
Evolution of Collaboration in Open
Source Software Ecosystems

Jos van der Maas
j.c.vandermaas@students.uu.nl

Department of Information and Computing Sciences
Master in Business Informatics

January 2016

MSc thesis under supervision of:

First supervisor: Dr. S. Jansen (Utrecht University)

Second supervisor: Dr. F.J. Bex (Utrecht University)

Abstract

Although in the past decennium much research has been conducted in the field of software ecosystems,
still little is known about how such ecosystems evolve. In existing literature, software ecosystems are often
analyzed from a single point of time, without regard for their dynamic history.

We study an aspect of the evolution of open source software ecosystems: collaboration. In this thesis, we
present a method to identify and analyze collaboration networks in software ecosystems, based on historical
data from the online source code hosting service GitHub. We apply this method to analyze the evolution of
collaboration within the well-established open source ecosystem around the Ruby programming language.

Our method can be used to identify and visualize collaboration networks around a given actor or software
component over the course of time. This is done using statistical analysis techniques, without requiring
subjective input. Our study analyzes over 200 collaboration networks to identify typical life cycle shapes
and gives insight in the evolution an open source software ecosystem. Awareness of such collaboration
networks and how they evolve is beneficial for actors in software ecosystems and for external stakeholders.

Keywords: software ecosystem(s), collaboration, network(s), life cycle(s), GitHub, Ruby.

ii

Acknowledgements

This Master’s thesis is the result of a research project that took several months. Looking back at this period,
I am thankful to several people.

First of all, I would like to thank my first supervisor Slinger Jansen for his time, his quick and constructive
feedback, and his insightful recommendations. Slinger, thanks for your supervision and the directions you
gave by email, Skype, and face-to-face. I could not have wished a better supervisor.

In the second place, I would like to thank my other supervisor Floris Bex for his feedback and for reviewing
this thesis document. I would also like to thank the other staff members of the Center for Organization &
Information for the MBI study program, which I really appreciated.

I would like to thank my colleagues for allowing me to work part-time while doing my thesis research, my
parents for their interest in my study progress, my wife for her support and our five months old son for
sleeping well at night and allowing me to rest enough to finish this thesis project.

iii

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Research Questions . 6

1.3 Relevance . 7

1.3.1 Scientific Relevance . 7

1.3.2 Practical Relevance . 7

1.4 Document Structure . 8

2 Research Approach 9

2.1 Literature Review . 9

2.2 Data Collection and Processing . 11

2.3 Data Analysis . 11

2.4 Plan Validity . 11

2.4.1 Construct Validity . 12

2.4.2 Internal Validity . 12

2.4.3 External Validity . 12

2.4.4 Reliability . 13

3 Literature Review 14

3.1 Definition of Software Ecosystems . 14

3.2 Relationships in Software Ecosystems . 15

3.3 Network Perspective . 17

3.3.1 Node Level Analysis . 17

3.3.2 Network Level Analysis . 19

3.3.3 Visualization Frameworks and Tools . 21

3.4 Evolution of Software Ecosystems . 21

3.4.1 Life Cycles . 21

iv

3.4.1.1 What to measure . 22

3.5 Mining Software Repositories . 23

4 Mining GitHub Data for Collaboration Networks 26

4.1 Collaboration Network Identification and Measurement . 26

4.2 Data Collection . 29

4.3 Data Processing . 30

4.4 Data Analysis . 30

4.5 Results . 31

5 Categories of Open Source Collaboration Networks 32

5.1 Procedure . 32

5.2 Hypotheses . 36

5.3 Results for User-Centered Collaboration Networks . 36

5.4 Results for Repository-Centered Collaboration Networks . 38

6 Characteristics of Collaboration Network Categories 40

6.1 Category A: Short Revival Before Abandonment . 42

6.2 Category B: Early Maximum . 42

6.3 Category C: Extended Growth . 43

7 Collaboration in the Ruby Ecosystem 44

7.1 Observations . 45

7.1.1 Late 2013 . 50

7.1.2 Early 2014 . 50

7.2 Summary of Observations . 52

8 Discussion 53

8.1 Findings and Implications . 53

8.2 Validity . 57

8.3 Future Research . 57

9 Conclusion 59

Bibliography 60

Appendix A: Analysis Data 65

v

Chapter 1

Introduction

“If you think the industrial revolution was transformational, the App Store is way bigger”.

This statement appeared in a video1 aired at Apple’s World Wide Developers Conference in June 2015.
Although at first sounding like exaggerated marketing talk, the remark originates from the director of the
McKinsey Global Institute, a research group concentrating on major economic trends around the world.

Many other scientific sources acknowledge the impact of the introduction of app stores, which are market-
places for applications that can be instantly downloaded and installed on a customer’s device. Jansen &
Bloemendal (2013) call it “one of the most powerful changes that the software business currently is experi-
encing” and Miluzzo, Lane, Lu, & Campbell (2010) speak about “a new era”.

In a broader sense, we observe that, especially since the introduction of the Internet, software is often built
around a certain technological platform or market it interacts with (Bosch, 2009; Molder, Van Lier, & Jansen,
2011). Examples such technological platforms or markets are: app stores for mobile applications (such those
facilitated by Apple, Google and Microsoft), the Ruby programming language with its network of ‘gems’
that often depend on other Ruby gems2, and online CMSes like Wordpress3, Joomla4, and Drupal5, each
with its own community of users and numerous available plugins.

In general, we observe that “networks of interrelated organizations form themselves around products, plat-
forms, technologies or software organizations” (van Angeren, 2013). Such networks are referred to as software
ecosystems (Messerschmitt & Szyperski, 2003). Jansen, Finkelstein, & Brinkkemper (2009) define a software
ecosystem as

“a set of actors functioning as a unit and interacting with a shared market for software and
services, together with the relationships among them. These relationships are frequently un-
derpinned by a common technological platform or market and operate through the exchange of
information, resources and artifacts”.

1https://www.youtube.com/watch?v=fSiDIaab2nY&t=72
2See https://rubygems.org/
3https://wordpress.org/
4http://www.joomla.org/
5https://www.drupal.org/

1

Other definitions differ from the above one by putting more emphasis on relationships between software
components. The choice of definition determines how software ecosystems are analyzed and visualized.

Several authors have suggested methods to visualize software ecosystems, mostly by depicting ecosystems as
networks. However, there is no widely accepted visualization method yet (Boucharas, Jansen, & Brinkkem-
per, 2009; Goeminne & Mens, 2010; Campbell & Ahmed, 2010; Pérez, Deshayes, Goeminne, & Mens, 2012).

Open source software ecosystems are especially suitable for research. Version control systems such as Git6

and Subversion7 keep exact records of changes in program code, in addition to information about authors
and software dependencies. This data is often publicly available, making it possible to analyze open source
ecosystems based on objective data. Collaboration is a key aspect of open source software, which can
be measured by mining software repositories, from which collaboration networks can be identified. These
networks can then be analyzed using scientific techniques from graph theory.

In recent years, researchers have made the connection between software ecosystems and (product) life cycles
(dos Santos & Werner, 2011; Kim, Lee, & Altmann, 2014). Such research aims to capture life cycles of
software ecosystems, describing various typical stages, such as emergence, maturity and downfall.

To study life cycles of collaboration networks in software ecosystems, longitudinal research is required. For
many open source ecosystems however, a detailed history of changes is already publicly available, including
timestamps, author information, and information about the content of the changes. This opens possibilities
to study life cycles of collaboration networks based on historical data, without having to follow the actors
in the networks for a longer period of time.

6https://git-scm.com/
7https://subversion.apache.org/

2

1.1 Problem Statement

Still much is unclear about the evolution of software ecosystems. This problem can be broken down into
three or four sub-problems, as described below.

Static view

In existing scientific literature, the state of a software ecosystem is often observed from one specific point
in time, instead of being regarded as a continuous evolutionary process. For example, Kabbedijk & Jansen
(2011) give a detailed network visualization of the Ruby ecosystem. However, the visualization shows the
status of the ecosystem for one point in time, namely the time when the research was carried out. The authors
acknowledge that “due to the lack of longitudinal data it is impossible to speculate about the dynamics of
the Ruby SECO [software ecosystem]”.

A similar situation is found in the study of Blincoe, Harrison, & Damian (2015). This publication gives a
visualization of multiple software ecosystems for which the code is hosted on GitHub, but again only for a
single point in time.

In this respect, van Angeren (2013) remarks that

“a longitudinal case study of proprietary platform ecosystems could benefit a wealth to the un-
derstanding of the fast-paced dynamics characteristic for the software industry”.

Similarly, Kim, Altmann, & Lee (2013) remark that

“prior research concentrates only on the static properties of network structure and the position
of nodes in the network, but misses the dynamics in the evolution context”.

Insight in this “dynamics in the evolution context” is important for our understanding of software ecosystems.

Validity of life cycle models

While there exists some scientific theory on software ecosystem evolution and especially on ecosystem life
cycles, this theory needs to be validated. For example, dos Santos, Esteves, Freitas, & de Souza (2014)
suggest that a software ecosystem life cycle goes through the consecutive phases of Initiation, Propagation,
Amplification, and Termination, following a curve as shown in Figure 1.1.1. Kim, Lee, & Altmann (2014)
mention three phases: Ascent/Emergence, Maturity/Prosperity, and Decline.

The theory of ecosystem size following a path along consecutive stages originates from product life cycle
theory, such as the work of Polli & Cook (1969) and Tellis & Crawford (1981). However, it is unclear whether
this theory can be readily applied to the dynamic nature of software ecosystems. Such an assumption must
be tested in practice.

3

Figure 1.1.1: Software ecosystem maturity model proposed by dos Santos et al. (2014).

Small samples

Another problem is that existing analysis of software ecosystems is often based on relatively small samples,
i.e. a small number of networks that is analyzed per publication. It would be interesting to analyze and
compare a large number of networks to each other.

Many publications are limited to only one well-established software ecosystem, such as Eclipse (Dhungana,
Groher, Schludermann, & Biffl, 2010), Ruby (Kabbedijk & Jansen, 2011), or Apache (Santana & Werner,
2013). Few studies try to compare data from multiple ecosystems to each other.

Domain-specific measurement of ecosystem relationships

It is debatable how relationships in software ecosystems should be identified. Going back to the definition of
Jansen et al. (2009), we see that a software ecosystem is “a set of actors (...), together with the relationships
among them”. Other definitions of software ecosystems are similar in the sense that they tell us that there are
some kind of ‘relationships’ between actors or software components. However, in what way these relationships
can be tracked or measured is subject to wide interpretation.

In existing literature, data for measurement of relationships in software ecosystems is often collected from
a domain-specific source, such as the Gnome website8 for the Gnome ecosystem (Mens & Goeminne, 2011)
and the RubyGems website9 for the Ruby ecosystem (Kabbedijk & Jansen, 2011). However, the way in
which such data is collected differs and is often difficult to generalize for other ecosystems.

8https://www.gnome.org/
9https://rubygems.org/

4

Summary

In short, these issues can be captured in the following problem statement:

It is unclear how collaboration in open source software ecosystems evolves. Existing research fails to
longitudinally analyze a substantial amount of collaboration data in a generalizable way.

We will narrow our research scope to open source software ecosystems, as reflected in this problem statement.

Approach outline

In order to address the stated problem, we propose to use historical data from GitHub10, which is the largest
online open source code repository (Gousios, Vasilescu, Serebrenik, & Zaidman, 2014), as data source. This
data contains precise information about changes in program code of thousands of open source projects. The
data is publicly available and can be queried to reconstruct time-specific collaboration networks. These
networks are then analyzed to study the evolution of collaboration in open source software ecosystems.

10https://github.com/

5

1.2 Research Questions

The main research question addressed in this thesis is:

How does collaboration in open source software ecosystems evolve?

In order to answer this research question, we formulate the following sub research questions:

1. What are relationships in software ecosystems? The way in which relationships in software
ecosystems are measured is of crucial importance for the further analysis of these ecosystems. In the
past, researchers have chosen to base relationships on, amongst others, co-authorship (Kabbedijk &
Jansen, 2011), API implementation (Kim, Lee, & Altmann, 2014), and the use of cross-references
(Blincoe, Harrison, & Damian, 2015). Furthermore, the information sources for the determination of
such relationships vary from mailing lists (Bird, Gourley, Devanbu, Gertz, & Swaminathan, 2006) to
domain-specific websites (Hoving, Slot, & Jansen, 2013), surveys (Syed & Jansen, 2013), and com-
pany websites (van Angeren, Alves, & Jansen, 2014). We study similarities and differences between
these determination methods in our literature review and propose a definition of software ecosystem
relationships.

2. How can collaboration in software ecosystems be measured and visualized, based on data
from a public data source? We query historical data from a public data source (GitHub) to identify
collaboration networks and measure their state. The state of a network can be measured using several
properties. For example, van Angeren et al. (2014) use the properties Size, Density, Degree centrality,
Centralization, Modularity, and Clustering. We calculate similar properties for collaboration networks
on a day-to-day basis to analyze their life cycles.

3. Can various categories of collaboration networks be distinguished, based on their life
cycles? An important question is to which extent (product) life cycle stages such as Initiation,
Propagation, Amplification, and Termination are applicable to collaboration in open source ecosystems.
Our hypothesis is that the life cycles of certain collaboration network fit these stages, whiles others
have a completely different cycle. We aim to discover a concise number of categories of collaboration
networks that resemble each other in terms of their life cycles. Using a sample set of randomly selected
networks, we study such categories.

4. How are the collaboration networks in these categories characterized? Once we have es-
tablished a number of life cycle categories, we study which characteristics or properties are typical for
these categories. For example, are there certain deviations in the network structure of collaboration
network that are a good indicator for the approximate life cycle course?

5. How does collaboration in an open source ecosystem evolve in practice? This question is
addressed by a case study on the ecosystem around the Ruby programming language.

To provide an answer to the (sub) research questions, data from the GitHub Archive11 (a project that
maintains a history of GitHub data) will be gathered in a database and a tool will be developed that can

11https://www.githubarchive.org/

6

identify collaboration networks, starting from a single project or author. The tool will then be used to
compare and analyze a large number of networks using statistical analysis techniques.

1.3 Relevance

1.3.1 Scientific Relevance

Due to its recentness, the research domain of software ecosystems leaves opportunities for research unad-
dressed (Barbosa & Alves, 2011; Manikas & Hansen, 2013). Although relatively much research has been
conducted on open source ecosystems and modeling (Barbosa & Alves, 2011), the research field of software
ecosystem evolution is still largely unexplored.

A large proportion of the literature on software ecosystems consists of case studies on single predefined
ecosystems. Limited attempts have been made to conduct a thorough quantitative analysis, comparing a
significant number of networks to each other.

Longitudinal studies on software ecosystems are rare. Our research will give insight in ecosystem evolution
and life cycle categories. Theory about life cycle maturity stages will either be substantiated or disproved.
The results of our research could be useful for prediction of evolution of ecosystems in their early stages.

The tool that is developed as part of the research is useful for further in-depth research, e.g. about actor
roles and their impact on the evolution of ecosystems.

1.3.2 Practical Relevance

Apart from its scientific relevance, our research has several benefits for practitioners.

Our study will facilitate the identification and exploration of open source ecosystems. As Blincoe et al.
(2015) state in their research agenda: “A tool could be developed that automatically identifies technical
dependencies across projects and provides a visualization of the ecosystem. Such a tool could increase
awareness of coordination needs that extend outside project boundaries and help developers gain a better
view of the ecosystem surrounding their project.” Awareness of the ecosystem around a software project can
greatly benefit its developers.

For facilitators of ecosystems (such as the Eclipse Foundation12), insight in the development of ecosystems
would be of great value to help stimulate the growth and increase the maturity and robustness of their
ecosystem.

Furthermore, this research provides insight into the characteristics of different categories of collaboration
networks. Once known which characteristics should be pursued and which should be avoided, strategical
decisions can be made in the development of software projects.

12https://eclipse.org/org/foundation/

7

1.4 Document Structure

After its introduction in Chapter 1, this thesis continues with an explanation of the research approach
in Chapter 2. The next chapter contains the theoretical background for our research, answering our first
research question.

Chapter 4 describes the development of the analysis tool and aims to answer the second research question.
After this, Chapter 5 describes categories of collaboration networks and contains the results of the analysis of
research question 3. Chapter 6 addresses the fourth research question, describing characteristics of software
ecosystem categories.

The analysis part from Chapters 3 to 6 is followed by a case study of the Ruby ecosystem in Chapter 7, a
summary and discussion of the research findings in Chapter 8, also containing suggestions for future research.
The thesis ends with a conclusion in Chapter 9.

8

Chapter 2

Research Approach

Our research approach can be summarized as follows:

• Conduct a literature study on software ecosystems in general and software ecosystem relationships,
characteristics, visualization, and analysis.

• Use GitHub and the GitHub Archive1 as data source.

• Define a method for measuring relationships and use this to identify collaboration networks for an
arbitrary repository or developer as origin of the network.

• Develop a tool that can query the data to visualize the state of a collaboration network on a certain
point in time.

• Let the tool follow the state of collaboration networks over time to obtain graphs depicting their life
cycles.

• Define sample sets of open source collaboration networks on GitHub.

• Statistically analyze the life cycles of the networks in the sample set(s) to identify categories of collab-
oration networks, based on their life cycles.

• Analyze the network properties of the categories to identify common network properties.

• Conduct a case study on the Ruby ecosystem to analyze how collaboration in ecosystems evolves in
practice.

2.1 Literature Review

In this section, we describe the approach to conduct our literature review.
1https://www.githubarchive.org/

9

Method

We will use a scoped literature review, as described by Arksey & O’Malley (2005). In case of a scoped
literature review (as opposed to a systematic literature review), a number of concrete consecutive steps can
be followed to obtain a theoretical background for a research project. A scoped literature review aims to
obtain information about a relatively broad topic, without seeking to address a specific study design or
answer very specific research questions. As a result, there is less need to assess the quality of included
studies. Scoped literature reviews can be also used to identify research gaps in existing literature (Arksey &
O’Malley, 2005).

Systematic literature reviews for the research domain of software ecosystems have been conducted by Barbosa
& Alves (2011) and Manikas & Hansen (2013). These studies revealed that the attention for software
ecosystems is increasing, resulting in a large number of available publications on this topic.

Sources

To retrieve relevant sources for the literature review, our collection process consists of a number manual search
queries for scientific contributions. Searches were performed on the scientific databases of ACM2, Emerald3,
IEEE4, Mendeley5, ScienceDirect6, Springer7, and Wiley8. The following keywords were combined into
search strings:

(“software ecosystem” AND (“relationship” OR “network” OR “analysis” OR “evolution” OR “life
cycle” OR “lifecycle” OR “visualization” OR “visualisation” OR “trend” OR “classification”)) OR
“mining software repositories”

Where applicable, both the singular and plural forms of keywords were used.

