
UNIVERSITEIT UTRECHT

Predicting train journeys from smart
card data: a real-world application of

the sequence prediction problem

Author:

Jelte HOEKSTRA

Advisors:

dr. Ad FEELDERS

prof. dr. Marc VAN

KREVELD

Abstract

This study aims to predict the next journey of travelers by train based on

smart card data. After preprocessing raw data into features describing jour-

neys, the problem is framed as a sequence prediction instance. Domain

modelling issues such as the choice of alphabet, representation of time and

the definition of a sequence are discussed. A base alphabet is constructed,

and closed frequent pattern mining is proposed as a method of algorithmi-

cally extending it. The resulting data encodings are tested against a range

of established sequence prediction algorithms. Results show the All-Kth-

Order-Markov algorithm outperforms other algorithms by a margin. With

regard to pattern encoding, the results are somewhat inconclusive.

January 21, 2016

My love for pattern is so great,

my heart melts for it ’til the dusk of day.

The night knows when it’s away,

learn, encode ’til day’s dawn.

Its beauty is great,

Wondering mind ’til it sees,

predicting is all I do,

While waiting for the moment, for it to say "I do."

UNKNOWN ALGORITHM

Contents

1 Introduction 4

1.1 Congestion in the Netherlands . 4

1.2 Common solutions . 4

1.3 MyOV . 5

1.4 Predicting the next journey . 7

2 Preprocessing 9

2.1 The dataset . 9

2.2 Features . 9

2.2.1 Peak . 10

2.2.2 Trajectory . 10

2.2.3 Problem . 10

2.2.4 Date and time . 10

2.3 Journey as a feature vector . 11

3 Sequence prediction 12

3.1 Problem definition . 12

3.2 Algorithms . 13

3.2.1 Probability-based . 14

3.2.2 Comparison-based . 14

4 Domain model 15

4.1 Implicit vs explicit time . 15

4.2 Sequences . 18

4.3 Events . 19

5 Subevents from patterns 21

2

5.1 Closed frequent pattern mining . 21

5.2 Encoding conflicts . 22

6 Experimental design 24

6.1 Individual vs population model . 24

6.2 Definition of the week . 25

6.3 Train and test set . 26

6.4 Evaluation . 28

6.5 Parameters . 30

7 Results and analysis 30

7.1 Algorithms . 31

7.2 Cut-off day . 32

7.3 Pattern encoding . 33

8 Discussion 33

9 References 38

Appendices 41

3

1 Introduction

1.1 Congestion in the Netherlands

Everyday an average of seven percent of the Dutch population travels at least

one journey using public transport [1]. Many of these trips have a commuting

purpose and take place within a relatively small timeframe called rush hour.

In the Netherlands traffic congestion during rush hours is a serious problem.

The overwhelming demand for rush hour trips leads to a shortage of seats and

delays due to slow passenger boarding. Typical rush hours are the morning

and evening commute on weekdays. Besides these weekday peaks, the Nether-

lands knows a student peak during Sunday evening when students return from

spending the weekend at their parents’ place.

1.2 Common solutions

In general, solutions to congestion either decrease traffic demand or increase

the capacity of the problematic transport mode. The latter could involve infras-

tructural improvements such as designated buslanes. Another possibility con-

cerns optimizing existing schedules and removing inefficiencies. Simply adding

trips to the schedule or increasing the capacities of transport vehicles, is also a

straightforward solution. However, expanding capacity is usually costly and its

scope limited: adding more than one buslane has little effect and only so many

train carriages fit on a platform. Besides, the extra capacity is only needed for a

few brief intervals every week while the extra costs are usually constant. Flexi-

bility in supply is usually difficult to achieve.

Transportation demand management on the other hand, holds more po-

tential for resolving public transport congestion. This may be accomplished

4

through a wide range of strategies. Simply raising the ticket price or introduc-

ing a congestion wage is not desirable in this case. For most people daily travel

is mandatory and thus demand will shift to another transport mode. No trans-

port operator will look upon such measures favourably because they compete

for the same user base. Also, road traffic congestion is a related problem that

is likely to intensify as a result. Another consideration is that affordable public

transport is valuable from a sociopolitical standpoint.

Solutions that preserve an operator’s user base are likely to meet far less

resistance politically. Apart from switching to a different mode of transport,

travelers may also respond to congestion wage by traveling at off-rush hours.

This way rush hour traffic is dispersed over a larger timeframe, distributing

peak travelers over multiple trips. Also, the opposite approach to congestion

wage - rewarding people for travelling at off-rush hours - is preferable because

it involves a bonus rather than a penalty. Operators do not want to punish users

for using their product.

1.3 MyOV

MyOV is a pilot project in the North of the Netherlands (mainly Friesland and

Groningen). It attempts to solve the rush hour problem for train routes by stim-

ulating peak travelers to change their schedule. Stimulation comes in the shape

of requests for behaviour change, which are made through a mobile applica-

tion, text message or e-mail. Travelers who respond positively are rewarded

with peak-points that can be redeemed against benefits such as travel discounts

or a cup of coffee. Besides collecting points, travelers can benefit from an im-

proved travel experience: less crowdedness and a better chance of finding a

seated place. A less obvious but possibly quite significant reward is a sense of

contribution and collaboration: by changing their schedule, users helped solv-

5

ing a major problem.

Despite such benefits not all travelers are willing to change their behaviour.

Many people are expected at their job at fixed hours. Other people have little

need for said rewards, or find changing their behaviour stressful. Yet some

others are open to the idea in general, but can participate only under certain

circumstances. The latter group is MyOV’s primary focus.

All in all a large number of variables factor into such a decision, and the

weight of each of these likely varies by person. The MyOV project aims to as-

semble a strategy to consistently move part of the peak travelers to a differ-

ent timeslot. This could potentially be achieved by e.g. identifying a group of

people with a high compliance rate, or by finding successful combinations of

rewards.

Little is known with regard to such combinations, and any presumptions

will have to be validated on the fly. As there are no fixed users and the number

of users is limited, they should be treated with care. If the project runs out of

users, there is no way to learn an effective strategy. Also, with a seeming lack

of interest, the project might be terminated prematurely. Thus it is important

that users derive benefit from their use: requests should present an opportu-

nity. Most people have a limited patience with mistakes and do not like to be

spammed. Even the most forgiving users will only tolerate so many off-target

requests before opting out. Thus it is essential to send requests only when nec-

essary.

Change is only desirable if the user travels during the rush hour and on a

trajectory that is known to be problematic. Reasonable requests address these

circumstances and suggest a specific change. Another obvious requirement is

that requests must reach the user before the actual behaviour takes place, i.e.

within the window of influence in which the user makes up his mind about

6

the next trip. If the request comes in too early, it will seem out of place or the

user will forget about it. If it comes too late, travel plans will already have been

made. This interval could range from hours to days before the actual journey -

but probably not weeks. Thus knowing the day on which the journey will take

place is a necessary aspect of the prediction.

In summary, the prediction should include

• the day on which the journey will take place

• if the journey will take place during rush hour

• if the journey will be on a problem trajectory

1.4 Predicting the next journey

One straightforward way to obtain travel plans is to simply contact the user and

inquire about his plans, e.g. at the start of each week. This seems a bad idea

for multiple reasons. First of all, submitting plans would require a significant

effort on the part of the user. Apart from posing an inconvenience, self-report

is notoriously unreliable, especially given the potential for gaming the system.

Finally the user might also be unwilling to submit his plans for privacy reasons.

Another approach is to infer the user’s plans from his application use. The

MyOV mobile application contains a journey planner which requires users to

enter the origin, destination, and date and time of their journey. From these all

of the required information can be derived. Although viable, this approach suf-

fers some shortcomings. First of all, use of the planner is optional. Users might

have a different preferred planner, or not use a planner at all. For such users

there is no basis from which to infer the next journey. Also, users might use the

planner only some of the time, hence the acquired plans could be incomplete.

