

HUSACCT is intended to describe a complete, as opposed
to partial, architecture. As we are interested in the potential
role of ACC to check whether an architectural pattern is
present in source code, we want to study the possibilities this
tool’s language provides to express architectural patterns in
terms of allowed and disallowed dependencies. HUSACCT
does distinguish between dependency types, such as method
calls and variable accesses, but this is not relevant to our
pattern definitions at this time. We thus focus on the following
research question: “how can architectural patterns be expressed
in HUSACCT’s terms and what are the consequences of
alternative pattern definitions?”

The remainder of this paper is structured as follows: Sec-
tion 2 explains the relevant portions of HUSACCT’s SRMA
support, in Section 3 the consequences of pattern definitions
for the allowed dependencies are investigated, Section 4 shows
how these choices become critical when combining patterns,
Section 5 lists some of the relevant literature and Section 6
portrays the possible future industrial impact of our work.

II. SRMA CONCEPTS

SRMAs combine various types of modules with rule types
to express architectural elements and their constraints. This
enhances expressiveness and supports architecture reasoning
in terms comparable to regular language [5]. Using the module
and rule types understood by HUSACCT, we want to express
architectural patterns.

HUSACCT supports the following types of software mod-
ules: subsystems, layers, components, interfaces and external
systems. Subsystems are modules with clear responsibilities.



TABLE I
THE 7 RELATION RULE TYPES, SPLIT INTO TWO SUB-CATEGORIES.

Is not allowed to use
Is not allowed to back-call (layers)
Is not allowed to skip-call (layers)
Is allowed to use
Is only allowed to use
Is the only module allowed to use
Must use

A layer has the additional property of a hierarchical level,
which enforces strict layering as HUSACCT automatically
adds rules banning skip-calls and back-calls to the relevant
levels. Components are modules whose contents are hidden
behind and accessed through an interface module. Finally,
external systems represent libraries, modules that are not
actually part of the system under consideration [5] [6].

The rule types can be placed in one of two categories:
property rule types and relation rule types [5]. The former
consists of conventions such as naming and inheritance. Only
the façade convention is used in this paper. This convention
states that interface Module A always had to act as the
interface for component Module B.

The second category, relation rule types, consists of a further
subdivision into: “Is not allowed to use” and “Is allowed
to use” rules, which are themselves two basic rule types
that can be used to express rules like “Module A is not
allowed to use Module B”. Two rule types exist within the
first subdivision (Back-call bans and Skip-call bans), which
exist specifically for layer-type modules. Within the second
subdivision, there are three: “Is only allowed to use”, “Is the
only module allowed to use” and “Must use”. That makes
a total of seven relation rule types, each tying two modules
together and putting limitations on the dependencies allowed
in the modular architecture. These rules are listed in Table I.

III. ARCHITECTURAL PATTERN DEFINITION

Architectural patterns, such as the N-Layered pattern (equiv-
alent terms include Layered Architectures and N-Layers pat-
tern), are not as precisely defined as the Gang-of-Four design
patterns [8]. One can see them as two extremes on the same
spectrum. The main characteristic of design patterns is that
they are designed for solving recurrent problems on the level
of the detailed design, e.g. source code, whereas architectural
patterns exist on a system level. Consequently, design patterns
appear more frequently within the same system, deal with far
more specific concepts and are meant not to have any rule
violations at all. Architectural patterns tend to focus more on
which dependencies are not allowed. Design patterns specify
the dependencies that should be implemented. As such, design
patterns are more fit to be used as detailed design techniques
similar to the tactics described by Bass et al. [1].

In this paper, we explore the possibility to express architec-
tural patterns in terms of allowed and disallowed dependen-
cies. Although at first sight this seems an easy exercise, in re-

ality defining patterns this way leaves room for interpretation.
Consider the 3-Layered pattern. This pattern is commonly used
as a primary separation of concerns within a software system,
e.g. user interface, business logic and data access layers. Each
layer is only supposed to make use of its own internal modules
or those of the layer directly below.