The following inclusion criteria were used to select sources for the literature review:

• All sources should be peer-reviewed scientific contributions.

• All sources should be written in English.

To retrieve additional scientific sources, bibliographies of initially selected sources were reviewed. Relevant
sources were considered based on their title, keywords, and abstract.

Relationships

In our literature review, we analyze how other scientific sources determine relationships. Based on the results
from this literature review, we formulate our own definition of software ecosystem relationships.

2http://dl.acm.org/
3http://www.emeraldinsight.com/
4https://www.ieee.org/
5https://www.mendeley.com/research-papers/
6http://www.sciencedirect.com/
7http://link.springer.com/
8http://onlinelibrary.wiley.com

10

2.2 Data Collection and Processing

Based on our definition of software ecosystem relationships, we define a method for identifying open source
software ecosystems on GitHub. We limit our research to open source software ecosystems. An advantage
of analyzing open source software is that the data is transparent, with much information being publicly
available. Another advantage is that much of this information is objective, as opposed to e.g. survey data.

A key characteristic of open source software is that it is generally developed by multiple developers at the
same time. Therefore, we focus at collaboration relationships. We will analyze both relationships between
software developers (actors) and software components.

Our goal is to analyze how software ecosystems develop over a period of time and to compare various stages
in the life cycles of collaboration networks. For this, we need historical data, which we obtain by mining
data of software repositories on GitHub.

Collaboration information on GitHub is stored in the form of commits, which can be pushed or requested to
be pulled. Therefore, we analyze data from push events and (merged, i.e. successful) pull request events. To
import and analyze the data, we build a web-based tool, which should at least have the following functionality:

• Importing data required for our analysis

• Establishing collaboration networks, based on co-authorship and starting from an arbitrary user or
repository

• Visualizing these networks, over a period of time

• Visualizing network properties of these networks, based on literature from the literature review

2.3 Data Analysis

Based on our findings in the literature review, we obtain a sample set of collaboration networks and analyze
how each of these networks evolves. We categorize the collaboration networks based on their life cycle shapes.
We statistically test which life cycle shapes are most common. We also calculate the average life cycle for
an open source ecosystem, based on our sample set. We do this for both repository-centered life cycles and
user-centered life cycles.

We compare the most common life cycle categories to each other in terms of several network properties. We
statistically test the differences between these categories.

After this, we analyze collaboration in a predefined open source ecosystem. We apply our analysis method
to the Ruby ecosystem to see how an ecosystem evolves in practice over the course of several years.

2.4 Plan Validity

The validation of our research approach can be divided in four types of validity types.

Construct validity indicates that correct operational measures are used for the concepts that are studied.
Internal validity is used for making sure that the casual relationships (where applicable) are properly linked.

11

Research is said to be externally valid if the findings are generalizable beyond the sample set. Reliability
indicates that if someone else wants to continue our work, this should be possible. In other words, should
someone else follow the same procedures as we did and conduct the same case studies, then the findings and
conclusions should be the same.

2.4.1 Construct Validity

We propose to observe evolution of open source software ecosystems by measuring co-authorship based
on push and (merged) pull request events. Instead of co-authorship, we could e.g. use email addresses or
organization membership. Similarly, instead of pushes and pull requests, we could measure posted comments,
opened issues, etc.

An advantage of looking at co-authorship is that this represent a natural connection in the real world, namely
that of co-creation. Moreover, this relationships can be objectively measured. An advantage of using push
and pull request evens is that the results do not depend on how much information a user specifies. E.g.
email addresses can be omitted to prevent spam and organization membership might not (intentionally or
unintentionally) be specified by a developer.

A limitation of our choice of measurement is that we do not measure the volume or impact of these events.
E.g. the number of altered lines of code can vary widely per push and pull request event. However, on average
the number of such events per user can be assumed to be a good indicator for the user’s activity. When
many users make many pushes or pull requests, the ecosystem can be called alive and successful. When no
more such events occur in a software ecosystem for several months (e.g. three months), the ecosystem can
be assumed to have ended.

We will consider push and pull data per day. Instead of days, we could consider time intervals of hours, weeks,
months, etc. However, using longer intervals (e.g. weeks) would result in relatively few data points, since
we only have the years 2011-2015 as scope. Using shorter intervals (e.g. hours) would require significantly
more computation power and could cause strong deviations caused by working hours, time zone differences,
etc. As such, the choice of days as time intervals is appropriate and can be assume not to bias the results.

2.4.2 Internal Validity

Since the data is obtained from a public data source in retrospect, users do not know they are being studied
for this research. Thus we can assume that they are not influenced by the measurement. We will use random
selections to compose sample sets.

Life cycles of collaboration networks can be influenced by events outside our measurements, such as the
temporary absence or death of a developer. However, such events can be regarded as part of the dynamics
of software ecosystems.

2.4.3 External Validity

When it comes to external validity, our research has various limitations due to the choice of GitHub as data
source:

12

• GitHub was launched in April 2008 and is therefore relatively new. However, it is currently the largest
code host in the world, facilitating millions of developers collaborating across millions of repositories,
according to Gousios, Vasilescu, Serebrenik, & Zaidman (2014).

• We have access to data of open source projects only. It is questionable whether or not this can be
generalized to non-open source ecosystems. However, we limit our scope to open source software
ecosystems.

• GitHub is not the only platform that facilitates open source software ecosystems. Not everything
is hosted on GitHub. As Kalliamvakou, Gousios, Blincoe, Singer, German, & Damian (2014) write,
“Many active projects do not conduct all their software development in GitHub”.

• GitHub only works with one version control system (Git, which was introduced in 2005).

• We obtain our data from the GitHub Archive project. This project has recorded data from February
12th, 2011 onwards.

• Since we look at complete life cycles, we are limited to life cycles that fall within a the time period
from early 2011 till mid 2015, a period of four years.

• It is possible that projects are hosted on GitHub that have existed prior to their submission to GitHub
(e.g. projects that earlier used Subversion for version control). This will result in misleading activity
numbers at the ‘start’ of such a software projects. However, since we only have data from 2011 and
onwards and since GitHub already existed in 2008, these effects will likely be relatively low. Also, one
large addition of code is only counted as a single event.

• Some features of GitHub, like organization membership, have not existed from the start of GitHub.
But we will most likely not use these relatively new features for our research.

• In the research period, GitHub and the GitHub Archive Project had some downtime (i.e. were unac-
cessible). However, from our database results it is clear that this downtime was relatively short and
its effect insignificant for the results.

Despite these limitations, our approach makes it possible to study and compare a relatively large number
of collaboration networks. Other studies have comparable limitations. Therefore we are confident that our
research will shed new light on the evolution of open source software ecosystems.

2.4.4 Reliability

Part of our research will be the development of the tool to visualize and measure collaboration networks.
This tool will be web-based, publicly accessible, and submitted as an open source project to GitHub. This
tool can be used to verify our research and for further research.

13

Chapter 3

Literature Review

The concept of software ecosystem was introduced by Messerschmitt & Szyperski (2003) and has since been
the subject of extensive research. During the past decade, the number of scientific publications on Software
Ecosystems (SECOs) has significantly increased (Barbosa & Alves, 2011; Manikas & Hansen, 2013).

Our literature review will focus on the following subjects:

• Definitions of software ecosystems, in order to known precisely what we study.

• Relationships in software ecosystems, to be able to analyze ecosystems as networks.

• Network theory, to measure the state of the networks.

• Theory about evolution of software ecosystems, to help study our main research question.

• Mining software repositories, to gather data for analyzing open source software ecosystems.

3.1 Definition of Software Ecosystems

Messerschmitt & Szyperski (2003) define a software ecosystem as

“a collection of software products that have some given degree of symbiotic relationships”.

While this to our best knowledge is the earliest formal definition of software ecosystems, the most cited
definition is (according to Manikas & Hansen (2013)) that of Jansen, Finkelstein, & Brinkkemper (2009),
who define a software ecosystem as

“a set of actors functioning as a unit and interacting with a shared market for software and
services, together with the relationships among them. These relationships are frequently un-
derpinned by a common technological platform or market and operate through the exchange of
information, resources and artifacts”.

14

Other definitions that are commonly referred to are that of Bosch (2009):

“a set of software solutions that enable, support and automate the activities and transactions by
the actors in the associated social or business ecosystem and the organizations that provide these
solutions”

and the definition given by Lungu et al. (2010):

“a collection of software projects which are developed and evolve together in the same environ-
ment”.

While these definitions vary, Manikas & Hansen (2013) remark that the definitions of software ecosystems
to some extent contain the following three common elements:

1. A common software platform or environment;

2. A shared business or community; and

3. Connecting relationships.

The choice of definition has consequences for the perception of software ecosystems. In this thesis, we use
the definition of Jansen et al. (2009), with the side note that relationships in software ecosystems can also
be regarded at a software level, as further explained in the next section.

3.2 Relationships in Software Ecosystems

When analyzing software ecosystems, it is important what exactly one calls a relationship. In the definitions
of software ecosystems we already observe differences. Some definitions speak of relationships between actors
(e.g. the definition of Jansen et al.) and others of relationships between software components (e.g. the
definition of Messerschmitt & Szyperski). These different views have consequences for the analysis and
visualization of software ecosystems.

A number of examples from literature of what researchers choose as relationships is given below.

• Crowston & Howison (2005) base relationships between developers of open source projects on email
addresses found in bug reports on public mailing lists.

• Bird, Gourley, Devanbu, Gertz, & Swaminathan (2006) base relationships between developers of open
source software on public emails sent among them.

• Kabbedijk & Jansen (2011) base relationships in the Ruby ecosystem on co-authorship data from
rubygems.org.

• Syed & Jansen (2013) base relationships between developers in the Ruby ecosystem on collaboration
information from rubygems.org and a survey sent to a large number of developers.

• Hoving, Slot, & Jansen (2013) base relationships in the Python ecosystem on collaboration data from
python.org.

15

• van Angeren, Alves, & Jansen (2014) base relationships between companies in the Google Apps software
ecosystem on information found on company websites and on CrunchBase.com.

• Kim, Lee, & Altmann (2014) base relationships between providers of APIs and mashups that use those
APIs on data from programmableweb.com.

• Gregorian (2014) bases relationships between GitHub developers on a complex formula that combines
several forms of communication between the developers.

• Blincoe, Harrison, & Damian (2015) base relationships between GitHub repositories on cross-references
between those repositories.

From these sources, we draw a number of conclusions:

1. Many different choices seem to be suitable to use as relationships. The concept of relationship is not
strictly defined.

2. The essence of all relationships is the exchange of information. There must be some interaction or
information exchange through the relationship.

3. Information exchange can exist between both actors (e.g. via emails) and software components (e.g.
via an API).

4. In many cases, there is some common system or platform that facilitates the exchange of information
(e.g. a mailing list or a code repository). Data from such a platform can be used to measure rela-
tionships. This platform is often facilitated by what is called in literature a keystone (player). The
information exchange can also be facilitated by a common technology, such as a software project or an
API.

5. Relationships (in general) have the properties continuation and strength (Holmlund, 1997). The rela-
tionships can be measured in terms of these properties.

6. The relationships are subject to continuous change because of their dynamic nature.

7. Relationships have potential because they provide access. They must be viewed in their context, in
this case the ecosystem in which they are embedded.

From these conclusions, we formulate our own definition of software ecosystem relationships:

Definition. A relationship in a software ecosystem is a measurable dynamic form of informa-
tion exchange between either two actors or two software components in the ecosystem. Such
information exchange is often facilitated by a common technology or platform.

We can distinguish between explicitly measurable connections (e.g. commits to a software repository) and
relationships that are open to human interpretation (e.g. surveys or information found on company websites).

We observe that researchers often use an ecosystem-specific data source to measure relationships. This makes
it less suitable to compare data from different software ecosystems to each other.

16

3.3 Network Perspective

Observing software ecosystems as networks consisting of nodes ands links opens possibilities for research and
has two clear benefits. Firstly, networks provide a useful metaphor to communicate and interpret ecosystems
and secondly, networks provide a basis for analytics through mathematical graph theory.

In literature, software ecosystems are often modeled as networks in the form of undirected graphs, implicating
that the relations are symmetric (the relationship from A to B is the same as that from B to A). In our
analysis, we use weighted undirected graphs, i.e. each relationship is given a numerical weight.

To analyze collaboration networks in software ecosystems, we use a number of well-established measures
from graph theory. This is done on node level (focusing on the role of single nodes) as well as on network
level (focusing on the state of a network as a whole).

A

B
C

D

1122

33 44

Figure 3.3.1: Example of an undirected weighted graph that could represent a Software Ecosystem consisting
of nodes A, B, C, and D and the relationships among them.

3.3.1 Node Level Analysis

Degree

The degree of a node is defined as the number of edges connected to the node.

Formally defined, consider a graph with n nodes and adjacency function a, meaning that for two given nodes
pi and pk in the network,

a(pi, pk) =

{
1 if and only if pi and pk are connected by an edge
0 otherwise.

Then

degree(pi) =
n∑

i=1

a(pi, pk).

For example, node A in Figure 3.3.1 has degree 2, since it is connected to node B and node C only.

17

Weighted Degree

The weighted degree of a node is the sum of the edge weights of its connecting edges. For example, node A

in Figure 3.3.1 has a weighted degree of 2+1 = 3. Node D has a lower degree than node A, but its weighted
degree is higher.

Degree Centrality

The centrality of a node is a measure of how central a node in a network is compared to the other nodes.
For example, in Figure 3.3.1 intuitively node C seems to be the most central node in the network. Freeman
(1978) defines the degree centrality of a node pk in a graph with n nodes as follows.

relative degree centrality(pk) =
degree(pk)

n− 1
.

Note that this is essentially the same as the degree of the node divided by the maximum degree it could
possibly have (which is n−1, namely in case it is connected to all other nodes in the network). For example,
the relative degree centrality of node C in Figure 3.3.1 is 4

5−1 = 1, since this node is connected to all the
other nodes in the network. Since the other nodes have lower degree centralities, node C can indeed be
called the most central node in the network.

Clustering Coefficient

Watts & Strogatz (1998) define the (local) clustering coefficient of a node as the number of edges between
the nodes in its neighborhood, divided by the number of edges that could possibly exist between them. Here,
the neighborhood of a node refers to nodes that are its direct neighbors, i.e. adjacent nodes.

For an undirected network, if a given node pi has mi neighbors, the maximum number of edges that could
exist between these nodes equals mi(mi−1)

2 , namely in case each node in the neighborhood is connected to
every other node.

Therefore, in an undirected graph with edges E, the local clustering coefficient of a node pi that has a set of
neighbors Ni is defined as

local clustering coefficient(pi) =
2 |{ejk : vj , vk ∈ Ni, ejk ∈ E}|

|Ni|(|Ni| − 1)
.

For example, the local clustering coefficient of node C in Figure 3.3.1 is 2·1
3·2 = 1

3 , since it has 3 adjacent
nodes that could have 3·2

2 interconnecting edges, but these there exists only 1 edge between these nodes.

Actor Roles

Actors in software ecosystems are often ascribed certain roles based on their contribution to the ecosystems.
Theory about actor roles is published, amongst others, by Kabbedijk & Jansen (2011) (introducing the
roles ‘Lone Wolf’, ‘Networker’, ‘One Day Fly’), Manikas & Hansen (2013) (‘Orchestrator’/‘Keystone’, Niche
Player’, ‘External Actor’, ‘Vendor’, ‘Customer’), and Eckhardt, Kaats, Jansen, & Alves (2014) (‘Visitor’,
‘Novice’, ‘Regular’, ‘Leader’, ‘Elder’).

18

Concerning this, we only remark that the term ‘Keystone (Player)’, ‘Orchestrator’, or some other variant is
found in many publications. This refers to a central actor in a software ecosystem, responsible for facilitating
and sustaining the ecosystem. For example, Apple can be called the keystone of the Apple App Store
ecosystem.

3.3.2 Network Level Analysis

The state of an ecosystem as a whole can be assessed using measures from graph theory, similar to those for
nodes. Such measures are useful to compare different ecosystems to each other and to measure changes in
ecosystems over time. Examples of network properties found in literature are size, robustness, andmodularity.

Size

The size of a network is defined as the number of nodes in the network. For example, the network in Figure
3.3.1 has size 4.

Network Density

Granovetter (1976) defines the density of a network as the number of edges in the network divided by the
potential number of edges. In a ‘dense’ network, the number of connections is close to the maximum number
of possible connections. In a ‘sparse’ network, the opposite is true.

As we have seen in Section 3.3.1, the potential number of edges in an undirected network with n nodes equals
n(n−1)

2 . Therefore, the network density of a network consisting of n nodes and m edges equals

network density =
2m

n(n− 1)
.

For example, the network in Figure 3.3.1 has density 2·4
4·3 = 2

3 , which is considered to be relatively dense.

Average Degree

The average degree of a network is the average of the degrees of all of its nodes, as defined in the previous
section. For example, the average degree of the network in Figure 3.3.1 is 2+2+3+1

4 = 1
2 .

Average Weighted Degree

The average weighted degree of a network is the average sum of edge weights per node. For example, the
average weighted degree of the network in Figure 3.3.1 is 2+1+2+3+1+3+4+4

4 = 5.

Network Degree Centralization

The centralization of a network is a measure of how central its most central node is in relation to the other
nodes. In a network with a high degree centralization, there will be one (or a few) very central nodes.

19

Centralization in general is defined by Freeman (1978) as the sum of differences between the centrality of
each node and the centrality of the most central node, divided by the maximum possible sum of differences
in node centrality. To formalize, let Ci denote the node centrality of node pi in a network with n nodes.
Then

network centralization =

∑n
i=1 Cmax − Ci

max (
∑n

i=1 Cmax − Ci)
.

There are several types of centralization. In our analysis, we use degree centralization, which is based on
node degree centrality as defined in Section 3.3.1.

The maximum possible sum of differences in node degree centrality in any network is in case the network
has the shape of a star or wheel. In that case, the denominator in the above formula has value (n−1)(n−2)

for a network of n nodes (Freeman, 1978). Therefore, the degree centralization of a network with n nodes
pi, ..., pn is defined as

network degree centralization =

∑n
i=1 (degree(p

∗)− degree(pi))
(n− 2)(n− 1)

,

where p∗ is the node with the highest degree in the network.

Average Clustering Coefficient

A network’s average clustering coefficient is a measure of the degree to which the nodes in the network tend
to cluster together. This measure is defined by Watts & Strogatz (1998) as the average of the local clustering
coefficients of all the nodes in the network.