Another problem is that the user’s planning behaviour might not represent his

7

actual behaviour. The user might be planning a journey for a friend or rela-

tive. Finally, when the user finds out about a connection between his planning

behaviour and requests, he might consider this an invasion of his privacy or

attempt to game the system, reverse engineering the MyOV strategy.

An alternative approach and the aim of this study, is to predict the user’s

next journey from his past behaviour. It is assumed that a considerable share

of most user’s journeys is of structural nature, i.e. these journeys take place

according to some schedule or temporal cycle. Prime examples are the 9-to-

5 commuter, high-school students and the weekly homebound student. With

sufficient examples of previous cycles, the next cycle might be extrapolated.

This study first preprocesses raw travel data into feature vectors represent-

ing journeys. These features capture relevant aspects of journeys and are used

to define journey categories. Next, the problem is framed as an instance of the

sequence prediction problem and several prediction algorithms are introduced.

The various modeling concerns encountered when specifying the instance are

discussed. Especially the categorization of journeys is of interest. A base alpha-

bet for encoding journeys is presented, and pattern mining is proposed as an

approach for algorithmically extending it with subcategories. Finally, the base-

and extended alphabet are used to encode the MyOV data and compared across

aforementioned prediction algorithms.

8

2 Preprocessing

2.1 The dataset

Data was collected by scraping the OV-chipkaart logs of MyOV users 1. It con-

sists of users’ public transport trips by train, where a trip describes a ride on

one vehicle. The trip starts when the user enters the vehicle and ends when he

leaves it. Even if the users forgets to check out, or transfers to a different vehi-

cle without checking out, the trip ends when he leaves the vehicle. Although

within the scope of the MyOV project, other modalities such as bus trips are

not part of this study. Besides the check-in and check-out times, vehicle de-

parture and arrival times are known. Also, origin and destination stations are

included. The dataset contains 40,117 of such trips collectively traveled by 2483

users during the period 01-06-2015 to 01-10-2015.

Consecutive trips make up a journey when they actually belong together:

many journeys include transfers between trips. Two trips are considered part

of the same journey when the destination of the first trip matches the origin of

the second trip. Additionally, the check-in time of the second trip must follow

the check-out time of the first trip within at most 35 minutes - the official transfer

time according to NS railways [12].

2.2 Features

Features are variables computed from the original data to model the domain in

terms of the desired outcome. Although there are few set guidelines for making

features, they should help discern between journeys on relevant problem as-

pects such as peak and off-peak, problem or ordinary trajectory, and notions of

1This is part of the MyOV Terms of Service.

9

date and time (see subsection 1.4). For each of these this study proposes several

variants.

2.2.1 Peak

The simplest feature encodes each journey as peak or off-peak. According to

NS railways, peak periods are weekdays between 6.30 - 9.00 or 16.00 - 18.30

[11]. An alternative feature further refines this definition by specifying the type

of peak: morning peak, afternoon peak, or student peak, where student peak

concerns evening travel on Friday or Sunday between 19.00 - 22.00 2.

2.2.2 Trajectory

Similar to the peak features, a binary feature indicates whether a problem tra-

jectory is involved. Again, a categorical feature specifies the actual trajectory. A

list of problematic trajectories was supplied by MyOV (see Appendix A).

2.2.3 Problem

The binary peak? and problem-trajectory features can be collapsed into one fea-

ture, problem?, which indicates whether the journey is a problem. This is the

logical AND of the peak and trajectory feature.

2.2.4 Date and time

With regard to date and time, a binary feature indicates whether the journey

started on a weekday. A categorical feature specifies the day itself. Another

feature encodes the hour of the day in which the checkin of the journey took

2If some trip within the journey started in these intervals, the journey was marked as a peak

journey.

10

place. Finally, one feature discretizes the time between checkin and departure

into short (<5 min.), mean (5-10 min.) and long (10+ min.) categories. A long

waiting time could indicate that the user came early to ensure he would not

miss the journey. It could also mean that the traveler simply was not in a hurry

and could afford to be inefficient. There are many explanations possible here,

each of which has different implications with respect to potential compliance.

Regardless, the waiting time seems potentially relevant.

2.3 Journey as a feature vector

After features have been computed, the preprocessing is concluded. The result-

ing data is a set of journeys, c.q. feature vectors (see Figure 1). The dataset

contains 37.064 of such journeys. Hence by far most journeys do not contain

transfers between trains.

Feature Value

Peak? True

Problem-trajectory? True

Problem? True

Weekday Monday

Peak Morning

Problem-trajectory Leeuwarden-Groningen

Weekday? True

Hour 8

Waiting-time Short

Figure 1: An example of a journey feature vector. Features that are part of the

solution requirements are displayed in gray.

11

3 Sequence prediction

3.1 Problem definition

Sequence prediction concerns predicting the next event of a sequence of events

from a finite alphabet Z. In this case, the alphabet is a set of categories to which

journeys might belong. It maps journey feature vectors to symbols denoting

the categories. Prediction algorithms construct a model from a set of Z encoded

training instances that are considered a representative sample. This model can

be used to predict the next event of a new sequence. When making a prediction,

the model receives a prefix subsequence as input. These are the observed events

up to moment of prediction. The algorithm then outputs a prediction of the

symbol that will follow the prefix.

Some authors refer to this problem as discrete sequence prediction and con-

trast it with the related problems of sequence extrapolation and time-series pre-

diction [9] [8]. In the former problem, the focus is on finding an underlying rule

or formula that sufficiently explains the data. A solution is a stream of predic-

tions, rather than one prediction. Given the complexity of the problem, it seems

unlikely that a rule is found to produce such a stream. It is not really a problem

if the solution is blackbox either, hence knowing the underlying rule is not that

beneficial. Possibly the sequence extrapolation framework might be applied to

more specific predictions, i.e. to predict a subset of behaviour.

Time-series prediction is more concerned with regression problems in which

the predictions concerns the value of a numerical variable as a function of time.

The case at hand requires the prediction of discrete categories. Hence, discrete

sequence prediction (sequence prediction from here on) seems a better fit. Al-

though the problem at hand could probably be framed as these related prob-

lems, this is outside the scope of this study.

12

Sequence prediction is a general problem with a wide range of use cases.

Some clever applications are adaptive file compression and content preloading

[13]. In adaptive file compression, prediction is used to encode the most prob-

able remaining characters with the fewest bits. Content preloading is about

anticipating a person’s next decision to preload e.g. website content, thus re-

ducing perceived latency.

A sequence prediction setup involves two aspects: the domain model and

the prediction algorithm. The former concerns which events are in the alphabet,

the way time is represented in the model and the definition of a sequence.

The choice of algorithm involves decisions about whether the Markov as-

sumption holds, whether the training data contains noise and whether the al-

gorithm should abstain from prediction with little information.

3.2 Algorithms

Because of its wide applicability, the sequence prediction problem has been

tackled from a considerable number of angles. Besides adaptations of general

supervised learning techniques like neural networks [18], some dedicated algo-

rithms exist.

Dedicated solvers can be roughly divided into two groups: probability-

based solvers that extract transition probabilities between subsequences and

comparison-based solvers that compare input sequences against a condensed

representation of the training sequences.

Probability-based solvers assume the Markov property, namely that future

states (predictions) depend only upon a fixed number of past states. This num-

ber is called the order of the model and indicates its complexity. Markov mod-

els capture states of the world and transition probabilities between such states.