There are three layers and the following rules are how one
would ordinarily express the pattern in terms of skip- and
back-calls:

Rule set 1, Skip-calls and back-calls:
1) Layer i is not allowed to skip-call to Layer j > i+ 1.
2) Layer i is not allowed to back-call to Layer j < i.
The fact that HUSACCT’s layer-type modules possess hi-

erarchical levels that constrain dependencies already suggests
one way of defining the N-Layered pattern. However, we want
to be able to use other module types as well, e.g. in order to
use component-type modules as layers, which means we have
to translate this set to one consisting of rules that do not rely
on hierarchical levels.

A translation to “Is not allowed to use” rules would result
in the following set of architectural rules for this pattern:

Rule set 2, “Is not allowed to use”:
1) Layer 2 is not allowed to use Layer 1.
2) Layer 3 is not allowed to use Layer 2.
3) Layer 3 is not allowed to use Layer 1.
4) Layer 1 is not allowed to use Layer 3.
The same can be achieved by replacing rules 1 and 4 with

“Is the only module allowed to use” rules from one layer
to the next, or by two “Is only allowed to use” rules whilst
removing rule 4. Both would appear to signify the exact same
pattern. One might even prefer a hybrid form, such as the
one displayed in rule set 3:

Rule set 3, Hybrid example:
1) Layer 1 is the only module allowed to use Layer 2.
2) Layer 2 is only allowed to use Layer 3.
3) Layer 3 is not allowed to use Layer 1.
4) Layer 1 is not allowed to use Layer 3.

Let us compare the different rule sets to see what happens
when such a set is used as a pattern definition within a system’s
architecture. Imagine the rest of the architectural elements of
this system as a single module, the Remainder, all architectural
elements that are not part of the architectural pattern under
consideration and not sub-modules of any of the pattern’s
modules. As such, the Remainder is always with respect to
some pattern.

According to rule set 2, nothings prevents the Remainder
from calling on any of the layers within the 3-Layered pattern
and any of these layers can call upon the Remainder. This
is depicted in Figure 1. Rule set 3 forbids any dependencies
between the Remainder and Layer 2, as shown in Figure 2.
This creates a scenario where the Remainder is free to call
upon Layers 1 and 3, but not 2, while Layer 2 is the only layer
that cannot call upon the Remainder. This version essentially
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Fig. 1. The 3-Layered pattern and the Remainder, defined with “Is not allowed
to use” rules (rule set 2) and showing allowed dependencies as dashed lines.

TABLE II
THIS LEGEND PRESENTS THE DIFFERENT RULE TYPES FOR THE

PROVISIONAL DIAGRAM NOTATION USED HERE.

“Is not allowed to use” X

“Is only allowed to use” O

“Is the only module allowed to use” |

“Is allowed to use”

“Must use” !

isolates Layer 2 form the Remainder, while leaving a lot of
freedom to the other two layers. In both cases, we have added
“Must use” rules between the layers in order to enforce the
correct usage of the pattern.

To graphically depict the patterns, we adopt a UML-like
syntax. Expanded packages represent architectural elements,
i.e. pattern modules and the Remainder. Collapsed packages
indicate sub-modules. Legal dependencies are represented by
dashed lines and directed associations figure as the architec-
tural rules. Additional symbols are used to indicate the rule
type being employed, as depicted in Table II. Conflicting rules
result in exceptions. HUSACCT allows for rule exceptions by
specifying the module that is exempt from the given rule [6].

At first sight, these rule sets seem to be equivalent. However,
as an architectural pattern is an incomplete architecture, subtle
differences emerge. Consider again the 3-Layered pattern.

More interpretations can be formulated using additional
rule sets, combining the various rule types in different ways.
We can thus identify the following interpretations of the N-
Layered pattern:

• N-Layered pattern (Complete freedom): there are no
restrictions with regard to the Remainder, hence the name.
This corresponds to rule sets 1 and 2.