I.e., for a network consisting of n nodes pi, ..., pn,

average clustering coefficient =
1

n

n∑
i=1

local clustering coefficient(pi).

Health

Software ecosystem health plays an important role in the literature about software ecosystem analysis. Iansiti
& Levien (2004) introduce the characteristics productivity, robustness, and niche creation, which are together
used to measure the health of a business ecosystem. These three characteristics are referred to by many other
researchers. Among them are den Hartigh, Tol, & Visscher (2006), who make a further distinction between
partner health and network health to assess health of business ecosystems. These measures are applied by
others to software ecosystems.

In literature about health of software ecosystems, often the comparison is made with natural health or the
health of biological ecosystems, as is done e.g. by van den Berk, Jansen, & Luinenburg (2010), Dhungana
et al. (2010) and Mens et al. (2014).

Despite the frequent occurrence in literature of software ecosystem health, the concept often remains in-
explicitly defined, as remarked by Manikas & Hansen (2013):

20

“Apart from referring to software ecosystem health, very few studies elaborate, analyze or measure
the health of a software ecosystem”.

To summarize, while the health of software ecosystems is an intuitive concept that is useful for compar-
ing various ecosystems to each other, few researchers have made an attempt to define this concept as a
quantitative measure. As a result, network analysis based on health is still open to interpretation.

3.3.3 Visualization Frameworks and Tools

Scientific frameworks for modeling software ecosystems are given by Boucharas, Jansen, & Brinkkemper
(2009), Goeminne & Mens (2010), and Campbell & Ahmed (2010).

A commonly used tool to visualize and analyze Software Ecosystems is Gephi, which was introduced by
Bastian, Heymann, & Jacomy (2009). An advantage of Gephi is that is can automatically network properties
such as Density, Modularity, and Eigenvector Centrality, as e.g. used by Kabbedijk & Jansen (2011). Gource
(Caudwell, 2010) is a tool that can be used to analyze the history of software components, but it merely
shows the evolution of the directory structure of a software repository and its contributors instead of a
complete ecosystem and is therefore less useful to visualize or analyze software ecosystems. Other tools for
visualizing and analyzing software ecosystems mentioned in literature are the Software Ecosystem Analysis
Dashboard (Pérez, Deshayes, Goeminne, & Mens, 2012) and the Small Project Observatory Lungu, Lanza,
Gîrba, & Robbes (2010), both of which do not seem to be publicly accessible.

Visualizations of software ecosystems are often used to analyze relationships and to look for patterns, e.g.
clusters in networks or growth of an ecosystem over time. To conclude, visualization of software ecosystems
can be helpful for network analysis. There are numerous ways for visualizing ecosystems.

3.4 Evolution of Software Ecosystems

Hanssen (2012) studied an emerging ecosystem for a period of approximately five years and found five major
changes in the evolution of that ecosystem, which are to some extent generalizable:

1) starting active collaboration with customers and third parties, 2) making strategy and plans visible
externally, 3) opening the technical interface of the product line, 4) considering both customers and value-
adding third parties as external stakeholders, and 5) actively supporting and assisting the community of
third parties.

Other longitudinal studies of software ecosystems often describe ecosystem life cycles, consisting of several
phases or stages in the evolution of ecosystems, comparable to the human phases of birth, adolescence,
maturity, and death (Birou, Fawcett, & Magnan, 1997).

3.4.1 Life Cycles

The literature on software ecosystem life cycles finds in roots in the literature on Product Life Cycles, which
dates back to the 1960s. Levitt (1965) distinguished four phases in the life cycles of products: Introduction
(or Market Development), Growth, Maturity, and Decline. According to this theory, the volume of product

21

sales typically follows a curve along these phases that increases slowly but exponentially at the beginning,
whereafter it stabilizes, and eventually declines. See Figure 3.4.1.

Similarly, dos Santos & Werner (2011) make the comparison to natural ecosystems and suggest the phases
of software ecosystem Birth, Development, Maturation, and eventually Death or Transformation. Kim, Lee,
& Altmann (2014) mention three consecutive phases: Ascent/Emergence, Maturity/Prosperity, and Decline.
dos Santos, Esteves, Freitas, & de Souza (2014) give a curve similar to the Product Life Cycle curve, with
stages Initiation, Propagation, Amplification, and Termination, as shown in Figure 3.4.2.

Figure 3.4.1: The Product Life Cycle curve as introduced by Levitt (1965).

Figure 3.4.2: The software ecosystem maturity curve proposed by dos Santos et al. (2014).

3.4.1.1 What to measure

Product Life Cycle curves typically express the number of sales (sales volume) over time. For software ecosys-
tem life cycles, multiple network properties are suitable to measure. For example, the curve of dos Santos

22

et al. (2014) describes the “number of actors and artifacts” over time, which is a very general descriptive.

In their study, Kim, Lee, & Altmann (2014) present graphs of the centrality of multiple actors in a software
ecosystem over a period of time. Several forms of centrality are investigated: degree centrality, eigenvector
centrality, and betweenness centrality. Thus, they present a ‘life cycle’ graph for the centrality of nodes in
the ecosystem. Similarly, one could make a life cycle graph of a software ecosystem as a whole, based on the
evolution of its centralization or some other network property. However, just as the number of sales is the
most natural and relevant measure of success of a product, for software ecosystems this is the size (number
of nodes) of the ecosystem.

In short, we can say that literature about life cycles of software ecosystems is mostly based on other literature
and needs to be validated by quantitative research. The quantity used for obtaining life cycle graphs can be
based on several network properties, of which size is the most natural.

3.5 Mining Software Repositories

Definition

Although the term software repository is regularly used as referring to “a storage location from which software
packages may be retrieved and installed on a computer” (Tao, 2013), in scientific literature the term is often
used in a broader sense. Kagdi, Collard, & Maletic (2007) define software repositories as “artifacts that are
produced and archived during software evolution”. Software repositories are particularly useful for research,
since they “hold a wealth of information and provide a unique view of the actual evolutionary path taken to
realize a software system” (Kagdi, Collard, & Maletic, 2007). This information must be extracted or mined
from the software repositories, which is a research field in itself.

The term mining software repositories (MSR) refers to “a broad class of investigations into the examination of
software repositories” (Kagdi et al., 2007). The research field of MSR “analyzes and cross-links the rich data
available in software repositories to uncover interesting and actionable information about software systems
and projects” (Hassan, 2008). In short, the MSR field aims to uncover scientifically relevant information
that is stored in software repositories. In recent years, the MSR field has grown to an independent research
field, featuring numerous publications and its own international conference1, of which the 13th edition is to
be held in 2016.

Purpose

MSR is applied to get insight into Change Patterns, Defect Analysis, Process and Community Analysis, and
Software Reuse (Hassan, Holt, & Mockus, 2004), and more recently also Analysis of Software Ecosystems,
Prediction of Future Software Qualities, and Software Project Evolution2.

According to Kagdi et al. (2007), a software repository normally contains three basic categories of information
that can be mined: software versions, differences between versions, and metadata about the software change
(such as author information and information about the context of the change). A researcher should establish

1http://msrconf.org
2See http://2016.msrconf.org/

23

for himself the purpose of mining software repositories, i.e. which category of information he wants to
extract. Depending on the software repository and the purpose, a mining method should be established
before commencing the mining process.

Thus, we see that MSR is not an end in itself, but should be applied after the researcher has established
which information should be obtained by the mining process.

Sources

Early MSR research based on source code often used CVS3 files from SourceForge4 as a data source and
MSR research based on metadata often extracted data from mailing lists and BugZilla5 (Hassan et al., 2004;
Kagdi et al., 2007). Nowadays, much MSR research uses GitHub6 as a data source (Gousios & Spinellis,
2012; Kalliamvakou, Gousios, Blincoe, Singer, German, & Damian, 2014). GitHub, which hosts both source
code and metadata such as bug tracking and feature requests, is currently the largest open source code
host in the world (Gousios et al., 2014), hosting more than 25 million software repositories7. Hassan (2008)
suggests that also run-time repositories (e.g. deployment logs of software systems) can be mined to gather
useful information.

To summarize, there are different sources for MSR, of which GitHub is gaining in popularity.

Advantages and disadvantages of GitHub as data source

GitHub uses the Git version control system, which is a decentralized source code management system.
This means that there is no single central repository for projects using Git version control. As opposed
to centralized source code management systems (such as CVS and Subversion) which have a server-client
structure, Git has a peer-to-peer repository structure (Kalliamvakou et al., 2014).

Advantages of a decentralized version control system are that software projects are easy to clone and merge
and that changes can be traced back in details. Disadvantages of this are that the history of a software
project is not linear and can be more complex than in a centralized version control system (Bird, Rigby,
Barr, Hamilton, German, & Devanbu, 2009). However, for projects using GitHub as repository, the repository
on GitHub often functions as the origin and as central repository.

Another peril of mining GitHub is that on GitHub, a repository is not necessarily a (software) project.
GitHub is also used for e.g. collaboration and version control of TEX documents8.

Most repositories on GitHub have few commits. 90% of the repositories have less than 50 commits, with an
average of only 6 commits per repository (Kalliamvakou et al., 2014).

Because forking is easy, a large majority of the repositories are personal repositories. In their research,
Kalliamvakou et al. (2014) found that 72% of the repositories on GitHub were personal repositories and that
only 54% of all projects were active in the 6 months prior to their research.

3Concurrent Versions System, a version control system.
4http://sourceforge.net/
5https://www.bugzilla.org/
6https://github.com/
7See https://github.com/about/press
8See http://githut.info/

24

In conclusion, we can say that, although GitHub is a very valuable and popular data source for MSR research,
researchers should be aware of its disadvantages and avoid skewed or biased results.

Mining GitHub

Data from GitHub can be publicly accessed via the GitHub API9. Although this data is useful for MSR
research, the data that can be retrieved in this way gives only a snapshot for the point in time when it is
accessed. However, the GitHub API can be used to obtain a continuous flow of events10. This way, public
events such as the creation of open source repositories, push events, or pull request events can be monitored.
However, for all repositories together there are thousands of such events per hour, which is infeasible to keep
track of.

The GitHub Archive11 is a project that constantly monitors these events and stores them in JSON format
available for download. The project does so since February 2011. Thus, the GitHub Archive project provides
valuable longitudinal data for researchers. The advantage of this data is that changes in repositories and
users can be studied over a period of time, without having to monitor this data for such a period. The data
from the GitHub Archive is mirrored on Google BigQuery12, making it queryable for researchers without
requiring them to download the entire database. However, this service is subject to usage limitations.

The GHTorrent project13 (Gousios & Spinellis, 2012) is an effort to create a scalable, queryable, offline mirror
of data offered through the GitHub API. The project collects data since mid 2012. The project website claims
that data is collect both real-time and backwards, meaning that in the future earlier data might be available
through GHTorrent. The content can be queried online using MySQL or MongoDB queries.

‘Lean GHTorrent’ is an effort to allow researchers to get a slice of the full GHTorrent dataset on demand14

(Gousios, Vasilescu, Serebrenik, & Zaidman, 2014). However, this work seems to be offline at the time of
writing.

To conclude, we see that GitHub provides information about events on their platform in a very transparent
way. Such information is valuable for research. Third party projects such as the GitHub Archive and
GHTorrent help to digest the data and obtain useful information from it, without requiring the researcher
to have significant processing power and storage space available.

9https://developer.github.com/
10https://developer.github.com/v3/activity/events/
11https://www.githubarchive.org/
12https://cloud.google.com/bigquery/
13http://ghtorrent.org/
14http://ghtorrent.org/lean.html

25

Chapter 4

Mining GitHub Data for Collaboration
Networks

We limit our research to open source software ecosystems. A key characteristic of open source software is
that it is generally co-authored by multiple developers. Therefore we look at co-authorship relationships,
which we analyze both between actors and between software components.

4.1 Collaboration Network Identification and Measurement

Co-authorship in Git(Hub) is reflected in the form of ‘push’ and ‘pull request’ events. A push event consists
of one or more commits (modifications) that a developer makes to a GitHub repository he is authorized to
modify. A pull request is similar to a push event, except that a developer can do this to a repository he is
not authorized to modify. First, the user makes a branch or fork (a copy) of original repository. After this
copy is modified by the user, he can request the changes to be pulled (copied) to the original repository. An
administrator of that repository can then review the pull request and either accept or reject it.

We limit our research to push events and accepted pull requests, since those are most relevant for co-creation.
For our research, we utilize these events as follows:

When two users both commit to repository X, we say that there is a relationship between these users. The
strength of this relationship depends on how many different repositories these users have recently collaborated
on.

Similarly, when a user commits to both repository A and repository B, we say that there is a relationship
between these repositories. The strength of this relationship depends on how many different users have
recently committed to both A and B.

Nodes

We analyze collaboration networks in the form of undirected weighted graphs. Networks in which each
node represents a user we call user-centered networks. In repository-centered networks, the nodes represent

26

repositories.

In our visualization, we let the size of the nodes be an indication of the popularity of the node, by using a
logarithmic scale of the number of times the node occurs in the data set. The colors of the nodes are used
to indicate which repositories have the same owner.

Figure 4.1.1: Example network graph. Collaboration network with depth 3 around the GitHub repository
jquery/jquery on September 10th, 2012.

Edges

In our model, network edges represent collaboration relationships. When a user commits to repository A

and (some time later) to repository B, we can say that these repositories are connected by a relationship.
However, since many repositories on GitHub are local forks (Kalliamvakou et al., 2014), we consider two
repositories to be connected only when at least two users have recently contributed to both repositories. The
same holds for relationships between users, for these we require at least two common repositories the users
have recently committed to.

We use edge weights to indicate the number of a mutual contributions and the recentness of these contri-
butions. I.e., the strength of the relationship between A and B on a certain point in time is based on how
recent the last contribution to A was and how recent the contribution to B was.

When there has been no commit to either A or B in the last 30 days, we model the edge weight to be 0, i.e.
the repositories are no longer connected. To do so, we define the recency of an event e at a certain point in
time as

recency(e) = max

(
1− number of days e was ago

30 days
, 0

)
,

such that the recency is a number between 0 and 1, being 0 when the event was 30 days or more ago and 1
when the pull request just took place (and e.g. 0.5 when it was 15 days ago). The number of days can be a
decimal number, e.g. 6 hours ago is 0.25 days ago.

Now the weight of the edge between repositories A and B at a certain point in time is the calculated as

27

edge weight(A,B) =
∑

all users
recency(last pull request of this user to A)·recency(last pull request of this user to B).

For edges in user-centered graphs, we use an analogous formula.

Example:

Consider a sample set with users X and Y and repositories A and B. Suppose

• user X made his last push (or successful pull request) to repository A 1 day ago and to repository B

2 days ago, and

• user Y made his last push or pull request to repository A 5 days ago and to repository B 3 days ago.

Then

edge weight(A,B) =

(
1− 1

30

)
·
(
1− 2

30

)
+

(
1− 5

30

)
·
(
1− 3

30

)

≈ 3.32.

Network

We aim to reconstruct networks around a given repository or user, which we call the origin node. I.e.,
starting from the origin node, we look for the software ecosystem of which it is part. Using our definition of
edge weight, we can find nodes connected to the origin node. From there, we can find nodes connected to
these nodes. We call the number of times this procedure is repeated the depth of the network.

Figure 4.1.2: Repository-centered collaboration network with depth 2 around the GitHub repository
twitter/bower on October 9th, 2012.

28

Figure 4.1.3: User-centered collaboration network with depth 3 around the GitHub user JosephSilber on
September 19th, 2014.

4.2 Data Collection

The data for our research is obtained from the GitHub Archive database, which contains historical public
data from February 2011 until now. For the purpose of our research, we limit our scope of GitHub data to
the years 2012, 2013 and 2014, three full years.

We choose to mine our data from the GitHub Archive rather than from GHTorrent since the GHTorrent data
(currently) does not go back in history far enough (March 2012). Moreover, since we have to execute complex
queries on the data set, we have to download the entire history of push events and pull requests during our
scope period, for which we would have to download a 120+ GB database if using GHTorrent1. The same
data can be downloaded in much smaller chunks from the GitHub Archive, from which the relevant data can
be extracted, which is only 8.4 GB large when saved using MySQL in InnoDB compact row format2.

Issues that arose during the mining process were:

• Data from the GitHub Archive project is stored in JSON3 format, compressed using gzip4 and combined
as one file per hour. These files are sometimes large to extract in-memory.

• The data files in some cases contain multiple JSON objects per line, which is slightly incorrect JSON
and needs to be corrected before further processing.

1http://ghtorrent.org/downloads.html
2See https://dev.mysql.com/doc/refman/5.7/en/innodb-row-format.html
3http://www.json.org/
4http://www.gzip.org/

29

• Timezones of dates differ per month (some are in UTC, others in PST with daylight saving in summer
time), which has to be taken into account.

• During the scope period, the event structure changed a few times, because of introductions of new
GitHub API versions.

• The useful mined data has to be stored in a local database, at the end of the mining process containing
over 130 million rows of data.

All issues could be taken care of, resulting in an efficiently stored database table that functioned as a further
basis for analysis. The 130 million rows of data were stored in an InnoDB table with a size of 8.4 GiB
excluding indices.

4.3 Data Processing

The database query to identify ecosystem relationships from the dataset as described in Section 4.1 is
relatively complex, especially since it identifies relationships for a period of time. In order to be able to
execute this query efficiently, database indices help to reduce execution time and processing power. The
trade-off is that extra storage space is required. In our case, an additional 8.5 GB of space was used for
database indices.

The algorithm to identify ecosystem relationships as described above has complexity O
(
t · nd+1

)
, where t

is the number of days, n is the size of the data set, and d is the depth of the network we want to obtain.
This algorithm is in general too complex to execute in real-time, therefore resulting ecosystems are stored
in a database as well. Since a network of depth 2 contains the network of depth 1, the additional nodes and
edges computed for higher degrees are stored in complement tables.

The code to collect the data and analyze it is stored as an open-source GitHub repository itself5.

4.4 Data Analysis

From the resulting networks, properties such as defined in Sections 3.3.1 and 3.3.2 can be measured for each
moment in time. These network properties can be displayed as graphs.

As discussed in Section 3.4, size is the most suitable network property to observe as describing ecosystem
life cycles.

5https://github.com/jos-/software-ecosystems

30

Figure 4.4.1: Size of the user-centered collaboration network with depth 3 around the GitHub user oszczep.
The blue line indicates the ecosystem size on a day-to-day basis, of which the red line is the fourth order
regression polynomial (discussed in the next chapter).

4.5 Results

The tool developed for our analysis can be viewed online6. Using our method, software ecosystems can be
identified in an objective way. The resulting collaboration networks can be analyzed in detail.