These probabilities are determined as observed from training data. Conse-

13

quently, any transition not occurring in the training data cannot be handled

by the model. Thus an extensive training set is required. Even then, noisy in-

stances remain problematic.

3.2.1 Probability-based

The first algorithm to apply the probability-based approach to sequence predic-

tion was Prediction by Partial Matching (PPM) [2]. It represented subsequences

of events as states and the probability of subsequent occurrence as transitions.

Both of these are stored in a frequency table. During prediction, the most likely

transition from the prefix available in the table is predicted.

PPM gave rise to a number of successors, the first of which was the Transi-

tion Directed Acyclic Graph (TDAG) [7] that builds a Markov tree where paths

represent observed prefix subsequences. Even simpler is the Dependency Graph

algorithm (DG) [13], essentially a first-order Markov model in that predictions

are based solely on the latest observed event. A few years later Pitkow and

Pirolli experimented with higher order models and found a trade-off between

accuracy and applicability: higher order models produce more accurate pre-

dictions but are less likely to produce a prediction at all. They match longer

prefix subsequences, i.e. it is less likely that the prefix has already been ob-

served. Hence they suffer from aforementioned data sparsity issues. Hinging

of this insight, they devised All-Kth-order-Markov (AKOM) [15], an algorithm

that selects the highest order prediction as learned from the training data.

3.2.2 Comparison-based

Much more recently a different approach was proposed with the Compact Pre-

diction Tree (CPT) algorithm [6]. Different from the Markovian algorithms dis-

cussed so far, CPT compares the prefix subsequence at hand against a lossless

14

but compressed tree structure of all training sequences. It predicts the overall

most frequently occurring suffix event among similar sequences. In the absence

of similar sequences - possibly due to noise - prefix events are recursively dis-

counted until sufficient matches have been found. Although CPT seemingly

achieves higher accuracies than most probability-based algorithms [6], it en-

tails a higher spatial complexity and higher prediction time. Two years later

the same authors aimed to improve these aspects with further optimizations in

CPT+ [5].

4 Domain model

Whereas the sequence prediction problem concerns sequences of events, the

available data concerns a database of feature vectors, c.q. journeys and their

characteristics. The domain model bridges this chasm by dividing journeys

into disjoint categories (events) and by defining the limits of serial association

(sequences). As time plays an important role in the prediction, its representation

is also a major modelling decision. Time can be modelled implicitly using an

event’s relative position in the sequence, or explicitly as part of the definition of

an event.

4.1 Implicit vs explicit time

In an implicit model sequences have fixed length where each index represents a

time interval. For example, if the sequence represents a week, then the sequence

could contain 7 events, one for each day of the week. This approach works

well as long as exactly one journey takes place each day. An extra event is

needed to represent the case that no journey takes place on a day (see Figure 2).

An implicit model predicts what type of journey takes place in the next time

15

interval. Although subtly different from predicting the next journey, predicting

the next interval seems permissible in the case at hand. The benefit of implicit

modeling is that the alphabet is considerably simplified: the absence of time in

the event definition makes that fewer events are needed to describe all kinds of

journeys.

A B A X X A X

Figure 2: Cells represent the 7 days of the week. X represents the case that no

journey took place on a day.

A challenge using the implicit approach is handling multiple journeys within

the same interval, which is a problem that actually arises in the dataset (see Fig-

ure 3. The straightforward solution is to extend the alphabet to include multiple

journey events. However the resulting combinatorial explosion makes this in-

feasible.

Another solution is to shrink time intervals such that each journey again has

its own interval. Before long however, this will result in a race to the bottom,

requiring ever smaller intervals, where the interval size is essentially the lowest

common denominator of inter-event times. Many of these new intervals will

be empty (see Figure 4), and as most sequence prediction algorithms look back

only so many events, soon enough the noise from empty intervals will drown

out the actual journeys.

An alternative solution is to select and encode only one of the journeys. If

pessimistic predictions are preferred, the most problematic journey might be

selected. However this strategy selectively leaves out some of the data, which

might harm performance in nefarious ways: the missing journeys might play a

significant role in characterizing the sequence. Another problem occurs when

the model is used to predict more than one journey on the same day. The train-

16

Figure 3: Histogram of sequence lengths. Quite a few sequences have more

than 7 journeys, which means that multiple journeys occur on one day.

A X X X X B X A X A X X X X

Figure 4: Using more but smaller intervals. This results in many empty intervals

(X).

ing data does not contain examples of days with multiple journeys, hence the

prediction will always predict for some day in the future - never for the same

day. Also if more than one problematic journey occurs, alphabet extension or

interval shrinkage might still be necessary.

All in all, an implicit model has the benefit of a smaller alphabet but entails

some problems. An explicit model on the other hand, incorporates a notion of

time in the alphabet, i.e. the definition of an event includes temporal features.

For example the day of the week and week number would be selected as tem-

poral features. From these the date could be deduced but this might result in

17

a significant increase of the alphabet size. To limit the number of variants, it

helps to still bound the sequence temporally by e.g. requiring that the sequence

contains events only from some specific week. If the sequence spans this week,

then its events need only include the day of the week to deduce the date.

Explicit modeling avoids many of the pitfalls of implicit modeling at the

cost of a larger alphabet. In the case at hand, this seems a worthwhile trade.

Letting sequences span a week and including the day of the week, the alphabet

becomes 7 times as large. With the minimally descriptive problem? feature (see

subsubsection 2.2.3), the resulting alphabet has just 14 events 3. The dataset

shows that each of these events still covers a considerable number of journeys

(see Table 1).

Problem? Mon Tue Wed Thu Fri Sat Sun

Yes 881 832 771 584 528 0 63

No 6446 6331 6149 5096 5046 2352 1985

Table 1: The number of journeys for each of the 14 events. Journeys on Saturday

are never a problem by definition.

4.2 Sequences

Starting out with a series of journeys for each user, the question is if and how to

divide these into sequences. The straightforward approach is to let a series be

a sequence, i.e. have one sequence represent the travel history of one user. In

order to predict the date, this would require an even larger alphabet expansion

than the aforementioned weekly representation (see subsection 4.1. Also, some

3Actually, there are only 13 events because journeys on Saturday are never a problem due to

the definition of the peak? feature (see subsubsection 2.2.1).

18

sequence prediction algorithms require the training data to be split into multiple

training sequences [5].

Thus data has to be divided into sequences. The mechanism of division -

temporal or every so many events - is implied by the model’s framing of time

(see subsection 4.1). This leaves questions of how many. If sequences represent

real time intervals, then how large should the intervals be? If a sequence has a

fixed number of events, how many? Besides arguments involving the alphabet

size, it is worth noting that sequences need to have a minimum length. Without

a minimum length, there would be no prefix subsequence.

Domain specific cycles also factor into the decision. If sequences coincide

with natural patterns, it seems more reasonable to consider these to be inde-

pendent samples. This is an underlying assumption of most model building

procedures.

With sequences representing travel weeks, most of these requirements are

satisfied. It is the shortest temporal structure with sufficient journeys to sup-

port prediction. For most people, this Monday is probably more like the next

Monday than any other day of the week. The same cannot be said of the first

day of a fortnight or the first day of the month. This representation would result

in a total of 10,368 sequences.

4.3 Events

In defining events, the first concern is to ensure that predicted events convey

all necessary information as required by the solution requirements (see subsec-

tion 1.4). Thus the prediction includes whether the journey is a problem and the

date on which it occurs.

The next step is to expand the alphabet beyond the minimum by refining

these base events into subevents, introducing subtler distinctions. If an event is

19

characterized by a combination of feature values, then the remaining features

could be used for refinement. Let some event be the combination of a prob-

lem journey on a Friday, then the hour feature might be used to further divide

journeys into subevents for timeslots. Consider an alphabet Z = {A,B} and its

refinement Z ′ = {A1,A2,B}, where A1 and A2 represent two types of A event.