• N-Layered pattern (Free Remainder): the Remainder

_
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!

!

X

Fig. 2. The 3-Layered pattern and the Remainder, defined with three different
rule types (rule set 3).

cannot be called by any layer, but can itself depend on
any of them. The rule set requires two “Is only allowed
to use” rules from each layer to the next and two “Is not
allowed to use” rules for the back-call bans.

• N-Layered pattern (Restricted Remainder): the Remain-
der cannot call on any layer. This is with “Is the only
module allowed to use” rules from each layer to the next
and an “Is not allowed to use” rule from Layer 3 to 1.

• N-Layered pattern (Isolated internal layers): intermedi-
ary layers are never called by and can themselves not
call on the Remainder. This corresponds to rule set 3.

More varieties are conceivable, especially when different
module-types are taken into account. This goes to show that
even a pattern as simple as the N-Layered pattern allows
for various different versions when the Remainder is taken
into account. It shows that for pattern recognition, we need
explicit pattern definitions. These same issues come up when
one considers other architectural patterns and, for the sake of
illustration, we will briefly go into one of them: the Model-
View-Controller pattern.

Model-View-Controller

The Model-View-Controller (hereafter MVC) pattern is con-
sidered to be a design pattern by some, but it also exists on
a system level. As such, it can be used to separate graph-
ics/presentation/UI logic from the underlying model logic by
restricting communication between the two. A Controller acts
as a mediator between them, with the essential restriction that
Model cannot use Controller [1].

Multiple interpretations of MVC exist, since many inter-
pretations and adaptations of this pattern occur in the field.
For example, sometimes the View incorporates the concerns of
the Controller, leaving only two modules in this MVC version.
Also, whereas the rule that Model cannot depend on Controller
seems rather well accepted, it is unclear whether Model can
depend on View and vice versa. If it cannot, there is a clear
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Fig. 3. The Model Interface interpretation, without demanding that Model
talk to View.

separation of concerns. However, a common interpretation of
the pattern states that View can perform a state query on Model
and that Model can update View (e.g. Bass et al. [1]). One way
of solving this is to distinguish between allowing a dependency
to exist and requiring it to.

The MVC pattern is often confused with the MVP
(Model-View-Presenter) pattern [9] [10]. View and Model
are completely decoupled in MVP. One would be inclined to
suspect an instance of MVC when these three module names
appear in, for example, Java package definitions. However,
it might actually be more akin to MVP dependency-wise.
The two patterns can be formulated as follows, next to other
interpretations:

Rule set 4, interpretation of classic MVC:
1) Controller must use Model.
2) Controller must use View.
3) View must use Model.
4) Model is not allowed to use Controller.
5) If Model is not allowed to use View,

violations should only be change updates.
6) If View is not allowed to use Controller,

violations should all be triggered by user actions.

Rule set 5, interpretation of MVP:
1) Presenter must use Model.
2) Presenter must use View.
3) View is not allowed to use Model.
4) Model is not allowed to use View.
5) Model is not allowed to use Presenter.

We focus on the classic MVC pattern. It is clear that
different interpretations of MVC would lead to several SRMA
pattern definitions for this pattern as well. In fact, such
ambiguity should be expected for all architectural patterns and
this is precisely what we want to address with our research.
Figure 3 graphically depicts one possible translation into
HUSACCT’s rules, namely the interpretation where Model
forms the interface with the Remainder.

With these examples, we hope to illustrate the type of
questions that are raised when defining architectural patterns
in HUSACCT’s SRMA terms. Not only are there various
interpretations of patterns such as MVC, implementations of
these patterns have consequences for the allowed, required
and forbidden dependencies within a modular architecture.
The nuances in interpretations can mostly be traced back
to the dependencies with the Remainder. Patterns have an
open world, which needs to be made explicit; whereas a
complete architecture is closed and thus all rules are explicit.
Assumptions and consequences will thereby become apparent.