The computation is not instant, but can be regarded to be relatively fast, taking into consideration the size
of the data set. However, the complexity of the operation is an issue when trying to identify networks with
a high depth. Computation time can be reduced by using indices, however requiring extra storage space.

Our second research question was “How can collaboration in software ecosystems be measured and visualized,
based on data from a public data source?”. Our model provides an acceptable method to do so, which is
applicable to multiple definitions of software ecosystems. Key features of our model are:

• Based on co-authorship.

• Objective, no human input required, making it possible to analyze large numbers of collaboration
networks.

• Suitable for longitudinal analysis.

• Balanced, keeping track of co-authorship for a sliding scale of time.

• Relatively efficient.

• Storing data in a compact way by using complement tables.

• Aimed at GitHub, but suitable to extend to other software repository systems.

• Requiring relatively much storage space, mainly caused by the large number of events that take place
on GitHub.

6http://thesis.josvandermaas.nl/

31

Chapter 5

Categories of Open Source Collaboration
Networks

5.1 Procedure

Our purpose of this chapter is to identify typical categories of open source collaboration networks, based on
the life cycles of these networks.

Full life cycles

For our research, we investigate collaboration networks that completed a full life cycle during the period
between January 2012 and December 2014. We regard a network to be abandoned when it has no more
activity for a period of at least three months. Here ‘no activity’ means that the network has size 1, only
containing the origin node, i.e. no relationships between the origin node and any other node for three months.

Thus, we look for collaboration networks on GitHub that had no activity in the first three months and the
last three months of our analysis period, but which do have activity in at least some of the other months.
Moreover, during their life span, the networks should not have activity gaps (periods of no activity) longer
than three months. This way, the life cycles of these networks can be regarded to be complete.

Research samples

We select a random sample of GitHub repositories and another random sample of GitHub users using
MySQL’s ORDER BY RAND() predicate. This results in a reasonably uniform distribution1. For our samples,
we require a 80% confidence interval and a 6% margin of error.

On December 15th, 2015, GitHub hosted a total number of 30.7 million repositories and 12.1 million users2.
These numbers, in combination with our confidence interval and margin of error, require sample sizes of at

1https://dev.mysql.com/doc/refman/5.7/en/order-by-optimization.html
2https://github.com/about/press

32

least 114 repositories and another of 114 users (Jones, 1955). From these samples, 114 repository-centered
networks and 114 user-centered networks can be identified.

Network depth – Three degrees of separation

We analyze all collaboration networks with a network depth of 3. This means that networks will be identified
up to three ‘degrees of separation’ from their root nodes. Thus, we look at the root node, the nodes connected
to this node, the nodes connected to those nodes, and finally the nodes connected to those nodes. For
example, a path in such an ecosystem can be twitter/bower – Modernizr/Modernizr – mxcl/homebrew –
rails/rails.

A reason for this is that a higher depth would give a distorted picture, since too distant nodes would be
regarded as part of a network. Collins & Chow (1998) suggested that all living humans are interconnected by
at most six ‘degrees of separation’. Raising the network depth to 6 would likely result in the same network
over and over again, regardless of the root node. Using a network depth lower than 3 would give a less
complete picture. Also, network properties such as clustering (which requires a minimum depth of 2 to
compute) would be less meaningful for lower degrees.

Another reason for this choice is that researchers found that many forms of human social behavior have
an influence up till three degrees of separation. This applies to happiness (Fowler & Christakis, 2008),
loneliness (Cacioppo, Fowler, & Christakis, 2009), smoking (J. H. Christakis, 2008), alcohol consumption
(Rosenquist, Murabito, Fowler, & Christakis, 2010), depression (Rosenquist, Fowler, & Christakis, 2011),
obesity (a Christakis & Fowler, 2007), and, most relevant, cooperative behavior (Fowler & Christakis, 2010).
These findings have lead to the ‘Three Degrees of Influence’ theory of Christakis & Fowler: “Our influence
gradually dissipates and ceases to have a noticeable effect on people beyond the social frontier that lies at
three degrees of separation” (Christakis & Fowler, 2009). Despite some critique, this theory has been accepted
by many scholars. Since collaboration can be regarded as social behavior and even as part of ‘cooperative
behavior’, it seems appropriate to analyze collaboration networks up till three degrees of separation.

Polynomial regression

We study the life cycles of these networks by analyzing the size (number of nodes) of each network over time.
This way, we obtain graphs with time on the x-axis and network size on the y-axis. In order to compare
these life cycles to each other, we make the data uniform by mapping each graph to the plane [0, 1]× [0, 1].
Thus, time is an interval from 0 to 1 (first and last date of life cycle) and the network size can take all values
between 0 and 1 (0 being the minimum size and 1 being the maximum size reached during the life cycle).
From this data, we calculate regression polynomials of network size as a function of time.

We use fourth order polynomial regression, so each life cycle is approximated by a function

f(x) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4,

where a0, ..., a4 are constants. These are called the coefficients of the polynomial. We also look at lower
order regression polynomials, as explained in the next sub-section. We calculate the regression polynomials
using the so-called least-squares method (Sorenson, 1970).

33

Figure 5.1.1: Regression of the life cycle of repository-centered network with depth 3 around the GitHub
user NSLS-II/userpackages. The blue line indicates the exact network size per day. The red lines are the
regression polynomials of orders 0, 1, 2, 3, 4, and 10, respectively (left to right, top to bottom).

There are several reasons for using fourth order regression instead of a higher or lower order. A lower level
would result in worse approximations. As can be seen in Figure 5.1.1, lower order regression allows for
less freedom in possible shapes, resulting in a larger possible difference between the original data and the
regression line. The least-squares method ensures that the total difference is minimized, but large differences
can occur locally when using low order regression. On the other hand, although a regression order higher
than 4 would be more accurate, it results in polynomials that are more difficult to compare to each other.
The increase in accuracy can be regarded relatively small compared to this drawback. E.g. compare the
fourth and tenth order regression lines in Figure 5.1.1.

Categorization

For our research, we want to objectively categorize the collaboration networks based on their life cycles,
in such a way that networks with a comparable life cycle shape fall into the same category. To do so, we
compare the coefficients of the network size regression polynomials of order 0 to 4. Specifically, we look at
the first coefficient of each regression polynomial, i.e.

34

co in zero order regression polynomial f0(x) = c0,

c1 in first order regression polynomial f1(x) = c1x+ a0

c2 in second order regression polynomial f2(x) = c2x
2 + a1x+ a2

c3 in third order regression polynomial f3(x) = c3x
3 + a3x

2 + a4x+ a5

c4 in fourth order regression polynomial f4(x) = c4x
4 + a6x

3 + a7x
2 + a8x+ a9.

The reason for this is that the first coefficient of a regression polynomial contains the most new information
when the lower order polynomials are known. E.g. when c0 is already known, c1 tells more about the shape
of the actual data than a0.

Once c0, ..., c4 are known, we use a + sign to indicate that a coefficient belongs to the 50% highest coefficients
of that order and a - sign to indicate that it is one of the 50% lowest coefficients of that order. This way, we
can classify a life cycle as a combination of + and - signs, e.g. +-+-+ (meaning c0, c2, and c4 are relatively
high and c1 and c3 are relatively low). A similar approach is used by Krauthl & Lienert (1978).

The advantage of this approach is that the life cycles are compared on the basis of multiple regression orders
and for all of these orders, the life cycles have to similar to be placed in the same category. To give an
indication that the life cycles in a category indeed resemble each other, an overview of the user-centered life
cycles belonging to category -++-+ is shown in Figure 5.1.2.

Since we look at 5 coefficients per life cycle, we have 25 = 32 possible categories of life cycles, and the
probability for a coefficient to be ‘+’ is equal to be ‘-’. Thus, the statistical probability for a given category
to occur is 1

32 = 3.125%. We analyze our sample sets to see if some categories have a significantly higher
rate of occurrence.

Figure 5.1.2: Life cycles of user-centered networks in the category +--+-. Networks in a category have
comparable life cycle shapes. Shown from left to right, top to bottom are the life cycles of networks with
depth 3 around the users cgmartin, vbardales, vandosant, and rufinus.

35

Validity

Possible drawbacks of this approach are:

• We study relatively short-lasting ecosystems (that are active for a period of at most two and a half
years).

• We allow a 6% margin of error and require a confidence level of only 80%.

In relation to the first possible drawback, Kalliamvakou et al. (2014) found that only approximately 2% of
the repositories on GitHub have a longer active period than 2,5 years. So our sample represents the vast
majority of ecosystems on GitHub. Moreover, we study ecosystems of different lengths (varying from 0 days
to 2,5 years), making the results generalizable.

Regarding second drawback, the meaning of this is that for any value we find (e.g. 10% of the ecosystems
is of some category X), this means that we are 80% confident that the actual percentage of occurrence
lies in the interval of the found value plus or minus the margin of error (in this example, between 4% and
16%). While this is a relative large interval, it allows us to find significantly often-occurring categories with
a relatively small sample set. Reducing the margin of error requires much larger sample sets. E.g. to obtain
a 3% margin of error instead of 6%, the samples would have to be four times larger (Jones, 1955).

5.2 Hypotheses

In order to conduct our analysis, we formulate the following hypotheses:

1. There are some life cycle categories to which significantly many collaboration networks belong.

2. On average, the size of a collaboration network is lowest during the first quarter of its life cycle and
highest during the third quarter.

The second hypothesis is based on the assumption of the ‘typical’ life cycle shape in literature. This shape,
which is often found in literature, is characterized by a small size during the first quarter (‘Introduction
phase’) and largest during the third quarter (‘Maturity phase’), as can be seen in Figure 5.2.1.

5.3 Results for User-Centered Collaboration Networks

In this section, we analyze the hypotheses for user-centered networks. The obtained sample of these networks,
along with their calculated regression polynomials, is shown in Table 9.1.

Hypothesis 1: Different categories

The results contain 24 different life cycle categories, of which the top five is shown below:

36

Figure 5.2.1: The typical life cycle found in literature.

Category
Occurrences
(out of 114)

Occurrence
rate

Significant
occur-
rence

Average fourth
order polynomial:

f(x) =

Shape

--++- 17 14.9% Yes
−27.5x4 + 59.0x3 −
40.0x2 + 8.2x+ 0.3

+--++ 11 9.6% Yes
−1.4x4 + 9.3x3 −
13.2x2 + 5.4x+ 0.3

++--- 11 9.6% Yes
−18.4x4 + 35.9x3 −
23.3x2 + 5.9x+ 0.3

-++-- 9 7.9% No
−33.4x4 + 63.5x3 −

36.2x2 + 6.3x

-+--+ 7 6.1% No
7.2x4 − 17.4x3 +

12.3x2 − 2.3x+ 0.2

We observe that significantly many user-centered collaboration networks to belong to category --++-, +--++,
or ++---, so the first hypothesis is accepted.

Hypothesis 2: Typical shape

As can be seen in Table 9.1, the average fourth order regression polynomial is given by f(x) = −11.7x4 +

24.6x3 − 16.9x2 + 4.0x + 0.3. Remember that this polynomial describes the data mapped to the plane

37

[0, 1]× [0, 1]. Thus, the average network size during quarter 1 equals

´ 0.25
0

(
−11.7x4 + 24.6x3 − 16.9x2 + 4.0x+ 0.3

)
dx

0.25
≈ 0.53.

All quarterly averages are given in the table below. Based on this information, the hypothesis is rejected.
When taking the average for all user-centered ecosystems, the opposite is true: the network size during is
highest during the first quarter and lowest during the third quarter. However, the differences are relatively
small.

Quarter 1 Quarter 2 Quarter 3 Quarter 4
Average network size (between 0 and 1) 0.53 0.49 0.43 0.45

5.4 Results for Repository-Centered Collaboration Networks

This section describes the testing of the hypotheses for repository-centered networks, of which the data is
shown in Table 9.2.

Hypothesis 1: Different categories

The results for this type of networks contain 28 different life cycle categories (out of 32 possible shapes).
The top five of these categories is shown in the table below.

Category
Occurrences
(out of 114)

Occurrence
rate

Significant
occur-
rence

Average fourth
order polynomial:

f(x) =

Shape

++--- 11 9.6% Yes
−18.7x4 + 34.8x3 −
21.0x2 + 5.1x+ 0.1

--++- 9 7.9% No
−25.8x4 + 57.3x3 −
40.4x2 + 8.9x+ 0.2

+--++ 9 7.9% No
−3.5x4 + 11.2x3 −
12.8x2 + 5.0x+ 0.3

---++ 8 7.0% No
5.1x4 − 7.5x3 +

1.5x2 + 1.0x+ 0.1

-++-+ 7 6.1% No
3.4x4 − 8.4x3 +

7.5x2 − 2.4x+ 0.4

From the results in the above table, we see that there is only one category of repository-centered networks to
which significantly many networks belong, namely ++---. However, this is enough to for the first hypothesis
to be accepted.

38

Hypothesis 2: Typical shape

The average fourth-order regression polynomial for repository-centered collaboration networks is given by
f(x) = −10.3x4 +21.0x3− 13.9x2 +3.2x+0.3. The quarterly average network sizes, based on this equation,
are shown in the table below.

Quarter 1 Quarter 2 Quarter 3 Quarter 4
Average network size (between 0 and 1) 0.48 0.45 0.43 0.46

Based on this information, again the hypothesis is rejected and again, rather the opposite is true. The
‘typical shape’ is not applicable to the average network life cycle. However, it can be applicable to some
networks.

When comparing user-centered networks to repository-centered networks, we see that both have a category
--+- within the top five categories, with a similar life cycle shape. We see more similarities between user-
centered and repository-centered networks life cycles. This is an indication that the two types of networks
are essentially not very different. This is further analyzed in the next sections.

39

Chapter 6

Characteristics of Collaboration Network
Categories

In the previous chapter, we identified several popular life cycle shapes. Note that the top three user-centered
categories are the same as the top three repository-centered categories, except for the order in which they
appear. Another difference is that, for repository-centered networks, only the first category is statistically
significant. We will further examine these three life cycle shapes. An overview of these shapes is shown in
Table 6.1.

We will use several network properties to analyze whether the collaboration networks that have these life
cycle shapes differ from the other networks. The network properties we measure are: density, centralization,
and clustering. These properties are based on literature and were discussed in Section 3.3.2. A visual
overview of the properties is given in Figure 6.0.1.

Dense Sparsevs. Clustered Unclusteredvs.Centralized Decentralizedvs.

Figure 6.0.1: Network properties: density, centralization, and clustering.

The relevance of these properties for network analysis can be explained as follows.

• Density is a measure for the number of connections in a network. It indicates how many edges the
network has divided by the potential number of edges. Because of its interconnected nature, a dense
collaboration network is less likely, or less quickly, to fall apart.

• Centralization indicates how central the most central node in the network is in comparison with the
other nodes. This tells something about the importance of the most central node (in literature often
referred to as the ‘Keystone’) of a network. A high centralization can be beneficial for a network if

40

the Keystone is a trusted party who maintains the network well, e.g. in case of an App Store. A high
centralization can also be a disadvantage for a network in terms of dependency on this node. E.g.
when this is a single developer who can stop being active, the collaboration network can quickly fall
apart. We measure centralization using Network Degree Centralization, as explained in Section 3.3.2.

• Clustering is a measure of the degree to which the nodes in a network tend to cluster together. A high
level of clustering is positive in the sense that the network has several sub-networks and is less likely
to completely fall apart. However, a high level of clustering may be an indication that the network is
fragmented and might split up soon. We measure clustering using the Average Clustering Coefficient,
see Section 3.3.2.

For each category, we compare the networks that fall into this category to the networks outside the category.
We use the same samples as in the previous chapter. To compare the groups statistically for equality, we
conduct Two-sample T-tests. In all tested cases, the samples had variances that had to be regarded unequal
(equality of variances was tested using F-tests). Thus, a Welch’s T-test (Welch, 1947) was used to compare
the samples for equality. The tests were conducted for both user-centered and repository-centered networks.

Table 6.1: Categories referred to in this section as A, B, and C.

Category A Category B Category C

User-centered equivalent

Repository-centered equivalent

Hypotheses

For each of the categories mentioned above (further referred to as categories A, B, and C), we test the
following hypotheses:

1. The networks in this category differ significantly from the other ecosystems in terms of network density.

2. The networks in this category differ significantly from the other ecosystems in terms of degree central-
ization.

3. The networks in this category differ significantly from the other ecosystems in terms of clustering
coefficient.

In all cases, the alternative (null) hypotheses assume equality of the groups. Inequality is tested in both
directions (smaller and larger), using two-tailed T-tests.

41

6.1 Category A: Short Revival Before Abandonment

Figure 6.1.1: Life cycle shape of category A.

This type of life cycle is characterized by a quick growth at the start, followed by an early decline. Before
the final abandonment of the network, we notice a short revival. In terms of our defined network properties,
the networks in this category are characterized by:

• Average density (both for user-centered and repository-centered networks). Therefore, we reject hy-
pothesis 1 for this category. In terms of density, there are no significant differences between this
category and the other networks.

• Low centralization (both for user-centered and repository-centered networks). Thus, hypothesis 2 is
accepted for this category.

• Low clustering (both for user-centered and repository-centered networks). Hypothesis 3 is accepted for
this category.

We conclude that this category is characterized by low centralization (i.e. there is no clear central node, or
its role is limited) and low clustering (meaning the nodes do not tend to cluster together). The networks in
this category therefore have a relatively unstable network structure. This could be seen as an explanation
for the quick decline shortly after reaching the top value.

6.2 Category B: Early Maximum

Figure 6.2.1: Life cycle shape of category B.

This life cycle shape is characterized by a relatively quick (although not extreme) growth at the start, followed
by a slow but steady decline. Intuitively, this seems like the most natural life cycle for a healthy network.
The statistical properties of this category are:

• Average density (both for user-centered and repository-centered networks). Therefore, we reject hy-
pothesis 1 for this category.

42

• High centralization (significant for repository-centered networks only). We accept hypothesis 2.

• High clustering (significant for user-centered networks only). Hypothesis 3 is accepted for this category.

We see that this category is characterized by a strong network structure. The influence of a central node
causes relatively quick growth and the clusters in such a network prevent a quick decline.

6.3 Category C: Extended Growth

Figure 6.3.1: Life cycle shape of category C.

This life cycle category is distinguished by an extended period of growth, followed by a quick collapse.
Moreover, the growth is not uniform, but weakens halfway, after which the growth is continued. This type
of life cycle is comparable to the typical product life cycle curve found in literature, although there are some
differences. In terms of network properties, this category distinguished itself by:

• Lower than average density (user-centered networks only). Hypothesis 1 is accepted for this category.
However, although the difference is large enough to be evaluated as significant, the density of this
category is relatively equal to that of the other networks (p = 4.56%).