In principle, the refined alphabet Z ′ allows for more complex learning and rule

discovery (see Figure 5). Thus expanding the alphabet potentially leads to im-

proved prediction. However, with too refined an alphabet data becomes sparse.

In the extreme case, each journey would have its own category. Another prob-

lem is that very specific alphabets encourage algorithms to overfit: the algo-

rithm learns a large number of infrequent sequential associations.

A→ B

A→ A

A1 → B

A2 → A1

Figure 5: Two sequence databases with alphabet Z = {A,B} (left) and alphabet

Z ′ = {A1,A2,B} (right). Encoding with Z ′ enables the extraction of rules of a

higher prediction certainty. However these rules might be overfitting.

Thus refinement of an event comes at a cost, and events should be refined

only if this increases the algorithm’s ability to differentiate between sequences

(see Figure 5). This decision not only depends on the journeys, but also on their

order of occurrence and division into sequences. Even then, there is a trade-off

between the benefits of improved discernment and the costs of alphabet expan-

sion with respect to prediction performance. For this reason finding an optimal

alphabet is a complex undertaking, and the alphabet is usually found empiri-

cally.

An alternative approach is to automatically generate an alphabet from the

set of journeys. This is essentially the task of finding a strict partitioning clus-

20

tering. However some essential structure is already dictated by the solution

requirements (see subsection 1.4), thus the actual question is whether it would

help to refine these categories even more, i.e. to cluster within these given cat-

egories. Clustering algorithms often have difficulty deciding on the number of

clusters, and for the same reason such algorithms will have a hard time deciding

whether a clustering is appropriate at all [10]. Yet a clustering should be used

only if the data in a given category exhibits interesting patterns, hence using a

clustering algorithm out of the box might not be the best approach. Instead, this

study proposes a solution involving pattern mining, where interesting patterns

make up subcategories, c.q. subevents 4.

5 Subevents from patterns

5.1 Closed frequent pattern mining

Pattern mining is a fundamental problem in data mining that concerns finding

interesting associations in a transaction database, i.e. a database that holds a set

of binary attribute vectors. Common applications are market basket analysis,

protein sequencing and fraud detection systems [19]. With some exceptions [4],

interesting patterns are frequent patterns, c.q. patterns that occur often in the

database. Frequency might be defined by a minimum support threshold, or

with respect to the support of other patterns.

Although a very debatable standpoint, in the case at hand, frequent subevents

are arguably more valuable than infrequent subevents. First of all, the alphabet

contains at least 14 events, hence considerable refinement is already in place.

4An additional motivation is that this study originally concerned pattern mining of individ-

ual travelers. Later on the goal was changed to predicting the next journey, while a pattern

mining setup had already been engineered.

21

Secondly, given the preference for a smaller alphabet, if a subevent occurred

very infrequently, it might be better not to include it. The gain from the smaller

alphabet might beat the lack of refinement. Thus infrequent subevents are un-

likely to be helpful. Finally, frequent subevents could be considered undiscov-

ered elements of the domain, especially when they are specific on many fea-

tures. An experiment is required to find out whether these intuitions make any

sense.

Frequent pattern mining often suffers from the so called pattern explosion,

i.e. there are too many frequent patterns to evaluate. Many of these patterns

are actually subpatterns, i.e. they cover instances all of which also belong to

some stronger, more restrictive pattern. As the stronger pattern conveys more

information, it is usually more interesting to discover. Patterns that are not the

subpattern of any other pattern are called closed [14]. They cannot be strength-

ened without lowering the support. For example if all journeys on Friday took

place during rush hours, then the subpattern ’journeys on Friday’ is not closed.

Closed patterns constitute a lossless summary of the discovered patterns.

5.2 Encoding conflicts

Although using closed patterns reduces the possibility, encoding conflicts may

arise when a journey falls in multiple categories. There are two ways in which

a journey might be covered by more than one frequent closed patterns. The

first is when two hierarchically related patterns are both frequent. Let ’problem

journeys on Monday’ and ’problem journeys on Monday at 11am’ be two closed

frequent patterns, i.e. they do not have the same support but their support

is higher than the minimum support threshold. Then both patterns are valid

subevents, and e.g. a problem journey on Monday at 11am belongs to both

categories (see Figure 6). Which of the subevents should be used to encode

22

the journey? The more specific subevent is actually a subevent of the other

subevent, i.e. a subsubevent. Similarly subevents are more specific than events,

in which case the journey is encoded as the subevent. Thus the more specific

(subsub)event should be used to encode the journey. This also makes intuitive

sense because the more specific pattern is a closer match.

Feature Value

Weekday Monday

Problem? True

Feature Value

Weekday Monday

Problem? True

Hour 11

Feature Value

Weekday Monday

Problem? True

Hour 11

Figure 6: Two closed frequent patterns (left) and a (truncated) journey (right).

The patterns are hierarchical. The journey belongs to both patterns.

The second conflict concerns the case when two subevents are on an equal

footing. This can happen when the subevents use different features in their

definition (see Figure 7). There seems no straightforward way to resolve this

conflict. Adding combination events for pattern combinations is not an option

due to resulting alphabet explosion. Thus a selection rule should be used, sev-

eral of which will be experimented with. Candidate selection rules are the most

frequent subevent, the least frequent subevent, and random selection.

Finally, journeys not covered by any subevent are simply encoded as their

respective base events.

23

Feature Value

Weekday Monday

Problem? True

Waiting-time Short

Feature Value

Weekday Monday

Problem? True

Hour 9

Feature Value

Weekday Monday

Problem? True

Waiting-time Short

Hour 9

Figure 7: Two closed frequent patterns (left) and a (truncated) journey (right).

The patterns are not hierarchical. The journey belongs to both patterns.

6 Experimental design

Before summarizing the experimental setup, the type (individual or population)

of model, the importance of the week definition and the division of data into

training and testing sequences will be discussed.

6.1 Individual vs population model

Travel behaviour can be described on both a population and an individual level.

On the population level, there is behaviour shared among groups of travelers.

For example typical 9-to-5 workers are expected to have a somewhat similar

travel schedule. Models trained on the population data are less likely to overfit

on the noise of a few incidental journeys or to be thrown off by some traveler’s

week of homestaying due to flu. Cold start problems on new users are also less

of an issue.

Individual models on the other hand, adapt to the peculiarities of specific

travelers. With sufficient data, these models can deliver personalized predic-

tions which are potentially more accurate.

Both individualized and population approaches have their merits, and as

they model different but both important components of travel behaviour, an

24

ensemble model might prove effective. Such a model could use predictions

from individual and population models as weighted input for a final verdict.

Over time, as more data is being gathered, the weight is likely to shift from the

population prediction to the individualized prediction.

At present, the MyOV dataset has a limited amount of data per user (see

Figure 8. Therefore, experimentation involves only population models. This

means that data of individual users is grouped together in collective train and

test sets.

Figure 8: Histogram of the number of sequences per user.

6.2 Definition of the week

Given the division of data into travel weeks (see subsection 4.2), the question is

on which day we cut off one week and start the next. This matters because days

at the start of the week are predicted with less information, i.e. a shorter prefix

25

subsequence, than days near the back. If we decide that weeks start on Monday,

then there will always be fewer journeys in this week to prime a prediction for

Wednesday, than for example Sunday. Thus predictions are better equipped to

predict days that happen to be at the back of our week, i.e. the days before the

cut-off day. Therefore it seems that the cut-off day is an important parameter.

For this reason 7 experiments have been conducted, one for each possible

definition of a week 5. That is, for each experiment the day on which the week

starts (and ends) shifts by one day (see Figure 9).