In the next section, we will discuss the effects of different
pattern definitions on combinations of patterns.

IV. PATTERN-BASED ARCHITECTURES

“Experienced architects typically think of creating an archi-
tecture as a process of selecting, tailoring, and combining pat-
terns” [1]. An open-source example of this is SweetHome3D,
where an MVC pattern is distributed over several layers [11].
We thus want to be able to recognise multiple patterns in the
same architecture.

Although one would not expect to see a number of architec-
tural patterns in the same order of magnitude as the number
of design patterns within a given architecture, systems may
include more than one architectural pattern. The exact inter-
pretations of these patterns may result in subtle constraints or
even contradictions. This makes explicit definition of patterns
even more important, especially during a process like ACC or
pattern recognition.

To illustrate this point, let us take the example of an
architecture with an MVC pattern. Figure 4 shows a different
interpretation of MVC from Figure 3, namely the “Complete
Freedom” variety. This interpretation uses only the “Is not
allowed to use” rule between Model and Controller besides
its “Must use” rules. While MVC is the overall style, there is
a 3-Layered pattern within the Model module. This is quite
reasonable and plausible, as Model might contain business
logic and data access functionality separated from the rest (let
us call Layer 1 “communication”) through layering. It begs
the question, however, of who can access whom in this case.

Based on the architectural rules of these two patterns alone,
are the lower layers of Model allowed to have dependencies to
and from View and Controller? And, if there happens to be any,
what about the Remainder outside the MVC pattern? From
the perspective of this 3-Layered pattern, View and Controller
are part of the Remainder and therefore the particular pattern
definition has a subtle effect. If we were to apply the “Isolated
Internal Layers” version of the N-Layered pattern (Figure 2),
the data access layer would be allowed to have dependen-
cies to and from View and Module. The “Free Remainder”
interpretation used in Figure 4 would allow dependencies of
these outside modules with the data access (in both directions)
and business logic (one way) layers, which may also not be
desirable.

Probably, the architect wanted to isolate the lower layers
from the other MVC modules. Thus, the “Restricted Remain-
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Fig. 4. A combination of Complete Freedom MVC (style) and Free Remain-
der 3-Layered (pattern), which fails to isolate the lower Model layers.

der” interpretation (two “Is the only module allowed to use”
rules and one “Is not allowed to use”) ought to be combined
with rules that prohibit the data access layer from accessing
anything but those modules that it should require. This may
be solved with some of the relational rules, or by turning
Model into a component type with either the communication
layer or an additional element within Model functioning as the
interface for this component, thereby calling upon the façade
convention that was briefly mentioned in Section 2.

If these combinations raise such questions, then pattern
recognition within pattern-based architectures needs to take
into account that identifying overall style first could result in
a different conclusion from an approach to pattern recognition
starting with the smaller pattern.

V. RELATED LITERATURE

This study of architectural pattern definition in HUSACCT’s
terms is part of a larger project to recognise such patterns
in actual source code. Other researchers have come up with
definitions of patterns as well, though not always for the
purposes of ACC support.

An early example of architectural patterns being used in
scientific literature is by Abowd, Allen and Garlan [12]. They
introduce the notion of architectural styles, which consist of
precise syntactic and semantic descriptions of both static and
dynamic characteristics. A deep understanding of a style and
its constraints can then be used for formal analysis of that
style, studying potential sub-styles and comparing it with other
styles. The paper’s appendix briefly explains the Z language,
which is the mathematical notation they use to define styles
and which is strongly based on predicate logic.

Sartipi presents an extensive approach to software architec-
ture reconstruction (SAR) based on patterns and data mining
that makes use of both clustering and editing-cost-based

graph-matching techniques [13]. Although this has a strong
mathematical background and promising results, it requires
substantial user input, but this may well be unavoidable for
SAR.