• Average centralization (both for user-centered and repository-centered networks). Hypothesis 2 is
rejected for this category.

• Higher than average clustering (repository-centered networks only). Hypothesis 3 is accepted for this
category. Again, the difference is significant (p = 5.74%), but this can be ascribed to our relatively
high chosen margin of error.

We conclude that this type of life cycle corresponds to an average network structure in terms of strength. This
corresponds with the remark that this life cycle shape is similar to the ‘typical’ (product) life cycle shape.
Note that this life cycle category significantly often occurs in both user-centered and repository-centered
collaboration networks.

43

Chapter 7

Collaboration in the Ruby Ecosystem

In the previous chapters, we selected a root node (a user or repository) and from there on identified a
collaboration network with a certain depth. Instead of this, we can identify collaboration within a predefined
set of users or repositories and construct the collaboration network for this set. We do this for the Ruby
ecosystem to analyze how this ecosystem evolved in terms of collaboration.

Ruby

Ruby is a programming language that originated in 1993. Ruby is an object-oriented language, influenced
by programming languages Perl, Smalltalk, Eiffel, Ada, and Lisp1. The first stable release of Ruby was
in 1996. Since then, the language has been widely used, being currently listed as the tenth most popular
programming language worldwide2.

Ruby ecosystem

The Ruby software ecosystem has earlier been analyzed by, amongst others, Kabbedijk & Jansen (2011) and
Gregorian (2014). The ecosystem has several characteristics that make it especially interesting for research:

Ruby programs and libraries are normally packed in a self-contained format called a ‘gem’, which can be
distributed through the website RubyGems.org. Kabbedijk & Jansen (2011) remark that “the entire Ruby
ecosystem is a collection of FOSS [Free Open Source Software] projects”. Although this is not necessarily
true, the source code of gems be unpacked and viewed, and the large majority of the gems is indeed released
under a free license.

Many of the Ruby gems, including the RubyGems library and website itself3, are developed under Git
version control and hosted on GitHub. Ruby is currently the sixth most popular programming language
among repositories on GitHub, being used in more than 130,000 active repositories4.

We analyze the part of the Ruby ecosystem that is hosted on GitHub during the period from January 1st,
2012 till December 31st, 2014. We analyze collaboration within the ecosystem during this period.

1http://www.ruby-lang.org/en/about/
2http://www.tiobe.com/tiobe_index
3https://github.com/rubygems
4http://githut.info/

44

Approach

We identify the Ruby ecosystem on GitHub by selecting all GitHub repositories that have the term ‘ruby’
in their full repository name (e.g. jruby/perfer or mongodb/mongo-ruby-driver). We measure all col-
laboration between these repositories in the same way as the repository-centered collaboration networks in
the previous chapters were identified. Since we have a predefined set of repositories, we do not need to
select a root repository and since we measure all collaboration among the repositories, we essentially obtain
a network of infinite depth. Consequently, the nodes in this collaboration network are not necessarily all
connected to each other, i.e. we can have separate clusters within this network.

We group repositories per owner, so e.g. rubyspec/consensus and rubyspec/signatures will be shown
together as one node rubyspec. Also, we no longer require that at least two users have to collaborate on
repositories in order to consider this as a relationship between the repositories. Instead, we limit our analysis
to the most important nodes in the Ruby ecosystem, by only selecting nodes that have at least 100 push or
pull request events per year on average. This is done to exclude insignificant repositories from the analysis,
such as private forks with only a few commits. Many of such insignificant repositories are hosted on GitHub
(Kalliamvakou et al., 2014). Furthermore, we exclude all nodes that are not connected to at least one other
node in the network.

7.1 Observations

The resulting collaboration network and its properties can be viewed online5. We observe that the size of
the collaboration network for the Ruby ecosystem is relatively stable throughout our analysis period (2012
till 2014). The network size is especially low in January 2012 and January 2013 and high in September till
October 2014, as displayed in Figure 7.1.1. The network size graph is to some extent comparable to the
interest in the search term ‘Ruby’ on YouTube6 during the same period, as displayed in Figure 7.1.2.

An overview of the most important changes that occur in the collaboration network is given below.

Figure 7.1.1: Network size of the collaboration network for the Ruby ecosystem from 2012 till 2014.
5http://thesis.josvandermaas.nl/ruby
6https://google.com/trends/explore#q=ruby&gprop=youtube

45

Figure 7.1.2: Popularity on YouTube of the search term ‘Ruby’ (blue) and the part of it that can with
certainty be ascribed to the Ruby programming language (red).

Early 2012

Figure 7.1.3: Collaboration network for the most popular repositories in Ruby ecosystem on January 1st,
2012.

At the start of our observation, rubygems is the most central node in the collaboration network. This
repository contains the library packaging and distribution system for Ruby that can be used to install or
create and distribute Ruby ‘gems’7. Consequently, this is one of the most important repositories within the
Ruby ecosystem, which is reflected in the collaboration network.

Another important repository is rubyspec, an executable specification for the Ruby language8. This node
is sometimes connected to rubygems and later to mruby, a lightweight implementation of Ruby with its own
interpreter, often used for mobile devices9. mruby joins GitHub in 2012 and quickly thereafter becomes a
central node in the collaboration network.

ruby itself10 (the repository containing the language core) is not very central during this period and is
sometimes even excluded from the network as it has no connections to other nodes. jruby, an implementation
of Ruby on the Java Virtual Machine11, sometimes connects rubygems to ruby or rubyspec.

MacRuby, an implementation of Ruby 1.9 directly on top of Mac OS X12, is relatively solitary, as are mongodb
(a cross-platform document-oriented database project) and heroku (a cloud Platform-as-a-Service). In June,
rubymotion is introduced, which is a commercial software project. This is an implementation of the Ruby

7https://github.com/rubygems
8See https://github.com/ruby/rubyspec, was a separate GitHub until in 2014.
9https://github.com/mruby

10https://github.com/ruby
11https://github.com/jruby
12https://github.com/MacRuby

46

programming language that runs on iOS, OS X and Android13. rubymotion is based on MacRuby, having
the same main developer14.

The network size slowly increases early 2012, while density decreases. Centralization follows a high-low-high
pattern during this period, but on average decreases. Clustering is low, but increases.

Comments

We observe that nodes that play an important role in the ecosystem have relatively many connections. Visual
network analysis can help identify such nodes.

We see the introduction of a commercial gem (rubymotion). Although being partly open source, the use of
this gem is restricted by a license that is free for “starters and hobbyists”, but demands a fee for commer-
cial use15. Users that buy a license are given access to additional functionality, which is not open source.
The GitHub repository description of the gem explains “This repository contains the parts of the Ruby-
Motion product that are open source. It does not contain the full product, which can be purchased at
www.rubymotion.com”. What actually happened here (as can be read on the rubymotion project website16)
is that the main developer of both packages first worked for Apple and developed MacRuby as a side project.
This project became so successful that he decided to leave Apple and start rubymotion as a commercial
alternative to the popular free gem, being partly open source, but with a license plan for professional use.
Later on, we will see that this decision eventually resulted in the abandonment of the open source MacRuby

project, which is now no longer maintained.

Figure 7.1.4: Size vs. density of the collaboration network of the Ruby ecosystem between 2012 and 2014.
These network properties are to some extent inversely proportional.

While the size of the network slowly increases, its density decreases and vice versa. We see this pattern
throughout our analysis period, as reflected in Figure 7.1.4. Effectively, this means that whenever new nodes
join the network, the average number of connections per node decreases. In other words, newly added nodes

13https://github.com/rubymotion
14http://www.rubymotion.com/about/
15See http://www.rubymotion.com/download/
16http://www.rubymotion.com/about/

47

are relatively solitary and nodes that disappear from the network generally have few connections, while
more connected nodes remain. On one hand, this is partly trivial behavior. However, the fact that the two
measures – size and density – are almost inversely proportional indicates that there is a group of central
interconnected nodes that stays in the ecosystem for a long time, while nodes with few connections join and
leave the network from time to time.

Late 2012

rubymotion becomes more central late 2012. mruby becomes more central, but disappears at the end of the
period. The network is now characterized by more connections between the nodes, and fewer clusters. A
large cluster is formed, consisting of ruby, jruby, rubygems, and rubyspec. A small cluster grows, consisting
of the two similar implementations of Ruby for Mac OS (macruby and rubymotion), as earlier discussed. A
third, smaller, cluster appears: postmodern - ronin-ruby. This is a solitary cluster that will stay for quite
some time. postmodern is a user who created several popular Ruby tools. ronin-ruby is a Ruby platform
for vulnerability research and exploit development17.

The network size decreases during this period, especially at the end. Density increases, mainly due to
rubygems and jruby, which become very central nodes during this period. Centralization again follows a
high-low-high pattern and further decreases on average. Clustering increases.

Figure 7.1.5: The Ruby collaboration network after the ruby and the rubymotion clusters are connected.
Network density and clustering have increased.

Comments

We see that the network is divided into several collaboration clusters. A reason for this is that gems that are
to some extent similar tend to cluster together, since developers sometimes contribute to multiple comparable
gems. An example of two similar gems is ruby and rubygems, the first one containing the core functionality
of the Ruby language and the other being a package manager for Ruby. We see that these two gems are
connected during a large part of our analysis period.

17http://ronin-ruby.github.io/

48

The high-low-high pattern in the clustering of the network, similar to the one between January and June
2012, can be explained as follows. In July, mruby is the most central node in the network. However, the
centrality of mruby decreases while at the same time rubygems becomes increasingly central. Halfway this
period, rubygems has taken over the role of being the most central node in the network. Since network
centralization is a measure for how central the network’s most central node is in relation to the other nodes,
this pattern occurs.

Early 2013

Early 2013 the network size decreases. On February 24th, 2013, ruby version 2.0.0 is released, which gives a
boost in network size. The previous stable version, ruby 1.9.3, was released in October 2011. However, the
short-time impact on the network size is limited.

The number of small solitary clusters in the network (e.g. mongodb’s cluster) increases. The network is
divided in two main clusters: rubyspec - jruby on one hand, ruby - rubygems on the other. ruby-no-kai,
a Japanese localization of Ruby, becomes more important. The postmodern - ronin-ruby cluster grows and
joins the ruby - rubygems cluster.

Density is relatively high during this period, but slightly decreases. Centralization further decreases. This
period is characterized by a relatively high level of clustering.

Figure 7.1.6: Early 2013, the collaboration network is characterized by a high level of clustering.

Comments

We observe that the introduction of a new version caused an increase in development activities and collabo-
ration. However, in this case the impact on the network size is lower than expected for such a long-awaited
release. A reason for this is that the 2.0.0 version is almost 100% backward compatible with the previous
release18, such that practically no code had to be changed by gem developers in order to migrate to the new

18https://github.com/ruby/ruby/blob/ruby_2_0_0/NEWS

49

version. On the long term however, we see a significant growth after this release.

During the period from January till June, clustering is relatively high. The nodes tend to cluster together,
resulting in a collaboration network that is divided into several clearly distinguished clusters, as can be seen
in Figure 7.1.6.

7.1.1 Late 2013

jruby and some time later rubyspec disappear from the network. The postmodern - ronin-ruby cluster
disconnects from the ruby - rubygems cluster. The monkstone - jashkenas cluster appears, as does the
mongodb - estolfo cluster. monkstone and jashkenas are both developers who created a gem to generate
computer art using Ruby code. estolfo is a user who worked on the documentation of mongodb.

Ruby 2.1.0 is released on Christmas Day in 2013, followed by a slow but steady boost in network size. The
slowness of the increase in network size can be explained by the fact that the previous stable release was
relatively recent.

MacRuby disappears in August 2013, never to appear again.

During this period, the network density drops significantly. Centralization further decreases, and reaches
its minimum value of our time scope. Clustering significantly drops, but then returns slightly below its old
level.

Comments

The commercial gem rubymotion was built using the free software MacRuby as a basis. We observe that
the development of MacRuby ends shortly thereafter, resulting in its disappearance from the network in
favor of the commercial gem. The free software is currently no longer maintained19. The core of the
rubymotion project is contained in the repository HipByte/rubymotion (HipByte being the company that
has the ownership of the software). Interestingly, the repository of this commercial gem has approximately
50 contributors20, most of which contribute to it for free. We see that the decision to make part of this
software free for individual use benefits the owner in the sense that the software is co-created by outside
developers.

The drop in network density can be explained by the introduction of several two-node clusters, together with
a decomposition of existing larger clusters.

7.1.2 Early 2014

The heroku - hone cluster appears. More small solitary clusters start to form. mruby is reincluded in the
network and again quickly becomes a central node.

ruby also becomes a central node and attracts some smaller clusters. ruby - processing joins the monkstone
- jashkenas cluster. There are now three main clusters: ruby - rubygems, mruby, and rubymotion.

19https://github.com/MacRuby/MacRuby
20https://github.com/HipByte/RubyMotion

50

Network size continues its increase after last Ruby version release. Density drops further, but centralization
finally increases. Clustering drops, but then increases mid 2014.

Figure 7.1.7: The Ruby collaboration network in May 2014, after the introduction of many new nodes.
Clearly visible is that ruby and mruby are central nodes.

Late 2014

More two-node clusters are introduced that disappear at the end of the period. In August 2014, ruby, mruby,
and postmodern are connected, forming a large cluster. The network is centralized around these nodes and
rubygems. jruby re-appears, forming a cluster on its own. The separate rubymotion cluster grows.

At the end of 2014, all main nodes are in some way connected to each other. Network size further increases,
especially around October and November. Ruby 2.2.0 is released on Christmas Day in 2014. Since this is
a few days before the end of our time scope, it is difficult to tell what the effect of this release is on the
network is. Density increases again, and centralization and clustering further increase.

Comments

We have seen the network develop from relatively small to a larger network with a complex structure. At the
same time, we observe that some important nodes (e.g. ruby, rubygems, rubyspec, mruby, and rubymotion)
have been included in the network almost the entire time and often take the most central positions. It turns
out that collaboration in the Ruby ecosystem mostly takes place around the most important nodes, around
which clusters of similar projects are formed.

51

Figure 7.1.8: Ruby ecosystem collaboration network on December 31st, 2012. Most nodes are via some path
connected to each other.

7.2 Summary of Observations

A collaboration network gives us information about how collaboration takes place in practice. We observe
temporary declines in collaboration activity around the months January - February and July - August in all
three analyzed years (see Figure 7.1.1). These deviations can be explained by holiday periods, during which
development activity – and as a result also collaboration – is lower than average.

Our analysis period contains two important releases of the core software of the ecosystem (a third one
occurring at the very end of our scope). One of these releases has a small impact, whereas the other one is
followed by a significant increase in collaboration activity. Here we see that not only the size of a release (the
number of changes) and its timing, but also its nature (being backwards compatible or not) is determinative
for its impact.

Throughout the analyzed period, the collaboration network turns out to be dynamic and its size volatile,
partly due to conventions on which the analysis is based. We observe a more or less permanent basis of
central nodes, around which clusters form. In the periphery, many two-node clusters appear. While most of
these small clusters turn out to be short-lasting, some of them endure for a long time and succeed to grow
to significant positions in the ecosystem.

Density is to a large extent the inverse of network size, confirming the existence of a steady core of nodes.
The role of the most central node in the network changes from time to time.

In a mainly open source ecosystem, projects related to commercial software can emerge. Such partly open
source software can benefit from outside contributors. However, as observed, commercial software can gain
popularity at the cost of free and open source alternatives.

52

Chapter 8

Discussion

We extracted information about collaboration evolution that is implicitly available in publicly accessible
data. In general we can say that more collaboration is beneficial for a software ecosystem. But the exact
nature of this collaboration is determinative for its benefit for software ecosystems.

Visual analysis is helpful for the understanding of ecosystems and gives an overview of what happens in terms
of collaboration. Our research results are particularly relevant for the following groups of stakeholders:

• Software developers who have to make a choice between various available open source libraries and
want to choose the library embedded in the most healthy collaboration network.

• An author or keystone player of an open source software component, to help identify opportunities and
threats for its collaboration structure.

• A single developer, for awareness of the position of his software component and the context in which
it is embedded.

• Market researchers that want to identify niche markets in open source networks.

• A developer who wants to contribute to an ecosystem, to identify where possibilities lie.

• Researchers to help validate ecosystem maturity models.

• Researchers who want to conduct further network analysis in the field of software ecosystems.

8.1 Findings and Implications

Relationships

Our first research question was:

RQ1: What are relationships in software ecosystems?

53

First of all, we observed that there are different definitions of what a software ecosystem is. The chosen
definition is determinative for the perception and analysis of ecosystems. The most cited definition is that
of Jansen et al. (2009), which we also use. However, we remark that software ecosystem relationships can
exist both between actors and between software components, as reflected in the other definitions.

Although all definitions mention the existence of relationships in software ecosystems, the exact nature of
these relationships is not strictly defined. As a result, we find in literature numerous ways on the basis of
which ecosystem relationships are identified and measured.

The essence of software ecosystem relationships is the exchange of information. Through ecosystem rela-
tionships, information is exchanged between actors or between software systems. Often, this exchange is
facilitated by a shared technology or platform. Ecosystem relationships are dynamic and can in general be
measured in terms of continuation and strength.

An implication of this is that the researcher is relatively free to determine a measure for relationships. Many
publications start with one well-established software ecosystem as a basis and then measure the relationships
within this ecosystem. Relationships are rarely used to identify previously unknown ecosystems.

Since collaboration is a key aspect of open source software, this is a suitable measure for relationships in
open source ecosystems. Several scientific sources use collaboration as a basis for ecosystem relationships.
Such relationships can be identified and measured by mining software repositories.

Collaboration network modeling method

Our second research question was formulated as follows:

RQ2: How can collaboration in software ecosystems be measured and visualized, based on data
from a public data source?

Modeling software ecosystems using a network structure is useful for the understanding and analysis of
ecosystems. Nodes in such a network normally represent actors, but can also refer to software components.
Edges indicate relationships between the nodes. Once the network is identified, numerous analysis methods
from graph theory are available, both on node level and on network level.

Using GitHub as a data source has its limitations, but when the researcher is aware of these, it can be
a very suitable data source because of its widespread use and the wealth of information it contains. This
information can be transparently accessed through the GitHub API or using external projects, some of which
store historical data that is useful for longitudinal analysis.

We use such historical data, which we analyze using a sliding time scale for the measurement of collaboration.
As a result, we obtain collaboration networks that can be calculated on a day-to-day basis or even more
precisely. This provides insight in the a dynamics of ecosystem evolution.

Our model for identifying collaboration relationships has as a benefit that the analysis can be done in retro-
spect without influencing the research subjects. Another clear benefit is that it does not require subjective
human input or assessment. It does, however require to set a root node and a depth to indicate how far
the analysis should reach. When these are provided, the collaboration network around such a node can be
identified.