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue

A A B A A B A B

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue

A A B A A B A B

Figure 9: The week before (above) and after (below) shifting by one day.

6.3 Train and test set

The next important aspect is the separation of available data into a train and

test set. Each user should contribute the same number of weeks to the training

and testing data to ensure that the peculiarities, e.g. excessive travel, of any

particular traveler will not unduly influence the model. Also, data from the

same period is used for each traveler. This makes it easier to control for global

effects such as fewer journeys in a holiday week.

5Because full weeks were used, these experiments cover slightly different data. Hence tech-

nically they are incomparable, as any difference could be attributed to the small difference in

data.

26

To minimize the chance that a user’s travel behaviour changed between the

training and testing weeks, these weeks must be consecutive. Having assumed

that a user’s travel behaviour does not change within this period, arguably there

is no reason testing must take place in the last week. Predicting past sequences

with a model trained on future data seems legitimate given the assumption that

no significant behaviour change took place within the data gathering period:

The weeks are samples from the same distribution. Allowing backwards pre-

diction would also facilitate cross-validation which might be beneficial given

the limited amount of data.

However, in reality there will always be some linear dependence between

consecutive travel weeks of a user. By allowing the week definition to shift,

this study already acknowledges such. Backwards prediction could affect the

experiment in unforeseen ways. Thus this study takes a number of consecutive

travel weeks and separates these into a consecutive block of training weeks and

a consecutive block of test weeks.

The data collection period is from 01-06-2015 to 01-10-2015, i.e. 122 days or

about 17 weeks 6. It is common to have a train set at least 3 times larger than

the test set. Following this observation, the train set should cover at least 3

weeks. With 3 training weeks and 1 test week, we are looking for a block of 4

consecutive weeks.

The number of users with at least 3 journeys 7 in each consecutive block was

computed for all blocks. Analysis shows the dataset contains only one such

block with at least 100 users (see Table 2). Several 3-week blocks with higher

numbers were available, but the 4-week block yields more sequences overall

(see Appendix H). Thus data from the period 2015-07-27 to 2015-08-29 was

6For some week definitions there are 16 weeks because weeks with dates that fall outside the

data collection period, i.e. weeks at the start or end, were removed.
7Less than 3 journeys results in very short prefix subsequences.

27

used. The first 3 weeks of each user serve as training data for the model. The

last week of each user serves as testing data. This results in approximately 450

train weeks and 150 test weeks.

Cut-off day Common users

Monday 147

Tuesday 160

Wednesday 176

Thursday 175

Friday 140

Saturday 140

Sunday 137

Table 2: Common users per starting day for the selected period 2015-07-27 to

2015-08-29

6.4 Evaluation

The data is preprocessed and encoded with a custom Python script. The pat-

terns were mined using the AprioriClose algorithm [14] 8. This and the se-

quence prediction algorithms have been implemented in SPMF [3], a Java data

mining library used in this study. It comes with an evaluation framework,

which was adapted to compensate for the larger alphabet size of the pattern

encoding. Predictions were deemed correct as long as the predicted subevent

belonged to the correct base event. This is fair because the relevant part of the

prediction - problem? and weekday - is predicted correctly in such cases.

8Nominal features are temporally transformed to binary features because the pattern mining

algorithm requires a transaction database.

28

The SPMF evaluation framework divides test sequences into three parts (see

Figure 10): the context, the prefix and the suffix. The prefix is used as input to

algorithms and the suffix is the part that is to be predicted. The context sub-

sequence is discarded. The prefix subsequence length is set to 10, the largest

prefix possible given the computational resources 9. This means that the input

subsequence contains at most 10 journeys. The suffix length is set to 1 to ensure

that the predicted event is indeed the next event rather than one of the next

events.

Figure 10: Test sequences are divided into three parts: the context, the prefix

and the suffix [5].

To clarify, this means that prefix subsequences include all but the last journey

of the week. The distribution of this last journey varies with the cut-off day,

which lends extra weight to the hypothesis that the cut-off day is a significant

parameter. If the week is defined such that the last journey strongly varies, this

should affect the prediction difficulty.

As discussed before, some algorithms cannot handle sequences which were

not learned from the train data. This might happen when a sequence occurs in

the test set but not the train set, or if parameter settings restrict the algorithm

from learning additional complexity. Whenever this happened, the algorithm

would simply fail to predict 10. Thus predictions could result in a success, a
9Note that some algorithms used only part of the prefix in accordance with their order pa-

rameter.
10This might be useful if actual predictions turn out to be more accurate than those of a similar

29

failure and no match. The overall accuracy is defined as the ratio of successful

predictions to the number of testing instances (including no match).

6.5 Parameters

Each of the aforementioned algorithms is included in SPMF. In addition to

these, a baseline predictor was added. This predictor simply predicts the event

that occurred most as the last event of the week in the training data. With re-

gard to algorithm parameters, Gueniche et al. already reported parameters that

performed well across a wide range of datasets [6] [5], and for the most part

this study adopted their recommendations (see Appendix B). Most of these pa-

rameters affect only the training phase of the respective algorithm. Yet some

represent support thresholds which are needed during prediction time. Please

consult the original papers for a detailed description.

7 Results and analysis

Algorithms were trained on the train set. The resulting models were used to

predict both on the train set itself (Appendix C) and the test set (Appendix D).

The resulting accuracies differ significantly as can be glanced from (Appendix E)

(Appendix F).

As a first observation, the baseline predictor scores remarkably different on

the train and test sets. This indicates they have a somewhat different distribu-

tion. If the difference is due to variance, it will diminish with a larger dataset.

The other explanation is that the train and test set are samples from a differ-

ent distribution. As train and test weeks represent different periods, a change

in-between these periods might explain the digression.

predictor that guesses.

30

One such change might be the end of the summer holidays. Primary and

high school started on the 16th of August, which falls in the third train week

[16]. Also from this date onwards, many students regained the right to travel

by public transport free of charge [17]. Thus, increased student travel might

have affected the experiment.

7.1 Algorithms

With regard to algorithmic performance, the first observation is that AKOM ap-

pears to score best across the board. It was outperformed on just 3 experiments

and only by a small margin. Compared to most other algorithms, AKOM is far

less sensitive to the cut-off day. This is important because a production setup

could be required to predict on any day, i.e. take advantage of a long prefix

subsequence by choosing the appropriate cut-off day.

The extremely high accuracies on the train set, especially compared to the

test accuracies, suggest that AKOM overfits the data. With respect to the algo-

rithm, the difference between base and pattern encoding is like a complexity

parameter: pattern encoded data enables more complex models. For some cut-

off days AKOM scores significantly higher when a base encoding is used. This

supports the notion that AKOM overfits because performance declines with in-

creased model complexity.

If AKOM overfits, performance is expected to go up with more data. Whereas

base encoded data still outperforms pattern encoded data in this experiment,

with more data pattern encoded data may give AKOM a significant boost. This

is quite promising given the relatively small dataset.

Most other algorithms perform less convincing. PPM’s scores follow a trend

similar to AKOM but slightly inferior. This is reassuring as AKOM is essen-

tially a powered-up version of PPM: Whereas PPM only has a first order model,

31

AKOM has access to higher order predictions. The privilege appears to pay off.

Besides PPM, DG is strongly affected by the cut-off day. Nevertheless, its

best scores are impressive. Perhaps DG could be used as a predictor on some

cut-off days. TDAG scores extremely low, especially on pattern encoded data.

Further inspection reveals this is due to passivity rather than wrong predictions.

TDAG fails to predict on most instances. The prime reasons seems that the

test set contains unseen data but this is not a sufficient explanation: Even on

the train set TDAG fails to predict about half of the cases (see Appendix G).