Developed by Schmerl and Garlan [14], AcmeStudio is
aimed at the design phase of an application and allows for
new styles to be defined by the user in terms of predicate
logic. Although it may not be relevant in terms of architecture
reconstruction or pattern recovery, the paper does provide
some interesting insights into the definition of such patterns.
AcmeStudio relies on Acme, as the name implies, which they
describe as a style-neutral Architecture Description Language
(ADL).

Kim and Garlan [15] [16] analyse architectural styles auto-
matically for properties such as consistency and compatibility.
This is done by, again, writing a style in the Acme ADL.
Using a set of relatively straightforward translation rules, this
is then turned into Alloy (a language based on predicate logic)
and fed to the Alloy Analyzer. Within the Analyzer, one can
check whether various properties of styles hold according to
the logical description.

A relatively rich ontological framework for architectural
styles is presented by Pahl, Giesecke and Hasselbring [17].
Acme is used as the ADL once more and translated to
predicate logic. This style ontology may also be extended to
incorporate metrics such as Quality Attributes. Papers such
as this can be used to collect the logical representations of
architectural patterns by whoever might be interested in such
expressions.

For a systematic literature review on architecture reconstruc-
tion, we refer the reader to the 2009 publication by Ducasse
and Pollet [18], in which they mention architectural patterns
and styles several times in their attempts to build an ontology
of various methods.

VI. INDUSTRIAL IMPACT

A precise definition of a specific architectural pattern un-
doubtedly aids the design process, by making it clear for
everyone involved what exactly is meant by that pattern. Pat-
tern definition within the context of Semantically Rich Mod-
ular Architectures allows us to do this more accurately. The
possibility of substituting module types within each pattern
definition is no trivial consequence of HUSACCT’s language,
as the various module types imply certain architectural rules.
However, the main consequences relate to the rule types at
our disposal and how they change the effect an architectural
pattern has when the rest of the architecture is taken into
consideration. This observation and the resulting collection of
subtly different interpretations of each architectural pattern do
not only impact software architecture design that uses SRMAs,
but also the related activities of ACC and SAR if they were
to make use of such a rich language.

Architectural patterns may be useful in ACC if one is able
to enter such a pattern into a software tool, as part of the
intended architecture, for example. With ACC software tools,
the intended architecture needs to be fed into the tool so that



it can be compared to the realised architecture found by the
tool. In this way, we want to measure the degree to which the
realised architecture complies with the intended architecture.

Not only ACC can benefit from a precise understanding of
architectural patterns. We see potential use in SAR as well.
Recognising the architectural patterns applied in the realised
artefacts, and the order in which they have been applied, would
result in better architecture documentation.

For example, a particular system’s realised architecture can
have the appearance of a layered structure with some MVC
aspects. If so, these patterns would naturally form the ideas on
which to base the initial reconstruction steps. A well-defined
notion of such patterns helps to test the hypothesis, especially
when ACC is used for this.

VII. CONCLUSIONS

With this paper, we show how HUSACCT’s architectural
elements, which are commonly found in Semantically Rich
Modular Architectures, allow one to think about architectural
pattern definitions in some precision. This raises many ques-
tions, such as what we mean when we say “MVC pattern” or
what a layered architecture implies with regard to architectural
elements that are not part of any layer. These questions, and
the more deliberate choices of definitions that follow from
them, may be useful for software architects to describe exactly
what it is they mean by their applied patterns, but it can also
be fruitful for purposes other than software design. Our own
current and future research is focussed on the usage of these
SRMA pattern definitions in ACC and SAR, where we want
to detect instances of architectural patterns within existing
architectures. The pattern definitions we choose and the order
in which we detect such patterns can have profound effects
on the allowed dependencies. It is therefore imperative that
we make all rules, assumptions and consequences surrounding
architectural patterns completely explicit.
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