54

Computation is a challenge because of the large amount of data and the large number of possible relationships
that have to be checked. However, this can be done in a relatively efficient way.

Life cycles

Our third research question was:

RQ3: Can various categories of collaboration networks be distinguished, based on their life
cycles?

Since our method for measuring collaboration in software ecosystems can be executed in an automated
way, it allows us to analyze large numbers of collaboration networks. We chose to select a sample set of
114 so-called user-centered collaboration networks (networks with users as nodes) and another one of 114
repository-centered networks (having repositories as nodes). Although these sample sizes are significantly
higher than the average found in existing literature, the samples are still relatively small compared to the
large numbers of users and repositories that are active on GitHub. Consequently, we are only 80% confident
that our findings correspond with reality and allow for an error margin of 6%.

Our scope is the years 2012 till 2014. Since we want to measure life cycle shapes, we need to ensure that
shapes we measure are full life cycles. Therefore, our sample sets consist of collaboration networks of which
we are confident to have completed a full life cycle in this period.

The observed life cycles can be volatile, partly because of the choice to analyze collaboration based on the
last 30 days prior to a measure point. Regression helps to find a pattern in life cycles and to categorize their
shapes.

We observe that there is no standard life cycle shape for collaboration networks in open source ecosystems,
but many variations are possible. We categorize these life cycles in such a way that each category has an
equal mathematical probability for a life cycle to fit into. However, our analysis points out that some life
cycle shapes occur significantly often.

The results are to some extent similar for user-centered collaboration networks and repository-centered
networks. We see the comparable shapes occurring in both types of networks. Remarkably, the ‘typical’ life
cycle shape assumed in several scientific sources (having a low first quarter and a high third quarter) does
not occur significantly often. In general, the decline of a collaboration network’s size takes more time. We
observe three clearly distinguished life cycle shapes that occur in our sample set.

Characteristics

After this followed a fourth research question:

RQ4: How are the collaboration networks in these categories characterized?

We analyzed the differences between the collaboration networks having one of the three identified common
life cycle shapes to the networks that had a different life cycle shape. This analyzed was based on the network
properties density, centralization, and clustering.

55

Our observation was that different life cycle shapes corresponded to significantly different network structures.
Network structure turned out to be determinative for the stability of a network’s life cycle. A strong network
structure can prevent sudden collapse of a collaboration network.

When a network is distinguished by low centralization and low clustering (a weak network structure), then
a quick collapse of the network can be expected, possibly followed by a short-term revival before the final
abandonment of the network. On the other hand, when a network is distinguished by high centralization and
high clustering (a strong network structure), one can expect a relatively stable period of growth, followed by a
slow and more predictable process of decline. When centralization and clustering are average, we can expect
a growth that is comparable to the ‘typical’ life cycle, apart from being slightly steeper at the beginning
and having a fluctuation in the middle. This finding matches to some extent with assumptions in existing
literature. Network density was not found to have a significant effect on the life cycle shape itself, but could
have an effect on the duration of a life cycle and its maximum.

Ruby ecosystem

Our final sub research question was formulated as:

RQ5: How does collaboration in an open source ecosystem evolve in practice?

For analyzing collaboration within a predefined set of nodes, no root node and depth are required to be
set. All collaboration among the Ruby repositories on GitHub was identified for the period from 2012 till
2014. This raises a question: which sub-part of this ecosystem’s life cycle did we analyze? Since the Ruby
ecosystem is still in development, this is difficult to tell. Based on the information that the Ruby ecosystem
emerged around 1996 and information from popularity trackers such as Google Trends1, we can presume
that the Ruby ecosystem has started its decline. So in the big picture, we likely analyzed a small part of the
decline process of the Ruby ecosystem.

Observing such a collaboration network can help to increase awareness of the position of nodes. The centrality
of nodes in the resulting network is an indication of the role they play. In general, more important nodes
take a more centralized positioned in the collaboration network. Certain nodes continue to stay in the
collaboration network during the entire observation period.

Collaboration is influenced by external factors (e.g. public holidays), internal factors (e.g. software versions
and releases) and of the popularity of software. Changes in an ecosystem’s collaboration network can again
be measured in terms of density, clustering and centralization.

We observe that the collaboration network for the Ruby ecosystem is characterized by several clusters of
software among which collaboration takes place. Sometimes two of such clusters join, while others disconnect
and fall apart.

An important remark is that projects in the Ruby ecosystem can be partly open source, being used in a
business model to attract developers that have to pay a license when using the software commercially. Some
of such commercial projects take the place of free alternatives.

1https://google.com/trends/explore#q=%2Fm%2F06ff5

56

8.2 Validity

When analyzing collaboration in open source software ecosystems, choices have to be made to create a model
of the actual world. Choices made in our approach are:

• Using GitHub as a data source, since it is the largest code host in the world (Gousios, Vasilescu,
Serebrenik, & Zaidman, 2014).

• Measuring relationships and relationship strength based on collaboration.

• Only regarding activity that occurred in the past 30 days prior to a measure point.

• Requiring a minimum of two collaborating users or repositories to be included in the analysis, in order
to prevent false positives.

• Regarding a period of three full months of no collaboration as an indication that a network is inactive.

• Calculating networks using depth 3, based on scientific sources.

• Using polynomial regression of order 1 till 4 to normalize and analyze data.

• Identifying the Ruby ecosystem on GitHub as all repositories containing ‘ruby’ in their full name.

Although the above choices can all be explained and are supported by scientific evidence, they make the
analysis quite specific. We remark again that most findings are under the reservation that we are statistically
only 80% confident that our findings correspond with reality. For further discussion of the validity of our
research approach, we refer to Section 2.4.

Our findings are limited to the scope of collaboration in open source software ecosystems and as such describe
only one aspect of ecosystem evolution. Moreover, the findings cannot be generalized to the entire research
field of software ecosystems, but are restricted to open source software.

8.3 Future Research

In our analysis, relatively much time was spent developing a suitable analysis tool. Future research (possibly
using the same tool or a similar procedure) could be more in-depth, focusing on one of the following areas:

• Disturbances in life cycles: What happens with life cycles when events such as the creation of branches
and forks (copies) take place? What is the effect of such events on collaboration evolution?

• Roles in ecosystems: Which roles do actors and repositories in software ecosystems have? Can certain
common roles be distinguished? Are certain roles more important than others, or do they complement
each other? What is the effect of a change in roles on an ecosystem?

• More technical network analysis: Once an ecosystem network is identified, available algorithms from
graph theory can be applied to e.g. look at route problems, network flow, and node clustering. A
substantial number of such algorithms is available, some of which can shed new light on the nature of
software ecosystems.

57

• Ecosystem maturity: More attention to ecosystem maturity and life cycle phases, such as Introduction,
Growth, Maturity, and Decline. Can such phases be objectively identified? What are indicators for
reaching a higher maturity level?

• More statistical analysis: Following collaboration networks for a longer period of time, using larger
samples and using more statistical analysis methods to identify causal relationships.

• Prediction of life cycles: Exploration of patterns found in comparable networks that are ahead in time.
Early indicators could possibly give information on how the life cycle of a network will develop.

• Comparison between open and closed source: What are the differences between open source and closed
source software ecosystems? To which extent can the results for open source ecosystems be generalized
for software ecosystems in general?

58

Chapter 9

Conclusion

Relationships in software ecosystems represent information exchange. Since various information flows can be
identified among software developers and software components, the procedure of relationship measurement
is decisive for the perception and further analysis of software ecosystems.

We present a method to objectively identify and measure collaboration networks in open source ecosystems.
This method can be executed in automated ways, making it possible to perform statistic analysis on col-
laboration evolution. We studied 228 collaboration networks that emerged and dissolved in the period from
January 2012 till December 2014 and as such followed complete life cycles.

We analyzed the life cycle shapes of these collaboration networks, based on network size. Many different
shapes are possible, some of which occur significantly often. The most significant shapes turn out to be
slightly different from a standard shape that is often assumed in literature. Next, we analyzed which
network structures correspond to the observed life cycle shapes. A strong network structure can benefit a
collaboration network in the sense that it is less likely, or less quickly, to fall apart. A network’s level of
centralization and clustering turn out to be indicators of the stability of the network’s life cycle.

Analyzing an existing ecosystem’s collaboration network can increase awareness about the position and
influence of actors in the ecosystem. Collaboration evolution must be seen in its context, sometime influenced
by external factors.

The results of our analysis shed new light on the evolution of collaboration within open source software
ecosystems. The followed procedures for collaboration identification and life cycle assessment can benefit
scientific research in the field of software ecosystems.

59

Bibliography

van Angeren, J. (2013). Exploring Platform Ecosystems: A Comparison of Complementor Networks and
their Characteristics. Master Thesis.

van Angeren, J., Alves, C., & Jansen, S. (2014). Analyzing Complementor Interactions in Commercial
Platform Ecosystems: The Role of Governance Mechanisms.

Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International
Journal of Social Research Methodology , 8(1), 19–32.

Barbosa, O., & Alves, C. (2011). A Systematic Mapping Study on Software Ecosystems, 15–26.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and
Manipulating Networks. Third International AAAI Conference on Weblogs and Social Media, 361–362.

van den Berk, I., Jansen, S., & Luinenburg, L. (2010). Software Ecosystems: A Software Ecosystem Strategy
Assessment Model. European Conference on Software Architecture, 127–134.

Bird, C., Gourley, A., Devanbu, P., Gertz, M., & Swaminathan, A. (2006). Mining email social networks,
137–143.

Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., & Devanbu, P. (2009). The Promises and
Perils of Mining Git, 1–10.

Birou, L., Fawcett, S.E., & Magnan, G.M. (1997). Integrating Product Life Cycle and Purchasing Strategies.
Journal of Supply Chain Management , 33(1), 23–31.

Blincoe, K., Harrison, F., & Damian, D. (2015). Ecosystems in GitHub and a Method for Ecosystem Iden-
tification using Reference Coupling. Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR ’15), Florence, Italy .

Bosch, J. (2009). From software product lines to software ecosystems. Proceedings of the 13th International
Software Product Line Conference, (Splc), 111–119.

Boucharas, V., Jansen, S., & Brinkkemper, S. (2009). Formalizing software ecosystem modeling. Proceedings
of the 1st international workshop on Open component ecosystems IWOCE 09 , 19(2), 41.

Cacioppo, J.T., Fowler, J.H., & Christakis, N.a. (2009). Alone in the crowd: the structure and spread of
loneliness in a large social network. Journal of personality and social psychology , 97(6), 977–991.

60

Campbell, P., & Ahmed, F. (2010). A three-dimensional view of software ecosystems. Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, (c), 81–84.

Caudwell, A.H. (2010). Gource: visualizing software version control history. In Proceedings of the ACM
international conference companion on Object oriented programming systems languages and applications
companion, ACM, (pp. 73–74).

a Christakis, N., & Fowler, J.H. (2007). The spread of obesity in a large social network over 32 years. The
New England journal of medicine, 357(4), 370–9.

Christakis, N.A., & Fowler, J.H. (2009). Connected: The Surprising Power of Our Social Networks and How
They Shape Our Lives, vol. 3. Little, Brown and Company.

Collins, J.J., & Chow, C.C. (1998). Network Modelling [Six Degrees of Separation]. Nature, 393, 409–410.

Crowston, K., & Howison, J. (2005). The social structure of free and open source software development.
First Monday , 10(2).

Dhungana, D., Groher, I., Schludermann, E., & Biffl, S. (2010). Software ecosystems vs. natural ecosystems.
Ecosystems, 96–102.

Eckhardt, E., Kaats, E., Jansen, S., & Alves, C. (2014). The Merits of a Meritocracy in Open Source Software
Ecosystems. In Proceedings of the 2014 European Conference on Software Architecture Workshops, ACM,
(p. 7).

Fowler, J.H., & Christakis, N.A. (2008). Dynamic spread of happiness in a large social network: longitudinal
analysis over 20 years in the Framingham Heart Study. BMJ , 337(a2338), 1–9.

Fowler, J.H., & Christakis, N.a. (2010). Cooperative behavior cascades in human social networks. Proceedings
of the National Academy of Sciences of the United States of America, 107(12), 5334–5338.

Freeman, L.C. (1978). Centrality in social networks conceptual clarification. 1(3), 215–239.

Goeminne, M., & Mens, T. (2010). A framework for analysing and visualising open source software ecosys-
tems, 1 – 6.

Gousios, G., & Spinellis, D. (2012). GHTorrent: Github’s data from a firehose, 12–21.

Gousios, G., Vasilescu, B., Serebrenik, A., & Zaidman, A. (2014). Lean GHTorrent: GitHub data on demand.
Proceedings of the 11th Working Conference on Mining Software Repositories - MSR 2014 , 384–387.

Granovetter, M. (1976). Network Sampling: Some First Steps. 81(6), 1287.

Gregorian, A. (2014). A Tie Strength Model For Reconstructing Collaboration Networks on GitHub – A
study of the Ruby on Rails project network. Master Thesis.

Hanssen, G.K. (2012). A longitudinal case study of an emerging software ecosystem: Implications for practice
and theory. Journal of Systems and Software, 85(7), 1455–1466.

61

den Hartigh, E., Tol, M., & Visscher, W. (2006). The health measurement of a business ecosystem. In Pro-
ceedings of the European Network on Chaos and Complexity Research and Management Practice Meeting ,
(pp. 1–39).

Hassan, A.E. (2008). The road ahead for Mining Software Repositories, 48–57.

Hassan, A.E., Holt, R.C., & Mockus, A. (2004). MSR 2004: International workshop on mining software
repositories. 26, 770–771.

Holmlund, M. (1997). What are relationships in business networks? Management Decision, 35(4), 304–309.

Hoving, R., Slot, G., & Jansen, S. (2013). Python: Characteristics identification of a free open source software
ecosystem, 13–18.

Iansiti, M., & Levien, R. (2004). Strategy as ecology. Harvard business review , 82(3), 68–81.

J. H. Christakis, N. A., .F. (2008). The collective dynamics of smoking in a large social network. New England
journal of medicine, 358(21), 2249–2258.

Jansen, S., & Bloemendal, E. (2013). Defining app stores: The role of curated marketplaces in software
ecosystems. 150 LNBIP, 195–206.

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research agenda for software
ecosystems. 2009 31st International Conference on Software Engineering - Companion Volume.

Jones, L.V. (1955). Statistical theory and research design. Annual Review of Psychology , 6(1), 405–430.

Kabbedijk, J., & Jansen, S. (2011). Steering insight: An exploration of the Ruby software ecosystem. 80
LNBIP, 44–55.

Kagdi, H., Collard, M.L., & Maletic, J.I. (2007). A survey and taxonomy of approaches for mining software
repositories in the context of software evolution. 19(2), 77–131.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., & Damian, D. (2014). The Promises
and Perils of Mining GitHub. In Proceedings of the 11th Working Conference on Mining Software Reposi-
tories, MSR 2014, New York, NY, USA: ACM, (pp. 92–101).

Kim, K., Altmann, J., & Lee, W.R. (2013). Patterns Of Innovation In Saas Networks: Trend Analysis Of
Node Centralities. In ECIS , (p. 187).

Kim, K., Lee, W.R., & Altmann, J. (2014). SNA-based innovation trend analysis in software service networks.
Electronic Markets.

Krauthl, J., & Lienert, G.A. (1978). Nonparametric Two-Sample Comparison of Learning Curves Based on
Orthogonal Polynomials. Psychological Research, 40, 159–171.

Levitt, T. (1965). Exploit the product life cycle, vol. 43. Graduate School of Business Administration, Harvard
University.

62

Lungu, M., Lanza, M., Gîrba, T., & Robbes, R. (2010). The Small Project Observatory: Visualizing software
ecosystems. Science of Computer Programming , 75(4), 264–275.

Manikas, K., & Hansen, K.M. (2013). Software ecosystems – A systematic literature review. Journal of
Systems and Software, 86(5), 1294–1306.

Mens, T., & Goeminne, M. (2011). Analysing the evolution of social aspects of open source software ecosys-
tems. Proc. 3rd Int. Workshop on Software Ecosystems, 1–14.

Mens, T., Claes, M., Grosjean, P., & Serebrenik, A. (2014). Studying Evolving Software Ecosystems based
on Ecological Models. In T. Mens, A. Serebrenik, & A. Cleve (Eds.), Evolving Software Systems, Springer
Berlin Heidelberg, (pp. 297–326).

Messerschmitt, D.G., & Szyperski, C. (2003). Software Ecosystem: Understanding an Indispensable Tech-
nology and Industry , vol. 1.

Miluzzo, E., Lane, N.D., Lu, H., & Campbell, A.T. (2010). Research in the App Store Era: Experiences from
the CenceMe App Deployment on the iPhone. First Workshop on Research in the Large at UbiComp.

Molder, J.T., Van Lier, B., & Jansen, S. (2011). Clopenness of systems: The interwoven nature of ecosystems.
Third International Workshop on Software Ecosystems (IWSECO-2011), CEUR-WS , 746, 52–64.

Pérez, J., Deshayes, R., Goeminne, M., & Mens, T. (2012). SECONDA: Software ecosystem analysis dash-
board, 527–530.

Polli, R., & Cook, V. (1969). Validity of the product life cycle. Journal of Business, 385–400.

Rosenquist, J.N., Murabito, J., Fowler, J.H., & Christakis, N.A. (2010). The Spread of Alcohol Consumption
Behavior in a Large Social Network. Annals of Internal Medicine, 152(7), 426–433.

Rosenquist, J.N., Fowler, J.H., & Christakis, N.a. (2011). Social network determinants of depression. Molec-
ular psychiatry , 16(3), 273–281.

Santana, F., & Werner, C. (2013). Towards the Analysis of Software Projects Dependencies: An Exploratory
Visual Study of Software Ecosystems. . . . Workshop on Software Ecosystems, 4th . . . , 1 – 12.

dos Santos, R.P., & Werner, C. (2011). Treating business dimension in software ecosystems. In Proceedings
of the International Conference on Management of Emergent Digital EcoSystems, ACM, (pp. 197–201).

dos Santos, R.P., Esteves, M.G.P., Freitas, G.d.S., & de Souza, J.M. (2014). Using Social Networks to
Support Software Ecosystems Comprehension and Evolution. Social Networking , 3(2).

Sorenson, H. (1970). Least-Squares Estimation. From Gauss To Kalman. IEEE Spectrum, 7(7), 63–68.

Syed, S., & Jansen, S. (2013). On Clusters in Open Source Ecosystems. 5th International Workshop on
Software Ecosystems (IWSECO 2013), 13.

Tao, Y. (2013). Ontology-based active repository system. Information Technology Journal , 12(11), 2138–
2145.