Increasing the tree height parameter might resolve this issue but requires an

excessive amount of space. To a lesser degree CPT and CPT+ also suffer from

passivity. In the case of CPT, the problem persists on the train set, similar to

TDAG. CPT+ on the other hand recovers completely which is promising: More

data will probably diminish its passivity.

7.2 Cut-off day

For most algorithms the cut-off day has a significant effect on performance.

Across the board cut-off day Saturday or Sunday yields lower accuracies than

e.g. Wednesday or Thursday. The dichotomy roughly corresponds to the dif-

ference between weekdays and weekend. These are expected to be different

because the weekend does not include commuting travel.

An explanation for the relative performance is that the week contains more

weekdays than weekend, hence behaviour learned from weekdays will tend to

dominate the model. Also, the dataset contains disproportionally more jour-

neys on weekdays than on weekend days which exacerbates the effect.

As an exception, AKOM is little affected by the cut-off day parameter. This

suggests that other algorithms might perform more reliably by manually tuning

the model complexity to the cut-off day.

32

7.3 Pattern encoding

The results are somewhat inconclusive with respect to pattern encoding the

data. This is especially true where it matters, i.e. at the high end of the al-

gorithm spectrum. Among the three variants of pattern encoding no significant

winner comes forth, although using random patterns is often slightly inferior.

This suggests that frequency as a selection criterion matters because inconsis-

tent, random selection (slightly) decreases accuracy. One explanation for the

small differences between the three variants is that for many journeys only one

possible pattern remained after resolving encoding conflicts. Thus no selection

was required, and the three methods encoded the journey with the same pat-

tern.

Compared to base encoding, the train accuracies suggest pattern encoding

has greater potential but this is not reflected in the test accuracies. Perhaps more

data or different features will make a difference.

8 Discussion

The outcomes of this study should be considered signposts for future research

rather than definitive results. The experiment was conducted with little data.

The data belongs to MyOV users that traveled at least 3 times every week in

August 2015, i.e. a select group of travelers and time period. Train and test data

are quite likely not fully representative.

Besides collecting more data, a larger dataset could be instantly obtained by

dropping one of the constraints of this study (subsection 6.3). Perhaps not all

training weeks need to be collected from the same consecutive period because

population-wide effects are expected to cancel each other out. Perhaps the data

collection period does not need to be consecutive because travel behaviour is

33

expected to be more stable over time.

Besides the small dataset, the reader should note that results are more ordi-

nal than numerical: Comparing between base and pattern encoded data could

be considered model tuning, in which case an additional test set, i.e. validation

set, is required to determine the absolute accuracies of the selected model. Ad-

ditional parameter tuning, especially of the model order, is likely to improve

performance of most algorithms given the effectiveness of AKOM.

Before conducting research beyond this study, it seems advisable to validate

its main results as outlined below.

1. Construct a larger dataset, either by collecting more data or by weakening

the data selection constraints. Select a period without potential biases.

2. Divide the dataset into a train, validation, and test set. The validation and

test should have a similar size. The train set should be at least 3 times

larger than the validation and test set.

3. Repeat the experiment in this study. Tune the algorithm parameters to the

validation set. Select the most effective algorithms and test these on the

test set.

A possible bias of the current experimental design is that only the last jour-

ney of testing weeks are predicted, which ensures relatively long prefix subse-

quences on average. In practice, journeys before (what later turns out to be)

the last journey of the week will also have to be predicted. With respect to some

fixed week definition, on average these predictions will have shorter prefix sub-

sequences, which might affect prediction accuracy. Nevertheless, in these cases

a model trained on a more suitable week definition might be used. Ideally, a

model is selected with a week definition such that the prefix subsequence is

long enough but not too long: The week should end a few days after the last

34

registered journeys to make sure that the next journey still takes place within

the same week. This is not a clear cut definition, hence results obtained in this

study might be somewhat optimistic: Obtaining the same results under similar

circumstances in a practical setting might be harder to achieve.

With regard to limitations, this study implicitly assumes that predictions

are performed immediately after the last journey was registered, i.e after the

moment that the last journey of the prefix subsequence took place. This because

the absence of a journey is not registered, nor are categories corresponding to

past days excluded from the prediction space. To illustrate this argument, let the

week be defined such that it starts on Thursday. If the last journey of a prefix

subsequence took place on Monday and the moment of prediction is Monday,

predictions should only predict categories on Monday, Tuesday, or Wednesday.

However if the moment of prediction is Tuesday, only Tuesday and Wednesday

categories would make sense as predictions. The experimental setup does allow

Monday categories to be predicted, hence it implicitly assumes the prediction

was performed immediately after the journey took place 11.

Future research might want to explore mechanisms for taking into account

the absence of journeys and performing delayed predictions. One solution

would be to exclude categories of past days from the prediction space. How-

ever this would require modification of the prediction algorithms. A modelling

solution is to introduce an event for the case that no journey took place on a

day. To avoid the issues associated with implicit modeling of time, a distinct

event might be introduced for each day of the week. Thus in the resulting se-

quences each day is represented as a no-journey event, or as one or multiple

11Technically it would also allow predictions on categories before Monday but this is different

because sequences that violate the order of days in the week cannot occur in the training set.

Hence predictions that violate the order are unlikely to happen in practice.

35

journey events. If a delayed prediction is desired, an absence of journeys could

be modelled by appending the respective no-journey events to the end of the se-

quence before prediction. This approach would of course require that training

sequences also include these new events.

Including such no-journey events would have more benefits. In this exper-

iment algorithms predict the category of the last journey of the week. Thus it

is given that another journey will take place in the remaining days of the week.

This simplifies the real problem because it is also possible that no journey took

place at all. Inclusion of no-journey events would resolve this limitation but re-

sult in mostly predictions of one day ahead: If no journey takes place tomorrow

than the respective no-journey event is expected as a prediction. However the

next journey can still be predicted by appending the predicted no-journey event

to the end of the sequence. This updated sequence can again be used as input

to predict the next event. This process may be repeated until another journey

event, i.e. the actual next journey, comes up. At first glance this seems like

building a house of cards because predictions from previous iterations are used

as input to the next. Yet this is not so different from the current setup in which

the no-journey events are implied by the absence of journey events.

With regard to pattern encoding data, it is recommended to experiment with

additional features. Weather circumstances and traffic jams for example could

be of interest. Before definitively adding new features to the feature pool, it

seems advisable to first extend the base alphabet with the new feature. If the

resulting encoding improves accuracy, then this is reason to believe the feature

could indeed be a relevant component of subcategories. In addition to such

practice runs, it could help to start with a clear dichotomy, e.g. rain vs no rain,

or frost vs no frost. Additional granularity could be added incrementally until

no further improvements are found.

36

With more data it becomes interesting to assemble specialized models. Ex-

amples would be separate models for weekdays and weekend, and discerning

between ordinary days and special days like commemorative days or the holi-

day period. Such days are outliers, likely to skew the model.

Clustering user groups might also prove beneficial. With this strategy cold

start problems are avoided while the modelled behaviour is still more relevant

than behaviour learned from the entire population. For long term users indi-

vidual models could also be constructed. Finally, it would be interesting to see

if combining these model in an ensemble method increases accuracy.

37

9 References

[1] CBS. Public transport statistics. http://statline.cbs.nl/Statweb/

publication/?VW=T&DM=SLNL&PA=81125NED&D1=a&D2=0&D3=0&D4=0-10,

23-41,52-54&D5=a&HD=151112-1536&HDR=G1,G2,T,G4&STB=G3, 2015.

Accessed: 2015-11-12.

[2] CLEARY, J. G., AND WITTEN, I. Data compression using adaptive coding

and partial string matching. Communications, IEEE Transactions on 32, 4

(Apr 1984), 396–402.

[3] FOURNIER-VIGER, P., GOMARIZ, A., GUENICHE, T., SOLTANI, A., WU.,

C., AND TSENG, V. S. SPMF: a Java Open-Source Pattern Mining Library.

Journal of Machine Learning Research (JMLR) 15 (2014), 3389–3393.

[4] GENG, L., AND HAMILTON, H. J. Interestingness measures for data min-

ing: A survey. ACM Computing Surveys (CSUR) 38, 3 (2006), 9.

[5] GUENICHE, T., FOURNIER-VIGER, P., RAMAN, R., AND TSENG, V. S.

CPT+: Decreasing the time/space complexity of the compact prediction

tree. In Advances in Knowledge Discovery and Data Mining. Springer, 2015,

pp. 625–636.

[6] GUENICHE, T., FOURNIER-VIGER, P., AND TSENG, V. S. Compact predic-

tion tree: a lossless model for accurate sequence prediction. In Advanced

Data Mining and Applications. Springer, 2013, pp. 177–188.

[7] LAIRD, P., AND SAUL, R. Predictive caching using the TDAG algorithm.

NASA Ames Research Center: Technical Report FIA 92-30 (1992).

[8] LAIRD, P., AND SAUL, R. Discrete sequence prediction and its applica-

tions. Machine learning 15, 1 (1994), 43–68.

38

http://statline.cbs.nl/Statweb/publication/?VW=T&DM=SLNL&PA=81125NED&D1=a&D2=0&D3=0&D4=0-10,23-41,52-54&D5=a&HD=151112-1536&HDR=G1,G2,T,G4&STB=G3
http://statline.cbs.nl/Statweb/publication/?VW=T&DM=SLNL&PA=81125NED&D1=a&D2=0&D3=0&D4=0-10,23-41,52-54&D5=a&HD=151112-1536&HDR=G1,G2,T,G4&STB=G3
http://statline.cbs.nl/Statweb/publication/?VW=T&DM=SLNL&PA=81125NED&D1=a&D2=0&D3=0&D4=0-10,23-41,52-54&D5=a&HD=151112-1536&HDR=G1,G2,T,G4&STB=G3

[9] LAIRD, P., SAUL, R., AND DUNNING, P. A model of sequence extrapola-

tion. In Proceedings of the Sixth Annual Conference on Computational Learning

Theory (New York, NY, USA, 1993), COLT ’93, ACM, pp. 84–93.

[10] MILLIGAN, G. W., AND COOPER, M. C. An examination of procedures for

determining the number of clusters in a data set. Psychometrika 50, 2 (1985),

159–179.

[11] NS. Peak travel. http://www.ns.nl/reizigers/klantenservice/

klantenservice/voorwaarden-en-folders/daluren.html, 2015. Ac-

cessed: 2015-11-12.

[12] NS. Transfer time. http://www.ns.nl/reizigers/ovchipkaart/reizen/

overstappen.html, 2015. Accessed: 2015-11-12.

[13] PADMANABHAN, V. N., AND MOGUL, J. C. Using predictive prefetching

to improve world wide web latency. SIGCOMM Comput. Commun. Rev. 26,

3 (July 1996), 22–36.

[14] PASQUIER, N., BASTIDE, Y., TAOUIL, R., AND LAKHAL, L. Discovering

frequent closed itemsets for association rules. In Database Theory—ICDT’99.

Springer, 1999, pp. 398–416.

[15] PITKOW, J., AND PIROLLI, P. Mining longest repeating subsequences to

predict world wide web surfing. In Proc. USENIX Symp. On Internet Tech-

nologies and Systems (1999), p. 1.

[16] SCHOOLVAKANTIES-NEDERLAND.NL. Schoolvakanties 2015. http://www.

schoolvakanties-nederland.nl/zomervakantie-2015.html, 2015. Ac-

cessed: 2015-12-17.

39

http://www.ns.nl/reizigers/klantenservice/klantenservice/voorwaarden-en-folders/daluren.html
http://www.ns.nl/reizigers/klantenservice/klantenservice/voorwaarden-en-folders/daluren.html
http://www.ns.nl/reizigers/ovchipkaart/reizen/overstappen.html
http://www.ns.nl/reizigers/ovchipkaart/reizen/overstappen.html
http://www.schoolvakanties-nederland.nl/zomervakantie-2015.html
http://www.schoolvakanties-nederland.nl/zomervakantie-2015.html

[17] STUDENTENREISPRODUCT.NL. Studentenreisproduct geldigheid

zomerperiode. http://www.studentenreisproduct.nl/vragen/

geldigheid-studentenreisproduct/, 2015. Accessed: 2015-12-17.

[18] SUN, R., AND GILES, C. L. Sequence learning: from recognition and pre-

diction to sequential decision making. IEEE Intelligent Systems 16, 4 (2001),

67–70.

[19] ZAKI, MOHAMMED, J., AND MEIRA JR., W. Data mining and analysis: fun-

damental concepts and algorithms. Cambridge University Press, 2014.

40

http://www.studentenreisproduct.nl/vragen/geldigheid-studentenreisproduct/
http://www.studentenreisproduct.nl/vragen/geldigheid-studentenreisproduct/

Appendix A Problem trajectories

From To

Nieuweschans Groningen

Veendam Groningen

Leeuwarden Groningen

Groningen Leeuwarden

Delfzijl Groningen

Roodeschool Groningen

Emmen Zwolle

Stavoren Leeuwarden

Harlingen Leeuwarden

Table 3: Problem trajectories according to MyOV.

41

Appendix B Algorithm parameters

Algorithm Parameter Value

PPM order 1

AKOM order 5

TDAG maximumDepth 7

TDAG maxTreeHeight 6

DG lookAhead 4

CPT splitLength 10

CPT maxLevel 99

CPT+ CCFmin 2

CPT+ CCFmax 4

CPT+ CCFminsup 4

CPT+ MBR 2

CPT+ TB 100%

Table 4: Parameter settings of the prediction algorithms.

42

Appendix C Overall train accuracies

Cut-off day Encoding DG TDAG CPT+ CPT PPM AKOM BasePred

Monday base 42.404 29.932 54.422 47.166 61.224 73.243 37.415

Monday px-mfp 59.184 44.444 55.556 64.626 69.841 97.959 37.415

Monday px-lfp 60.091 45.351 59.184 66.213 70.295 98.413 37.415

Monday px-random 58.73 45.351 59.41 66.213 69.161 98.413 37.415

Tuesday base 61.875 30 62.5 51.042 50.208 73.333 60.208

Tuesday px-mfp 69.375 45.208 68.75 65.417 68.542 96.667 60.208

Tuesday px-lfp 67.708 46.667 63.75 66.042 67.708 97.083 60.208

Tuesday px-random 69.583 45.833 65.208 66.25 67.292 96.667 60.208

Wednesday base 68.939 36.174 71.78 52.652 69.697 83.144 64.205

Wednesday px-mfp 76.705 45.265 76.705 64.394 76.515 98.106 64.205

Wednesday px-lfp 76.515 45.455 76.136 63.826 75.189 98.864 64.205

Wednesday px-random 75.758 46.023 77.462 64.583 76.136 98.674 64.205

Thursday base 68 34.667 71.81 53.905 68.952 80.381 64

Thursday px-mfp 75.429 46.095 76.571 64.571 78.476 98.095 64

Thursday px-lfp 74.286 45.143 75.619 64.571 78.476 98.095 64

Thursday px-random 76.762 45.905 75.619 64.381 78.476 98.476 64

Friday base 66.667 31.19 69.524 56.429 68.095 79.286 65.238

Friday px-mfp 77.857 43.571 75.714 67.619 78.571 98.095 65.238

Friday px-lfp 79.524 43.81 77.619 67.619 78.333 97.857 65.238

Friday px-random 77.857 43.81 77.381 68.095 79.286 98.095 65.238

Saturday base 64.286 26.429 64.762 54.762 61.905 80.714 60.238

Saturday px-mfp 75 38.571 74.048 71.19 78.81 98.571 60.238

Saturday px-lfp 75.238 37.619 74.762 70.714 76.905 98.095 60.238

Saturday px-random 74.286 36.905 73.333 70.476 77.619 98.571 60.238

Sunday base 44.282 23.601 54.988 51.825 56.448 78.345 42.336

Sunday px-mfp 69.586 36.01 59.124 72.749 71.533 98.54 42.336

Sunday px-lfp 71.533 35.523 58.151 72.019 73.236 98.783 42.336

Sunday px-random 71.533 36.74 60.341 73.479 72.993 99.027 42.336

Table 5: Overall train accuracies. Each row contains the overall accuracy for one