63

Tellis, G.J., & Crawford, C.M. (1981). An evolutionary approach to product growth theory. The Journal of
Marketing , 125–132.

Watts, D., & Strogatz, S. (1998). Collective dynamics of ’small-world’networks. nature, 393(6684), 440–442.

Welch, B.L. (1947). The generalization ofstudent’s’ problem when several different population variances are
involved. Biometrika, 28–35.

64

Appendix A: Analysis Data

The sample set of ecosystems with a user as origin, with the corresponding network properties, is shown in
the table below.

Table 9.1: Results for user-centered ecosystem networks.

Root/origin user R
eg
re
ss
io
n
p
ol
yn

om
ia
l:

f
(x

)
=

P
ol
yn

om
ia
l
ca
te
go

ry

A
ve
ra
ge

ne
tw

or
k
de

ns
it
y

A
ve
ra
ge

de
gr
ee

ce
nt
ra
li
za
ti
on

A
ve
ra
ge

cl
us
te
ri
ng

co
effi

ci
en
t

1 coss −42.5x4 + 90.5x3 − 61.0x2 + 13.3x+ 0.1 +-++- 0.08 0.30 0.46
2 kpieters −3.4x4 + 3.6x3 + 0.1x2 − 1.0x + 0.7 +---+ 0.11 0.29 0.47
3 cgmartin −24.8x4 + 51.5x3 − 36.8x2 + 10.0x− 0.2 +--+- 0.16 0.34 0.45
4 diemuzi −3.8x4 + 14.0x3 − 15.1x2 + 4.7x + 0.5 +--++ 0.11 0.39 0.53
5 WalterTamboer −4.3x4 + 12.6x3 − 13.0x2 + 4.4x + 0.5 +--++ 0.11 0.35 0.51
6 Slamdunk −18.3x4 + 30.4x3 − 14.5x2 + 1.2x + 0.7 --+-- 0.11 0.31 0.37
7 yanickrochon −11.9x4 + 19.4x3 − 8.6x2 + 1.2x + 0.5 +++-- 0.07 0.44 0.42
8 BilgeXA −22.6x4 + 49.5x3 − 33.6x2 + 6.1x + 0.6 --++- 0.08 0.10 0.23
9 raykolbe −7.8x4 + 20.1x3 − 18.3x2 + 5.7x + 0.1 ---++ 0.21 0.49 0.23
10 figof −15.0x4 + 32.3x3 − 22.3x2 + 4.6x + 0.6 +-++- 0.50 0.52 0.98
11 superdweebie −14.7x4 + 30.9x3 − 20.3x2 + 3.7x + 0.2 --++- 0.26 0.11 0.11
12 oppegard 8.4x4 − 22.8x3 + 20.6x2 − 6.3x + 0.6 -++-+ 0.17 0.40 0.40
13 oparadis −9.4x4 + 11.6x3 − 0.2x2 − 2.8x + 0.7 -++-+ 0.09 0.29 0.17
14 Ph3nol −21.0x4 + 43.1x3 − 29.4x2 + 7.5x + 0.2 ++--- 0.05 0.35 0.41
15 michaelperrin −21.5x4 + 43.2x3 − 29.1x2 + 7.7x + 0.2 ++--- 0.05 0.27 0.39
16 gaurish 8.9x4 − 17.4x3 + 7.8x2 + 0.4x + 0.4 +---+ 0.10 0.27 0.50
17 Lumbendil −25.3x4 + 56.6x3 − 40.3x2 + 8.4x + 0.5 --++- 0.22 0.11 0.17
18 michelsalib −40.8x4 + 81.9x3 − 51.3x2 + 9.6x + 0.3 --+-- 0.14 0.19 0.18
19 cruelwen −8.1x4 + 18.0x3 − 11.6x2 + 2.0x + 0.7 +++++ 0.85 0.33 0.41
20 Hikkijp −2.7x4 + 12.7x3 − 15.2x2 + 6.0x − 0.1 ++-++ 0.35 0.32 0.61
21 bezhermoso −7.4x4 + 16.0x3 − 13.8x2 + 5.0x + 0.3 +---+ 0.05 0.31 0.39
22 erodataM 1.8x4 − 1.4x3 − 2.4x2 + 2.2x + 0.3 ++-++ 0.08 0.51 0.34
23 syslxg −9.7x4 + 21.6x3 − 17.2x2 + 6.3x − 0.2 ++-++ 0.39 0.60 0.65
24 nomack84 −25.2x4 + 58.2x3 − 41.9x2 + 9.2x + 0.2 --++- 0.03 0.16 0.24
25 davidwindell −40.5x4 + 88.2x3 − 61.6x2 + 13.9x --++- 0.05 0.23 0.27
26 lmoehn −1.9x4 + 10.6x3 − 14.4x2 + 6.0x + 0.1 +--++ 0.41 0.41 0.62
27 khwang1 −30.1x4 + 58.6x3 − 34.3x2 + 6.6x − 0.2 -++-- 0.22 0.10 0.16
28 mattupstate 3.4x4 − 16.4x3 + 16.8x2 − 4.4x + 0.3 -+--+ 0.66 0.23 0.39
29 okonomiyaki3000 −15.4x4 + 35.2x3 − 26.7x2 + 7.0x − 0.2 ---+- 0.48 0.17 0.57
30 Baachi −29.5x4 + 57.0x3 − 32.0x2 + 3.8x + 0.8 --+-- 0.06 0.18 0.20
31 aliismayilov −0.6x4 − 1.1x3 + 2.0x ++--+ 0.49 0.51 0.68
32 fukajun −3.2x4 + 4.6x3 − 2.7x2 + 1.3x -+--+ 0.77 0.46 0.77

65

33 gedrox −12.4x4 + 27.5x3 − 20.4x2 + 5.6x + 0.4 ++-+- 0.06 0.29 0.41
34 hswong3i 15.2x4 − 31.3x3 + 17.7x2 − 1.1x ++--+ 0.22 0.48 0.41
35 Partugal −41.1x4 + 84.8x3 − 55.9x2 + 11.8x+ 0.1 --++- 0.06 0.18 0.24
36 marceloboeira −29.9x4 + 55.4x3 − 30.6x2 + 5.4x − 0.2 -++-- 0.46 0.18 0.20
37 pwenig −16.0x4 + 40.6x3 − 33.7x2 + 9.1x + 0.2 ---+- 0.29 0.51 0.38
38 twinturbo −34.2x4 + 72.7x3 − 50.0x2 + 11.5x− 0.2 --++- 0.16 0.36 0.27
39 bar −37.4x4 + 76.7x3 − 49.8x2 + 10.1x+ 0.1 --++- 0.13 0.31 0.19
40 dhozac −7.7x4 + 16.5x3 − 13.6x2 + 4.6x + 0.4 +---+ 0.55 0.53 0.81
41 juliendidier 7.3x4 − 17.7x3 + 15.8x2 − 6.2x + 0.9 --+-+ 0.42 0.14 0.10
42 aaronschmitz −24.7x4 + 51.6x3 − 33.5x2 + 6.2x + 0.3 --++- 0.50 0.02 0.25
43 nclundsten −18.1x4 + 38.9x3 − 26.4x2 + 5.2x + 0.2 --++- 0.30 0.16 0.17
44 franciscomxs 32.1x4 − 68.6x3 + 45.3x2 − 9.1x + 0.5 -+--+ 0.28 0.19 0.21
45 kozo002 −11.6x4 + 24.6x3 − 18.3x2 + 4.7x + 0.5 +--+- 0.74 0.34 0.85
46 benlumley −29.9x4 + 62.1x3 − 41.9x2 + 10.2x− 0.2 ++++- 0.08 0.31 0.36
47 TomAdam −20.1x4 + 48.5x3 − 35.1x2 + 7.2x + 0.3 --++- 0.07 0.28 0.23
48 andreatarr −17.2x4 + 37.3x3 − 25.2x2 + 4.6x + 0.6 --++- 0.46 0.59 0.64
49 vbardales −12.3x4 + 26.8x3 − 19.6x2 + 5.1x + 0.2 +--+- 0.07 0.35 0.36
50 pasamio −24.1x4 + 44.4x3 − 24.3x2 + 4.0x -++-- 0.34 0.17 0.38
51 glowell2 −4.1x4 + 11.0x3 − 10.5x2 + 3.8x + 0.3 ++-++ 0.57 0.49 0.72
52 shageman −0.4x4 + 1.9x3 − 3.8x2 + 2.3x + 0.5 ++--+ 0.29 0.75 0.75
53 oszczep 4.2x4 − 4.0x3 − 4.8x2 + 4.7x +--++ 0.42 0.66 0.53
54 johanpoirier −18.6x4 + 35.5x3 − 21.7x2 + 5.2x + 0.2 ++--- 0.78 0.29 0.80
55 vandosant −25.4x4 + 57.2x3 − 43.6x2 + 12.1x− 0.1 +--+- 0.35 0.55 0.53
56 andraskende −25.7x4 + 46.3x3 − 23.6x2 + 2.6x + 0.6 -++-- 0.29 0.33 0.51
57 jtuchscherer −7.2x4 + 13.8x3 − 7.7x2 + 1.2x + 0.4 +++-+ 0.25 0.48 0.61
58 mikeryan-inktank 2.7x4 + 0.9x3 − 3.8x2 + 0.8x + 0.5 -++++ 0.40 0.30 0.43
59 tlabeeuw 18.3x4 − 36.0x3 + 20.6x2 − 2.6x + 0.3 ++--+ 0.26 0.57 0.58
60 seishingithub −6.3x4 + 18.8x3 − 19.6x2 + 7.4x + 0.1 +--++ 0.29 0.42 0.60
61 theodorDiaconu −5.8x4 + 17.6x3 − 17.1x2 + 5.2x + 0.4 +--++ 0.72 0.34 0.66
62 acasademont −29.6x4 + 62.7x3 − 41.5x2 + 7.9x + 0.6 --++- 0.12 0.14 0.29
63 jumph4x 4.5x4 − 10.7x3 + 9.3x2 − 3.6x + 0.6 --+-+ 0.17 0.15 0.09
64 krystalcampioni −2.0x4 − 2.3x3 + 7.8x2 − 3.9x + 0.6 -++-+ 0.30 0.24 0.38
65 andreibondarev 6.6x4 − 3.4x3 − 5.4x2 + 2.5x + 0.5 +-+++ 0.31 0.37 0.39
66 danielholmes 18.2x4 − 38.4x3 + 26.8x2 − 7.3x + 0.8 --+-+ 0.12 0.08 0.09
67 NARKOZ −28.6x4 + 60.7x3 − 40.9x2 + 8.2x + 0.3 --++- 0.33 0.35 0.24
68 ir3 −0.6x4 − 0.3x3 + 0.9x2 + 0.2 -+--+ 0.75 0.41 0.87
69 fazy −36.2x4 + 68.3x3 − 38.2x2 + 6.4x + 0.1 -++-- 0.57 0.22 0.58
70 AndreasMaier −16.6x4 + 31.9x3 − 20.5x2 + 5.3x + 0.4 ++--- 0.26 0.73 0.78
71 matteocaberlotto 0.6x4 − 3.5x3 + 5.1x2 − 2.7x + 0.5 --+-+ 0.49 0.04 0.04
72 stevepm 6.3x4 − 7.8x3 − 1.7x2 + 3.3x + 0.3 +--++ 0.37 0.35 0.56
73 iwhurtafly −0.6x4 − 0.3x3 + 0.9x2 + 0.2 -+--+ 0.85 0.39 0.95
74 siong1987 −18.9x4 + 34.7x3 − 20.5x2 + 4.9x + 0.2 ++--- 0.07 0.24 0.32
75 Kimundi −4.2x4 + 1.8x3 + 4.4x2 − 1.9x + 0.4 +++-+ 0.09 0.28 0.56
76 dongilbert 9.7x4 − 16.6x3 + 9.0x2 − 1.6x + 0.1 -++++ 0.38 0.34 0.20
77 dengwa −30.8x4 + 55.4x3 − 29.1x2 + 5.0x − 0.2 -++-- 0.51 0.39 0.46
78 durhamka 24.9x4 − 51.1x3 + 32.3x2 − 6.2x + 0.3 -+--+ 0.37 0.27 0.29
79 acapilleri −16.4x4 + 32.8x3 − 22.8x2 + 6.3x + 0.4 ++--- 0.08 0.25 0.51
80 rufinus −18.8x4 + 39.5x3 − 29.5x2 + 8.8x + 0.1 +--+- 0.07 0.27 0.46
81 keqh −16.7x4 + 32.8x3 − 20.0x2 + 4.2x + 0.3 +++-- 0.85 0.39 0.95
82 thanosp −29.9x4 + 63.4x3 − 42.8x2 + 9.7x − 0.2 -+++- .12 0.26 0.22
83 pivotal-vmware −23.0x4 + 47.1x3 − 30.0x2 + 6.3x + 0.2 +++-- 0.39 0.62 0.70
84 xtian −0.7x4 − 3.5x3 + 7.4x2 − 4.3x + 1.0 --+-+ 0.10 0.31 0.26
85 alopropoz −7.6x4 + 18.1x3 − 15.4x2 + 4.4x + 0.5 +--++ 0.61 0.53 0.73
86 ezkl 5.5x4 − 14.2x3 + 13.2x2 − 5.1x + 0.7 --+-+ 0.30 0.26 0.03
87 blois −8.8x4 + 17.4x3 − 14.6x2 + 5.7x + 0.2 +---+ 0.44 0.36 0.49
88 XenoPhex 3.4x4 − 7.7x3 + 8.4x2 − 3.6x + 0.5 -++-+ 0.40 0.59 0.19
89 spencereldred −31.7x4 + 64.7x3 − 41.5x2 + 8.0x + 0.2 --++- 0.51 0.50 0.28
90 bsodmike −23.2x4 + 44.7x3 − 28.8x2 + 7.1x + 0.1 ++--- 0.09 0.24 0.34
91 chou −30.0x4 + 65.3x3 − 45.1x2 + 9.5x + 0.2 --++- 0.36 0.18 0.36
92 benjaminpick −32.8x4 + 66.0x3 − 40.6x2 + 8.2x − 0.2 -++-- 0.60 0.08 0.42
93 makaroni4 3.4x4 − 2.2x3 − 0.4x2 + 0.3x -++++ 0.25 0.12 0.07
94 tdboone −46.6x4 + 90.8x3 − 53.9x2 + 9.9x -++-- 0.38 0.25 0.38
95 jcpivotallabs −16.3x4 + 30.8x3 − 19.4x2 + 4.8x + 0.4 ++--- 0.30 0.36 0.68
96 wandtasie −6.3x4 + 14.5x3 − 11.1x2 + 2.7x + 0.4 --+++ 0.13 0.36 0.26
97 apperly −10.9x4 + 18.9x3 − 10.6x2 + 3.0x + 0.1 ++--+ 0.31 0.56 0.64

66

98 ayrton −16.0x4 + 31.6x3 − 21.6x2 + 5.9x + 0.4 ++--- 0.08 0.24 0.50
99 Dinduks −22.6x4 + 43.4x3 − 26.5x2 + 5.9x + 0.3 ++--- 0.04 0.32 0.41
100 dliebreich −4.1x4 + 10.5x3 − 7.4x2 + 1.7x + 0.3 -++++ 0.23 0.32 0.53
101 cf-bosh −6.9x4 + 10.6x3 − 4.4x2 + 0.8x + 0.3 ++--+ 0.35 0.61 0.67
102 jcorcuera −11.7x4 + 23.3x3 − 16.2x2 + 4.8x + 0.3 ++--- 0.07 0.24 0.43
103 ems2141 10.9x4 − 9.6x3 − 5.9x2 + 4.9x + 0.3 +--++ 0.25 0.26 0.49
104 kushmerick 2.9x4 − 4.4x3 − 0.7x2 + 2.3x + 0.3 ++-++ 0.40 0.53 0.77
105 JennyAllar −18.5x4 + 48.8x3 − 41.8x2 + 12.0x− 0.1 +--+- 0.38 0.26 0.57
106 mikekauffman −6.6x4 + 26.1x3 − 28.2x2 + 9.2x + 0.1 +--++ 0.25 0.32 0.49
107 Romain-Geissler −12.8x4 + 31.9x3 − 24.9x2 + 6.1x + 0.3 +-++- 0.05 0.23 0.32
108 brannon 2.4x4 − 1.9x3 + 0.2x + 0.1 -++++ 0.79 0.47 0.64
109 route −44.1x4 + 86.4x3 − 51.3x2 + 8.9x + 0.2 -++-- 0.17 0.24 0.25
110 lunks −5.4x4 + 10.6x3 − 7.1x2 + 2.0x − 0.1 -+--+ 0.46 0.32 0.33
111 wzzrd 28.0x4 − 49.3x3 + 22.6x2 − 0.8x − 0.1 ---++ 0.60 0.28 0.32
112 cf-runtime −10.9x4 + 21.8x3 − 14.6x2 + 3.9x + 0.5 ++--+ 0.29 0.44 0.71
113 guilsa −27.1x4 + 56.0x3 − 36.7x2 + 7.8x + 0.1 --++- 0.55 0.38 0.65
114 giosh94mhz −1.0x4 + 6.0x3 − 9.8x2 + 5.0x + 0.1 +--++ 0.04 0.29 0.30

Average −11.7x4 + 24.6x3 − 16.9x2 + 4.0x + 0.3 0.30 0.33 0.44

The sample set of ecosystems with a repository as origin, with the corresponding network properties, is
shown in the table below.

Table 9.2: Results for repository-centered ecosystem networks.