experiment. Encodings are ’base’ for base encoding, ’px-mfp’ for most frequent

pattern encoding, ’px-lfp’ for least frequent pattern encoding and ’px-random’

for random pattern encoding.

43

Appendix D Overall test accuracies

Cut-off day Encoding DG TDAG CPT+ CPT PPM AKOM BasePred

Monday base 36.054 18.367 48.98 42.177 55.102 63.265 34.014

Monday px-mfp 50.34 2.721 41.497 34.694 57.823 62.585 34.014

Monday px-lfp 51.701 4.762 42.857 36.735 60.544 62.585 34.014

Monday px-random 46.259 2.721 38.095 34.014 61.905 63.946 34.014

Tuesday base 60 16.25 61.25 53.125 55 63.125 62.5

Tuesday px-mfp 61.25 2.5 55 46.875 60.625 63.125 62.5

Tuesday px-lfp 63.75 2.5 51.25 45 60.625 61.875 62.5

Tuesday px-random 63.125 1.875 48.125 46.875 54.375 57.5 62.5

Wednesday base 69.886 18.75 67.045 56.818 72.727 74.432 59.091

Wednesday px-mfp 76.136 7.386 63.636 53.409 72.727 77.841 59.091

Wednesday px-lfp 76.136 6.25 65.909 52.273 75 77.273 59.091

Wednesday px-random 75 5.114 61.364 52.841 71.591 76.136 59.091

Thursday base 66.857 20.571 68 60 68.571 76.571 64

Thursday px-mfp 69.143 5.143 64 56 70.857 76.571 64

Thursday px-lfp 69.714 4.571 64.571 56 70.286 76.571 64

Thursday px-random 68.571 4.571 69.143 53.143 68 73.143 64

Friday base 32.143 33.571 17.857 13.571 38.571 69.286 19.286

Friday px-mfp 47.143 4.286 32.857 23.571 57.857 62.857 19.286

Friday px-lfp 35 4.286 27.857 22.857 44.286 59.286 19.286

Friday px-random 41.429 2.857 27.857 22.143 53.571 56.429 19.286

Saturday base 26.429 44.286 13.571 7.143 38.571 65.714 5

Saturday px-mfp 28.571 9.286 17.857 6.429 54.286 59.286 5

Saturday px-lfp 32.143 7.857 16.429 6.429 57.143 60 5

Saturday px-random 27.857 6.429 15.714 8.571 47.857 52.143 5

Sunday base 27.007 51.095 13.869 7.299 38.686 72.993 4.38

Sunday px-mfp 25.547 11.679 21.898 8.029 55.474 59.124 4.38

Sunday px-lfp 27.007 9.489 14.599 8.759 62.044 62.774 4.38

Sunday px-random 25.547 10.949 14.599 8.029 51.095 56.204 4.38

Table 6: Overall test accuracies. Each row contains the overall accuracy for one

experiment. Encodings are ’base’ for base encoding, ’px-mfp’ for most frequent

pattern encoding, ’px-lfp’ for least frequent pattern encoding and ’px-random’

for random pattern encoding.

44

Appendix E Overall train accuracies heatmap

Figure 11: Heatmap of the overall train accuracies (see Appendix C). Darker

colours indicate higher accuracies. Encoding labels have been omitted.

45

Appendix F Overall test accuracies heatmap

Figure 12: Heatmap of the overall test accuracies (see Appendix D). Darker

colours indicate higher accuracies. Encoding labels have been omitted.

46

Appendix G No match rate

Cut-off day Encoding DG TDAG CPT+ CPT PPM AKOM BasePred

Monday base 0 54.649 1.587 31.293 0 0 0

Monday px-mfp 0 54.649 0.68 31.293 0 0 0

Monday px-lfp 0 53.741 0.454 31.293 0 0 0

Monday px-random 0 53.968 0.907 31.293 0 0 0

Tuesday base 0 52.917 0 31.875 0 0 0

Tuesday px-mfp 0 53.333 1.25 31.875 0 0 0

Tuesday px-lfp 0 52.292 1.458 31.875 0 0 0

Tuesday px-random 0 53.125 1.042 31.875 0 0 0

Wednesday base 0 53.977 0 34.091 0 0 0

Wednesday px-mfp 0 53.788 0.758 34.091 0 0 0

Wednesday px-lfp 0 53.977 1.136 34.091 0 0 0

Wednesday px-random 0 53.598 0.568 34.091 0 0 0

Thursday base 0 53.143 0 33.143 0 0 0

Thursday px-mfp 0 53.143 1.333 33.143 0 0 0

Thursday px-lfp 0 54.286 0.762 33.143 0 0 0

Thursday px-random 0 53.714 1.333 33.143 0 0 0

Friday base 0 55.952 0 31.429 0 0 0

Friday px-mfp 0 55.714 1.905 31.429 0 0 0

Friday px-lfp 0 55.952 1.667 31.429 0 0 0

Friday px-random 0 55.714 1.905 31.429 0 0 0

Saturday base 0 62.143 0.238 27.143 0 0 0

Saturday px-mfp 0 60.952 1.429 27.143 0 0 0

Saturday px-lfp 0 61.667 1.429 27.143 0 0 0

Saturday px-random 0 62.381 1.667 27.143 0 0 0

Sunday base 0 64.234 0 24.088 0 0 0

Sunday px-mfp 0 63.017 1.946 24.088 0 0 0

Sunday px-lfp 0 63.99 1.217 24.088 0 0 0

Sunday px-random 0 62.53 1.703 24.088 0 0 0

Table 7: No match rate on train data. Each cell contains the ratio of no match

instances to total testing instances. Encodings are ’base’ for base encoding, ’px-

mfp’ for most frequent pattern encoding, ’px-lfp’ for least frequent pattern en-

coding and ’px-random’ for random pattern encoding.

47

Appendix H Travel data availability

First week id Last week id Cut-off day Common_users

3 5 Monday 115

3 5 Tuesday 122

3 5 Wednesday 146

3 5 Thursday 154

3 5 Friday 120

3 5 Saturday 121

3 5 Sunday 113

8 10 Monday 176

8 10 Tuesday 190

8 10 Wednesday 212

8 10 Thursday 210

8 10 Friday 176

8 10 Saturday 189

8 10 Sunday 193

8 11 Monday 147

8 11 Tuesday 160

8 11 Wednesday 176

8 11 Thursday 175

8 11 Friday 140

8 11 Saturday 140

8 11 Sunday 137

9 11 Monday 194

9 11 Tuesday 205

9 11 Wednesday 231

9 11 Thursday 246

9 11 Friday 220

9 11 Saturday 218

9 11 Sunday 213

Table 8: Periods with at least 100 users and sequences of at least 3 journeys.

Number of common users on all week definitions.

48