Root/origin repository R
eg
re
ss
io
n
p
ol
yn

om
ia
l:

f(
x)
=

P
ol
yn

om
ia
l
ca
te
go

ry

A
ve
ra
ge

ne
tw

or
k
de

ns
it
y

A
ve
ra
ge

de
gr
ee

ce
nt
ra
li
za
ti
on

A
ve
ra
ge

cl
us
te
ri
ng

co
effi

ci
en
t

1 yapplabs/glazier 12.7x4 − 26.3x3 + 16.1x2 − 2.4x + 0.3 ++--+ 0.40 0.47 0.76
2 tooling/authoring-styleguide −16.0x4 + 30.1x3 − 18.6x2 + 4.9x + 0.1 ++--- 0.72 0.20 0.85
3 angular/angular-sites −5.5x4 + 11.5x3 − 10.6x2 + 5.0x ++-++ 0.56 0.55 0.77
4 kevva/imagemin-gui −17.1x4 + 36.2x3 − 25.9x2 + 6.5x + 0.4 +--+- 0.22 0.47 0.74
5 clear-code/internship −22.8x4 + 54.4x3 − 43.0x2 + 11.6x− 0.1 ---+- 0.67 0.56 0.53
6 joliss/broccoli −3.4x4 + 9.7x3 − 11.8x2 + 5.2x + 0.3 +--++ 0.22 0.33 0.79
7 dart-lang/dartlang.org 4.9x4 − 11.2x3 + 9.1x2 − 2.9x + 0.4 -++-+ 0.60 0.37 0.23
8 c9/runjs −14.4x4 + 33.4x3 − 24.4x2 + 5.4x + 0.2 --++- 0.12 0.34 0.27
9 saltstack-formulas/tomcat-formula −15.8x4 + 30.5x3 − 20.5x2 + 5.3x + 0.4 +---- 0.47 0.52 0.86
10 mozilla/gaia-ui-tests 20.5x4 − 38.8x3 + 23.9x2 − 5.4x + 0.8 +++++ 0.45 0.49 0.63
11 droonga/express-droonga −0.9x4 − 3.5x3 + 7.2x2 − 2.6x + 0.5 +++-+ 0.47 0.31 0.69
12 snowplow/referer-parser −13.8x4 + 26.5x3 − 17.1x2 + 4.6x + 0.3 ++--- 0.82 0.20 0.84
13 tinkerpop/furnace −25.2x4 + 55.4x3 − 38.9x2 + 8.7x + 0.1 --++- 0.47 0.21 0.43
14 thinkaurelius/faunus 6.5x4 − 4.0x3 − 4.7x2 + 2.9x + 0.1 --+++ 0.39 0.16 0.31
15 sindresorhus/get-stdin −16.1x4 + 30.1x3 − 18.9x2 + 5.5x − 0.1 ++--- 0.13 0.29 0.72
16 dockyard/ember-appkit-rails 1.0x4 + 0.2x3 − 0.6x2 − 0.1x + 0.3 -++++ 0.29 0.31 0.54
17 ContinuumIO/conda 24.0x4 − 48.7x3 + 31.9x2 − 7.1x + 0.5 -++-+ 0.57 0.28 0.08
18 koajs/send −19.2x4 + 40.4x3 − 28.0x2 + 6.8x + 0.4 +--+- 0.83 0.13 0.88
19 atom/open-on-github 7.3x4 − 11.6x3 + 8.3x2 − 3.4x + 0.6 -++++ 0.18 0.13 0.27
20 WebComponentsOrg/webcomponents.org −17.2x4 + 40.2x3 − 29.7x2 + 6.2x + 0.5 --++- 0.38 0.23 0.31
21 isaacs/read 27.0x4 − 56.7x3 + 37.4x2 − 8.5x + 0.9 ----+ 0.35 0.21 0.32
22 addyosmani/traceur-todomvc −14.9x4 + 28.6x3 − 18.9x2 + 5.0x + 0.4 +---- 0.63 0.42 0.93
23 sindresorhus/slang-haven −27.2x4 + 54.1x3 − 31.9x2 + 4.7x + 0.7 +-+-- 0.43 0.48 0.71
24 ebryn/bugzilla-ember −12.7x4 + 25.4x3 − 16.6x2 + 4.3x + 0.2 ++--- 0.45 0.52 0.85
25 groonga/gcs −0.8x4 − 2.1x3 + 5.7x2 − 3.2x + 0.6 -++-+ 0.54 0.40 0.70
26 stefanpenner/ember-app-kit −11.1x4 + 22.5x3 − 12.8x2 + 1.5x + 0.4 -++++ 0.29 0.41 0.53
27 ajaxorg/node-github −2.2x4 + 6.8x3 − 8.0x2 + 3.3x + 0.1 ---++ 0.32 0.53 0.50

67

28 CocoaPods/beta.cocoapods.org −10.8x4 + 28.0x3 − 25.4x2 + 8.7x − 0.1 +--++ 0.56 0.45 0.76
29 ipython/nbconvert −1.9x4 + 4.0x3 − 2.2x2 − 0.3x + 0.5 --+++ 0.39 0.34 0.25
30 react-php/react −17.7x4 + 30.8x3 − 14.9x2 + 2.3x − 0.1 -++-- 0.54 0.14 0.61
31 yahoo/gear −31.5x4 + 58.4x3 − 32.7x2 + 6.0x − 0.2 -++-- 0.41 0.14 0.17
32 sameera2004/NSLS2 −17.1x4 + 27.6x3 − 12.8x2 + 2.5x ++--- 0.50 0.31 0.71
33 LearnBoost/monk −5.4x4 + 14.4x3 − 14.5x2 + 5.8x − 0.1 ---++ 0.14 0.36 0.30
34 IndigoUnited/automaton −5.4x4 + 10.5x3 − 6.6x2 + 1.6x -++-+ 0.62 0.14 0.44
35 driftyco/ionic-angular-cordova-seed 11.9x4 − 26.7x3 + 19.1x2 − 4.0x + 0.4 ++--+ 0.71 0.35 0.79
36 component/dropload 9.2x4 − 15.0x3 + 3.6x2 + 1.6x + 0.6 +--++ 0.58 0.33 0.70
37 githubtrainer/poetry 15.4x4 − 26.0x3 + 12.4x2 − 1.7x + 0.4 ---++ 0.51 0.37 0.20
38 aurajs/aura 12.0x4 − 22.1x3 + 11.7x2 − 1.7x + 0.2 ---++ 0.48 0.24 0.38
39 logaling/logaling-server −5.3x4 + 11.9x3 − 8.8x2 + 2.1x + 0.1 --+++ 0.83 0.27 0.34
40 bigpipe/pipe.js −6.3x4 + 5.8x3 + 1.1x2 − 0.8x + 0.4 ++--+ 0.83 0.16 0.82
41 github/teach.github.com 0.1x4 + 1.7x3 − 3.4x2 + 1.6x + 0.2 ---++ 0.83 0.25 0.30
42 Sylius/SyliusAssortmentBundle 8.0x4 − 19.1x3 + 15.5x2 − 4.9x + 0.5 --+-+ 1.09 0.05 1.12
43 alchemy-fr/PHP-dataURI −22.9x4 + 51.2x3 − 36.3x2 + 8.9x − 0.3 -+++- 0.44 0.30 0.48
44 3rd-Eden/bigpipe 4.6x4 − 6.3x3 + 3.9x2 − 1.9x + 0.6 -++++ 0.72 0.13 0.47
45 willdurand/BazingaExposeTranslationBundle 5.4x4 − 11.8x3 + 7.5x2 − 0.9x + 0.6 ++--+ 0.03 0.39 0.40
46 pandamicro/plugin-x −30.4x4 + 59.0x3 − 35.3x2 + 6.7x + 0.5 +++-- 0.33 0.56 0.49
47 yapplabs/mhe-metadata-js −20.6x4 + 38.7x3 − 23.7x2 + 5.8x + 0.2 ++--- 0.41 0.41 0.89
48 janestreet/patience_diff −12.0x4 + 24.6x3 − 13.8x2 + 2.1x -+++- 0.51 0.11 0.55
49 johnmccutchan/markerprof −4.2x4 + 9.8x3 − 8.5x2 + 3.1x + 0.1 ---++ 1.19 0.15 1.19
50 zwaldowski/AZCoreRecord 5.5x4 − 11.2x3 + 8.8x2 − 3.2x + 0.6 --+-+ 0.30 0.25 0.22
51 CakeDC/markup_parsers −3.0x4 + 12.3x3 − 14.0x2 + 4.3x + 0.6 +--++ 0.30 0.47 0.51
52 filamentgroup/tappy −19.9x4 + 38.8x3 − 22.3x2 + 2.4x + 0.7 --+-- 0.57 0.10 0.46
53 radio-tools/spectral-cube 9.4x4 − 20.7x3 + 10.9x2 + 0.2x + 0.2 +---+ 0.35 0.52 0.48
54 hull/minimhull −7.3x4 + 19.7x3 − 19.1x2 + 6.9x + 0.2 +--++ 0.70 0.50 0.90
55 jspahrsummers/xcconfigs 15.5x4 − 29.5x3 + 18.2x2 − 4.0x + 0.5 -++++ 0.27 0.14 0.32
56 phinze/homebrew-cask −19.6x4 + 37.2x3 − 21.5x2 + 4.1x − 0.2 -++-- 0.72 0.37 0.32
57 digitalbazaar/payswarm.js 12.7x4 − 29.7x3 + 24.0x2 − 7.3x + 0.8 -++-+ 0.61 0.14 0.44
58 primus/metroplex −28.8x4 + 58.3x3 − 36.9x2 + 7.7x − 0.2 -+++- 0.70 0.11 0.68
59 opsmezzo/composer-systems −29.4x4 + 62.4x3 − 39.5x2 + 6.9x + 0.4 --++- 0.36 0.25 0.44
60 orta/ARAnalytics 3.3x4 − 8.6x3 + 9.3x2 − 4.4x + 0.8 --+-+ 0.22 0.28 0.32
61 MantleFramework/Mantle −17.9x4 + 29.9x3 − 15.8x2 + 3.8x − 0.1 -+--- 0.59 0.27 0.48
62 NSLS-II/userpackages −12.1x4 + 15.6x3 − 4.0x2 + 0.5x + 0.1 -+--- 0.67 0.24 0.81
63 vojtajina/testacular 8.2x4 − 16.7x3 + 10.6x2 − 2.2x + 0.1 -+--+ 0.37 0.28 0.17
64 Gitonomy/gitonomy −2.9x4 + 2.2x3 + 3.4x2 − 3.6x + 0.8 --+-+ 0.44 0.17 0.13
65 Vluxe/Orca −13.2x4 + 27.7x3 − 16.9x2 + 3.3x − 0.1 -+++- 0.97 0.21 1.04
66 adrn/astropy −15.4x4 + 29.4x3 − 18.8x2 + 4.4x + 0.5 +---- 0.54 0.58 0.84
67 12sm/depuy −26.2x4 + 48.2x3 − 27.8x2 + 6.1x + 0.1 ++--- 0.87 0.30 0.82
68 f/awesome-safran −24.2x4 + 49.5x3 − 33.8x2 + 8.4x + 0.4 +--+- 0.72 0.49 0.77
69 jzaefferer/grunt-jquery-content −9.4x4 + 15.0x3 − 8.7x2 + 2.2x + 0.6 +---+ 0.31 0.49 0.68
70 Numbee/Optimal −20.3x4 + 39.4x3 − 25.9x2 + 7.1x + 0.1 ++--- 1.24 0.00 1.24
71 bocoup/gaia −0.6x4 − 4.6x3 + 6.5x2 − 1.3x + 0.1 -+--+ 0.30 0.92 0.07
72 bobandraa/Coconect-Four −14.8x4 + 30.4x3 − 22.8x2 + 7.5x ++-+- 0.37 0.66 0.00
73 ding2tal/latto −11.7x4 + 32.8x3 − 29.3x2 + 9.2x − 0.2 +++++ 0.61 0.47 0.64
74 loopdk/loop_frontend −15.9x4 + 29.1x3 − 16.4x2 + 3.1x + 0.4 ++--- 0.53 0.45 0.73
75 aakb/odaa_drupal −22.7x4 + 46.3x3 − 30.9x2 + 7.2x + 0.2 +--+- 0.64 0.35 0.80
76 telefonicaid/wakeup_platform_common −3.5x4 + 11.7x3 − 9.6x2 + 2.4x − 0.1 -++++ 0.91 0.18 0.79
77 uddannelse-laering-forloeb/ulftheme −24.5x4 + 46.3x3 − 27.7x2 + 5.7x + 0.2 ++--- 0.63 0.35 0.72
78 emberui/emberui 4.2x4 − 4.1x3 − 1.9x2 + 2.1x − 0.1 ---++ 0.93 0.12 0.29
79 pascalchevrel/webdashboard −11.9x4 + 27.8x3 − 19.5x2 + 4.1x + 0.4 ++++- 0.30 0.46 0.46
80 scottgonzalez/pretty-diff −39.0x4 + 80.2x3 − 50.9x2 + 10.5x− 0.1 -+++- 0.24 0.31 0.35
81 jquery/contribute.jquery.com −23.7x4 + 43.4x3 − 24.1x2 + 4.5x + 0.4 +++-- 0.30 0.47 0.55
82 12-oz/pliny −7.2x4 + 12.8x3 − 6.3x2 + 1.4x + 0.1 -++-+ 0.76 0.22 0.49
83 vigo/ruby101-kitap −11.7x4 + 25.4x3 − 19.4x2 + 5.7x + 0.4 +--++ 0.64 0.49 0.72
84 cascadiajs/cascadiajs.github.com 8.8x4 − 18.1x3 + 8.6x2 + 0.5x + 0.2 +---+ 0.35 0.44 0.10
85 ddollar/heroku-buildpacks −20.1x4 + 43.5x3 − 30.9x2 + 8.0x + 0.2 ++-+- 0.68 0.63 0.51
86 overtone/overtone −14.7x4 + 29.5x3 − 21.1x2 + 6.3x + 0.1 ++-+- 0.71 0.71 0.00
87 mcav/gaia-email-libs-and-more −16.3x4 + 33.7x3 − 24.6x2 + 7.0x + 0.3 +--+- 0.07 0.56 0.56
88 emberjs/docs-generator −48.4x4 + 98.6x3 − 63.4x2 + 12.9x+ 0.2 +-++- 0.14 0.73 0.31
89 cgjones/platform-demo-mc −8.7x4 + 22.9x3 − 19.8x2 + 5.7x + 0.4 +--++ 0.15 0.60 0.36
90 albertopq/gaia −11.2x4 + 21.3x3 − 12.2x2 + 2.0x + 0.5 +++-+ 0.17 0.82 0.30
91 heroku/heroku-buildpacks −41.7x4 + 79.4x3 − 45.5x2 + 7.7x + 0.2 -++-- 0.46 0.27 0.42
92 mozilla-b2g/android-device-unagi −4.3x4 + 12.1x3 − 11.1x2 + 2.6x + 0.7 +--++ 0.18 0.58 0.33

68

93 feincms/feincms 20.8x4 − 40.7x3 + 24.1x2 − 4.2x + 0.2 ---++ 0.58 0.20 0.17
94 heroku/buildkits −27.8x4 + 55.3x3 − 33.1x2 + 5.4x + 0.6 +-+-- 0.66 0.50 0.47
95 alex/cryptography −7.1x4 + 4.5x3 + 5.6x2 − 2.9x + 0.4 +++-+ 0.82 0.18 0.62
96 freshbooks/ember-responsive 8.5x4 − 13.8x3 + 1.4x2 + 4.0x − 0.1 +--++ 0.34 0.27 0.37
97 rnowm/Gaia-UI-Building-Blocks −18.4x4 + 33.4x3 − 19.5x2 + 4.0x + 0.4 +---- 0.30 0.49 0.36
98 terminalmage/django-tutorial −13.8x4 + 28.5x3 − 18.7x2 + 3.5x + 0.6 +-++- 0.50 0.78 0.82
99 influxdb/influxdb-ruby −4.8x4 + 9.5x3 − 5.2x2 + 0.6x + 0.2 -++-+ 0.71 0.18 0.71
100 asutherland/bleach.js −3.1x4 + 16.0x3 − 17.5x2 + 5.2x + 0.2 --+++ 0.23 0.42 0.38
101 mozsquib/jsas −10.2x4 + 18.8x3 − 12.4x2 + 3.4x + 0.5 +---+ 0.16 0.97 0.09
102 cloudkeep/symantecssl −11.9x4 + 18.9x3 − 6.0x2 − 1.8x + 0.9 --+-- 0.42 0.39 0.16
103 dualface/cocos2d-x −51.1x4 +110.1x3 −76.9x2 +18.2x−0.3 --++- 0.67 0.23 0.45
104 cdnjs/autoupdate −33.3x4 + 65.3x3 − 38.7x2 + 6.9x + 0.2 -++-- 0.53 0.57 0.48
105 rpflorence/ember-qunit −26.6x4 + 65.2x3 − 51.1x2 + 13.1x− 0.1 --++- 0.10 0.26 0.43
106 jsonresume/resumeToMarkdown −30.0x4 + 64.4x3 − 43.9x2 + 9.4x + 0.1 --++- 0.54 0.30 0.41
107 dominictarr/through −21.8x4 + 51.2x3 − 39.1x2 + 9.5x + 0.2 --++- 0.48 0.24 0.55
108 savoirfairelinux/plugin-

check_printer_hp_2600n

−22.3x4 + 41.9x3 − 25.8x2 + 6.4x + 0.1 ++--- 0.68 0.23 0.90

109 cloudkeep-ops/barbican-postgresql −23.8x4 + 51.5x3 − 37.6x2 + 10.1x− 0.1 ++-+- 0.81 0.22 0.76
110 yawnt/bees −29.0x4 + 57.6x3 − 35.7x2 + 6.6x + 0.6 +-+-- 0.68 0.35 0.55
111 meshy/pythonwheels −11.4x4 + 20.0x3 − 8.9x2 − 0.2x + 0.8 +-+-+ 0.79 0.21 0.78
112 saltstack/salt-cloud −13.2x4 + 24.7x3 − 14.8x2 + 3.3x -+--- 0.57 0.59 0.49
113 urlship/Owl −16.2x4 + 33.0x3 − 20.2x2 + 2.5x + 0.8 --++- 1.06 0.00 0.51
114 ProjectMeniscus/meniscus −11.7x4 + 22.0x3 − 12.9x2 + 2.9x + 0.2 +++-+ 0.85 0.27 0.53

Average: −10.3x4 + 21.0x3 − 13.9x2 + 3.2x + 0.3 0.52 0.35 0.53

69

	Introduction
	Problem Statement
	Research Questions
	Relevance
	Scientific Relevance
	Practical Relevance

	Document Structure

	Research Approach
	Literature Review
	Data Collection and Processing
	Data Analysis
	Plan Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Literature Review
	Definition of Software Ecosystems
	Relationships in Software Ecosystems
	Network Perspective
	Node Level Analysis
	Network Level Analysis
	Visualization Frameworks and Tools

	Evolution of Software Ecosystems
	Life Cycles
	What to measure

	Mining Software Repositories

	Mining GitHub Data for Collaboration Networks
	Collaboration Network Identification and Measurement
	Data Collection
	Data Processing
	Data Analysis
	Results

	Categories of Open Source Collaboration Networks
	Procedure
	Hypotheses
	Results for User-Centered Collaboration Networks
	Results for Repository-Centered Collaboration Networks

	Characteristics of Collaboration Network Categories
	Category A: Short Revival Before Abandonment
	Category B: Early Maximum
	Category C: Extended Growth

	Collaboration in the Ruby Ecosystem
	Observations
	Late 2013
	Early 2014

	Summary of Observations

	Discussion
	Findings and Implications
	Validity
	Future Research

	Conclusion
	Bibliography
	Appendix A: Analysis Data

